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On the topological degree of planar maps
avoiding normal cones

Alessandro Fonda and Giuliano Klun

Abstract. The classical Poincaré–Bohl theorem provides the exis-
tence of a zero for a function avoiding external rays. When the domain
is convex, the same holds true when avoiding normal cones. We con-
sider here the possibility of dealing with nonconvex sets having inward
corners or cusps, in which cases the normal cone vanishes. This allows
us to deal with situations where the topological degree may be strictly
greater than 1.

1 Introduction
Let Ω be an open and bounded planar set, whose boundary ∂Ω is a Jordan
curve, and let f : Ω → R2 be a continuous function such that 0 /∈ f(∂Ω).
The aim of this paper is to provide some conditions on the behaviour of
the function at the boundary which guarantee that the Brouwer topological
degree deg(f,Ω) is a positive number. It is well known that, in such a case,
there will be some x ∈ Ω such that f(x) = 0 (sometimes called equilibria).

In the case when Ω is convex, the normal cone at a given point x̄ ∈ ∂Ω
is defined as

NΩ(x̄) =
{
v ∈ R2 : 〈v, x− x̄〉 ≤ 0 , for every x ∈ Ω

}
.

Here, as usual, 〈· , ·〉 denotes the euclidean scalar product in R2, with associ-
ated norm ‖·‖. Let us recall the following known result.

Theorem 1. Assume Ω to be convex, and that

f(x) /∈ NΩ(x) , for every x ∈ ∂Ω . (1)

Then, deg(f,Ω) = 1.
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We call (1) an avoiding cones condition. (For a proof of Theorem 1, see,
e.g., [6, 8].) In this paper we would like to investigate what happens when Ω
is not convex. In this case, we adopt the following definition of normal cone
(see, e.g., [9]):

NΩ(x̄) =

{
v ∈ RN : lim sup

x→x̄
x∈Ω

〈v, x− x̄〉
‖x− x̄‖

≤ 0

}
. (2)

This is the polar of the Bouligand cone (also named contingent cone). It
has been called regular normal cone in [9, def. 6.3]. Since it could well
happen that NΩ(x̄) = {0} for some x̄ ∈ ∂Ω, the avoiding cones condition at
those points x̄ gives no restriction for f(x̄). However, despite this apparent
difficulty, we will show that, if the avoiding cones condition (1) holds, the
topological degree remains a positive number, at least when assuming some
regularity for ∂Ω.

There are many other possible definitions of normal cone in the noncon-
vex case (see [9, page 232] for a clarifying survey), and several theorems
on the existence of equilibria are available (see, e.g., the well-written review
paper [8]). The main novelty of our paper is allowing the normal cones to
vanish at certain points, still recovering the existence result. However, we
are able to do this only in the planar case, and we do not know if and how
our results could be extended to higher dimensions.

Let us explain our main results, first introducing some notation. Since
∂Ω is a Jordan curve, there is a continuous function γ : [0, 1] → R2, whose
restriction to [0, 1[ is injective, with γ(0) = γ(1) and γ([0, 1]) = ∂Ω. Let us
start assuming that ∂Ω is a piecewise regular Jordan curve. By this we mean
that there are

0 = a0 < a1 < · · · < an−1 < an = 1 ,

such that, for every j = 1, 2, . . . , n, if we look at the function γj : [aj−1, aj]→
R2, restriction of γ to the closed interval [aj−1, aj], this function is of class
C1, and γ ′j(s) 6= 0 for every s ∈ [aj−1, aj]. Then, writing

γ ′−(aj) = γ ′j(aj) , γ ′+(aj) = γ ′j+1(aj) ,

it may be that γ ′−(aj) 6= γ ′+(aj). Among these, there could be inward and
outward corner points (see Section 2 for a precise definition). Let us denote
by Nι the number of inward corner points (or cusps).

We will first prove the following result.
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Theorem 2. Assume ∂Ω to be a piecewise regular Jordan curve, and that

f(x) /∈ NΩ(x) , for every x ∈ ∂Ω . (3)

Then, 1 ≤ deg(f,Ω) ≤ Nι + 1.

As we already said, at certain points aj it may happen thatNΩ(aj) = {0},
in which case f(aj) has no cone to avoid. Let us illustrate this with an
example. Using complex notation, we consider the function f : C → C
defined as f(z) = z2. As for the set Ω, if we took the disk centered at the
origin with radius 1, condition (3) would be violated at the point (1, 0). So,
we modify the disk in a small neighborhood of that point, by creating an
inner corner, as in Figure 1. Now condition (3) is satisfied, and Theorem 2
tells us that 1 ≤ deg(f,Ω) ≤ 2 (of course, we all know that deg(f,Ω) = 2 in
this case).

-1.0 -0.5 0.5 1.0
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Figure 1: Local deformation of the boundary

The proof of Theorem 2 is provided in the next section. An important tool
will be Hopf’s Theorem (the so-called Umlaufsatz), adapted to our situation.

The extension of Theorem 2 to sets having an infinite number of corners is
discussed in Section 3, where we focus our attention on sets whose boundary
is piecewise the graph of a continuous function. This difficult task is not fully
achieved here, since we eventually need to assume some additional regularity
of the boundary. However, in view of some striking examples of sets whose
boundary is locally the graph of nowhere differentiable functions (see, e.g.,
the one in [5]), we expect that further generalizations would require a much
deeper insight in the theory of continuous functions. As expected, in this
framework we loose the upper estimate on the degree, and finally only prove
that deg(f,Ω) ≥ 1.
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Nevertheless, with the aim of extending Theorem 2, we will provide in
Section 3.1 a generalization of Hopf’s Theorem to some cases where the
curve bounding the set Ω is not regular, and in Section 3.3 an extension of
Darboux Theorem involving the Dini derivatives. These results could also
have an independent interest.

The existence of equilibria of functions defined on sets in abstract spaces
with very irregular boundaries has been investigated in [2, 3, 4], typically in
situations when the associated topologically degree is equal to 1. Our results
require a planar setting and stronger regularity assumptions on the boundary;
we do not know whether they could be extended to higher dimensions.

Let us end this introduction by saying that Theorem 2 and its extension
in Section 3 could be generalized assuming the vector field f(x) to avoid some
more general upper semicontinuous multivalued map having closed convex
values. However, for briefness we prefer not entering into this subject, which
will be treated elsewhere.

2 Proof of Theorem 2
Following the usual habit, we assume that γ : [0, 1] → R2 parametrizes ∂Ω
in the counter-clockwise direction. Also, without loss of generality, we may
ask that γ(0) = γ(1) is a regular point, i.e., that γ ′+(0) = γ ′−(1), and that
γ ′−(aj) 6= γ ′+(aj), for j = 1, 2, . . . , n − 1. Moreover, for simplicity we may
also assume that γ is an arc-length parametrization.

2.1 The angular function

Denoting by P(R) the collection of all subsets of R, we define a multivalued
function ω : [0, 1]→ P(R), the so-called angular function, as follows.

In the open intervals ]aj−1, aj[ , the function will be single-valued, hence
we can write

γ ′(s) = eiω(s) , when s ∈ ]aj−1, aj[ , (4)

(recall that ‖γ ′(s)‖ = 1) while at the points aj, corresponding to corners
or cusps, ω(aj) will be a closed interval [αj, βj]. Moreover, the multivalued
function ω : [0, 1] → P(R) will be upper semicontinuous (cf. [1, page 41]).
We now enter into details.

Since we have assumed that γ(0) is a regular point, we define ω(0) to be
single-valued, such that eiω(0) = γ ′+(0) and ω(0) ∈ [0, 2π[ . Then, the function
ω(s) is uniquely defined on [0, a1[ , by continuity, asking that (4) holds, and
it is single-valued there.
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Let us explain how ω(s) is defined on [a1, a2[ . Since γ ′−(a1) 6= γ ′+(a1), it
is easily seen that we have the following alternative: either

(i ) there is an ε > 0 such that γ(a1) + λγ ′−(a1) /∈ Ω, for every λ ∈ ]0, ε[ ,

in which case we say that γ ′−(a1) “points outward”, so that γ(a1) is an “out-
ward corner point”, or

(ii ) there is an ε > 0 such that γ(a1) + λγ ′−(a1) ∈ Ω, for every λ ∈ ]0, ε[ ,

in which case we say that γ ′−(a1) “points inward”, so that γ(a1) is an “inward
corner point”.

In case γ ′−(a1) points outward, let

α1 = lim
s→a−1

ω(s) . (5)

Such a limit exists and is finite, since γ(s) = γ1(s) on [0, a1] and γ1 : [0, a1]→
R2 is of class C1, with ‖γ ′1(s)‖ = 1 for every s ∈ [0, a1]. Moreover, eiα1 =
γ ′−(a1). Let β1 ∈ ]α1, α1 + π] be such that eiβ1 = γ ′+(a1), and define ω(a1) =
[α1, β1]. Now there is a unique way to define ω(s) on ]a1, a2[ , in such a
way that (4) holds, preserving the upper semicontinuity of the multivalued
function ω on the whole interval [0, a2[ . Notice that it has to be

β1 = lim
s→a+1

ω(s) . (6)

In case γ ′−(a1) points inward, let instead

β1 = lim
s→a−1

ω(s) , (7)

so that eiβ1 = γ ′−(a1), and let α1 ∈ [β1 − π, β1[ be such that eiα1 = γ ′+(a1).
Define ω(a1) = [α1, β1], and extend ω(s) on ]a1, a2[ , in such a way that (4)
holds, preserving the upper semicontinuity on the whole interval [0, a2[ . In
this case, it has to be

α1 = lim
s→a+1

ω(s) . (8)

The definition of ω(a2) is analogous to that of ω(a1), and we can continue
recursively, thus defining ω(s) on [aj−1, aj[ , for every j = 1, 2, . . . , n. When
we arrive at the last interval, we define ω(1) just by continuity: ω(1) =
lims→1− ω(s).

The following lemma will be crucial in the proof of Theorem 2.

Lemma 3. One has that

ω(1) = ω(0) + 2π .
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Proof The function ω : [0, 1]→ P(R) defined above is upper semicontinuous
and, since γ(0) = γ(1) is a regular point, there must exist an integer N for
which ω(1) = ω(0) + 2πN . If there are no singular points, i.e. if n = 1, we
can apply Hopf’s Theorem [7], stating that for any simple closed C1-curve γ
in the plane it has to be N = 1.

Let us now assume n ≥ 2. We will approximate the curve γ with a C1-
curve γ̃ : [0, 1]→ R2, by smoothing the angles. We will thus correspondingly
obtain an approximation of the multivalued function ω by a continuous single-
valued function ω̃ : [0, 1]→ R.

Let us explain how γ̃ is defined, assuming for simplicity n = 2, i.e.,
that a1 is the only point of discontinuity of γ ′. Recalling that ω is upper
semicontinuous and ω(a1) = [α1, β1], for any ε ∈

]
0, π

2

[
there is a δ > 0 such

that
s ∈ [a1 − δ, a1 + δ] ⇒ dist(ω(s), [α1, β1]) ≤ ε .

(Here and in the following, dist(A,B) = inf{‖x−y‖ : x ∈ A, y ∈ B}.) Take δ
small enough, and consider the rectangle I1 = [a1−δ, a1 +δ]× [α1−ε, β1 +ε].
We want the function ω̃ to coincide with ω on [0, a1 − δ] ∪ [a1 + δ, 1], while
in the interval [a1 − δ, a1 + δ] we will construct a C1-function whose graph
is contained in I1 and smoothly glues the endpoints (a1 − δ, ω(a1 − δ)) and
(a1 + δ, ω(a1 + δ)).

Let B(γ(a1), r) be the open planar disk centered at γ(a1) with a small
radius r > 0, so small that its boundary is crossed only twice by the curve
γ. This choice is possible since there surely are r̄ > 0 and δ̄ > 0 such
that, if r ∈ ]0, r̄] and dist(γ(s), γ(a1)) = r for some s ∈ ]a1 − δ̄, a1 + δ̄[ , then
γ ′(s) is transversal to ∂B(γ(a1), r). Moreover, there is a ε̄ > 0 such that, if
|s − a1| ≥ δ̄, then dist(γ(s), γ(a1)) ≥ ε̄. It will then be sufficient to choose
r ≤ min{r̄, ε̄}. With this choice of r > 0, there will be an “entrance point”
A = γ(a) and an “exit point” B = γ(b). Notice that a < a1 < b, and b − a
can be made arbitrarily small, by reducing the radius r.

Consider the segment AB joining A and B, and take the straight line L,
parallel to AB, at a small distance ε̂ > 0 from it, lying between the segment
itself and the center of the ball γ(a1). Let A′ and B′ be the intersections of
L with the lines

LA = {γ(a) + tγ ′(a) : t ∈ R} and LB = {γ(b) + tγ ′(b) : t ∈ R} ,

respectively. Let A′′ and B′′ be the points on the segment A′B′ such that
AA′ and A′A′′ have the same length, as well as for for BB′ and B′B′′. Taking
ε̂ small enough, the vector from A′′ to B′′ will have the same direction of the
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Figure 2: The case of a cusp

vector from A to B. Consider the circular arc CAA′′ , starting at A, arriving at
A′′, and tangent to both L and LA. Similarly, consider the circular arc CBB′′ ,
starting at B, arriving at B′′, and tangent to both L and LB. The curve γ̃
will be defined as follows (see Figure 2): γ̃(s) coincides with γ(s) for s < a,
i.e., until it reaches the point A; then, it follows the circular arc CAA′′ until
A′′; at this point, it goes straight to B′′, thus remaining on the line L; then,
it follows the circular arc CBB′′ until B, where it rejoins the curve γ. (Notice
that, since we must be careful to parametrize γ̃ in such a way that γ̃(b) = B,
this curve will be regular but not necessarily parametrized by arc-length any
more.) Finally, γ̃(s) coincides with γ(s) for s > b.

In the above construction, the constants r ε, δ and ε̂ can be chosen to be
arbitrarily small. Moreover, the angle function ω̃ : [0, 1]→ R, defined by

γ̃ ′(s)

‖γ̃ ′(s)‖
= ei ω̃(s) , (9)

with ω̃(0) = ω(0), is monotone as s varies in [a, b], and continuous. These
facts guarantee that

dist(ω̃(s), ω(s)) ≤ π + 2ε < 2π , for every s ∈ [0, 1] .

By Hopf’s Theorem, ω̃(1) = ω̃(0) + 2π, hence also ω(1) = ω(0) + 2π, thus
finishing the proof.
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Figure 3: An example of angle-smoothing

2.2 The avoiding cones condition

We consider the restriction of our function f : Ω → R2 to the boundary of
Ω. More precisely, let us define the new function

g = f ◦ γ : [0, 1]→ R2 \ {0} .

Passing to polar coordinates, in complex notation, we can write

g(s) = ρ(s)eiϕ(s) ,

for some continuous functions ρ : R → ]0,+∞[ and ϕ : R → R. Since
γ(0) = γ(1), the number ϕ(1) differs from ϕ(0) by an integer multiple of 2π,
and

deg(f,Ω) =
ϕ(1)− ϕ(0)

2π
.

It will be useful to consider the multivalued function Θ : [0, 1] → P(R)
defined as

Θ(s) =

{
Ø , if s = aj and γ ′−(aj) points inward ,

ω(s)− 1
2
π + 2πZ , otherwise .

We can thus introduce an auxiliary cone N ∗Ω(γ(s)), made of the origin and
the union of all the half-lines starting from the origin determined by the
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angles in Θ(s). Precisely,

N ∗Ω(γ(s)) =

{
{0} , if s = aj and γ ′−(aj) points inward,

{αeiθ : α ≥ 0, θ ∈ Θ(s)} , otherwise.
(10)

In the sequel we will often use without further mention the elementary prop-
erties of this kind of cones, like e.g. being closed sets, translation invariant
and rotation equivariant. Notice also that neither NΩ(γ(s)) nor N ∗Ω(γ(s))
can be larger than a half-plane.

Lemma 4. The cones NΩ(γ(s)) and N ∗Ω(γ(s)) coincide. Therefore, the
avoiding cones condition (3) is equivalent to

ϕ(s) /∈ Θ(s) , for every s ∈ [0, 1] .

Proof We analyze several different situations.
If s 6= aj for every j = 1, 2, . . . , n − 1, the boundary of Ω is smooth at

γ(s), hence NΩ(γ(s)) is just a single half-line, orthogonal to γ ′(s), with angle
ω(s)− 1

2
π. It thus coincides with N ∗Ω(γ(s)).

Assume that s = aj and that γ ′−(aj) points inward, so that Θ(aj) = Ø
and N ∗Ω(γ(s)) = {0}. We want to prove that NΩ(γ(aj)) = {0}, as well. Let
us translate γ(aj) to the origin and rotate the reference system of axes in such
a way that the two straight lines passing through it determined by γ ′−(aj)
and γ ′+(aj) are symmetric with respect to the vertical axis and, roughly
speaking, the set Ω locally stays below its boundary. More precisely, if these
two lines coincide, in which case we have an inner cusp, they will be equal to
{(x1, x2) : x1 = 0}; otherwise, the first one will have a positive slope m, and
the second one a negative slope −m. We may also assume, in both cases,
that there are two constants r̄ > 0 and µ > 0 such that

{(x1, x2) : x2 < µ|x1|} ∩B(0, r) ⊆ Ω , for every r ∈ ]0, r̄] .

Let v = (v1, v2) be a vector with ‖v‖ = 1. We distinguish three cases.
Case 1: v2 ≤ µ|v1|. Then, choosing x = r

2
v, we have that

〈v, x〉
‖x‖

= 1 .

Case 2: v2 > µ|v1| and v1 ≥ 0. Here we choose x = (ε, µε), with ε > 0 small
enough, and we have that

〈v, x〉
‖x‖

≥ µ√
1 + µ2

v2 . (11)

Case 3: v2 > µ|v1| and v1 < 0. We then take x = (−ε, µε), with ε > 0 small
enough, and we have (11) again.
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We have thus shown, in all the three cases, that v /∈ NΩ(0). Since it cannot
contain any unitary vector v, the cone NΩ(0) is reduced to {0}.

Assume now that s = aj and that γ ′−(aj) points outward. In this case,
ω(aj) = [αj, βj], so that Θ(aj) = [αj − 1

2
π, βj − 1

2
π] + 2πZ. As above, we

translate γ(aj) to the origin and take a reference system of axes so that
the two straight lines passing through the origin determined by γ ′−(aj) and
γ ′+(aj) are symmetric with respect to the vertical axis. If they coincide (in
which case αj = π/2 and βj = 3π/2 mod 2π), we have an outer cusp, and
they will be equal to {(x1, x2) : x1 = 0}; otherwise, the first one will have
a negative slope −m, and the second one a positive slope m (in this case,
αj = π − arctan(m) and βj = π + arctan(m) mod 2π). We want to prove
that, in the first case, NΩ(0) = {(x1, x2) : x2 ≥ 0} while, in the second case,
NΩ(0) = {(x1, x2) : x2 ≥ 1

m
|x1|}. This will imply that NΩ(0) = N ∗Ω(0).

Let us consider the case of an outer cusp. We first prove the inclusion
{(x1, x2) : x2 > 0} ⊆ NΩ(0). Let v be a vector in {(x1, x2) : x2 > 0}, and let
mv > 0 be such that v ∈ {(x1, x2) : x2 ≥ mv|x1|}. There is a r̄ > 0 such that

Ω ∩B(0, r) ⊆
{

(x1, x2) : x2 < −
2

mv

|x1|
}
, for every r ∈ ]0, r̄] .

Therefore, for any r ∈ ]0, r̄] and every x ∈ Ω ∩ B(0, r) \ {0}, one has that
〈v, x〉 < 0, showing that v ∈ NΩ(0). Since NΩ(0) is closed (cf. [9, Proposition
6.5]), we conclude that {(x1, x2) : x2 ≥ 0} ⊆ NΩ(0).

To prove the opposite inclusion, let v = (v1, v2) be such that v2 < 0. There
exist cv > 0 and µ̃v > 0 such that, for every nonzero vector x = (x1, x2) with
x2 ≤ −µ̃v|x1|, one has

〈v, x〉
‖x‖

≥ cv . (12)

Now, there is a r̄v > 0 such that

Ω ∩B(0, r) ⊆ {(x1, x2) : x2 < −µ̃v |x1|} , for every r ∈ ]0, r̄v] .

Therefore, for any r ∈ ]0, r̄v] and every x ∈ Ω∩B(0, r)\{0}, one has that (12)
holds, showing that v /∈ NΩ(0).

Assume now that γ ′−(aj) points outward, but is not a cusp. Let us first
prove the inclusion {(x1, x2) : x2 >

1
m
|x1|} ⊆ NΩ(0). Let v be a vector in

{(x1, x2) : x2 >
1
m
|x1|}, and let m′v ∈ ]0,m[ be such that v ∈ {(x1, x2) : x2 ≥

1
m′v
|x1|}. There is a r̄ > 0 such that

Ω ∩B(0, r) ⊆ {(x1, x2) : x2 < −m′v |x1|} , for every r ∈ ]0, r̄] .

10



Therefore, for any r ∈ ]0, r̄] and every x ∈ Ω ∩ B(0, r) \ {0}, one has that
〈v, x〉 < 0, showing that v ∈ NΩ(0). SinceNΩ(0) is a closed cone, we conclude
that {(x1, x2) : x2 ≥ 1

m
|x1|} ⊆ NΩ(0).

Let us now prove the opposite inclusion. Let v = (v1, v2) /∈ {(x1, x2) :
x2 ≥ 1

m
|x1|}, and let µv > m be such that v /∈ {(x1, x2) : x2 ≥ 1

µv
|x1|}. There

is a r̄ > 0 such that

{(x1, x2) : x2 < −µv |x1|} ∩B(0, r) ⊆ Ω , for every r ∈ ]0, r̄] .

Assume v1 ≥ 0, and hence v2 <
1
µv
v1. Then, taking x = (δ,−µvδ), for any

sufficiently small δ > 0 we have that x ∈ Ω, and
〈v, x〉
‖x‖

=
1√

1 + µ2
v

(v1 − v2µv) > 0 ,

showing that v /∈ NΩ(0). The case v1 ≤ 0 is analogous.
The proof of the lemma is thus completed.

2.3 Conclusion of the proof

Recalling that γ(0) is a regular point and that, by Lemma 4,

ϕ(0) /∈ ω(0)− 1
2
π + 2πZ ,

there is a K ∈ Z such that

ω(0)− 1
2
π + 2πK < ϕ(0) < ω(0)− 1

2
π + 2π(K + 1) . (13)

Then, by continuity and Lemma 4, it has to be that

ϕ(s) > ω(s)− 1
2
π + 2πK , for every s ∈ [0, a1[ . (14)

(Notice that ω(s) is single-valued in [0, a1[ , and in each interval ]aj−1, aj[ .)
When we arrive at s = a1, we have two possibilities: either γ ′−(a1) points
outward, or it points inward. If it points outward, then

ϕ(a1) /∈ Θ(a1) = ω(a1)− 1
2
π + 2πZ = [α1, β1]− 1

2
π + 2πZ . (15)

By (14) and (5), we know that

ϕ(a1) = lim
s→a−1

ϕ(s) ≥ lim
s→a−1

ω(s)− 1
2
π + 2πK = α1 − 1

2
π + 2πK ,

hence, by (15) and (6), it has to be

ϕ(a1) > β1 − 1
2
π + 2πK = lim

s→a+1
ω(s)− 1

2
π + 2πK .

Consequently, if s > a1 and s is sufficiently near a1, then ϕ(s) > ω(s)− 1
2
π+

2πK. This inequality will persist, by continuity and Lemma 4, for every
s ∈ ]a1, a2[ .

11



On the other hand, if γ ′−(a1) points inward, there is no cone to avoid.
However, by (14), (7) and (8),

ϕ(a1) = lim
s→a−1

ϕ(s) ≥ lim
s→a−1

ω(s)− 1
2
π + 2πK = β1 − 1

2
π + 2πK >

> α1 − 1
2
π + 2πK = lim

s→a+1
ω(s)− 1

2
π + 2πK .

Hence, by the same argument as above, we will have that ϕ(s) > ω(s)− 1
2
π+

2πK, for every s ∈ ]a1, a2[ .

Iterating this process, we have that

ϕ(s) > ω(s)− 1
2
π + 2πK , for every s ∈

n⋃
j=1

]aj−1, aj[ ,

and finally, by continuity, Lemma 3 and (13),

ϕ(1) ≥ ω(1)− 1
2
π + 2πK = ω(0)− 1

2
π + 2π(K + 1) > ϕ(0) .

Since ϕ(1)− ϕ(0) is an integer multiple of 2π, we then deduce that

ϕ(1)− ϕ(0) ≥ 2π ,

i.e., that deg(f,Ω) ≥ 1.

In order to show that deg(f,Ω) ≤ Nι+1, let us go back to [0, a1[ . Arguing
as above, by (13) we have that

ϕ(s) < ω(s) + 3
2
π + 2πK , for every s ∈ [0, a1[ . (16)

If γ ′−(a1) points outward,

ϕ(a1) < α1 + 3
2
π + 2πK , (17)

and we see that, if s > a1 and s is sufficiently near a1, then ϕ(s) < ω(s) +
3
2
π + 2πK, and this inequality will persist for every s ∈ ]a1, a2[ .

Now, if γ ′−(aj) points outward for every j, we would have

ϕ(s) < ω(s) + 3
2
π + 2πK , for every s ∈

n⋃
j=1

]aj−1, aj[ ,

and, by Lemma 3 and (13),

ϕ(1) ≤ ω(1) + 3
2
π + 2πK = ω(0) + 3

2
π + 2π(K + 1) < ϕ(0) + 4π .

Then, ϕ(1)− ϕ(0) ≤ 2π, so that deg(f,Ω) ≤ 1.

12



On the other hand, if γ ′−(a1) points inward, there is no control like (17),
and it could be as well that

α1 + 3
2
π + 2πK < ϕ(a1) < β1 + 3

2
π + 2πK ,

giving an increase of 1 in the final computation of the degree. Clearly, the
same could happen for any of the Nι inward corner points.

The proof of Theorem 2 is thus completed.

3 An extension of Theorem 2
The aim of this section is to extend Theorem 2 to the case when ∂Ω is
piecewise the graph of a continuous function. However, this difficult task
will not be completely achieved, and we will eventually need to assume some
additional regularity on that set. Moreover, as may be expected, in this
framework we will loose the upper estimate on the degree, and finally only
prove that deg(f,Ω) ≥ 1.

Let us start by giving a precise definition of what we mean by “piecewise
graph of a continuous function”. As usual, ∂Ω is a Jordan curve parametrized
by a continuous function γ : [0, 1]→ R2, in counter-clockwise direction.

Definition 5. We say that ∂Ω is piecewise the graph of a continuous function
if there are

0 = â0 < â1 < · · · < âm−1 < âm = 1 ,

such that, writing pk = γ(âk),

the closed polygonal curve Γ = p0p1 · · · pm has no self-intersections ;

moreover, denoting by νk the outer normal to the segment pk−1pk joining
the two points pk−1 and pk, for every k = 1, 2, . . . ,m there are hk > 0 and a
continuous function gk : pk−1pk → [−hk, hk] such that, defining the rectangles

Rk = pk−1pk + [−hk, hk]νk ,

we have that

Ω ∩Rk = {p+ yνk : p ∈ pk−1pk , y ∈ [−hk, gk(p)[ } ,
∂Ω ∩Rk = {p+ yνk : p ∈ pk−1pk , y = gk(p)} .

13



Notice that the polygonal curve Γ, being a piecewise regular Jordan curve,
can be parametrized by a piecewise regular function γΓ : [0, 1] → R2 such
that γΓ(âk) = γ(âk), for every k = 1, 2, . . . ,m. Then, there is an associated
angular function ωΓ : [0, 1] → P(R), defined precisely as in Section 2 (to
simplify the exposition, we may assume that γΓ(0) is a regular point for Γ,
i.e., that γ ′Γ(0) = γ ′Γ(1)). Notice that there are no cusps for Γ, and that
ωΓ(1) = ωΓ(0) + 2π, by Lemma 3.

Let us now introduce the concept of “vanishing set”. Given a set S, we
denote by S ′ the derived set of S, i.e., the set of cluster points of S.

Definition 6. Looking at the iterated derived sets

S(1) = S ′ , S(n+1) = [S(n)]′ ,

we call S a vanishing set if, for some positive integer N , the iterated derived
set S(N) is empty.

We will prove the following extension of Theorem 2.

Theorem 7. Assume ∂Ω to be a Jordan curve, piecewise graph of a contin-
uous function. Let γ : [0, 1] → R2 be a continuous parametrization of ∂Ω,
with the property that there are a countable number of non-overlapping inter-
vals [aj, bj], contained in [0, 1], on the interior of which γ is of class C1, and
S = [0, 1] \

⋃
j ]aj, bj[ is a vanishing set. If the avoiding cones condition (3)

holds, then deg(f,Ω) ≥ 1.

The proof will be carried out in the next four subsections. We will first
need to extend Hopf’s Theorem in this new setting, and to characterize the
normal cones with the new angular function, similarly as in Lemma 4. We
will then make a small detour to provide us with some useful properties of
the Dini derivatives (which could also have some independent interest). The
proof of Theorem 7 will then be given first assuming the number of intervals
[aj, bj] to be finite, and finally in its general form.

3.1 An extension of Hopf’s Theorem

We need to define the angular function ω : [0, 1] → P(R) in the case when
∂Ω is piecewise the graph of a continuous function. This will eventually lead
us to an extension of Hopf’s Theorem.

So, take some x ∈ ∂Ω, and assume first that x = γ(s) for some s ∈
]âk−1, âk[ . After a roto-translation Sk, in which the segment pk−1pk becomes
horizontal, of the type [ck, dk] × {0}, we have a corresponding continuous
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function Fk : [ck, dk]→ R, whose graph is the transformation of the graph of
gk by Sk, and Sk(Ω) locally “stays below” this graph. More precisely, we can
write Sk = Tk ◦ Rk, where Tk is a translation and Rk is the rotation around
the origin with angle

θ̂kΓ = π − ωΓ

(
âk−1 + âk

2

)
.

(Notice that ωΓ is constant on ]âk−1, âk[ .) The interval [ck, dk] has the same
length as the segment pk−1pk, and we will have that

Sk(γ(s)) = (t(s), Fk(t(s))) ,

with t(s) ∈ ]ck, dk[ continuously determined by s ∈ ]âk−1, âk[ through the
formula

t(s) = ck +
dk − ck
âk − âk−1

(âk − s) .

Moreover, t(âk−1) = dk, t(âk) = ck, and

Fk(t(s)) = [Sk ◦ gk ◦ S−1
k ](t(s), 0) .

To simplify the notation, we will now write F instead of Fk, and t instead
of t(s). We consider the four Dini derivatives

D`
±F (t) = lim inf

h→0±

F (t+ h)− F (t)

h
, Du

±F (t) = lim sup
h→0±

F (t+ h)− F (t)

h
.

(In the above, the letter ` stands for “lower”, while u means “upper”.) Let

L`−(t) = {(x1, x2) ∈ R2 : x1 ≤ 0 , x2 = D`
−F (t)x1} ,

Lu+(t) = {(x1, x2) ∈ R2 : x1 ≤ 0 , x2 = Du
+F (t)x1} ,

where it is implicitly assumed that

D`
−F (t) = −∞ ⇒ L`−(t) = {0} × [0,+∞[ ,

D`
−F (t) = +∞ ⇒ L`−(t) = {0}× ]−∞, 0] ,

Du
+F (t) = −∞ ⇒ Lu+(t) = {0} × [0,+∞[ ,

Du
+F (t) = +∞ ⇒ Lu+(t) = {0}× ]−∞, 0] .

Let θ`−(t), θu+(t) be the two real numbers in [π
2
, 3π

2
] such that, in complex

notation,

L`−(t) = {αeiθ`−(t) : α ≥ 0} , Lu+(t) = {αeiθu+(t) : α ≥ 0} .
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(Notice that, whenever the right and left derivatives exist and are finite, the
case θ`−(t) < θu+(t) corresponds to an inward corner point, while the case
θ`−(t) > θu+(t) corresponds to an outward corner point.) We thus define

ω(s) = [α(s), β(s)] ,

where
α(s) = θu+(t(s))− θ̂kΓ , β(s) = θ`−(t(s))− θ̂kΓ , (18)

with the convention that [a, b] = [b, a] when b < a.

Now we look at the cases when s = âk, for some k = 1, 2, . . . ,m. At
these points, the limits from the left have to be made with one reference
function, while those from the right concern a different one. For example,
looking at s = âk, the angle θu+(t(âk)) must be defined through the function
Fk : [ck, dk] → R, with t(âk) = ck, while θ`−(t(âk)) is defined using Fk+1 :
[ck+1, dk+1] → R, with t(âk) = dk+1. Once this is done, the definition of
ω(âk) is

ω(âk) = [α(âk), β(âk)] ,

where
α(âk) = θu+(t(âk))− θ̂kΓ , β(âk) = θ`−(t(âk))− θ̂k+1

Γ , (19)

with the usual convention for [a, b] when b < a.

Having defined the multivalued function ω : [0, 1] → P(R), we can now
state an analogue of Hopf’s Theorem.

Theorem 8. Assume that ∂Ω is piecewise the graph of a continuous function.
Then,

ω(1) = ω(0) + 2π .

Proof We know that ωΓ(1) = ωΓ(0) + 2π and, for every s ∈ [0, 1],

α′ , β′ ∈ ωΓ(s) ⇒ |α′ − β′| < π .

Moreover, recalling the assumption that ∂Ω is piecewise the graph of a con-
tinuous function,

s ∈ ]âk−1, âk[ ⇒ dist(ωΓ(s), ω(s)) ≤ π

2
.

The conclusion easily follows.
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3.2 A characterization of normal cones

We now give a characterization of normal cones, similarly as in Section 2,
when ∂Ω is piecewise the graph of a continuous function. It will be useful
to consider the following multivalued function Θ : [0, 1] → P(R). Recalling
how we have defined ω(s) = [α(s), β(s)], we set

Θ(s) =

{
Ø , if α(s) > β(s) ,

ω(s)− 1
2
π + 2πZ , if α(s) ≤ β(s) .

We can thus introduce an auxiliary cone N ?
Ω(γ(s)), made of the origin and

the union of all the half-lines starting from the origin determined by the
angles in Θ(s), as in (10).

Lemma 9. The cones NΩ(γ(s)) and N ?
Ω(γ(s)) coincide. Therefore, the

avoiding cones condition (3) is equivalent to

ϕ(s) /∈ Θ(s) , for every s ∈ [0, 1] .

Proof We fix s ∈ [0, 1] and assume first that s ∈ ]âk−1, âk[ , for some k. After
operating the roto-translation Sk, we can assume that the segment pk−1pk
coincides with [ck, dk] × {0}. Moreover, without loss of generality, we can
assume that ck < 0 < dk and that Sk(γ(s)) coincides with the origin.

Let α(s) > β(s), so that Θ(s) = Ø and N ?
Ω(γ(s)) = {0}. We want to

prove that NΩ(γ(s)) = {0}, as well. In this case, there are two real constants
µ̄ > ν̄ such that, for every µ ≤ µ̄ and every ν ≥ ν̄, the half-lines

`+
µ = {(x1, x2) : x1 ≥ 0, x2 = µx1} , `−ν = {(x1, x2) : x1 ≤ 0, x2 = νx1}

intersect the set Ω infinitely many times in every small neighborhood of the
origin. Hence, for every v ∈ R2 \ {0}, it is possible to find a vector x with
‖x‖ = 1 on one of such half-lines for which 〈v, x〉 = δ > 0. Hence, there is
a sequence of points (xn)n of Ω \ {0} on this half-line such that xn → 0 and
〈v, xn〉 = δ‖xn‖. Therefore, if v 6= 0, then v /∈ NΩ(γ(s)).

Assume now that α(s) = β(s), so that ω(s) is single-valued and N ?
Ω(γ(s))

is a half-line. For every ε > 0 there are two sectors Sε1 ⊆ Sε2, with the
following properties. First of all, both sectors are symmetrical with respect
to N ?

Ω(γ(s)). The sector Sε2 has angular amplitude equal to π+ 2ε, and there
is a r̄ > 0 such that Sε2∩B(0, r) contains Ω∩B(0, r), for every r ∈ ]0, r̄[ . The
sector Sε1 has angular amplitude equal to π − 2ε, and every half-line of this
sector intersects the set Ω infinitely many times in every small neighborhood
of the origin.
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Let v 6= 0 be a vector not belonging to the half-line N ?
Ω(γ(s)). Then,

taking ε > 0 small enough, it is possible to find a half-line in Sε1 and a point
x on it, with with ‖x‖ = 1, for which 〈v, x〉 = δ > 0. Then, there is a
sequence of points (xn)n of Ω \ {0} on this half-line such that xn → 0 and
〈v, xn〉 = δ‖xn‖, showing that v /∈ NΩ(γ(s)). We have thus proved that
NΩ(γ(s)) ⊆ N ?

Ω(γ(s)).

On the other hand, let v ∈ N ?
Ω(γ(s)) be a vector with norm ‖v‖ = 1. For

every ε > 0, there is a r̄ > 0 such that, for every x ∈ Ω ∩ B(0, r̄), being
x ∈ Sε2, one has

〈v, x〉
‖x‖

≤ cos
(π

2
− ε
)
. (20)

Since ε is arbitrary, this shows that v ∈ NΩ(γ(s)), and since NΩ(γ(s)) is a
cone, we have proved that N ?

Ω(γ(s)) ⊆ NΩ(γ(s)).

Finally, let α(s) < β(s). In this case, Θ(s) = [α(s)− 1
2
π, β(s)− 1

2
π]+2πZ,

and N ?
Ω(γ(s)) is a cone whose angular amplitude is ι(s) = β(s) − α(s). We

distinguish two subcases.

Case 1: ι(s) < π. For every ε ∈ ]0, 1
2
(π− ι(s))[ there are two sectors Sε1 ⊆ Sε2,

symmetrical with respect to N ?
Ω(γ(s)). The sector Sε2 has angular amplitude

equal to π − ι(s) + 2ε, and there is a r̄ > 0 such that Sε2 ∩ B(0, r) contains
Ω∩B(0, r), for every r ∈ ]0, r̄[ . The sector Sε1 has angular amplitude equal to
π − ι(s)− 2ε, and every half-line of this sector intersects the set Ω infinitely
many times in every small neighborhood of the origin. The proof now is the
same as the one seen above in the case α(s) = β(s).

Case 2: ι(s) = π. In this case, N ?
Ω(γ(s)) is the half-plane {(x1, x2) : x2 ≥ 0}.

For every ε > 0 there is a sector Sε, symmetrical with respect to the vertical
axis, having angular amplitude equal to 2ε, and there is a r̄ > 0 such that
Sε ∩ B(0, r) contains Ω ∩ B(0, r), for every r ∈ ]0, r̄[ . Let v = (v1, v2) be a
vector with ‖v‖ = 1 and v2 > 0. Then, for every sufficiently small ε > 0,
taking r ∈ ]0, r̄[ , we see that, for every x ∈ Ω ∩ B(0, r), being x ∈ Sε, the
inequality (20) holds true. Since ε is arbitrary, this shows that v ∈ NΩ(γ(s)).
We have thus proved that NΩ(γ(s)) contains the open set {(x1, x2) : x2 > 0}.
Being a closed cone, it contains {(x1, x2) : x2 ≥ 0}, hence N ?

Ω(γ(s)) ⊆
NΩ(γ(s)). Then, equality must hold, since NΩ(γ(s)) cannot be larger than a
half-plane.

In the case when s = âk for some k ∈ {0, 1, . . . ,m}, the proof is essentially
the same, in view of (19), taking care of distinguishing the behaviour to the
left from the one to the right. We avoid the details, for briefness.
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3.3 A generalized version of Darboux’s Theorem

In the following theorem and related corollary, we provide some important
properties of the Dini derivatives, in the spirit of Darboux’s Theorem.

Theorem 10. Let F : [a, b] → R be a continuous function such that, for
some µ ∈ R,

Du
+F (a) > µ > D`

−F (b) . (21)
Then, there is a ξ ∈ ]a, b[ such that

D`
−F (ξ) ≥ µ ≥ Du

+F (ξ) .

Proof By Weierstrass Theorem, the function F̃ (t) = F (t) − µt has a max-
imum in [a, b]. By (21), a maximum point ξ must be in ]a, b[ . Then,
D`
−F̃ (ξ) ≥ 0 ≥ Du

+F̃ (ξ), and since

D`
−F̃ (ξ) = D`

−F (ξ)− µ , Du
+F̃ (ξ) = Du

+F (ξ)− µ ,

the result follows.

The following corollary will play an important role in the proof of Theo-
rem 7.

Corollary 11. Let F : I → R be a continuous function, defined on some
interval I, and let τ0 be a point of I. Consider the set

E = {τ ∈ I : Du
+F (τ) ≤ D`

−F (τ)} .

If τ0 is a cluster point for E from the left, then

D`
−F (τ0) ≥ lim inf

τ→τ−0
τ∈E

Du
+F (τ) . (22)

Similarly, if τ0 is a cluster point for E from the right, then

Du
+F (τ0) ≤ lim sup

τ→τ+0
τ∈E

D`
−F (τ) . (23)

Proof Let us prove (22). Assume by contradiction that the opposite in-
equality holds. Then, we can find a δ > 0 and a real number µ such that
[τ0 − δ, τ0] ⊆ I and

Du
+F (τ) > µ > D`

−F (τ0) , for every τ ∈ [τ0 − δ, τ0[∩E . (24)

Fix τ̄ ∈ [τ0 − δ, τ0[∩E. By Theorem 10, there is a ξ ∈ ]τ̄ , τ0[ such that

D`
−F (ξ) ≥ µ ≥ Du

+F (ξ) .

Then, we see that ξ ∈ E and, by (24), it should be Du
+F (ξ) > µ, a contra-

diction. The proof of (23) is analogous.
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3.4 The proof of Theorem 7

The proof will be divided in three steps.

Step 1. First, we assume that the number of intervals [aj, bj] is finite. Hence,
besides assuming that ∂Ω is piecewise the graph of a continuous function, we
also ask that there are

0 = a0 < a1 < · · · < an−1 < an = 1 ,

such that, for every j = 1, 2, . . . , n, the restriction of γ to the open interval
]aj−1, aj[ is of class C1, and γ ′j(s) 6= 0 for every s ∈ ]aj−1, aj[ . Notice that, in
this setting, the limits lims→a±j

γ ′(s) do not have to exist.

In the following, for simplicity, we will ask that γ(0) = γ(1) is a regular
point, i.e., that γ ′+(0) = γ ′−(1). Let us start by assuming that each point aj
is contained in the interior of some ]âk−1, âk[ .

We consider the function g = f ◦ γ : [0, 1] → R2 \ {0} and, extending it
by 1-periodicity, we write

g(s) = ρ(s)eiϕ(s) ,

for some continuous functions ρ : R→ ]0,+∞[ and ϕ : R→ R.
Being ϕ(0) /∈ Θ(0), let K ∈ Z be such that

β(0) + 2πK < ϕ(0) + 1
2
π < α(0) + 2π(K + 1) . (25)

(Here, since ω(0) is single-valued, α(0) = β(0).) By continuity and Lemma 9,
it has to be that

ϕ(s) + 1
2
π > β(s) + 2πK , for every s ∈ [0, a1[ .

We know that a1 ∈ ]âk−1, âk[ , for some k ∈ {1, 2, . . . ,m}. We consider the
corresponding function t : ]âk−1, âk[→ ]ck, dk[, and set τ0 = t(a1). Then,
recalling (18), there exists some δ > 0 for which

ϕ(t−1(τ)) + 1
2
π > θ`−(τ)− θ̂kΓ + 2πK , for every τ ∈ ]τ0, τ0 + δ[ .

Then, by (23), recalling (18) again,

ϕ(a1) + 1
2
π = lim sup

τ→τ+0

ϕ(t−1(τ)) + 1
2
π

≥ lim sup
τ→τ+0

θ`−(τ)− θ̂kΓ + 2πK

≥ θu+(τ0)− θ̂kΓ + 2πK = α(a1) + 2πK . (26)

(Here the set E plays no role.) We have two possibilities.
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Case 1: D`
−Fk(τ0) ≥ Du

+Fk(τ0). Then, by Lemma 9 and (26), it has to be
that

ϕ(a1) + 1
2
π > β(a1) + 2πK . (27)

Case 2: D`
−Fk(τ0) < Du

+Fk(τ0). Then, α(a1) > β(a1), and from (26) we
get (27) again.

On the other hand, by (18) and (22),

β(a1) = θ`−(τ0)− θ̂kΓ ≥ lim inf
τ→τ−0

θu+(τ)− θ̂kΓ .

(Even here the set E plays no role.) So, by (27), there are a sufficiently small
ε > 0 and a strictly increasing sequence (τn)n such that limn τn = τ0 and,
setting sn = t−1(τn), by (18),

ϕ(a1) + 1
2
π − ε > θu+(τn)− θ̂kΓ + 2πK = α(sn) + 2πK = β(sn) + 2πK .

(Here α(sn) = β(sn), being γ of class C1 on ]a1, a2[ .) Since sn → a1, by
continuity, for n large enough,

ϕ(sn) + 1
2
π > β(sn) + 2πK .

Hence, by Lemma 9 and the continuity of ϕ and β on ]a1, a2[ ,

ϕ(s) + 1
2
π > β(s) + 2πK , for every s ∈ ]a1, a2[ .

Iterating this procedure on each interval ]aj−1, aj[ , we thus prove that

ϕ(s) + 1
2
π > β(s) + 2πK , for every s ∈ ]aj−1, aj[ .

By continuity and Theorem 8, recalling that ω(1) is single-valued and us-
ing (25),

ϕ(1) + 1
2
π ≥ β(1) + 2πK = α(1) + 2πK = α(0) + 2π(K + 1) > ϕ(0) + 1

2
π .

Since ϕ(1)− ϕ(0) is an integer multiple of 2π, we then deduce that

ϕ(1)− ϕ(0) ≥ 2π ,

and the proof is completed. In the case when some aj coincides with some
âk the proof is easily adapted, in view of the definition given in (19), taking
care of the different functions involved when approaching aj from the left
and from the right.
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Step 2. As a second step, we now assume that there are a countable number of
non-overlapping intervals [aj, bj], contained in [0, 1], on the interior of which
γ is of class C1, and that the singular set

S = [0, 1] \
∞⋃
j=0

]aj, bj[

has a finite number of cluster points a′1 < a′2 < · · · < a′N .

Keeping the same notations as above, for simplicity we ask that γ(0) =
γ(1) be a regular point, and we first assume that each point a′1, a′2, . . . , a′N
is contained in the interior of some ]âk−1, âk[ . Let K ∈ Z be such that (25)
holds. Then, by induction, using the result proved in Step 1, we see that

ϕ(s) + 1
2
π > β(s) + 2πK , for every s ∈ [0, a′1[ .

We know that a′1 ∈ ]âk−1, âk[ , for some k ∈ {1, 2, . . . ,m}. We consider the
corresponding function t : ]âk−1, âk[→ ]ck, dk[, and set τ ′0 = t(a′1). Using (23),
we see like in (26) that ϕ(a′1) + 1

2
π ≥ α(a′1) + 2πK (here the set E plays no

role). We now have two possibilities.

Case 1: D`
−Fk(τ

′
0) ≥ Du

+Fk(τ
′
0). Then, by Lemma 9, it has to be that

ϕ(a′1) + 1
2
π > β(a′1) + 2πK . (28)

Case 2: D`
−Fk(τ

′
0) < Du

+Fk(τ
′
0). Then, α(a′1) > β(a′1), and we get (28) again.

Now, using (22), there is a strictly decreasing sequence (sn)n such that

lim
n
sn = a′1 , α(sn) ≤ β(sn) , lim

n
α(sn) ≤ β(a′1) .

(In this case, the set E plays a crucial role.) By (28), taking ε > 0 small
enough,

ϕ(a′1) + 1
2
π − ε > α(sn) + 2πK ,

for every sufficiently large n. Being Θ(sn) = [α(sn), β(sn)]− 1
2
π + 2πZ, with

α(sn) ≤ β(sn), by Lemma 9 we have that

ϕ(a′1) + 1
2
π − ε > β(sn) + 2πK ,

so that, by continuity, for n large enough,

ϕ(sn) + 1
2
π > β(sn) + 2πK .

We can now use the argument at the end of Step 1 to show that

ϕ(s) + 1
2
π > β(s) + 2πK , for every s ∈ ]a′1, a

′
2[ .

Iterating this procedure, we easily conclude the proof. The case when some
a′j coincides with some âk is treated similarly, as already observed above.
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Step 3. We have thus shown that the topological degree is a positive number
if S ′, the derived set of S, is finite. We can now repeat the argument in
Step 2 assuming that S ′ is an infinite set, with a finite number of cluster
points. And this procedure can be carried on an arbitrary finite number of
times. Since we have assumed that S is a vanishing set, we will eventually
reach an iterated derived set having only a finite number of points. The proof
is then completed using once again the argument in Step 2.
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