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ABSTRACT. In this thesis, we study K-theoretic Donaldson invariants, which are the holomorphic Euler
characteristics of Donaldson line bundles on moduli spaces of sheaves on algebraic surfaces. Let S
be a smooth projective surface with b1(S) = 0 and pg(S) > 0. Let M (c1,c2) denote the moduli
space of rank 2 torsion-free Gieseker H-semistable coherent sheaves on S. If L is a line bundle on S,
we denote the corresponding Donaldson line bundle on M = MZ (c1,c2) by p(L). The Donaldson
invariants of S are the (virtual) intersection numbers of powers of the first Chern class ¢1(u(L)) on M.
The corresponding K-theoretic Donaldson invariants are instead the holomorphic Euler characteristics
XU (ME (o1, 2), w(L)).

The famous Witten conjecture gives a generating function for the Donaldson invariants in terms
of the Seiberg-Witten invariants of S. We formulate a K-theoretic version of the Witten conjecture,
namely a conjectural generating function for the K-theoretic Donaldson invariants of S, again in terms
of the Seiberg-Witten invariants of S. By replacing the (virtual) holomorphic Euler characteristics by
the x_y-genus with values in p(L) we obtain a refinement of this invariant for which we also find a
conjectural formula.

The conjectures were obtained and verified by the use of Mochizuki’s Formula, which reduce the
computation of the invariants to integrals over products of Hilbert schemes, which we compute via
Atiyah-Bott equivariant localization. We define a partition function (from which the invariants can be
computed), and show that it satisfies a universality and multiplicativity property which allows us to
reduce the computation to 11 specific cases. We use this to verify our conjectures in many explicit

cases.



Introduction

Moduli spaces of sheaves on algebraic surfaces have been studied for a long time (see e.g. [13],[25],[26]
and also [21] and references therein). A particular source of interest became the Donaldson invariants [2],
which are invariants of differentiable 4-manifolds X, defined via moduli spaces of anti-self-dual connec-
tions on principal SU(2) and SO(3) bundles on X. It was quite difficult to make explicit computations
with these moduli spaces. However in the case that the 4 manifold X is an algebraic surface S they
can be computed as intersection numbers on moduli spaces of rank 2 torsion free sheaves M §I (c1,¢2)
on S with Chern classes ¢1,co ([24],[31],[28]). In fact they can be computed as top self-intersection
numbers of the first Chern classes of so-called Donaldson line bundles x(L) on M (c1, ¢2), associated to
line bundles L on S.

The subject was revolutionized with the advent of the Seiberg-Witten invariants ([35],[32]). These
are new differentiable invariants of 4-manifolds defined via moduli spaces of monopoles, which are much
easier to handle than moduli spaces of anti-self-dual connections.

Let b4 (M) be the number of positive eigenvalues of the intersection form on the middle cohomology
of the 4-manifold M. Under the assumption that by (M) > 1, Witten conjectured in [35] an explicit
formula which expresses the Donaldson invariants in terms of the Seiberg-Witten invariants. There has
been a lot of work trying to prove this conjecture. In particular in a series of papers (e.g. [7],(8],[9],[10])
Feehan and Leness work towards a proof of this Witten conjecture for differentiable 4-manifolds. They
prove it in a number of cases and they give a general proof modulo some technical conjectures.

If S is an algebraic surface, then b (S) = 2py(S)+1, where p,(S) = dim(H°(9, Kg)) is the geometric
genus of S. The Mochizuki formula of [27] allows to compute intersection numbers on moduli spaces
ME (c1,¢2) of rank 2 sheaves on S in terms of Seiberg-Witten invariants and intersection numbers on
Hilbert schemes of points. Using this result a complete proof of the Witten conjecture for algebraic
surfaces was given in [19].

The aims of this thesis are the following.

(1) Formulate a K-theoretic version of the Witten conjecture as a formula for the generating
function for the (virtual) holomorphic Euler characteristics of Donaldson line bundles u(L)
on the moduli spaces M (cy, ca).

(2) Formulate a refinement of this K-theoretic Witten conjecture, where the (virtual) holomorphic

Euler characteristics are replaced by the x_,-genus with values in p(L).

5



6 INTRODUCTION

(3) Give a number of consequences of these conjectures and relate them to other results and con-
jectures in the field.

(4) Show these conjectures in many cases, thus giving ample evidence for its validity in general.

To be able to state our results, we first briefly review the definition of the Donaldson invariants and
the statement of the Witten conjecture in the case of algebraic surfaces. We assume for simplicity that
ME (¢1,c2) only consists of stable sheaves (see Chapter 1, Section 3) and there is a universal sheaf £ on

S x M (c1,c2). Then M (c1,c2) has an obstruction theory of virtual dimension
vd = vd(S, c1,c2) = 4eg — ¢ — 3x(Os)
and a virtual fundamental class [M# (c1, o) € Haya(ME (c1,¢2),7Z) (see Chapter 1, Section 5). Let
p:Sx ME(cr,e0) = ME(c1,¢0), q:Sx ME(ci,e0) = S
be the projections. For a class o € H%(S,7Z), let
v(a) = (c2(€) — c1(£)?/4)/PD(a) € H*(ME (¢1,¢2),Q).
The corresponding Donaldson invariant is
@gcl (a"d) :/ _ V(a)Vd.
[ME (c1,e2)]¥ir

Now assume that b1 (S) = 0 and p,(S) > 0. Let SW : H%(S,Z) — Z be the Seiberg-Witten invariants
(see Chapter 1, Section 8.1). A class w € H?(S,Z) is called a Seiberg-Witten class if SW (w) # 0. We will
use Mochizuki’s convention for Seiberg-Witten invariants, and denote by SW the standard convention for
Seiberg-Witten invariants. Then SW(w) = SW(2w— K. 5). There are only finitely many Seiberg-Witten
classes on S.

We write (a)? := fs a?, (wa) = fs wa. Then a slightly simplified version of the Witten conjecture

(by ignoring the point class) for algebraic surfaces proved in [19] is the following.

THEOREM 1 (Witten conjecture for algebraic surfaces). Let S be a smooth projective algebraic surface

with by(S) = 0 and py(S) > 0. Then

vd

(I)g,q (a ) = Coeff,va

W 22—X(Os)+K§ (_1)X(OS)+CI (cl—Ks)/Q exp < (a)2 xQ)
vda:

2

> (S (w)exp (2w~ Ks)a)e)].

weH?(S,Z)

If « = ¢1(L) for a line bundle L € Pic(S), the Donaldson line bundle u(L) € Pic(M# (c1,cz))

associated to L is a line bundle with ¢;(u(L)) = v(L). A K-theoretic version of the Witten conjecture
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will therefore be a formula for the generating function of the (virtual) holomorphic Euler characteristic
XV (ME (e1, e2)), w(L))-

We obtain the following conjecture.

CONJECTURE 1. Let S be a smooth projective surface with p,(S) > 0, b1(S) = 0, and L € Pic(5).
Let H,c1,co be chosen such that there are mo rank 2 strictly Gieseker H-semistable sheaves on S with

Chern classes c1,ca. Then xV'(ME (¢1,¢2), u(L)) equals the coefficient of z¥¢ of

22—)(((95)-&-[{2

Y SW(w)(-1)

1—-2z
weH?(S,Z)

(1 —l—m) (55 —w)E-Ks)

(1— ﬁ)%ﬂcws)

Using the virtual Riemann-Roch Theorem 5 from [1], one can show that

1 .
i (x4 v nen)) = [ <10
t—oo \ tvd o [MH (c1,c0)]Vir vd!

and it is not difficult to check from this that Conjecture 1 implies the Witten conjecture (Theorem 1)
for algebraic surfaces.
If the canonical linear system |Kg| contains a smooth connected curve, the only Seiberg-Witten

classes of S are 0 and Kg. In this case we obtain a simplified version of the above conjecture.

PROPOSITION 1. Let S be a smooth projective surface satisfying py(S) > 0, b1(S) = 0, Kg # 0,
and such that its only Seiberg-Witten basic classes are 0 and Kg. Let L € Pic(S) and let H,c1,co be
chosen such that there are mo rank 2 strictly Gieseker H-semistable sheaves on S with Chern classes
c1,ca. Suppose Congjecture 1 holds in this setting. Then xV'"(ME (c1,¢2), (L)) is given by the coefficient

of x¥4 of

23—x(Os)+K§ (1 + x)Ks(L—Ks)
(1 — x2)X(L)

Now we come to our refined version of the K-theoretic Witten conjecture, which also generalizes the
refinement of [15] of the Vafa-Witten conjecture of [34].

A natural refinement of the holomorphic Euler characteristic x(X, L) of a line bundle L on a smooth
projective variety X of dimension d is x_,(X, L), the x_,-genus with values in L. The x_,-genus of X

is .
X—y(X) =D (—y)Px(X, 0%),

p=0

and the x_y-genus with values in L is defined by

d

X—y(X,L) = (—y)"x(X, 9% @ L).
p=0

We replace the x_,-genus and the x_,—genus with values in L by their virtual versions X‘f;(X ) and

X (X, L).
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To state our result we first review the refined Vafa-Witten formula of [15]. Consider the following

theta function and the normalized Dedekind eta function.

(0.1) Os(x,y) =D a"y", 7x) =[] -2

neZ n=1

Then the main conjecture of [15] is the following.

CONJECTURE 2. Let S be a smooth projective surface with bi(S) = 0 and py(S) > 0. Let H,c1,co
be chosen such that there are no rank 2 strictly Gieseker H -semistable sheaves with Chern classes ¢y, co,

and let M := M (c1,c2). Then y‘gx‘fz(M) equals the coefficient of zV4(M) of

o K2
(i 1 O e )
2 ok (1 _ x2n)10(1 _ x2ny)(1 _ xQnyfl) 93(%,:1/%)

1 aKg
S SW(a)(-1)" <M> .

1
a€H2(S,Z) 93(—95’92

Our refined K-theoretic Witten conjecture interpolates between Conjecture 2 and Conjecture 1.

CONJECTURE 3. Let S be a smooth projective surface with py(S) > 0, b1(S) = 0, and L € Pic(5).
Let H,c1,co be chosen such that there are no rank 2 strictly Gieseker H-semistable sheaves on S with

Chern classes c1,co. Then yf%x‘f;(Mg(cl, c2), (L)) equals the coefficient of z¥4 of

(@] 2
NES 1 ¥ ( 2(a*)? )KS
2 L =201 = a2r)(1 — a2y ) RPRY

n=1
M (1—a2)? M\ e 1— a2y~ 1\" bt
1 (i ) ) (D)
0 aKg
S (—1)=esW(a) ( (e, )
a€H2(S,2) O3(—2,y2)
oo 1 1 2n—1 L(Ksziza)
(1I (L—2®ly2)(A+a"ly~2)
ok (1— xanly—%)(]_ + xanly%)

We see that if L = Og, then Conjecture 3 specializes to Conjecture 2. On the other hand, specializing
at y = 0, we have

XU (Mg (er,e2), p(L)) |, _o= X" (M (c1, e2), (L)),

and Conjecture 3 specializes to Conjecture 1.

We outline how we derive these conjectures and check them in many cases. Our main tool is
Mochizuki’s formula, which we review in Chapter 1, Section 8. It allows to express virtual intersection
numbers on moduli spaces of sheaves M éf (c1,¢2) as a sum over contibutions of Seiberg-Witten classes a,

where each contribution is the coefficient of s of a Laurent series (L, a,c; — a,n1,n2) in a variable s
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whose coefficients are expressions in intersection numbers on Hilbert schemes of points S!"1! x §l72] We
apply it to the K-theoretic Donaldson invariants in Chapter 2.

So the task is reduced to evaluating the \TJ(L,a,cl — a,nq,ng). After pulling out an elemen-
tary factor (the perturbation part), we organize the @(L,aml — a,ny,ne) into a generating function
Zs(Lya,c1,8,y,q) (the partition function) over all ny,ne. Zs(L,a,c1,s,y,q) is the partition function

used for the x_,-genera x"% (M, (L)), and

ZS(Laa7cl7qu) = ZS(L,G,,CL 372/,(1) ‘y:O

is the partition function used for the holomorphic Euler characteristics xV*(M, u(L)).

In Chapter 3 we show that these partition functions satisfy two crucial properties: cobordism in-
variance and multiplicativity. Cobordism invariance says that the coefficient of any monomial in s, y, ¢
of Zs(L,a,ci,s,y,q) is given by a universal polynomial in the 11 intersection numbers L?, La, a?, acy,
¢ Ley, LKs, aKg, K%, x(Os). Mulitplicativity says that more precisely there are 11 universal power
series A1(y), ..., A11(y) € Qly, s~ ][[s, ¢]], such that

Zs(L,a,cr,5,,0) = Au(y)" As(y)"* Aa(y)” Au(y)™* As ()" A (y) " Ar(y) "

(0.2)
- A (y) 5 Ag (y) 5 Avo ()5 Avy (y)¥(©9).

Again we put A; = A;(y) | and we clearly get

y=0’

.2 2
Zs(L,a,Cl,S,q) _ A%QAgaAngZCIA21A501A$KSAgKSAglKSA{;SA)fl(OS)-

The next step is the reduction to the case of toric surfaces. The 11 power series Aq,..., A1 are
now determined by computing Zg(L,a,c1,s,y,q) for 11 quadruples (S, L, a,c;) of a surface and 3 line

bundles on S, such that the corresponding vectors
U(S,L,a,cl) = (L27 LCL, a’27 acy, C%v Lcla LKSa CLKS, 01K57 Kg, X(OS)

in Q' are linearly independent. We choose all the surfaces to be the toric surfaces P? and P! x P! and
the corresponding line bundles to be equivariant line bundles with respect to the natural C* x C* action
on P? and P! x P!

Now we can use localization to compute the power series A;. For S = P? and S = P! x P!, the
C* x C* action on S has finitely many fixpoints, and it lifts to a C* x C*-action on the Hilbert schemes
of points SI™, still with finitely many fixpoints. Furthermore U can be expressed in terms of the Chern
classes of universal and tautological sheaves on these Hilbert schemes of points. Now the Bott-residue
formula (or Atiyah-Bott-localization) expresses ¥ as a sum over contributions at the fixpoints, where
each fix point contribution is expressed in terms of the weights of the C* x C*-action on the fibres of

the universal and tautological sheaves and the tangent space of the Hilbert schemes over the fixpoints.
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The fixpoints on the Hilbert scheme S™ are parametrized by tuples of partitions, and the weights on
the fibres of the universal and tautological sheaves and the tangent space can be expressed in terms of
the combinatorics of partitions. Thus Zg(L,a,c1,s,y,q) and Zg(L,a,c1,$,y,q) can be computed as a
sum over partitions.

This sum has been computed by a program in PARI/GP. We determined the universal series

A1, ..., A1, Ar(y), ..., A11(y) to the following orders:

e For Ay, ..., Ay, we computed the coefficients of s'=3"¢™ for all n < 10, I < 49. (Recall: A; and
A;(y) are Laurent series in s.)

e For A;(y),...,A1(y), we computed the coefficients of s!=°"y™¢" for all n < 6, m <9, I < 30.

Finally this allows us to prove Conjecture 1 and Conjecture 3 for many surfaces S up to relatively
high expected dimension vd: The knowledge of all the A4;(y) modulo a suitable power of ¢, by formula
(0.2), gives us Zs(L,a,c1,8,y,q) modulo the same power of ¢ by just substituting in the values of the
intersection numbers for (S, L, ¢1,a). In the same way we get Zg(L, a,c1, s, q) from the knowledge of the
A;. Putting back the perturbation parts, summing over the Seiberg-Witten classes of S, and taking the
coefficient of s° we get the (refined) K-theoretic Donaldson invariants of S, for all moduli spaces up to
a certain virtual dimension vd, which also depends on the intersection numbers of S.

We have done the computation in many cases: double covers of P! x P! and P2, complete intersections
in P", elliptic surfaces and blowups of any of the above. In all these cases Conjecture 1 and 3 are

confirmed. The result of this thesis are part of [16].
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CHAPTER 1

Background

1. Conventions

1.1. K-groups. On a Noetherian scheme X we denote K°(X) the Grothendieck group generated
by locally free sheaves, and Ky(X) the Grothendieck group generated by coherent sheaves. K°(X)
is naturally an algebra, Ko(X) is a module over K°(X), with addition induced by direct sum and
multiplication induced by tensor product of locally free sheaves, i.e. it by taking the tensor product
®% of locally free resolutions. Denote by [F] the class of a sheaf F' in K°(X) or Ko(X). For a proper

morphism f: X — Y we have the pushforward homomorphism
fii Ko(X) = Ko(Y),[F] — Z )[R f.F]

For any morphism f : X — Y we have the pullback homomorphism f' : K°(Y) — K°(X), which is
given by [F] — [f*F] for a locally free sheaf F on Y. Finally if X is smooth, the natural homomor-
phism KY(X) — Ko(X) (induced by the inclusion of locally-free sheaves inside coherent sheaves) is an

isomorphism. It’s inverse is obtained by taking a locally free resolution.

2. Hilbert Schemes

Let S be a smooth projective surface. We denote by S(™ = Sym™(S) the n'* symmetric power of S.
That is S = S™ /&, where &,, is the symmetric group in n letters, acting by permuting the factors.

We denote by S the Hilbert scheme of n points:

DEFINITION 1. A flat family of subschemes of S parametrized by a scheme T is a closed subscheme
Z C S x T such that the induced morphism Z — T is flat. Fort € T we denote the fiber of Z overt by
Zs.

Let Hilbg : (Schemes)PP — (Sets) be the functor
Hilb(T) = {Z € S x T | Z flat family of subschemes with h°(Z;, 0z,) =nVt € T}

THEOREM 2. (Grothendieck, Fogarty) There is a scheme, which we denote St which represents

the functor Hilby. St is projective, nonsingular and of dimension 2n.

13



14 1. BACKGROUND

Set theoretically, S™ is the set of 0-dimensional subschemes of S of length n. We have a natural
map

w8 — 5 (7] > (dim Og,p)p

peS

called the Hilbert-Chow morphism. If Z C S is a O-dimensional subscheme of length n, then the support
of Z is a finite set. Thus the sum above is a finite sum and the map is well-defined. It can be shown
that 7 is indeed a morphism. By abuse of notation we can also write this map as [Z] — supp(Z), where
supp(Z) is the support with multiplicities.

As S["l represents the functor Hilb%, there is a universal subscheme Z,,(S) C S x S/, corresponding
to the identity morphism id : S — S Set-theoretically it can just be described as the incidence
scheme

Zo(S)={(p.2) € Sx S" | pe Z}.

Let q : Z,(S) — S and p : Z,,(S) — S be the two projections. Then by definition p : Z,(S) — S is
flat of degree n. We denote by 7 (g) its ideal sheaf in Og, g, and for a line bundle L on S we denote

Ty,5)(L) =1z, @q*(L).

DEFINITION 2. Let V be a vector bundle of rank r on S. The tautological vector bundle V™ on S
is defined by
VIt = p.(q* (V).

As 7,(8S) is flat of degree n over SI™ it follows that V™ is a vector bundle of degree rn over SI™. By
definition the fibre of V' over a subscheme Z € S" is VI"l(Z) = HY(Z,V®0yz). If0 = E - F — G — 0
is an exact sequence of vector bundles on S, then it is easy to see that we get an induced exact sequence

0 — Bl — Fil 5 GInl 0, thus the definition of VI extends to a map K°(S) — K°(SI™).

3. Moduli Spaces of Sheaves

Most of this section is based upon [21]. Let S be a projective algebraic surface, and let H be an
ample divisor on S. Let E be a torsion free coherent sheaf on S. We define the Hilbert Polynomial of £
by

Py (E;m) :=x(S,E® Og(mH))

by the Riemann-Roch theorem this is a polynomial in m. Let rk(E) be the rank of E. We define the

reduced Hilbert polynomial of E by pg(E;m) := Pg(E;m)/rk(E).

DEFINITION 3. A torsion free sheaf E on S is Gieseker H-semistable if for all proper subsheaves
F C E we have

pu(F;m) <pg(E;m), for m>>0
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E is called Gieseker H-stable if the inequality is strict for all m >> 0. In future we will just write

H-semistable and H -stable.

We briefly recall from [21, Chap.4] the definition of the moduli space M (r, ¢y, c2) of rank 7 torsion
free H-semistable sheaves on S with Chern classes ¢; and co, it is a scheme which corepresents a suitable

functor.

DEFINITION 4. Let M’ : Schemes/C — Sets be the contravariant functor which associates to a
scheme T the set of isomorphism classes of T-flat families of H-semistable sheaves on S, of rank r and
with Chern classes ¢y,co, and to f : T' — T the pullback via f x 1g. Let M = M’/ ~ be the quotient
functor by the equivalence relation given for F\F' € M'(T) by F ~ F’ if and on only F ~ F' ® p*L,

where p: S x T — T is the projection and L € Pic(T).

THEOREM 3 (Gieseker-Maruyama). See [21, Thm. 4.3.3, Thm. 4.3.4]

(1) There is a projective scheme M (r,c1,c2) that corepresents the functor M.

(2) There is an open subscheme Mg(r, 1, ¢2)® parametrizing equivalence classes of stable sheaves.

Roughly speaking that M is corepresented by M é‘! (r,c1,c2) means that there is a map ¢ which
associates to any T-flat family £ of H-semistable sheaves on S of rank r and with Chern classes ¢y, ca,
a morphism ¢(€) : T — M (r,c1,c2), and this is compatible with pullback: ¢((1s x f)*E) = ¢(€) o f.
If W is a scheme and ¢ is another such map & — (¥(&) : T — W) compatible with pullback, then 1
factors through a morphism M¥ (r,c1,ca) — W. Note that this means in particular that M (r,cq, c2)
is unique up to unique isomorphism.

Corepresenting a functor is a weaker notion than representing it, in particular there will not always
be a universal sheaf on S x M (r,c1,c2). In the sequel we will restrict our attention to the case of rank

2 sheaves and will denote M (c1,co) := M (2,¢1, c2).

4. Obstruction Theory

Let M — X be an embedding of schemes with X smooth, take for example M a projective variety.

Let J = Jps/x be the corresponding ideal sheaf. The complex
3/3 % Qx

is called the truncated cotangent complex of M in X

DEFINITION 5. A 1-perfect obstruction theory on M is a complez of vector bundles E® = [E~! — E°]

on M with a morphism of complezes
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such that

(1) ¢° induces an isomorphism on the 0-th cohomology of the complexes

(2) ¢~ is surjective on —1-th cohomology.

To every l-perfect obstruction theory E®* = [E~! — E°] on M we associate a dual complex E, =

[Eo — Ex] by setting E; := (E~%)Y for i =0, 1.

DEFINITION 6. To a pair (M, E®) we define the virtual dimension as
vd(M, E®) = rk(E,) = rk(E1) — rk(Ep).

THEOREM 4. [1, 23] Let M be a scheme with a 1-perfect obstruction theory E*. Then M has

(1) a virtual fundamental class [M]""" € Hayqar,ge)(M) ([1]),
(2) a virtual structure sheaf OYF € Ko(M) in the sense defined in [23], [6, 3.2].

DEFINITION 7. We define the virtual tangent sheaf by
TyF == Ey— B, € K°(M).
Let V € K°(M), then we define the virtual holomorphic Euler characteristic via
XM, V) = x(M,V @ O}f),

and we have the virtual Riemann-Roch theorem, which is a virtual analogue of the Hirzebruch-Riemann-

Roch formula.
THEOREM 5. [1, Thm.3.3]

XMLV = / ch(V)td(TYir)
()i

The x_,-genus x_,(X) of a smooth projective variety X is defined by
Xoy(X) =D (—y)"x(X, 0%).
p=0
Similarly for an element V € K°(X) the y_,-genus of X with values in V is defined as
X—y(X, V) =D (—y)"x(X, Q% @ V).
p=0

By definition x_, (X, V)’y:O: X(X, V). Now following [6], we extend these definitions to their virtual

versions.
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DEFINITION 8. [6] Let M be a scheme with a 1-perfect obstruction theory E®. The virtual x —,-genus
of M is

X (M) = (=y)Px " (M, AP(T) ),
p=>0

and the virtual x_,-genus of M with values in V € K°(M) is

X (M, V) = Z(—y)pr“(M, AT @ V).

p=0

In [6] it is shown that xY7' (M) and x“'} (M, V) are polynomials in y of degree at most vd(M).

Furthermore it is easy to see from the definitions that ijlrl(M, V)|y:0: XX, V).

5. Obstruction Theory for the Moduli Space of Sheaves

In this section we assume that all the sheaves in M (c1, c2) are stable. In [27, Chapter 5] T. Mochizuki

introduced and studied a perfect obstruction theory on M (c1, co) with
(5.1) TV = Rr,RHom(E,E)o[1],

where £ denotes the universal sheaf on M x S, w: M x S — M is projection, and (-)o denotes the trace-
free part. Although £ may only exist étale locally, Rm.RHom(E, &)y exists globally [21, Sect. 10.2]. We
will not need the details of the construction or deeper properties of the obstruction theory in the sequel.

By definition we have

vd(MZ (c1,¢)) = rk(Rm.RHom(E, E)o[1]) = —rk(Rm.RHom(E,E)o))
= —rk(Rm.RHom(E,E)) + rk(m(Osxnr))
= —X(E, E) + x(Os)

= dcy — cf — 3x(0s).
Here in the second to last step E is a sheaf in M (¢, c2) and
X(E,E) = hom(E, E) — ext'(E, E) + ext*(E, E),
and in the last step we have applied the Riemann-Roch Theorem on S. In future we write
vd = vd(S, c1,c2) = 4y — ¢ — 3x(Os)

for the virtual dimension of the Moduli space M (c1,c2) and [ME (c1,¢c2)]V" € Hoya(ME (c1,¢2),Z) for

the virtual fundamental class.
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6. Determinant bundles and Donaldson line bundles

We review the determinant line bundles on the moduli spaces M (cq,c5) (see e.g. [20, 2.1]), for
more details we refer to [21, Chap. 8]. Let ¢ be an element in K°(S), which is the class of a coherent
rank 2 sheaf with Chern classes c1, co. We write M (c) := M (c1,c2). We assume that all sheaves in
ME (c) are H-stable.

Let & be a flat family of coherent sheaves of class ¢ € K°(S) on S parametrized by a scheme T'; then
E€K°SxT). Let

p:SXT—T, qg:SxT— S

be the projections. Define \¢ : K°(S) — Pic(T) as the composition of the following homomorphisms:

*

18 ! det™*
(6.1) KO(S) — > K9S xT) —> K9S xT) —— K9(T) L~ Pic(T),
Notice that pi([F]) € K%(T) for F T-flat by [21, Prop. 2.1.10].
In general there is no universal sheaf £ over S x M (c), and even if it exists, it is well-defined only

up to tensoring with the pullback of a line bundle from M3 (c). Define
Kei=ct={veK%S) | x(S,v®c)=0}.

Then we have a well-defined morphism \: K, — Pic(M¥ (c)*) such that, for £ any flat family of stable
sheaves on S of class ¢ parametrized by T, and all v € K., we have ¢5(A(v)) = Ag(v) with ¢g : T —
ME (¢)* the classifying morphism.

If S is simply connected, the determinant line bundle A(v) only depends on the rank and the Chern
classes of v. Let K (S) be the Grothendieck group of coherent sheaves over S. Let L be a line bundle on

S and assume that ¢;(L)cy is even. Then we put

(6.2) (L) == (1—-L )+ (

61(2L) “(a(L) + Ex — 1)) [0.] € K°(9),

where O, is the structure sheaf of a point in S. Note that v(L) is of rank 0 and first Chern class L. The

determinant line bundle

w(L) = Aw(L)) € Pic(Mg(cl,CQ))

associated to v(L) is called the Donaldson line bundle associated to L.

By [21, Prop.8.3.1] we have

63 a@n) = (rald)-@E) - jaE?)) = (@) - jaE?)/PDamD)



7. EQUIVARIANT COHOMOLOGY AND LOCALIZATION 19

7. Equivariant Cohomology and Localization

We briefly introduce equivariant cohomology and localization for the case of the action of a torus

T = (C*)™.

DEFINITION 9. Let X a complex algebraic variety with a left T-action. Let ET be a contractible

space with a free right T-action. We consider the quotient
ET x" X :=ET x X/((e - t,z) ~ (e,t-z), Vt€T)
The equivariant cohomology H%(X,Q) of X with respect to T is the cohomology of ET xT X. That is,
Hy(X,Q) i= H*(ET x X,Q)

Let w: V — X be a T-equivariant vector bundle, i.e. V has a T-action, such that 7(¢t-¢e) =t - w(e)
for all t € T. Then ET xT V is naturally a vector bundle over ET xT X. We define the T-equivariant
Chern classes of V' by
cF(V) = (BT xT V)

3

Later we will usually drop the 7" in the notation, and call them just the Chern classes of the equivariant
bundle V.

We write t € T as t = (t1,...,tm). If p is a point with trivial action of T'= C™, then Hi(p,Q) =
Qle1, - - -, &m), where the variables ¢; are in H%(p, Q). Here ; = ¥ (t;) where t; is the equivariant vector
bundle on p given by the vector space C, viewed as trivial vector bundle on p with the action given by
t-v = t;v. More generally an equivariant vector bundle V of rank r on p is just a representation of
T. Then V has a basis vy, ..., v, of common eigenvectors for the 7" action, in fact there are monomials
M; = """ ... ty'"", such that t - v; = M;v; for all 5. Then we call w(v;) := m; 161 + ... + m; &, the
weight of v; (or of the equivariant line bundle Cv;), and we call the w(v;) : the weights of V. Then the
total equivariant Chern class of V' is

T T

(V)=c'(V) =) e (V) =] +w(w)),

i=1 i=1

T

T(V)) is a polynomial in the Chern classes we have

More generally if p(c] (V),...,c

plei (V). (V) = p(or(w(v), ..., w(or)),. . on(w(or) ... w(vy))),

where the o; are the elementary symmetric functions.
X % X' isa T-equivariant map (i.e. &(t-z) = ¢ - ¢(x)) then ¢ induces a canonical map

ET xT X — ET’ xT" X’. This induces a pullback

¢ : Hp(X') = H7(X)
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We denote by X7 the fixed point locus of the action of T on X. Let p € XT be a fixed point and
denote ¢, : p — X the inclusion map. For an element V' in the Grothendieck group of T-vector bundles
on X or a class a € Hy(X), we write V(p) := ¢*(V), (which is an element in the Grothendieck group of
T representations) and a(p) := v;(a) € Hy(p, Q).

By definition H}.(X, Q) is a module over H(p, Q) with a forgetful map f: H}.(X,Q) — H*(X,Q).
We call a class o € H5(X,Q) a lift of a class @ € H(X,Q), if f(a) = @. The most important case for
us is that, if V is an equivariant vector bundle on S, then the equivariant Chern classes ¢! (V) are lifts
of the Chern classes ¢;(V), where V is the underlying vector bundle of the equivariant vector bundle V.

The main result we want to use in this paper is the Bott residue formula (or Atiyah-Bott-localization).

We will only need it in the case of isolated fixpoints.

THEOREM 6. Let X be a smooth projective variety, with an action of T = C™ with finitely many
fized points p1,...,pe. Let a« € H*(X,Q), and let & € H}.(X,Q) be an equivariant lift of a. Then

° v (@)
a=)y
~/X ; C,,T; (TXJH)

With the conventions above we can also write this as

/X “= Z ch(fﬁ,L)

1

£1=...=€y,, =0

51:...:57,;0‘
8. Mochizuki’s Formula

Let S be an algebraic surface with b1(S) = 0, p,(S) > 0. As we have seen above, M (¢, c2) has an

obstruction theory of virtual dimension
vd = vd(S, c1,c2) = 4z — ¢ — 3x(Os).
Thus it has in particular a virtual fundamental class
[ME (1, o)V € Hoyg(ME (c1,¢2),7).
Mochizuki’s formula expresses virtual intersection numbers
/ «, aEH*(Mg(C17€2)7@)
[ME (c1,c2)]vir

on the moduli spaces of sheaves in terms of intersection numbers on Hilbert schemes of points SI™ on S.
It is the most important tool in our work, because it allows us to work on the more accessible Hilbert

schemes of points instead of on the intractable moduli spaces of higher rank sheaves.

8.1. Seiberg-Witten Invariants. Before we can write down Mochizuki’s Formula, we need to

write down some facts about Seiberg-Witten invariants. Most of this is based on [29],[11]. Let M be a
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closed Riemannian 4-manifold with metric g. For simplicity, we assume that H?(M;Z) has no 2-torsion.
Let L be a characteristic complex line bundle on M. Then we may construct the Seiberg-Witten moduli
space M(L). The Seiberg-Witten invariant is then defined to be a function SW M,g Which assigns to
such an L an integer defined as an intersection product on M(L). If L is such that SWjs 4(L) # 0, then
L will be called a Seiberg-Witten basic class.

We consider smooth projective algebraic surfaces S with b; = 0 and p, > 0. We write SW s = SW 8,9
for g the Fubini-Study metric, with respect to a projective embedding. Note that under the assumptions
b1 = 0 and py > 0 the Seiberg-Witten invariants are independent of g. Mochizuki uses a somewhat
nonstandard convention regarding Seiberg-Witten invariants, which we will follow in this work: for
a € H?(S,Z) we will write

SWS(CL) = SVVS(KS - Qa)

and will in future call a a Seiberg-Witten class if SWg(a) # 0. We will often drop the index S if S is
understood. We will denote SW (S) C H?(S,Z) the set of Seiberg-Witten classes of S.

We have the following results which we will use.

THEOREM 7. Assume either of the following.

(1) S is a minimal surface of general type,

(2) the linear system |Kg| contains a smooth irreducible curve.
then the Seiberg- Witten basic classes are 0, Kg, with
SW(0)=1 and SW(Kg)= (—1)X9s),
PROOF. In case (1) this is shown in [29, Thm. 7.4.1], and in case (2) for instance in [15, Sect. 6.3]).

O

THEOREM 8. [29, Thm. 7.4.6] Let S I S be the blowup of a surface S with ps > 0 and by = 0. If

E is the exceptional divisor, then the set of Seiberg-Witten basic classes of S is
SW(S) = {n*(a) | a € SW(S)}U{r*(a) + E | a € SW(S)}
and furthermore SW¢(1*(a)) = SWe(r*(a) + E) = SWs(a) for all a € SW(S).
Now we come to the case of elliptic surfaces. Let S =+ P! be a minimal elliptic surface such that
there are only finitely many singular fibers of 7, no multiple fibres, and the singular fibres are all nodal

curves. Then it can be shown that there are exactly 12n singular fibres where n = x(Og). Let F' be the

class of a fibre of 7. Then Kg = (n — 2)F.
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PROPOSITION 2. Under the above assumptions we have

SW(S)={kF |0<k<n—2}

and
-2
SW(kF):(—l)k<nk )
Proor. This is [12, Proposition 4.2], and is also explained after Proposition 2.4 in [11]. O
8.2. Descendent Insertions. Let again M := M (c1,cs) be the moduli space of torsion free

coherent sheaves on S. We now define some natural cohomology classes on M. Let a € H(S,Q)
and k > 0. Furthermore we denote by £ the universal sheaf on M x S. Then we define descendent

insertions 73 (o) € H?*=4+¢(M) by the following formula
Th(a) = chy(€)/PD(a).
Here PD(a) € Hy—;(S,Q) is the Poincaré dual of «, and
/- HU(S x M, Q) x Hy(S,Q) — HT?(M, Q)

is the slant product. See e.g. [33, Chapter 6] for its definition and properties, for instance it is easy to

see that if M is nonsingular then
B/PD(a) = mp(fgey).

Here we write by abuse of notation mps, : H*(Sx M, Q) — H*(M, Q) for the pushforward in cohomology,
given by PD~! o 7y, o PD, where now 7y, is the pushforward in homology and PD : H* — H, the

Poincaré duality map.

8.3. The Formula. We now state Mochizuki’s Formula [27, Thm. 1.4.6]. It involves certain inte-
grals of universal sheaves over Hilbert schemes of points that we will now introduce. On S x Sl x Sl

we have the universal subschemes

21, 25 C 8 x Sl x gl

with

Z = {(x,Zl, Zy) € § x Stml x glna]

x € ZZ}7

and their corresponding ideal sheaves 7; := Tz, Zy := Zz,. For any line bundle L € Pic(S) we denote

by L™ the tautological vector bundle on St x Sl"2] defined by
L= p.q'L,

with p : Z; — Stmlx Sm2l ¢ Z; — S the projections from the universal subscheme Z; C §x Sl x §ln2],
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We consider SI"1! x S["2] to be endowed with a trivial C*-action and we denote the generator of the

character group by s. Moreover we write s for the generator of
H*(BC*,Q) = H¢x (pt, Q) =2 QJs).

In other words s can be viewed as a trivial line bundle on S x §172] with a C*-action given by t-v = tv,
and s = c§ () is its equivariant first Chern class.

Let L € Pic(S). Let P(£) be any polynomial in descendent insertions 75(c), which arises from a
polynomial in Chern numbers of TYi* and ¢; (u(L)) (see below ). For any a1, as € A(S) and ny, ne € Z>o,

Mochizuki defines a class ¥(ay, az,n1,n9) € H* (S x S*2] Q) by the following formula

o P(Zi(a1) @ 571 @ Tz (az) @ 5) Eu((’)(al)["l]) Eu((’)(ag)["'2] ® 52)
8.1) Wlar,az,m,n) = COQHS”( Q(Zi(a1) @51, Ty(az) @ 5) (25)n1 72 X(Os) )

We explain the notations. Here Eu(-) denotes the C*-equivariant Euler class and Coeff,o refers to taking
the coefficient of s°. The notation Z;(a;) is short-hand for Z; ® n%0(a;).
Furthermore, for any C*-equivariant sheaves &, & on S x S x Sl flag over Sl x Slnel
Mochizuki defines
Q(&1,&) := Eu(—RHom,(E1,E) — RHom (&2, &1)),

where 7 : S x Sl x §lnel — §lml s« §ln2] denotes projection and
RHomy(-,-) == Rm . RHom(-,-).
Finally for o € H'(S,Z) we define 7},(c) € H? =4+i(Slm] x §lm2] Q) by

(o) := chy(Z1(a1) ® 57 @ Ty(az) ® 5)/PD(0)

= Tgtn1lx gtnals (Chi(Ti(a1) @ 571 @ Ty(az) ® s)m50),

and we define P(Z;(a;) ® s~! @ Tr(az) ® 5) as the expression obtained by formally replacing each 7 ()
in P(€) by 7.(c). We define

\I/(Cll,GQ,nl,nQ,S)

by expression (8.1) but without applying Coeffso. Thus

U(a, az,n1,na,s) € H* (S x Sl Q) [sH[[s]].

Let ¢y, c2 be a choice of Chern classes and ¢ € K°(S) be the class of sheaf in M (c1, c2). We denote

ch(c) = (2,¢1, 3¢2 — ¢2) its Chern character. For any decomposition ¢; = ay + as with a1, a2 € AX(S),
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we define following Mochizuki

(8.2) Alay,as,c0) := Z / U(ay,az,n1,ns).
Sln1lx §lnal

ni+nz=cg—aiaz

We denote by /T(al, as, 2, 8) the same expression with ¥ replaced by v,

THEOREM 9 (Mochizuki). Let S be a smooth projective surface with b1(S) =0 and py(S) > 0. Let
H . c1,co be chosen such that there exist mo rank 2 strictly Gieseker H-semistable sheaves with Chern
classes c1,ca. Denote ¢ € K°(S) the class of an element of M (c1,c2). Suppose a universal sheaf &

erists on S X Méq (c1,¢2). Furthermore suppose that the following conditions hold:

(1) x(ch(c)) > 0, where x(ch(c)) := [gch(c) - td(S) and ch(c) = (2,¢1, 5 — ).
(2) pc > pxrg, where p. and pr, are the reduced Hilbert polynomials associated to the class ¢ €
K°(S) and to K.

(3) For all Seiberg-Witten basic classes ay satisfying a1 H < (¢1 — a1)H the inequality is strict.

Let P(E) be any polynomial in descendent insertions which arises from a polynomial in Chern numbers
of TXI and c1(p(L)). Then
/ P(g) = —217X(Ch(c)) Z SW(al) A(al, as, 62).

[]V[g (Cl,cz)]"ir
c1 = a1+ a2

a H < asH

REMARK 1. The assumption that the universal sheaf € exists on S x M (c1,c2) is unnecessary. The
virtual tangent sheaf TYF = —RHom,(E,E)o always exists globally, and also the definition of u(L) and
thus of ¢1(1(L)) is independent of the existence of a universal sheaf. So the left-hand side of Mochizuki’s
formula always makes sense, and the statement of the theorem holds. Moreover, Mochizuki [27] works
over the Deligne-Mumford stack of oriented sheaves, which always has a universal sheaf. This can be
used to show that global existence of £ on S X M can be dropped from the assumptions. In fact, when
working on the stack, P can be any polynomial in descendent insertions defined using the universal sheaf

on the stack.

8.4. Strong form of Mochizuki’s formula. The following strong form of Mochizuki’s for-

mula was conjectured in [19].

CONJECTURE 4. [19] Let S be a smooth projective surface with bi1(S) = 0 and py(S) > 0. Let
H, cy1,co be chosen such that there exist no rank 2 strictly Gieseker H-semistable sheaves with Chern
classes c1,co. Denote c € K°(S) the class of an element Mg(cl, ¢2). Suppose a universal sheaf & exists on
Sx M (cy,cz). Suppose that x(ch(c)) > 0, where x(ch(c)) := [ ch(c)-td(S) and ch(c) = (2, c1, 53 —c2).

Let P(E) be any polynomial in descendent insertions which arises from a polynomial in Chern numbers
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of TXI and c1(p(L)). Then

/ P(€) = =21 7X(AD N SW (1) A(ar, az, ¢).
[ME (c1,c2)]Vi

c1=a1+as

In other words conjecturally assumptions (2) and (3) can be dropped from Theorem 9 and the sum
can be replaced by a sum over all Seiberg-Witten basic classes. Often, assuming this conjecture, our
computations can be applied more widely, computing the K-theoretic Donaldson invariants for more

examples of up to higher virtual dimension of the moduli spaces.






CHAPTER 2

Application of the Mochizuki formula to K-theoretic Donaldson

invariants

In this chapter we want to apply Mochizuki’s formula to the computation of K-theoretic Donaldson
invariants. The first step is to show that Mochizuki’s formula applies to this computation. As Mochizuki’s
formula computes integrals of polynomials in descendent insertions on moduli spaces of sheaves, we have
to express the K-theoretic Donaldson invariants in terms of descendent insertions. This is done in the
first section.

The next step is to give the explicit form of the Mochizuki formula in the case of (refined) K-
theoretic Donaldson invariants. Then we introduce the partition function Zg(L,aq,c1,s,y,q), which is
up to an elementary factor the generating function for the functions \Tl(al, as,ni,ne,s) (or equivalently
/T(al, ag, ¢z, §)) which occur in Mochizuki’s formula, for the case of the K-theoretic Donaldson invariants.
Zs(L,aq,c1,58,y,q) is a power series in ¢ starting with 1, whose coefficient of ¢™ is the contribution of
the Hilbert schemes SI™! x Sl with ny + ny = n.

At the end of this chapter we use Mochizuki’s formula to give an explicit formula that expresses the
(refined) K-theoretic Donaldson invariants in terms of the partition function. In Chapters 3 and 4 we
will give an explicit computation (up to a certain power in ¢) of the partition function Zg(L, a1, c1, 8,9y, q)
for all S, L,ay,c;. These two results together allow us all our explicit computations and verifications of

our conjectures in the last chapter.

1. Expression in terms of descendent insertions

We still keep our standard assumption that S is a smooth projective surface with b;(S) = 0 and
pg(S) > 0, and that we have chosen ¢, ¢z, H in such a way that the moduli space Méf (c1,¢2) consists
only of stable sheaves. Let L € Pic(S). We assume for simplicity that £ is a universal sheaf on
S x M (c1, ). However using Remark 1 of Chapter 1, we see that our results are independent of the

existence of a universal sheaf.

PROPOSITION 3. Let S, H,cy,co be as above.

(1) There exists a polynomial expression P(E) in certain descendent insertions 7,(c) and y such

that

N (M (ry 1, e0), (L)) = / P(E).

[]Wé‘l (ryc1,c2)]vir

27
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(2) There exists a polynomial expression Py(E) in certain descendent insertions 74(c) such that

(M (ry o1, ), 1(L)) = / Pole).
[I\/ISI:I(T,CI,CQ)]Vir

The proof of this result is an adaptation of the proof of [15, Prop. 2.1]. We know from the definitions

that x‘f;(M,u(L))’ = x""(M, u(L)). Therefore (2) follows from (1), by putting Py(€) = P(€)|

y=0" y=0"

Thus we will only prove (1).
We start by reviewing some properties of the virtual x_,-genus that we will use. We write M =
ME (¢1,¢2). Consider the K-group K°(M) generated by locally free sheaves on M. For any rank r
vector bundle on M, define
r oo
AV =Y ANV e KOM)[lyl],  Sym,V =) [Sym'V]y' € K°(M)[[y]].
i=0 =0
These expressions can be extended to complexes in K°(M) by setting A, (=V) = Sym_,V and Sym, (V) =
A_,V. For any complex E € K°(M), we define

(1.1) Xy (E) := ch(A,EY) td(E).
Since Ay(E® F) = AyE ® Ay F, we obtain
Xy(E & F) = X, (E) X,(F).

Furthermore, for any L € Pic(M)
L1 —ye ")

X*y(L) = 1 —€_L

Therefore, given a formal splitting ¢(V) = []\_, (1 + x;), we have

L (1 — ye @
X0 =T

i=1

LEMMA 1. Let S, H,c1,co and M := MH (r,c1,co) be as above. Let L € Pic(S). Then

ML) = [ X (@3 e,
(i
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PRrROOF. This is a direct application of the virtual Hirzebruch-Riemann-Roch theorem [6, Cor. 3.4].

By definition and the virtual Riemann-Roch theorem we have
XU (M, (L)) = > (—y)Px™ (M, AP ((Ty)Y) @ (L))

= X" (M, (Ay(Ti])") @ p(L))

= [ ch(A_y(Thp)")ch(u(L))td(T3}")
[y

_ / X (T3 ¢ (L),
[M]vie

To finish the proof of Proposition 3 we therefore just need to show the following Lemma.

LEMMA 2. There exists a polynomial expression P(E) in certain descendent insertions 7o(c) and y

such that
[ xampere = [ pe),
[M]vir [M]vir

PROOF. By definition X_,(7}}) is Q-linear combination of monomials in the virtual Chern classes
ci(TyiF) and y, and thus X_, (TyiF) e#(¢1(1) is a Q-linear combination of monomials in the c¢;(T}i),

c1(p(L)) and y.
In the proof of [15, Prop. 2.1] it is shown that each ¢;(T}¥*) is a polynomial in descendent insertions.

In the course of the proof it is shown that every expression of the form
(1.2) Tz« (chy (€)ch; (E)mso) = (chi(E)ch;(€))/PD(o),

is a polynomial in descendent insertions.

On the other hand we have by (6.3) in Chapter 1

ci(p(L)) = (ca(€) = 361(5)2)/PD(61(L))
= —chy(&)/PD(c1(L)) + ichl(E)Q /PD(cy(L)).

Thus ¢;(u(L)) can be expressed in the form of (1.2) and thus is a polynomial in descendent insertions.

The result follows. O

2. Explicit form of Mochizuki’s formula

We still assume that S is a smooth projective surface with b1(S) = 0 and p,(S) > 0, and that
c1,c2, H are such that M (cy,ca) only consists of H-stable sheaves. Finally let L € Pic(S). We again

write M := M¥ (c1,cz). Our aim is to evaluate Mochizuki’s formula in two situations:
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(1) for

(M, (L)) = / X_y(T3F) exp(es (u(L)),

[ME (c1,c)]vi

(2) for

XVir(Mé{(ch 02)7 NJ(L)) = X\EZ(Ma NJ(L))‘y:O
Clearly it is enough to do this for case (1). At the end we will indicate how the formula simplifies in case

(2).
We denote

\’IVIP(G/I;G/QanlanQa 8)

the W(ay, az, n1,n2,s) of Chapter 1 (8.1) for the specific choice
P(€) = X_y(Ty]") exp(er (u(L)).

As a first step we give an explicit formula for \I/p(al, ag, My, N2, 8).

We will use the following well-known Lemma, (see e.g. [Lemma 3.1][15]).

LEMMA 3. Let 7 : S x SI"l — S denote projection. Then
—RHom,(T,T)o = Ext:(T,T)o = Tym,

where T denotes the universal ideal sheaf and Tgim denotes the tangent bundle.

DEFINITION 10. We formally define
ch(Zj(a)) = ch(Zj) exp(¢*a)  for a € H*(S, Q).
We put € := ay — a1 and define a class v(L,€) € H(SI] x S21 Q) by
v(L,§) = m. (—ch2 (L <—§) ®5—1> q*(cl(L))> + Ty (—ch2 (12 (g) ®5> q*(cl(L))> )
LEMMA 4. On Sl x Szl we have
v(L,&) = —(6L)s + m(([21] + [22])a™ (L)),

where (L) is the intersection number on S.

PROOF. As Zi, Z, have codimension 2 in X := § x Sl"1] x Sl and are generically reduced, we

have for i = 1,2 that ch(Z;)) = 1 — [Z;], modulo H>*(X,Q), where [Z;] is the Poincaré dual cohomology
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class to the fundamental class of the universal subscheme Z; € S x SI"1l x §["2], Using that we can write

AL = ([ (2D 7 (L [Z)er I g e(L)
= (= @)D+ 9/2+ [B1] = (0"(€/2) + 9)*/2 + [ Z2]) " (1)
= (= @D+ 9/2+ (1] = (0" (€/2) + 9)*/2 + [Z2])q" (1)

= —(¢(L)s + m([24] + [22))g* (L))

Here [-] means the part in H*(X,Q) and (£L) is the intersection number on S. O

LEMMA 5.

‘T’P(alaaz,nlanz,s)
X_y(Tsin11x gtna) — RHom(T1, Lo (§) ® 6%) — RHomy (T2, 1 (=€) ® 572)) exp (v(L,§))
Eu( — RHomx(Z1,Z5(¢) ® $2) — RHom (T2, T1(—§) ® s2))

Eu(O(a1)™Eu(O(az)) @ 5?)
' (23)n1+n27x(0s) ’

PRrROOF. Let F:=7i(a1) ® 5! @ Iz(az) ® 5. By definition we have

P(F)Eu(O(a1)™])Eu(0O(a2)) @ 5?)

\i =
P(a17 a2,M1, N2, S) Q(Il (al) ® 5—17 @12((12) ® 5)(23)n1+n2—x(05) ’

with

QT (a1) ® s ", Ir(az) ® ) = Eu (—RHom,(Zi(a1) ® 51, Io(az) ® 5) — RHom(Tz(az) ® 5,71 (a1) @5 1))
= Eu (—RHom(T1, T2(€) ® 52) — RHomx (T2, T1(—€) @ 572))
By definition we have P(£) = P1(£)P,(€) with
Pi(E) = Xy (T}]") = X—y(=RHomx(E,)o),
Po(E) = (D) = exp ((ex(®) - Ja€ ) /PD(A(D))).

Thus we see

Thus
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Now we compute P;(F). We have
Ty = —RHom,(£,£)o = —RHom(E,E) + Rr.(O),
where we write O = Og, gini1y gina). We get

—RHom(F,F)+ Rm.(O)
= —RHom, (T1(a1) ® 5 ' ®@Ir(a2) ®5,Z1(a1) ® 5 ' & Tr(az) @) + R (O)
= —RHom,(Z,,T,) — RHom, (T2, T2) — RHom, (I, T2(§) @ 5%) — RHomy(Ta, T (=€)

= Tgin)y glna) — RHom(T1,T2(€) @ §7) — RHom (Lo, T (—€) ® 5 %) — R, (O)
Here we use that by Lemma 3

TS[”l] % §lnal = —RHOmW(I]_,I]_)O — RHOT)’LW(IQ,IQ)O

= —RHomr(Z1,71) — RHom(Z2,Z2) + 2Rm.(O).
Note that R7.(O) = (Oginy)  gina))FXO5), in particular X_, (R7.(0)) = 1. Therefore we get

Py (F) =X_y(=RHom-(E,E)o)

= X_y(Tgin1x 5tn2) — RHOmA(Z1,T2(§) ® 5%) — RHom (T2, T (—§) ® 5 2)).

3. Partition function

®s %) + Rm.(0)

We now introduce the following partition function, which will be the main object of our study in

the rest of the paper: we will show in the rest of this chapter that the K-theoretic Donaldson invariants

can be expressed in terms of this partition function. On the other hand, we will show in the following 2

chapters how to compute the partition function.

DEFINITION 11. For any a in the Chow group A*(S) we abbreviate x(a) := x(Os(a)). We will write

O = Oginil« gina1, and furthermore x(a) @ O for 00X For any a1,c; € AN(S), we put € = ¢1 — 2a,

and define the partition function by

ZS(L,al,Cl,S,y,q) =

a0 §ln1lx Slnal Eu(Ep, ny — Tginilx gina )

3 q”1+n2/ X—y(Enyny) exp ((m([24] + [22])g7 (L)) Eu(O(a1)l™)) Eu(O(c1 — a1)!"! ©s%)
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Here we denote
By ny = —RHom(F, F)o+ x(0s) ® O+ x(§) @O ®5” + x(=6) @ O @5~
with
F=Ti(a1) @5 ' ®Ts(az) ®s.

This can be rewritten as

Enyny = Tt ginal + X(§) ® O ®@ 5% — RHom(T1,15(§)) ® 5°
(3.1)
+x(—6) @O0 @52 — RHom(Ly, T, (—€)) @ 52

One checks directly by Riemann-Roch that the complex E,, », has rank 4nq 4+ 4ng. If ng = ny =0,

we see that

Eoo = x(e1 —2a1) ® O ®5° — RHom,(Og(ay), Os(c1 — ar)) @ 5°
+ X(2a1 - Cl) ®0 ®572 - RHOTRW(Os(Cl — CLl),Os(al)) ®572 = O,

Tswowgior =0, v(L,&) =0, Oa)=o0.

Thus the coefficient of ¢° of Zs(L,a1,c1,5,y,q) is 1, and we can see from the definitions that

(3.2) Zs(L,a1,c1,8,9,q) € 1+ qQyl(s)[a]]-
We write
(3.3) .,Zp(al,cl —ag,c2,8) = Z / \T/P(alacl — ay,ny, Ny, s).
Sln1l x §lna]

ni4+na=ca—ai(c1—ay)

for ,Z(L,al,cl — ag,c9,8) in case P(€) = X,y(T}\’/}r). Now we express ./Tp(al,cl — ag,C2,8) in terms of

the partition function Zg(L,a1,c1,S,Y,q).

COROLLARY 1. Suppose we have a decomposition ¢y = a1 + as. Then

Z JZP((11761 —ay,c,5)q7

co €L

1— 6725 x (&) 1— 625 x(=¢§)
— e EL)so\x(Os) [ == - cifei—a) 7 (L i)
€ ( S) <1_y6_25) (1_y625) q S ,41,C1,8,Y, 25

(3.4)
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ProOOF. We put the formula for \Tlp(ahcl — ay,ny,na,s) of Lemma 5 into (3.3) and compare the

result to Definition 11. Thus we get

E Ap(ai,c1 —ar,c2,5)¢? = E g / Up(ay,c1 —ar,ny,ne, s)q>
Slni1l x glnal

c2€Z c2€Z ni+nz=cz—ai(c1—a1)

=g (=) E / Up(ar,cr — ai,n1,ng,8)g™ "
Sln1lx glnal

ni,m2>0
_ qcl(cl—a) Z qn1+n2/ X*y(Fm,nz) €xXp (W*([Zl] + [22])q*(L)))
n1,n2>0 Slralx glnal Eu<Fn1an2 - TS["11><S[”'21) (25)m1+n2=x(Os)
- Eu(O(ar)™)Eu(O(cr — a1)™! @ %)
X (A(O8082 (08085 .,
Eu(—x(§) ® 0 @8 — x(~£) ® O ®572)

X*y(Enlfﬂz) €xXp ( - (gL)S + W*([Zﬂ + [Zz])q*(L)))
Eu(Enl,n2 - Ts[nl]xs[ng])(2S)n1+n27X(Os)

. Z qn1+n2/

n1.m2>0 Sln1] x glnal

-Eu(O(a)™HEu(O(c; — a1)™ @ ?)

—25 \ x(8) 2s \ X(=¢)
= ¢ (€13 (25)x(Os) 1—e 1—e PEICED)
1—ye=2s 1 —ye?s

Z (q )n1+n2/
2s Sln1l x glnal

ni,n2>0

X*y(Enl,TLQ) eXp (W*([Zl] + [ZQ])q*(L)))
Eu(Enl,nz - TS["]] ><S["2])

CEw(O(a) "D Ew(O(c; — ar)l"! & 52)

1— 6_28 x(8) 1— 623 x(—§) q
— o~ (€L)s(94)X(Os) ci(ci=a) 7 ([, ERY
€ ( 8) (1_y625> (1_y625> q S( ,A1,C1,5,Y, 28)

Here in the third line we have put

Fnlan2 = Enl,nz - X(f) ®0 ®52 - X(_f) ® 0O ®5_2.

In the fourth line we use Lemma 4. The fifth line follows by noticing that by definition of X_, and Eu

we have
1— 6725

2
X_y(s”) = 25(1 — ye—29)’

Eu(s?) = ¢;(s%) = 2s.

and therefore

o

Xy
Eu(

X ®0®s?—x(—) @0 ®s?) _ < 1 — o=2s )x(é) ( 1 _ o2 >x(—£)

X(g) ®0®s? —X(—S) ®O®5_2) 1 —ye—28 1 _ye2s
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Now we specialize this result to the non-refined K-theoretic Donaldson invariants. We put Py (&) =

P(5)|y:0, so that by Proposition 3

W (ME (1, ¢2), (L)) = / &),
[Mgl(r,cl,cQ)]‘”r

We put

Ap,(a1,¢1 = az, ¢2,) := Ap(ar, 1 — as, 3, 3)|y:0’

ZS(Laalaclasaq) = ZS(Laalaclasvyaq)|y:0'

Then by specializing y = 0 in Corollary 1 we immediately get the following.

COROLLARY 2. Suppose we have a decomposition ¢y = a1 + az. Then

Z Ap,(ar,c1 — a1, ¢, 5) ¢
(3.5) c2€2

_ e—(fL)s(2S)x(Os) (1 _ e—zs)x(é) (1 _ ezs)x(fé) g1 =) 7z (L,a1,01,8, 2%)

For future reference we note that the definitions of Zg(L,a,c1,s,9,q), Zs(L,a,c1,s,q) make sense

for any possibly disconnected smooth projective surface S and L,a,c; € AL(S9).

4. The K-theoretic Donaldson invariants in terms of the partition function

In this section we will prove a formula that expresses the refined and nonrefined K-theoretic Donald-
son invariants in terms of the partition functions Zs(L, a1, ¢1, 8,9, q) and Zg(L, a1, ¢1, s, q), and Seiberg-

Witten invariants.

COROLLARY 3. Suppose S satisfies b1(S) =0 and py(S) > 0. Let H,c1,co be chosen such that there
exist no rank 2 strictly Gieseker H-semistable sheaves with Chern classes c1,cq. Let L € Pic(S). Assume

furthermore that:

(i) c2 < ge1(er — Kg) + 2x(Os).
(il) pe > pKs, where p. and px, are the reduced Hilbert polynomials associated to the class ¢ €
K°(S) of an element in ME(2,¢1,¢c2) and K.

(iil) For all SW basic classes ay satisfying ayH < (¢y — aq)H the inequality is strict.

Denote vd = 4cy — ¢ — 3x(Og) the expected dimension of ML (2,¢1,¢2). Put £ := ¢ — 2a; (note that

therefore in the sums below & depends on a1). Then we have
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(1)

X‘f;(Méi(ch,cQ),u(L)) = 217X Coeff 0 Coeff va Z <SW(a1)e(EL)S(23)X(OS)

a; € H*(S,7Z)
a1H < (Cl — al)H

1— e 2 x(§) 1 — 28 x(—¢) 3624 4
: 3 —dera1—3x(0s) 7 (L 7>
(1_y6_25> (1_y625) T S ,@1,C1,8,Y, 25 )
(2)

Y (ME (2, ¢4, ¢2), (L)) = —227X) Coeff o Coeff,va Z SW (ay)e™ (€83 (25)x(Os)
a1 € H?(S,7)
a1H < (¢c1 —a1)H

4
) (1 _ e—2s)x(£) (1 _ er)x(*i) CCscf—4c1al—3><(OS)ZS (L,al,cl,s, 5;)1
S

PrOOF. The Mochizuki formula Theorem 9, says that under the assumptions of the corollary we

have

X‘EZ(Mg(Cl,C?)vM(L)) = —21_X(C)Coeﬂ?soCoefchz Z SW(a1) Z -ZP(alacl — a1, 02, 5)q7.

ay € H?(S,2) c2€Z

a1H < (c1 —a1)H

Replacing the inner sum

Z -AVP(ala c1 —ai,c2,5)q%

Co €L

with the right hand side of the formula 3.4 from Corollary 1 and using that vd = 4cy — ¢2 — 3x(Ogs), the
result for x¥* (M¥ (c1, ¢2), u(L)) follows immediately. The proof for x*'"(M§ (c1,¢2), u(L)) is the same,

using Corollary 2 instead of Corollary 1. O

REMARK 2. Assuming the strong form of the Mochizuki formula Congecture 4 of Chapter 1, we get
a simpler (conjectural) version of this corollary with wider applicability. In fact, assuming Conjecture 4,

we get that Corollary 3 holds without assuming (ii) and (i) and with

the sum Z replaced by Z

2
a1 € H%(S,7) a1€H?(S,Z)

a1H < (¢c1 —a1)H

We will also refer to this formula as the strong from of Mochizuki’s formula.

Corollary 3 reduces the determination of the K-theoretic Donaldson invariants to the computation
of the partition functions Zg(L,a1,c1,S8,y,q) and Zs(L,a1,c¢1,8,q). In the next two chapters we will
compute these two partition functions for any quadruple (S, L, a1, ¢1) of a surface and 3 elements of Pic(.5)

up to a certain power in g. This allows us to compute in Chapter 6 the (refined) K-theoretic Donaldson
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invariants for many surfaces, by just plugging the partition functions, the intersection numbers of the

(S,L,a1,c1) and the Seiberg-Witten invariants of .S into Corollary 3.






CHAPTER 3

Universality and Multiplicativity of K-theoretic Donaldson

Invariants

In this chapter and the next we want to compute the partition functions Zg(L,a,c1,$,y,q) and
Zs(L,a,c1,8,q) for any quadruple (S, L,a1,¢1) of a surface and 3 elements of Pic(S), up to a suitable

power of ¢. In this chapter we will establish two crucial properties of Zg(L, a,c1, $,y,q).

(1) Universality: Zs(L,a,c1,s,y,q) depends only on the 11 intersection numbers
L27 La’a a2a acy, C%? LCl, LKS7 CLKS, 61K57 K,%’ X(OS)

More precisely the coefficient of any monomial in ¢, y, s of Zg(L,a1,c1,5,y,q) is given by a
universal polynomial in the above 11 intersection numbers.
(2) Multiplicativity: furthermore there are 11 universal power series 41 (y), ..., A11(y) € Q((s))[][[¢l]

such that

Zs(Lya,cr,8,9,q) = A(y)" As(y)** A3 (y)® Aa(y)*e As(y) Ag(y) P

Ar(y) P Ag ()75 Ag (y)™ 1 Aro (y) ™S An ()X,

As Zs(L,a,¢1,8,9) = Zs(L,a,cy, s,y,q)’y:0 it is clear that universality and multiplicativity also hold
for Zs(L,a,c1,8,q) with Ay(y),...,A11(y) replaced by Ay, ..., Aj;, where A; = Ai(y)’y:o'
These results will allow us in the next chapter to reduce our computation to the case that S = P2
or S = P! x P! and use localization to compute the power series A;(y),..., A11(y) and Ay, ..., A5 up
to suitable powers of ¢, and thus also Zg(L,a,c1,8,y,q) and Zs(L,a,c1, s, q) for any (S, L, a,cy).
Universality results for intersection numbers on Hilbert schemes of points and multiplicativity of
their generating functions have been first proved in [4] for Chern numbers of the Hilbert schemes and
intersection numbers of tautological sheaves. These arguments have been adapted and refined successively
in [17],[18],[19],[15] to deal with the intersection numbers necessary for the wall-crossing of Donaldson
invariants, the proof of the Witten conjecture and (refined) Vafa-Witten invariants. We have to further
adapt these arguments in order to deal with the partition function Zg(L,a,c1, s,y,q). These results and
methods are scattered over several papers, so to make the logic of the arguments clear and make this

work more self-contained, we will not just indicate the additional changes necessary to the above papers,

but will give a complete proof only using results of [4], which we cite precisely.

39
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1. Universality

1.1. Case of Hilbert schemes. We start by reviewing some of the intermediate results in the
universality proof in [4]. Let S be a smooth projective surface. Let p: SI"l x § — Sl ¢: S x § — §
be the projections. Let Z,(S) C SI™ x S be the universal subscheme, and Iz, (s) its ideal sheaf.

Zn(8) —— Sl x s 1§
l»
slnl
Let 0 : P(Zz,(s)) — Sl xS be the natural projection, and denote p := go o, ¢ := poo. Let

J = (id, p) : P(Zz,(s)) = P(Zz,s)) x S. Following [4] we use the following notation.
NoTATION 1. For f: X — Y a morphism, we write fg := (f x1g): X xS =Y x S.

In [4, Section 1] it is shown that there is a surjective morphism ¢ : P(Z (s)) — Sl More

n,n+1]

precisely the following is shown: Let Sl be the incidence variety

S+l — {(zw) e Sl glnt] | Z is a subscheme of W'}.

Then there is a natural isomorphism P(Z, (sy) — S [ +1] sending a one dimensional quotient o : I; —
k(xz) over (z,Z) to (Z, W) with Iy, = ker(cr). This isomorphism identifies ¢ and ¢ with the projections
of St x S+ to the two factors, and p(Z, W) = supp(fy,z). Thus we have the commutative diagrams
S i P(Ty,(5) —s S+
1)
Sl g —2 5 glnl

bTo

P(Zz,s)) — P(Zz,(s)) xS

! I

S —° . 9x8

where § : S — § x S is the diagonal map, and we will also in the future in a product X x S™ denote by
pro the projection to X. We denote A C S x S the diagonal.
We denote £ :=P(Z, (s))(1), and £ = c1(L). We have the following Lemma ([4, Lemma 1.1]).

LEMMA 6.

0. (0") = (=1)'ci(Oz,(s)) = (=1)'ci(~Tz,(s))-

The following two identities in K° (S +1) from [egs. (5), (6)][4] describe the universal ideal sheaves

Iz, (s) and the universal structure sheaves O (g) inductively.

(1.1) Vs(Zz,,1(5)) = 5Lz, (s)) — J= (L),

(1.2) V5(O0z,,,(5)) = 05(02z,(s)) + ju(L).
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Note that by the last diagram we have j (OP(IZ”(S))) = pis(On), thus by the projection formula we have

3e(L) = §1(Op(z,, &) @ 5 (pro(L))) = pro(L) @ ps(On).

Thus we can rewrite these formulas as

(1.3) V5(Z2,11(9) = 85(Lz,(5)) = Pro(L) @ ps(On),
(1.4) V5(Oz,41(5) = 85(0z,(5) +pro(L) ® ps(Oa).
Note also that cha(Zz, ., (s)) = —[Zn+1(S)] where [Z,,11(S)] is the cohomology class Poincaré dual to the

fundamental class of Z,,41(S), and similar for Z,(S). On the other hand we have chy(M ®% p'sOA) =
p[A] for any line bundle M on P(Z, (s)) x S, Thus (1.3) also gives

(1.5) V5([Zn+1(9)]) = 85([Zn(S)]) + p5([A]) € HA(ST"H1 % 5, Q).
Let F be a vector bundle on S. Let FI"l be the corresponding tautological sheaf on S, [4, Lemma
2.1] inductively describes the tautological sheaves F' ("] on S,
LEMMA 7. In K°(S"" 41 we have the relation
GHEIH) = ¢ (FIM) 4 Lo p(F).

Now we describe the tangent bundle of the Hilbert schemes. The first step is [4, Proposition 2.2].

PROPOSITION 4. The class of Tgin in K°(SM™) is given by
TS["L] = X(OS) ®L O - p‘(—[}n(s) ®L IZn (S))

Using this, in [4, Proposition 2.3] the tangent bundle of the Hilbert schemes is described inductively.

PROPOSITION 5. In K°(S"+11) we have the relation
wITS[nH] = qb!TS[n] + Lk U!IZ,I(S) ok p!(wfg/) — p!(l —Ts + o.)g)
In the proof of this proposition the following elementary identities are obtained.

(1.6) (pro)i (Ps(On)9s(T5, (s)) = 0 (T5, (s))
(1.7) (pro)i(ps(OX) @ ¢5(Zz,(5))) = ' (Zz,(s)) @" p'(w§)

(1.8) (pri)1(OX @F Op) = O5 — Ts + wy.
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1.2. Application to the product. Now we apply this to S} x Sl"2], Let

my 2 Sl s gtnel o glml 7y o glmal s glnal gl
q: Sl x gl gy g p.glmlx glnel i gy glnal o glnal
be the projections. For a = 1,2 we use the following subvarieties, sheaves and maps, which are the

pullbacks of the corresponding objects from above section. Let Z, := 7, a(Zn,(S)), and Z, = Zz_,

Oy = Oz,. We have the two incidence varieties
P(Z;) = Smomtll o gl p(7,) = §lml x glnama+i],
We denote

Lo=P(Zo)(1) = Thmamarn (L), lo=c1(LY), Flel=n

[0 (e}

(FU=),
01 =0 X lginy, 02 =1gm X0, p1:=qooy, ¢1:=poogr=¢ X lgny,

VY1 =1 X lgmsy,  J1:= (Ip(zy), p1),

and similar for o = 2. To simplify our notations we always use the following notation.

NotAaTION 2. We write the products in the order X x S and view e.g 01,02 as maps P(Z,) —

Slml x §lnal 5 3.

As all the objects are just pullbacks from the objects considered before for S, the results above

immediately give the following.

(1.9) 7a(ly) = (=1)'ci(Oa) = (=1)'ci(~Ta)

(1.10) (Va)s(Za) = (da)s(Za) = P'(La) @ (pa)5(On),  (¥3-a)5(Za) = ($3-a)s(Za);
(1.11) (¥a)5(0a) = (¢a)5(0a) + P'(La) ® (pa)5(On),  (¥3-0)5(0a) = ($3-a)5(Oa)
(1.12) Yo () = ¢l (Fel) + Lo ®F p (F),

(1.13) Yo(Tsinarn) = Go(Tstnar) + Lo @F 04 (Ta) @ pp(wf) — (1 = Ts + wy).

An additional ingredient of the Mochizuki formula are the
p(RHom(Z, T, @ ¢ (M), p(RHom(Tz, Ty ®* ¢ (M) € KO(S™] x §lm))
for M a line bundle on S. Note that by definition

p(RHom(Za, T3 o ®" ¢ (M))) = pi(Z) @" Ts_a @ ¢'(M)).
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We will now concentrate on the case o = 1, the analogous arguments and results hold with the same

proof for a = 2. These sheaves are inductively determined by the following identities.f

(L14) ()@Y @ T @ ¢"(M)) = dip(TY @F T @ ¢* (M) — 01T @ py (M @ wf) @ L7,

(L15)  (¥0)'p(Zy ®F T @ ¢* (M) = ¢ip(TY @ Ty @ ¢*(M)) — 01(Z3) @ py (M) @* L1

These identities we get by applying (1.3), multiplying out and using the projection formula, where we

also denote p : P(Zy) x S — P(Zy), ¢ : P(Z;) x S — S the projections.

(W) P(TY O T & " (M) = p(1)5(T 9 T & ¢* (M)
= p(((005(E@) = (P(L1) &% (p)5(0n)) ") ©F T &% " (M) )

=1 (p(@ @ L @' ¢'(M)) = L ®F py (M @" wi) & L]
where in the last step we have used (1.7). Similarly

(1)’ Ty @ Ty @ ¢* (M) = pi(11)5(TY @ Ty ®% ¢* (M)

= 61 (p(ZY @ Ty @ ¢* (M) — 01 (Zy) @ p (M) ®" L1,

where in the last step we have used (1.6).

Finally p. (([21] + [22])q*(c)) € H*(SI™) x S"2) Q) for ¢ € H?(S) is computed inductively by
(¥1)5(([21] + [22])g7(0)) = (¢1)5(([Z1] + [22])q" (0)) + (p1)5([Alpri (0)),

which follows immediately from (1.5), and which gives
(1.16) (¥1)"ps (([21] + [22])a" (¢)) = 1P+ (([21] + [22])g7(0) + pi(c),

1.3. The inductive argument. We will prove the following statement.

PROPOSITION 6. Let P(S, A1, Aa, Az, Ay, As) be a polynomial in

p«(([21] + [Z2])q" (A1),
the Chern classes of
(A", ()37 (T @' Lo ¢(4), p(T @ T @" ¢(A5)). Toocsion,

for tuples (S, A1, ..., As) of a surface and 5 elements in Pic(S). Then there exists a polynomial Q in the

intersection numbers

-/AZAJ7 /AiK57 ivj:]-v"'757 /Kg'v X(OS)7
S S S
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such that
/ P(S, Ay, Ay, A, Ay, As) = Q.
Sln1lx §lnal

for all (S, Aq,...,As).
As a corollary we get the universality of the partition function.

COROLLARY 4. The coefficient of any monomial ¢"y's* in Zs(L,a,c1,s,y,q) is a universal polyno-

mial in the 11 intersection numbers
L27 LG,, a2a acy, C§7 LC17 LKS7 O,KS, CIKS7 Kg, X(OS)

PROOF. By definition the coefficient of ¢"y's* in Zs(L,a,c1,s,y,q) is fs[mlxs[nzl P for P a polyno-
mial in p, (([Z1] + [22])¢" (L)), the Chern classes of

O™, O —a)f™, P @' T @" ¢*(c1 —20)), pulTY @' T @" q"(2a— 1)), Taixsina-
Thus the claim follows from Proposition 6 (|

We will show Proposition 6 by an inductive argument. We want to relate integrals on S +11 x
Sral s §m and Sl x §le+1] x §™ to integrals on S x Sl"2l x §m+1 We will show Proposition 6

using the following inductive statement. Let
Wl — S[n17n1+1] % S[ng] « va W2 — S[Tn] X S[?’Lz,n2+1] x ™.

For a =1,2 let
\I/azl/)aX1Sm’ <I>a:¢a><15m.
For any I C {0,...,m} let prr be the projection X x S™ to the factors indexed by I.
PROPOSITION 7. (1) Let f be a polynomial in the Chern classes of the following sheaves on
Sltt] x Glra]  gm
ProTsim i wsimasn,  pro(A)y 0, pre(As)]™)
pré)i(Il)’ pT!Oi(IQ)v prfj(oﬁ)a pr; (Ts),

n(ZY @ I, @% ¢'(A4)), p(ZTy @ T, @% ¢'(4s)),

and the classes
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Then there is a polynomial ]7 in the analogous classes on S!™1) x Szl s §m+1 sych that

/s[n1+1]><s[nz]><sm /S[mlxs[nz]xsm+1

(2) The analogous statement holds for Sl x Sln2+11 x gm

PROOF. We show (1), the proof of (2) is the analogous. We write W := W, ¥ := Uy, & = ;. The

morphism W : W — S+l 5 §ln2] » §™m is generically finite of degree ny 4+ 1. Therefore

1
= U*(f).
/S['n,1+1] « Slnal s gm ! ni+1 /W (f)

As we insert an additional factor S between S x Sl"2] and S™ we have

! ! ! ! ! !
Wpry = ®priv1, Wprg, =®proiv1, Vpry; =®prig i,

in particular we have
(1.17) UpriA; = @IperAj, UpriTs = <I>!prf+1TS, \I/!pr;‘,j((’)A) = @’pr;‘+1,j+1(C’)A)
The formula (1.16) gives

(1.18) Ups (([21] + [22])q" (A1) = @*po(([21] + [22])a™ (A1) + pri (Ad),

Equations (1.10), (1.12), (1.13) give

(1.19) Uproi(Ti) = ®'proip1 (L) — pro(L1) @F pro i1 (Oa),  Wprg(Tz) = ®'proi(T2),
(120) (A" = (A1) + proLy @ pri(Ae),  W((A9)S) = @'((45)5")),

(1.21) U (Tt 1y gimar) = ' (Tgtnr o gtna1) + pro(L1) @F pro 1 (T1) @ pri(w) — pri(1 = Ts + wy).
Finally (1.14) and (1.15) give

(1.22)
U'p(ZY @ Iy @ ¢*(Aq)) = @' (p(ZY @ T @" q*(A4)) — pro 1 (T2) @F pri(As @ wé) @ pro(LY),
(1.23)

U'p(Zy @" I @ ¢ (A5)) = @' (p(Zy @" T @" ¢ (4s)) — pro 1 (TY) @ pri(As) &F pri(L1).

Putting these results together we obtain that there are polynomials f, for v > 0, in the analogous classes

on Sl x §lr2] 5 §m+1 guch that

1 * _ * . *((_ v
Lot [ = [ S0 (o).

v>0
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By (1.9) and the projection formula the last integral equals

/S["ﬂstJXSmH . Z O (fy) -pro((—e1(L1))”) | = / Z fo - @ (pri((—61)"))

v>0 Sln1l x §lnal x gm+1 70
= / > Ju-e(—pria(T)).
Sl x §lnal x gm+1 70
The integrand on the right hand side is the polynomial f 0

PROOF OF PROPOSITION 6. Given Proposition 7 the proof is now almost identical to the proof of
[4, Proposition 0.5]. Suppose we are given a polynomial P like in Proposition 6. Applying parts (1) and

(2) of Proposition 7 repeatedly, we can write

Slni] x glnal Snitn2

for P a polynomial, which depends only on P, in the Chern classes of priTs, pr;;(Oa) and the classes
priA;, j=1,...5. Any such expression [ . P can be universally reduced to a polynomial expres-
sion of integrals over S of polynomials in Chern classes of Tg and the A;. To see this for the Chern

classes pr;(Oa) we use Riemann-Roch without denominators [22]. O

2. Multiplicativity

In this section let S be a possibly disconnected smooth projective surface and let Pic(S). We consider

the partition function Zg(L, a1, ¢1,8,y,q) from Definition 11.

REMARK 3. Let X be a smooth projective scheme, assume X = X1 U Xo, where each X; is a union
of connected components of X. Let i : X1 — X, io: Xo = X be the inclusions.

Note that any o € K°(X) or o € Pic(X) ora € H*(X, Q) is of the form o = i1.01 +izeaa = a1+aq,
with aj = ija (and we have suppressed the pushforward via the inclusion in the notation in the second

step).

DEFINITION 12. Assume S = S"US", for smooth projective surfaces S’, S (each of them can have
more than one connected component, but the connected components of S" and S” do not intersect). Note

that a line bundle L € Pic(S) is the same as line bundles L' := L

L€ Pic(S), L' =L

4, € Pic(8”).

If Lyay,c1 € Pic(S) with Llg = L', a1]lsr = ay, cils = ¢ (and similarly for S”, L”, af, ¢}),

then we say that (S, L,a1,c1) is the sum of (S',L',a},c}) and (S”,L",a¥,cy), and write
(S7Laalacl) = (SlaL/7a’/17C,1) + (Sﬂlelvalllvclll)

Our aim is to prove the following multiplicativity result for the partition function.
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PROPOSITION 8. Assume (S, L,a1,¢1) = (S, L', ay,cy) + (S, L",ay,cy), then

"

ZS(L7a17cl7 5, Y, Q) = ZS’ (leallvc/h S, va)ZS“ (L/l7alac/1,7 5, Y, Q)

ProoOF. We write

Xy (Bny,na) exp (7 ([21] + [22))" (L)) Bu(O(a1)!"]) Bu(O(er - ay)l"2) @ 62)
Eu(En, ny — Tt sinal)

€ H* (8 x sl Q)[y]((s)),

@S(L,Gl,Cl,nl,ng) =

so that by definition

Zs(L,ax,c1,8,9,q) = Y qn1+n2/ ®s(L, a1, c1,m1,n2).

n1,m2>0 Sln1lx §lnal

By definition we have
glml — H (8l 5 (g7ryImal,
mi+mo=m

thus we also have

glml ¢ glnal — H H ((8")M] x (87)2ly x (7)) x (872 ]y,

nf+nl'=ny nh+nl=n,
We put

X_,(E!

/ /)
Tl17’n2

exp (m([21] + [24])¢" (L)) Bu(O' (a)) ")) Eu(O'(¢; — ay)"2] @ 87)

/
BBl g, = Tigryirii(snyisl)

€ H*((S")I") x (5", Q)[y]((s))

/A Y Y Y AN
Og (L', al, ci,ny,ng) ==

Here we put & = ¢} —2da}, O'(a’)) = Og: (") for a € Pic(S"). We write 2/ the pullback of the universal

subscheme from S x (/)" and by I} its ideal sheaf and we put
By = —RHom (F',F)o + x(0s) @ O+ x(§) @ O 0 6% + x(~€) © O @s~°

with /' =T} (a}) @ s~ & Zh(ah) @ 5. P (L",al,c],n!,nY) is defined in the same way.

We introduce the following notation for the rest of the proof. We put
X, = ()Ml x (snlnal - x, = (57 < (972l ¢ glml  glna]

and let

112 : X1 X Xg — S[nl] X S[nQ]

be the inclusion, and let

7T1:X1><X2—>X1, o X1 X Xo — Xo
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be the projections.

For o € H*(X1,Q), o € H*(X2,Q) we denote by o’ x o' = 7f(a’) x 75(a’’) their cross product,

Jo = (L) ()

so that

CraM 1.

i12(Ps(L, a1, c1,n1,n2)) = g (L', al, ¢),ny,nh) x ®gn(L”,af,cf,n,ny).

It is easy to see that the claim implies the proposition. In fact we get

Z (L ai,C1,8,Y, q § qn1+n2/ ¢S(Laa1aclanlan2)
n1,m2>0 Slnil % glnal
— E q7l1+n2 E E
n1,n2>0 nf+nl=ny nh+nl=n,

/! " "
Do/ (L' ay, cy,ny,nby) x Dgn(L",a,cf,nY,nf)

/((S'>" Ix (sn)m2lyx (5711 (5021

S X g

U " U "
np,ny)>0n4,ny >0

ror " "o
/ , , (I)S/(L 7a17cl7n17n2)/ . . (I)S”(L alvclanlanQ)
(/)["1] (S/)[nzl (S”)[”1]><(S”)["2]

A A A
E qn1+n2/ (I)S’(Lvalvclvnlvn2)

TL/ TL/
om0 ) 1]><(S’)[ 5]
§ : qn'{-&-n;' (I)S”(L// ') n//)
70 S”)[",l/]x(S”)["g] s Gy C1 1015 102
’I’L N

= ZS’(L/, all, Clla 5 Y, Q)ZS” (L/lv alll, Cllla 5 Y, q)
To prove the claim we have to show that

12 (X—y (Bnying)) = Xy (Bpy ng) X Xy (Bl )
ita (exp (m(([21] + [22])q" (L)) = exp (m.(([2]] + [23])a" (L)) x exp (m(([2]] + [25])g" (L))
ity (Bu(O(ar)™NEu(O(c1 — 1)) @ §2)) = Bu(O'(a)) M) Eu(O'(¢] — af)"2) @ 52)
x Eu(0” (af)")Ew(O0" (¢ — af)"] ® 52)

iTQ (Eu(Em,nQ — TS[nl] XS[nQ])) = Eu(E:“/l,n’Q -T

"
(SI)["’ﬂx(s')[nél) x Eu(Eng,ng =T

(S//)["lll] XS["IQ/] )

All these are simple verifications. By definition we have

(2.1) (1s x i12)*[2,] = (i’ x wl)*[ZJ{] + (i x wz)*[ZJ"], 7=1,2
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where i’ : §' — S, i" : S"” — S are the inclusions. Therefore it follows from Definition 10 that
1o (e (([21] + [22])a™ (L)) = m (mo([21] + [22])q" (L)) + 73 (m((27] + [25])a" (L)),
and thus
i1y (exp( 7 (([21] + [22])q™ (L)) = exp(m([21] + [23])a™ (L)) x exp( 7 ([2]] + [23])q" (L)))-
Note that for A’ € K°(X;), A” € K%(X3), we have

Bu(ri (4) + m3(A")) = 7} (Bu(A"))75 (Eu(A")) = Eu(A’) x Eu(4"),

Xy (] (A') + w5 (A7) = X_y(A) x X_y (A").
It follows directly from the definitions that
i15(0(a))") = 7}(0'(a}) ™)) + w3 (0" (a) ")
and similar for Eu(O(c; — a;)"?! @ s?). Furthermore we clearly have
T2 (Tstmixcsinar) = 71 (Tguint (grytns) T 75 (L goint s gonyin))-

Thus it finally only remains to show that iy (En, n,) = 75 (E., ., ) + 73(E", ). Again this follows

U U
nf,ng nf ,ng

from the definitions. Putting
Flo= (i xm)*(F), F'= (" xm)" (F"),

we see by the relation (2.1) that we also have (1g X i12)*(F) = F + F”. As F' and F” have their

supports on disjoint components of S x X7 x Xo, it follows that
RHomy(F',F")g = RHom(F",F')o = 0.
Thus
(2.2) ito( — RHomn(F, F)o) = —RHom(F', F')o — RHom(F", F").
On the other hand we clearly have
(2:3) X(0s) = x(Os) + x(Os),  x(£€) = x(£&) + x(£").

Y+ T (EY ),

nY,nj

Thus putting (2.2) and (2.3) into the definition of E,, ,, we get iio(En, n,) = 71 (E!

’ /
ny,Ngy

and the claim follows. O
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The universality of Theorem 4 and the multiplicativity of Proposition 8 together imply that we
can write the partition function Zg(L,a1,¢1,s,y,q) for any (S, L,a1,¢1) as a product of powers of 11

universal power series. This is the main result of this chapter and crucial for the rest of the work.

THEOREM 10. There are power series A1(y), ..., A11(y) € Qy]((s))[[g]] such that for any quadruple

(S,L,a1,c1) we have

Zs(Lya,c1,5,,q) = A1 (y)" Aa(y)"* As(y)® Aa(y) ™ As(y) Ag(y) L

Aq ()15 A ()" Ag ()1 A1 ()" Ay ()X,
COROLLARY 5. With A; := A;(0) fori=1,...,11, we get for any quadruple (S, L,a1,c1) that
Zs(Loa,cr,s,q) = AL AL 4G g1 AG AL AKS AGKs 401 415 4x(09),

Let K, be the set of tuples (S, L, a,c;) such that S is a projective surface (possibly disconnected),
L,c1,a, € Pic(S). We define a map

v: K, = QY: (S L a,c)— (Lz,La, a2,acl,c%,Lcl,LKS,aKS,clKS,Kg,X(OS)) .

REMARK 4. If (S, L,a,c) = (S',L',d',)+(S', L', d’, &) in notations of Definition 12, then (S, L, a,c) =

'Y(Slv L/a (1/, C/) + ’Y(Sla Lla a/a C/).

PROOF. Let ¢’ : S" — S, i’ : 8" — S be the inclusions. Then K¢ = (i")*Kg, Kg» = (i")*Kg, As
L' d,c, Kg have all disjoint supports of L”,a”, ¢, Kgr, we see that o/ 8" = 0, for o, 8 € {L,d’, ¢/, Kg' },
and therefore aff = o/f + o”p”. Tt is also clear that x(Os) = x(Os/) + x(Ogr). Thus we get

v(S,L,ya,c) =~(S",L,a', ) +~(S',L',d', ). O

PROOF OF THEOREM 10. By Theorem 4 we know that Zs(L, a, ¢, y, s, q) only depends on (S, L, a, ¢),
so we can write Z(y(S, L,a,¢)) :== Zs(L,a,c,y, s, q). Furthermore we know by Remark 4 and Proposition

8 that
(4) (S L) A L ) = 2SI ) Z((S" L))

We choose tuples (S;, L, aj,¢;) for j = 1,...,11 (in Chapter 4, Section 1 we give an example of such
tuples) such that the vectors v; := (S}, L, aj,¢;) are all linearly independent and form a basis of Q'!.

We denote eq, ..., e the standard basis of Q'!. Then we can write

11 11
— L : 11 11 11x11
v; = E bj i€, e; = E a; vy, for matrices (bj:); =1, (@ij)ij—1 €Q
i=1 j=1
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which are inverse to each other. We define Let B; := Z(v;), and put

(25) Ay =TI B € 14 Q) llal, i=1,....11.

Jj=1

Note that then we also have
(2.6) B =[JAiw», j=1...11

We want to show that Theorem 10 is true with this choice of the A;(y). Thus we have to show

(2.7) Z(w) = HAi(y)“’i, for all w = (wi,...,w11) € Y(K,).

11
Iy = {Z Bjv;
j=1

be the set of nonnegative linear combinations of the v;. First we show (2.7) for all w in I'. Let

B; € Zzo}.

w = 2]11:1 Bjv; € T'y. Write w = (w1, ...,wi1), then w; = Zjll:l B;bji. Thus we have by (2.4) and (2.6)

that
11 11 /11 Bi 11
B b _ i
(2.8) Z(w) = H B;" = H (H Ai(y)™ ) = HAi(Z/)w :
j=1 j=1 \i=1 i=1
We denote 1, ...,211 the coordinates of C''. We note that I'; is a positive orthant in a lattice in

R!. Therefore it is Zariski dense in C!'. Thus if two polynomials f, g € Clz1, ..., z11] satisfy f(v) = g(v)
for all v e I'y, then f =g.
Fix integers I,n,m € Z. By Theorem 4 there is a polynomial f; ,, ,, € Q[z1,...,z11] such that for

all w= (wq,...,w11) € 7(K,) we have
Coeftyigngn (Z(w)) = finm(wi, ... ,wi1).

On the other hand clearly Coeffy:nn Hzli1 A;(y)¥* can be written as g; n m (w1, .. .,wi1) for some poly-
nomial g;n.m € Q[z1,...,x11], and by (2.8) finm = ginm on the Zariski dense set I'y. Therefore

finm = Gin,m and the result follows. 0






CHAPTER 4

Computation of Mochizuki’s formula via localization

Let S be a smooth projective surface with b1(S) = 0, py(S) > 0 and ¢1, L € Pic(S). In Chapter
2, Definition 11 we first introduced the partition functions Zs(L,aq,c1,s,y,q) and Zg(L,a1,c1,58,q) =
Zs(L,a1,¢1,8,Y,q)|y=0 for a1 € Pic(S) and then showed in Corollary 3 that the refined K-theoretic

Donaldson invariants XV_iL(MgI(cl, c2), (L)) can be expressed in terms of the Zg(L, a1, c1, s,y, q), where
a1 runs through the Seiberg-Witten classes of S, and similarly the K-theoretic Donaldson invariants
(M (c1,c2), (L)) in terms of the Zg(L, a1, c1, s, q). Thus our task is reduced to computing Zs (L, a1, ¢1, 8,9, q)
and Zg(L,a1,c1,s8,q) for any quadruple (S, L, a1, c¢1). In Chapter 3 Theorem 10 we finally showed that

there are universal power series A;(y), ..., A11(y) such that

Zs(L,a,c1, 5,9, q) = A1 (y)" Aa(y) A3 (y)® Aa(y)* As (y)4 Ag(y)"

Ag(y) M5 Ax ()" Ao (3) 1= Aro ()" Ara ()X,

or any quadruple (S, L,a1,c1). Therefore our task is reduced to computing A;(y),...,A11(y). In the

proof we considered for each quadruple (S, L, a, ¢) the tuple
~v(S,L,a,c) = (L27La, a?, ac, ¢, Le, LKS,aKS,cKS,Kg,X((’)S)) ,

and we showed that A;(y),...,A11(y) can be computed from Zs,(L;,a;,c;,s,y,q) for 11 quadruples
(S;.Lj,aj,c¢;), such that v(S;, Lj,a;,¢;), @=1,...,11 are linearly independent. In fact in the proof

of Theorem 10 we saw explicitly the following: if
(0.1) (S, Ly aj,c;) = (bjas--,0ju1), Bi=(bj)jizt, B™H = (aij)ij—1.

then we have
11

Al(y) = H ZSj (Lja aj,Cj,58,Y, Q)ahj'

j=1
1. Reduction to toric surfaces

We have seen that in order to compute Zg(L,a,c1,s,y,q) for any surface, we need to compute
Zs,(Lj,aj,cj,s,y,q) for 11 tuples (S;, L;, a;, c;) for which the v(S;, L;, a;, c;) are linearly independent.
While in the application to the (refined) K-theoretic Donaldson invariants we need that py(.S) > 0, here
we have no restriction on the choice of these tuples and we can choose them conveniently so that the

computation becomes easier. We make the following choice

53
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NoTATION 3. We let (S;, Li,a;,¢;),i =1,...,11 in the order below be given by

(P*,0,0,0), (P2,0,0(1),0(2)), (P*,0,0,0(1))
(P?,0,0(1),0(3)), (F?,0(1),0,0), (P, 0(1),0(1),0(2)),
(P?,0(1),0,0(1)), (P! x P, 0,0,0) (P x P, 0,0(0,1),0(0,2)),
(P! x P, 0,0,0(0,1)), (P! x P, 0(0,1),0,0)

The choice of the line bundles would seem to be slightly more complicated than neccessary, however in

our computer computations we use & = ¢ — 2a instead of ¢, and then these choices lead to simpler
computations.
REMARK 5. v(S;, Li,ai,¢;),i = 1,...,11 are linearly independent.

PROOF. This follows from the relevant intersection products. We have that A(P?) ~ Z[h]/h?®, where
h is the class of the hyperplane bundle O(1) whose self intersection h - h = 1. We also have that the
canonical bundle is given by Kp: = O(—3), and that x(P?) = 1. For the tuples involving P! x P!, we
have that Pic(P* x P!) = ZF @ ZG where F, G are the two fiber classes. We denote the associated
line bundles by O(1,0), O(0,1) respectively. Then the intersection product is given by the relations
F?=0=G? F-G=1. We also have that Kpiyp1 = —2F —2G and x(P! x P!) = 1. This data allows

one to compute all the intersection products. In fact the matrix B from (0.1) is readily computed as

00 0 0 0 0 O 0 0 9 1

001 2 40 0 -3 -6 91

00 0 0 1 0 O 0 -3 1

0013 90 0 -3 -9 1

10 0 0 0 0 =3 O 0 1
B=1[1 11 2 4 2

(en}
o
o
o o o o o
o
o
en)
&
I
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This matrix is invertible. Its inverse that we need to compute the A;(y) is

-1 0 0 0 1 0 0 32 0 0 —3/2
-1 -1 2 0 1 1 =2 0 0 0 0
-7 3 6 -2 0 0 0 15/2 -3/2 -6
5 -1 -5 1 0 0 0 —6 0 6 0
-1 0 1 0 0 0 0 32 0 -3/2 0
A=(1 0 -1 0 -1 0 1 0 0 0 0
0 0 0 0 0 0 0 1/2 0 0 —1/2
0o 0 0 0 0 0 0 -1/2 -1/2 1 0
0o 0 0 0 0 0 0 1/2 0o -1/2 0
1 0 0 0 0 0 0 -1 0 0 0
-8 0 0 0 0 0 0 9 0 0 0

REMARK 6. We note that the surfaces P2 and P! x P' are toric surfaces. In particular they are
equipped with an action of T = C* x C*, with finitely many fizpoints. We will see that this action lifts to
the Hilbert schemes of points and this will allow us to compute the invariants via Atiyah-Bott equivariant

localization.

2. Action on P? and P! x P!

Let T'= C* x C*. We describe the action of 7" on P2 and P! x P!. We will need the results and the

notation established here when we study the lift of the action to the Hilbert schemes of points.

2.1. Action on P2. Let Xy, X1, X2 be the homogeneous coordinates on P2. Let U; = P? \ Z(X;).

On U; we have coordinates x;,y; with
ro = X1/Xo, yo = X2/Xo, 1= Xo/X1, w1 =Xa/Xy, Ty = Xo/X2, w1 =X1/Xo.
T acts on P? via acting on the coordinates by
(t1,t2) - (Xo: X1 : Xo) = (Xo: t1X7 : t2X5).
We see that the fixpoints of the action are

po=(1:0:0), p1=(0:1:0), pa=(0:0:1).
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The coordinates x;, y; are eigenvectors for the T-action, in fact one sees immediately that

(t1,t2) - wo = trwo,  (t1,t2) - yo = tayo,

(tite) -1 =t w1, (biste) g1 = PREE
1
-1 tq
(t1,t2) w2 =ty w2, (t1,t2) 92 = -y,
2
so that the corresponding weights of the coordinates are
w(zo) = e1, wyo) = €2, w(wy) =—¢1, wlyr) =e2 —e1, w(xs) = —e2, w(ya) = €1 — €.

Finally on U; a trivializing section of Opz2(n) is X", thus the weights w; of the T-action on the fiber of

Op2(n) at the fixpoints p; are given by
wy =0, wi; =ne;, ws = nes.

2.2. Action on P! x P'. Let X, X5, Yp,Y; be the homogeneous coordinates on the two factors of

P! x P!. T acts on P! x P! via
(t1,t2) - ((Xo : X1), (Yo, Y1)) = (Xo : taX1), (Yo, t2Y1)).
The action has 4 fixpoints

Po = ((1 : 0)7 (1 : 0))7 p1 = ((1 : O)’ (0 : 1)), D2 = ((0 : 1)a (1 : 0))a b3 = ((O : 1)7 (0 : 1))7

and in an affine neighbourhood U; of p; there are coordinates x;,y; given by

X, Y Xo Y

xo=x1:70, 3/0:3/2:707 $2:x3:za y1=y3=707

which are eigenvectors for the T-action with weights

w(zg) = w(x1) = €1, w(x2) = w(rsz) = —1,w(Yo) = w(y2) = €2, wW(Yy1) = w(yz) = —e2.

Finally we see that on U; the trivializing sections of O(n1, ns) are Xj'Yy"?, XY™, X7Y™2, XY™
for i = 0,1, 2,3 respectively, therefore the weights of the action on the fibres of O(ny,ns) are 0, noea,
ni€1, N1€1 + noeg for ¢ = 0,1, 2, 3 respectively.

We also notice that both in the case of S = P2 and S = P! x P! a natural T-equivariant basis of

Ks(p;) is dz; A dy; thus the weight of Kg(p;) is w(z;) + w(y:).
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3. Action on Hilbert schemes of points

In the following let S = P2 and S = P! x P! with the action we described in the previous section.
Thus S has an action of T = (C*)?2, with finitely many fixpoints po,...,p. (with e = 2 or e = 3). We
lift the action of 7 on S to an action on SI". For each t = (t1,t2) € T, t defines an automorphism
t: S — S;p+st-p. We define an action on S by t- Z := t(Z). Clearly this defines an action on S™.
Note that by definition, if I is the ideal sheaf of Z in S, then I;z) = (t7')*(Iz). Thus we can also
describe the action on S by its action on ideal sheaves via t - Iz = (t~1)*(Iz).

We now want to describe the fixpoints of the T-action on SI™. We have an obvious action of T’ on

the symmetric power S by
t- Zni%‘ = an(t “Qi)-
This is clearly compatible with the Hilbert Chow morphism 7 : SI" — §(): Z s supp(Z) of Chapter 1
Section 2, where we denote by supp(Z) the support of Z with multiplicities, i.e. ¢-supp(Z) = supp(t- Z).
Now let Z € (S[")T be a fixpoint. Then supp(Z) must be a fixpoint of the T-action on S and it

follows that supp(Z) is a linear combination of the fixpoints p1, ..., pe, i.6. we can write
supp(Z) = Y nmipi, ni € Lz, Y _mi=n.
i=0 i=1
We denote
Hilb™(S,p) :== {Z e st ’ supp(Z) = np}

the Hilbert scheme of points supported at the point p € S. Then for a fixpoint p; the action of T on

Sl restricts to an action on Hilb™: (S, pi). and we get by the above a decomposition
e
z=11%, 2z e (Hilb"(S,p:))".
i=0

Conversely any subscheme of this form is a fixpoint of the T-action on S, so we have shown that the

fixpoints Z € (S[™)7 are precisely the subschemes
(3.1) Z = H Ziy  L; € Hilbni(s,pi)T, n; € Zzo, an =n.
i=0 i=1
Thus to describe (S[™)7” completely, it is enough to deal with the punctual Hilbert schemes Hilb™ (S, p;)”

for p; a fixpoint of the T-action on S. We put p := p; and write x = x;, y = y; for the local equivariant

coordinates at p from Section 2. We can write the action for t = (¢1,t3) € T as
t-x=1t{"ty2x, t-y=1t]"ty,

and we can see from the results in Section 2 that the weights w(z) = uie1 +uge2 and w(y) = vie1 +veeq

are linearly independent.
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A subscheme Z € Hilb™(S,p) is given by an ideal Iz € k[z, y] such that Oz = Clz, y]/Iz has support
p and dimension n as a C vector space. Such a Z will be T-invariant, if and only if I, is T-invariant
under the action on Clz, y] given by t-x = ¢]*t5%x, t-y = t]*t5%y. It is easy to see that this is equivalent
to the fact that we can write Iz = (f1,..., fr) where the generators fi,..., f, are eigenvectors for the
T-action. As the weights w(z), w(y) are linearly independent, this implies that fi,..., f. are monomials
in x,7. Choosing for each power x' of x the smallest power of y% of y such that z'y% € I, we can
therefore write

_ a a T, Qr r+1
Iz = (zoy™, x1y™, ..., x"y", 2"")

with ag > a1 > ... > a, > 0. Furthermore we have that the monomials
{miyj ’0§i§r7 0§j<ai}

are a basis of Oy as C-vector space. Therefore Z::o a; = n.
Thus we see that the subschemes Z € Hilb™(S,p)T are in a bijection with the partitions of n, via

the correspondence v = (aq,...,a,) — Z,(x,y), where Z,(x,y) is given by

_ +1
IZ,,(:E,y) - (xOyaoa (Elyalu cee ’xryar’ x" )

Finally partitions are in one one correspondence to Young diagrams.

DEFINITION 13. The Young diagram of a partition v = (ag,. .., a,) is the set
Y(v):={(i,j) €Z% |i<r, j<ai}.

A Young diagram is a subset of the form Y (v) for a partition v.

ForY a Young diagram we write |Y| the number of elements of Y. Clearly |Y (v)| = n if v is a partition

of n. For a Young diagram'Y =Y (v), we define
Z(Yixi,y:) = Zy(xi,y:) € Hilb¥ (S, p;)"

For an tuple Y = (Yy,...,Y.) of Young diagrams we write |Y|:= |Yo| +...|Ye|.
For a tuple Y := (Yy,...,Y.) of Young diagrams with |Y| =n we put
Z2(Y) =[] 2(Yi;2i,y:) € (S")".
=0

Summing up, we have shown the following proposition.
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PROPOSITION 9. There is a natural bijection
Z : {tuples Y := (Yo, ...,Y.) of Young diagrams, with |Y|=n} — (SEHT . ¥V = Z(Y)
REMARK 7. We also see immediately that under this bijection we can write

HO(Oz(Y)) = @ HO(OZ(YL;M,%))
1=0

and set {xzyf { j k€ Yi} is a T-equivariant basis of HO(OZ(yim,yi)) as C-vector space.

4. The localization formula for the partition function

In this whole section we assume that S = P2 or § = P! xP!. Our aim is to compute Zg (L, a1, c1, 5, ¥, q)
via localization on the Hilbert schemes S[™] x S["2] In this section we write down the localization for-
mula for Zg(L,a1,c1,S,y,q), in terms of the T-action at the fixpoints on certain sheaves. In the next

section we will describe this action. By definition

ZS(LaCll,ChSaZ/,Q) = Z qn1+n2
nl,’rLQZO
/ Xy (Bnyna) exp (me([21] + [22])g" (L)) Eu(O(a1)™)) Eu(O(e1 — )™ @ 5?)
§n1l x §lnz] Eu(En, ny — Tinl  5inal) .

1

By Proposition 9 the fixpoints of the T-action of 1] x Sl"2] are the (Z(Y "), Z(?Q)) for pairs

T =¥, YH, Y = (V... YY)

of tuples of Young diagrams with |71| =nq, |Ya| = ns.

We will use the following Lemma ([3, Lemma 3.4]).

LEMMA 8.
m([21]) + (2D (D)2 ), 2(V7)) = S UV + Y2 L(p:).-

=0

NoTATION 4. In future will just write E for instead Ey, n, on Slral s Glneal,

2

)
Euw(E(Z(Y'),2(Y"))

ZS(L7G1701757?J’Q) = Z q|Y1|+|Y2|

Applying the Atiyah-Bott localization, Chapter 1 Theorem 6, we get
(x_y<E<Z<Y1>, z2(Y
Y'Y2)

61252:0

exp (DY + V) L) ) Eu(H (O 551 (@) 55 ) BU(HO(O 2 @52»)
1=0

Here the sum runs over all pairs (71 = (Yg,.. .,Yel),?2 = (Yy,...,Y})), and we use the following

notations.
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NOTATION 5. For a class F in the K group of T-equivariant sheaves on a variety X and p € X
a fizpoint of the action with v : p — X the inclusion, we denote by F(p) := *(F) as an element in
the representation ring of T. Moreover, let Eu(F(p)) € Qle1,e2], X_y(F(p)) € Qlyl[le1,e2]] denote

respectively the equivariant Euler class and x_,-genus.

We can rewrite Zs(L,a1,c1,5,y,q) as a product over the fixpoints on S. This allows to compute
Zs(L,a1,c1,58,Y,q) as a sum over pairs of partitions and not as a sum over (2e + 2)-tuples of partitions,

which makes for a much more efficient algorithm.

ProprosIiTION 10.

Zs(L,ay,c1, 8,9, q) H 3 iy |X—y(E(Z(Y1;wi,yi),Z(Yz;wi,yi)))
Y1l,y?2 (E(Z(Ylvxhyl)aZ(Y27xmyz)))

~exp (1Y ]+ [Y2)) L(pi) ) Eu(H Oy 11,0 (@) Bu(H (Oz(v2i0, ) (1 — a1) ® 52)))

5126220
PrOOF. For V, W in the K-group of T-equivariant vector bundles on S"1! x Sl"2] we have by
definition

X_y(V + W) = X_,(V)X_,(W), Eu(V + W) = Eu(V)Eu(W).

We will show below (Corollary 6) that

e

E(Z(Y1),2(Y2)) = @ E(Z(Y i, 0i), Z(Y i, y:))-

i=0
Finally it is clear by definition that
HO(OZ(Y ) @H (Oz(v} i) (@),
HO(OZ(?Q)(Cl - @HO (Ozv2i,:) (@1 —a1) ®s°).
Thus the formula follows by just distributing out the product. O

5. Action on the relevant sheaves at the fixpoints

Now p = p; € ST. Let x = x;, y = y; be the equivariant local coordinates at p, with weights w(x),
w(y). Let L,a,c be equivariant line bundles on S. Let (Y!,Y?2) be a pair of Young diagrams with
[Vl =n, |Y?] = m. We denote L(p), a(p), c(p) the 1-dimensional representation of T' on the fibre of L,

a, c at p, and we denote x,y the one dimensional representations given by the action of T on z, y.

5.1. Tautological sheaves. The tautological sheaves are easy to understand.
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REMARK 8. In the Grothendieck ring of T-represenations we have for k = 1,2

and thus

Eu(OZ(Yk;z;y)(a’)) = H (zw(x) + jw(:l/) + w(a(p)))'
(4,5)€Y*

PrOOF. In the Remark 7 we saw that {xiyj | (i,4) € Y3} is an equivariant basis of H° (Ozvrizy))

Thus {z'ya(p) | (i,5) € Yi} is an equivariant basis of H*(Oz(y« ., ,(a)), and the claim follows. O

5.2. The tangent bundle of the Hilbert scheme. Now we want to describe the action of T

on the tangent space Tl xsiml (Z(Y12,y),2(Y?,2,y)) 1 terms of the combinatorics of the partition. We

Y

introduce some notation.

DEFINITION 14. Let Y be a Young diagram, corresponding to a partition (Xg,...,\.) of n. Let
s =(i,j) € Y. The arm length of s is ay(s) = \; — j + 1. The dual Young diagram to'Y is Y’ = {(j,1) |
(i,4) € Y, and the leg length of s = (i,7) is I(s) = ay:(j,4).

By Lemma 3 in Chapter 2 we have Tgin z(y1) = Ewtl(IZ(yl),IZ(yl))o. We have the following

theorem, which was proven in [5],[30].

THEOREM 11. In the Grothendieck group of T-representations we have for k =1,2
Tstn) z(y¥sm,y) = Z (a b @ yay i g glyr($)Flymaye(e),
' seYk
In particular we have

(Ts zvey) = [] (L= lyr(s)w(@) + (ayr(s) + Dw(y)) (1 + (yr(s) + Dw(@) — ayr(s)w(y)),
seEYk

Eu(Tst z0vy) = [ (= lys(s)w(@) + (ayr(s) + Dw(y)) ((Iy (s) + Dw(z) — ayr (s)w(y)).
sEYk

5.3. Action on the on Ext-sheaves. Finally we have to determine the fibres of E at the fixpoints
of Sl x §ln2l We will use the following lemma to reduce the computation to a computation in [3].

The lemma should be standard, but we include a proof because we did not find a reference.

LEMMA 9. X be a smooth projective variety with an action of a torus T = (C*)" and let F, G
be coherent T-equivariant sheaves on X. Let V be an equivariant vector bundle on X. Then in the

Grothendieck group of T-equivariant vector spaces we have an identity
RHom(F,G®V) = RT'(RHom(F,G)®V).

Here R is the derived functor of the functor of global sections.
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PRrROOF. Note that, as V is locally free, we have RHom(F,G ® V) = RHom(F,G) ® V, thus it is

enough to show (replacing G by G ® V') that
RHom(F,G) = RT(RHom(F,G)).

We use the local to global spectral sequence, with E5'? = HP(Ext4(F,G)) abutting to Ext?*(F,G). For

all » we write

(B,) = Y (-1yrogp

p.q

in the Grothendieck group of equivariant vector spaces. Let d = dim(X). As X is smooth projective of
dimension d, we get that E3** = 0 for (p,q) € [0,...,d] x [0,...,d]. It follows that EZ? = E7\’,, and the

E5f1 are the associated graded pieces of a filtration on Ext?T9(F,G). It follows that

[Eqi1] =Y _(~1)PMERL = (~1)"Ext"(F,G) = RHom(F,G).

p.q n

Thus it is enough to show that [E,11] = [E,] for all r. By definition we have the differentials

. P4 p+r,g—r+1
dp: EPY— B

)

and
. BP +rig—r+1
g _ker(dT.Efq—>E£ marl)
r+1 7 . pp—rg—r+1 D,qY
im(d, : E7 — E2Y)

Thus, with
KB = ker(dy, : EPY — EPTRorth) 0 QPR — jm(d, : BP9 — EPYROTTHL),
we have for all p, ¢ an exact sequence
0— KP4 — BP9 — QVIPe 5 0

P _ P /P P _ P p.a :
and B, = K2 /QY, thus BV = K2 — @7, in the Grothendieck group.
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Therefore we get in the equivariant Grothendieck group of vector spaces

(B,] = Y (-1t

p,q

P,q p+7,q—r+1
= Z 1)PH(KPE 4+ QLY )

- Z(_l)quffl + Z(_l)erquﬂ,qfrﬂ

p,q p.q
, +r,g—r+1
= S (1R - S (—1ypreriQrtra
p,q p,q

_Z P+q K:mq _ 1;1:_11)

=D (BN, = By

p.q

We go back to our assumption that S = P2 or P! x P! with the action of T' = C* specified above
(but the results work for any smooth projective toric surface). We have the following generalization of

[3, Lemma 3.2].

DEFINITION 15. For Young diagrams Y, Y2 we write
Wyl_Yg ((E,y) = Z (xil}ﬂ(s)yayl (s)+1 + Z xlyl(5)+1y*ay2(5)).
seY?! SEY2
PROPOSITION 11. Let
V' =), .Y,V = (¥2,...,Y2)
be a pair of tuples of Young diagrams. Let M be an equivariant line bundle on S. Then in the represen-
tation ring of T we have
—RHom(I ;57,1 ;2 ® M) = —=RL(S,V) + Y Wy ya(i,3:) - M(pi).
i=0
PRrROOF. This was proven in [3, Lemma 3.2] under the assumption that =M is not effective and
+M + Kg is not effective. Lemma 9 serves to remove this assumption, and using this lemma, one can
essentially repeat the arguments from the proof of [3, Lemma 3.2]. We will indicate the changes. We
write Y := Z(Y ), Z:=2Z(Y ) The first step in the proof of [3, Lemma 3.2] is the proof of the following

claim.

Claim: In the representation ring of T" we have the identity

—RHom(Iy, I;®M) = —RT(S, M)+RT(Ext' (Iy, I7)@M)+H (S, 0,0 M)+HO(S, Hom(Oy, 07)RM).
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Proof of the claim. By Lemma 9 we have

—RHom(Zy,Zz @ M) = —RT'(RHom(Iy,Iz) @ M)

= H(S,Ext' (Iy, 1) @ M) — RT(Hom(Iy,1z) @ M).

The second line follows because Ext?(Iy,Iz) = 0 and Ext!(Iy,I;) is supported on the supports of Y
and Z. Thus H(S,Ext! (Iy,Iz) @ M) = 0 for i > 0. We have the exact sequence

(5.1) 0= 1z = Hom(Iy,Iz) = Hom(Oy,0z) — 0,

which is obtained by applying RHom(-, I[7) to the exact sequence 0 — Iy — Og — Oy — 0 and noticing
that Hom(Oy,Iz) = 0, Ext(Oy, I7) = Hom(Oy,Oz). Tensoring (5.1) by M, applying RI' and using
that H (Hom(Oy,0z) @ M) =0 for i > 0 (because Hom(Oy, Oz) has zero-dimensional support), we

get the following identity in the representation ring of T°
(5.2) —RT(Hom(Iy,Iz) @ M) = —RT(S,Iz ® M) — H*(Hom(Oy,0z),M).

Finally we use the sequence 0 — Iz @ M — M — Oz ® M — 0 and the vanishing of H*(S,0z @ M) for
i > 0 to replace —RI'(S,Iz; ® M) in (5.2) by H°(S,0z @ M) — RI'(S, M). This shows the claim.

Using the claim, the rest of the proof of [3, Lemma 3.2] is unchanged. O

Finally we use this result to describe the action of T on the fibers of the bundle E, which is E,, .,

on Sl x glral,

COROLLARY 6. Let

(?1 = (Y017~~‘7Y1)a?2 = (Y02""7y2))

be a pair of tuples of Young diagrams. Then
—1 —2 - 3 _
EET),ZT)) = [T T X Wyeys(@ip:) - €20 (i) @ 55207,
a=1,2 B=1,2 i=0

Proor. This follows directly from (3.1) in Chapter 2, Theorem 11 and Proposition 11. O

6. Results of the computations

We have carried out the computation of Zg(L,a,c1,58,y,q) and Zs(L, a1, ¢1, 8,9y, q) for each of the
11 cases above. The formulas above were implemented in a Pari/GP program.
We determined the universal series Ay, ..., A1 and A1(y),..., A11(y) of Theorem 10 in Chapter 4
to the following orders:
e For Ay ..., Ay, we computed the coefficients of s'=3"¢™ for alln < 10,1 < 49. (Recall: A;, A;(y)

are Laurent series in s.)
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e For A;(y),...,A1(y), we computed the coefficients of s!=>"y™¢" for all n < 6, m <9, I < 30.






CHAPTER 5

Applications

In this section (except for the case of K3 surfaces, where we also deal with the refined invariants),
we restrict our attention to non-refined K-theoretic Donaldson invariants and study some applications

of Conjecture 1.

(1) We state the formulas of Conjectures 1 and 3 for K3 surfaces. In this case they were proven in
[14].

(2) We give a simplified formula for minimal surfaces of general type or more generally for surfaces
whose only Seiberg-Witten classes are 0 and Kg.

(3) We give an alternative formula for surfaces with disconnected canonical divisor Kg, written in
terms of the connected components of Kg.

(4) We formulate a blowup formula, relating the K-theoretic Donaldson invariants of a surface S
and its blowup Sina point.

(5) We show that the Witten conjecture is also a consequence of Conjecture 1.

We will start by rewriting Conjecture 1. If S is a smooth projective surface with b, (S) = 0, p4(S) > 0, and
we assume that M (c1, co) consists only of stable sheaves, Conjecture 1 says that x* (M (c1, c2), (L)) =

Coeffva [Us,1¢, ()], with

92—x(0s)+K3

Kg
RN C P
ot (2) = ) |

- SW(a) (~1)% (
(1- xz)%ﬂdos) e H2(5.2) 1—xz

We get a different form of Conjecture 1 by rewriting s 1. ¢, (x).

REMARK 9.
92—x(0s)+K3 ac (Ks—a)(L—Kg) a(L—Kg)
(0.1) V8.1, () :m Z SW (a) (—1)%* (1 + z)Es s)(1 —x) )
a€H2(S,7)
Proor. Note that
L(L-K L - Ks)? Ks(L - K
W) = HEE) oy (00) = B0 y(00) + FEE S,
Thus
Kg
92-x(0s)+ K2 1 (55 -a)@-Ks) FE(L-

Vs,Le, (% - SW(a) (—1)* +z 1+z)(1—2 F KS)7

L,eq (1— xQ)X(L) 1—2x

a€H2(S,7)

67
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and the sumands on the right simplify to SW(a) (—1)2° (1 4 2)Ks=a)(L=Ks) (]  g)all—Ks), O

1. K3-surfaces

The formulas of Conjectures 1 and 3 for the K-theoretic Donaldson invariants are sums over contri-
butions of Seiberg-Witten classes. Thus the formula will be simple if the Seiberg-Witten invariants are
simple. The simplest case is that of K3-surfaces where the only Seiberg-Witten class is 0 with SW(0) = 1

Let S be a K3 surface. Then Conjecture 3 takes the following attractive and simple form.

CONJECTURE 5. Let L € Pic(S). Let H,cy,ca be chosen such that there are mno rank 2 strictly

Gieseker H-semistable sheaves on S with Chern classes ¢1,co. Then

( (1— 2272 )W 5
_vd  yir (1 mZny)(l 1:2”y 1)
yE 3 (Mg (e1, e2), p(L)) = Coeffa H (1 — 227)20(1 — 221y)2(1 — 221y~ 1)2 |’

and in particular

X (Mg (c1, e2), pl(L)) = Coeffa l(lf;)“] |

This conjecture was proven in [14] as a special case of [14, Theorem 1.5]. This is an important

general verification (i.e. for all possible Chern classes) of Conjectures 1 and 3.

2. Minimal surfaces of general type

The second simplest possiblity for the Seiberg-Witten invariants of a surface S with b,(S) = 0,

Pg(S) > 0 is when the only Seiberg-Witten classes are 0 and Kg # 0.

REMARK 10. This is true in the following two cases.

(1) Minimal surfaces of general type satisfying py(S) > 0 and by (S) =0 [29, Thm. 7.4.1],
(2) smooth projective surfaces with by(S) = 0 and containing an irreducible reduced curve C € |Kg|

(e.g. discussed in [15, Sect. 6.3]).

PROPOSITION 12. Let S be a smooth projective surface satisfying py(S) > 0, b1(S) = 0, Kg # 0,
and such that its only Seiberg-Witten basic classes are 0 and Kg. Let L € Pic(S) and let H,cy,co be
chosen such that there are no rank 2 strictly Gieseker H-semistable sheaves on S with Chern classes
c1,c2. Suppose Congjecture 1 holds in this setting. Then xV"(ME (c1,c2), u(L)) is given by the coefficient

of x¥4 of
> (14 z)Ks(L-Ks)

93— x(0s)+K2
(1= 22D

PROOF. Since SW(0) = 1, we have SW(Kg) = (—1)X(©s) [27  Prop. 6.3.4]. By Conjecture 1,
X(MEF (c1,¢2), (L)) is given by the coefficient of V¢ of (0.1), which simplifies to

227x(os)+K§

s Ks(L—Kg) _1\aaKs+x(0sg) _ Ks(L—Kg)
o [(1+2) + (-1 (1-2) |-
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Varying over ¢y, we put the coefficients of all terms 2¥¢ of 15 1, ., (z) into a generating series as follows.

Write
U8, Ler (T) =D na”.

n=0

Then for vd = vd(S, ¢1, c2) = dez — ¢ — 3x(Og), we have

Z Coeff jvacs,eq.e0) (¢37L7C1 () pvd(Siere2) Z -
- n=—c?—3x(0s) mod 4
3
1 )
= Z Zz‘k(cf%ﬁ((os))d}(ikx)
k=0
— 91=x(0s)+K3 (1+ )fsEm i) + (*l)cf+3x(os) (1 — 2)Ks(L-Ks)
(1 = z2)x(®) (1— 22)x(D)
1§ +3x(0s) (14 ig)KsE—Hs) 4 (—i)ci3x(0s) (1 — ig)Ks(L-Ks)

(1 4 22)x(L) (1+22)x@) |
where the third equality uses ¢; K = ¢? mod 2. Now define

P8, Ler (T) 1= 23—x(0s)+K§ (L4 2)fo Bt
»LhCh .

(1 — xQ)X(L)
Then
> Coeff puais.er o (5,1, () ¥ d(Sere2) = > fn "
c2 n=—c?-3x(0s) mod 4
°1
— Z 1Z"C(Cf+3x(os))qi)(ikx)
k=0
is given by the same expression as above, which proves the proposition. [l

COROLLARY 7. Let S be a smooth projective surface with b1(S) = 0 and containing a smooth con-
nected curve C € |Kg| of genus g. Let L € Pic(S) and let H,¢1,co be chosen such that there are no rank
2 strictly Gieseker H-semistable sheaves on S with Chern classes c1,co. Suppose Conjecture 1 holds in
this setting. Then x“*(ME (c1,ca), u(L)) is given by the coefficient of z¥¢ of

p-xtoe) o (LE TP
(1 —a2)x(D)

PROOF. By the adjuction formula we have Ko = (Kg + C thus 2g — 2 = deg(K¢) = 2K3Z.

e
Therefore g = K% + 1 and x(L|¢) = 1 — g + deg L|c by Riemann-Roch. Therefore the corollary follows

from Proposition 12. O

3. Disconnected canonical divisor

If the canonical divisor Kg is the union of disjoint irreducible reduced curves Kg = Cy + ... + Cpy,

then the Seiberg-Witten classes of S are sums of the C;, and the corresponding Seiberg-Witten invariants
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can be expressed in terms of the C;. This allows us to express the formula of Conjecture 1 in terms of
the connected components of Kg.

Suppose C1,...,C,, are irreducible reduced mutually disconnected curves on a smooth projective
surface S with b1(S) = 0 and py(S) > 0, and let M := {1,...,m}. Then for any I = {i1,...,ix} C M,

we define

C[ = ZCZ

icl
For I,J C M we write I ~ J whenever C} is linearly equivalent to C;. This defines an equivalence

relation. We denote the equivalence class corresponding to I by [I] and denote its number of elements

by [[I]|. We denote N¢, /s the normal bundle of C; C S. We use the following result.

LEMMA 10. [15, Lemma 3.1] Let S be a smooth projective surface with b1(S) = 0 and py(S) > 0,
and suppose C1 + -+ + Cp, € |Kg|, where C1,...,Cp, are mutually disjoint irreducible reduced curves.
Then the Seiberg-Witten basic classes of S are {Cr}icnm and

SW(Cr) = || T [ (~1)" o).
iel

Our result is the following.

PROPOSITION 13. Let S be a smooth projective surface with b1(S) = 0 and py(S) > 0, and suppose
there exists 0 # C1 + -+ + Cy, € |Kg|, where Cy,...,C,, are mutually disjoint irreducible reduced
curves. Let L € Pic(S) and let H,c1,co be chosen such that there are no rank 2 strictly Gieseker H-
semistable sheaves on S with Chern classes c1,co. Suppose Conjecture 1 holds in this setting. Then
X (M (cr,¢2), (L)) is given by the coefficient of z¥¢ of

227)(((9 s)+KZ m

£ - - Z x(Lle;) 4 Cici+h®(Neg,/s) (1 — p\x(Ele;)
(1_x2x(L)H[1+x) + (—1)Cie ci/s)(1 — x) ,

where N¢, s denotes the normal bundle of C; C S.

PRrROOF. By Lemma 10 equation (0.1) becomes

92-x(0s)+K3

a m2 R I <Z| H h (Ng, /S)) (_1)0101(1 + x)CAI\I(L_KS)(l _ x)CI(L—KS)

el

22 x(O +KS o
= T 2 | e e q—g @@ (T (14 a@ e
1—.2? X ’

IcM \iel ieM\I

where we used Kg = C); and the assumption that the curves C; are mutually disjoint, which implies
that

=Y C?=CiKs, CiKs=C}.
icl
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On the other hand expanding the product in the statement of the proposition we get

—

[(1 4 )X(Eley) 4 (1) Cierth®Ney s) (1 — z)xmci)}

=1

— Z (H(_l)Ci01+h0(NCi/S)(1_x)ci(L—Ci)>< H (1+x)Ci(L—Ci)>7

IcM \iel i€ M\I

and the result follows. O

4. Blow-up formula

A very important role in the understanding of the Donaldson invariants was played by the blowup
formulas which relate the Donaldson invariants of a surface S and its blowup Sina point. We show

that for the K-theoretic Donaldson invariants a simple blowup formula follows from Conjecture 1.

PROPOSITION 14. Let S be a smooth projective surface, w : S — S the blow-up of S in a point, and

E the exceptional divisor. Let L,c; € Pic(S), ¢1 = n*c1 — kE, and L=n*L —(E. Then
1 41
Vs ze @ =5(1- 222D [+ 2) + ()R = )] Ysp e (2).

Thus if S is a smooth projective surface with b1(S) = 0, pg(S) > 0 and Conjecture 1 is true for
Mg(El,CQ), then

X @1, e2), p(E)) = COefl s e | 5 (1= 75 [ ) (S1R(1 = )7 g 0 (2)

PrROOF. The Seiberg-Witten basic classes of S are m*a and 7*a + E with corresponding Seiberg-
Witten invariant SW(a), where a runs over all Seiberg-Witten basic classes of S [29, Thm. 7.4.6]. Using
x(0g) = x(0s), Kg =1"Kg + E, E* = —1, (L) = x(L) — (%1), the proposition follows at once from

equation (0.1) on pg. 67. O

5. Witten conjecture

Let S be a smooth projective surface satisfying b1 (S) = 0 and p,(S) > 0. Now we want to show
that Conjecture 1 implies the Witten conjecture (Theorem 1) for algebraic surfaces, which had been
proven in [19]. This can be be viewed as additional evidence for Conjecture 1, and it also illustrates that

Conjecture 1 is indeed a K-theoretic version of the Witten conjecture.

PROPOSITION 15. Let S be a smooth projective surface satisfying b1(S) = 0 and py(S) > 0. Then

Conjecture 1 implies

2
22—X(Os)+K§(_1))((05)4—01(01—]{5)/2 exp ((CI(QIJ) )x2)

L vd
/ M = Coeff ;va
[Mé‘l(clyc2)]vir Vd.

3 (~1)TSW (a) exp (((Qa - Ks)cl(L))z)},

a€H?(S,Z)



72 5. APPLICATIONS

i.e. the Witten conjecture (Theorem 1).

PROOF. By the Virtual Riemann-Roch Theorem 5, putting M = M (cy,cs), we get for all n € Z

(writing the Picard group additively)

(M, p(nL)) = /[M]m exp (ne1 (u(L)) (T3,

We can write td(Ty}") = 1 + Z;ﬁl t; with t; € H*(M,Q). Therefore we get that xV'*(M, u(nL)) is a

polynomial of degree vd in n whose leading term is n¥4 f[ M]vir %. Thus we get
S _ c1(u(L))"

On the other hand we can also compute this limit from Conjecture 1. It is standard that

lim (1+ 2)" = lim

n—»00 n n—oo (1 — %)”

= exp(z).
Thus we get by Conjecture 1 that

1 .
Jim e x (M, p(nl))
_ ‘e
92—x(0s)+K3 14z (T—a)(nL—KS)
= lim Coeff va — iR SW(a) (—1) (1 ;z)
n—o00 ( _ %)72 +x(0s) acH?(S,7) -
_ e
92-x(0s)+K2 14 2\ (5-a) L)
= lim Coeffpva | ———% Z SW (a) (—1)% (1 Z)
e _( - %) a€H?2(8,2) T n

2 L?
= Coeffva |22 X(O)HEKs oxp <2zz:2> Z SW(a) (—1)** exp((Kg — 2a)Lzx)
a€H?(S,Z)



CHAPTER 6

Examples

1. K3 surfaces

Let S be a K3 surface. Let H be ample on S and let L be a line bundle on S. We assume that
ME (¢1,¢2) consists only of stable sheaves. Note that in this case M (cy,cz) is nonsingular of the

expected dimension vd = 4¢y — ¢ — 6, so that

X (ME (c1,02), (L)) = X(ME (c1,¢2), (L)), XV5(ME (c1,¢2), (L)) = x—y(ME (c1, ¢2), u(L)).

As mentioned in Chapter 5 Section 1, Conjectures 1 and 3 have been proven in this case in [14].

All the same, we also calculate the numbers x(ME (c1,¢2), u(L)) directly by applying Corollary 3
on page 35 and our explicit knowledge of the universal functions Ay, ..., A1, and A;(y),...,A11(q) as
described in Chapter 4, Section 6. The easiest way to satisfy all assumptions of Corollary 3 is by choosing
c1 and H such that ¢;H > 0 is odd. Under this assumption we computed x(ME (c1,c2), u(L)) for all
L € Pic(S) for ¢; with ¢2 = 0,2,...,20 and ¢ chosen in such a way that vd(S,ci,cy) < 14. For the
X—y-genus we did the corresponding calculation for ¢} = 0,2,...,20 and co chosen in such a way that

vd(S, c1,c2) < 11. In all these cases Conjectures 1 and 3 were confirmed.

2. Blowup of K3 surfaces

Let S be the blow-up of a K3 surface in a point, with exceptional divisor E. Again we choose H and
c1 so that all sheaves in M (cy, ca) are stable. Let m : S — Sp be the blowup map. Under this assumption
we computed V(M (c1,c2), (L)) for any L and for ¢; = 7*C + rE such that C? = —4,-2,...,10,

r=-2,—1,...,2 and vd < 15. In all cases we get that

X (ME (e1, ¢2), (L)) = Coeff va

L2_LE

(1-22)"5

(1+$)LE+1
2|

Note that the only basic classes of S are 0 and E with Seiberg-Witten invariants SW(0) = SW(E) = 1.
As Ks = E, K% = —1 and x(Os) = 2, the formula above therefore coincides with the prediction of
Conjecture 1.

We also compute X‘f;(MgI(Cl,CQ),/L(L)) for ¢; = 7*C + rE such that C? = —4,-2,...,14, r =
—2,—1,...,2, and vd < 10, confirming Conjecture 3.

73
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3. Elliptic surfaces

Let En — P! be a non-trivial elliptic surface with section, 12N > 0 rational nodal fibres, and no
other singular fibres. Then the canonical class is given by Kg,, = (N — 2)F, where F' denotes the class
of the fibre. Note that x(Og,) = N. Choose a section B C S, then its class satisfies B> = —N.

We assume 1 > 2, then E(n) has a smooth canonical divisor which has N — 2 connected components
F}; each a smooth elliptic fibre of S. The Seiberg-Witten classes are the {F with 0 <[ < N — 2 and
SW(IF) = (—1)'(",?).

For N = x(Og) = 3,4,...,7, we compute XVir(MgN (c1,¢2),u(L)) for ¢4 = mB + nF where B is
the class of a section, F' is the class of a fibre, for m = —1,0,1,2, n = —2,—1,...,5, and vd < 12.
Conjectures 1 and 3 are confirmed in all these cases.

In fact as mentioned above Kg, is the sum of N — 2 smooth elliptic fibres F; and it is easy to see
that we have h°(Np, /g, ) = 1 and x(L|p,) = LF;. We write Q = L?, w = LF. Then our results confirm

the prediction of Proposition 13, which takes the form

22—N

N—2
X (M (mB +nF,c3), p(L)) = Coeffva 1= 2D H [(T+2)" = (=1)™(1 - 2)"]
j=1

For instance, if we assume that N > 3 and L - F = 0, then the result simplifies to

Coeﬁ‘xvd [m] m Odd,

XVir(MgN (mB =+ nF7 02)7”([’)) =
0 m even.

Using our explicit determination of A (y), ..., A11(y) we also confirmed Conjecture 3 for x** (M (c1,¢2), u(L))

for N =3,4,5, ¢c; =mB+nF with m=-1,0,1,2, n=-2,—-1,...,10, and vd < 9.

4. Minimal surfaces of general type
We verify Conjectures 1 and 3 for two cases of minimal surfaces S of general type.

(1) S is a double cover of P? branched along a smooth octic,

(2) S is a smooth quintic in P3.

4.1. Double cover of P2. Let

TS — P2

be a double cover branched over a smooth curve C' of degree 8. Then Kg = L, where L is the pull-back

of the class of a line on P2. These surfaces satisfy b1(S) = 0. It is easy to calculate
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The canonical linear system |Kg| contains smooth connected canonical divisors. Let ¢; = eL. We apply
Corollary 3 to the universal functions A;. The Seiberg-Witten basic classes are 0, Kg # 0 with Seiberg-
Witten invariants SW(0) = 1, SW(Kg) = (—1)X(©s) = 1. We first take H = L as the polarization on

S. Then conditions (ii), (iii) of Corollary 3 require
e H =2 >4 =2KsH,
i.e. € > 2. If e = 2k is even, we choose ¢y such that
1
561(01 —Kg)—ca=¢€(e—1) — co.

Then by [21, Rem. 4.6.8] the moduli space M¥ (cy,c) only consists of stable sheaves.

Now assume that € = 2k 4+ 1 is odd. If L generates the Picard group of S, then there are no rank 2
strictly p-semistable sheaves with Chern classes €L and co. In general the Picard group of S can have
more generators, but L is still ample and primitive. In this case we take the polarization H general and
sufficiently close to L (i.e. of the form nL + H for n sufficiently large), so that conditions (ii) and (iii)
of Corollary 3 still hold when € > 2, and so that there are no rank 2 strictly p-semistable sheaves with
Chern classes €L and cs.

We verified Conjecture 1 when ¢;-Kg = 0,1,...,10,¢? =0,1,...,30, and vd < 12. As |Kg| contains
a smooth connected curve the result is given by Proposition 1: For A € Pic(S), we put w = LA, Q = A?;
then we have

LA-2
KO (M (L, ), 1(A)) = Coeff 1y sca1s [2 (1+o) ]

As an illustration we write down the formula for a couple of examples. p-stability is invariant under
tensorizing by a line bundle.Therefore we know that M (2, L, ) is isomorphic to M (2, (2k+1)L, c2 +
2(k* + k).

xVir(Mg(L, 4),u(A)) = w? — 6w+ Q + 14,

: 1 7 1 67 5 91 1 79 3038
vir MH L 5 A — 6 __ " 5 il el 4 Y el 3 - N2 oY 2
XEME (L,5), 1(A)) = 0® — w4 (520 + g0 ut = (3Q + 5w + (307 + HQ+ 20w
3 o, 65 2317 1 4 5 185
We also verified Conjecture 3 for ¢; such that ¢;-Kg = —2,—1,...,2, ¢} = —16,—15,...,—6, and vd < 9.

In particular we get with the notations above

X (ME (L, 4), p(A)) = Q + w? — 6w(1 +y) + (14 + 92y + 14y?).
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4.2. Quintic hypersurface in P3. Let S be a smooth surface of degree 5 in P3, then
Ks=1,

where L is the hyperplane section. Moreover Sy is simply connected by the Lefschetz hyperplane theorem.

It is easy to compute that

The hyperplane section H on S is very ample so |Kg| contains smooth connected canonical divisors. We
test Conjecture 1 using Corollary 3.

We take H as polarization and put ¢; = eH. We assume that S is very general, i.e. in the
complement of countably many closed subvarieties in the projective space of hypersurfaces of degree 5,

such that Pic(S) = ZH by the Noether-Lefschetz Theorem. For

e H = 5¢ > 10 = 2KgH,

c1H = 5¢ odd, or S very general and € odd

there are no rank 2 strictly p-semistable sheaves with first Chern class ¢;, and conditions (ii), (iii) of

Corollary 3 are satisfied. We assume that both € is odd and
c1H =5e>10=2KgH.

Then there are no rank 2 strictly y-semistable sheaves with first Chern class ¢; and conditions (ii), (iii) of
Corollary 3 are satisfied. We consider the case ¢; = 3H and vd < 8. Using (dH)? = 5d?, (dH)Kg = 5d,

Xx(Og) =5, Conjecture 1 and Proposition 1 give the prediction

(1 + I)S(dfl)

XVir(Mé{(Q'H: c2), p(dH)) = Coeff 1500 8(1 _ $2)g(d2,d+2) ’

and we get

. 1
Xﬁ%Mg@HJQMAMﬂ):50%&f—5%mF+UW%f—Q&ﬂQ+I%Q

_ 120625 o 241250 7785425 4 790975

. 849625
vir AfH (3H L 40), u(dH)) = d® d’ d% — 122375d° d* d?
13599230 757390
+—53 d? - d + 25520,

confirming this prediction. Assuming the strong form of Mochizuki’s formula holds (Chapter 2, Remark

2), we also verified Conjecture 3 for c1,cy such that ¢; - Kg = 2,3,...,6, ¢ = —16,—15,...,—3, and



5. BLOWUPS OF THE ABOVE SURFACES 7

vd < 7. In particular we get the following refinement of the formula for x¥*(M# (3H,16), u(dH)) above

. 1
XY (ME (3H,16), u(dH)) = 3 ((1450d4 — 580043 (1 4 ) + d?(10730y> + 37700y + 10730

— d(9860y> 4 60100y* + 60100 + 9860)) + (1280 4 11440y + 27280y2 + 11440y> + 1280y%).

(Recall that by definition X"ir(Méq(cl7 c2),u(L)) = x¥ir (Mg(cl, ca), u(L))|y:0).

~y
5. Blowups of the above surfaces

Finally we deal with the blowups up all the surfaces considered above in a point: For x¥'* (M (c1, ¢2), u(L))
we confirmed Conjecture 1 in the following cases, getting in each case the formula obtained in Proposition

14.

(1) S is the blow-up of a K3 surface in two distinct points, ¢; = 7*C + €1 E; + eaEo such that
C?=-2,0,...,6, €,es =0,1, and vd < 10.
(2) S is the blow-up of an elliptic surface of type E3 (see Section 3) in a point, ¢; = 7*C + ¢E such
that CKg = —1,0,...,4, C?2 = —4,-3,...,10, e = 0,1, and vd < 12.
Assuming the strong form of Mochizuki’s formula holds (Chapter 2, Remark 2), we also verified Conjec-
ture 1 in the following cases:
(3) S is the blow-up of a quintic in P? in a point, ¢; = 7*C + €E such that CKg = —5,—4,...,5,
C?=-4,-3,...,8,¢=0,1, and vd < 10.
Applying the same method and using our explicit expansions of A1 (y,q), ..., A11(y, q), we verified
Conjecture 3 in the following cases:
(1) S is the blow-up of a K3 surface in two distinct points, ¢; = 7*C + €1 E1 + €2 F5 such that
C? =-2,0,...,6, 1,63 = 0,1, and vd < 10.
(2) S is the blow-up of an elliptic surface of type E3) in a point, ¢; = 7*C + €E such that
CKg=-1,0,...,4,C? = —16,—15,...,0, e = 0,1, and vd < 9.
Assuming the strong form of Mochizuki’s formula holds (Chapter 2, Remark 2), we also verified
Conjecture 3 in the following cases:
(3) S is the blow-up of a smooth quintic in P? in a point, ¢; = 7*C + €F such that CKg = 0,

C?=-23,-22,...,—14,e=0,1, and vd < 4.






Appendix

In this appendix we will show some explicit computer computations. We restrict our attention to
the non-refined K-theoretic Donaldson invariants. First we list the Pari/GP program that computes
the instanton part of the partition function Zg(L,a,c1,s,q) for the nonrefined K-theoretic Donaldson
invariants. In the second part we list the beginning terms of the 11 universal power series A1, ..., A11,
such that

. 2 2
Zs(L,a,Cl,S,q) _ A%QAgaAngZCIAglA501A$KsAngAgleAﬁsA)fl(OS)-

Pari/gp program for K-theoretic Donaldson invariants

HH=H+0(H"25) ; \ps 31;par=vector(31);p=vector(32);r=30;ss=s+0(s740);

pl11=1;p[2]=1;p[3]1=2;p[4]1=3;p[5]1=5;p[6]1=7;p[7]1=11;p[8]=15;p[9]1=22;p[10]1=30;p[11]1=42;p[12]=56;
pl131=77;p[14]1=101;p[15]1=135;p[16]1=176;p[17]1=231;p[18]=297;p[19]1=385;p[20]=490;p[21]= 627;
pl[22]1=792;p[23]1=1002;p[24]=1255;p[25]1=1575;p[26]1=1958;p[27]1=2436;p[28]=3010;

p[29]= 3718;p[30]= 4565;p[31]=5604;p[32]=6842;

/*This computes a vector of partitions of nx*/

part (n)={global(k);

k=1;

11=max(31,n);111=max (5605,p[n+1]);

P=vector (111) ;B=vector(11l);

partO(n,n,1,B) ;print (k) ;

P};

partO(n,m,i,B)={global(k);

if (n>0,

for(j=1,m,if(j<=n,B[il=j;part0(n-j,j,i+1,B);if (j==n,k=k+1))),P[k]=B)};

for(n=0,30,par[n+1]=part(n));

/*for ideal (y~(b0),xy"(bl)\ldots) in Hilb"n(A~2,0), given by a partition b, and an action
on cordinates with weights u,v, compute the Equivariant todd genus of tangent space

T_b Hilb n(A"2)\otimes 0(t)*/

79
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totchil(u,v,b,t) ={local(fin,bb,s,i,j,al,a2,ee);
fin=1;

for(i=1,r,bi=b[i];

for(j=i,r,bj=b[jl;bje=b[j+1];

for(s=bje,bj-1,

al=(ux(i-j-1)+v*(bi-s-1)+t);
a2=(ux(j-1)+v*(s-bi)+t);

if (al==0,fin=fin,fin=fin*al/(1-exp(-al)));

if (a2==0,fin=fin,fin=fin*a2/(1-exp(-a2)));)))

;fink;

/*for an ideal sheafs I_a,I_b supported in O, given by partitions a,b,
with weights of local coordinates u,v, compute
contribution at the fixpoint to

todd(Ext~1_loc(I_a,I_b)\otimes 0(t))*/

totchiab(u,v,a,b,t)={local(el,fin,s);fin=1;

for(i=1,r,bi=b[i];ai=al[i];

for(j=i,r,bj=bl[jl;aj=aljl;aje=alj+1];

for(s=aje,aj-1,al=(u*(i-j-1)+v*(bi-s-1)+t);if (al==0,fin=fin,fin=fin*al/(1-exp(-a1))))));
for(i=1,r,bi=b[i];ai=alil;

for(j=i,r,bj=b[jl;aj=aljl;bje=b[j+1];

for(s=bje,bj-1,al=(u*(j-i)+v*(s-ai)+t);if (al==0,fin=fin,fin=fin*al/(1-exp(-a1))))));

fin};

/*for ideal (y~(b0),xy"(bl),\ldots) in Hilb"n(A"2,0), given by a partition b, and an action
on cordinates with weights u,v, compute the Equivariant eulerclass of tangent space

T_b Hilb n(A"2)*/

denomm (u,v,b)={local(el,fin,s);fin=1;

for(i=1,r,bi=b[i];

for(j=i,r,bj=b[jl;bje=b[j+1];
for(s=bje,bj-1,fin=fin*(u*(i-j-1)+v*(bi-s-1))*(u*x(j-i)+v*(s-bi)))));

fin};
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/*for a subscheme Z_a given by partition a at fixpoint with weights of local coordinates
u,v compute Eu(0_{Z_a))\otimes 0(t)*/

0Z(u,v,a,t)={local(el,fin,i,j);fin=1;

for(i=0,r-1,for(j=0,ali+1]-1,fin=Ffin* (uxi+v*j+t)));

fin};

denomabt (u,v,a,b,t)={local(el,fin,s) ;fin=1;
for(i=1,r,bi=b[i];ai=alil;
for(j=i,r,bj=bljl;aj=aljl;aje=alj+1];
for(s=aje,aj-1,fin=fin*(u*(i-j-1)+v*(bi-s-1)+t))));
for(i=1,r,bi=b[i];ai=ali];
for(j=i,r,bj=b[jl;aj=aljl;bje=bl[j+1];
for(s=bje,bj-1,fin=fin*(u*(j-i)+v*(s-ai)+t))));

fin};

/*This computes to contribution to the instanton part of the
the partition function for one fixpoint on the surface, where the weights of

the action on the coordinates are u,v*/

ZchilL(u,v,nn,aal,xi,L,s)={local(el,e2,fin) ;fin=0;
for(N=0,nn,e2=0;print (N) ; eeL=exp (HH* (N- (xi/2+s) "2/ (u*v) ) *L) ; /*ch (\mu (L) */
for(n=0,N,
m=N-n;
for(11=1,pl[n+1],
PP=par [n+1] [11];
for(12=1,p[m+1],
QQ=par [m+1] [12];
el=1;el=e1*0Z(u,v,PP,aal)*0Z(u,v,QQ,2*s+xi+aal)*totchil (u,v,PP,0)*totchil (u,v,QQ,0);
el=el*totchiab(u,v,PP,QQ,xi+2*s)*totchiab(u,v,QQ,PP,-xi-2%*s);
el=el/(denomm(u,v,PP)*denomm(u,v,QQ)*denomabt (u,v,PP,QQ,xi+2*s)*denomabt (u,v,QQ,PP,-xi-2%s));
e2=e2+e1)));
fin=fin+(e2*eel+0(q~ (10*nn+20)))*x"N; );

fin+0(x" (nn+1))}

/*0n P2 compute the instanton part of Mochizuki formula for chi(M(cl) ,mu(L))
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for SW al*H, xi=(c1-2al)*H,line bundle L*H, up to the Hilbert scheme of nn points */
ZchiP2L(al,xi,L,nn)={local(el,e2,fin,w0,wl,w2) ;fin=0;qq=q+0(q"~ (10*nn+20));;
w0=0;wl=1%qq;w2=19%*qq;

fin=ZchilL ((w1-w0), (w2-w0) ,nn,al*w0,xi*w0,L*w0,ss)

*Zchil ((w2-wl), (wO-wl) ,nn, (al*wl) ,xi*wl,L*wl,ss)

*Zchil (wO0-w2,wl-w2,nn,al*w2,xi*w2,L*w2,s8);
fin1=0;for(11=0,15,finl=finl+polcoeff (polcoeff (fin,11,H)+0(q),0,q)*(H"11)+0(x" (nn+1)));

fin1+0(x~ (nn+1))};

/*0n P1xP1 compute the instanton part of Mochizuki formula for
\chi(M(c1),\mu(L)) for SW all*F+al2*G, xi=xilF+xi2G=(cl-2al1*F+al2*G),
line bundle L1*F+L2G, up to the Hilbert scheme of nn points */
ZchiP11L(al11,a12,xil1,xi2,L1,L2,nn)={local(el,e2,fin,w0,wl,v0,vl);
fin=0;qq=q+0(q" (10*nn+20)) ;

w0=0;wl=1%qq;v0=0;v1=19%*qq;

fin=ZchiL ((w1-w0), (v1-v0) ,nn,al1*w0+al12*v0,xil*w0+xi2*v0,L1*w0+L2*v0,ss) *
ZchiL ((w1-w0), (vO-v1) ,nn,all*wO0+al12*v1l,xil*wO+xi2*v1,L1*w0+L2*v1,s)*
ZchiL ((wO-w1), (v1-v0) ,nn,all*wl+al12*v0,xil*wl+xi2*v0,L1*wl+L2*v0,s)*
ZchiL ((wO-w1), (vO-v1) ,nn,all*wl+al2*vl,xil*wl+xi2*vl,L1*wl+L2*v1,s);
fin1=0;for(11=0,15,finl=finl+polcoeff (polcoeff (fin,11,H)+0(q),0,q)*(H"11)+0(x" (nn+1)));

fin1+0(x" (nn+1))3};

chL=vector(11);

chL[1]=ZchiP2L(0,0,0,10);
chL[2]=ZchiP11L(0,0,0,0,0,0,10));
chL[3]=ZchiP2L(1,0,0,10));
chL[4]=ZchiP2L(0,1,0,10));
chL[5]=ZchiP2L(1,1,0,10));
chL[6]=ZchiP11L(0,1,0,0,0,0,8));
chL[7]=ZchiP11L(0,0,0,1,0,0,8));

chL [8]=subst (ZchiP2L(0,0,1,8),H,1));/*gives L"2*/
chL[9]=subst (ZchiP2L(1,0,1,8) ,H,1));/*gives allx/
chL[10]=subst (ZchiP2L(0,1,1,10) ,H,1)) ;/*gives xilLx*/

chL[11]=subst(ZchiP11L(0,0,0,0,1,0,10) ,H,1));/*gives LKx*/
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/* Change of Basis matrix from computations on P"2, P71x P"1 to the invariants
a”2, a xi, ,xi"2,aK_S ,xiK_S,L"2,a L,xi L,LK_S,K"2,chi(0_S)*/
Ac={(0,0,0,0,0,0,0,0,0,9,1;
0,0,0,0,0,0,0,0,0,8,1;
1,0,0,-3,0,0,0,0,0,9,1;
0,0,1,0,-3,0,0,0,0,9,1;
1,1,1,-3,-3,0,0,0,0,9,1;
0,0,0,-2,0,0,0,0,0,8,1;
0,0,0,0,-2,0,0,0,0,8,1;
0,0,0,0,0,1,0,0,-3,9,1;
1,0,0,-3,0,1,1,0,-3,9,1;
0,0,1,0,-3,1,0,1,-3,9,1;
0,0,0,0,0,0,0,0,-2,8,11}

BC=mattranspose (AC) "-1;

/*Compute instanton part of Mochizuki formula for surface and line bundle with
given invariants

a~2, a xi, ,xi"2,akK_S ,xiK_S,L"2,a L,xi L,LK_S,K"2,chi(0_S)

note xi=cl-2*a

*/

ZchilX(aa,axi,xixi,ak,xik,LL,alL,xiL,LK,kk,x0)={local(el);
el=mattranspose(BC*mattranspose([aa,axi,xixi,ak,xik,LL,al,xiL,LK,kk,x0]));
erg=prod(i=1,11,chL[i]~(e1[i]));

erg}
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The universal power series

As an illustration of our computations and to give an idea of the shape of the formulas, we give a

list of the universal power series in the product formula
.2 2
ZS(L,a,cl,s,q) _ A{/QAgaAngzmAglAé/mA%KsAngA&KsAﬁsA)ﬁ(Os)

for the instanton part of the partition function for the nonrefined K-theoretical Donaldson invariants.
They are listed here only modulo 2% and only the few lowest order terms in s are written (recall that we

computed the coefficients of s'=3"¢" for all n < 10, [ < 49).)
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