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Abstract: We consider the U(n)×U(m) symmetric Φ4 lagrangian to describe the finite-

temperature phase transition in QCD in the limit of vanishing quark masses with n = m =

Nf flavors and unbroken anomaly at Tc. We compute the Renormalization Group functions

to five-loop order in Minimal Subtraction scheme. Such higher order functions allow to

describe accurately the three-dimensional fixed-point structure in the plane (n,m), and to

reconstruct the line n+(m, d) which limits the region of second-order phase transitions by

an expansion in ε = 4− d. We always find n+(m, 3) > m, thus no three-dimensional stable

fixed point exists for n = m and the finite temperature transition in light QCD should

be first-order. This result is confirmed by the pseudo-ε analysis of massive six-loop three

dimensional series.
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1. Introduction

The phase diagram of QCD is characterized by a low temperature hadronic phase with

broken chiral symmetry and an high temperature phase with deconfined quarks and gluons,

in which chiral symmetry is restored. The nature of the transition between these two phases

depends on the QCD parameters, as the number of flavors and quark masses. In the limit

of zero quark masses such phase transition is essentially related to the restoring of chiral

symmetry (see e.g. the reviews [1]).

The QCD lagrangian with Nf massless quarks is classically invariant under the global

flavor symmetry U(1)A × SU(Nf ) × SU(Nf ) [2]. The axial U(1)A symmetry may be bro-

ken by the anomaly at the quantum level, reducing the relevant symmetry to SU(Nf ) ×
SU(Nf )× Z(Nf )A [2]. At T = 0 the symmetry is spontaneously broken to SU(Nf )V with

a nonzero quark condensate. With increasing T , a phase transition characterized by the

restoring of the chiral symmetry is expected at Tc. To parameterize this phase transition

a complex Nf -by-Nf matrix Φij is introduced as an order parameter. The most general

renormalizable three-dimensional U(Nf )×U(Nf ) symmetric lagrangian is [2, 3]

LU(Nf ) = Tr(∂µΦ
†)(∂µΦ) + rTrΦ†Φ+

u0
4

(

TrΦ†Φ
)2

+
v0
4

Tr
(

Φ†Φ
)2

, (1.1)

which describes the QCD symmetry breaking pattern only if v0 > 0 [4].

If the anomaly is broken at Tc, the effective lagrangian is [2, 3]

LSU(Nf ) = LU(Nf ) + w0(det Φ + detΦ†) . (1.2)

The effect of non-vanishing quark masses can be accounted for by adding a linear term

mijΦij in the lagrangian [1, 2, 3], that acts as a magnetic field in a spin model.

– 1 –
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The mean-field analysis of the U(Nf )×U(Nf ) lagrangian eq. (1.1) predicts a second-

order phase transition everywhere the stability conditions v0 ≥ 0 and Nfu0 + v0 ≥ 0 are

satisfied. However, according to Renormalization Group (RG) theory the critical behavior

at a continuous phase transition is described by the stable fixed point (FP) of the theory [5].

The absence of a stable FP indicates that the transition cannot be continuous, even though

mean-field suggests it. Therefore the transition is expected to be first-order (see e.g. [6]).

The U(Nf )×U(Nf ) lagrangian was studied at one-loop in ε = 4−d expansion [2, 7, 8]

and at six-loop in the massive zero-momentum renormalization scheme directly in d =

3 [4]. No stable FP was found for all values of Nf ≥ 2, concluding for a first-order phase

transition. Anyway both the used approximations have intrinsic limits. The one-loop ε

expansion, as discussed in ref. [4], provides useful qualitative indications for the description

of the RG flow, but it fails in describing quantitatively the right three-dimensional behavior.

The major drawback of fixed dimension expansion is that the numerical resummation

techniques necessary to extract quantitative informations allow to explore a large, but

limited, region in the space of coupling constants (e.g. in ref. [4] the resummation results

to be effective only in the region −2 ≤ u, v ≤ 4, where u, v are the couplings used in

Ref [4]). One cannot exclude a priori that a FP may be outside the accessible region of

effectiveness of resummation in d = 3. These problems are absent in ε expansion since no

resummation is needed to find the FP’s, being series in ε.

For these reasons, we extend the ε expansion series to five loops. We consider the

U(n)×U(m) generalization of lagrangian (1.1), where Φ is a n-by-m complex matrix. To

understand why we decide to study this more general model let us consider the already

known one-loop β functions [7]:

βu(u, v) = −ε u+ (nm+4)u2 +2(n+m)uv+3v2 , βv(u, v) = −ε v+6uv+ (n+m)v2 .

(1.3)

For n = m a couple of FP’s with non-vanishing and negative v exists only for n <
√
3 +

O(ε) [2], suggesting a first-order phase transition for those systems, as light QCD, having

v0 > 0. Anyway, if one considers the model with n 6= m a more complicated structure of

FP’s emerges. Two FP’s, the gaussian one (u∗ = v∗ = 0) and the O(2nm) one (v∗ = 0),

always exist. For n ≥ n+(m, d) and n ≤ n−(m, d) other two FP’s appear which we call U+

and U−, whose coordinates at one-loop read

u∗± =
Amn ± (m+ n)R

1/2
mn

2Dmn
ε , v∗± =

Bmn ∓ 3R
1/2
mn

Dmn
ε , (1.4)

with

Bmn = nm2−5n+mn2−5m, Amn = 36−m2−2mn−n2 ,

Rmn = 24+m2−10mn+n2 , Dmn = 108−8m2−16mn+m3n−8n2+2m2n2+mn3 .

(1.5)

The v∗ coordinates of U± for n > n+ are positive, as it should be to provide the right

symmetry breaking of QCD. Requiring Rmn > 0, we have n± = 5m±2
√
6
√
m2 − 1+O(ε).1

1Note that it is possible to study the generalized U(n) × U(m) model at fixed m in a 1/n expansion,

since it has a FP for n =∞, contrarily to the U(n)×U(n).

– 2 –
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The stability properties of these FP’s at fixed m (for the physically relevant case

m ≥ 1) are characterized by the following four different regimes (note the analogy with the

O(n)×O(m) model [9]):

1. For n > n+(m, d), there are four FP’s, and U+ is the only stable. Both U± have

v∗ > 0.

2. For n−(m, d) < n < n+(m, d), only the gaussian and the Heisenberg O(2nm)-

symmetric FP’s are present, and none of them is stable. Thus the transition is

expected to be first-order.

3. For nH(m, d) < n < n−(m, d), there are again four FP’s, and U+ is the stable one.

However at small ε for m < 5, it has v∗ < 0. For v0 > 0 a first-order transition is

expected. For this reason we will never consider the value of n−(m, d).

4. For n < nH(m, d),2 there are again four FP’s, and the Heisenberg O(2mn)-symmetric

one is stable.

Now it is possible (and one has to check!) that the actual value of n+(m, 3) is lower

than m, providing a stable FP and consequently a new universality class for U(Nf )×U(Nf )

symmetric models. To give a definitive answer to this question, high order calculations are

required, since low order ones lead to erroneous conclusions, as we shall see. However we

anticipate that we do not find any stable FP, supporting the results of ref. [4].

The paper is organized as follows. The U(n)×U(m) model is analyzed at five-loop in

ε expansion in section 2. In section 3, the model is reanalyzed with pseudo-ε expansion at

six-loop order in massive zero-momentum renormalization scheme. Section 4 summarizes

our main results. In the appendix we briefly discuss the effect of the anomaly.

2. Five-loop ε-expansion of U(n)× U(m) model

We extend the one-loop ε expansion of refs. [7] for the RG functions of the U(n) × U(m)

symmetric theory to five-loop. For this purpose, we consider the minimal subtraction (MS)

renormalization scheme [5] for the massless theory. We compute the divergent part of the

irreducible two-point functions of the field Φ, of the two-point correlation functions with

insertions of the quadratic operators Φ2, and of the two independent four-point correlation

functions. The diagrams contributing to this calculation are 162 for the four-point functions

and 26 for the two-point one. We handle them with a symbolic manipulation program,

which generates the diagrams and computes the symmetry and group factors of each of

them. We use the results of ref. [13], where the primitive divergent parts of all integrals

appearing in our computation are reported. We determine the renormalization constant ZΦ
associated with the fields Φ, the renormalization constant Zt of the quadratic operator Φ2,

2The value of nH(m) may be inferred from refs. [10, 11], where it was shown, on the basis that at a

global O(N) FP all the spin four operators have the same scaling dimension, that the O(N) FP is stable

only if N < Nc, with Nc ∼ 2.9 [6, 11, 12]. Thus the O(2nm) FP is stable for n . 1.45/m and it is not

expected to play any role at the QCD phase transition.

– 3 –
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and the renormalized quartic couplings u, v. The functions βu, βv , ηφ and ηt are determined

using the relations

βu(u, v) = µ
∂u

∂µ

∣

∣

∣

∣

u0,v0

, βv(u, v) = µ
∂v

∂µ

∣

∣

∣

∣

u0,v0

, (2.1)

ηφ(u, v) =
∂ logZΦ
∂ log µ

∣

∣

∣

∣

u0,v0

, ηt(u, v) =
∂ logZt
∂ log µ

∣

∣

∣

∣

u0,v0

. (2.2)

The zeroes (u∗, v∗) of the β functions provide the FP’s of the theory. In the framework

of the ε expansion, they are obtained as perturbative expansions in ε and then are inserted

in the RG functions to determine the ε expansion of the critical exponents:

η = ηφ(u
∗, v∗) , ν = (2− ηφ(u

∗, v∗)− ηt(u
∗, v∗))−1 . (2.3)

2.1 RG functions

The five-loop expansions of the β functions are given by

βu = −ε u+ (nm+ 4)u2 + 2(n+m)uv + 3v2 − 3

2
(7 + 3mn)u3 − 11(m+ n)u2v −

−41 + 5mn

2
uv2 − 3(m+ n)v3 +

+

(

740 + 461mn+ 33m2n2

16
+ ζ(3)(33 + 15mn)

)

u4 +

+

(

659n+ 79m2n+ 659m+ 79mn2

8
+ 48ζ(3)(m + n)

)

u3v +

+

(

2619 + 1210mn+ 230n2 + 230m2 + 3n2m2

16
+ 18ζ(3)(7 +mn)

)

u2v2 +

+

(

15

4
(20n+m2n+ 20m+ n2m) + 36ζ(3)(m + n)

)

uv3 +

+

(

425 + 20m2 + 153mn+ 20n2

16
+ 6ζ(3)(4 +mn)

)

v4 + βu5 + βu6 , (2.4)

βv(u, v) = −ε v + 6uv + (n+m)v2 − 41 + 5mn

2
u2v − 11(m + n)uv2 − 3

5 +mn

2
v3 +

+v

[(

821 + 184mn− 13m2n2

8
+ 12ζ(3)(7 +mn)

)

u3 +

+

(

1591n − 35m2 n+ 1591m − 35mn2

16
+ 72ζ(3)(m + n)

)

u2v +

+

(

211 + 9m2 + 73mn+ 9n2

2
+ 24ζ(3)(4 +mn)

)

uv2 + (2.5)

+

(

295n+ 13m2n+ 295m + 13mn2

16
+ 9ζ(3)(m + n)

)

v3
]

+ βv5 + βv6 .

The coefficients βu5 , β
v
6 , β

u
5 , β

u
6 are very long and not really illuminating. We do not report

them here, but they are available on request to the authors. The same is true for the RG

functions ηφ and ηt to five-loop, that we calculated but never used, since we did not find

evidence for a FP in the space of parameters of interest.

– 4 –
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We have checked that for v = 0 the series reduce to the existing O(ε5) ones for the

O(2nm)-symmetric theory [14]. For m = 1 and any n (or viceversa, given the symmetry

under the exchange n↔ m) the theory is equivalent to an O(2n) in the coupling u+ v, so

the series satisfy the relation βu(z+y, z−y;n,m = 1)+βv(z+y, z−y;n,m = 1) = βO(2n)(z),

where βO(2n)(z) is the β-function of the O(2n) model [14].

2.2 Estimates of n+(m, 3)

From the above reported series, the ε expansion of n±(m) may be calculated to O(ε5).

n±(m) may be expanded as

n±(m) = n±0 (m) + n±1 (m) ε+ n±2 (m) ε2 + n±3 (m) ε3 + n±4 (m) ε4 +O(ε5) , (2.6)

and the coefficients n±i (m) are obtained by requiring

βu(u
∗, v∗;n±) = 0 , βv(u

∗, v∗;n±) = 0 , and det

∣

∣

∣

∣

∂(βu, βv)

∂(u, v)

∣

∣

∣

∣

(u∗, v∗;n±) = 0 .

(2.7)

For generic values of m, the expression of n±(m, 4 − ε) is too cumbersome in order to be

reported here. We only report the numerical expansion of n+ at fixed m = 2, 3, 4, i.e.

n+(2, 4 − ε) = 18.4853 − 19.8995ε + 2.9260ε2 + 4.6195ε3 − 0.7182ε4 +O(ε5) ,

n+(3, 4 − ε) = 28.8564 − 30.0833ε + 6.5566ε2 + 3.4056ε3 − 0.7958ε4 +O(ε5) ,

n+(4, 4 − ε) = 38.9737 − 40.2386ε + 9.6089ε2 + 3.0505ε3 − 0.6156ε4 +O(ε5) . (2.8)

In order to give an estimate of n+(m, 3) such series should be evaluated at ε = 1. A linear

extrapolation of the two-loop contribution leads to the wrong conclusion that n+(m, 3) <

m, i.e. that the transition is continuous. This is the anticipated statement that high-loop

computations are needed to have a conclusive result. Anyway, a direct sum of the five-loop

series is not effective, since they are expected to be divergent. The high irregular behavior

with the number of the loops makes also a Borel-like resummation non effective as well

(in fact Padé-Borel resummation leads to unstable results). Thus we try to extract from

eqs. (2.8) better behaved series by means of algebraic manipulations.

This may be done considering (as in ref. [15])

1/n+(2, 4 − ε) = 0.0541 + 0.0582ε + 0.0541ε2 + 0.0355ε3 + 0.0172ε4 +O(ε5) ,

1/n+(3, 4 − ε) = 0.0347 + 0.0361ε + 0.0298ε2 + 0.0188ε3 + 0.0095ε4 +O(ε5) ,

1/n+(4, 4 − ε) = 0.0257 + 0.0265ε + 0.0210ε2 + 0.0132ε3 + 0.0067ε4 +O(ε5) , (2.9)

whose coefficients decrease rapidly. Setting ε = 1 we obtain the results reported in table 1.

Another method, firstly employed for O(m)×O(n) models in ref. [16], use the knowl-

edge of n+(m, 2) to constrain the analysis at ε = 2, under the (strong) assumption that

n+(m, d) is sufficiently smooth in d at fixed m. n+(m, 2) may be conjectured further as-

suming that the two-dimensional LGW stable FP is equivalent to that of the NLσ model

for all n ≥ 1 except n = 1 [5]. Since the NLσ model is asymptotically free, we con-

clude that n+(m, 2) = 1. The knowledge of n+(m, 2) may be exploited in order to obtain

– 5 –
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m 1/n+ a final

3-loop 4-loop 5-loop 3-loop 4-loop 5-loop

2 6.01 4.95 4.56 4.98 4.55 4.44 4.5(5)

3 9.94 8.38 7.76 8.07 7.53 7.40 7.6(8)

4 13.7 11.6 10.7 11.0 10.3 10.2 10.5(1.1)

Table 1: Estimates of n+ for several m with varying the number of loops.

some informations on n+(m, 3), rewriting the perturbative series for n+(m, 4 − ε) in the

following form

n+(m, 4− ε) = 1 + (2− ε) a(m, ε) , (2.10)

where

a(2, ε) = 8.743 − 5.579ε − 1.326ε2 + 1.646ε3 + 0.464ε4 +O(ε5) ,

a(3, ε) = 13.928 − 8.078ε − 0.760ε2 + 1.323ε3 + 0.263ε4 +O(ε5) ,

a(4, ε) = 18.987 − 10.626ε − 0.508ε2 + 1.271ε3 + 0.328ε4 +O(ε5) , (2.11)

whose terms are better behaved than the original series, but not decreasing. We consider

the series a(2, ε)−1 obtaining a more “convergent” expression, which may be estimated

simply by setting ε = 1. The results of this constrained analysis are reported in table 1.

Note that, although the several not completely justified assumptions we made, the final

obtained series are highly stable with changing the number of the loops. Obviously this

is not an evidence favoring the validity of the assumptions, but it is a very convincing

argument to ensure the goodness of our estimates.

As final estimates we quote an average of the five-loop results (that are quite close)

and as error bar the maximum difference with the fourth order ones. For all the considered

value of m we have n+(m, 3) > m, thus the transition for U(n)×U(n) models is expected

to be first-order. We also check that n+(m, 3) > m for higher values of m.

Since the new couple of FP’s does not exist for finite temperature transition of light

QCD, we do not report their expansion in terms of ε and the exponents characterizing the

critical behavior for n > n+. Anyway they may be obtained from the series we reported

and from those that are available on request.

3. Pseudo-ε expansion

In this section we analyze the six-loop zero-momentum massive three-dimensional series

with the so-called pseudo-ε expansion method [17], since it provided the best results for the

marginal spin dimensionality in spin models (see e.g. refs. [15, 6] and references therein).

The β functions for generic n and m were calculated at six-loop in ref. [4] (but they were

not reported there).

The idea behind the pseudo-ε expansion is very simple [17]: one has only to multiply

the linear terms of the two β functions by a parameter τ , find the common zeros of the

β’s as series in τ and analyze the results as in the ε expansion. The critical exponents are

– 6 –
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N = 0 N = 1 N = 2 N = 3 N = 4 N = 5

M = 0 18.485 5.219 4.769 4.596 4.542 4.527

M = 1 10.762 4.753[29.5] 4.487[2.59] 4.518[3.23] 4.522[3.72]
M = 2 8.190 4.579[7.43] 4.518[3.21] 4.523

M = 3 6.921 4.533[4.99] 4.522[3.65]
M = 4 6.181 4.524[4.30]
M = 5 5.708

Table 2: Padé table for n+(2, 3) in pseudo-ε expansion. The location of the positive real pole

closest to the origin is reported in brackets.

obtained as series in τ inserting the FP’s expansions in the appropriate RG functions. Note

that, differently from the ε expansion, only the value at τ = 1 makes sense. The reason for

which it works well is twofold: first in the three dimensional approach at least one order

more in the loop expansion is known, second, and more important, the RG functions are

better behaved in the massive approach [5, 17].

Following the recipe explained in the previous section for the MS scheme, we obtain

n+(2, 3) = 18.4853 − 13.2663τ − 0.4499τ 2 − 0.1735τ 3 − 0.0537τ 4 − 0.0144τ 5 ,

n+(3, 3) = 28.8564 − 20.0555τ − 0.3092τ 2 − 0.2609τ 3 − 0.1444τ 4 − 0.0968τ 5 ,

n+(4, 3) = 38.9737 − 26.8257τ − 0.2690τ 2 − 0.3582τ 3 − 0.2199τ 4 − 0.1526τ 5 . (3.1)

At least up to the known order, such expansions do not behave as asymptotic with factorial

growth of coefficients and alternating signs. So one may apply a simple Padé resumma-

tion [15]. The results of the [N/M ] Padé approximants are displayed in table 2 for m = 2.

Several approximants have poles on the positive real axis. Anyway all these poles are “far”

from τ = 1, where the series must be evaluated. Thus one may expect the presence of

a pole not to influence the result at τ = 1. Anyway for the cases m = 3, 4 some Padé

have poles at τ < 2, that must be discarded in the average procedure. We choose as final

estimate the average the six-loop order Padé without poles at τ < 2 (excluding those with

N = 0, giving unreliable results), and as error bar we take the maximum deviation from

the average of four- and five-loop Padé (as in ref. [15]). Within this procedure we have

n+(2, 3) = 4.52(7), n+(3, 3) = 7.98(25), n+(4, 3) = 11.1(4).

The final results are in very good agreement with those of the previous section from

a completely different approach. This is a clear evidence that the estimates we made

are robust.

4. Conclusions

In this paper we investigated the possibility of a second-order phase transition in QCD

in the limit of vanishing masses. When the U(1)A symmetry is restored at Tc, the finite

temperature chiral transition, if continuous, may be described by the lagrangian LU(Nf )

eq. (1.1). We pointed out that the correct extrapolation at ε = 1 is obtainable considering

– 7 –
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its U(n) × U(m) symmetric extension at fixed m. In fact the last model has a stable FP

for n > n+(m, d) that is not accessible from the theory with n = m. The presence of

a stable FP for light QCD with Nf = m flavors requires n+(m, 3) < m. After showing

that low order calculations are not conclusive, we performed a five-loop expansion that

allowed to conclude that no continuous transition is possible for three dimensional models

with U(n) × U(n) symmetry for n ≥ 2. We corroborated this result with a direct three-

dimensional analysis, namely with the pseudo-ε expansion at six-loop order.

In ref. [4] six-loop massive zero momentum series were analyzed directly in three di-

mensions allowing to exclude that a FP, without any counterpart in ε expansion exists (as

it was claimed to happen for O(n) × O(2) models for low values of n both for v > 0 [18]

and v < 0 [19]). We believe that this work, together with ref. [4], put on a robust basis the

prediction that the transition in U(n)×U(n) models is first-order.

In the appendix, following ref. [4], we point out that the anomaly may lead to a

continuous transition only for Nf = 2 and large values of |w0|, instead for Nf ≥ 3 it does

not softens the first-order transition of the U(Nf )×U(Nf ) model, for any value of w0.

Finally it is worth mentioning that the U(n) × U(m) models could be relevant in

the description of some quantum phase transitions, as it happens for their O(n) × O(m)

counterparts for Mott insulators [20]. Being n+(m, 3) > m for all m ≥ 2, we predict a

first-order phase transition for all those systems with m ≤ 3, which are interesting for the

condensed matter point of view.
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A. The effect of the anomaly

If the U(1)A symmetry is broken at Tc by the anomaly, one has to consider the la-

grangian (1.2). Since the effect of the anomaly is always (apart from the case Nf = 4) well

described by general arguments, this appendix is very similar to part of ref. [4]. However,

we report such arguments here in order to make this paper self-consistent.

In the large-Nc limit (where Nc is the number of colors), the effect of the anomaly

tends to be suppressed, and the lagrangian eq. (1.1) is recovered in the limit Nc →∞. The

effective U(1)A-symmetry breaking at finite temperature in real QCD has been investigated

on the lattice. The U(1)A symmetry appears not to be restored at Tc, but the effective

breaking of the axial U(1)A symmetry appears substantially reduced especially above Tc
(see, e.g., refs. [21]). However, the lagrangian (1.1) still describe a large part of the phase

diagram of the model with broken anomaly as we show closely following ref. [4].

For Nf = 2 the symmetry breaking pattern is equivalent to O(4) → O(3) [2]. If the

transition is continuous it is in the three-dimensional O(4) universality class [2, 3, 22, 23],

which has been accurately studied in the literature [6, 24]. Actually a continuous transition

– 8 –
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is expected only for large enough value of |w0| (see ref. [4], in particular appendix A, for

the phase diagram of this model). In particular the multicritical point is U(2) × U(2)

symmetric. The phase diagram realized in light QCD may be understood only from the

QCD lagrangian and not from universality arguments. Lattice simulations in two flavors

QCD favor a continuous transition consistent with the O(4) universality class [25].

For Nf = 3 the determinant is cubic in Φ, making the lagrangian not bounded. So the

transition is expected to be first-order for all w0. Lattice simulations of QCD confirm this

expectation [26].

For Nf = 4 the determinant is quartic in Φ, leading to the three couplings effective Φ4

lagrangian

LSU(4) = LU(4) + w0εijklεabcdΦiaΦjbΦkcΦld , (A.1)

where εijkl is the completely antisymmetric tensor (ε1234 = 1). Such lagrangian is not

generalizable to an n-by-m matrix with n or m different from 4 and so we limit to consider

the case n = m = 4. The one-loop β functions we obtain are

βu(u, v, w) = −εu+ 20u2 + 16uv + 3v2 + 8w2 ,

βv(u, v, w) = −εv + 8v2 + 6uv − 8w2 ,

βw(u, v, w) = −εw + 6uw − 6vw . (A.2)

Such series, as in six-loop three-dimensional case [4], have no common zeros with non-

vanishing coordinates. Anyway, differently from three dimensions, the βw vanishes in a

region of parameters, different from w = 0 (namely the surface ε− 6(u − v) = 0). Higher

loop corrections may not change the number of FP’s, since they are expansions in ε.

For Nf ≥ 5 the added anomaly term is irrelevant since it generates polynomials of

degrees higher than four. Therefore for Nf ≥ 5 the lagrangians LSU(Nf ) and LU(Nf ) are

equivalent at criticality.
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