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Thesis submitted in partial fulfilment of the requirements for the
degree of ”Doctor Philosophiæ” in Geometry and Mathematical Physics

Academic Year 2017/2018





Generating Functions for K-Theoretic Donaldson

Invariants and their Refinements

Candidate: Supervisor:

Runako A. Williams Prof. Lothar Göttsche
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Abstract. In this thesis, we study K-theoretic Donaldson invariants, which are the holomorphic Euler

characteristics of Donaldson line bundles on moduli spaces of sheaves on algebraic surfaces. Let S

be a smooth projective surface with b1(S) = 0 and pg(S) > 0. Let MH
S (c1, c2) denote the moduli

space of rank 2 torsion-free Gieseker H-semistable coherent sheaves on S. If L is a line bundle on S,

we denote the corresponding Donaldson line bundle on M = MH
S (c1, c2) by µ(L). The Donaldson

invariants of S are the (virtual) intersection numbers of powers of the first Chern class c1(µ(L)) on M .

The corresponding K-theoretic Donaldson invariants are instead the holomorphic Euler characteristics

χvir(MH
S (c1, c2), µ(L)).

The famous Witten conjecture gives a generating function for the Donaldson invariants in terms

of the Seiberg-Witten invariants of S. We formulate a K-theoretic version of the Witten conjecture,

namely a conjectural generating function for the K-theoretic Donaldson invariants of S, again in terms

of the Seiberg-Witten invariants of S. By replacing the (virtual) holomorphic Euler characteristics by

the χ−y-genus with values in µ(L) we obtain a refinement of this invariant for which we also find a

conjectural formula.

The conjectures were obtained and verified by the use of Mochizuki’s Formula, which reduce the

computation of the invariants to integrals over products of Hilbert schemes, which we compute via

Atiyah-Bott equivariant localization. We define a partition function (from which the invariants can be

computed), and show that it satisfies a universality and multiplicativity property which allows us to

reduce the computation to 11 specific cases. We use this to verify our conjectures in many explicit

cases.



Introduction

Moduli spaces of sheaves on algebraic surfaces have been studied for a long time (see e.g. [13],[25],[26]

and also [21] and references therein). A particular source of interest became the Donaldson invariants [2],

which are invariants of differentiable 4-manifolds X, defined via moduli spaces of anti-self-dual connec-

tions on principal SU(2) and SO(3) bundles on X. It was quite difficult to make explicit computations

with these moduli spaces. However in the case that the 4 manifold X is an algebraic surface S they

can be computed as intersection numbers on moduli spaces of rank 2 torsion free sheaves MH
S (c1, c2)

on S with Chern classes c1, c2 ([24],[31],[28]). In fact they can be computed as top self-intersection

numbers of the first Chern classes of so-called Donaldson line bundles µ(L) on MH
S (c1, c2), associated to

line bundles L on S.

The subject was revolutionized with the advent of the Seiberg-Witten invariants ([35],[32]). These

are new differentiable invariants of 4-manifolds defined via moduli spaces of monopoles, which are much

easier to handle than moduli spaces of anti-self-dual connections.

Let b+(M) be the number of positive eigenvalues of the intersection form on the middle cohomology

of the 4-manifold M . Under the assumption that b+(M) > 1, Witten conjectured in [35] an explicit

formula which expresses the Donaldson invariants in terms of the Seiberg-Witten invariants. There has

been a lot of work trying to prove this conjecture. In particular in a series of papers (e.g. [7],[8],[9],[10])

Feehan and Leness work towards a proof of this Witten conjecture for differentiable 4-manifolds. They

prove it in a number of cases and they give a general proof modulo some technical conjectures.

If S is an algebraic surface, then b+(S) = 2pg(S)+1, where pg(S) = dim(H0(S,KS)) is the geometric

genus of S. The Mochizuki formula of [27] allows to compute intersection numbers on moduli spaces

MH
S (c1, c2) of rank 2 sheaves on S in terms of Seiberg-Witten invariants and intersection numbers on

Hilbert schemes of points. Using this result a complete proof of the Witten conjecture for algebraic

surfaces was given in [19].

The aims of this thesis are the following.

(1) Formulate a K-theoretic version of the Witten conjecture as a formula for the generating

function for the (virtual) holomorphic Euler characteristics of Donaldson line bundles µ(L)

on the moduli spaces MH
S (c1, c2).

(2) Formulate a refinement of this K-theoretic Witten conjecture, where the (virtual) holomorphic

Euler characteristics are replaced by the χ−y-genus with values in µ(L).
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6 INTRODUCTION

(3) Give a number of consequences of these conjectures and relate them to other results and con-

jectures in the field.

(4) Show these conjectures in many cases, thus giving ample evidence for its validity in general.

To be able to state our results, we first briefly review the definition of the Donaldson invariants and

the statement of the Witten conjecture in the case of algebraic surfaces. We assume for simplicity that

MH
S (c1, c2) only consists of stable sheaves (see Chapter 1, Section 3) and there is a universal sheaf E on

S ×MH
S (c1, c2). Then MH

S (c1, c2) has an obstruction theory of virtual dimension

vd = vd(S, c1, c2) = 4c2 − c21 − 3χ(OS)

and a virtual fundamental class [MH
S (c1, c2)]vir ∈ H2vd(MH

S (c1, c2),Z) (see Chapter 1, Section 5). Let

p : S ×MH
S (c1, c2)→MH

S (c1, c2), q : S ×MH
S (c1, c2)→ S

be the projections. For a class α ∈ H2(S,Z), let

ν(α) := (c2(E)− c1(E)2/4)/PD(α) ∈ H2(MH
S (c1, c2),Q).

The corresponding Donaldson invariant is

ΦHS,c1(αvd) =

∫
[MH

S (c1,c2)]vir
ν(α)vd.

Now assume that b1(S) = 0 and pg(S) > 0. Let SW : H2(S,Z)→ Z be the Seiberg-Witten invariants

(see Chapter 1, Section 8.1). A class w ∈ H2(S,Z) is called a Seiberg-Witten class if SW (w) 6= 0. We will

use Mochizuki’s convention for Seiberg-Witten invariants, and denote by S̃W the standard convention for

Seiberg-Witten invariants. Then SW (w) = S̃W (2w−KS). There are only finitely many Seiberg-Witten

classes on S.

We write (α)2 :=
∫
S
α2, (wα) :=

∫
S
wα. Then a slightly simplified version of the Witten conjecture

(by ignoring the point class) for algebraic surfaces proved in [19] is the following.

Theorem 1 (Witten conjecture for algebraic surfaces). Let S be a smooth projective algebraic surface

with b1(S) = 0 and pg(S) > 0. Then

ΦHS,c1

(αvd

vd!

)
= Coeffxvd

[
22−χ(OS)+K2

S (−1)χ(OS)+c1(c1−KS)/2 exp
( (α)2

2
x2
)

·
∑

w∈H2(S,Z)

(−1)c1wSW (w) exp
((

(2w −KS)α
)
x
)]
.

If α = c1(L) for a line bundle L ∈ Pic(S), the Donaldson line bundle µ(L) ∈ Pic(MH
S (c1, c2))

associated to L is a line bundle with c1(µ(L)) = ν(L). A K-theoretic version of the Witten conjecture
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will therefore be a formula for the generating function of the (virtual) holomorphic Euler characteristic

χvir(MH
S (c1, c2)), µ(L)).

We obtain the following conjecture.

Conjecture 1. Let S be a smooth projective surface with pg(S) > 0, b1(S) = 0, and L ∈ Pic(S).

Let H, c1, c2 be chosen such that there are no rank 2 strictly Gieseker H-semistable sheaves on S with

Chern classes c1, c2. Then χvir(MH
S (c1, c2), µ(L)) equals the coefficient of xvd of

22−χ(OS)+K2
S

(1− x2)
(L−KS)2

2 +χ(OS)

∑
w∈H2(S,Z)

SW (w) (−1)wc1
(

1 + x

1− x

)(KS
2 −w

)
(L−KS)

.

Using the virtual Riemann-Roch Theorem 5 from [1], one can show that

lim
t→∞

(
1

tvd
χvir(MH

S (c1, c2), µ(tL))

)
=

∫
[MH

S (c1,c2)]vir

c1(µ(L))vd

vd!
,

and it is not difficult to check from this that Conjecture 1 implies the Witten conjecture (Theorem 1)

for algebraic surfaces.

If the canonical linear system |KS | contains a smooth connected curve, the only Seiberg-Witten

classes of S are 0 and KS . In this case we obtain a simplified version of the above conjecture.

Proposition 1. Let S be a smooth projective surface satisfying pg(S) > 0, b1(S) = 0, KS 6= 0,

and such that its only Seiberg-Witten basic classes are 0 and KS. Let L ∈ Pic(S) and let H, c1, c2 be

chosen such that there are no rank 2 strictly Gieseker H-semistable sheaves on S with Chern classes

c1, c2. Suppose Conjecture 1 holds in this setting. Then χvir(MH
S (c1, c2), µ(L)) is given by the coefficient

of xvd of

23−χ(OS)+K2
S

(1 + x)KS(L−KS)

(1− x2)χ(L)
.

Now we come to our refined version of the K-theoretic Witten conjecture, which also generalizes the

refinement of [15] of the Vafa-Witten conjecture of [34].

A natural refinement of the holomorphic Euler characteristic χ(X,L) of a line bundle L on a smooth

projective variety X of dimension d is χ−y(X,L), the χ−y-genus with values in L. The χ−y-genus of X

is

χ−y(X) =

d∑
p=0

(−y)pχ(X,ΩpX),

and the χ−y-genus with values in L is defined by

χ−y(X,L) =

d∑
p=0

(−y)pχ(X,ΩpX ⊗ L).

We replace the χ−y-genus and the χ−y−genus with values in L by their virtual versions χvir
−y(X) and

χvir
−y(X,L).
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To state our result we first review the refined Vafa-Witten formula of [15]. Consider the following

theta function and the normalized Dedekind eta function.

(0.1) θ3(x, y) =
∑
n∈Z

xn
2

yn, η(x) =

∞∏
n=1

(1− xn).

Then the main conjecture of [15] is the following.

Conjecture 2. Let S be a smooth projective surface with b1(S) = 0 and pg(S) > 0. Let H, c1, c2

be chosen such that there are no rank 2 strictly Gieseker H-semistable sheaves with Chern classes c1, c2,

and let M := MH
S (c1, c2). Then y−

vd
2 χvir
−y(M) equals the coefficient of xvd(M) of

4

(
1

2

∞∏
n=1

1

(1− x2n)10(1− x2ny)(1− x2ny−1)

)χ(OS)(
2η(x4)2

θ3(x, y
1
2 )

)K2
S

·
∑

a∈H2(S,Z)

SW (a)(−1)c1a

(
θ3(x, y

1
2 )

θ3(−x, y 1
2 )

)aKS
.

Our refined K-theoretic Witten conjecture interpolates between Conjecture 2 and Conjecture 1.

Conjecture 3. Let S be a smooth projective surface with pg(S) > 0, b1(S) = 0, and L ∈ Pic(S).

Let H, c1, c2 be chosen such that there are no rank 2 strictly Gieseker H-semistable sheaves on S with

Chern classes c1, c2. Then y−
vd
2 χvir
−y(MH

S (c1, c2), µ(L)) equals the coefficient of xvd of

4

(
1

2

∞∏
n=1

1

(1− x2n)10(1− x2ny)(1− x2ny−1)

)χ(OS)(
2η(x4)2

θ3(x, y
1
2 )

)K2
S

·

( ∞∏
n=1

(
(1− x2n)2

(1− x2ny)(1− x2ny−1)

)n2)L2

2
( ∞∏
n=1

(
1− x2ny−1

1− x2ny

)n)LKS

·
∑

a∈H2(S,Z)

(−1)c1aSW (a)

(
θ3(x, y

1
2 )

θ3(−x, y 1
2 )

)aKS

·

( ∞∏
n=1

(
(1− x2n−1y

1
2 )(1 + x2n−1y−

1
2 )

(1− x2n−1y−
1
2 )(1 + x2n−1y

1
2 )

)2n−1)L(KS−2a)

2

.

We see that if L = OS , then Conjecture 3 specializes to Conjecture 2. On the other hand, specializing

at y = 0, we have

χvir
−y(MH

S (c1, c2), µ(L))
∣∣
y=0

= χvir(MH
S (c1, c2), µ(L)),

and Conjecture 3 specializes to Conjecture 1.

We outline how we derive these conjectures and check them in many cases. Our main tool is

Mochizuki’s formula, which we review in Chapter 1, Section 8. It allows to express virtual intersection

numbers on moduli spaces of sheaves MH
S (c1, c2) as a sum over contibutions of Seiberg-Witten classes a,

where each contribution is the coefficient of s0 of a Laurent series Ψ̃(L, a, c1 − a, n1, n2) in a variable s
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whose coefficients are expressions in intersection numbers on Hilbert schemes of points S[n1]×S[n2]. We

apply it to the K-theoretic Donaldson invariants in Chapter 2.

So the task is reduced to evaluating the Ψ̃(L, a, c1 − a, n1, n2). After pulling out an elemen-

tary factor (the perturbation part), we organize the Ψ̃(L, a, c1 − a, n1, n2) into a generating function

ZS(L, a, c1, s, y, q) (the partition function) over all n1, n2. ZS(L, a, c1, s, y, q) is the partition function

used for the χ−y-genera χvir
−y(M,µ(L)), and

ZS(L, a, c1, s, q) := ZS(L, a, c1, s, y, q)
∣∣
y=0

is the partition function used for the holomorphic Euler characteristics χvir(M,µ(L)).

In Chapter 3 we show that these partition functions satisfy two crucial properties: cobordism in-

variance and multiplicativity. Cobordism invariance says that the coefficient of any monomial in s, y, q

of ZS(L, a, c1, s, y, q) is given by a universal polynomial in the 11 intersection numbers L2, La, a2, ac1,

c21, Lc1, LKS , aKS , K2
S , χ(OS). Mulitplicativity says that more precisely there are 11 universal power

series A1(y), . . . , A11(y) ∈ Q[y, s−1][[s, q]], such that

ZS(L, a, c1, s, y, q) = A1(y)L
2

A2(y)LaA3(y)a
2

A4(y)ac1A5(y)c
2
1A6(y)Lc1A7(y)LKS

·A8(y)aKSA9(y)c1KSA10(y)K
2
SA11(y)χ(OS).

(0.2)

Again we put Ai = Ai(y)
∣∣
y=0

, and we clearly get

ZS(L, a, c1, s, q) = AL
2

1 ALa2 Aa
2

3 Aac14 A
c21
5 A

Lc1
6 ALKS7 AaKS8 Ac1KS9 A

K2
S

10 A
χ(OS)
11 .

The next step is the reduction to the case of toric surfaces. The 11 power series A1, . . . , A11 are

now determined by computing ZS(L, a, c1, s, y, q) for 11 quadruples (S,L, a, c1) of a surface and 3 line

bundles on S, such that the corresponding vectors

v(S,L,a,c1) = (L2, La, a2, ac1, c
2
1, Lc1, LKS , aKS , c1KS ,K

2
S , χ(OS)

in Q11 are linearly independent. We choose all the surfaces to be the toric surfaces P2 and P1 × P1 and

the corresponding line bundles to be equivariant line bundles with respect to the natural C∗×C∗ action

on P2 and P1 × P1.

Now we can use localization to compute the power series Ai. For S = P2 and S = P1 × P1, the

C∗ ×C∗ action on S has finitely many fixpoints, and it lifts to a C∗ ×C∗-action on the Hilbert schemes

of points S[n], still with finitely many fixpoints. Furthermore Ψ̃ can be expressed in terms of the Chern

classes of universal and tautological sheaves on these Hilbert schemes of points. Now the Bott-residue

formula (or Atiyah-Bott-localization) expresses Ψ̃ as a sum over contributions at the fixpoints, where

each fix point contribution is expressed in terms of the weights of the C∗ × C∗-action on the fibres of

the universal and tautological sheaves and the tangent space of the Hilbert schemes over the fixpoints.
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The fixpoints on the Hilbert scheme S[n] are parametrized by tuples of partitions, and the weights on

the fibres of the universal and tautological sheaves and the tangent space can be expressed in terms of

the combinatorics of partitions. Thus ZS(L, a, c1, s, y, q) and ZS(L, a, c1, s, y, q) can be computed as a

sum over partitions.

This sum has been computed by a program in PARI/GP. We determined the universal series

A1, . . . , A11, A1(y), . . . , A11(y) to the following orders:

• For A1, . . . , A11, we computed the coefficients of sl−3nqn for all n ≤ 10, l ≤ 49. (Recall: Ai and

Ai(y) are Laurent series in s.)

• For A1(y), . . . , A11(y), we computed the coefficients of sl−5nymqn for all n ≤ 6, m ≤ 9, l ≤ 30.

Finally this allows us to prove Conjecture 1 and Conjecture 3 for many surfaces S up to relatively

high expected dimension vd: The knowledge of all the Ai(y) modulo a suitable power of q, by formula

(0.2), gives us ZS(L, a, c1, s, y, q) modulo the same power of q by just substituting in the values of the

intersection numbers for (S,L, c1, a). In the same way we get ZS(L, a, c1, s, q) from the knowledge of the

Ai. Putting back the perturbation parts, summing over the Seiberg-Witten classes of S, and taking the

coefficient of s0 we get the (refined) K-theoretic Donaldson invariants of S, for all moduli spaces up to

a certain virtual dimension vd, which also depends on the intersection numbers of S.

We have done the computation in many cases: double covers of P1×P1 and P2, complete intersections

in Pn, elliptic surfaces and blowups of any of the above. In all these cases Conjecture 1 and 3 are

confirmed. The result of this thesis are part of [16].
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for all his guidance and support throughout the course of the study. I would also like to thank the

Mathematics Sections of SISSA and ICTP for the instruction and support they’ve given me over the

years. And finally, I would like to acknowledge and thank my family for the steadfast support they have

held for me these many years.



Contents

Introduction 5

Chapter 1. Background 13

1. Conventions 13

2. Hilbert Schemes 13

3. Moduli Spaces of Sheaves 14

4. Obstruction Theory 15

5. Obstruction Theory for the Moduli Space of Sheaves 17

6. Determinant bundles and Donaldson line bundles 18

7. Equivariant Cohomology and Localization 19

8. Mochizuki’s Formula 20

Chapter 2. Application of the Mochizuki formula to K-theoretic Donaldson invariants 27

1. Expression in terms of descendent insertions 27

2. Explicit form of Mochizuki’s formula 29

3. Partition function 32

4. The K-theoretic Donaldson invariants in terms of the partition function 35

Chapter 3. Universality and Multiplicativity of K-theoretic Donaldson Invariants 39

1. Universality 40

2. Multiplicativity 46

Chapter 4. Computation of Mochizuki’s formula via localization 53

1. Reduction to toric surfaces 53

2. Action on P2 and P1 × P1 55

3. Action on Hilbert schemes of points 57

4. The localization formula for the partition function 59

5. Action on the relevant sheaves at the fixpoints 60

6. Results of the computations 64

Chapter 5. Applications 67

1. K3-surfaces 68

11



12 CONTENTS

2. Minimal surfaces of general type 68

3. Disconnected canonical divisor 69

4. Blow-up formula 71

5. Witten conjecture 71

Chapter 6. Examples 73

1. K3 surfaces 73

2. Blowup of K3 surfaces 73

3. Elliptic surfaces 74

4. Minimal surfaces of general type 74

5. Blowups of the above surfaces 77

Appendix 79

Pari/gp program for K-theoretic Donaldson invariants 79

The universal power series 84

Bibliography 87



CHAPTER 1

Background

1. Conventions

1.1. K-groups. On a Noetherian scheme X we denote K0(X) the Grothendieck group generated

by locally free sheaves, and K0(X) the Grothendieck group generated by coherent sheaves. K0(X)

is naturally an algebra, K0(X) is a module over K0(X), with addition induced by direct sum and

multiplication induced by tensor product of locally free sheaves, i.e. it by taking the tensor product

⊗L of locally free resolutions. Denote by [F ] the class of a sheaf F in K0(X) or K0(X). For a proper

morphism f : X → Y we have the pushforward homomorphism

f! : K0(X)→ K0(Y ), [F ] 7→
∑
i

(−1)i[Rif∗F ].

For any morphism f : X → Y we have the pullback homomorphism f ! : K0(Y ) → K0(X), which is

given by [F ] 7→ [f∗F ] for a locally free sheaf F on Y . Finally if X is smooth, the natural homomor-

phism K0(X) → K0(X) (induced by the inclusion of locally-free sheaves inside coherent sheaves) is an

isomorphism. It’s inverse is obtained by taking a locally free resolution.

2. Hilbert Schemes

Let S be a smooth projective surface. We denote by S(n) = Symn(S) the nth symmetric power of S.

That is S(n) = Sn/Sn where Sn is the symmetric group in n letters, acting by permuting the factors.

We denote by S[n] the Hilbert scheme of n points:

Definition 1. A flat family of subschemes of S parametrized by a scheme T is a closed subscheme

Z ⊂ S × T such that the induced morphism Z → T is flat. For t ∈ T we denote the fiber of Z over t by

Zt.

Let HilbnS : (Schemes)opp → (Sets) be the functor

HilbnS(T ) = {Z ⊂ S × T | Z flat family of subschemes with h0(Zt,OZt) = n ∀ t ∈ T}

Theorem 2. (Grothendieck, Fogarty) There is a scheme, which we denote S[n], which represents

the functor HilbnS. S[n] is projective, nonsingular and of dimension 2n.

13



14 1. BACKGROUND

Set theoretically, S[n] is the set of 0-dimensional subschemes of S of length n. We have a natural

map

π : S[n] → S(n), [Z] 7→
∑
p∈S

(dim OS,p)p

called the Hilbert-Chow morphism. If Z ⊂ S is a 0-dimensional subscheme of length n, then the support

of Z is a finite set. Thus the sum above is a finite sum and the map is well-defined. It can be shown

that π is indeed a morphism. By abuse of notation we can also write this map as [Z] 7→ supp(Z), where

supp(Z) is the support with multiplicities.

As S[n] represents the functor HilbnS , there is a universal subscheme Zn(S) ⊂ S×S[n], corresponding

to the identity morphism id : S[n] → S[n]. Set-theoretically it can just be described as the incidence

scheme

Zn(S) =
{

(p, Z) ∈ S × S[n]
∣∣ p ∈ Z}.

Let q : Zn(S)→ S and p : Zn(S)→ S[n] be the two projections. Then by definition p : Zn(S)→ S[n] is

flat of degree n. We denote by IZn(S) its ideal sheaf in OS×S[n] , and for a line bundle L on S we denote

IZn(S)(L) := IZn(S) ⊗ q∗(L).

Definition 2. Let V be a vector bundle of rank r on S. The tautological vector bundle V [n] on S[n]

is defined by

V [n] = p∗(q
∗(V )).

As Zn(S) is flat of degree n over S[n] it follows that V [n] is a vector bundle of degree rn over S[n]. By

definition the fibre of V over a subscheme Z ∈ S[n] is V [n](Z) = H0(Z, V ⊗OZ). If 0→ E → F → G→ 0

is an exact sequence of vector bundles on S, then it is easy to see that we get an induced exact sequence

0→ E[n] → F [n] → G[n] → 0, thus the definition of V [n] extends to a map K0(S)→ K0(S[n]).

3. Moduli Spaces of Sheaves

Most of this section is based upon [21]. Let S be a projective algebraic surface, and let H be an

ample divisor on S. Let E be a torsion free coherent sheaf on S. We define the Hilbert Polynomial of E

by

PH(E;m) := χ(S,E ⊗OS(mH))

by the Riemann-Roch theorem this is a polynomial in m. Let rk(E) be the rank of E. We define the

reduced Hilbert polynomial of E by pH(E;m) := PH(E;m)/rk(E).

Definition 3. A torsion free sheaf E on S is Gieseker H-semistable if for all proper subsheaves

F ( E we have

pH(F ;m) ≤ pH(E;m), for m >> 0
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E is called Gieseker H-stable if the inequality is strict for all m >> 0. In future we will just write

H-semistable and H-stable.

We briefly recall from [21, Chap.4] the definition of the moduli space MH
S (r, c1, c2) of rank r torsion

free H-semistable sheaves on S with Chern classes c1 and c2, it is a scheme which corepresents a suitable

functor.

Definition 4. Let M′ : Schemes/C → Sets be the contravariant functor which associates to a

scheme T the set of isomorphism classes of T -flat families of H-semistable sheaves on S, of rank r and

with Chern classes c1, c2, and to f : T ′ → T the pullback via f × 1S. Let M = M′/ ' be the quotient

functor by the equivalence relation given for F, F ′ ∈ M′(T ) by F ' F ′ if and on only F ' F ′ ⊗ p∗L,

where p : S × T → T is the projection and L ∈ Pic(T ).

Theorem 3 (Gieseker-Maruyama). See [21, Thm. 4.3.3, Thm. 4.3.4]

(1) There is a projective scheme MH
S (r, c1, c2) that corepresents the functor M.

(2) There is an open subscheme MH
S (r, c1, c2)s parametrizing equivalence classes of stable sheaves.

Roughly speaking that M is corepresented by MH
S (r, c1, c2) means that there is a map φ which

associates to any T -flat family E of H-semistable sheaves on S of rank r and with Chern classes c1, c2,

a morphism φ(E) : T → MH
S (r, c1, c2), and this is compatible with pullback: φ((1S × f)∗E) = φ(E) ◦ f .

If W is a scheme and ψ is another such map E 7→ (ψ(E) : T → W ) compatible with pullback, then ψ

factors through a morphism MH
S (r, c1, c2) → W . Note that this means in particular that MH

S (r, c1, c2)

is unique up to unique isomorphism.

Corepresenting a functor is a weaker notion than representing it, in particular there will not always

be a universal sheaf on S ×MH
S (r, c1, c2). In the sequel we will restrict our attention to the case of rank

2 sheaves and will denote MH
S (c1, c2) := MH

S (2, c1, c2).

4. Obstruction Theory

Let M ↪→ X be an embedding of schemes with X smooth, take for example M a projective variety.

Let I = IM/X be the corresponding ideal sheaf. The complex

I/I2 d−→ ΩX/M

is called the truncated cotangent complex of M in X

Definition 5. A 1-perfect obstruction theory on M is a complex of vector bundles E• = [E−1 → E0]

on M with a morphism of complexes

E−1 E0

I/I2 ΩX/M

φ−1
φ0

d
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such that

(1) φ0 induces an isomorphism on the 0-th cohomology of the complexes

(2) φ−1 is surjective on −1-th cohomology.

To every 1-perfect obstruction theory E• = [E−1 → E0] on M we associate a dual complex E• =

[E0 → E1] by setting Ei := (E−i)∨ for i = 0, 1.

Definition 6. To a pair (M,E•) we define the virtual dimension as

vd(M,E•) = rk(E•) = rk(E1)− rk(E0).

Theorem 4. [1, 23] Let M be a scheme with a 1-perfect obstruction theory E•. Then M has

(1) a virtual fundamental class [M ]vir ∈ H2vd(M,E•)(M) ([1]),

(2) a virtual structure sheaf Ovir
M ∈ K0(M) in the sense defined in [23], [6, 3.2].

Definition 7. We define the virtual tangent sheaf by

T vir
M := E0 − E1 ∈ K0(M).

Let V ∈ K0(M), then we define the virtual holomorphic Euler characteristic via

χvir(M,V ) := χ(M,V ⊗Ovir
M ),

and we have the virtual Riemann-Roch theorem, which is a virtual analogue of the Hirzebruch-Riemann-

Roch formula.

Theorem 5. [1, Thm.3.3]

χvir(M,V ) =

∫
[M ]vir

ch(V )td(T vir
M )

The χ−y-genus χ−y(X) of a smooth projective variety X is defined by

χ−y(X) =
∑
p≥0

(−y)pχ(X,ΩpX).

Similarly for an element V ∈ K0(X) the χ−y-genus of X with values in V is defined as

χ−y(X,V ) =
∑
p≥0

(−y)pχ(X,ΩpX ⊗ V ).

By definition χ−y(X,V )
∣∣
y=0

= χ(X,V ). Now following [6], we extend these definitions to their virtual

versions.
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Definition 8. [6] Let M be a scheme with a 1-perfect obstruction theory E•. The virtual χ−y-genus

of M is

χvir
−y(M) :=

∑
p≥0

(−y)pχvir(M,Λp(T vir
M )∨),

and the virtual χ−y-genus of M with values in V ∈ K0(M) is

χvir
−y(M,V ) :=

∑
p≥0

(−y)pχvir
(
M,Λp(T vir

M )∨ ⊗ V
)
.

In [6] it is shown that χvir
−y(M) and χvir

−y(M,V ) are polynomials in y of degree at most vd(M).

Furthermore it is easy to see from the definitions that χvir
−y(M,V )

∣∣
y=0

= χvir(X,V ).

5. Obstruction Theory for the Moduli Space of Sheaves

In this section we assume that all the sheaves inMH
S (c1, c2) are stable. In [27, Chapter 5] T. Mochizuki

introduced and studied a perfect obstruction theory on MH
S (c1, c2) with

(5.1) T vir = Rπ∗RHom(E , E)0[1],

where E denotes the universal sheaf on M ×S, π : M ×S →M is projection, and (·)0 denotes the trace-

free part. Although E may only exist étale locally, Rπ∗RHom(E , E)0 exists globally [21, Sect. 10.2]. We

will not need the details of the construction or deeper properties of the obstruction theory in the sequel.

By definition we have

vd(MH
S (c1, c2)) = rk(Rπ∗RHom(E , E)0[1]) = −rk(Rπ∗RHom(E , E)0))

= −rk(Rπ∗RHom(E , E)) + rk(π∗(OS×M ))

= −χ(E,E) + χ(OS)

= 4c2 − c21 − 3χ(OS).

Here in the second to last step E is a sheaf in MH
S (c1, c2) and

χ(E,E) = hom(E,E)− ext1(E,E) + ext2(E,E),

and in the last step we have applied the Riemann-Roch Theorem on S. In future we write

vd = vd(S, c1, c2) = 4c2 − c21 − 3χ(OS)

for the virtual dimension of the Moduli space MH
S (c1, c2) and [MH

S (c1, c2)]vir ∈ H2vd(MH
S (c1, c2),Z) for

the virtual fundamental class.
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6. Determinant bundles and Donaldson line bundles

We review the determinant line bundles on the moduli spaces MH
S (c1, cs) (see e.g. [20, 2.1]), for

more details we refer to [21, Chap. 8]. Let c be an element in K0(S), which is the class of a coherent

rank 2 sheaf with Chern classes c1, c2. We write MH
S (c) := MH

S (c1, c2). We assume that all sheaves in

MH
S (c) are H-stable.

Let E be a flat family of coherent sheaves of class c ∈ K0(S) on S parametrized by a scheme T ; then

E ∈ K0(S × T ). Let

p : S × T → T, q : S × T → S

be the projections. Define λE : K0(S)→ Pic(T ) as the composition of the following homomorphisms:

(6.1) K0(S)
q∗

// K0(S × T )
.[E]
// K0(S × T )

p! // K0(T )
det−1

// Pic(T ),

Notice that p!([F ]) ∈ K0(T ) for F T -flat by [21, Prop. 2.1.10].

In general there is no universal sheaf E over S ×MH
S (c), and even if it exists, it is well-defined only

up to tensoring with the pullback of a line bundle from MX
H (c). Define

Kc := c⊥ =
{
v ∈ K0(S)

∣∣ χ(S, v ⊗ c) = 0
}
.

Then we have a well-defined morphism λ : Kc → Pic(MH
S (c)s) such that, for E any flat family of stable

sheaves on S of class c parametrized by T , and all v ∈ Kc, we have φ∗E(λ(v)) = λE(v) with φE : T →

MH
S (c)s the classifying morphism.

If S is simply connected, the determinant line bundle λ(v) only depends on the rank and the Chern

classes of v. Let K(S) be the Grothendieck group of coherent sheaves over S. Let L be a line bundle on

S and assume that c1(L)c1 is even. Then we put

(6.2) v(L) := (1− L−1) +
(c1(L)

2
· (c1(L) +KX − c1)

)
[Ox] ∈ K0(S),

where Ox is the structure sheaf of a point in S. Note that v(L) is of rank 0 and first Chern class L. The

determinant line bundle

µ(L) := λ(v(L)) ∈ Pic(MH
S (c1, c2))

associated to v(L) is called the Donaldson line bundle associated to L.

By [21, Prop.8.3.1] we have

c1(µ(L)) = p∗

(
q∗c1(L) · (c2(E)− 1

4
c1(E)2)

)
=
(
c2(E)− 1

4
c1(E)2

)
/PD(c1(µ(L)))(6.3)
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7. Equivariant Cohomology and Localization

We briefly introduce equivariant cohomology and localization for the case of the action of a torus

T = (C∗)m.

Definition 9. Let X a complex algebraic variety with a left T -action. Let ET be a contractible

space with a free right T -action. We consider the quotient

ET ×T X := ET ×X/
(
(e · t, x) ∼ (e, t · x), ∀t ∈ T

)
The equivariant cohomology H∗T (X,Q) of X with respect to T is the cohomology of ET ×T X. That is,

H∗T (X,Q) := H∗(ET ×T X,Q)

Let π : V → X be a T -equivariant vector bundle, i.e. V has a T -action, such that π(t · e) = t · π(e)

for all t ∈ T . Then ET ×T V is naturally a vector bundle over ET ×T X. We define the T -equivariant

Chern classes of V by

cTi (V ) = ci(ET ×T V )

Later we will usually drop the T in the notation, and call them just the Chern classes of the equivariant

bundle V .

We write t ∈ T as t = (t1, . . . , tm). If p is a point with trivial action of T = Cm, then H∗T (p,Q) =

Q[ε1, . . . , εm], where the variables εi are in H2
T (p,Q). Here εi = cT1 (ti) where ti is the equivariant vector

bundle on p given by the vector space C, viewed as trivial vector bundle on p with the action given by

t · v = tiv. More generally an equivariant vector bundle V of rank r on p is just a representation of

T . Then V has a basis v1, . . . , vr of common eigenvectors for the T action, in fact there are monomials

Mi = t
mi,1
1 . . . t

mi,n
n , such that t · vi = Mivi for all i. Then we call w(vi) := mi,1ε1 + . . . + mi,rεr the

weight of vi (or of the equivariant line bundle Cvi), and we call the w(vi) : the weights of V . Then the

total equivariant Chern class of V is

c(V ) = cT (V ) =

r∑
i=1

cTi (V ) =

r∏
i=1

(1 + w(vi)),

More generally if p
(
cT1 (V ), . . . , cTr (V )

)
is a polynomial in the Chern classes we have

p(cT1 (V ), . . . , cTr (V )) = p
(
σ1(w(v1), . . . , w(vr)), . . . , σr(w(v1) . . . , w(vr))

)
,

where the σi are the elementary symmetric functions.

If X
φ−→ X ′ is a T -equivariant map (i.e. φ(t · x) = t · φ(x)) then φ induces a canonical map

ET ×T X → ET ′ ×T ′ X ′. This induces a pullback

φ∗ : H∗T (X ′)→ H∗T (X)



20 1. BACKGROUND

We denote by XT the fixed point locus of the action of T on X. Let p ∈ XT be a fixed point and

denote ιp : p→ X the inclusion map. For an element V in the Grothendieck group of T -vector bundles

on X or a class α ∈ H∗T (X), we write V (p) := ι∗(V ), (which is an element in the Grothendieck group of

T representations) and α(p) := ι∗p(α) ∈ H∗T (p,Q).

By definition H∗T (X,Q) is a module over H∗T (p,Q) with a forgetful map f : H∗T (X,Q)→ H∗(X,Q).

We call a class α ∈ Hi
T (X,Q) a lift of a class α ∈ Hi(X,Q), if f(α) = α. The most important case for

us is that, if V is an equivariant vector bundle on S, then the equivariant Chern classes cTi (V ) are lifts

of the Chern classes ci(V ), where V is the underlying vector bundle of the equivariant vector bundle V .

The main result we want to use in this paper is the Bott residue formula (or Atiyah-Bott-localization).

We will only need it in the case of isolated fixpoints.

Theorem 6. Let X be a smooth projective variety, with an action of T = Cm with finitely many

fixed points p1, . . . , pe. Let α ∈ H∗(X,Q), and let α̃ ∈ H∗T (X,Q) be an equivariant lift of α. Then∫
X

α =

e∑
i=1

ι∗pi(α̃)

cTn (TX,pi)

∣∣∣
ε1=...=εm=0

.

With the conventions above we can also write this as∫
X

α =

e∑
i=1

α̃(pi)

cn(TX,pi)

∣∣∣
ε1=...=εm=0

.

8. Mochizuki’s Formula

Let S be an algebraic surface with b1(S) = 0, pg(S) > 0. As we have seen above, MH
S (c1, c2) has an

obstruction theory of virtual dimension

vd = vd(S, c1, c2) = 4c2 − c21 − 3χ(OS).

Thus it has in particular a virtual fundamental class

[MH
S (c1, c2)]vir ∈ H2vd(MH

S (c1, c2),Z).

Mochizuki’s formula expresses virtual intersection numbers∫
[MH

S (c1,c2)]vir
α, α ∈ H∗(MH

S (c1, c2),Q)

on the moduli spaces of sheaves in terms of intersection numbers on Hilbert schemes of points S[n] on S.

It is the most important tool in our work, because it allows us to work on the more accessible Hilbert

schemes of points instead of on the intractable moduli spaces of higher rank sheaves.

8.1. Seiberg-Witten Invariants. Before we can write down Mochizuki’s Formula, we need to

write down some facts about Seiberg-Witten invariants. Most of this is based on [29],[11]. Let M be a
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closed Riemannian 4-manifold with metric g. For simplicity, we assume that H2(M ;Z) has no 2-torsion.

Let L be a characteristic complex line bundle on M . Then we may construct the Seiberg-Witten moduli

space M(L). The Seiberg-Witten invariant is then defined to be a function S̃WM,g which assigns to

such an L an integer defined as an intersection product onM(L). If L is such that SWM,g(L) 6= 0, then

L will be called a Seiberg-Witten basic class.

We consider smooth projective algebraic surfaces S with b1 = 0 and pg > 0. We write S̃WS = S̃WS,g

for g the Fubini-Study metric, with respect to a projective embedding. Note that under the assumptions

b1 = 0 and pg > 0 the Seiberg-Witten invariants are independent of g. Mochizuki uses a somewhat

nonstandard convention regarding Seiberg-Witten invariants, which we will follow in this work: for

a ∈ H2(S,Z) we will write

SWS(a) = S̃WS(KS − 2a)

and will in future call a a Seiberg-Witten class if SWS(a) 6= 0. We will often drop the index S if S is

understood. We will denote SW (S) ⊂ H2(S,Z) the set of Seiberg-Witten classes of S.

We have the following results which we will use.

Theorem 7. Assume either of the following.

(1) S is a minimal surface of general type,

(2) the linear system |KS | contains a smooth irreducible curve.

then the Seiberg-Witten basic classes are 0, KS, with

SW (0) = 1 and SW (KS) = (−1)χ(OS).

Proof. In case (1) this is shown in [29, Thm. 7.4.1], and in case (2) for instance in [15, Sect. 6.3]).

�

Theorem 8. [29, Thm. 7.4.6] Let Ŝ
π−→ S be the blowup of a surface S with pg > 0 and b1 = 0. If

E is the exceptional divisor, then the set of Seiberg-Witten basic classes of Ŝ is

SW (Ŝ) = {π∗(a) | a ∈ SW (S)} ∪ {π∗(a) + E | a ∈ SW (S)}

and furthermore SWŜ(π∗(a)) = SWŜ(π∗(a) + E) = SWS(a) for all a ∈ SW (S).

Now we come to the case of elliptic surfaces. Let S
π−→ P1 be a minimal elliptic surface such that

there are only finitely many singular fibers of π, no multiple fibres, and the singular fibres are all nodal

curves. Then it can be shown that there are exactly 12n singular fibres where n = χ(OS). Let F be the

class of a fibre of π. Then KS = (n− 2)F .
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Proposition 2. Under the above assumptions we have

SW (S) = {kF | 0 ≤ k ≤ n− 2}

and

SW (kF ) = (−1)k
(
n− 2

k

)

Proof. This is [12, Proposition 4.2], and is also explained after Proposition 2.4 in [11]. �

8.2. Descendent Insertions. Let again M := MH
S (c1, c2) be the moduli space of torsion free

coherent sheaves on S. We now define some natural cohomology classes on M . Let α ∈ Hi(S,Q)

and k ≥ 0. Furthermore we denote by E the universal sheaf on M × S. Then we define descendent

insertions τk(α) ∈ H2k−4+i(M) by the following formula

τk(α) := chk(E)/PD(α).

Here PD(α) ∈ H4−i(S,Q) is the Poincaré dual of α, and

/ : Hq(S ×M,Q)×Hp(S,Q)→ Hq−p(M,Q)

is the slant product. See e.g. [33, Chapter 6] for its definition and properties, for instance it is easy to

see that if M is nonsingular then

β/PD(α) = πM∗(βπ
∗
Sα).

Here we write by abuse of notation πM∗ : H∗(S×M,Q)→ H∗(M,Q) for the pushforward in cohomology,

given by PD−1 ◦ πM∗ ◦ PD, where now πM∗ is the pushforward in homology and PD : H∗ → H∗ the

Poincaré duality map.

8.3. The Formula. We now state Mochizuki’s Formula [27, Thm. 1.4.6]. It involves certain inte-

grals of universal sheaves over Hilbert schemes of points that we will now introduce. On S×S[n1]×S[n2],

we have the universal subschemes

Z1, Z2 ⊂ S × S[n1] × S[n2]

with

Zi =
{

(x, Z1, Z2) ∈ S × S[n1] × S[n2]
∣∣∣ x ∈ Zi},

and their corresponding ideal sheaves I1 := IZ1
, I2 := IZ2

. For any line bundle L ∈ Pic(S) we denote

by L[ni] the tautological vector bundle on S[n1] × S[n2] defined by

L[ni] := p∗q
∗L,

with p : Zi → S[n1]×S[n2], q : Zi → S the projections from the universal subscheme Zi ⊂ S×S[n1]×S[n2].
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We consider S[n1] × S[n2] to be endowed with a trivial C∗-action and we denote the generator of the

character group by s. Moreover we write s for the generator of

H∗(BC∗,Q) = H∗C∗(pt,Q) ∼= Q[s].

In other words s can be viewed as a trivial line bundle on S[n1]×S[n2], with a C∗-action given by t·v = tv,

and s = cC
∗

1 (s) is its equivariant first Chern class.

Let L ∈ Pic(S). Let P (E) be any polynomial in descendent insertions τk(σ), which arises from a

polynomial in Chern numbers of T vir
M and c1(µ(L)) (see below ). For any a1, a2 ∈ A1(S) and n1, n2 ∈ Z≥0,

Mochizuki defines a class Ψ(a1, a2, n1, n2) ∈ H∗(S[n1] × S[n2],Q) by the following formula

(8.1) Ψ(a1, a2, n1, n2) := Coeffs0

(
P (I1(a1)⊗ s−1 ⊕ I2(a2)⊗ s)

Q(I1(a1)⊗ s−1, I2(a2)⊗ s)

Eu(O(a1)[n1]) Eu(O(a2)[n2] ⊗ s2)

(2s)n1+n2−χ(OS)

)
.

We explain the notations. Here Eu(·) denotes the C∗-equivariant Euler class and Coeffs0 refers to taking

the coefficient of s0. The notation Ii(ai) is short-hand for Ii ⊗ π∗SO(ai).

Furthermore, for any C∗-equivariant sheaves E1, E2 on S × S[n1] × S[n2] flat over S[n1] × S[n2],

Mochizuki defines

Q(E1, E2) := Eu(−RHomπ(E1, E2)−RHomπ(E2, E1)),

where π : S × S[n1] × S[n2] → S[n1] × S[n2] denotes projection and

RHomπ(·, ·) := Rπ∗RHom(·, ·).

Finally for σ ∈ Hi(S,Z) we define τ ′k(σ) ∈ H2k−4+i(S[n1] × S[n2],Q) by

τ ′k(σ) := chk(I1(a1)⊗ s−1 ⊕ I2(a2)⊗ s)/PD(σ)

= πS[n1]×S[n2]∗(chk(I1(a1)⊗ s−1 ⊕ I2(a2)⊗ s)π∗Sσ),

and we define P (I1(a1)⊗ s−1 ⊕ I2(a2)⊗ s) as the expression obtained by formally replacing each τk(σ)

in P (E) by τ ′k(σ). We define

Ψ̃(a1, a2, n1, n2, s)

by expression (8.1) but without applying Coeffs0 . Thus

Ψ̃(a1, a2, n1, n2, s) ∈ H∗(S[n1] × S[n2],Q)[s−1][[s]].

Let c1, c2 be a choice of Chern classes and c ∈ K0(S) be the class of sheaf in MH
S (c1, c2). We denote

ch(c) = (2, c1,
1
2c

2
1 − c2) its Chern character. For any decomposition c1 = a1 + a2 with a1, a2 ∈ A1(S),
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we define following Mochizuki

(8.2) A(a1, a2, c2) :=
∑

n1+n2=c2−a1a2

∫
S[n1]×S[n2]

Ψ(a1, a2, n1, n2).

We denote by Ã(a1, a2, c2, s) the same expression with Ψ replaced by Ψ̃.

Theorem 9 (Mochizuki). Let S be a smooth projective surface with b1(S) = 0 and pg(S) > 0. Let

H, c1, c2 be chosen such that there exist no rank 2 strictly Gieseker H-semistable sheaves with Chern

classes c1, c2. Denote c ∈ K0(S) the class of an element of MH
S (c1, c2). Suppose a universal sheaf E

exists on S ×MH
S (c1, c2). Furthermore suppose that the following conditions hold:

(1) χ(ch(c)) > 0, where χ(ch(c)) :=
∫
S

ch(c) · td(S) and ch(c) = (2, c1,
1
2c

2
1 − c2).

(2) pc > pKS , where pc and pKS are the reduced Hilbert polynomials associated to the class c ∈

K0(S) and to KS.

(3) For all Seiberg-Witten basic classes a1 satisfying a1H ≤ (c1 − a1)H the inequality is strict.

Let P (E) be any polynomial in descendent insertions which arises from a polynomial in Chern numbers

of T vir
M and c1(µ(L)). Then∫

[MH
S (c1,c2)]vir

P (E) = −21−χ(ch(c))
∑

c1 = a1 + a2

a1H < a2H

SW (a1)A(a1, a2, c2).

Remark 1. The assumption that the universal sheaf E exists on S×MH
S (c1, c2) is unnecessary. The

virtual tangent sheaf T vir
M = −RHomπ(E , E)0 always exists globally, and also the definition of µ(L) and

thus of c1(µ(L)) is independent of the existence of a universal sheaf. So the left-hand side of Mochizuki’s

formula always makes sense, and the statement of the theorem holds. Moreover, Mochizuki [27] works

over the Deligne-Mumford stack of oriented sheaves, which always has a universal sheaf. This can be

used to show that global existence of E on S ×M can be dropped from the assumptions. In fact, when

working on the stack, P can be any polynomial in descendent insertions defined using the universal sheaf

on the stack.

8.4. Strong form of Mochizuki’s formula. The following strong form of Mochizuki’s for-

mula was conjectured in [19].

Conjecture 4. [19] Let S be a smooth projective surface with b1(S) = 0 and pg(S) > 0. Let

H, c1, c2 be chosen such that there exist no rank 2 strictly Gieseker H-semistable sheaves with Chern

classes c1, c2. Denote c ∈ K0(S) the class of an element MH
S (c1, c2). Suppose a universal sheaf E exists on

S×MH
S (c1, c2). Suppose that χ(ch(c)) > 0, where χ(ch(c)) :=

∫
S

ch(c)·td(S) and ch(c) = (2, c1,
1
2c

2
1−c2).

Let P (E) be any polynomial in descendent insertions which arises from a polynomial in Chern numbers
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of T vir
M and c1(µ(L)). Then∫

[MH
S (c1,c2)]vir

P (E) = −21−χ(ch(c))
∑

c1=a1+a2

SW (a1)A(a1, a2, c2).

In other words conjecturally assumptions (2) and (3) can be dropped from Theorem 9 and the sum

can be replaced by a sum over all Seiberg-Witten basic classes. Often, assuming this conjecture, our

computations can be applied more widely, computing the K-theoretic Donaldson invariants for more

examples of up to higher virtual dimension of the moduli spaces.





CHAPTER 2

Application of the Mochizuki formula to K-theoretic Donaldson

invariants

In this chapter we want to apply Mochizuki’s formula to the computation of K-theoretic Donaldson

invariants. The first step is to show that Mochizuki’s formula applies to this computation. As Mochizuki’s

formula computes integrals of polynomials in descendent insertions on moduli spaces of sheaves, we have

to express the K-theoretic Donaldson invariants in terms of descendent insertions. This is done in the

first section.

The next step is to give the explicit form of the Mochizuki formula in the case of (refined) K-

theoretic Donaldson invariants. Then we introduce the partition function ZS(L, a1, c1, s, y, q), which is

up to an elementary factor the generating function for the functions Ψ̃(a1, a2, n1, n2, s) (or equivalently

Ã(a1, a2, c2, s)) which occur in Mochizuki’s formula, for the case of the K-theoretic Donaldson invariants.

ZS(L, a1, c1, s, y, q) is a power series in q starting with 1, whose coefficient of qn is the contribution of

the Hilbert schemes S[n1] × S[n2] with n1 + n2 = n.

At the end of this chapter we use Mochizuki’s formula to give an explicit formula that expresses the

(refined) K-theoretic Donaldson invariants in terms of the partition function. In Chapters 3 and 4 we

will give an explicit computation (up to a certain power in q) of the partition function ZS(L, a1, c1, s, y, q)

for all S,L, a1, c1. These two results together allow us all our explicit computations and verifications of

our conjectures in the last chapter.

1. Expression in terms of descendent insertions

We still keep our standard assumption that S is a smooth projective surface with b1(S) = 0 and

pg(S) > 0, and that we have chosen c1, c2, H in such a way that the moduli space MH
S (c1, c2) consists

only of stable sheaves. Let L ∈ Pic(S). We assume for simplicity that E is a universal sheaf on

S ×MH
S (c1, c2). However using Remark 1 of Chapter 1, we see that our results are independent of the

existence of a universal sheaf.

Proposition 3. Let S,H, c1, c2 be as above.

(1) There exists a polynomial expression P (E) in certain descendent insertions τα(σ) and y such

that

χvir
−y(MH

S (r, c1, c2), µ(L)) =

∫
[MH

S (r,c1,c2)]vir
P (E).

27
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(2) There exists a polynomial expression P0(E) in certain descendent insertions τα(σ) such that

χvir(MH
S (r, c1, c2), µ(L)) =

∫
[MH

S (r,c1,c2)]vir
P0(E).

The proof of this result is an adaptation of the proof of [15, Prop. 2.1]. We know from the definitions

that χvir
−y(M,µ(L))

∣∣
y=0

= χvir(M,µ(L)). Therefore (2) follows from (1), by putting P0(E) = P (E)
∣∣
y=0

.

Thus we will only prove (1).

We start by reviewing some properties of the virtual χ−y-genus that we will use. We write M =

MH
S (c1, c2). Consider the K-group K0(M) generated by locally free sheaves on M . For any rank r

vector bundle on M , define

ΛyV :=

r∑
i=0

[ΛiV ]yi ∈ K0(M)[[y]], SymyV :=

∞∑
i=0

[SymiV ]yi ∈ K0(M)[[y]].

These expressions can be extended to complexes inK0(M) by setting Λy(−V ) = Sym−yV and Symy(−V ) =

Λ−yV . For any complex E ∈ K0(M), we define

(1.1) Xy(E) := ch(ΛyE
∨) td(E).

Since Λy(E ⊕ F ) = ΛyE ⊗ ΛyF , we obtain

Xy(E ⊕ F ) = Xy(E)Xy(F ).

Furthermore, for any L ∈ Pic(M)

X−y(L) =
L(1− ye−L)

1− e−L
.

Therefore, given a formal splitting c(V ) =
∏r
i=1(1 + xi), we have

X−y(V ) =

r∏
i=1

xi(1− ye−xi)
1− e−xi

.

Lemma 1. Let S,H, c1, c2 and M := MH
S (r, c1, c2) be as above. Let L ∈ Pic(S). Then

χvir
−y(M,µ(L)) =

∫
[M ]vir

X−y(T vir
M ) ec1(µ(L)).
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Proof. This is a direct application of the virtual Hirzebruch-Riemann-Roch theorem [6, Cor. 3.4].

By definition and the virtual Riemann-Roch theorem we have

χvir
−y(M,µ(L)) =

∑
p≥0

(−y)pχvir
(
M,Λp

(
(T vir
M )∨

)
⊗ µ(L)

)
= χvir

(
M,
(
Λ−y(T vir

M )∨
)
⊗ µ(L)

)
=

∫
[M ]vir

ch
(
Λ−y(T vir

M )∨
)
ch(µ(L))td(T vir

M )

=

∫
[M ]vir

X−y(T vir
M ) ec1(µ(L)).

�

To finish the proof of Proposition 3 we therefore just need to show the following Lemma.

Lemma 2. There exists a polynomial expression P (E) in certain descendent insertions τα(σ) and y

such that ∫
[M ]vir

X−y(T vir
M ) ec1(µ(L)) =

∫
[M ]vir

P (E).

Proof. By definition X−y(T vir
M ) is Q-linear combination of monomials in the virtual Chern classes

ci(T
vir
M ) and y, and thus X−y(T vir

M ) eµ(c1(L)) is a Q-linear combination of monomials in the ci(T
vir
M ),

c1(µ(L)) and y.

In the proof of [15, Prop. 2.1] it is shown that each ci(T
vir
M ) is a polynomial in descendent insertions.

In the course of the proof it is shown that every expression of the form

(1.2) πM∗
(
chi(E)chj(E)π∗Sσ

)
=
(
chi(E)chj(E)

)
/PD(σ),

is a polynomial in descendent insertions.

On the other hand we have by (6.3) in Chapter 1

c1(µ(L)) =
(
c2(E)− 1

4
c1(E)2

)
/PD(c1(L))

= −ch2(E)/PD(c1(L)) +
1

4
ch1(E)2/PD(c1(L)).

Thus c1(µ(L)) can be expressed in the form of (1.2) and thus is a polynomial in descendent insertions.

The result follows. �

2. Explicit form of Mochizuki’s formula

We still assume that S is a smooth projective surface with b1(S) = 0 and pg(S) > 0, and that

c1, c2, H are such that MH
S (c1, c2) only consists of H-stable sheaves. Finally let L ∈ Pic(S). We again

write M := MH
S (c1, c2). Our aim is to evaluate Mochizuki’s formula in two situations:
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(1) for

χvir
−y(M,µ(L)) =

∫
[MH

S (c1,c2)]vir
X−y(T vir

M ) exp(c1(µ(L)),

(2) for

χvir(MH
S (c1, c2), µ(L)) = χvir

−y(M,µ(L))
∣∣
y=0

.

Clearly it is enough to do this for case (1). At the end we will indicate how the formula simplifies in case

(2).

We denote

Ψ̃P (a1, a2, n1, n2, s)

the Ψ̃(a1, a2, n1, n2, s) of Chapter 1 (8.1) for the specific choice

P (E) := X−y(T vir
M ) exp(c1(µ(L)).

As a first step we give an explicit formula for Ψ̃P (a1, a2, n1, n2, s).

We will use the following well-known Lemma, (see e.g. [Lemma 3.1][15]).

Lemma 3. Let π : S × S[n] → S[n] denote projection. Then

−RHomπ(I, I)0
∼= Ext1

π(I, I)0
∼= TS[n] ,

where I denotes the universal ideal sheaf and TS[n] denotes the tangent bundle.

Definition 10. We formally define

ch(Ij(α)) = ch(Ij) exp(q∗α) for α ∈ H2(S,Q).

We put ξ := a2 − a1 and define a class ν(L, ξ) ∈ H2(S[n1] × S[n2],Q) by

ν(L, ξ) := π∗

(
−ch2

(
I1

(
−ξ

2

)
⊗ s−1

)
q∗(c1(L))

)
+ π∗

(
−ch2

(
I2

(
ξ

2

)
⊗ s

)
q∗(c1(L))

)
.

Lemma 4. On S[n1] × S[n2] we have

ν(L, ξ) = −(ξL)s+ π∗
(
([Z1] + [Z2])q∗(L)

)
,

where (ξL) is the intersection number on S.

Proof. As Z1, Z2 have codimension 2 in X := S × S[n1] × S[n2] and are generically reduced, we

have for i = 1, 2 that ch(Ii)) = 1− [Zi], modulo H>4(X,Q), where [Zi] is the Poincaré dual cohomology
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class to the fundamental class of the universal subscheme Zi ⊂ S×S[n1]×S[n2]. Using that we can write

ν(L, ξ) = π∗

([
(−1 + [Z1])e−q

∗(ξ/2)−s + (−1 + [Z2])eq
∗(ξ/2)+s

]
2
q∗(c1(L))

)
= π∗

((
− (q∗(ξ/2) + s)2/2 + [Z1]− (q∗(ξ/2) + s)2/2 + [Z2]

)
q∗(L)

)
= π∗

((
− (q∗(ξ/2) + s)2/2 + [Z1]− (q∗(ξ/2) + s)2/2 + [Z2]

)
q∗(L)

)
= −(ξL)s+ π∗

(
[Z1] + [Z2])q∗(L)

)
Here [·]2 means the part in H4(X,Q) and (ξL) is the intersection number on S. �

Lemma 5.

Ψ̃P (a1, a2, n1, n2, s)

=
X−y

(
TS[n1]×S[n2] −RHomπ(I1, I2(ξ)⊗ s2)−RHomπ(I2, I1(−ξ)⊗ s−2)

)
exp (ν(L, ξ))

Eu
(
−RHomπ(I1, I2(ξ)⊗ s2)−RHomπ(I2, I1(−ξ)⊗ s−2)

)
·

Eu
(
O(a1)[n1]

)
Eu
(
O(a2)[n2] ⊗ s2

)
(2s)n1+n2−χ(OS)

.

Proof. Let F := I1(a1)⊗ s−1 ⊕ I2(a2)⊗ s. By definition we have

Ψ̃P (a1, a2, n1, n2, s) =
P (F)Eu

(
O(a1)[n1]

)
Eu
(
O(a2)[n2] ⊗ s2

)
Q(I1(a1)⊗ s−1,⊕I2(a2)⊗ s)(2s)n1+n2−χ(OS)

,

with

Q(I1(a1)⊗ s−1, I2(a2)⊗ s) = Eu
(
−RHomπ(I1(a1)⊗ s−1, I2(a2)⊗ s)−RHomπ(I2(a2)⊗ s, I1(a1)⊗ s−1)

)
= Eu

(
−RHomπ(I1, I2(ξ)⊗ s2)−RHomπ(I2, I1(−ξ)⊗ s−2)

)
By definition we have P (E) = P1(E)P2(E) with

P1(E) = X−y(T vir
M ) = X−y(−RHomπ(E , E)0),

P2(E) = ch(µ(L)) = exp

((
c2(E)− 1

4
c1(E)2

)
/PD(c1(L))

)
.

Thus we see

c2(F)− 1

4
c1(F)2 = −ch2

(
I1

(
−ξ

2

)
⊗ s−1

)
− ch2

(
I2

(
ξ

2

)
⊗ s

)
,

Thus

P2(F) = exp

(
−ch2

(
I1

(
−ξ

2

)
⊗ s−1

)
/PD(c1(L))− ch2

(
I2

(
ξ

2

)
⊗ s

)
/PD(c1(L))

)
= exp (ν(L, ξ)) .
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Now we compute P1(F). We have

T vir
M = −RHomπ(E , E)0 = −RHomπ(E , E) +Rπ∗(O),

where we write O = OS×S[n1]×S[n2] . We get

−RHomπ(F ,F) +Rπ∗(O)

= −RHomπ

(
I1(a1)⊗ s−1 ⊕ I2(a2)⊗ s, I1(a1)⊗ s−1 ⊕ I2(a2)⊗ s

)
+Rπ∗(O)

= −RHomπ(I1, I1)−RHomπ(I2, I2)−RHomπ(I1, I2(ξ)⊗ s2)−RHomπ(I2, I1(−ξ)⊗ s−2) +Rπ∗(O)

= TS[n1]×S[n2] −RHomπ(I1, I2(ξ)⊗ s2)−RHomπ(I2, I1(−ξ)⊗ s−2)−Rπ∗(O)

Here we use that by Lemma 3

TS[n1]×S[n2] = −RHomπ(I1, I1)0 −RHomπ(I2, I2)0

= −RHomπ(I1, I1)−RHomπ(I2, I2) + 2Rπ∗(O).

Note that Rπ∗(O) = (OS[n1]×S[n2])⊕χ(OS), in particular X−y(Rπ∗(O)) = 1. Therefore we get

P1(F) = X−y(−RHomπ(E , E)0)

= X−y
(
TS[n1]×S[n2] −RHomπ(I1, I2(ξ)⊗ s2)−RHomπ(I2, I1(−ξ)⊗ s−2)

)
.

�

3. Partition function

We now introduce the following partition function, which will be the main object of our study in

the rest of the paper: we will show in the rest of this chapter that the K-theoretic Donaldson invariants

can be expressed in terms of this partition function. On the other hand, we will show in the following 2

chapters how to compute the partition function.

Definition 11. For any a in the Chow group A1(S) we abbreviate χ(a) := χ(OS(a)). We will write

O = OS[n1]×S[n2] , and furthermore χ(a) ⊗ O for O⊕χ(a). For any a1, c1 ∈ A1(S), we put ξ = c1 − 2a1

and define the partition function by

ZS(L, a1, c1, s, y, q) :=

∑
n1,n2≥0

qn1+n2

∫
S[n1]×S[n2]

X−y(En1,n2
) exp

((
π∗([Z1] + [Z2])q∗(L)

))
Eu(O(a1)[n1]) Eu(O(c1 − a1)[n2] ⊗ s2)

Eu
(
En1,n2 − TS[n1]×S[n2]

) .
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Here we denote

En1,n2
:= −RHomπ(F ,F)0 + χ(OS)⊗O + χ(ξ)⊗O ⊗ s2 + χ(−ξ)⊗O ⊗ s−2

with

F = I1(a1)⊗ s−1 ⊕ I2(a2)⊗ s.

This can be rewritten as

En1,n2 = TS[n1]×S[n2] + χ(ξ)⊗O ⊗ s2 −RHomπ(I1, I2(ξ))⊗ s2

+ χ(−ξ)⊗O ⊗ s−2 −RHomπ(I2, I1(−ξ))⊗ s−2.

(3.1)

One checks directly by Riemann-Roch that the complex En1,n2
has rank 4n1 + 4n2. If n1 = n2 = 0,

we see that

E0,0 = χ(c1 − 2a1)⊗O ⊗ s2 −RHomπ(OS(a1),OS(c1 − a1))⊗ s2

+ χ(2a1 − c1)⊗O ⊗ s−2 −RHomπ(OS(c1 − a1),OS(a1))⊗ s−2 = 0,

TS[0]×S[0] = 0, ν(L, ξ) = 0, O(a)[0] = 0.

Thus the coefficient of q0 of ZS(L, a1, c1, s, y, q) is 1, and we can see from the definitions that

(3.2) ZS(L, a1, c1, s, y, q) ∈ 1 + qQ[y]((s))[[q]].

We write

(3.3) ÃP (a1, c1 − a2, c2, s) =
∑

n1+n2=c2−a1(c1−a1)

∫
S[n1]×S[n2]

Ψ̃P (a1, c1 − a1, n1, n2, s).

for Ã(L, a1, c1 − a2, c2, s) in case P (E) = X−y(T vir
M ). Now we express ÃP (a1, c1 − a2, c2, s) in terms of

the partition function ZS(L, a1, c1, s, y, q).

Corollary 1. Suppose we have a decomposition c1 = a1 + a2. Then∑
c2∈Z
ÃP (a1, c1 − a1, c2, s) q

c2

= e−(ξL)s(2s)χ(OS)

(
1− e−2s

1− ye−2s

)χ(ξ)(
1− e2s

1− ye2s

)χ(−ξ)

qc1(c1−a)ZS

(
L, a1, c1, s, y,

q

2s

)
.

(3.4)
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Proof. We put the formula for Ψ̃P (a1, c1 − a1, n1, n2, s) of Lemma 5 into (3.3) and compare the

result to Definition 11. Thus we get

∑
c2∈Z
ÃP (a1, c1 − a1, c2, s) q

c2 =
∑
c2∈Z

∑
n1+n2=c2−a1(c1−a1)

∫
S[n1]×S[n2]

Ψ̃P (a1, c1 − a1, n1, n2, s) q
c2

= qc1(c1−a)
∑

n1,n2≥0

∫
S[n1]×S[n2]

Ψ̃P (a1, c1 − a1, n1, n2, s)q
n1+n2

= qc1(c1−a)
∑

n1,n2≥0

qn1+n2

∫
S[n1]×S[n2]

[
X−y(Fn1,n2

) exp
(
π∗([Z1] + [Z2])q∗(L))

)
Eu
(
Fn1,n2 − TS[n1]×S[n2]

)
(2s)n1+n2−χ(OS)

· Eu(O(a1)[n1])Eu(O(c1 − a1)[n2] ⊗ s2)

]

=
X−y

(
− χ(ξ)⊗O ⊗ s2 − χ(−ξ)⊗O ⊗ s−2

)
Eu
(
− χ(ξ)⊗O ⊗ s2 − χ(−ξ)⊗O ⊗ s−2

) qc1(c1−a)

·
∑

n1,n2≥0

qn1+n2

∫
S[n1]×S[n2]

[
X−y(En1,n2

) exp
(
− (ξL)s+ π∗([Z1] + [Z2])q∗(L))

)
Eu
(
En1,n2

− TS[n1]×S[n2]

)
(2s)n1+n2−χ(OS)

· Eu(O(a1)[n1])Eu(O(c1 − a1)[n2] ⊗ s2)

]

= e−(ξL)s(2s)χ(OS)

(
1− e−2s

1− ye−2s

)χ(ξ)(
1− e2s

1− ye2s

)χ(−ξ)

qc1(c1−a)

·
∑

n1,n2≥0

( q
2s

)n1+n2
∫
S[n1]×S[n2]

[
X−y(En1,n2

) exp
(
π∗([Z1] + [Z2])q∗(L))

)
Eu
(
En1,n2 − TS[n1]×S[n2]

)
· Eu(O(a1)[n1])Eu(O(c1 − a1)[n2] ⊗ s2)

]

= e−(ξL)s(2s)χ(OS)

(
1− e−2s

1− ye−2s

)χ(ξ)(
1− e2s

1− ye2s

)χ(−ξ)

qc1(c1−a)ZS(L, a1, c1, s, y,
q

2s
).

Here in the third line we have put

Fn1,n2
= En1,n2

− χ(ξ)⊗O ⊗ s2 − χ(−ξ)⊗O ⊗ s−2.

In the fourth line we use Lemma 4. The fifth line follows by noticing that by definition of X−y and Eu

we have

X−y(s2) =
1− e−2s

2s(1− ye−2s)
, Eu(s2) = c1(s2) = 2s.

and therefore

X−y
(
− χ(ξ)⊗O ⊗ s2 − χ(−ξ)⊗O ⊗ s−2

)
Eu
(
− χ(ξ)⊗O ⊗ s2 − χ(−ξ)⊗O ⊗ s−2

) =

(
1− e−2s

1− ye−2s

)χ(ξ)(
1− e2s

1− ye2s

)χ(−ξ)

�
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Now we specialize this result to the non-refined K-theoretic Donaldson invariants. We put P0(E) =

P (E)
∣∣
y=0

, so that by Proposition 3

χvir
−y(MH

S (r, c1, c2), µ(L)) =

∫
[MH

S (r,c1,c2)]vir
P0(E).

We put

ÃP0(a1, c1 − a2, c2, s) := ÃP (a1, c1 − a2, c2, s)
∣∣
y=0

,

ZS(L, a1, c1, s, q) := ZS(L, a1, c1, s, y, q)
∣∣
y=0

.

Then by specializing y = 0 in Corollary 1 we immediately get the following.

Corollary 2. Suppose we have a decomposition c1 = a1 + a2. Then∑
c2∈Z
ÃP0(a1, c1 − a1, c2, s) q

c2

= e−(ξL)s(2s)χ(OS)
(
1− e−2s

)χ(ξ) (
1− e2s

)χ(−ξ)
qc1(c1−a)ZS

(
L, a1, c1, s,

q

2s

)
.

(3.5)

For future reference we note that the definitions of ZS(L, a, c1, s, y, q), ZS(L, a, c1, s, q) make sense

for any possibly disconnected smooth projective surface S and L, a, c1 ∈ A1(S).

4. The K-theoretic Donaldson invariants in terms of the partition function

In this section we will prove a formula that expresses the refined and nonrefined K-theoretic Donald-

son invariants in terms of the partition functions ZS(L, a1, c1, s, y, q) and ZS(L, a1, c1, s, q), and Seiberg-

Witten invariants.

Corollary 3. Suppose S satisfies b1(S) = 0 and pg(S) > 0. Let H, c1, c2 be chosen such that there

exist no rank 2 strictly Gieseker H-semistable sheaves with Chern classes c1, c2. Let L ∈ Pic(S). Assume

furthermore that:

(i) c2 <
1
2c1(c1 −KS) + 2χ(OS).

(ii) pc > pKS , where pc and pKS are the reduced Hilbert polynomials associated to the class c ∈

K0(S) of an element in MH
S (2, c1, c2) and KS.

(iii) For all SW basic classes a1 satisfying a1H ≤ (c1 − a1)H the inequality is strict.

Denote vd = 4c2 − c21 − 3χ(OS) the expected dimension of MH
S (2, c1, c2). Put ξ := c1 − 2a1 (note that

therefore in the sums below ξ depends on a1). Then we have
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(1)

χvir
−y(MH

S (2, c1, c2), µ(L)) = −21−χ(c)Coeffs0Coeffxvd

[ ∑
a1 ∈ H2(S,Z)

a1H < (c1 − a1)H

(
SW (a1)e−(ξL)s(2s)χ(OS)

·
(

1− e−2s

1− ye−2s

)χ(ξ)(
1− e2s

1− ye2s

)χ(−ξ)

x3c21−4c1a1−3χ(OS)ZS

(
L, a1, c1, s, y,

x4

2s

))]
,

(2)

χvir(MH
S (2, c1, c2), µ(L)) = −21−χ(c)Coeffs0Coeffxvd

[ ∑
a1 ∈ H2(S,Z)

a1H < (c1 − a1)H

SW (a1)e−(ξL)s(2s)χ(OS)

·
(
1− e−2s

)χ(ξ) (
1− e2s

)χ(−ξ)
x3c21−4c1a1−3χ(OS)ZS

(
L, a1, c1, s,

x4

2s

)]
.

Proof. The Mochizuki formula Theorem 9, says that under the assumptions of the corollary we

have

χvir
−y(MH

S (c1, c2), µ(L)) = −21−χ(c)Coeffs0Coeffqc2
∑

a1 ∈ H2(S,Z)

a1H < (c1 − a1)H

SW (a1)
∑
c2∈Z
ÃP (a1, c1 − a1, c2, s)q

c2 .

Replacing the inner sum ∑
c2∈Z
ÃP (a1, c1 − a1, c2, s)q

c2

with the right hand side of the formula 3.4 from Corollary 1 and using that vd = 4c2− c21− 3χ(OS), the

result for χvir
−y(MH

S (c1, c2), µ(L)) follows immediately. The proof for χvir(MH
S (c1, c2), µ(L)) is the same,

using Corollary 2 instead of Corollary 1. �

Remark 2. Assuming the strong form of the Mochizuki formula Conjecture 4 of Chapter 1, we get

a simpler (conjectural) version of this corollary with wider applicability. In fact, assuming Conjecture 4,

we get that Corollary 3 holds without assuming (ii) and (iii) and with

the sum
∑

a1 ∈ H2(S,Z)

a1H < (c1 − a1)H

replaced by
∑

a1∈H2(S,Z)

.

We will also refer to this formula as the strong from of Mochizuki’s formula.

Corollary 3 reduces the determination of the K-theoretic Donaldson invariants to the computation

of the partition functions ZS(L, a1, c1, s, y, q) and ZS(L, a1, c1, s, q). In the next two chapters we will

compute these two partition functions for any quadruple (S,L, a1, c1) of a surface and 3 elements of Pic(S)

up to a certain power in q. This allows us to compute in Chapter 6 the (refined) K-theoretic Donaldson
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invariants for many surfaces, by just plugging the partition functions, the intersection numbers of the

(S,L, a1, c1) and the Seiberg-Witten invariants of S into Corollary 3.





CHAPTER 3

Universality and Multiplicativity of K-theoretic Donaldson

Invariants

In this chapter and the next we want to compute the partition functions ZS(L, a, c1, s, y, q) and

ZS(L, a, c1, s, q) for any quadruple (S,L, a1, c1) of a surface and 3 elements of Pic(S), up to a suitable

power of q. In this chapter we will establish two crucial properties of ZS(L, a, c1, s, y, q).

(1) Universality: ZS(L, a, c1, s, y, q) depends only on the 11 intersection numbers

L2, La, a2, ac1, c
2
1, Lc1, LKS , aKS , c1KS , K

2
S , χ(OS).

More precisely the coefficient of any monomial in q, y, s of ZS(L, a1, c1, s, y, q) is given by a

universal polynomial in the above 11 intersection numbers.

(2) Multiplicativity: furthermore there are 11 universal power seriesA1(y), . . . , A11(y) ∈ Q((s))[y][[q]]

such that

ZS(L, a, c1, s, y, q) = A1(y)L
2

A2(y)LaA3(y)a
2

A4(y)ac1A5(y)c
2
1A6(y)Lc1

A7(y)LKSA8(y)aKSA9(y)c1KSA10(y)K
2
SA11(y)χ(OS).

As ZS(L, a, c1, s, q) = ZS(L, a, c1, s, y, q)
∣∣
y=0

it is clear that universality and multiplicativity also hold

for ZS(L, a, c1, s, q) with A1(y), . . . , A11(y) replaced by A1, . . . , A11, where Ai = Ai(y)
∣∣
y=0

.

These results will allow us in the next chapter to reduce our computation to the case that S = P2

or S = P1 × P1 and use localization to compute the power series A1(y), . . . , A11(y) and A1, . . . , A11 up

to suitable powers of q, and thus also ZS(L, a, c1, s, y, q) and ZS(L, a, c1, s, q) for any (S,L, a, c1).

Universality results for intersection numbers on Hilbert schemes of points and multiplicativity of

their generating functions have been first proved in [4] for Chern numbers of the Hilbert schemes and

intersection numbers of tautological sheaves. These arguments have been adapted and refined successively

in [17],[18],[19],[15] to deal with the intersection numbers necessary for the wall-crossing of Donaldson

invariants, the proof of the Witten conjecture and (refined) Vafa-Witten invariants. We have to further

adapt these arguments in order to deal with the partition function ZS(L, a, c1, s, y, q). These results and

methods are scattered over several papers, so to make the logic of the arguments clear and make this

work more self-contained, we will not just indicate the additional changes necessary to the above papers,

but will give a complete proof only using results of [4], which we cite precisely.

39
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1. Universality

1.1. Case of Hilbert schemes. We start by reviewing some of the intermediate results in the

universality proof in [4]. Let S be a smooth projective surface. Let p : S[n] × S → S[n], q : S[n] × S → S

be the projections. Let Zn(S) ⊂ S[n] × S be the universal subscheme, and IZn(S) its ideal sheaf.

Zn(S) S[n] × S S

S[n]

p

q

Let σ : P(IZn(S)) → S[n] × S be the natural projection, and denote ρ := q ◦ σ, φ := p ◦ σ. Let

j := (id, ρ) : P(IZn(S))→ P (IZn(S))× S. Following [4] we use the following notation.

Notation 1. For f : X → Y a morphism, we write fS := (f × 1S) : X × S → Y × S.

In [4, Section 1] it is shown that there is a surjective morphism ψ : P(IZn(S)) → S[n+1]. More

precisely the following is shown: Let S[n,n+1] be the incidence variety

S[n,n+1] :=
{

(Z,W ) ∈ S[n] × S[n+1]
∣∣ Z is a subscheme of W

}
.

Then there is a natural isomorphism P(IZn(S))→ S[n,n+1], sending a one dimensional quotient α : IZ →

k(x) over (x, Z) to (Z,W ) with IW/Z = ker(α). This isomorphism identifies φ and ψ with the projections

of S[n]×S[n+1] to the two factors, and ρ(Z,W ) = supp(IW/Z). Thus we have the commutative diagrams

S P(IZn(S)) S[n+1]

S[n] × S S[n]

ρ

φ

ψ

σ
q

p

P(IZn(S)) P(IZn(S))× S

S S × S

j

ρ ρS

pr0

δ

where δ : S → S × S is the diagonal map, and we will also in the future in a product X × Sn denote by

pr0 the projection to X. We denote ∆ ⊂ S × S the diagonal.

We denote L := P(IZn(S))(1), and ` = c1(L). We have the following Lemma ([4, Lemma 1.1]).

Lemma 6.

σ∗(`
i) = (−1)ici(OZn(S)) = (−1)ici(−IZn(S)).

The following two identities in K0(S[n,n+1]) from [eqs. (5), (6)][4] describe the universal ideal sheaves

IZn(S) and the universal structure sheaves OZn(S) inductively.

ψ!
S(IZn+1(S)) = φ!

S(IZn(S))− j∗(L),(1.1)

ψ!
S(OZn+1(S)) = φ!

S(OZn(S)) + j∗(L).(1.2)
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Note that by the last diagram we have j!(OP(IZn(S))) = ρ!
S(O∆), thus by the projection formula we have

j∗(L) = j!
(
OP(IZn(S)) ⊗

L j!(pr!
0(L))

)
= pr!

0(L)⊗L ρ!
S(O∆).

Thus we can rewrite these formulas as

ψ!
S(IZn+1(S)) = φ!

S(IZn(S))− pr!
0(L)⊗L ρ!

S(O∆),(1.3)

ψ!
S(OZn+1(S)) = φ!

S(OZn(S)) + pr!
0(L)⊗L ρ!

S(O∆).(1.4)

Note also that ch2(IZn+1(S)) = −[Zn+1(S)] where [Zn+1(S)] is the cohomology class Poincaré dual to the

fundamental class of Zn+1(S), and similar for Zn(S). On the other hand we have ch2(M ⊗L ρ!
SO∆) =

ρ∗S [∆] for any line bundle M on P(IZn(S))× S, Thus (1.3) also gives

(1.5) ψ∗S([Zn+1(S)]) = φ∗S([Zn(S)]) + ρ∗S([∆]) ∈ H2(S[n,n+1] × S,Q).

Let F be a vector bundle on S. Let F [n] be the corresponding tautological sheaf on S[n]. [4, Lemma

2.1] inductively describes the tautological sheaves F [n] on S[n].

Lemma 7. In K0(S[n,n+1] we have the relation

ψ!(F [n+1]) = φ!(F [n]) + L ⊗L ρ!(F ).

Now we describe the tangent bundle of the Hilbert schemes. The first step is [4, Proposition 2.2].

Proposition 4. The class of TS[n] in K0(S[n]) is given by

TS[n] = χ(OS)⊗L O − p!(I
∨
Zn(S) ⊗

L IZn(S)).

Using this, in [4, Proposition 2.3] the tangent bundle of the Hilbert schemes is described inductively.

Proposition 5. In K0(S[n,n+1]) we have the relation

ψ!TS[n+1] = φ!TS[n] + L ⊗L σ!IZn(S) ⊗L ρ!(ω∨S )− ρ!(1− TS + ω∨S ).

In the proof of this proposition the following elementary identities are obtained.

(pr0)!

(
ρ!
S(O∆)φ!

S(I∨Zn(S))
)

= σ!(I∨Zn(S))(1.6)

(pr0)!

(
ρ!
S(O∨∆)⊗L φ!

S(IZn(S))
)

= σ!(IZn(S))⊗L ρ!(ω∨S )(1.7)

(pr1)!(O∨∆ ⊗L O∆) = OS − TS + ω∨S .(1.8)
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1.2. Application to the product. Now we apply this to S[n1] × S[n2]. Let

π1 : S[n1] × S[n2] → S[n1], π2 : S[n1] × S[n2] → S[n1]

q : S[n1] × S[n2] × S → S, p : S[n1] × S[n2] × S → S[n1] × S[n2]

be the projections. For α = 1, 2 we use the following subvarieties, sheaves and maps, which are the

pullbacks of the corresponding objects from above section. Let Zα := π−1
αS(Znα(S)), and Iα = IZα ,

Oα = OZα . We have the two incidence varieties

P(I1) = S[n1,n1+1] × S[n2], P(I2) = S[n1] × S[n2,n2+1].

We denote

Lα = P(Iα)(1) = π∗S[nα,nα+1](L), `α = c1(Lα), F [nα]
α := π∗α(F [nα]),

σ1 = σ × 1S[n2] , σ2 = 1S[n1] × σ, ρ1 := q ◦ σ1, φ1 := p ◦ σ1 = φ× 1S[n2] ,

ψ1 = ψ × 1S[n2] , j1 := (1P(I1), ρ1),

and similar for α = 2. To simplify our notations we always use the following notation.

Notation 2. We write the products in the order X × S and view e.g σ1, σ2 as maps P(Iα) →

S[n1] × S[n2] × S.

As all the objects are just pullbacks from the objects considered before for S[n], the results above

immediately give the following.

σα(`iα) = (−1)ici(Oα) = (−1)ici(−Iα)(1.9)

(ψα)!
S(Iα) = (φα)!

S(Iα)− p!(Lα)⊗L (ρα)!
S(O∆), (ψ3−α)!

S(Iα) = (φ3−α)!
S(Iα),(1.10)

(ψα)!
S(Oα) = (φα)!

S(Oα) + p!(Lα)⊗L (ρα)!
S(O∆), (ψ3−α)!

S(Oα) = (φ3−α)!
S(Oα)(1.11)

ψ!
α(F [nα+1]

α ) = φ!(F [nα]
α ) + Lα ⊗L ρ!

α(F ),(1.12)

ψ!
α(TS[nα+1]) = φ!

α(TS[nα]) + Lα ⊗L σ!
α(Iα)⊗L ρ!

α(ω∨S )− ρ!
α(1− TS + ω∨S ).(1.13)

An additional ingredient of the Mochizuki formula are the

p!(RHom(I1, I2 ⊗L q!(M))), p!(RHom(I2, I1 ⊗L q!(M))) ∈ K0(S[n1] × S[n2])

for M a line bundle on S. Note that by definition

p!(RHom(Iα, I3−α ⊗L q!(M))) = p!(I∨α ⊗L I3−α ⊗L q!(M)).
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We will now concentrate on the case α = 1, the analogous arguments and results hold with the same

proof for α = 2. These sheaves are inductively determined by the following identities.f

(ψ1)!p!(I∨1 ⊗L I2 ⊗L q∗(M)) = φ!
1p!(I∨1 ⊗L I2 ⊗L q∗(M))− σ!

1I2 ⊗L ρ!
1(M ⊗L ω∨S )⊗L L∨1 ,(1.14)

(ψ1)!p!(I∨2 ⊗L I1 ⊗L q∗(M)) = φ!
1p!(I∨1 ⊗L I1 ⊗L q∗(M))− σ!

1(I∨2 )⊗L ρ!
1(M)⊗L L1.(1.15)

These identities we get by applying (1.3), multiplying out and using the projection formula, where we

also denote p : P(I1)× S → P(I1), q : P(I1)× S → S the projections.

(ψ1)!p!(I∨1 ⊗L I2 ⊗L q∗(M)) = p!(ψ1)!
S(I∨1 ⊗L I2 ⊗L q∗(M))

= p!

((
(φ1)!

S(I∨1 )−
(
p!(L1)⊗L (ρ1)!

S(O∆)
)∨)⊗L I2 ⊗L q∗(M)

)
= φ!

1

(
p!(I∨1 ⊗L I2 ⊗L q∗(M)

)
− σ!

1I2 ⊗L ρ!
1(M ⊗L ω∨S )⊗L L∨1

where in the last step we have used (1.7). Similarly

(ψ1)!p!(I∨2 ⊗L I1 ⊗L q∗(M)) = p!(ψ1)!
S(I∨2 ⊗L I1 ⊗L q∗(M))

= φ!
1(p!(I∨2 ⊗L I1 ⊗L q∗(M))− σ!

1(I∨2 )⊗L ρ!
1(M)⊗L L1,

where in the last step we have used (1.6).

Finally p∗
(
([Z1] + [Z2])q∗(c)

)
∈ H∗(S[n1] × S[n2],Q) for c ∈ H2(S) is computed inductively by

(ψ1)∗S
(
([Z1] + [Z2])q∗(c)

)
= (φ1)∗S

(
([Z1] + [Z2])q∗(c)

)
+ (ρ1)∗S([∆]pr∗1(c)),

which follows immediately from (1.5), and which gives

(1.16) (ψ1)∗p∗
(
([Z1] + [Z2])q∗(c)

)
= φ∗1p∗

(
([Z1] + [Z2])q∗(c)

)
+ ρ∗1(c),

1.3. The inductive argument. We will prove the following statement.

Proposition 6. Let P (S,A1, A2, A3, A4, A5) be a polynomial in

p∗
(
([Z1] + [Z2])q∗(A1)

)
,

the Chern classes of

(A2)
[n1]
1 , (A3)

[n2]
2 , p!(I∨1 ⊗L I2 ⊗L q!(A4)), p!(I∨2 ⊗L I2 ⊗L q!(A5)), TS[n1]×S[n2] ,

for tuples (S,A1, . . . , A5) of a surface and 5 elements in Pic(S). Then there exists a polynomial Q in the

intersection numbers ∫
S

AiAj ,

∫
S

AiKS , i, j = 1, . . . , 5,

∫
S

K2
S , χ(OS),
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such that ∫
S[n1]×S[n2]

P (S,A1, A2, A3, A4, A5) = Q.

for all (S,A1, . . . , A5).

As a corollary we get the universality of the partition function.

Corollary 4. The coefficient of any monomial qnylsk in ZS(L, a, c1, s, y, q) is a universal polyno-

mial in the 11 intersection numbers

L2, La, a2, ac1, c
2
1, Lc1, LKS , aKS , c1KS , K

2
S , χ(OS).

Proof. By definition the coefficient of qnylsk in ZS(L, a, c1, s, y, q) is
∫
S[n1]×S[n2] P for P a polyno-

mial in p∗
((

[Z1] + [Z2])q∗(L)
)
, the Chern classes of

O(a)
[n1]
1 , O(c1 − a)

[n2]
2 , p!(I∨1 ⊗L I2 ⊗L q∗(c1 − 2a)), p∗(I∨1 ⊗L I2 ⊗L q∗(2a− c1)), TS[n1]×S[n2] .

Thus the claim follows from Proposition 6 �

We will show Proposition 6 by an inductive argument. We want to relate integrals on S[n1+1] ×

S[n2] × Sm and S[n1] × S[n2+1] × Sm to integrals on S[n1] × S[n2] × Sm+1 We will show Proposition 6

using the following inductive statement. Let

W1 := S[n1,n1+1] × S[n2] × Sm, W2 := S[n1] × S[n2,n2+1] × Sm.

For α = 1, 2 let

Ψα = ψα × 1Sm , Φα = φα × 1Sm .

For any I ⊂ {0, . . . ,m} let prI be the projection X × Sm to the factors indexed by I.

Proposition 7. (1) Let f be a polynomial in the Chern classes of the following sheaves on

S[n1+1] × S[n2] × Sm:

pr∗0TS[n1+1]×S[n2+1] , pr∗0(A2)
[n1+1]
1 , pr∗0(A3)

[n2]
1

pr!
0i(I1), pr!

0i(I2), pr∗ij(O∆), pr∗i (TS),

p!(I∨1 ⊗L I2 ⊗L q!(A4)), p!(I∨2 ⊗L I2 ⊗L q!(A5)),

and the classes

p∗(([Z1] + [Z2])q∗(A1)),

pr∗i (Aj), j = 1, . . . 5.
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Then there is a polynomial f̃ in the analogous classes on S[n1] × S[n2] × Sm+1 such that∫
S[n1+1]×S[n2]×Sm

f =

∫
S[n1]×S[n2]×Sm+1

f̃ .

(2) The analogous statement holds for S[n1] × S[n2+1] × Sm

Proof. We show (1), the proof of (2) is the analogous. We write W := W1, Ψ := Ψ1, Φ = Φ1. The

morphism Ψ : W → S[n1+1] × S[n2] × Sm is generically finite of degree n1 + 1. Therefore∫
S[n1+1]×S[n2]×Sm

f =
1

n1 + 1

∫
W

Ψ∗(f).

As we insert an additional factor S between S[n1] × S[n2] and Sm, we have

Ψ!pr∗i = Φ!pri+1, Ψ!pr∗0,i = Φ!pr0,i+1, Ψ!pr∗i,j = Φ!pri+1,j+1,

in particular we have

Ψ!pr∗iAj = Φ!pr∗i+1Aj , Ψ!pr∗i TS = Φ!pr∗i+1TS , Ψ!pr∗i,j(O∆) = Φ!pr∗i+1,j+1(O∆)(1.17)

The formula (1.16) gives

(1.18) Ψ∗p∗
(
([Z1] + [Z2])q∗(A1)

)
= Φ∗p∗

(
([Z1] + [Z2])q∗(A1))

)
+ pr∗1(A1),

Equations (1.10), (1.12), (1.13) give

Ψ!pr!
0,i(I1) = Φ!pr0,i+1(I1)− pr!

0(L1)⊗L pr!
1,i+1(O∆), Ψ!pr!

0,i(I2) = Φ!pr0,i+1(I2),(1.19)

Ψ!((A2)
[n1+1]
1 ) = Φ!((A2)

[n1]
1 ) + pr!

0L1 ⊗L pr!
1(A2), Ψ!((A3)

[n2]
2 ) = Φ!((A3)

[n2]
2 ),(1.20)

Ψ!(TS[n1+1]×S[n2]) = Φ!(TS[n1]×S[n2]) + pr!
0(L1)⊗L pr!

0,1(I1)⊗L pr!
1(ω∨S )− pr!

1(1− TS + ω∨S ).(1.21)

Finally (1.14) and (1.15) give

Ψ!p!(I∨1 ⊗L I2 ⊗L q∗(A4)) = Φ!(p!(I∨1 ⊗L I2 ⊗L q∗(A4))− pr!
0,1(I2)⊗L pr!

1(A4 ⊗L ω∨S )⊗L pr!
0(L∨1 ),

(1.22)

Ψ!p!(I∨2 ⊗L I1 ⊗L q∗(A5)) = Φ!(p!(I∨1 ⊗L I1 ⊗L q∗(A5))− pr!
0,1(I∨2 )⊗L pr!

1(A5)⊗L pr!
0(L1).

(1.23)

Putting these results together we obtain that there are polynomials fν for ν ≥ 0, in the analogous classes

on S[n1] × S[n2] × Sm+1, such that∫
S[n1+1]×S[n2]×Sm

f =
1

n1 + 1

∫
W

Ψ∗(f) =

∫
W

∑
ν≥0

Φ∗(fν) · pr∗0((−c1(L1))ν).
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By (1.9) and the projection formula the last integral equals

∫
S[n1]×S[n2]×Sm+1

Φ∗

∑
ν≥0

Φ∗(fν) · pr∗0((−c1(L1))ν)

 =

∫
S[n1]×S[n2]×Sm+1

∑
ν≥0

fν · Φ∗
(
pr∗0((−`1)ν)

)
=

∫
S[n1]×S[n2]×Sm+1

∑
ν≥0

fν · cν(−pr∗0,1(I1)).

The integrand on the right hand side is the polynomial f̃ . �

Proof of Proposition 6. Given Proposition 7 the proof is now almost identical to the proof of

[4, Proposition 0.5]. Suppose we are given a polynomial P like in Proposition 6. Applying parts (1) and

(2) of Proposition 7 repeatedly, we can write∫
S[n1]×S[n2]

P =

∫
Sn1+n2

P̃

for P̃ a polynomial, which depends only on P , in the Chern classes of pr∗i TS , pr∗ij(O∆) and the classes

pr∗iAj , j = 1, . . . 5. Any such expression
∫
Sn1+n2

P̃ can be universally reduced to a polynomial expres-

sion of integrals over S of polynomials in Chern classes of TS and the Ai. To see this for the Chern

classes pr∗ij(O∆) we use Riemann-Roch without denominators [22]. �

2. Multiplicativity

In this section let S be a possibly disconnected smooth projective surface and let Pic(S). We consider

the partition function ZS(L, a1, c1, s, y, q) from Definition 11.

Remark 3. Let X be a smooth projective scheme, assume X = X1 tX2, where each Xi is a union

of connected components of X. Let i1 : X1 → X, i2 : X2 → X be the inclusions.

Note that any α ∈ K0(X) or α ∈ Pic(X) or α ∈ H∗(X,Q) is of the form α = i1∗α1+i2∗α2 = α1+α2,

with αj = i∗jα (and we have suppressed the pushforward via the inclusion in the notation in the second

step).

Definition 12. Assume S = S′ t S′′, for smooth projective surfaces S′, S′′ (each of them can have

more than one connected component, but the connected components of S′ and S′′ do not intersect). Note

that a line bundle L ∈ Pic(S) is the same as line bundles L′ := L
∣∣
S′
∈ Pic(S′), L′′ := L

∣∣
S′′
∈ Pic(S′′).

If L, a1, c1 ∈ Pic(S) with L|S′ = L′, a1|S′ = a′1, c1|S′ = c′1 (and similarly for S′′, L′′, a′′1 , c′′1),

then we say that (S,L, a1, c1) is the sum of (S′, L′, a′1, c
′
1) and (S′′, L′′, a′′1 , c

′′
1), and write

(S,L, a1, c1) = (S′, L′, a′1, c
′
1) + (S′′, L′′, a′′1 , c

′′
1)

Our aim is to prove the following multiplicativity result for the partition function.
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Proposition 8. Assume (S,L, a1, c1) = (S′, L′, a′1, c
′
1) + (S′′, L′′, a′′1 , c

′′
1), then

ZS(L, a1, c1, s, y, q) = ZS′(L
′, a′1, c

′
1, s, y, q)ZS′′(L

′′, a′′1 , c
′′
1 , s, y, q).

Proof. We write

ΦS(L, a1, c1, n1, n2) :=
X−y(En1,n2

) exp
(
π∗([Z1] + [Z2])q∗(L))

)
Eu(O(a1)[n1]) Eu(O(c1 − a1)[n2] ⊗ s2)

Eu
(
En1,n2 − TS[n1]×S[n2]

)
∈ H∗(S[n1] × S[n2],Q)[y]((s)),

so that by definition

ZS(L, a1, c1, s, y, q) =
∑

n1,n2≥0

qn1+n2

∫
S[n1]×S[n2]

ΦS(L, a1, c1, n1, n2).

By definition we have

S[m] =
∐

m1+m2=m

(S′)[m1] × (S′′)[m2],

thus we also have

S[n1] × S[n2] =
∐

n′1+n′′1 =n1

∐
n′2+n′′2 =n2

((S′)[n′1] × (S′)[n′2])× ((S′′)[n′′1 ] × (S′′)[n′′2 ]).

We put

ΦS′(L
′, a′1, c

′
1, n
′
1, n
′
2) :=

X−y(E′n′1,n′2
) exp

(
π∗([Z ′1] + [Z ′2])q∗(L′))

)
Eu(O′(a′1)[n′1]) Eu(O′(c′1 − a′1)[n′2] ⊗ s2)

Eu
(
E′n′1,n′2

− T
(S′)[n

′
1]×(S′)[n

′
2]

)
∈ H∗((S′)[n′1] × (S′)[n′2],Q)[y]((s))

Here we put ξ′ = c′1−2a′1, O′(a′)[l] = OS′(a′)[l] for a ∈ Pic(S′). We write Z ′1 the pullback of the universal

subscheme from S′ × (S′)[n′1], and by I ′1 its ideal sheaf and we put

E′n′1,n′2 := −RHomπ(F ′,F ′)0 + χ(OS′)⊗O + χ(ξ′)⊗O ⊗ s2 + χ(−ξ′)⊗O ⊗ s−2

with F ′ = I ′1(a′1)⊗ s−1 ⊕ I ′2(a′2)⊗ s. ΦS′′(L
′′, a′′1 , c

′′
1 , n
′′
1 , n
′′
2) is defined in the same way.

We introduce the following notation for the rest of the proof. We put

X1 = (S′)[n′1] × (S′)[n′2], X2 = (S′′)[n′′1 ] × (S′′)[n′′2 ] ⊂ S[n1] × S[n2]

and let

i12 : X1 ×X2 ↪→ S[n1] × S[n2]

be the inclusion, and let

π1 : X1 ×X2 → X1, π2 : X1 ×X2 → X2
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be the projections.

For α′ ∈ H∗(X1,Q), α′′ ∈ H∗(X2,Q) we denote by α′ × α′′ = π∗1(α′)× π∗2(α′′) their cross product,

so that ∫
X1×X2

α′ × α′′ =

(∫
X1

α′
)(∫

X2

α′′
)
.

Claim 1.

i∗12

(
ΦS(L, a1, c1, n1,n2)

)
= ΦS′(L

′, a′1, c
′
1, n
′
1, n
′
2)× ΦS′′(L

′′, a′′1 , c
′′
1 , n
′′
1 , n
′′
2).

It is easy to see that the claim implies the proposition. In fact we get

ZS(L, a1, c1, s, y, q) =
∑

n1,n2≥0

qn1+n2

∫
S[n1]×S[n2]

ΦS(L, a1, c1, n1, n2)

=
∑

n1,n2≥0

qn1+n2

∑
n′1+n′′1 =n1

∑
n′2+n′′2 =n2∫

((S′)[n
′
1]×(S′)[n

′
2])×((S′′)[n

′′
1 ]×(S′′)[n

′′
2 ])

ΦS′(L
′, a′1, c

′
1, n
′
1, n
′
2)× ΦS′′(L

′′, a′′1 , c
′′
1 , n
′′
1 , n
′′
2)

=
∑

n′1,n
′′
1≥0

∑
n′2,n

′′
2≥0

qn
′
1+n′′1 +n′2+n′′2

∫
(S′)[n

′
1]×(S′)[n

′
2]

ΦS′(L
′, a′1, c

′
1, n
′
1, n
′
2)

∫
(S′′)[n

′′
1 ]×(S′′)[n

′′
2 ]

ΦS′′(L
′′, a′′1 , c

′′
1 , n
′′
1 , n
′′
2)

=
∑

n′1,n
′
2≥0

qn
′
1+n′2

∫
(S′)[n

′
1]×(S′)[n

′
2]

ΦS′(L
′, a′1, c

′
1, n
′
1, n
′
2)

·
∑

n′′1 ,n
′′
2≥0

qn
′′
1 +n′′2

∫
(S′′)[n

′′
1 ]×(S′′)[n

′′
2 ]

ΦS′′(L
′′, a′′1 , c

′′
1 , n
′′
1 , n
′′
2)

= ZS′(L
′, a′1, c

′
1, s, y, q)ZS′′(L

′′, a′′1 , c
′′
1 , s, y, q).

To prove the claim we have to show that

i∗12

(
X−y(En1,n2

)
)

= X−y(E′n′1,n′2)× X−y(E′′n′′1 ,n′′2 )

i∗12

(
exp

(
π∗(([Z1] + [Z2])q∗(L))

)
= exp

(
π∗(([Z ′1] + [Z ′2])q∗(L))

)
× exp

(
π∗(([Z ′′1 ] + [Z ′′2 ])q∗(L))

)
i∗12

(
Eu(O(a1)[n1])Eu(O(c1 − a1)[n2] ⊗ s2)

)
= Eu(O′(a′1)[n1])Eu(O′(c′1 − a′1)[n′2] ⊗ s2)

× Eu(O′′(a′′1)[n′1])Eu(O′′(c′′1 − a′′1)[n′′2 ] ⊗ s2)

i∗12

(
Eu
(
En1,n2

− TS[n1]×S[n2]

))
= Eu

(
E′n′1,n′2 − T(S′)[n

′
1]×(S′)[n

′
2]

)
× Eu

(
E′′n′′1 ,n′′2 − T(S′′)[n

′′
1 ]×S[n′′2 ]

)
All these are simple verifications. By definition we have

(2.1) (1S × i12)∗[Zj ] = (i′ × π1)∗[Z ′j ] + (i′′ × π2)∗[Z ′′j ], j = 1, 2,
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where i′ : S′ → S, i′′ : S′′ → S are the inclusions. Therefore it follows from Definition 10 that

i∗12

(
π∗(([Z1] + [Z2])q∗(L))

)
= π∗1(π∗([Z ′1] + [Z ′2])q∗(L))) + π∗2(π∗([Z ′′1 ] + [Z ′′2 ])q∗(L))),

and thus

i∗12

(
exp( π∗(([Z1] + [Z2])q∗(L)

)
= exp(π∗([Z ′1] + [Z ′2])q∗(L)))× exp( π∗([Z ′′1 ] + [Z ′′2 ])q∗(L))).

Note that for A′ ∈ K0(X1), A′′ ∈ K0(X2), we have

Eu(π∗1(A′) + π∗2(A′′)) = π∗1(Eu(A′))π∗2(Eu(A′′)) = Eu(A′)× Eu(A′′),

X−y(π∗1(A′) + π∗2(A′′)) = X−y(A′)× X−y(A′′).

It follows directly from the definitions that

i∗12

(
O(a1)[n1]

)
= π∗1(O′(a′1)[n′1]) + π∗2(O′′(a′′1)[n′′1 ])

and similar for Eu(O(c1 − a1)[n2] ⊗ s2). Furthermore we clearly have

i∗12

(
TS[n1]×S[n2]

)
= π∗1(T

(S′)[n
′
1]×(S′)[n

′
2]) + π∗2(T

(S′′)[n
′′
1 ]×(S′′)[n

′′
2 ]).

Thus it finally only remains to show that i∗12

(
En1,n2

)
= π∗1(E′n′1,n′2

) + π∗2(E′′n′′1 ,n′′2
). Again this follows

from the definitions. Putting

F̃ ′ := (i′ × π1)∗(F ′), F̃ ′′ := (i′′ × π2)∗(F ′′),

we see by the relation (2.1) that we also have (1S × i12)∗(F) = F̃ ′ + F̃ ′′. As F̃ ′ and F̃ ′′ have their

supports on disjoint components of S ×X1 ×X2, it follows that

RHomπ(F̃ ′, F̃ ′′)0 = RHomπ(F̃ ′′, F̃ ′)0 = 0.

Thus

(2.2) i∗12

(
−RHomπ(F̃ , F̃)0

)
= −RHomπ(F̃ ′, F̃ ′)0 −RHomπ(F̃ ′′, F̃ ′′)0.

On the other hand we clearly have

(2.3) χ(OS) = χ(OS′) + χ(OS′′), χ(±ξ) = χ(±ξ′) + χ(±ξ′′).

Thus putting (2.2) and (2.3) into the definition of En1,n2
we get i∗12(En1,n2

) = π∗1(E′n′1,n′2
) + π∗2(E′′n′′1 ,n′′2

),

and the claim follows. �
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The universality of Theorem 4 and the multiplicativity of Proposition 8 together imply that we

can write the partition function ZS(L, a1, c1, s, y, q) for any (S,L, a1, c1) as a product of powers of 11

universal power series. This is the main result of this chapter and crucial for the rest of the work.

Theorem 10. There are power series A1(y), . . . , A11(y) ∈ Q[y]((s))[[q]] such that for any quadruple

(S,L, a1, c1) we have

ZS(L, a, c1, s, y, q) = A1(y)L
2

A2(y)LaA3(y)a
2

A4(y)ac1A5(y)c
2
1A6(y)Lc1

A7(y)LKSA8(y)aKSA9(y)c1KSA10(y)K
2
SA11(y)χ(OS).

Corollary 5. With Ai := Ai(0) for i = 1, . . . , 11, we get for any quadruple (S,L, a1, c1) that

ZS(L, a, c1, s, q) = AL
2

1 ALa2 Aa
2

3 Aac14 A
c21
5 A

Lc1
6 ALKS7 AaKS8 Ac1KS9 A

K2
S

10 A
χ(OS)
11 .

Let Kr be the set of tuples (S,L, a, c1) such that S is a projective surface (possibly disconnected),

L, c1, a,∈ Pic(S). We define a map

γ : Kr → Q11 : (S,L, a, c) 7→
(
L2, La, a2, ac1, c

2
1, Lc1, LKS , aKS , c1KS ,K

2
S , χ(OS)

)
.

Remark 4. If (S,L, a, c) = (S′, L′, a′, c′)+(S′, L′, a′, c′) in notations of Definition 12, then γ(S,L, a, c) =

γ(S′, L′, a′, c′) + γ(S′, L′, a′, c′).

Proof. Let i′ : S′ → S, i′′ : S′ → S be the inclusions. Then KS′ = (i′)∗KS , KS′′ = (i′′)∗KS , As

L′, a′, c′,KS′ have all disjoint supports of L′′, a′′, c′′,KS′′ , we see that α′β′′ = 0, for α, β ∈ {L′, a′, c′,KS′},

and therefore αβ = α′β′ + α′′β′′. It is also clear that χ(OS) = χ(OS′) + χ(OS′′). Thus we get

γ(S,L, a, c) = γ(S′, L′, a′, c′) + γ(S′, L′, a′, c′). �

Proof of Theorem 10. By Theorem 4 we know that ZS(L, a, c, y, s, q) only depends on γ(S,L, a, c),

so we can write Z(γ(S,L, a, c)) := ZS(L, a, c, y, s, q). Furthermore we know by Remark 4 and Proposition

8 that

(2.4) Z
(
γ(S′, L′, a′, c′) + γ(S′′, L′′, a′′, c′′)

)
= Z(γ(S′, L′, a′, c′))Z(γ(S′′, L′′, a′′, c′′)).

We choose tuples (Sj , Lj , aj , cj) for j = 1, . . . , 11 (in Chapter 4, Section 1 we give an example of such

tuples) such that the vectors vj := γ(Sj , Lj , aj , cj) are all linearly independent and form a basis of Q11.

We denote e1, . . . , e11 the standard basis of Q11. Then we can write

vj =

11∑
i=1

bj,iei, ei =

11∑
j=1

ai,jvj , for matrices (bj,i)
11
j,i=1, (ai,j)

11
i,j=1 ∈ Q11×11
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which are inverse to each other. We define Let Bj := Z(vj), and put

(2.5) Ai(y) :=

11∏
j=1

B
ai,j
j ∈ 1 + Q[y]((s))[[q]], i = 1, . . . , 11.

Note that then we also have

(2.6) Bj =

11∏
i=1

Ai(y)bj,i , j = 1, . . . , 11.

We want to show that Theorem 10 is true with this choice of the Ai(y). Thus we have to show

(2.7) Z(w) =

11∏
i=1

Ai(y)ωi , for all w = (ω1, . . . , ω11) ∈ γ(Kr).

Let

Γ+ =
{ 11∑
j=1

βjvj

∣∣∣ βj ∈ Z≥0

}
.

be the set of nonnegative linear combinations of the vj . First we show (2.7) for all w in Γ+. Let

w =
∑11
j=1 βjvj ∈ Γ+. Write w = (ω1, . . . , ω11), then ωi =

∑11
j=1 βjbj,i. Thus we have by (2.4) and (2.6)

that

(2.8) Z(w) =

11∏
j=1

B
βj
j =

11∏
j=1

(
11∏
i=1

Ai(y)bj,i

)βj
=

11∏
i=1

Ai(y)ωi .

We denote x1, . . . , x11 the coordinates of C11. We note that Γ+ is a positive orthant in a lattice in

R11. Therefore it is Zariski dense in C11. Thus if two polynomials f, g ∈ C[x1, . . . , x11] satisfy f(v) = g(v)

for all v ∈ Γ+, then f = g.

Fix integers l, n,m ∈ Z. By Theorem 4 there is a polynomial fl,n,m ∈ Q[x1, . . . , x11] such that for

all w = (ω1, . . . , ω11) ∈ γ(Kr) we have

Coeffylsnqn(Z(w)) = fl,n,m(ω1, . . . , ω11).

On the other hand clearly Coeffylsnqn
∏11
i=1Ai(y)ωi can be written as gl,n,m(ω1, . . . , ω11) for some poly-

nomial gl,n,m ∈ Q[x1, . . . , x11], and by (2.8) fl,n,m = gl,n,m on the Zariski dense set Γ+. Therefore

fl,n,m = gl,n,m and the result follows. �





CHAPTER 4

Computation of Mochizuki’s formula via localization

Let S be a smooth projective surface with b1(S) = 0, pg(S) > 0 and c1, L ∈ Pic(S). In Chapter

2, Definition 11 we first introduced the partition functions ZS(L, a1, c1, s, y, q) and ZS(L, a1, c1, s, q) =

ZS(L, a1, c1, s, y, q)|y=0 for a1 ∈ Pic(S) and then showed in Corollary 3 that the refined K-theoretic

Donaldson invariants χvir
−y(MH

S (c1, c2), µ(L)) can be expressed in terms of the ZS(L, a1, c1, s, y, q), where

a1 runs through the Seiberg-Witten classes of S, and similarly the K-theoretic Donaldson invariants

χvir(MH
S (c1, c2), µ(L)) in terms of the ZS(L, a1, c1, s, q). Thus our task is reduced to computing ZS(L, a1, c1, s, y, q)

and ZS(L, a1, c1, s, q) for any quadruple (S,L, a1, c1). In Chapter 3 Theorem 10 we finally showed that

there are universal power series A1(y), . . . , A11(y) such that

ZS(L, a, c1, s, y, q) = A1(y)L
2

A2(y)LaA3(y)a
2

A4(y)ac1A5(y)c
2
1A6(y)Lc1

A7(y)LKSA8(y)aKSA9(y)c1KSA10(y)K
2
SA11(y)χ(OS).

or any quadruple (S,L, a1, c1). Therefore our task is reduced to computing A1(y), . . . , A11(y). In the

proof we considered for each quadruple (S,L, a, c) the tuple

γ(S,L, a, c) =
(
L2, La, a2, ac, c2, Lc, LKS , aKS , cKS ,K

2
S , χ(OS)

)
,

and we showed that A1(y), . . . , A11(y) can be computed from ZSj (Lj , aj , cj , s, y, q) for 11 quadruples

(Sj , Lj , aj , cj), such that γ(Sj , Lj , aj , cj), i = 1, . . . , 11 are linearly independent. In fact in the proof

of Theorem 10 we saw explicitly the following: if

(0.1) γ(Sj , Lj , aj , cj) = (bj,1, . . . , bj,11), B := (bj,i)
11
j,i=1, B−1 = (ai,j)

11
i,j=1,

then we have

Ai(y) =

11∏
j=1

ZSj (Lj , aj , cj , s, y, q)
ai,j .

1. Reduction to toric surfaces

We have seen that in order to compute ZS(L, a, c1, s, y, q) for any surface, we need to compute

ZSj (Lj , aj , cj , s, y, q) for 11 tuples (Sj , Lj , aj , cj) for which the γ(Sj , Lj , aj , cj) are linearly independent.

While in the application to the (refined) K-theoretic Donaldson invariants we need that pg(S) > 0, here

we have no restriction on the choice of these tuples and we can choose them conveniently so that the

computation becomes easier. We make the following choice

53
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Notation 3. We let (Si, Li, ai, ci), i = 1, . . . , 11 in the order below be given by

(P2,O,O,O), (P2,O,O(1),O(2)), (P2,O,O,O(1))

(P2,O,O(1),O(3)), (P2,O(1),O,O), (P2,O(1),O(1),O(2)),

(P2,O(1),O,O(1)), (P1 × P1,O,O,O) (P1 × P1,O,O(0, 1),O(0, 2)),

(P1 × P1,O,O,O(0, 1)), (P1 × P1,O(0, 1),O,O)

The choice of the line bundles would seem to be slightly more complicated than neccessary, however in

our computer computations we use ξ = c − 2a instead of c, and then these choices lead to simpler

computations.

Remark 5. γ(Si, Li, ai, ci), i = 1, . . . , 11 are linearly independent.

Proof. This follows from the relevant intersection products. We have that A(P2) ' Z[h]/h3, where

h is the class of the hyperplane bundle O(1) whose self intersection h · h = 1. We also have that the

canonical bundle is given by KP2 = O(−3), and that χ(P2) = 1. For the tuples involving P1 × P1, we

have that Pic(P1 × P1) = ZF ⊕ ZG where F , G are the two fiber classes. We denote the associated

line bundles by O(1, 0), O(0, 1) respectively. Then the intersection product is given by the relations

F 2 = 0 = G2, F ·G = 1. We also have that KP1×P1 = −2F − 2G and χ(P1 × P1) = 1. This data allows

one to compute all the intersection products. In fact the matrix B from (0.1) is readily computed as

B =



0 0 0 0 0 0 0 0 0 9 1

0 0 1 2 4 0 0 −3 −6 9 1

0 0 0 0 1 0 0 0 −3 9 1

0 0 1 3 9 0 0 −3 −9 9 1

1 0 0 0 0 0 −3 0 0 9 1

1 1 1 2 4 2 −3 −3 −6 9 1

1 0 0 0 1 1 −3 0 −3 9 1

0 0 0 0 0 0 0 0 0 8 1

0 0 0 0 0 0 0 −2 −4 8 1

0 0 0 0 0 0 0 0 −2 8 1

0 0 0 0 0 0 −2 0 0 8 1



.
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This matrix is invertible. Its inverse that we need to compute the Ai(y) is

A =



−1 0 0 0 1 0 0 3/2 0 0 −3/2

−1 −1 2 0 1 1 −2 0 0 0 0

−7 3 6 −2 0 0 0 15/2 −3/2 −6 0

5 −1 −5 1 0 0 0 −6 0 6 0

−1 0 1 0 0 0 0 3/2 0 −3/2 0

1 0 −1 0 −1 0 1 0 0 0 0

0 0 0 0 0 0 0 1/2 0 0 −1/2

0 0 0 0 0 0 0 −1/2 −1/2 1 0

0 0 0 0 0 0 0 1/2 0 −1/2 0

1 0 0 0 0 0 0 −1 0 0 0

−8 0 0 0 0 0 0 9 0 0 0



.

�

Remark 6. We note that the surfaces P2 and P1 × P1 are toric surfaces. In particular they are

equipped with an action of T = C∗×C∗, with finitely many fixpoints. We will see that this action lifts to

the Hilbert schemes of points and this will allow us to compute the invariants via Atiyah-Bott equivariant

localization.

2. Action on P2 and P1 × P1

Let T = C∗ ×C∗. We describe the action of T on P2 and P1 × P1. We will need the results and the

notation established here when we study the lift of the action to the Hilbert schemes of points.

2.1. Action on P2. Let X0, X1, X2 be the homogeneous coordinates on P2. Let Ui = P2 \ Z(Xi).

On Ui we have coordinates xi, yi with

x0 = X1/X0, y0 = X2/X0, x1 = X0/X1, y1 = X2/X1, x2 = X0/X2, y1 = X1/X2.

T acts on P2 via acting on the coordinates by

(t1, t2) · (X0 : X1 : X2) = (X0 : t1X1 : t2X2).

We see that the fixpoints of the action are

p0 = (1 : 0 : 0), p1 = (0 : 1 : 0), p2 = (0 : 0 : 1).
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The coordinates xi, yi are eigenvectors for the T -action, in fact one sees immediately that

(t1, t2) · x0 = t1x0, (t1, t2) · y0 = t2y0,

(t1, t2) · x1 = t−1
1 x1, (t1, t2) · y1 =

t2
t1
y1,

(t1, t2) · x2 = t−1
2 x2, (t1, t2) · y2 =

t1
t2
y2,

so that the corresponding weights of the coordinates are

w(x0) = ε1, w(y0) = ε2, w(x1) = −ε1, w(y1) = ε2 − ε1, w(x2) = −ε2, w(y2) = ε1 − ε2.

Finally on Ui a trivializing section of OP2(n) is Xn
i , thus the weights wi of the T -action on the fiber of

OP2(n) at the fixpoints pi are given by

w0 = 0, w1 = nε1, w2 = nε2.

2.2. Action on P1 × P1. Let X0, X2, Y0, Y1 be the homogeneous coordinates on the two factors of

P1 × P1. T acts on P1 × P1 via

(t1, t2) · ((X0 : X1), (Y0, Y1)) = (X0 : t1X1), (Y0, t2Y1)).

The action has 4 fixpoints

p0 = ((1 : 0), (1 : 0)), p1 = ((1 : 0), (0 : 1)), p2 = ((0 : 1), (1 : 0)), p3 = ((0 : 1), (0 : 1)),

and in an affine neighbourhood Ui of pi there are coordinates xi, yi given by

x0 = x1 =
X1

X0
, y0 = y2 =

Y1

Y0
, x2 = x3 =

X0

X1
, y1 = y3 =

Y1

Y0
,

which are eigenvectors for the T -action with weights

w(x0) = w(x1) = ε1, w(x2) = w(x3) = −ε1, w(y0) = w(y2) = ε2, w(y1) = w(y3) = −ε2.

Finally we see that on Ui the trivializing sections of O(n1, n2) are Xn1
0 Y n2

0 , Xn1
0 Y n2

1 , Xn1
1 Y n2

0 , Xn1
1 Y n2

1

for i = 0, 1, 2, 3 respectively, therefore the weights of the action on the fibres of O(n1, n2) are 0, n2ε2,

n1ε1, n1ε1 + n2ε2 for i = 0, 1, 2, 3 respectively.

We also notice that both in the case of S = P2 and S = P1 × P1 a natural T -equivariant basis of

KS(pi) is dxi ∧ dyi thus the weight of KS(pi) is w(xi) + w(yi).
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3. Action on Hilbert schemes of points

In the following let S = P2 and S = P1 × P1 with the action we described in the previous section.

Thus S has an action of T = (C∗)2, with finitely many fixpoints p0, . . . , pe (with e = 2 or e = 3). We

lift the action of T on S to an action on S[n]. For each t = (t1, t2) ∈ T , t defines an automorphism

t : S → S; p 7→ t · p. We define an action on S[n] by t · Z := t(Z). Clearly this defines an action on S[n].

Note that by definition, if IZ is the ideal sheaf of Z in S, then It(Z) = (t−1)∗(IZ). Thus we can also

describe the action on S[n] by its action on ideal sheaves via t · IZ = (t−1)∗(IZ).

We now want to describe the fixpoints of the T -action on S[n]. We have an obvious action of T on

the symmetric power S(n) by

t ·
∑
i

niqi =
∑
i

ni(t · qi).

This is clearly compatible with the Hilbert Chow morphism π : S[n] → S(n);Z 7→ supp(Z) of Chapter 1

Section 2, where we denote by supp(Z) the support of Z with multiplicities, i.e. t · supp(Z) = supp(t ·Z).

Now let Z ∈ (S[n])T be a fixpoint. Then supp(Z) must be a fixpoint of the T -action on S(n) and it

follows that supp(Z) is a linear combination of the fixpoints p1, . . . , pe, i.e. we can write

supp(Z) =

e∑
i=0

nipi, ni ∈ Z≥0,

e∑
i=1

ni = n.

We denote

Hilbn(S, p) :=
{
Z ∈ S[n]

∣∣ supp(Z) = np
}

the Hilbert scheme of points supported at the point p ∈ S. Then for a fixpoint pi the action of T on

S[ni] restricts to an action on Hilbni(S, pi). and we get by the above a decomposition

Z =

e∐
i=0

Zi, Zi ∈ (Hilbni(S, pi))
T .

Conversely any subscheme of this form is a fixpoint of the T -action on S, so we have shown that the

fixpoints Z ∈ (S[n])T are precisely the subschemes

(3.1) Z =

e∐
i=0

Zi, Zi ∈ Hilbni(S, pi)T , ni ∈ Z≥0,

e∑
i=1

ni = n.

Thus to describe (S[n])T completely, it is enough to deal with the punctual Hilbert schemesHilbn(S, pi)
T

for pi a fixpoint of the T -action on S. We put p := pi and write x = xi, y = yi for the local equivariant

coordinates at p from Section 2. We can write the action for t = (t1, t2) ∈ T as

t · x = tu1
1 tu2

2 x, t · y = tv11 t
v2
2 y,

and we can see from the results in Section 2 that the weights w(x) = u1ε1 +u2ε2 and w(y) = v1ε1 + v2ε2

are linearly independent.
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A subscheme Z ∈ Hilbn(S, p) is given by an ideal IZ ∈ k[x, y] such that OZ = C[x, y]/IZ has support

p and dimension n as a C vector space. Such a Z will be T -invariant, if and only if IZ is T -invariant

under the action on C[x, y] given by t ·x = tu1
1 tu2

2 x, t ·y = tv11 t
v2
2 y. It is easy to see that this is equivalent

to the fact that we can write IZ = (f1, . . . , fr) where the generators f1, . . . , fr are eigenvectors for the

T -action. As the weights w(x), w(y) are linearly independent, this implies that f1, . . . , fr are monomials

in x, y. Choosing for each power xi of x the smallest power of yai of y such that xiyai ∈ IZ , we can

therefore write

IZ = (x0y
a0 , x1y

a1 , . . . , xryar , xr+1)

with a0 ≥ a1 ≥ . . . ≥ ar > 0. Furthermore we have that the monomials

{
xiyj

∣∣ 0 ≤ i ≤ r, 0 ≤ j < ai
}

are a basis of OZ as C-vector space. Therefore
∑r
i=0 ai = n.

Thus we see that the subschemes Z ∈ Hilbn(S, p)T are in a bijection with the partitions of n, via

the correspondence ν = (a1, . . . , ar) 7→ Zν(x, y), where Zν(x, y) is given by

IZν(x,y) = (x0y
a0 , x1y

a1 , . . . , xryar , xr+1).

Finally partitions are in one one correspondence to Young diagrams.

Definition 13. The Young diagram of a partition ν = (a0, . . . , ar) is the set

Y (ν) :=
{

(i, j) ∈ Z2
≥0

∣∣ i ≤ r, j < ai
}
.

A Young diagram is a subset of the form Y (ν) for a partition ν.

For Y a Young diagram we write |Y | the number of elements of Y . Clearly |Y (ν)| = n if ν is a partition

of n. For a Young diagram Y = Y (ν), we define

Z(Y ;xi, yi) := Zν(xi, yi) ∈ Hilb|Y |(S, pi)T

For an tuple Y := (Y0, . . . , Ye) of Young diagrams we write |Y | := |Y0|+ . . . |Ye|.

For a tuple Y := (Y0, . . . , Ye) of Young diagrams with |Y | = n we put

Z(Y ) :=

e∐
i=0

Z(Yi;xi, yi) ∈ (S[n])T .

Summing up, we have shown the following proposition.
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Proposition 9. There is a natural bijection

Z :
{

tuples Y := (Y0, . . . , Ye) of Young diagrams, with |Y | = n
}
→ (S[n])T : Y 7→ Z(Y )

Remark 7. We also see immediately that under this bijection we can write

H0(OZ(Y )) =

e⊕
i=0

H0(OZ(Yi;xi,yi))

and set
{
xjiy

k
i

∣∣ j, k ∈ Yi} is a T -equivariant basis of H0(OZ(Yi;xi,yi)) as C-vector space.

4. The localization formula for the partition function

In this whole section we assume that S = P2 or S = P1×P1. Our aim is to compute ZS(L, a1, c1, s, y, q)

via localization on the Hilbert schemes S[n1] × S[n2]. In this section we write down the localization for-

mula for ZS(L, a1, c1, s, y, q), in terms of the T -action at the fixpoints on certain sheaves. In the next

section we will describe this action. By definition

ZS(L, a1, c1, s, y, q) =
∑

n1,n2≥0

qn1+n2

∫
S[n1]×S[n2]

X−y(En1,n2
) exp

(
π∗([Z1] + [Z2])q∗(L))

)
Eu(O(a1)[n1]) Eu(O(c1 − a1)[n2] ⊗ s2)

Eu
(
En1,n2 − TS[n1]×S[n2]

) .

By Proposition 9 the fixpoints of the T -action of S[n1] × S[n2] are the (Z(Y
1
), Z(Y

2
)) for pairs

(Y
1

= (Y 1
0 , . . . , Y

1
e ), Y

2
= (Y 1

0 , . . . , Y
1
e ))

of tuples of Young diagrams with |Y 1| = n1, |Y 2| = n2.

We will use the following Lemma ([3, Lemma 3.4]).

Lemma 8.

π∗([Z1] + [Z2])q∗(L))(Z(Y
1
), Z(Y

2
)) =

e∑
i=0

(|Y 1
i |+ |Y 2

i |)L(pi).

Notation 4. In future will just write E for instead En1,n2
on S[n1] × S[n2].

Applying the Atiyah-Bott localization, Chapter 1 Theorem 6, we get

ZS(L, a1, c1, s, y, q) =
∑

(Y
1
,Y 2)

q|Y 1|+|Y 2|

(
X−y(E(Z(Y

1
), Z(Y

2
)))

Eu
(
E(Z(Y

1
), Z(Y

2
))
)

exp
( e∑
i=0

(|Y 1
i |+ |Y 2

i |)L(pi)
)

Eu(H0(O
Z(Y

1
)
(ai)Z(Y

1
)
))) Eu(H0(O

Z(Y
2
)(c1−a1)

⊗ s2))

)∣∣∣
ε1=ε2=0

.

Here the sum runs over all pairs (Y
1

= (Y 1
0 , . . . , Y

1
e ), Y

2
= (Y 1

0 , . . . , Y
1
e )), and we use the following

notations.
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Notation 5. For a class F in the K group of T -equivariant sheaves on a variety X and p ∈ X

a fixpoint of the action with ι : p → X the inclusion, we denote by F (p) := ι∗(F ) as an element in

the representation ring of T . Moreover, let Eu(F (p)) ∈ Q[ε1, ε2], X−y(F (p)) ∈ Q[y][[ε1, ε2]] denote

respectively the equivariant Euler class and χ−y-genus.

We can rewrite ZS(L, a1, c1, s, y, q) as a product over the fixpoints on S. This allows to compute

ZS(L, a1, c1, s, y, q) as a sum over pairs of partitions and not as a sum over (2e+ 2)-tuples of partitions,

which makes for a much more efficient algorithm.

Proposition 10.

ZS(L, a1, c1, s, y, q) =

e∏
i=0

( ∑
Y 1,Y 2

q|Y
1|+|Y 2|X−y(E(Z(Y 1;xi, yi), Z(Y 2;xi, yi)))

Eu
(
E(Z(Y 1;xi, yi), Z(Y 2;xi, yi))

)
· exp

(
(|Y 1|+ |Y 2|)L(pi)

)
Eu(H0(OZ(Y 1;xi,yi)(ai))) Eu(H0(OZ(Y 2;xi,yi)(c1 − a1)⊗ s2))

)∣∣∣∣∣
ε1=ε2=0

.

Proof. For V , W in the K-group of T -equivariant vector bundles on S[n1] × S[n2] we have by

definition

X−y(V +W ) = X−y(V )X−y(W ), Eu(V +W ) = Eu(V )Eu(W ).

We will show below (Corollary 6) that

E(Z(Y 1), Z(Y 2)) =

e⊕
i=0

E(Z(Y 1
i ;xi, yi), Z(Y 2

i xi, yi)).

Finally it is clear by definition that

H0(O
Z(Y

1
)
(ai)) =

e⊕
i=0

H0(OZ(Y 1
i ;xi,yi)(ai)),

H0(OZ(Y 2)(c1 − a1)⊗ s2) =

e⊕
i=0

H0(OZ(Y 2
i ;xi,yi)(c1 − a1)⊗ s2).

Thus the formula follows by just distributing out the product. �

5. Action on the relevant sheaves at the fixpoints

Now p = pi ∈ ST . Let x = xi, y = yi be the equivariant local coordinates at p, with weights w(x),

w(y). Let L, a, c be equivariant line bundles on S. Let (Y 1, Y 2) be a pair of Young diagrams with

|Y 1| = n, |Y 2| = m. We denote L(p), a(p), c(p) the 1-dimensional representation of T on the fibre of L,

a, c at p, and we denote x, y the one dimensional representations given by the action of T on x, y.

5.1. Tautological sheaves. The tautological sheaves are easy to understand.
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Remark 8. In the Grothendieck ring of T -represenations we have for k = 1, 2

OZ(Y k;x;y)(a) =
∑

(i,j)∈Y k
xiyja(p)

and thus

Eu(OZ(Y k;x;y)(a)) =
∏

(i,j)∈Y k
(iw(x) + jw(y) + w(a(p))).

Proof. In the Remark 7 we saw that
{
xiyj

∣∣ (i, j) ∈ Yk} is an equivariant basis of H0(OZ(Y k;x,y)).

Thus
{
xiyja(p)

∣∣ (i, j) ∈ Yk} is an equivariant basis of H0(OZ(Y k;x,y)(a)), and the claim follows. �

5.2. The tangent bundle of the Hilbert scheme. Now we want to describe the action of T

on the tangent space TS[n]×S[m],(Z(Y 1;x,y),Z(Y 2,x,y)) in terms of the combinatorics of the partition. We

introduce some notation.

Definition 14. Let Y be a Young diagram, corresponding to a partition (λ0, . . . , λr) of n. Let

s = (i, j) ∈ Y . The arm length of s is aY (s) = λi− j+ 1. The dual Young diagram to Y is Y ′ =
{

(j, i)
∣∣

(i, j) ∈ Y , and the leg length of s = (i, j) is l(s) = aY ′(j, i).

By Lemma 3 in Chapter 2 we have TS[n],Z(Y 1) = Ext1(IZ(Y 1), IZ(Y 1))0. We have the following

theorem, which was proven in [5],[30].

Theorem 11. In the Grothendieck group of T -representations we have for k = 1, 2

TS[n],Z(Y k;x,y) =
∑
s∈Y k

(
x−lY k (s)yaY k (s)+1 + xlY k (s)+1y−aY k (s)

)
.

In particular we have

c(TS[n],Z(Y k)) =
∏
s∈Y k

(
1− lY k(s)w(x) + (aY k(s) + 1)w(y)

)(
1 + (lY k(s) + 1)w(x)− aY k(s)w(y)

)
,

Eu(TS[n],Z(Y k)) =
∏
s∈Y k

(
− lY k(s)w(x) + (aY k(s) + 1)w(y)

)(
(lY k(s) + 1)w(x)− aY k(s)w(y)

)
.

5.3. Action on the on Ext-sheaves. Finally we have to determine the fibres of E at the fixpoints

of S[n1] × S[n2]. We will use the following lemma to reduce the computation to a computation in [3].

The lemma should be standard, but we include a proof because we did not find a reference.

Lemma 9. X be a smooth projective variety with an action of a torus T = (C∗)n and let F , G

be coherent T -equivariant sheaves on X. Let V be an equivariant vector bundle on X. Then in the

Grothendieck group of T -equivariant vector spaces we have an identity

RHom(F ,G ⊗ V ) = RΓ(RHom(F ,G)⊗ V ).

Here RΓ is the derived functor of the functor of global sections.
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Proof. Note that, as V is locally free, we have RHom(F ,G ⊗ V ) = RHom(F ,G) ⊗ V , thus it is

enough to show (replacing G by G ⊗ V ) that

RHom(F ,G) = RΓ(RHom(F ,G)).

We use the local to global spectral sequence, with Ep,q2 = Hp(Extq(F ,G)) abutting to Extp+q(F ,G). For

all r we write

[Er] =
∑
p,q

(−1)p+qEp,qr

in the Grothendieck group of equivariant vector spaces. Let d = dim(X). As X is smooth projective of

dimension d, we get that Ep,q2 = 0 for (p, q) 6∈ [0, . . . , d]× [0, . . . , d]. It follows that Ep,q∞ = Ep,qd+1, and the

Ep,qd+1 are the associated graded pieces of a filtration on Extp+q(F ,G). It follows that

[Ed+1] =
∑
p,q

(−1)p+qEp,qd+1 =
∑
n

(−1)nExtn(F ,G) = RHom(F ,G).

Thus it is enough to show that [Er+1] = [Er] for all r. By definition we have the differentials

dr : Ep,qr → Ep+r,q−r+1
r+1 ,

and

Ep,qr+1 =
ker(dr : Ep,qr → Ep+r,q−r+1

r )

im(dr : Ep−r,q−r+1
r → Ep,qr )

.

Thus, with

Kp,q
r+1 := ker(dr : Ep,qr → Ep+r,q−r+1

r ), Qp+r,q−r+1
r+1 = im(dr : Ep,qr → Ep+r,q−r+1

r ),

we have for all p, q an exact sequence

0→ Kp,q
r+1 → Ep,qr → Qp+r,q−r+1

r+1 → 0

and Ep,qr+1 = Kp,q
r+1/Q

p,q
r+1, thus Ep,qr+1 = Kp,q

r+1 −Q
p,q
r+1 in the Grothendieck group.
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Therefore we get in the equivariant Grothendieck group of vector spaces

[Er] =
∑
p,q

(−1)p+qEp,qr

=
∑
p,q

(−1)p+q(Kp,q
r+1 +Qp+r,q−r+1

r+1 )

=
∑
p,q

(−1)p+qKp,q
r+1 +

∑
p,q

(−1)p+qQp+r,q−r+1
r+1

=
∑
p,q

(−1)p+qKp,q
r+1 −

∑
p,q

(−1)p+q+1Qp+r,q−r+1
r+1

=
∑
p,q

(−1)p+q(Kp,q
r+1 −Q

p,q
r+1)

=
∑
p,q

(−1)p+qEp,qr+1 = [Er+1].

�

We go back to our assumption that S = P2 or P1 × P1 with the action of T = C∗ specified above

(but the results work for any smooth projective toric surface). We have the following generalization of

[3, Lemma 3.2].

Definition 15. For Young diagrams Y 1, Y 2 we write

WY 1,Y 2(x, y) :=
∑
s∈Y 1

(
x−lY 2 (s)yaY 1 (s)+1 +

∑
s∈Y 2

xlY 1 (s)+1y−aY 2 (s)
)
.

Proposition 11. Let

(Y
1

= (Y 1
0 , . . . , Y

1
e ), Y

2
= (Y 2

0 , . . . , Y
2
e ))

be a pair of tuples of Young diagrams. Let M be an equivariant line bundle on S. Then in the represen-

tation ring of T we have

−RHom(I
Z(Y

1
)
, I
Z(Y

2
)
⊗M) = −RΓ(S, V ) +

e∑
i=0

WY 1
i ,Y

2
i

(xi, yi) ·M(pi).

Proof. This was proven in [3, Lemma 3.2] under the assumption that ±M is not effective and

±M + KS is not effective. Lemma 9 serves to remove this assumption, and using this lemma, one can

essentially repeat the arguments from the proof of [3, Lemma 3.2]. We will indicate the changes. We

write Y := Z(Y
1
), Z := Z(Y

2
). The first step in the proof of [3, Lemma 3.2] is the proof of the following

claim.

Claim: In the representation ring of T we have the identity

−RHom(IY , IZ⊗M) = −RΓ(S,M)+RΓ(Ext1(IY , IZ)⊗M)+H0(S,OZ⊗M)+H0(S,Hom(OY ,OZ)⊗M).
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Proof of the claim. By Lemma 9 we have

−RHom(IY , IZ ⊗M) = −RΓ(RHom(IY , IZ)⊗M)

= H0(S, Ext1(IY , IZ)⊗M)−RΓ(Hom(IY , IZ)⊗M).

The second line follows because Ext2(IY , IZ) = 0 and Ext1(IY , IZ) is supported on the supports of Y

and Z. Thus Hi(S, Ext1(IY , IZ)⊗M) = 0 for i > 0. We have the exact sequence

(5.1) 0→ IZ → Hom(IY , IZ)→ Hom(OY ,OZ)→ 0,

which is obtained by applying RHom(·, IZ) to the exact sequence 0→ IY → OS → OY → 0 and noticing

that Hom(OY , IZ) = 0, Ext1(OY , IZ) = Hom(OY ,OZ). Tensoring (5.1) by M , applying RΓ and using

that Hi(Hom(OY ,OZ) ⊗M) = 0 for i > 0 (because Hom(OY ,OZ) has zero-dimensional support), we

get the following identity in the representation ring of T

(5.2) −RΓ(Hom(IY , IZ)⊗M) = −RΓ(S, IZ ⊗M)−H0(Hom(OY ,OZ),⊗M).

Finally we use the sequence 0→ IZ ⊗M →M → OZ ⊗M → 0 and the vanishing of Hi(S,OZ ⊗M) for

i > 0 to replace −RΓ(S, IZ ⊗M) in (5.2) by H0(S,OZ ⊗M)−RΓ(S,M). This shows the claim.

Using the claim, the rest of the proof of [3, Lemma 3.2] is unchanged. �

Finally we use this result to describe the action of T on the fibers of the bundle E, which is En1,n2

on S[n1] × S[n2].

Corollary 6. Let

(Y
1

= (Y 1
0 , . . . , Y

1
e ), Y

2
= (Y 2

0 , . . . , Y
2
e ))

be a pair of tuples of Young diagrams. Then

E(Z(Y
1
), Z(Y

2
)) =

∏
α=1,2

∏
β=1,2

e∑
i=0

WY αi ,Y
β
i

(xi, yi) · ξ⊗(β−α)(pi)⊗ s⊗2(β−α).

Proof. This follows directly from (3.1) in Chapter 2, Theorem 11 and Proposition 11. �

6. Results of the computations

We have carried out the computation of ZS(L, a1, c1, s, y, q) and ZS(L, a1, c1, s, y, q) for each of the

11 cases above. The formulas above were implemented in a Pari/GP program.

We determined the universal series A1, . . . , A11 and A1(y), . . . , A11(y) of Theorem 10 in Chapter 4

to the following orders:

• For A1 . . . , A11, we computed the coefficients of sl−3nqn for all n ≤ 10, l ≤ 49. (Recall: Ai, Ai(y)

are Laurent series in s.)



6. RESULTS OF THE COMPUTATIONS 65

• For A1(y), . . . , A11(y), we computed the coefficients of sl−5nymqn for all n ≤ 6, m ≤ 9, l ≤ 30.





CHAPTER 5

Applications

In this section (except for the case of K3 surfaces, where we also deal with the refined invariants),

we restrict our attention to non-refined K-theoretic Donaldson invariants and study some applications

of Conjecture 1.

(1) We state the formulas of Conjectures 1 and 3 for K3 surfaces. In this case they were proven in

[14].

(2) We give a simplified formula for minimal surfaces of general type or more generally for surfaces

whose only Seiberg-Witten classes are 0 and KS .

(3) We give an alternative formula for surfaces with disconnected canonical divisor KS , written in

terms of the connected components of KS .

(4) We formulate a blowup formula, relating the K-theoretic Donaldson invariants of a surface S

and its blowup Ŝ in a point.

(5) We show that the Witten conjecture is also a consequence of Conjecture 1.

We will start by rewriting Conjecture 1. If S is a smooth projective surface with b1(S) = 0, pg(S) > 0, and

we assume thatMH
S (c1, c2) consists only of stable sheaves, Conjecture 1 says that χvir(MH

S (c1, c2), µ(L)) =

Coeffxvd

[
ψS,L,c1(x)], with

ψS,L,c1(x) =
22−χ(OS)+K2

S

(1− x2)
(L−KS)2

2 +χ(OS)

∑
a∈H2(S,Z)

SW (a) (−1)ac1
(

1 + x

1− x

)(KS
2 −a

)
(L−KS)

.

We get a different form of Conjecture 1 by rewriting ψS,L,c1(x).

Remark 9.

ψS,L,c1(x) =
22−χ(OS)+K2

S

(1− x2)χ(L)

∑
a∈H2(S,Z)

SW (a) (−1)ac1(1 + x)(KS−a)(L−KS)(1− x)a(L−KS).(0.1)

Proof. Note that

χ(L) =
L(L−KS)

2
+ χ(OS) =

(L−KS)2

2
+ χ(OS) +

KS(L−KS)

2
.

Thus

ψS,L,c1(x) =
22−χ(OS)+K2

S

(1− x2)χ(L)

∑
a∈H2(S,Z)

SW (a) (−1)ac1
(

1 + x

1− x

)(KS
2 −a

)
(L−KS) (

(1 + x)(1− x)
)KS

2 (L−KS)
,

67
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and the sumands on the right simplify to SW (a) (−1)ac1(1 + x)(KS−a)(L−KS)(1− x)a(L−KS). �

1. K3-surfaces

The formulas of Conjectures 1 and 3 for the K-theoretic Donaldson invariants are sums over contri-

butions of Seiberg-Witten classes. Thus the formula will be simple if the Seiberg-Witten invariants are

simple. The simplest case is that of K3-surfaces where the only Seiberg-Witten class is 0 with SW (0) = 1.

Let S be a K3 surface. Then Conjecture 3 takes the following attractive and simple form.

Conjecture 5. Let L ∈ Pic(S). Let H, c1, c2 be chosen such that there are no rank 2 strictly

Gieseker H-semistable sheaves on S with Chern classes c1, c2. Then

y−
vd
2 χvir
−y(MH

S (c1, c2), µ(L)) = Coeffxvd

 ∞∏
n=1

(
(1−x2n)2

(1−x2ny)(1−x2ny−1)

)n2 L2

2

(1− x2n)20(1− x2ny)2(1− x2ny−1)2

 ,
and in particular

χvir(MH
S (c1, c2), µ(L)) = Coeffxvd

[
1

(1− x2)
L2

2 +2

]
.

This conjecture was proven in [14] as a special case of [14, Theorem 1.5]. This is an important

general verification (i.e. for all possible Chern classes) of Conjectures 1 and 3.

2. Minimal surfaces of general type

The second simplest possiblity for the Seiberg-Witten invariants of a surface S with b1(S) = 0,

pg(S) > 0 is when the only Seiberg-Witten classes are 0 and KS 6= 0.

Remark 10. This is true in the following two cases.

(1) Minimal surfaces of general type satisfying pg(S) > 0 and b1(S) = 0 [29, Thm. 7.4.1],

(2) smooth projective surfaces with b1(S) = 0 and containing an irreducible reduced curve C ∈ |KS |

(e.g. discussed in [15, Sect. 6.3]).

Proposition 12. Let S be a smooth projective surface satisfying pg(S) > 0, b1(S) = 0, KS 6= 0,

and such that its only Seiberg-Witten basic classes are 0 and KS. Let L ∈ Pic(S) and let H, c1, c2 be

chosen such that there are no rank 2 strictly Gieseker H-semistable sheaves on S with Chern classes

c1, c2. Suppose Conjecture 1 holds in this setting. Then χvir(MH
S (c1, c2), µ(L)) is given by the coefficient

of xvd of

23−χ(OS)+K2
S

(1 + x)KS(L−KS)

(1− x2)χ(L)
.

Proof. Since SW (0) = 1, we have SW (KS) = (−1)χ(OS) [27, Prop. 6.3.4]. By Conjecture 1,

χvir(MH
S (c1, c2), µ(L)) is given by the coefficient of xvd of (0.1), which simplifies to

22−χ(OS)+K2
S

(1− x2)χ(L)

[
(1 + x)KS(L−KS) + (−1)c1KS+χ(OS)(1− x)KS(L−KS)

]
.
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Varying over c2, we put the coefficients of all terms xvd of ψS,L,c1(x) into a generating series as follows.

Write

ψS,L,c1(x) :=

∞∑
n=0

ψnx
n.

Then for vd = vd(S, c1, c2) = 4c2 − c21 − 3χ(OS), we have

∑
c2

Coeffxvd(S,c1,c2)(ψS,L,c1(x))xvd(S,c1,c2) =
∑

n≡−c21−3χ(OS) mod 4

ψn x
n

=

3∑
k=0

1

4
ik(c21+3χ(OS))ψ(ikx)

= 21−χ(OS)+K2
S

[
(1 + x)KS(L−KS)

(1− x2)χ(L)
+ (−1)c

2
1+3χ(OS) (1− x)KS(L−KS)

(1− x2)χ(L)

+ic
2
1+3χ(OS) (1 + ix)KS(L−KS)

(1 + x2)χ(L)
+ (−i)c

2
1+3χ(OS) (1− ix)KS(L−KS)

(1 + x2)χ(L)

]
,

where the third equality uses c1KS ≡ c21 mod 2. Now define

φS,L,c1(x) := 23−χ(OS)+K2
S

(1 + x)KS(L−KS)

(1− x2)χ(L)
.

Then

∑
c2

Coeffxvd(S,c1,c2)(φS,L,c1(x))xvd(S,c1,c2) =
∑

n≡−c21−3χ(OS) mod 4

φn x
n

=

3∑
k=0

1

4
ik(c21+3χ(OS))φ(ikx)

is given by the same expression as above, which proves the proposition. �

Corollary 7. Let S be a smooth projective surface with b1(S) = 0 and containing a smooth con-

nected curve C ∈ |KS | of genus g. Let L ∈ Pic(S) and let H, c1, c2 be chosen such that there are no rank

2 strictly Gieseker H-semistable sheaves on S with Chern classes c1, c2. Suppose Conjecture 1 holds in

this setting. Then χvir(MH
S (c1, c2), µ(L)) is given by the coefficient of xvd of

23−χ(OC)−χ(OS) (1 + x)χ(L|C)

(1− x2)χ(L)
.

Proof. By the adjuction formula we have KC = (KS + C)
∣∣
C

, thus 2g − 2 = deg(KC) = 2K2
S .

Therefore g = K2
S + 1 and χ(L|C) = 1− g + degL|C by Riemann-Roch. Therefore the corollary follows

from Proposition 12. �

3. Disconnected canonical divisor

If the canonical divisor KS is the union of disjoint irreducible reduced curves KS = C1 + . . .+ Cm,

then the Seiberg-Witten classes of S are sums of the Ci, and the corresponding Seiberg-Witten invariants
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can be expressed in terms of the Ci. This allows us to express the formula of Conjecture 1 in terms of

the connected components of KS .

Suppose C1, . . . , Cm are irreducible reduced mutually disconnected curves on a smooth projective

surface S with b1(S) = 0 and pg(S) > 0, and let M := {1, . . . ,m}. Then for any I = {i1, . . . , ik} ⊂ M ,

we define

CI :=
∑
i∈I

Ci.

For I, J ⊂ M we write I ∼ J whenever CI is linearly equivalent to CJ . This defines an equivalence

relation. We denote the equivalence class corresponding to I by [I] and denote its number of elements

by |[I]|. We denote NCj/S the normal bundle of Cj ⊂ S. We use the following result.

Lemma 10. [15, Lemma 3.1] Let S be a smooth projective surface with b1(S) = 0 and pg(S) > 0,

and suppose C1 + · · · + Cm ∈ |KS |, where C1, . . . , Cm are mutually disjoint irreducible reduced curves.

Then the Seiberg-Witten basic classes of S are {CI}I⊂M and

SW (CI) = |[I]|
∏
i∈I

(−1)h
0(NCi/S).

Our result is the following.

Proposition 13. Let S be a smooth projective surface with b1(S) = 0 and pg(S) > 0, and suppose

there exists 0 6= C1 + · · · + Cm ∈ |KS |, where C1, . . . , Cm are mutually disjoint irreducible reduced

curves. Let L ∈ Pic(S) and let H, c1, c2 be chosen such that there are no rank 2 strictly Gieseker H-

semistable sheaves on S with Chern classes c1, c2. Suppose Conjecture 1 holds in this setting. Then

χvir(MH
S (c1, c2), µ(L)) is given by the coefficient of xvd of

22−χ(OS)+K2
S

(1− x2)χ(L)

m∏
j=1

[
(1 + x)χ(L|Ci ) + (−1)Cic1+h0(NCi/S)(1− x)χ(L|Ci )

]
,

where NCi/S denotes the normal bundle of Ci ⊂ S.

Proof. By Lemma 10 equation (0.1) becomes

22−χ(OS)+K2
S

(1− x2)χ(L)

(∑
[I]

|[I]|
∏
i∈I

(−1)h
0(NCi/S)

)
(−1)CIc1(1 + x)CM\I(L−KS)(1− x)CI(L−KS)

=
22−χ(OS)+K2

S

(1− x2)χ(L)

∑
I⊂M

(∏
i∈I

(−1)Cic1+h0(NCi/S)(1− x)Ci(L−Ci)

)( ∏
i∈M\I

(1 + x)Ci(L−Ci)

)
,

where we used KS = CM and the assumption that the curves Ci are mutually disjoint, which implies

that

C2
I =

∑
i∈I

C2
i = CIKS , CiKS = C2

i .
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On the other hand expanding the product in the statement of the proposition we get

m∏
i=1

[
(1 + x)χ(L|Ci ) + (−1)Cic1+h0(NCi/S)(1− x)χ(L|Ci )

]

=
∑
I⊂M

(∏
i∈I

(−1)Cic1+h0(NCi/S)(1− x)Ci(L−Ci)

)( ∏
i∈M\I

(1 + x)Ci(L−Ci)

)
,

and the result follows. �

4. Blow-up formula

A very important role in the understanding of the Donaldson invariants was played by the blowup

formulas which relate the Donaldson invariants of a surface S and its blowup Ŝ in a point. We show

that for the K-theoretic Donaldson invariants a simple blowup formula follows from Conjecture 1.

Proposition 14. Let S be a smooth projective surface, π : Ŝ → S the blow-up of S in a point, and

E the exceptional divisor. Let L, c1 ∈ Pic(S), ĉ1 = π∗c1 − kE, and L̂ = π∗L− `E. Then

ψŜ,L̂,ĉ1(x) =
1

2
(1− x2)(

`+1
2 ) [(1 + x)`+1 + (−1)k(1− x)`+1

]
ψS,L,c1(x).

Thus if S is a smooth projective surface with b1(S) = 0, pg(S) > 0 and Conjecture 1 is true for

MH
Ŝ

(ĉ1, c2), then

χvir(MH
Ŝ

(ĉ1, c2), µ(L̂)) = Coeff
xvd(Ŝ,ĉ1,c2)

[
1

2
(1− x2)(

`+1
2 ) [(1 + x)`+1 + (−1)k(1− x)`+1

]
ψS,L,c1(x)

]
.

Proof. The Seiberg-Witten basic classes of Ŝ are π∗a and π∗a + E with corresponding Seiberg-

Witten invariant SW (a), where a runs over all Seiberg-Witten basic classes of S [29, Thm. 7.4.6]. Using

χ(OŜ) = χ(OS), KŜ = π∗KS + E, E2 = −1, χ(L̂) = χ(L)−
(
`+1

2

)
, the proposition follows at once from

equation (0.1) on pg. 67. �

5. Witten conjecture

Let S be a smooth projective surface satisfying b1(S) = 0 and pg(S) > 0. Now we want to show

that Conjecture 1 implies the Witten conjecture (Theorem 1) for algebraic surfaces, which had been

proven in [19]. This can be be viewed as additional evidence for Conjecture 1, and it also illustrates that

Conjecture 1 is indeed a K-theoretic version of the Witten conjecture.

Proposition 15. Let S be a smooth projective surface satisfying b1(S) = 0 and pg(S) > 0. Then

Conjecture 1 implies∫
[MH

S (c1,c2)]vir

c1(µ(L))vd

vd!
= Coeffxvd

[
22−χ(OS)+K2

S (−1)χ(OS)+c1(c1−KS)/2 exp
( (c1(L)2)

2
x2
)

·
∑

a∈H2(S,Z)

(−1)c1aSW (a) exp
((

(2a−KS)c1(L)
)
x
)]
,
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i.e. the Witten conjecture (Theorem 1).

Proof. By the Virtual Riemann-Roch Theorem 5, putting M := MH
S (c1, c2), we get for all n ∈ Z

(writing the Picard group additively)

χvir(M,µ(nL)) =

∫
[M ]vir

exp
(
nc1(µ(L))

)
td(T vir

M ).

We can write td(T vir
M ) = 1 +

∑vd
i=1 ti with ti ∈ H2i(M,Q). Therefore we get that χvir(M,µ(nL)) is a

polynomial of degree vd in n whose leading term is nvd
∫

[M ]vir
c1(µ(L))vd

vd! . Thus we get

lim
n→∞

1

nvd
χvir(M,µ(nL)) =

∫
[M ]vir

c1(µ(L))vd

vd!
.

On the other hand we can also compute this limit from Conjecture 1. It is standard that

lim
n→∞

(1 +
x

n
)n = lim

n→∞

1

(1− x
n )n

= exp(x).

Thus we get by Conjecture 1 that

lim
n→∞

1

nvd
χvir(M,µ(nL))

= lim
n→∞

Coeffxvd

 22−χ(OS)+K2
S

(1− x2

n2 )
(nL−KS)2

2 +χ(OS)

∑
a∈H2(S,Z)

SW (a) (−1)ac1
(

1 + x
n

1− x
n

)(KS
2 −a

)
(nL−KS)


= lim
n→∞

Coeffxvd

22−χ(OS)+K2
S

(1− x2

n2 )
n2L2

2

∑
a∈H2(S,Z)

SW (a) (−1)ac1
(

1 + x
n

1− x
n

)(KS
2 −a

)
(nL)


= Coeffxvd

22−χ(OS)+K2
S exp

(
L2

2
x2

) ∑
a∈H2(S,Z)

SW (a) (−1)ac1 exp((KS − 2a)Lx)

 .
�



CHAPTER 6

Examples

1. K3 surfaces

Let S be a K3 surface. Let H be ample on S and let L be a line bundle on S. We assume that

MH
S (c1, c2) consists only of stable sheaves. Note that in this case MH

S (c1, c2) is nonsingular of the

expected dimension vd = 4c2 − c21 − 6, so that

χvir(MH
S (c1, c2), µ(L)) = χ(MH

S (c1, c2), µ(L)), χvir
−y(MH

S (c1, c2), µ(L)) = χ−y(MH
S (c1, c2), µ(L)).

As mentioned in Chapter 5 Section 1, Conjectures 1 and 3 have been proven in this case in [14].

All the same, we also calculate the numbers χ(MH
S (c1, c2), µ(L)) directly by applying Corollary 3

on page 35 and our explicit knowledge of the universal functions A1, . . . , A11, and A1(y), . . . , A11(q) as

described in Chapter 4, Section 6. The easiest way to satisfy all assumptions of Corollary 3 is by choosing

c1 and H such that c1H > 0 is odd. Under this assumption we computed χ(MH
S (c1, c2), µ(L)) for all

L ∈ Pic(S) for c1 with c21 = 0, 2, . . . , 20 and c2 chosen in such a way that vd(S, c1, c2) < 14. For the

χ−y-genus we did the corresponding calculation for c21 = 0, 2, . . . , 20 and c2 chosen in such a way that

vd(S, c1, c2) < 11. In all these cases Conjectures 1 and 3 were confirmed.

2. Blowup of K3 surfaces

Let S be the blow-up of a K3 surface in a point, with exceptional divisor E. Again we choose H and

c1 so that all sheaves in MH
S (c1, c2) are stable. Let π : S → S0 be the blowup map. Under this assumption

we computed χvir(MH
S (c1, c2), µ(L)) for any L and for c1 = π∗C + rE such that C2 = −4,−2, . . . , 10,

r = −2,−1, . . . , 2, and vd < 15. In all cases we get that

χvir(MH
S (c1, c2), µ(L)) = Coeffxvd

[
(1 + x)LE+1

(1− x2)
L2−LE

2 +2

]
.

Note that the only basic classes of S are 0 and E with Seiberg-Witten invariants SW (0) = SW (E) = 1.

As KS = E, K2
S = −1 and χ(OS) = 2, the formula above therefore coincides with the prediction of

Conjecture 1.

We also compute χvir
−y(MH

S (c1, c2), µ(L)) for c1 = π∗C + rE such that C2 = −4,−2, . . . , 14, r =

−2,−1, . . . , 2, and vd < 10, confirming Conjecture 3.

73
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3. Elliptic surfaces

Let EN → P1 be a non-trivial elliptic surface with section, 12N > 0 rational nodal fibres, and no

other singular fibres. Then the canonical class is given by KEN = (N − 2)F , where F denotes the class

of the fibre. Note that χ(OSN ) = N . Choose a section B ⊂ S, then its class satisfies B2 = −N .

We assume n ≥ 2, then E(n) has a smooth canonical divisor which has N −2 connected components

Fj ; each a smooth elliptic fibre of S. The Seiberg-Witten classes are the lF with 0 ≤ l ≤ N − 2 and

SW (lF ) = (−1)l
(
N−2
l

)
.

For N = χ(OS) = 3, 4, . . . , 7, we compute χvir(MH
EN

(c1, c2), µ(L)) for c1 = mB + nF where B is

the class of a section, F is the class of a fibre, for m = −1, 0, 1, 2, n = −2,−1, . . . , 5, and vd < 12.

Conjectures 1 and 3 are confirmed in all these cases.

In fact as mentioned above KEN is the sum of N − 2 smooth elliptic fibres Fj and it is easy to see

that we have h0(NFj/EN ) = 1 and χ(L|Fj ) = LFj . We write Q = L2, w = LF . Then our results confirm

the prediction of Proposition 13, which takes the form

χvir(MH
EN (mB + nF, c2), µ(L)) = Coeffxvd

 22−N

(1− x2)χ(L)

N−2∏
j=1

[(1 + x)w − (−1)m(1− x)w]

 .
For instance, if we assume that N ≥ 3 and L · F = 0, then the result simplifies to

χvir(MH
EN (mB + nF, c2), µ(L)) =


Coeffxvd

[
1

(1−x2)L2/2+N

]
m odd,

0 m even.

Using our explicit determination ofA1(y), . . . , A11(y) we also confirmed Conjecture 3 for χvir(MH
EN

(c1, c2), µ(L))

for N = 3, 4, 5, c1 = mB + nF with m = −1, 0, 1, 2, n = −2,−1, . . . , 10, and vd < 9.

4. Minimal surfaces of general type

We verify Conjectures 1 and 3 for two cases of minimal surfaces S of general type.

(1) S is a double cover of P2 branched along a smooth octic,

(2) S is a smooth quintic in P3.

4.1. Double cover of P2. Let

π : S → P2

be a double cover branched over a smooth curve C of degree 8. Then KS = L, where L is the pull-back

of the class of a line on P2. These surfaces satisfy b1(S) = 0. It is easy to calculate

K2
S = 2, χ(OS) = 4.
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The canonical linear system |KS | contains smooth connected canonical divisors. Let c1 = εL. We apply

Corollary 3 to the universal functions Ai. The Seiberg-Witten basic classes are 0,KS 6= 0 with Seiberg-

Witten invariants SW (0) = 1, SW (KS) = (−1)χ(OS) = 1. We first take H = L as the polarization on

S. Then conditions (ii), (iii) of Corollary 3 require

c1H = 2ε > 4 = 2KSH,

i.e. ε > 2. If ε = 2k is even, we choose c2 such that

1

2
c1(c1 −KS)− c2 = ε(ε− 1)− c2.

Then by [21, Rem. 4.6.8] the moduli space MH
S (c1, c2) only consists of stable sheaves.

Now assume that ε = 2k + 1 is odd. If L generates the Picard group of S, then there are no rank 2

strictly µ-semistable sheaves with Chern classes εL and c2. In general the Picard group of S can have

more generators, but L is still ample and primitive. In this case we take the polarization H general and

sufficiently close to L (i.e. of the form nL + H for n sufficiently large), so that conditions (ii) and (iii)

of Corollary 3 still hold when ε > 2, and so that there are no rank 2 strictly µ-semistable sheaves with

Chern classes εL and c2.

We verified Conjecture 1 when c1 ·KS = 0, 1, . . . , 10, c21 = 0, 1, . . . , 30, and vd < 12. As |KS | contains

a smooth connected curve the result is given by Proposition 1: For A ∈ Pic(S), we put w = LA, Q = A2;

then we have

χvir(MH
S (εL, c2), µ(A)) = Coeff

x4c2−2ε2−12

[
2

(1 + x)LA−2

(1− x2)
Q
2 −

w
2 +4

]
.

As an illustration we write down the formula for a couple of examples. µ-stability is invariant under

tensorizing by a line bundle.Therefore we know that MH
S (2, L, c2) is isomorphic to MH

S (2, (2k+1)L, c2 +

2(k2 + k)).

χvir(MH
S (L, 4), µ(A)) = w2 − 6w +Q+ 14,

χvir(MH
S (L, 5), µ(A)) =

1

360
w6 − 7

60
w5 + (

1

24
Q+

67

36
)w4 − (

5

6
Q+

91

6
)w3 + (

1

8
Q2 +

79

12
Q+

3038

45
)w2

− (
3

4
Q2 +

65

3
Q+

2317

15
)w +

1

24
Q3 + 2Q2 +

185

6
Q+ 154.

We also verified Conjecture 3 for c1 such that c1 ·KS = −2,−1, . . . , 2, c21 = −16,−15, . . . ,−6, and vd < 9.

In particular we get with the notations above

χvir
−y(MH

S (L, 4), µ(A)) = Q+ w2 − 6w(1 + y) + (14 + 92y + 14y2).
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4.2. Quintic hypersurface in P3. Let S be a smooth surface of degree 5 in P3, then

KS = L,

where L is the hyperplane section. Moreover Sd is simply connected by the Lefschetz hyperplane theorem.

It is easy to compute that

K2
S = 5, χ(OS) = 5.

The hyperplane section H on S is very ample so |KS | contains smooth connected canonical divisors. We

test Conjecture 1 using Corollary 3.

We take H as polarization and put c1 = εH. We assume that S is very general, i.e. in the

complement of countably many closed subvarieties in the projective space of hypersurfaces of degree 5,

such that Pic(S) = ZH by the Noether-Lefschetz Theorem. For

c1H = 5ε > 10 = 2KSH,

c1H = 5ε odd, or S very general and ε odd

there are no rank 2 strictly µ-semistable sheaves with first Chern class c1, and conditions (ii), (iii) of

Corollary 3 are satisfied. We assume that both ε is odd and

c1H = 5ε > 10 = 2KSH.

Then there are no rank 2 strictly µ-semistable sheaves with first Chern class c1 and conditions (ii), (iii) of

Corollary 3 are satisfied. We consider the case c1 = 3H and vd ≤ 8. Using (dH)2 = 5d2, (dH)KS = 5d,

χ(OS) = 5, Conjecture 1 and Proposition 1 give the prediction

χvir(MH
S (3H, c2), µ(dH)) = Coeffx4c2−60

[
8

(1 + x)5(d−1)

(1− x2)
5
2 (d2−d+2)

]
,

and we get

χvir(MH
S (3H, 16), µ(dH)) =

1

3

(
1450d4 − 5800d3 + 10730d2 − 9860d

)
+ 1280,

χvir(MH
S (3H, 40), µ(dH)) =

120625

84
d8 − 241250

21
d7 +

849625

18
d6 − 122375d5 +

7785425

36
d4 − 790975

3
d3

+
13599230

63
d2 − 757390

7
d+ 25520,

confirming this prediction. Assuming the strong form of Mochizuki’s formula holds (Chapter 2, Remark

2), we also verified Conjecture 3 for c1, c2 such that c1 · KS = 2, 3, . . . , 6, c21 = −16,−15, . . . ,−3, and
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vd < 7. In particular we get the following refinement of the formula for χvir(MH
S (3H, 16), µ(dH)) above

χvir
−y(MH

S (3H, 16), µ(dH)) =
1

3

(
(1450d4 − 5800d3(1 + y) + d2(10730y2 + 37700y + 10730

− d(9860y3 + 60100y2 + 60100 + 9860)
)

+ (1280 + 11440y + 27280y2 + 11440y3 + 1280y4).

(Recall that by definition χvir(MH
S (c1, c2), µ(L)) = χvir

−y(MH
S (c1, c2), µ(L))

∣∣
y=0

).

5. Blowups of the above surfaces

Finally we deal with the blowups up all the surfaces considered above in a point: For χvir(MH
S (c1, c2), µ(L))

we confirmed Conjecture 1 in the following cases, getting in each case the formula obtained in Proposition

14.

(1) S is the blow-up of a K3 surface in two distinct points, c1 = π∗C + ε1E1 + ε2E2 such that

C2 = −2, 0, . . . , 6, ε1, ε2 = 0, 1, and vd < 10.

(2) S is the blow-up of an elliptic surface of type E3 (see Section 3) in a point, c1 = π∗C+ εE such

that CKS = −1, 0, . . . , 4, C2 = −4,−3, . . . , 10, ε = 0, 1, and vd < 12.

Assuming the strong form of Mochizuki’s formula holds (Chapter 2, Remark 2), we also verified Conjec-

ture 1 in the following cases:

(3) S is the blow-up of a quintic in P3 in a point, c1 = π∗C + εE such that CKS = −5,−4, . . . , 5,

C2 = −4,−3, . . . , 8, ε = 0, 1, and vd < 10.

Applying the same method and using our explicit expansions of A1(y, q), . . ., A11(y, q), we verified

Conjecture 3 in the following cases:

(1) S is the blow-up of a K3 surface in two distinct points, c1 = π∗C + ε1E1 + ε2E2 such that

C2 = −2, 0, . . . , 6, ε1, ε2 = 0, 1, and vd < 10.

(2) S is the blow-up of an elliptic surface of type E3) in a point, c1 = π∗C + εE such that

CKS = −1, 0, . . . , 4, C2 = −16,−15, . . . , 0, ε = 0, 1, and vd < 9.

Assuming the strong form of Mochizuki’s formula holds (Chapter 2, Remark 2), we also verified

Conjecture 3 in the following cases:

(3) S is the blow-up of a smooth quintic in P3 in a point, c1 = π∗C + εE such that CKS = 0,

C2 = −23,−22, . . . ,−14, ε = 0, 1, and vd < 4.





Appendix

In this appendix we will show some explicit computer computations. We restrict our attention to

the non-refined K-theoretic Donaldson invariants. First we list the Pari/GP program that computes

the instanton part of the partition function ZS(L, a, c1, s, q) for the nonrefined K-theoretic Donaldson

invariants. In the second part we list the beginning terms of the 11 universal power series A1, . . . , A11,

such that

ZS(L, a, c1, s, q) = AL
2

1 ALa2 Aa
2

3 Aac14 A
c21
5 A

Lc1
6 ALKS7 AaKS8 Ac1KS9 A

K2
S

10 A
χ(OS)
11 .

Pari/gp program for K-theoretic Donaldson invariants

HH=H+O(H^25);\ps 31;par=vector(31);p=vector(32);r=30;ss=s+O(s^40);

p[1]=1;p[2]=1;p[3]=2;p[4]=3;p[5]=5;p[6]=7;p[7]=11;p[8]=15;p[9]=22;p[10]=30;p[11]=42;p[12]=56;

p[13]=77;p[14]=101;p[15]=135;p[16]=176;p[17]=231;p[18]=297;p[19]=385;p[20]=490;p[21]= 627;

p[22]=792;p[23]=1002;p[24]=1255;p[25]=1575;p[26]=1958;p[27]=2436;p[28]=3010;

p[29]= 3718;p[30]= 4565;p[31]=5604;p[32]=6842;

/*This computes a vector of partitions of n*/

part(n)={global(k);

k=1;

ll=max(31,n);lll=max(5605,p[n+1]);

P=vector(lll);B=vector(ll);

part0(n,n,1,B);print(k);

P};

part0(n,m,i,B)={global(k);

if(n>0,

for(j=1,m,if(j<=n,B[i]=j;part0(n-j,j,i+1,B);if(j==n,k=k+1))),P[k]=B)};

for(n=0,30,par[n+1]=part(n));

/*for ideal (y^(b0),xy^(b1)\ldots) in Hilb^n(A^2,0), given by a partition b, and an action

on cordinates with weights u,v, compute the Equivariant todd genus of tangent space

T_b Hilb^n(A^2)\otimes O(t)*/

79
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totchi1(u,v,b,t) ={local(fin,bb,s,i,j,a1,a2,ee);

fin=1;

for(i=1,r,bi=b[i];

for(j=i,r,bj=b[j];bje=b[j+1];

for(s=bje,bj-1,

a1=(u*(i-j-1)+v*(bi-s-1)+t);

a2=(u*(j-i)+v*(s-bi)+t);

if(a1==0,fin=fin,fin=fin*a1/(1-exp(-a1)));

if(a2==0,fin=fin,fin=fin*a2/(1-exp(-a2)));)))

;fin};

/*for an ideal sheafs I_a,I_b supported in 0, given by partitions a,b,

with weights of local coordinates u,v, compute

contribution at the fixpoint to

todd(Ext^1_loc(I_a,I_b)\otimes O(t))*/

totchiab(u,v,a,b,t)={local(e1,fin,s);fin=1;

for(i=1,r,bi=b[i];ai=a[i];

for(j=i,r,bj=b[j];aj=a[j];aje=a[j+1];

for(s=aje,aj-1,a1=(u*(i-j-1)+v*(bi-s-1)+t);if(a1==0,fin=fin,fin=fin*a1/(1-exp(-a1))))));

for(i=1,r,bi=b[i];ai=a[i];

for(j=i,r,bj=b[j];aj=a[j];bje=b[j+1];

for(s=bje,bj-1,a1=(u*(j-i)+v*(s-ai)+t);if(a1==0,fin=fin,fin=fin*a1/(1-exp(-a1))))));

fin};

/*for ideal (y^(b0),xy^(b1),\ldots) in Hilb^n(A^2,0), given by a partition b, and an action

on cordinates with weights u,v, compute the Equivariant eulerclass of tangent space

T_b Hilb^n(A^2)*/

denomm(u,v,b)={local(e1,fin,s);fin=1;

for(i=1,r,bi=b[i];

for(j=i,r,bj=b[j];bje=b[j+1];

for(s=bje,bj-1,fin=fin*(u*(i-j-1)+v*(bi-s-1))*(u*(j-i)+v*(s-bi)))));

fin};
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/*for a subscheme Z_a given by partition a at fixpoint with weights of local coordinates

u,v compute Eu(O_{Z_a))\otimes O(t)*/

OZ(u,v,a,t)={local(e1,fin,i,j);fin=1;

for(i=0,r-1,for(j=0,a[i+1]-1,fin=fin*(u*i+v*j+t)));

fin};

denomabt(u,v,a,b,t)={local(e1,fin,s);fin=1;

for(i=1,r,bi=b[i];ai=a[i];

for(j=i,r,bj=b[j];aj=a[j];aje=a[j+1];

for(s=aje,aj-1,fin=fin*(u*(i-j-1)+v*(bi-s-1)+t))));

for(i=1,r,bi=b[i];ai=a[i];

for(j=i,r,bj=b[j];aj=a[j];bje=b[j+1];

for(s=bje,bj-1,fin=fin*(u*(j-i)+v*(s-ai)+t))));

fin};

/*This computes to contribution to the instanton part of the

the partition function for one fixpoint on the surface, where the weights of

the action on the coordinates are u,v*/

ZchiL(u,v,nn,aa1,xi,L,s)={local(e1,e2,fin);fin=0;

for(N=0,nn,e2=0;print(N);eeL=exp(HH*(N-(xi/2+s)^2/(u*v))*L);/*ch(\mu(L)*/

for(n=0,N,

m=N-n;

for(l1=1,p[n+1],

PP=par[n+1][l1];

for(l2=1,p[m+1],

QQ=par[m+1][l2];

e1=1;e1=e1*OZ(u,v,PP,aa1)*OZ(u,v,QQ,2*s+xi+aa1)*totchi1(u,v,PP,0)*totchi1(u,v,QQ,0);

e1=e1*totchiab(u,v,PP,QQ,xi+2*s)*totchiab(u,v,QQ,PP,-xi-2*s);

e1=e1/(denomm(u,v,PP)*denomm(u,v,QQ)*denomabt(u,v,PP,QQ,xi+2*s)*denomabt(u,v,QQ,PP,-xi-2*s));

e2=e2+e1)));

fin=fin+(e2*eeL+O(q^(10*nn+20)))*x^N; );

fin+O(x^(nn+1))}

/*On P2 compute the instanton part of Mochizuki formula for chi(M(c1),mu(L))
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for SW a1*H, xi=(c1-2a1)*H,line bundle L*H, up to the Hilbert scheme of nn points */

ZchiP2L(a1,xi,L,nn)={local(e1,e2,fin,w0,w1,w2);fin=0;qq=q+O(q^(10*nn+20));;

w0=0;w1=1*qq;w2=19*qq;

fin=ZchiL((w1-w0),(w2-w0),nn,a1*w0,xi*w0,L*w0,ss)

*ZchiL((w2-w1),(w0-w1),nn,(a1*w1),xi*w1,L*w1,ss)

*ZchiL(w0-w2,w1-w2,nn,a1*w2,xi*w2,L*w2,ss);

fin1=0;for(ll=0,15,fin1=fin1+polcoeff(polcoeff(fin,ll,H)+O(q),0,q)*(H^ll)+O(x^(nn+1)));

fin1+O(x^(nn+1))};

/*On P1xP1 compute the instanton part of Mochizuki formula for

\chi(M(c1),\mu(L)) for SW a11*F+a12*G, xi=xi1F+xi2G=(c1-2a11*F+a12*G),

line bundle L1*F+L2G, up to the Hilbert scheme of nn points */

ZchiP11L(a11,a12,xi1,xi2,L1,L2,nn)={local(e1,e2,fin,w0,w1,v0,v1);

fin=0;qq=q+O(q^(10*nn+20));

w0=0;w1=1*qq;v0=0;v1=19*qq;

fin=ZchiL((w1-w0),(v1-v0),nn,a11*w0+a12*v0,xi1*w0+xi2*v0,L1*w0+L2*v0,ss)*

ZchiL((w1-w0),(v0-v1),nn,a11*w0+a12*v1,xi1*w0+xi2*v1,L1*w0+L2*v1,s)*

ZchiL((w0-w1),(v1-v0),nn,a11*w1+a12*v0,xi1*w1+xi2*v0,L1*w1+L2*v0,s)*

ZchiL((w0-w1),(v0-v1),nn,a11*w1+a12*v1,xi1*w1+xi2*v1,L1*w1+L2*v1,s);

fin1=0;for(ll=0,15,fin1=fin1+polcoeff(polcoeff(fin,ll,H)+O(q),0,q)*(H^ll)+O(x^(nn+1)));

fin1+O(x^(nn+1))};

chL=vector(11);

chL[1]=ZchiP2L(0,0,0,10);

chL[2]=ZchiP11L(0,0,0,0,0,0,10));

chL[3]=ZchiP2L(1,0,0,10));

chL[4]=ZchiP2L(0,1,0,10));

chL[5]=ZchiP2L(1,1,0,10));

chL[6]=ZchiP11L(0,1,0,0,0,0,8));

chL[7]=ZchiP11L(0,0,0,1,0,0,8));

chL[8]=subst(ZchiP2L(0,0,1,8),H,1));/*gives L^2*/

chL[9]=subst(ZchiP2L(1,0,1,8),H,1));/*gives a1L*/

chL[10]=subst(ZchiP2L(0,1,1,10),H,1));/*gives xiL*/

chL[11]=subst(ZchiP11L(0,0,0,0,1,0,10),H,1));/*gives LK*/
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/* Change of Basis matrix from computations on P^2, P^1x P^1 to the invariants

a^2, a xi, ,xi^2,aK_S ,xiK_S,L^2,a L,xi L,LK_S,K^2,chi(O_S)*/

AC={[0,0,0,0,0,0,0,0,0,9,1;

0,0,0,0,0,0,0,0,0,8,1;

1,0,0,-3,0,0,0,0,0,9,1;

0,0,1,0,-3,0,0,0,0,9,1;

1,1,1,-3,-3,0,0,0,0,9,1;

0,0,0,-2,0,0,0,0,0,8,1;

0,0,0,0,-2,0,0,0,0,8,1;

0,0,0,0,0,1,0,0,-3,9,1;

1,0,0,-3,0,1,1,0,-3,9,1;

0,0,1,0,-3,1,0,1,-3,9,1;

0,0,0,0,0,0,0,0,-2,8,1]}

BC=mattranspose(AC)^-1;

/*Compute instanton part of Mochizuki formula for surface and line bundle with

given invariants

a^2, a xi, ,xi^2,aK_S ,xiK_S,L^2,a L,xi L,LK_S,K^2,chi(O_S)

note xi=c1-2*a

*/

ZchiLX(aa,axi,xixi,ak,xik,LL,aL,xiL,LK,kk,xo)={local(e1);

e1=mattranspose(BC*mattranspose([aa,axi,xixi,ak,xik,LL,aL,xiL,LK,kk,xo]));

erg=prod(i=1,11,chL[i]^(e1[i]));

erg}
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The universal power series

As an illustration of our computations and to give an idea of the shape of the formulas, we give a

list of the universal power series in the product formula

ZS(L, a, c1, s, q) = AL
2

1 ALa2 Aa
2

3 Aac14 A
c21
5 A

Lc1
6 ALKS7 AaKS8 Ac1KS9 A

K2
S

10 A
χ(OS)
11

for the instanton part of the partition function for the nonrefined K-theoretical Donaldson invariants.

They are listed here only modulo x4 and only the few lowest order terms in s are written (recall that we

computed the coefficients of sl−3nqn for all n ≤ 10, l ≤ 49).)

A1 = 1 + (−1

4
s−1 +

1

12
s− 1

60
s3 +

1

378
s5 + . . .)q + (− 1

16
s−4 +

11

96
s−2 − 19

240
+

1039

30240
s2 + . . .)q2

+ (− 3

64
s−7 +

5

64
s−5 − 157

1920
s−3 +

379

5760
s−1 + . . .)q3 +O(q4)

A2 = (1 + 2s+ 2s2 +
4

3
s3 +

2

3
s4 +

4

15
s5 + . . .) + (−s−2 − 2s−1 − 2− 4

3
s− 3

5
s2 − 2

15
s3 + . . .)q

+ (− 9

16
s−5 − 5

8
s−4 +

7

24
s−3 +

13

12
s−2 + s−1 . . .)q2

+ (−17

32
s−8 − 1

2
s−7 +

7

16
s−6 +

3

4
s−5 + . . .)q3 +O(q4)

A3 = 1 + (−3

2
s−3 − 1

30
s+

2

63
s3 − 1

90
s5 + . . .)q + (− 3

64
s−6 +

9

16
s−4 − 7

160
s−2 − 233

5040
+ . . .)q2

+ (− 9

128
s−9 +

17

96
s−7 − 577

1920
s−5 +

11

105
s−3 + . . .)q3 +O(q4)

A4 = 1 + (s−3 +
1

15
s− 8

189
s3 +

1

75
s5 . . .)q + (

77

64
s−6 − 5

16
s−4 +

47

480
s−2 − 661

15120
+ . . .)q2

+ (
101

64
s−9 − 41

48
s−7 +

311

960
s−5 − 1811

15120
s−3 + . . .)q3 +O(q4)

A5 = 1 + (−1

8
s−3 − 1

40
s+

5

378
s3 − 7

1800
s5 + . . .)q + (− 9

128
s−6 +

1

32
s−4 +

1

320
s−2 +

17

10080
+ . . .)q2

+ (− 65

1024
s−9 +

37

768
s−7 − 49

3072
s−5 + . . .)q3 +O(q4)

A6 = (1− s+
1

2
s2 − 1

6
s3 +

1

24
s4 − 1

120
s5 + . . .) + (

1

4
s−2 − 1

4
s−1 +

5

24
− 1

8
s+

1

480
s2 + . . .)q

+ (
1

8
s−5− 3

32
s−4 − 5

96
s−3 +

19

192
s−2 + . . .)q2

+ (
7

64
s−8 − 5

64
s−7 − 5

64
s−6 +

17

192
s−5 + . . .)q3 +O(q4)
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A7 = 1 + (
1

4
s−2 +

1

2
s−1 − 1

6
s− 1

60
s2 + . . .)q + (

5

32
∗ s−5 +

5

32
s−4 − 1

24
s−2 − 1

80
s−1 + . . .)q2

+ (
5

32
s−8 +

17

128
s−7 − 7

128
s−6 − 5

64
s−5 + . . .)q3 +O(q4)

A8 = 1 + (
1

2
s−3 + s−2 +

1

30
s− 1

15
s2 − 4

189
s3 + . . .)q + (

19

32
s−6 +

17

16
s−5 + 14s−4 − 5

12
s−3 + . . .)q2

+ (
13

16
s−9 +

45

32
s−8 +

5

24
s−7 − 5

6
s−6 + . . .)q3 +O(q4)

A9 = 1 + (−1

4
s−3 − 1

4
s−2 − 1

12
− 1

60
s+

1

20
s2 +

2

189
s3 + . . .)q

+ (− 21

128
s−6 − 1

16
s−5 +

1

8
s−4 +

5

48
s−3 + . . .)q2

+ (− 83

512
s−9 − 19

512
s−8 +

1

6
s−7 +

109

1536
s−6 + . . .)q3 +O(q4)

A10 = 1 + (−1

8
s−3 − 1

4
s−2 − 1

6
s−1 +

19

360
s+

1

60
s2 + . . .)q

+ (−1

8
s−6 − 1

8
s−5 +

1

12
s−4 +

1

6
s−3 +

19

360
s−2 + . . .)q2

+ (− 77

512
s−9 − 27

256
s−8 +

1

6
s−7 +

31

192
s−6 + . . .)q3 +O(q4)

A11 = 1 + (−1

2
s−1 +

1

6
s− 1

30
s3 +

1

189
s5 − 1

1350
s7 + . . .)q

+ (
3

32
s−6 − 3

16
s−4 +

37

120
s−2 − 3

14
+

1619

16800
s2 + . . .)q2

+ (
5

32
s−9 − 55

192
s−7 +

59

192
s−5 − 3365

12096
s−3 + . . .)q3 +O(q4)
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