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1 Introduction

Four dimensional superconformal field theories (SCFT’s) with N = 2 supersymmetry have

common features with the simpler 2d SCFT’s with N = (2, 2) supersymmetry: upon

deformations away from the conformal point, both typically lead to Bogomol’nyi-Prasad-

Sommerfield (BPS) states whose mass is given by absolute value of a central charge in the

SUSY algebra which is a complex number. Both cases undergo wall-crossing where the

number of BPS states change [1–3]. Despite the wall-crossing, one can form an invariant

from monodromy operators, ordered by the phases of the central charge, whose invariance

under wall crossing characterizes the nature of jumps in the spectrum of BPS states [1, 4, 5].

The monodromy operator is invariant up to conjugation and so its eigenvalues, captured by

the trace of its integer powers, lead to invariants of the SCFT. It was shown in [1, 4] that

the eigenvalues of the monodromy matrix capture exp(2πiQ) where Q is the U(1)R charge
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of the ground states of the theory. This result motivated the parallel question in the 4d

case [6] where the trace of the powers of the monodromy operator M(q) were computed.

It was found that if the U(1)r charges of the conformal theory are integer multiples of

1/k, then the monodromy operator to the power k acts as the identity,1 very much as in

the 2d case, and an explanation for this phenomenon was provided. More surprising was

that the trace of powers of the monodromy operator M(q) (including fractional powers of

M(q) when the theory had additional discrete R-symmetries) in many cases were related

to characters of rational 2d conformal theories including minimal models and coset models.

Furthermore it was found that insertion of line operators in the monodromy trace acts by

changing the characters of the 2d conformal theory. In addition, it was suggested in [7] that

an integer sequence of specializations of the superconformal index should lead to the trace

of various powers of the monodromy. In later work [8] it was found that, by considering

operators contributing to the Schur limit of the superconformal index, one obtains chiral

algebras in 2d, with a very specific central charge: c2d = −12c4d, where c2d is the 2d central

charge of the Virasoro algebra and c4d is the c-function of the 4d SCFT. Motivated by this,

in a recent work [9] it was shown that the Schur index specialization is equal to the trace

of the inverse monodromy operator TrM(q)−1.

One main motivation for this paper is to generalize this for arbitrary powers of N by

revisiting the specialization of the superconformal index suggested in [7]. We argue that a

modification of that proposal identifies the trace of the N -th power of the monodromy op-

erator TrM(q)N as the superconformal index I(q, p, t) with t = qpN+1 and p→ exp(2πi)

extending the N = −1 case. The N = −1 is the special case where the index is auto-

matically p-independent. For other values of N one needs to insert some operators for the

superconformal index to lead to a non-vanishing finite answer. The reason for this is that

typically there are some elements of chiral algebra which correspond to either non-compact

bosons, or fermionic zero modes which, if not absorbed, would make the index diverge

or vanish. We provide evidence for the identification of this limit of the superconformal

index with TrM(q)N by providing general arguments and also by showing explicitly that

it works for Lagrangian theories. Moreover we present evidence for the existence of a 2d

chiral algebra AN and construct this chiral algebra in the limit of the extreme weak cou-

pling. For non-Lagrangian theories we broaden the scope of examples studied in [6] and

identify the corresponding chiral algebras for a number of Argyres-Douglas type theories.

There are two notions of central charge one can associate to these chiral algebras: one is

the Casimir of the vacuum character, which leads to

c2d = 12Nc4d, (1.1)

generalizing the Schur index case with N = −1. The other one is the growth in the number

of chiral algebra elements of given level which leads (when c4d− a4d > 0 which is the more

typical case)

c2d
eff =

{
−48N(c4d − a4d) for N < 0

12Nc4d for N > 0.
(1.2)

1More precisely it commutes with the line operators.
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The equality c2d ≡ c2d
eff for N > 0 is consistent with TrM(q)N being a character of a unitary

2d CFT in this case, as found in various examples [6].

We also consider partial topological twisting of 4d N = 2 superconformal theory on S2

with 1
2N units of U(1)r flux. This leads to (0, 2) supersymmetric theories in 2d. Studying

the (0, 2) elliptic genus of these theories leads essentially to the same expression for the

integrand as in the above specialization of the index. However, while one uses the Jeffrey-

Kirwan residue prescription to compute the elliptic genus, in the index case the integral

is over the unit circle. In addition one finds that (for N > 0) the central charge of the

2d theory is 12Nc4d. For N < 0 one obtains instead the c2d
eff as the central charge of the

resulting 2d theory.

It turns out that there are two competing versions of the Kontsevich-Soibelman opera-

tor: one involves the compact version of the quantum dilogarithm, which is the main focus

of the present paper, and the other one uses the non-compact version of it. The trace of the

N -th powers of the non-compact version of the monodromy is related to compactifying the

4d theory on S1 × S3 where as we go around the circle S1 we twist by exp(2πiN(r −R)),

and computes its partition function on the squashed S3. This is the connection proposed

in [6] for the non-compact version.

The organization of this paper is as follows: in section 2 we review the relation between

the elliptic genus of (2, 2) theories and the BPS monodromy. In section 3 we discuss the

4d case and outline the argument for the connection between the BPS monodromy and

specializations of the superconformal index as well as its compactification on S1 twisted by

U(1)r charge. In section 4 we discuss the 4d N = 2 models with a Lagrangian description.

In section 5 we study the compactification of the theory on S2 × T 2 with U(1)r flux

through S2 for the Lagrangian models. In section 6 we discuss how the traces of the

monodromy operators are formulated and computed. In section 7 we give a number of

examples for Argyres-Douglas theories. In section 8 we present some concluding thoughts.

Some technical discussions are postponed to the appendices.

2 Review 2d case

Consider a (2, 2) superconformal theory in 2 dimensions. Let J0, L0 denote the left-moving

U(1)L R-charge and left-moving Hamiltonian L0 = H − P in the NS sector. Let HL =

L0 − 1
2J0 be the Hamiltonian in the R-sector, and similar quantities for the right-movers.

The superconformal index, which can be viewed as the Witten index, in this case is known

as the elliptic genus and is given by

Zell(z, q) = Tr(−1)F zJ0qHLqHR . (2.1)

The elliptic genus is independent of q since HR = {QR, Q†R} and QR commutes with J0, HL.

Let us consider the specialization of this elliptic genus to

z = exp(2πiN) , (2.2)

where N is an integer. Then Zell will become independent of q because in this limit also

QL commutes with zJ0 = exp(2πiNJ0) (as it carries J0 charge 1). So in this limit the
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partition function becomes just a number. Moreover since it is independent of q and q we

can compute it in the limit q, q → 0 which implies that it is the index restricted to Ramond

ground states:

IN = Zell
(
exp(2πiN), q

)
= Tr ground

states
(−1)F exp(2πiNJ0) (2.3)

From this definition it is not a priori clear why IN has to be an integer, but it is. To see

this [10] note that, by a modular transformation of the torus, this computation is the same

as counting the Ramond ground states where the space is twisted by exp(2πiNJ0). Note

that if the spectrum of J0 is rational of the form r/k then

IN = IN+k , (2.4)

so the specialized indices IN compute only a finite number of independent invariants.

So far we have been studying the conformal point. Now suppose that the SCFT admits

a deformation with m supersymmetric vacua having a mass-gap. This massive deformation

of (2, 2) theory will have some BPS solitons αij with a complex valued central charge Zα
connecting the i-th vacuum to the j-th one. Associate an m×m upper triangular matrix

Mαij with 1 along the diagonal and ij entry nij , which is a signed version of the number of

solitons from i-th vacuum to the j-th (see [1] for details). Order the BPS solitons according

to the phase argZα and consider the ordered product

M =
∏
ij

T (Mαij ) , (2.5)

where T denotes the phase ordering. When one changes the parameters of the massive

theory the number of BPS states change in such a way that M simply gets conjugated. In

particular the traces of all its powers are invariant. Moreover, as shown in [1]

TrMN = IN = Tr ground
states

(−1)F exp(2πiNJ0) . (2.6)

In other words, the specialization of the superconformal index (2.3) has an extension away

from the superconformal point, which is captured by the BPS spectrum of the massive

theory. The generalization of this idea to the 4d N = 2 theory, was the motivation of [6]

which we next turn to.

3 BPS monodromy and 4d index

We now move on to the 4d N = 2 supersymmetric theories. Here again we wish to connect

the superconformal index computation to some computation when we move away from the

conformal point, i.e. as we move on to the Coulomb branch. Just as in 2d there are BPS

states, which undergo wall crossing, and we wish to connect some invariant data on both

sides.

Let us first start with the superconformal side. The superconformal index is defined

as [11, 12](see appendix B for more detail)

I(p, q, t) = Tr(−1)F pJ34+rqJ12+rtR−re−βH , (3.1)

– 4 –



J
H
E
P
1
1
(
2
0
1
7
)
0
1
3

where J12, J34 are the Cartan generators of the SO(4) ⊂ SO(4, 2) conformal group, R is the

Cartan generator of the SU(2)R symmetry of N = 2 theories and r is the U(1)r symmetry

of the conformal theory. The index can be viewed as the partition function of the conformal

theory on S1×S3 where as we go around S1 we rotate the S3 and we have turned on specific

fugacities for the R, r symmetries. The Hamiltonian H is a Q commutator, where Q is a

supercharge commuting with all operators inserted in the trace (3.1), and so the partition

function does not depend on β and for this reason we sometimes omit writing the e−βH

insertion.

It is important to understand better this geometry. For this it is more convenient to

view S1 × S3 as a complex manifold, known as the Hopf surface, with complex moduli

parameterized by (p, q) which we now describe.

3.1 The Hopf surface

Consider the space

W = (C× C− {0, 0})/Z , (3.2)

where the generator of Z acts as

(z1, z2)→ (qz1, pz2) , (3.3)

with 0 < |q|, |p| < 1. W is a complex manifold which is topologically S3 × S1. To see this,

view S3 as the loci in the complex 2-plane where 1 = |w1|2 + |w2|2. Now consider the map

f : S3 × R→ C× C− {0, 0} , (3.4)

defined by {(w1, w2), t} 7→ (z1, z2) = (qtw1, p
tw2). This map is a bijection. To see this note

that given any (z1, z2) there is a unique {(w1, w2), r} which maps to it, i.e. the unique2 t

such that |z1/q
t|2 + |z2/p

t|2 = 1. To get W , note that modding out by Z simply identifies

t ∼ t+ 1, and thus W has the topology of S3 × R/Z ≡ S3 × S1.

The Hopf surface W contains two natural tori: consider z1 = 0 (which corresponds

also to w1 = 0). Over this point the manifold is given by z2 ∼ pz2 which defines a torus

with complex structure given by p. Similarly over the point z2 = 0 (which corresponds to

w2 = 0) we get z1 ∼ qz1 which defines a torus with complex structure q.

Note that if you delete the circle given by w2 = 0 (i.e. the circle |w1|2 = 1) from S3,

you get a non-compact space which has the topology of

1

2
S3 × S1, (3.5)

where 1
2S

3 has the topology of a solid torus: C× S1.

2To see that such t is unique, note that |z1/q
t|2 + |z2/p

t| is a monotonic function of t which varies in

the range (0,∞) for t ∈ R.
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3.2 A specialization of the 4d index

We now consider the specialization of the 4d index by setting t = qpN+1. This leads to

I ′(p, q) = Tr(−1)F pN(R−r)pJ34+RqJ12+R . (3.6)

There are two special cases of this specialization: if N = 0, this partition function is the

same as the partition function on the Hopf surface of the N = 2 theory with Witten’s

topological twist [13], because in the topologically twisted theory the SO(4) generators are

J ′12 = J12 +R and J ′34 = J34 +R. In this case the partition function should not depend on

the metric nor the complex structure of the manifold, and so the partition function (3.6)

with N = 0 does not depend on p, q. For N = −1 we get the Schur limit of the index studied

in [14, 15] which is expected to give a reduction of the index to the partition function of a

2d chiral algebra [8]. In that limit the index will not depend on p but will still depend on

q and is characterized by a chiral algebra. For other values of N we have an object which

a priori depends on both p, q. It can be interpreted as the topologically twisted theory on

S1 × S3 where in addition as we go around the S1 we mod out by the action of pN(R−r).

In other words, in addition to the usual twist we have introduced a chemical potential for

the (R − r) charge. This is very similar to the 2d case where we inserted zJ0 . Here R − r
plays the role of J0. Just as in the 2d case we need a further specialization to connect to

BPS spectra: thus we further specialize p→ e2πi, i.e. we define the index

IN (q) = Tr(−1)F e2πiN(R−r)e2πi(J34+R)qJ12+R . (3.7)

Note that this specialization can only be realized as a limiting instance of the Hopf surface.

In particular the torus over w1 = 0 degenerates. Over w1 = 0 there are two circles which

form a torus: one is the circle w2 → w2 p
t+φ. The other is w2 → w2 e

iθ. In the limit

p → e2πi the size of the circle corresponding to phase of w2 is much bigger than that of

the circle t → t + φ. If we wish to keep the size of t-circle finite, we effectively make w2

infinitely large, and so the corresponding circle cannot shrink. This effectively deletes the

point w2 = 0 where the corresponding circle would have shrunk from the geometry. Thus,

we get an 1
2S

3 × S1 geometry in this limiting case. View the 1
2S

3 as
(
w1,

w2
|w2|
)

= C × S1.

As we go around S1 we mod out this geometry according to

t→ t+ 1 :

(
w1,

w2

|w2|

)
→
(
qw1,

w2

|w2|

)
. (3.8)

In other words we have a Melvin cigar geometry. This is the geometric part of the interpre-

tation of the IN (q). This is also accompanied with the Witten twist due to the R action.

But now the action is not purely topological because, as we go around the circle, we have

in addition the action of the operator e2πiN(r−R) . In other words we have a geometry of

the form

W ′ = S1
q,N(R−r) × S

1 × C , (3.9)

where the notation S1
q,N(R−r) means that as we go around that S1 we both rotate C by q

and has a fugacity action by e2πiN(R−r).

– 6 –
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3.3 BPS mondromy and the specialized index

If we consider a deformation of a N = 2 SCFT in d = 4 to its Coulomb branch, we find

a tower of BPS states. This tower of BPS states can change as we move in the Coulomb

branch as we cross walls of marginal stability [2, 3], as was shown in [5] (and its refinement

in [16, 17]). If one consider an ordered product of BPS states, ordered by their central

charge phases, where each BPS particle of helicity s and charge γ contributes the factor

Zγ =

∞∏
n=0

(1− qn+ 1
2

+sXγ)(−1)2s
(3.10)

to the monodromy operator

M(q) = T

(∏
γ

Zγ
)
. (3.11)

Here Xγ form a quantum torus algebra T:

XγXγ′ = q〈γ,γ
′〉Xγ′Xγ γ, γ′ ∈ Γ (3.12)

and 〈γ, γ′〉 ∈ Z is the electro-magnetic symplectic pairing on the lattice Γ of conserved

charges. M(q) is a wall-crossing invariant up to conjugation. There is another version of

M(q), closely related to the above operator, which is also invariant [6]: one replaces the

compact quantum dilogarithm (3.10) with its non-compact version

Znc
γ = Zγ(q,Xγ)/Zγ(q̂, X̂γ) (3.13)

where now Xγ and X̂γ form a dual pair of quantum torus algebras

XγXγ′ = q〈γ,γ
′〉Xγ′Xγ XγX̂γ′ = X̂γ′Xγ , X̂γX̂γ′ = q̂−〈γ,γ

′〉X̂γ′X̂γ , (3.14)

related as follows

q = e2πiτ , Xγ = eixγ ,

q̂ = e−2πi/τ , X̂γ = eixγ/τ
with

[
xγ , xγ′

]
= −2πiτ 〈γ, γ′〉. (3.15)

As one can see this is very similar to the 2d story. The main difference is that now

the monodromy operator depends on a parameter q. In the above definition of M(q)

it would be natural to include also the massless BPS state, namely the photons of the

Coulomb branch. They would correspond to γ = 0 and s = ±1/2 leading to η−2r(q)

additional factor to M(q). More precisely we need to delete a zero mode (corresponding

to n = 0, s = −1/2) to get that. This will be important to keep in mind. We shall write

M(q) for the monodromy M(q) dressed by the massless photon factor.

An explanation of this result was provided in [6] as follows: consider an N = 2 theory in

4 dimensions. Compactify it on the Melvin cigar which is the geometry S1
q×C where as you

go around S1 you rotate C by multiplying it by q. One obtains a theory in 1d with 4 super-

charges. In terms of supersymmetric quantum mechanics (SQM) data, this theory has in-

finitely many vacua and the analog of the finite dimensional matrix contribution to the mon-

odromy operator [1], gets promoted to the operator Zγ given in (3.10). One can view the
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parameter q as a regularization of the computation.3 Thus consider the following geometry:

S1
N(R−r) × S

1
q × C. (3.16)

This gets naturally interpreted as follows [6]: we compactify the theory from 4d to 3d on

a circle where we turn on the global symmetry g = exp(2πiN(r − R)) as we go around

the circle. Then we obtain a 3d theory. If we consider the partition function of this 3d

theory on 1
2S

3 this would give us the trace of the monodormy operator to the N -th power.

To make the theory compact, and completing the 1
2S

3 to S3, we proceed in two different

ways. One way is simply to consider the squashed partition function on S3 [19] where

the R-twisting needed to define it is inherited from the 4d SU(2)R symmetry (rather than

the one natural from 3d SCFT perspective). This gets identified with the trace of the

non-compact version of the monodromy operator M(q)nc made of non-compact quantum

dilogs. This was already suggested in [6] and will not be the main focus of this paper.4

However to connect to the index it is best to modify this construction slightly and com-

pactify to S3 differently: we first compactify the theory on C which is the cigar geometry

with the usual topological twisting. This leads to a 2d theory with (2, 2) supersymmetry

due to the non-trivial cigar geometry. This geometry has an extra U(1) symmetry involving

rotation of C. In this reduced theory we can consider the 2d BPS monodromy, but keep

track also of the extra U(1) symmetry of the BPS solitons by weighting them with qcharge.

This will lead again to the Zγ factors in eq. (3.10). In other words, we consider instead

S1
q,N(R−r) × S

1 × C, (3.17)

but this is precisely the geometry W ′ that our limiting case of the index computes. We

thus conclude

TrM(q)N = Z(S1
q,N(R−r) × S

1 × C) = IN (q) = I(p, q, t)
∣∣
t→qpN+1, p→e2πi . (3.18)

This is essentially the connection anticipated in [7] with a minor modification. The case

N = −1, the Schur case, is a special case of this which was already conjectured and checked

in some examples in [9].

4 Lagrangian theories

The 4d N = 2 superconformal index is a refined Witten index on S3 × S1 evaluated by a

trace formula [11, 12],

I(p, q, t) = Tr(−1)F pj1−j2+rqj1+j2+rtR−re−βδ1− , δ1− = 2{Q1−,Q†1−}, (4.1)

3For a more detailed discussion of the role of q in this context, see [18].
4This is nevertheless an interesting construction because the (M(q)nc)k is strictly the identity operator

if the r charges are multiples of 1/k and so by studying this operator we can deduce what fractions appear

in the R-charges. Therefore this will only lead to inequivalent result for N mod k. In particular for all the

Lagrangian theories where k = 1 there is nothing interesting to compute in this version. This is similar to

the case of 2d for (2, 2) supersymmetric gauged linear sigma models where the R-charges are integer (or

half-integer).
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where Q1− is one of the eight supercharges in 4d N = 2 superconformal algebra (SCA),

j1, j2, R, and r label the SU(2)1 × SU(2)2 × SU(2)R ×U(1)r symmetry of 4d N = 2 SCA.

Note that J12 = j1 + j2, J34 = j1− j2. By definition the index (4.1) gets contribution from

the states annihilated by Q1−, or equivalently, states satisfying

δ1− = ∆− 2j1 − 2R− r = 0. (4.2)

We can further twist the index with fugacities µi dual to the Cartan generators Fi of the

flavor symmetry F ,

I(p, q, t, µi) = Tr(−1)F pj1−j2+rqj1+j2+rtR−r
∏
i

µFii e−βδ1− . (4.3)

The superconformal index is invariant under exactly marginal deformations. Therefore

for Lagrangian theories we can always compute the exact index in the free theory limit.

For a Lagrangian theory with gauge group G and matter in the representation ⊕i(Ri⊗RFi )

of gauge group G and flavor group F , the index is given by

I(p, q, t) =

∫
[dG] IV(p, q, t;G)

∏
i

IH(p, q, t;Ri ⊗RFi ), (4.4)

[dG] being the Haar measure of the gauge group G, IH and IV the indices of N = 2

hypermultiplets and vector-multiplets respectively. They are given by

IH(p, q, t;R⊗RF ) =
∏
w∈R

∏
v∈RF

∞∏
m,n=0

(1− zwµvt−
1
2 pm+1qn+1)

(1− zwµvt
1
2 pmqn)

, (4.5)

IV (p, q, t;G) =
∏

α∈∆(G)

∞∏
m=0

(1− zαpm+1)(1− zαqm+1)

∞∏
m,n=0

1− tpmqnzα

1− t−1pm+1qn+1zα
.

Here we introduced the flavor fugacity µ and gauge fugacity z. In equation (4.5) w ∈ R
(resp. v ∈ RF ) are the weights of the gauge (flavor) representation R (resp. RF ), and ∆(G)

is the set of all roots of the gauge group G (the zero root being counted with multiplicity

r = rankG). zα is a short-hand notation for zα ≡
∏r
i=1 z

αi
i . For example, for G = SU(2),

zα takes the values z2, 1, z−2.

The physical meaning of equation (4.4) is now clear. IV and IH are partition functions

of supersymmetric states of the respective multiplets. The integrand of (4.4) is the partition

function of all supersymmetric states of the given theory at zero coupling, and
∫

[dG]

projects onto the gauge singlet part of the supersymmetric spectrum.

4.1 Specialized index for the Lagrangian theory

As discussed in previous section, to relate the superconformal index to chiral algebra we

need to take a specialization of the index by setting t = qpN+1. From the equation (4.3),

the specialized index is

IN (p, q;µi) = Tr(−1)F pj1−j2+R+N(R−r)qj1+j2+R
∏
i

µFii e
−βδ1− . (4.6)
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Since the indices of Lagrangian theories are built upon indices of free hypermultiplets and

vector multiplets, it is enough to discuss these two cases.

When N = −1 the specialized index is the Schur index [14, 15] and the dependence

on p drops off automatically.

4.1.1 Insertion of Wilson loop line operators

Insertion of half-BPS operators in Schur index was discussed by [20, 21]. The line operators

discussed there preserve the supercharge Q1−+Q̃1−̇ and commute with J12 +R. These line

operators cannot be inserted in the index for arbitrary values of p, q.5 However something

remarkable happens precisely for the specializations we are interested in. Even though

Q1− has J34 + R + N(R − r) charge 0, the corresponding charge of Q̃1−̇ is N + 1, and

the operator J34 +R+N(R− r) will not commute with the supercharge Q1− + Q̃1−̇ used

to define the index in the presence of line operators (except for N = −1). Nevertheless

Q1− + Q̃1−̇ still commutes with the discrete symmetry

e2πi(J34+R+N(R−r))

which is the specialization of interest to us, p→ exp(2πi). Thus our index specializations

could have been pointed out a priori as the class of superconformal indices consistent with

the insertion of supersymmetric line operators.

For Lagrangian theories, the specialized index with insertion of Wilson line operators

in representation R and R̄ wrapping S1 and placed at antipodal points of S3 is

IN (q) =

∫
[dG] χR(q)χR̄(q) IVN (q;G)

∏
i

IHN (q;Ri ⊗RFi ), (4.7)

with IHN and IVN the specialized indices for hyper and vector multiplets which will be

discussed in detail below, and χR(q) (χR̄(q)) the character of the representation R (R̄)

which contributed from Wilson line operators. The other line operators which play an

important role later are

det(1− pU)±Adj (4.8)

with U the holonomy of gauge group along S1. For gauge group SU(k) the operator (4.8)

can be understood as a combination of Wilson line operators in fundamental and anti-

fundamental representations. One can also similarly consider insertion of ’t Hooft and

dyonic line operators, which we will not spell out here as we will not need them for the

present paper.

4.1.2 Free hypermultiplets

The 4d index of a free (full) hypermultiplet is given by

IH =
∞∏

i,j=0

(1− t−
1
2 qi+1pj+1u)

(1− t
1
2 qipju)

(1− t−
1
2 qi+1pj+1u−1)

(1− t
1
2 qipju−1)

, (4.9)

5We would like to thank Kimyeong Lee for a discussion on this point.
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with u the fugacity of U(1) flavor symmetry of a free hypermultiplet. After setting t =

qpN+1 we have

IHN =



|N |−1∏
i=0

∞∏
m=0

1

(1− qm+ 1
2 p

N+1
2

+iu)

1

(1− qm+ 1
2 p

N+1
2

+iu−1)
for N < 0,

N−1∏
i=0

∞∏
m=0

(
1− qm+ 1

2 p
1
2
−N

2
+iu
)(

1− qm+ 1
2 p

1
2
−N

2
+iu−1

)
for N > 0.

(4.10)

We can write this in terms of a theta function as

IHN = (q)−N∞
∏

− |N|−1
2
≤j≤ |N|−1

2

θ(q
1
2 pju; q)sign(N) p→1−−−→ (q)−N∞ θ(q

1
2u; q)N , (4.11)

where

θ(z; q) =
∏
i≥0

(1− qi)(1− zqi)(1− z−1qi+1) ≡ (q; q)∞ (z; q)∞ (q/z; q)∞, (4.12)

and we used the standard short-hand notations

(a)∞ ≡ (a; q)∞ :=

∞∏
k=0

(1− aqk). (4.13)

In particular, (4.11) yields the Schur index for N = −1. We see that the specialized index

IHN looks like N copies of the same object (a negative number of copies meaning, as always,

|N | copies with the opposite Fermi/Bose statistics).

To understand the specialized index from the viewpoint of operator counting, we can

check in table 8 of appendix B the indices of single letters contributing to the index. When

N < 0, we find that letters contributing to the specialized index of hypers are

∂iz∂
j
wq, ∂iz∂

j
wq̃, with i ∈ Z≥0, j = 0, 1, · · · , |N | − 1, (4.14)

where we use the notation ∂z ≡ ∂++̇ and ∂w ≡ ∂+−̇. The derivatives ∂z and ∂w contribute to

the index by q and p respectively. When N > 0, the letters contributing to the specialized

index are

∂iz∂
j
wψ+, ∂iz∂

j
wψ̃+, with i ∈ Z≥0, j = 0, 1, · · · , N − 1. (4.15)

In other words, the specialized index counts the operator q, q̃ or ψ+, ψ̃+ with arbitrary

number of derivatives ∂++̇ and up to |N | − 1 derivatives ∂+−̇.

It is clear from the equation (4.10) that the specialized index of a free hypermultiplet

IHN is the same as the partition function of N 2d complex bosons with spin 1
2 for N < 0.

When N > 0, the specialized index describes N 2d complex fermions with the correct

spin 1/2. In both cases, p becomes a fugacity for the U(1)p charge corresponding to the

angular momentum in the w-direction. This shows that for the specialization of the index

at t = qpN+1 there corresponds a 2d chiral algebra AN , at least for the free theory. This

generalizes the 2d chiral algebra associated to the 4d N = 2 theories discussed in Beem
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et al. [8]. In our language, their case corresponds to picking N = −1 among all possible

choices of N . The relation between the specialized index IN and the 2d chiral algebra AN
will be discussed further in section 4.2.

It is not difficult to write down the specialized index for hypermultiplets transforming

in the representation R,

IHN (R) =



∏
w∈R

|N |−1∏
i=0

∞∏
m=0

1

(1− qm+ 1
2 p

N+1
2

+izw)

1

(1− qm+ 1
2 p

N+1
2

+iz−w)
for N < 0,

∏
w∈R

N−1∏
i=0

∞∏
m=0

(
1− qm+ 1

2 p
1
2
−N

2
+izw

)(
1− qm+ 1

2 p
1
2
−N

2
+iz−w

)
for N > 0.

(4.16)

This gives the partition function of |N | copies of 2d complex spin-1
2 bosons/fermions in

representation R.

4.1.3 Free vector multiplets

Now, let us consider the case of free vector multiplets. As we will see later, we encounter

subtle new features involving the nature of zero modes. The index of a free vector multiplet

is given by

IV =

∞∏
i=0

(1− pi+1)(1− qi+1)

∞∏
i,j=0

1− tpiqj

1− t−1pi+1qj+1
. (4.17)

After specialization to t = qpN+1, it becomes

IVN =
∞∏
i=0

(1− pi+1)(1− qi+1)
∞∏

i,j=0

1− pi+N+1qj+1

1− pi−Nqj
. (4.18)

For N ≥ 0 the denominator vanishes and the specialized index diverges. Let us first

consider the simpler case N < 0.

Negative N . When N < 0, the specialized index is

IVN =

|N |−1∏
i=1

(1− pi)
|N |−1∏
i=0

∞∏
j=0

(1− piqj+1)(1− p−iqj+1). (4.19)

It reduces to the Schur index at N = −1. The 4d letters contributing to the specialized

index of vector multiplets are

∂jz∂
|N |−1
w λ1+, ∂jz λ̄1−̇, with j ∈ Z≥0,

∂jz∂
i−1
w λ1+, ∂jz∂

i−1
w λ̄1+̇, with j ∈ Z≥0, i = 1, 2, · · · , |N | − 1 .

(4.20)

Through the state-operator correspondence, the specialized index is a partition function

over the corresponding states on S3. The prefactor
∏|N |−1
i=1 (1 − pi) represents the contri-

bution of the zero modes ∂iwλ̄1+̇ (i = 0, 2, · · · , |N | − 2). As in the hypermultiplet case,

arbitrary number of derivatives ∂z contribute to the index while ∂w contribute to the spe-

cialized index up to some finite number. The specialized index can also be interpreted as
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the partition function of |N | copies of bc-system b(i) and c(i) (i = 0, 1, · · · , |N | − 1) with

U(1)p charges ±i.
For a vector multiplet of the non-Abelian gauge group G of rank r at zero coupling

constant, the specialized index at N < 0 is

IVn (G) =
∏

α∈∆(G)

|N |−1∏
i=1

(1− zαpi)
|N |−1∏
i=0

∞∏
j=0

(1− zαpiqj+1)(1− zαp−iqj+1), (4.21)

where, as before, ∆(G) is the set of all roots of G the zero root counted with multiplicity r.

The index has a zero at p→ e2πi of order r(|N |−1), because in this limit the r Cartan

elements of ∂iwλ̄1+̇ behave as r(|N | − 1) fermionic zero modes. As we normally do in 2d,

to avoid the problem, we trace over the states with all fermionic zero modes excited. In

other words, to get a non-zero answer, we have to slightly modify the index computation

by inserting a suitable operator. Of course we need to make sure the operator we insert is

gauge-invariant. One choice we can make is the operator

O(z) = detAdj

|N |−1∏
i=1

∂i−1
w λ̄1+̇(z, 0)

 (4.22)

and consider trace over the vacuum with the above operator inserted,

O(0)|0〉, (4.23)

defined by taking the trace over the corresponding space of states. This removes the whole

prefactor
∏
α∈∆(G)

∏|N |−1
i=1 (1− zαpi) in the equation (4.21), and we get

IV,finite
N (G) =

∏
α∈∆(G)

|N |−1∏
i=0

∞∏
j=0

(1− zαpiqj+1)(1− zαp−iqj+1). (4.24)

This is the partition function of |N |−1 copies of the bc-system transforming in the adjoint

of the gauge group G.

Instead of inserting a point-like operator we can also use line operators to absorb

the fermionic zero modes: notice that the insertion of O is equivalent to computing the

specialized index with an insertion of the form

|N |−1∏
i=1

1

detAdj(1− pi−1U)
. (4.25)

We can expand this insertion in characters of G as
∑

R aR(p)TrRU , so that (4.25) can be

thought of as a generating function for certain line operators. The line operator index has

been studied in [20, 21]. In order to preserve supersymmetry, the line operators should wrap

the time circle S1 and be placed at the north and south pole of the S3. Therefore, all the line

operator indices should involve insertions of the form TrR⊗R̄U in the integral. In our case,

the representations which appear are the tensor powers of the adjoint representation. For

example, for SU(k) gauge group we can simply use the fact that k⊗ k̄ = adj⊕1 to construct

line operators which effectively insert the operator (4.25) in the index computation.
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Positive N . When N ≥ 0, there is a divergence coming from the term 1 − t−1pN+1q in

the denominator of the equation (4.17). This term comes from the contribution of ∂Nw φ̄.

Formally, the specialized index of a U(1) vector multiplet can be written as,

IVN =
N∏
i=0

1

1− p−i
N∏
i=1

∞∏
j=0

1

(1− p−iqj+1)(1− piqj+1)
. (4.26)

The 4d letters contributing to the index are as follows:

∂iwφ̄, with i = 0, 1, 2, · · · , N,
∂j+1
z ∂iwφ̄, ∂jz∂

i
wF++, with j = 0, 1, · · · ,∞, i = 0, 1, · · · , N − 1.

(4.27)

The prefactor
∏N
i=0

1
1−p−i originates from the contribution of N + 1 zero modes ∂iwφ̄. Now

we get the partition function of N complex scalars with U(1)p charges ±1, ±2, · · · , ±N
together with N + 1 bosonic zero modes.

For the vector multiplet in non-Abelian gauge group G with zero coupling constant,

formally the specialized index can be written as

IVN (G) =
∏

α∈∆(G)

N∏
i=0

1

1− zαp−i
N∏
i=1

∞∏
j=0

1

(1− zαp−iqj+1)(1− zαpiqj+1)
for N ≥ 0. (4.28)

Again there are r copies of the divergent term
∏N
i=0

1
1−p−i from the Cartan part of G in

the prefactor
∏
α∈∆(G)

∏N
i=0

1
1−zαp−i .

Under the limit p→ e2πi we get extra poles because ∂iwφ̄ contains bosonic zero modes

for each i. We remove them by taking the trace over the states with delta function inserted:∏
a∈Adj

(
N∏
i=0

δ(∂iwφ̄
a(0))

)
|0〉. (4.29)

We get

IV,finite
N (G) =

∏
α∈∆(G)

N∏
i=1

∞∏
j=0

1

(1− zαp−iqj+1)(1− zαpiqj+1)
for N ≥ 0. (4.30)

This can also be realized by insertion of line operators. It is equivalent to the specialized

index with the line operator
|N |−1∏
i=0

det(1− pi−1U)Adj (4.31)

inserted.

4.2 Chiral algebras

In this section, we provide further evidence for the existence of sectors in the 4d N = 2

SCFT described by a chiral algebra. In particular we obtain a chiral algebra AN labelled

by an integer N for the theory of free hypermultiplets and free vector multiplets. We also

describe the chiral algebra for interacting theory in the limit g → 0, by taking into account

gauge invariance. We show that the partition function of the chiral algebra is given by the

specialized superconformal index IN (q) (with operator/line operator insertions).
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4.2.1 Free theories

We call the coordinates of the plane in the 12 direction z and z̄, and the coordinates of

the plane in 34 direction w and w̄. In the discussion below, we are going to confine all the

operators in the 12 plane w = w̄ = 0.

Hypermultiplets. When N < 0, we define the following operators Qi(z) and Q̄i(z) on

the z plane,

Q(i)(z) ≡ ∂iwq(z, z̄, 0, 0) + z̄(zz̄)|N |−1−i∂
|N |−1−i
w̄

¯̃q(z, z̄, 0, 0),

Q̄(i)(z) ≡ ∂|N |−1−i
w q̃(z, z̄, 0, 0)− z̄(zz̄)i∂iw̄q̄(z, z̄, 0, 0),

(4.32)

where i runs through 0, 1, · · · , |N | − 1. Note that Q̄(z) is not defined as the complex

conjugate of Q(z). The idea behind this construction is that only q’s with limited number

of derivatives on w contribute to the specialized index and the specialized index is the same

as the partition function of |N | complex chiral bosons with wrong spin- 1
2 . At N = −1

there is no derivatives in w direction and equation (4.32) reduces to chiral fields defined by

equation (3.30) in Beem et al. [8] for a free hypermultiplet.

The QQ̄ operator product expansion (OPE) follows from the correlation function of

q(x),

q(x)q̄(0) ∼ 1

|x|2
+ · · · , (4.33)

with |x|2 = zz̄ + ww̄. From this, we obtain

Q(i)(z)Q̄(j)(0) = −Q̄(i)(z)Q(j)(0) =
δij

z
+ · · · , (4.34)

where the z̄-dependence dropped out. The OPE is chiral in z and the same as |N | copies

of 2d symplectic scalars, which gives central charge c2d = N . Therefore, the chiral algebra

for the free hypermultiplet is given by

AN (TH) =
{〈
Q(i)(z), Q̄(i)(z)

〉 ∣∣i = 0, · · · , |N | − 1
}

for N < 0. (4.35)

We indeed reproduce the partition function from the specialized index IHN =

(q)
|N |
∞ θ(q

1
2u; q)−|N |.

When N > 0 the we define the corresponding chiral fields as

Ψ(i)(z) ≡ ∂iwψ+(z, z̄, 0, 0) + zz̄(zz̄)|N |−1−i∂
|N |−1−i
w̄

¯̃
ψ+̇(z, z̄, 0, 0),

Ψ̄(i)(z) ≡ ∂|N |−1−i
w ψ̃+(z, z̄, 0, 0)− zz̄(zz̄)i∂iw̄ψ̄+̇(z, z̄, 0, 0),

(4.36)

where i = 0, 1, · · · , N − 1. Again, Ψ̄(z) is not the complex conjugate of Ψ(z). The OPE of

the 4d free fermions is given by

ψ+(z, z̄, w, w̄)ψ̄+̇(0, 0, 0, 0) =
z̄

(zz̄ + ww̄)2
+ · · · . (4.37)

Using this result, we obtain the ΨΨ̄ OPE to be

Ψ(i)(z)Ψ̄(j)(0) =
δij

z
+ · · · , (4.38)

– 15 –



J
H
E
P
1
1
(
2
0
1
7
)
0
1
3

where the z̄-dependent terms are cancelled out. This is the OPE of |N | chiral fermions in

2d. So the chiral algebra is given by

AN (TH) =
{〈

Ψ(i)(z), Ψ̄(i)(z)
〉 ∣∣i = 0, · · · , N − 1

}
for N > 0, (4.39)

with the central charge c2d = N . Therefore the partition function of the chiral algebra is

indeed given by the specialized index IHN = θ(q
1
2u; q)N/(q)N∞.

Vector multiplets. When N < 0, we define the chiral fields as

∂c(0)(z) ≡ ∂|N |−1
w λ1+(z, z̄, 0, 0) + z̄λ2+(z, z̄, 0, 0),

b(0)(z) ≡ λ1−̇(z, z̄, 0, 0) + z̄(zz̄)|N |−1∂
|N |−1
w̄ λ̄2−̇(z, z̄, 0, 0),

(4.40)

and

∂c(i)(z) ≡ ∂iwλ1+(z, z̄, 0, 0) + z̄(zz̄)|N |−1−i∂
|N |−1−i
w̄ λ2+(z, z̄, 0, 0),

b(i)(z) ≡ ∂|N |−1−i
w λ1+̇(z, z̄, 0, 0) + z̄(zz̄)i∂iw̄λ̄2+̇(z, z̄, 0, 0),

(4.41)

with 1 ≤ i ≤ |N | − 1. Their OPE is the same as |N | copies of the bc-system,

b(i)(z)c(j)(0) = −c(i)(z)b(j)(0) =
δij

z
+ · · · . (4.42)

So the chiral algebra for the vector multiplet can be written as

AN (TV ) =
{〈
b(i)(z), c(i)(z)

〉 ∣∣i = 0, · · · , |N | − 1
}

for N < 0. (4.43)

It has the central charge c2d = 2N = −2|N |. At N = −1 only b0(z) and c0(z) remain and

there is no derivative with respect to w in the definition. In this case we again obtain the

same bc-system obtained by Beem et al. [8] for vector multiplet.

When N > 0 the we define the chiral fields as

∂zΦ
(i)(z, 0) ≡ ∂z∂iwφ̄(z, z̄, 0, 0) + z̄2(zz̄)|N |−1−i∂

|N |−1−i
w̄ F++(z, z̄, 0, 0),

∂zΦ̄
(i)(z, 0) ≡ ∂|N |−1−i

w F−−(z, z̄, 0, 0) + z̄2(zz̄)i∂z∂
i
w̄φ(z, z̄, 0, 0),

(4.44)

with 0 ≤ i ≤ N − 1. Their OPE can be computed as,

∂zΦ
(i)(z)∂zΦ̄

(j)(0) =
δij

z2
+ · · · , (4.45)

which is independent of z̄. This is the same as the OPE of N 2d complex scalars. Therefore

the chiral algebra is given by the N complex scalars (in the adjoint of the gauge group)

AN (TV ) =
{〈

Φ(i)(z), Φ̄(i)(z)
〉 ∣∣i = 0, · · · , N − 1

}
for N > 0, (4.46)

with the central charge c2d = 2N .

We also see the origin of the zeroes and poles in the specialized index of vector multi-

plets. They are the zero modes of bc-system (N < 0) or complex scalars (N > 0).
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4.2.2 Interacting theory

Let us consider a Lagrangian theory T with gauge group G and hypermultiplets in R×F
representation of gauge and flavor symmetry. We can construct the 2d chiral algebra AN
with the partition function given by the specialized index IN for any integer N . The

construction is rather simple. We simply prepare the tensor product of the chiral algebras

associated to each free matter multiplets and impose the Gauss law constraint. This will

certainly reproduce the index IN .

For N < 0 we get |N | bc-systems ba,(i)(z) and ca,(i)(z) with i = 0, 1, 2, · · · , |N | − 1

in the adjoint representation of gauge group G, and |N | chiral symplectic bosons Q(j)(z)

and Q̄(j)(z) in representation R×F . The chiral algebra is built upon the gauge invariant

combination of ba,(i)(z), ca,(i)(z), Q(j)(z) and Q̄(j)(z)

AN (T ) =
{〈
ba,(i)(z), ca,(i)(z), Q(j)(z), Q̄(j)(z)

〉 ∣∣i, j = 0, · · · , |N | − 1
}
/G, (4.47)

with a being the index of adjoint representation and i, j the label of different copies of the

chiral fields.

For N > 0 we get N chiral scalars ∂zΦ
a,(i)(z) and ∂zΦ̄

a,(i)(z) with i = 0, 1, · · · , N − 1

in the adjoint representation of gauge group G, and N chiral fermions Ψ(i)(z) and Ψ̄(i)(z) in

representation R×F . The final 2d algebra is built upon the gauge invariant combination

of ∂zΦ
a,(i)(z), ∂zΦ̄

a,(i)(z), Ψ(i)(z) and Ψ̄(i)(z)

AN (T ) =
{〈
∂zΦ

a,(i)(z), ∂zΦ̄
a,(i)(z),Ψ(j)(z), Ψ̄(j)(z)

〉 ∣∣i, j = 0, · · · , N − 1
}
/G. (4.48)

We constructed superconformal gauge theory out of the free matter content, and the index

is obtained by imposing the Gauss law constraint. The chiral algebra at zero gauge coupling

is constructed in this way and it certainly exists.

When the gauge coupling g is non-zero, the chiral algebra has to be modified in a suit-

able way if it exists. In particular some elements of the algebra at g = 0 will pair up and dis-

appear at finite g, and it is natural to expect that generically there is a 1-1 correspondence

between the elements of the algebra and the character for the algebra at g > 0. Note that

the partition function of the chiral algebra is robust because it is a limit of the superconfor-

mal index (with line operator insertion), which remains the same as we turn on the gauge

coupling. Therefore we conjecture that there is still a chiral algebra even at finite coupling.

For N = −1 the cohomological arguments of [8] imply that there is an algebra underlying

the character at least for that case. We will find evidence by studying the Argyres-Douglas

theories that the characters obtained by the monodromy operator are often characters of

well known non-trivial 2d chiral algebras. This gives further evidence for our conjecture.

By construction, the central charge of the chiral algebra corresponding to the gauge

theory is given (by considering the central charge of the integrand contributing to the

index) by the formula

c2d = N(nh + 2nv) . (4.49)

We see that it can be easily computed by enumerating number of vector multiplets nv and

hypermultiplets nh. For any N = 2 d = 4 SCFT, one can define more invariant notions
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of the number of hypermultiplets and vector multiplets by considering conformal anomaly

coefficients a and c. It is given by

nv = 4(2a4d − c4d), nh = 4(5c4d − 4a4d). (4.50)

From this relation, we get the 2d central charge to be

c2d = 12Nc4d . (4.51)

When N = −1, this is the same central charge given in [8]. We conjecture this relation

holds even for the non-Lagrangian theories and for all N . We provide evidence for this in

section 7 by computing TrM(q)N for Argyres-Douglas theories of (A1, An) type for some

values of N .

It is also easy to see that the effective growth of the states should be dictated for

positive N by c2d but for N < 0 just by considering the growth of the integrand, it is

c2d
eff = −2N(nh − nv) = −48N(c4d − a4d) for N < 0. (4.52)

Assuming we have a chiral algebra, this implies that the minimum value of hmin for each

N < 0 is given by

hmin =
1

24
(c2d − c2d

eff) =
N

2
(5c4d − 4a4d) < 0 (4.53)

Note in particular for the Schur case of N = −1 we are predicting that there should

be a representation of the chiral algebra of the Schur operators whose dimension h =
1
2(4a4d − 5c4d). For example for SU(2) with Nf = 4 we expect hmin = −1. The fact that

hmin should be negative for N < 0 implies that (5c4d − 4a4d) > 0 which is consistent with

the unitarity bound [22]. Moreover if we have a rational 2d chiral algebra, it is expected

that this combination is rational.

4.2.3 Modular properties for conformal case

A further evidence that we have a 2d chiral algebra comes from the fact that the character

is a nice modular object. Let us discuss modular properties of the specialized index IN .

Before inserting any line operators, the specialized index can be written in terms of θ-

functions. We will see in section 5 that it is exactly the same as the integrand for the

S2 × T 2 partition function with N -twist (in the zero flux sector).

The specialized index for the hypermultiplet is given by

IHN =
∏
w∈R

θ(ζ · w; τ)N , (4.54)

with zi = e2πiζi , ζ · w =
∑r

i=1 ζiw
i and q = e2πiτ . And for the vectors we have

IVN = η(q)−2rN
∏

α∈∆±(G)

θ(ζ · α; τ)−2N , (4.55)

where ∆±(G) are the set of non-zero roots of the gauge group G.
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The specialized index of a Lagrangian theory with zeroes or divergences removed is

then essentially,

In = η−2rN

∫
dζ1 · · · dζr

(∏
w∈R

θ2(ζ · w)∏
α∈∆±(G) θ

2(ζ · α)

)N
, (4.56)

which is a Jacobi form. Note that we are being a bit sloppy in the above formulation

because the boson versus fermions have different shifts in the argument of theta function.

Under modular transformation ζi’s transform as ζi/τ and the modular weight of η2r cancels

the weight of
∏
dζi, leaving us with the modular weight of η−2r(N+1) (which picks up a

weight because of operator insertions when N 6= −1). Moreover in the Jacobi form the

modular weight of the numerators cancels that of denominator if and only if∑
w∈R

(ζ · w)2 −
∑

α∈∆±(G)

(ζ · α)2 = 0, (4.57)

which is also the condition of vanishing β-function. Therefore the integrand of the spe-

cialized index is modular if and only if the Lagrangian theory is superconformal. As we

shall discuss in section 5, this is exactly the same as the condition that the N/2-twisted

compactification of the theory on S2 to be free of gauge anomaly. Note that because we did

not take into account the shifted arguments this is modular only on a subgroup of SL(2,Z).

Moreover, even though the integrand is modular, the integral may not be modular because

we have to change the integration contour by ζi → ζi/τ . The Schur index is given by the

vacuum character of the chiral algebra for N = −1 [8]. It is not modular invariant, and

will transform to different characters. Notable fact is that the modular transform for a

Lagrangian theory is implemented by a change of contour. The partition function of the

chiral algebra AN for N 6= −1 is not written in terms of the θ-functions, since we insert

appropriate line operators to the integrand to remove zero modes. Therefore we do not

expect it to be strictly modular. This is consistent with its transforming into combination

of characters of modules of the same algebra as is expected for chiral algebras.

4.3 Lagrangian examples

4.3.1 Abelian theories with matter

Let us start with the simplest example of an interacting theory, even though it is only an

effective theory. The index for the U(1) theory with a hypermultiplet can be evaluated

easily by taking the index of a hypermultiplet and then integrating over U(1) gauge group.

It is given by

I(p, q, t) = IV
∮

dz

2πiz

∏
i,j≥0

(
1− t−

1
2 pi+1qj+1z

1− t
1
2 piqjz

)(
1− t−

1
2 pi+1qj+1z−1

1− t
1
2 piqjz−1

)
, (4.58)

where IV is the free U(1) vector multiplet index. The integrand in the limit t = qpN+1

can be simply written as in (4.10). Also, if we take p→ 1, we simply get

IN (q) = IVN
∮

dz

2πiz
(q

1
2 z±; q)N . (4.59)
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The chiral algebra is simply given by that of the free fermions (N > 0) or bosons

(N < 0) under the Gauss law constraint (along with the decoupled piece coming from the

free vector multiplets)

AN (TQED) =

{
AN (TV )⊗

{〈
Ψi(z), Ψ̄i(z)

∣∣i = 0, 1, · · · , N
〉}
/U(1) N > 0,

AN (TV )⊗
{〈
Qi(z), Q̄i(z)

〉 ∣∣i = 0, 1, · · · , N
}
/U(1) N < 0.

(4.60)

Index for N > 0. Let us compute the specialized indices IN (equivalently the character

of the chiral algebra AN (TQED)) for N > 0. The integral (4.59) can be evaluated (with

suitable insertion of operators already discussed to absorb the bosonic zero modes) to give

IN (q) = IVN ×
1

(q)N∞

∮
dz

2πiz

∑
~k∈ZN

q
1
2

∑
i k

2
i (−z)

∑
i ki = IVN ×

1

(q)N∞

∑
~k∈ZN−1

qQ(~k), (4.61)

where

Q(~k) =
∑
i

k2
i +

∑
i<j

kikj . (4.62)

By general theory of integral (Tits) quadratic forms [23], Q(ki) is Z-equivalent to `iCij`j/2

where Cij is the AN−1 Cartan matrix, i.e. there is a transformation `i = Sijkj , with

S ∈ SL(N − 1,Z) such that Q(S−1
ij `j) ≡ `iCij`j/2; explicitly, `i = ki − ki−1 with the

convention k0 = 0. Hence∑
~k∈ZN−1

qQ(~k) =
∑

`i∈ZN−1

q`iCij`j/2 ≡ ΘSU(N)(q) . (4.63)

Therefore, we get

IN (q) = IVN ×
ΘSU(N)(q)

(q; q)N∞
=

ΘSU(N)(q)

(q; q)3N
∞

. (4.64)

The central charge is c2d = 2N+N = 3N , where the first 2N is coming from the decoupled

vector multiplet, which becomes N free complex bosons.

Index for N < 0. When N = −1, we get the Schur index. We obtain

I−1(q) = IV−1 ×
Ψ(q)

(q; q)2
∞

= Ψ(q) , (4.65)

where Ψ(q) = 1
2

∑
n∈Z q

n(n+1)
2 . Note that even though we needed no insertion for N = −1

this is not a modular weight zero object. This is consistent with our analysis that showed

that only for superconformal theories we expect to get a modular weight zero object (at

N = −1). Nevertheless the theta function is a modular object with weight. The central

charge for the chiral algebra is c2d
tot = −2 + 2 = 0. The first term −2 is coming from the

free vector and the latter 2 is the one coming from the hypermultiplets under the Gauss

law constraint. For the case of N = −2, we find

I−2(q) = IV−2 ×
1

(q; q)4
∞

∑
n≥0

(2n+ 1)qn
2+n+1 . (4.66)

We get the central charge as c2d
total = −4 + 4 = 0 if we also include the vector multiplet.
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For general N < 0, with the help of identities in appendix D.1, we get

IN (q) = IV−|N | ×
1

(q; q)
2|N |
∞

∑
mi∈Z|N|−1

q(|
∑
imi|+

∑
i |mi|)/2ψ(−q|

∑
imi|, q)

|N |−1∏
i=1

ψ(−q|mi|, q)

= IV−|N | ×
Ψ|N |(q)

(q; q)
2|N |
∞
≡ Ψ|N |(q) , (4.67)

where

ψ(x, q) =
∑
m≥0

qm(m+1)/2xm (4.68)

is Ramanujan’s partial theta-function. The function ΨN (q) is the sum of 2|N |−1 multiple

partial theta-functions, or more compactly

ΨN (q) =
∑
ni∈NN

mj∈ZN−1

(−1)
∑N
i=1 ni qQ(mi,nj)/2+

∑
i(|mi|+ni)/2 , (4.69)

where Q(mi, nj) is the quadrant-wise quadratic form

Q(mi, nj) =

N∑
j=1

n2
j + 2

N−1∑
i=1

ni
∣∣mi

∣∣+ 2nN

∣∣∣∣∣
N−1∑
i=1

mi

∣∣∣∣∣ . (4.70)

The sum is a (multiple) partial theta function. We get the central charge c2d
total = −2N +

2N = 0, if we include the vector multiplet contribution.

4.3.2 U(1) theory with Nf hypermultiplets

Let us consider a slightly more general case.

Index for N ≥ 0. Suppose we have several hypers of integral charges ea and fugacities

ya (a = 1, 2, . . . , Nf ) (one redundant). For N ≥ 0,

IN (q; ya) =
1

(q)
N(Nf+2)
∞

∫
dz

2πiz

Nf∏
a=1

Θ(−yazea ; q)N =
ΘN (ea, ya; q)

(q)
N(Nf+2)
∞

(4.71)

where ΘN (ea, ya; q) is the theta-function of the rank NNf − 1 positive-definite sub-lattice

ΛN ({ea}) =

{
ka,i ∈ ZNf × ZN

∣∣∣ ∑
i,a

ea ki,a = 0

}
⊂ ZnNf , (4.72)

endowed with the quadratic form Q induced by the standard one in ZNNf ,
∑

i,a k
2
a,i, i.e.

ΘN (ea, ya; q) =
∑

ki,a∈ΛN ({ea})

q
∑
i,a k

2
a,i/2

∏
a

(−ya)
∑
i ki,a . (4.73)

In particular, if all ea are equal, we get the Nf − 1 variable specialization of the SU(NNf )

theta-function induced by (and covariant under) the subgroup inclusion

SU(Nf )× SU(N) ⊂ SU(NfN). (4.74)
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Of course, this is just the statement that supersymmetric quantum electrodynamics

(SQED) with Nf quarks of the same charge has a SU(Nf ) symmetry: indeed, via the

replica trick, the integral (4.71) is identified with the one entering in the N = 1 index for

SQED with NNf quarks which has a SU(NNf ) flavor symmetry and therefore produces

the SU(NNf ) theta-function specialized to the locus in fugacity space which invariant un-

der the SU(N) replica symmetry. In the basic case that all ea are equal and N = 1 we get

the full SU(Nf ) theta-function depending on all its Nf − 1 fugacities.

Even more generally, we may couple k Abelian vectors to Nf hypers the a-th hyper

having (integral) charge ea,α under the α-th photon (α = 1, . . . , k). For n ≥ 0 we get

IN (q; ya) =
ΘN (ea,α, ya; q)

(q)
N(Nf+2k)
∞

, (4.75)

where in the numerator we have the obvious flavor group covariant specialization of the

theta function for the rank NNf − k lattice

ΛN ({ea,α}) =

{
ka,i ∈ ZNf × ZN

∣∣∣ ∑
i,a

ea,α ki,a = 0 for α = 1, . . . , k

}
⊂ ZNNf . (4.76)

Index for N < 0. When N < 0, we have

I−N (q; ya) =
1

(q)
2|N |(Nf−k)
∞

∫ k∏
α=1

dzα
2πizα

Nf∏
a=1

Ξ(yaz
ea,α
α ; q)|N | =

Ψ|N |(ea,α, ya; q)

(q)
2|N |(Nf−k)
∞

, (4.77)

where Ξ(z; q) is the function

Ξ(z; q) =
(q)2
∞

(q1/2z; q)∞ (q1/2z−1; q)∞
(4.78)

which may be written as the sum of partial theta-functions in the form (see appendix D.1)6

Ξ(z; q) =
∑
n∈Z

q|n|/2 ψ(−q|n|, q) zn ≡
∑
n∈Z
m≥0

(−1)mqm(m+1)/2+|n|(m+1/2) zn. (4.79)

The function ΨN (ea,α, ya; q) is the sum of 2NNf−k partial theta functions which is invariant

under the SU(N) replica symmetry (which acts on the replica index i = 1, . . . , N)

ΨN (ea,α,ya;q)=
∑

na,i∈ΛN ({ea,α})

∑
ma,i∈NNNf

(−1)
∑
a,ima,i q

Q(ma,i,na,i)

2
+
∑
a,i

ma,i+|na,i|
2

∏
a

y
∑
ina,i

a

where Q(ma,i, na,i) is the quadrant-wise quadratic form

Q(ma,i, na,i) =
∑
a,i

m2
a,i + 2

∑
a,i

|ma,i|na,i. (4.80)

6The right-hand side of this expression has to be understood with care, because the summand is not

absolutely convergent and the ordering is important. Here the sum over m ≥ 0 has to be taken first. We

thank O. Warnaar for the comment.
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4.3.3 Pure SU(2)

Let us consider the case for the pure SU(2) Yang-Mills theory. This theory is not super-

conformal away from gYM = 0, and we restrict our attention to this point.

Specialized index at N = −1. At N = −1 the specialized index is the same as Schur

index and for the SU(2) YM it is given by

ISYM−1 (q) =

∮
dz

2πiz

(1− z±2)

2
(qz±2,0; q)2

∞

=
∞∑
n=0

qn(n+1) = 1 + q2 + q6 + q12 + · · · .
(4.81)

It can be easily proven by using the Jacobi triple product identity (q; q)∞(y; q)∞(q/y; q)∞ =∑
k∈Z q

k(k+1)/2y−k as

ISYM−1 (q) =
1

2

∮
dz

2πiz
(q; q)∞(z2; q)∞(q/z2; q)∞(q; q)∞(z−2; q)∞(qz2; q)∞

=
1

2

∑
m,n∈Z

q
1
2
m(m+1)+ 1

2
n(n+1)

∮
dz

2πiz
z2(m−n) =

∑
n≥0

qn(n+1) .
(4.82)

This is the character of the chiral algebra

A−1(TSU(2))
∣∣
g=0

= {〈∂ba(z), ∂ca(z)〉} /SU(2), (4.83)

where a denotes the gauge index. This is the singlet sector of the bc-system in the adjoint

representation of SU(2).

Specialized index at N = −2. The integral formula with line operators inserted for

N = −2 specialized index is given by

ISYM−2 (q) =

∮
dz

2πiz

(1− z±2)

2
(qz±2,0; q)4

∞. (4.84)

Expanding in powers of q we have,

ISYM−2 (q) = 1 + 6q2 − 4q3 + 3q4 + 12q5 − 2q6 − 12q7 + 18q8 + 8q9 + 12q10 + · · · . (4.85)

The chiral algebra is built upon the gauge invariant combinations of two bc-systems in the

adjoint representation of SU(2) with the zero modes ba(0) and ca(0) removed,

A−2(TSU(2))
∣∣
g=0

=
{〈
∂ba,0(z), ∂ca,0(z), ∂ba,1(z), ∂ca,1(z)

〉}
/SU(2). (4.86)

The partition function counts the number of operators with sign. Let us illustrate this by

explicitly counting operators for low orders in q. In the weak coupling limit, the 6q2 term

counts six operators

Tra∂b
i∂cj , Tra∂b

1∂b2, Tra∂c
1∂c2, (4.87)

with Tra the trace over adjoint representation of SU(2). The −4q3 term counts 16 bosonic

operators

Tra∂
2bi∂bj , Tra∂

2bi∂cj , Tra∂
2ci∂bj , Tra∂

2ci∂cj , (4.88)

– 23 –



J
H
E
P
1
1
(
2
0
1
7
)
0
1
3

and 20 fermionic operators

εabc∂b
a,i∂bb,j∂bc,k, εabc∂b

a,i∂bb,j∂cc,k, εabc∂b
a,i∂cb,j∂cc,k, εabc∂c

a,i∂cb,j∂cc,k. (4.89)

There is no a priori reason that in a non-conformal theory, such as pure SU(2) the theory

is conformal away from g = 0. However, if the algebra continued to exist beyond g = 0

we would have expected that the 16 bosonic states would pair up with 16 of the fermionic

states leaving us with 4 fermionic operators.

Specialized index at N = 1. The integral formula with the line operator inserted for

N = 1 specialized index is given by

ISYM1 (q) =

∮
dz

2πiz

(1− z±2)

2

1

(qz±2,0; q)2
∞
. (4.90)

Expanding in powers of q we have,

ISYM1 (q) = 1 + 3q2 + 4q3 + 15q4 + 24q5 + · · · . (4.91)

Note that all the coefficients are positive integers. The chiral algebra is built upon the gauge

invariant combinations of a complex chiral bosons Φa(z) and Φ̄a(z) in adjoint representation

of SU(2) with the zero modes Φa(0) removed,

A1(TSU(2))
∣∣
g=0

=
{〈
∂Φa(z), ∂Φ̄a(z)

〉}
/SU(2). (4.92)

For example in the weakly coupled limit, 3q2 term counts three operators Tra∂Φ∂Φ,

Tra∂Φ∂Φ̄ and Tra∂Φ̄∂Φ̄. Since there is no fermionic operator, coefficients of I1(q) are

always greater than equal to zero.

4.3.4 SU(2) with Nf = 4

Specialized index at N = −1. This is the same as Schur index. In the unrefined limit

where we turn off all the flavor fugacities, we get

I−1(q) =

∮
dz

2πiz

(1− z±2)

2

(qz±2,0; q)2
∞

((q
1
2 z±1; q)2

∞)4
, (4.93)

with the expansion

I−1 = 1 + 28q + 329q2 + 2632q3 + 16380q4 + 85764q5 + · · · . (4.94)

This is the character of SO(8)−2 according to [8]. The chiral algebra A−1(TSU(2),Nf=4) =

SO(8)−2 has the central charge equal to that of the Sugawara central charge c2d = −14.

Specialized index at N = 1. The specialized index at N = 1 with line operator

inserted (in the unrefined limit) is,

I1(q) =

∮
dz

2πiz

(1− z±2)

2

((q
1
2 z±1; q)2)4

∞
(qz±2,0; q)2

∞
, (4.95)
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and its expansion in q is

I1(q) = 1 + 36q + 459q2 + 3700q3 + 23403q4 + 125232q5 + · · · . (4.96)

The chiral algebra is built upon the gauge invariant combinations of one complex boson

Φ(z) in adjoint representation of SU(2) and four complex bifundamental fermion Ψ(z),

A1(TSU(2), NF=4) =
{〈
∂Φa(z), ∂Φ̄a(z),Ψ(z), Ψ̄(z)

〉}
/SU(2), (4.97)

where we remove the zero modes Φa(0) and Φ̄a(0). Here Ψi(z) is in the (2, 4) representation

of SU(2)G ×U(4)F and Ψ̄i(z) is in the (2, 4̄) representation of SU(2)G ×U(4)F .

The term 36q in the index comes from the gauge invariant combination of Ψi(0)Ψj(0),

Ψi(0)Ψ̄j(0) and Ψ̄i(0)Ψ̄j(0), which form the adjoint representation of USp(8) having dimen-

sion 36. Moreover, it has correct decomposition under the flavor symmetry SU(4)×U(1) ⊂
USp(8). It shows that there is an USp(8) subalgebra. For N > 1, we have N copies Ψ(z)

and Ψ̄(z). We find that the coefficient of q in the index IN (q) is given by the dimension of

the adjoint representation of USp(8N), which is 4N(8N + 1).

Specialized index at N = −2. Let us consider the case with N = −2. The specialized

index at N = −2 is given by

I−2(q) =

∮
dz

2πiz

(1− z±2)

2

(qz±2,0; q)4
∞

(q
1
2 z±; q)4

∞)4
, (4.98)

where its expansion in q is

I−2(q) = 1 + 120q + 5158q2 + 124644q3 + 2065459q4 + 26107916q5 + · · · . (4.99)

The chiral algebra is constructed from the two copies of the bc-system (ba,i=0,1, ca,i=0,1) in

the adjoint representation of SU(2)G and two copies of the symplectic bosons Qi=0,1 and

Q̄i=0,1 in the (2, 4) and (2, 4̄) representations of SU(2)F × U(4)F . Then we impose the

Gauss-law constraint to build

A−2(TSU(2), NF=4) =
{〈
∂ba,i(z), ∂ca,i(z), Qi(z), Q̄i(z)

∣∣i = 0, 1
〉}
/SU(2), (4.100)

where we removed the zero modes in the bc-system.

The term 120q in the index comes from the gauge invariant combinations of Qi(0)Q̄j(0),

Qi(0)Q̄j(0) and Q̄i(0)Q̄j(0). They form the adjoint representation of SO(16) having di-

mension 120. We see that for general N < 0, the coefficient of the q term is given by the

dimension of the adjoint representation of SO(−8N), which is 4|N |(8|N | − 1).

5 T 2 × S2 compactifications

Up to now we have discussed a specialization of the index and how to compute it in

Lagrangian theories. It turns out, somewhat surprisingly, that almost the same result arises

from a suitable compactification of the same theory on S2 and considering its partition

function on T 2. We will find that this gives the same integrands as the ones appearing in
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the index computation, even though the contour prescriptions for the integrals are slightly

different. The nice aspect of this correspondence is that in this context the T 2 is the

relevant physical space upon taking the limit where S2 goes to zero size, and not just part

of the S3 × S1 geometry which is somewhat harder to visualize. Moreover in this set up

we can see more clearly the meaning of fermionic zero modes for N < −1 and bosonic

zero modes for N > 0. In this context it turns out that one can add a chemical potential

associated with the U(1) rotation of S2 which gets rid of zero modes. We stress that this

construction describes a full physical theory, and not just the supersymmetry protected

states that contribute to the elliptic genus. In a sense we get a (0,2) SCFT in the infrared

(IR), whose elliptic genus we are computing.

5.1 2d N = (0, 2) theory from twisted compactification on S2

Let us consider putting the 4dN = 2 superconformal theory on R2×S2. In order to preserve

any amount of supersymmetry, we need to perform a partial topological twist [24]. The

bosonic subgroup of the 4d N = 2 superconformal group includes SO(4)× SU(2)R×U(1)r
where SO(4) is the (Euclidean) Lorentz group acting on the spacetime. Let us consider the

subgroup SO(2)E×SO(2)S2 ⊂ SO(4). The first factor acts on R2 and the second factor acts

on S2. We can twist the theory by considering a linear combination of SU(2)R and U(1)r

J
(N)
34 = J34 +

(
1 +

1

2
N

)
R− 1

2
Nr = J34 +R+

1

2
N(R− r) , (5.1)

where J34, R, r are the generators of SO(2)S2 , SU(2)R, and U(1)r respectively. When

N = 0, the twisted theory preserves N = (2, 2) SUSY in 2d. When N = −2, it preserves

N = (0, 4) SUSY in 2d [25] and it has been considered in [26]. See appendix A for details.

Upon twisting and dimensional reduction, we obtain an effective 2d N = (0, 2) theory

on R2. We can be very explicit for the free theory of hypermultiplet or vector multiplet. The

4d vector multiplet becomes N = (0, 2) vector multiplet and N + 1 chiral multiplets when

N > 0 and becomes vector and |N | − 1 Fermi multiplets for N < 0. A 4d hypermultiplet

becomes N Fermi multiplets for N > 0 and N chiral multiplets when N < 0. The astute

reader may have noticed that our twisting for odd values of N is somewhat problematic

because some fields end up having fractional spin and so we would need a further twist by

some global symmetry to make sense of them. For odd N , this can only be done if we have

an additional U(1) global symmetry which distinguish Q and Q̃ in a hypermultiplet. In

this case, we need to further twist the theory by this U(1) [27]. This can be always done

for a Lagrangian CFT by breaking some of the global symmetry in 4d.

Let us start from a 4d N = 2 SCFT realized as a gauge theory given by gauge group G
with hypermultiplets in some representation Ri of G × F where F is the flavor symmetry

group.7 For this class of theories, the gauge couplings are exactly marginal, so we can

continuously deform the theory to the zero coupling limit. At this point, we perform

partial topological twisting and shrink the size of S2 to zero. Then we obtain the matter

content in table 1.

7Such N = 2 SCFTs are classified in the paper [28].
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4d N = 2 multiplet 2d N = (0, 2) multiplets

vector multiplet 1 vector and

{
N + 1 chiral multiplets (N > 0)

−(N + 1) = |N | − 1 Fermi multiplets (N < 0)

hypermultiplet

{
N Fermi multiplets (N > 0)

|N | chiral multiplets (N < 0)

Table 1. 4d N = 2 matter multiplets in terms of 2d N = (0, 2) multiplets after twisting.

(a) N > 0: there are N + 1 copies of Φ and N/2

copies of (Γ, Γ̃).

(b) N < 0: there are |N | − 1 copies of Θ and

|N |/2 copies of (Q, Q̃).

Figure 1. Schematic matter content of the 2d gauge theory obtained by twisted reduction on S2.

G denotes the gauge group and F denotes the flavor group.

When N < 0, we getN = (0, 2) gauge theory with the same gauge group G but (|N |−1)

copies of the Fermi multiplets (Θ) in the adjoint of G and N/2 copies of chiral multiplets

(Q, Q̃) in the Ri and also its conjugate R̄i representation of G ×F . In the parenthesis, we

write N = (0, 2) superfields for each multiplet. We have both Ri and R̄i because the orig-

inal 4d theory had chiral multiplets in the same representations. When N is odd, we only

have Ri representation or its conjugate by further twisting by the baryonic charge. In ad-

dition, we have a J-type superpotential interaction term inherited from 4d N = 2 given by

JΘ = Q̃Q → W = Tr(Q̃ΘQ) , (5.2)

where we suppressed indices of the |N |/2 copies of Q, Q̃ and |N | − 1 copies of Θ. One can

impose SU(|N |/2) symmetry rotating among the Φ along with Q, by tuning the coupling,

but we will not enforce it in this discussion. Note that when N = −2, this is exactly the

superpotential and matter content to preserve N = (0, 4) supersymmetry discussed in [26].

When N > 0, we basically reverse the Fermi and chiral multiplets. We get N + 1

copies of the chiral multiplets (Φ) in the adjoint representation of G, and N/2 copies of

chiral multiplets (Γ, Γ̃) in the Ri and also its conjugate R̄i representation of G × F . As

before, when N is odd, we keep N copies of Fermi multiplets in the Ri representation.

There is no gauge invariant E or J type interaction we can write.

Since 2d theories we obtain are chiral, we should worry about the potential gauge

anomalies. When the gauge group G has no U(1) factor, we simply need to compute

the trace anomaly Tr(γ3GG). For simplicity, let us assume G is simple, and write the

representation of the hypermultiplets to be (RG,i,RF ,i) where the first and second factor

denotes that of gauge group and flavor group respectively. Then the gauge anomaly can

– 27 –



J
H
E
P
1
1
(
2
0
1
7
)
0
1
3

be written as

Tr(γ3GG) = (−1)h∨G + (N + 1)h∨G −N
∑
i

dim(RF ,i)c2(RG,i) , (5.3)

where h∨ is the dual coxeter number of the gauge group and c2 is the index of the repre-

sentation. Here the first and second term comes from the gauge multiplet and the adjoint

chiral or Fermi. The last term comes from the matter multiplets. Note that the expression

works for both signs of N . This expression is nothing but N times the beta function of the

4d N = 2 theory before dimensional reduction. As long as we start from a 4d conformal

theory (which is crucial to perform U(1)r twist), gauge anomalies are absent in 2d. As we

have seen in section 4.2.3, this condition is tantamount to the modularity condition of the

integrand of the specialized 4d index IN .

5.2 Central charge

The central charge of the 2d N = (0, 2) gauge theory can be computed easily from the ’t

Hooft anomalies of the R-symmetry as

cR = 3 Tr(γ3R2), cR − cL = Tr γ3 . (5.4)

Once we know the R-charge of the 2d multiplets, we can compute the 2d central charges.

From the 2d viewpoint, there is no fixed choice of R-charge in general, because the

theory has extra global symmetry (originating from the U(1) isometry of the S2) that can

be mixed with R-symmetry. For even N < 0, one can assign U(1)R charge for the Θ to be

1 − 2α and Q, Q̃ to be α for arbitrary α. One canonical choice is α = 0. This is because

there is a classical moduli space parametrized by (Q, Q̃) and in the semi-classical regime,

where the field value is large, we expect there is a sigma-model description parametrized

by the chiral multiplets [29]. When N = −2, this is the one studied in [26]. This choice

gives central charges

c0
L = −2N(nh − nv), c0

R = −3N(nh − nv) , (5.5)

which are positive for N < 0, but negative for N > 0.

When N > 0, the canonical choice is to pick the R-charges for the chiral multiplets

coming from the vector multiplets to be 0, and those for the Fermi multiplets coming from

the hypermultiplet to be 0. We get

c1
L = N(nh + 2nv) , c1

R = 3Nnv . (5.6)

This choice realizes the CFT on the Higgs branch parametrized by the scalar component

of Φ field.

We find that the value cL gives the correct effective central charge ceff of TrM(q)N =

IN (q)

c2d,N = N(nh + 2nv) , (5.7)
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for every value of N . For any 4d N = 2 SCFT, one can define effective number of hyper-

multiplets and vector multiplets by extrapolating the relation between conformal anomalies

(a4d, c4d) and (nh, nv) for Lagrangian theories

nv = 4(2a4d − c4d) , nh = 4(5c4d − 4a4d) . (5.8)

We can write the 2d central charges in terms of the 4d conformal anomalies as

c2d,N = 12Nc4d . (5.9)

We note that when N = −1, the central charge for the left-movers is the same as the

one given in [8]. For negative N , this value of central charge can be formally obtained

by choosing the ‘wrong R-charge’ R[Q] = 1, R[Θ] = 0 for the matter multiplets. This

is related to the fact that the integrand of the elliptic genus with the ‘wrong R-charge’

assignment (for N < 0) can be obtained from the specialization limit of the 4d index IN .

We discuss it in more detail in the next subsection.

5.3 T 2 × S2 vs. S1 × S3 partition functions

Let us discuss the connection between our setup S1×S3 vs. T 2×S2. The partition function

of a 2d N = (0, 2) gauge theory on T 2, or elliptic genus, has been computed in [30–32]. The

entire computation boils down to the integral over the moduli space of G-flat connections

Mflat(T
2,G) on T 2 with 1-loop determinant

Zell = Tr(−1)F qHLxF =

∫
Mflat(T 2,G)

∏
i

dui dūi Z1-loop(u, ū) , (5.10)

where G is the gauge group and u, ū ∈ Mflat(T
2,G). The integrand has a number of

poles, that are functions of various chemical potentials related to the global symmetry of

the theory. By applying Stokes theorem carefully, the integral can be written in terms

of a contour integral over certain holomorphic cycle of Mflat. This yields so-called the

Jeffrey-Kirwan residue formula

Zell =

∮
JK

dz

z
Z1-loop(z) , (5.11)

where the integrand is now holomorphic in z = e2πiu. The integrand has to be elliptic

(invariant under z → qz) in order to be free of gauge anomalies.

The integrand for a (0, 2) chiral multiplet and a Fermi multiplet are given by

Zchiral(z; q) =
(q)∞

θ(q
R
2 z; q)

, ZFermi(z; q) =
θ(q

R+1
2 z; q)

(q)∞
, (5.12)

where R is the R-charge of the multiplet and θ(z; q) is the theta function defined in equa-

tion (4.12) and z is the fugacity for the U(1) flavor associated to the matter multiplet. Here

we used the integrand for the NS sector elliptic genus, which agrees with the RR elliptic
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genus under the spectral flow and multiplicative factor. The NS elliptic genus is more

convenient to compare with the 4d index as we will see. For a vector multiplet, we have

Zvec(z; q) = (q)2r
∞

∏
α∈∆±(G)

ϑ(zα; q) , (5.13)

where r is the rank of the gauge group G and ∆±(G) is the set of all (non-zero) roots of

G. in eq. (5.13) we use the short-hand notations zα ≡
∏
i z
αi
i and

ϑ(z; q) = θ(z; q)/(q)∞. (5.14)

Now, we write the elliptic genus of the N = (0, 2) theory obtained from 4d N = 2

theory on S2 with the twist of (5.1). Under the twisting and dimensional reduction, 4d

vector multiplet gives

ZVN>0 =
(q; q)2r

ϑ(vq
RΦ
2 ; q)r(N+1)

∏
α∈∆±(G)

ϑ(zα; q)

ϑ(vq
RΦ
2 zα; q)N+1

. (5.15)

The terms in the numerator come from the N = (0, 2) vector and the denominator is

coming from the chiral multiplets Φ. Here v is introduced to regulate the zero modes of

the chiral/Fermi multiplets. It is the fugacity of the U(1) global symmetry associated to the

rotation along S2 direction. This is necessary because the theory is non-compact. As we

have argued in the previous subsection, there is a CFT in the Higgs branch parametrized

by Φ. The correct R-charge for this case is RΦ = 0.

When N < 0, we get

ZVN<0 = (q; q)2rϑ(vq
RΘ+1

2 ; q)2r(|N |−1)
∏

α∈∆±(G)

ϑ(zα; q)ϑ(vq
RΘ+1

2 zα; q)|N |−1 , (5.16)

coming from the vector multiplet and adjoint Fermi multiplets Θ.

When we choose the R-charge for the adjoint chiral RΦ to be 0 and adjoint Fermi RΘ

to be −1, we get a formula

ZVN =
(q; q)2r

ϑ(v; q)r(N+1)

∏
α∈∆±(G)

ϑ(zα; q)

ϑ(vzα; q)N+1
, (5.17)

which works for all N . This choice of R-charge RΦ = 0 for N > 0 is physical and gives the

elliptic genus of a CFT on the Higgs branch parametrized by the scalar component of Φ.

On the other hand, the choice of RΘ = −1 for N < −1 seems to be unphysical. But we find

that the equation (5.17) is exactly the same one we get from the S1×S3 partition function

(superconformal index) upon the specialization limit t = qpN+1 (when Haar measure is

also included in the vector multiplet index) IVN , with v = 1.

For the hypermultiplet, we get

ZHN>0 = ϑ(q
RΓ+1

2 z; q)N , ZHN<0 = ϑ(q
RQ
2 ; q)−|N | , (5.18)
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which comes from |N | copies of Fermi or chiral multiplets. The physical choice is to set

RΓ = 0 for N > 0 and RQ = 0 for N < 0, which gives the CFT on the Higgs branch. On

the other hand, if we pick RΓ = 0 while RQ = 1, we get

ZHN = ϑ(q
1
2 z; q)N . (5.19)

Note that, this formula is valid regardless of whether N is positive or negative. As before,

choosing ‘unphysical’ R-charge assignment for N < 0 gives the integrand to be the same

as the specialization limit of the 4d superconformal index IHN .

With the integrand given as above, we need to evaluate Jeffrey-Kirwan residues to ob-

tain the partition function on T 2×S2.8 We note that the integrand (5.17) and (5.19) is ex-

actly the same one we get from the S1×S3 partition function upon specialization t = qpN+1:

Z(T 2 × S2) =

∮
JK

dz

z
Z

(N)
1-loop , Z(S1 × S3)

∣∣
t=qpN+1 =

∮
|z|=1

dz

z
Z

(N)
1-loop . (5.20)

The crucial difference here is that unlike the case of T 2×S2, the integration contour is sim-

ply given by a unit circle. This integration contour is coming from the G-flat connections

on a circle S1 instead of a torus T 2. One can consider both geometries as locally the same

T 2×S2, where in one case S1 ⊂ T 2 is fibered over S2 non-trivially. This fibration removes

one of the circle directions in the integral, so that we get an integration over the flat con-

nections on a circle. Another difference is that the T 2×S2 partition function is guaranteed

to be modular (Jacobi form of weight 0) whenever the underlying theory is conformal,

whereas the S1 × S3 partition function is not invariant, as we discussed in section 4.2.3.

Let us remark that when N > 0, the above partition function Z(T 2 × S2), using the

integrand (5.17) and (5.19), gives a valid elliptic genus of the 2d N = (0, 2) CFT on the

Higgs branch (along with the vector bundle) of the 2d theory (which is not the same as the

Higgs branch of 4d theory) with central charge given in (5.9). In order to actually evaluate

the integral, we need to consider fully refined fugacities for the extra global symmetry

rotating the N + 1 copies of the adjoint chiral multiplets, otherwise the elliptic genus

diverge. This is the case because our target space is non-compact. For N < 0, we should

use the integrand (5.16) and (5.18) with RQ = 0, RΘ = 1 and with all the flavor fugacities

turned on to get a proper elliptic genus on the Higgs branch (with vector bundle). This is

reminiscent of the fact that in the specializations of the index we had to insert operators

to absorb fermionic/bosonic zero modes (for N 6= −1).

8Precisely speaking, we also need to sum over different flux sectors of the gauge fields on S2 [33], which

will yield multiple copies of the 2d theory with different charges. Here we only focus on the zero flux sector.
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6 BPS monodromy and the specialized index

The quantum Kontsevich-Soibelman (KS) wall-crossing formula for 4d N = 2 field theories

states9 that the phase-ordered product10 [5]

M(q) =
�∏

massive
BPS states

(
± qs+1/2Xγ ; q

)(−1)2s

∞ (6.1)

taken over the full spectrum of massive BPS states (of charge γ ∈ Γ and spin s) in the

clockwise order � with respect to the BPS phase11 argZγ , is independent of the particular

BPS chamber up to conjugacy in the quantum torus algebra T with multiplication table

XγXγ′ = q〈γ,γ
′〉/2Xγ+γ′ γ, γ′ ∈ Γ. (6.2)

Hence the traces TrM(q)N are absolute wall-crossing invariants for all N ∈ Z and q ∈ C
for which they are well defined.

Suppose we start from a UV SCFT T , and mass-deform it in a generic way by going

to the Coulomb branch. In the IR we end up with a theory TIR which contains r massless

photons (r being the dimension of the Coulomb branch) and a non-trivial massive BPS

spectrum. From this spectrum we compute the set of traces {TrM(q)N} which are well

defined for TIR. The Kontsevich-Soibelman theory implies that the {TrM(q)N} depend

only on the UV fixed point T and not on the particular mass-deformation TIR. Hence the

{TrM(q)N} are to be thought of as invariant properties of the UV fixed point, in perfect

analogy with the 2d (2,2) situation [1, 4] reviewed in section 2. The monodromy traces

{TrM(q)N} then should be related to the natural SCFT invariants of T , in particular

to its specialized indices IN (q). In order to connect the monodromy traces and usual

SCFT invariants, one has to treat all BPS states of TIR on the same footing, including the

massless ones which are not taken into account in the KS product M(q). This gives an

explanation of the prescription suggested in [9]. Then we redefine the monodromy operator

by inserting the factors which correspond to the r massless photons, seen as chargeless BPS

vector multiplets,

M(q) =
1

(q)2r
∞
M(q), (6.3)

and take the objects {TrM(q)N} (to the extent such quantities are well defined) as the

natural invariants to compare with the SCFT ones{
TrM(q)N

} ?←→
{
IN (q)

}
. (6.4)

For N = −1 this map is expected to be especially simple: TrM(q)−1 gets identified with

the SCFT index in the Schur limit which is independent of p. Strong evidence for this

9This version of the quantum KS formula holds under two genericity assumptions: 1) the only massless

states are IR-free photons, and 2) massive BPS states with equal BPS phases, arg Zγ = argZγ′ , are mutually

local i.e. 〈γ, γ′〉 = 0.
10The sign ± in the argument of the q-Pochammer symbol stands for the quadratic refinement of [34].
11Here Zγ is the N = 2 SUSY central charge associated to the charge γ; one has Zγ+γ′ = Zγ + Zγ′ .
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identification was given in [9]. However, even for the Schur case we encounter a difficulty

because the TrM(q)−1 is not always well defined, as computed from the BPS spectrum.

For example for SU(2) with Nf = 4, even if one uses the chamber where there are only a

finite number of BPS particles, it turns out that the naive computation of TrM(q)−1 leads

to divergencies which need to be regularized. We do not know of any general prescription

for how to do this. In the absence of a general such prescription to regularize such com-

putations we instead resort to cases which is free from these ambiguities as well as some

general properties which do not depend on how the regularization is performed. There is

an additional issue for TrM(q)N for N 6= −1, because as we have explained we need to

absorb extra zero modes to get a finite non-vanishing answer. Therefore the comparison

of the corresponding computation with the UV computation becomes more difficult due

to mapping operators from UV to IR. Nevertheless the general properties which are reg-

ularization independent (such as the effective 2d central charge) as well as the example

of Argyres-Douglas theories for which the characters seem to describe natural 2d chiral

algebras, support the picture we have found in the previous sections.

For the case of Lagrangian theories we have stronger results. First we show that

the computation of the specialized index and the monodromy computation are identical

for free theories (see also [9]). Moreover for interacting theories since the computation

is independent of where we are in the moduli space, we can take the limit of gYM → 0.

In this limit the BPS spectrum becomes that of the free fields in the Lagrangian plus an

infinite tower of dyonic BPS states whose mass m → ∞. Thus the decoupling arguments

for physical computations would lead us to consider the collection only of electric states

and project to the gauge invariant subsector. This is identical to what one does both in the

index computation and the Tr computation of the BPS particles and so the computations

are identical.12 The only point which is not entirely trivial is to argue the more or less

‘obvious’ physical fact that infinitely massive states should decouple from the computation.

An explicit proof of this turns out to be difficult because of the ambiguities noted above in

defining the trace. Instead we resort to highly non-trivial consistency checks that shows we

need to set the product of the contributions of BPS states coming from the dyonic towers

to 1, i.e. we can ignore them in the extreme weak coupling limit.

The organization of this section is as follows: we first talk about the free case and then

discuss in detail the argument why the tower of dyonic states should not contribute. We

then talk about some general aspects of the trace of the monodromy which applies to all

theories, and not just the Lagrangian ones. In the following section we show how these

general expectations are borne out in the context of Argyres-Douglas theories.

6.1 Free hypers and hypers coupled to abelian gauge groups

There is a case in which the map (6.4) is obvious, namely when the BPS particles are all

mutually local. Then the theory has a unique BPS chamber, and all BPS factors in the

KS product belong to a commutative sub-algebra of the quantum torus algebra T. We

may think of M(q)N as ordinary functions of the fugacities for the local Noether charges

12This argument also extends to the case of insertion of line operators.
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(electric and flavor). The traces {TrM(q)N} are then the integrals of these functions with

respect to the electric fugacities.

Examples of this situation are the free theories of hypermultiplets and vector multiplets,

as well as the Abelian gauge theories coupled to hypermultiplets considered in section 4.3.1.

(These last theories are however not UV complete, so our arguments should be considered

purely formal in this case).

In the free theory case, each BPS factor in the KS product (6.1) is equal to the inverse

of the corresponding factor in the Schur index, andM(q)N (which in the free case coincides

with its trace) is by definition equal to the index IN described in section 4.1.2.

In the SQED case, M(q)N , as a function, is by construction equal to the integrand of

the specialized index IN (cfr. section 4.3.1), while taking their trace amounts to integrating

along the unit circle all the non-flavor fugacities (cfr. equation (6.71)). Since the integrand

depends only on the electric and flavor fugacities, this reproduces the same prescription we

gave in section 4.3.1 to compute the specialized index IN . For instance, for SQED with

one quark we have

TrM(q)N = (q)2
∞Tr

( ∞∏
n=0

(1− qn+1/2X)N (1− qn+1/2X−1)N

)

≡ (q)2
∞

∮
dz

2πiz
(1− qn+1/2z)N (1− qn+1/2z−1)N = IN (q) .

(6.5)

Note here that the comparison between the trace computation and index computation

involves the integral representation of the monodromy trace.

These simple examples corroborate the idea of a direct identification in (6.4).

6.2 Physical arguments for models having Lagrangian formulation

The next class of models is the N = 2 non-Abelian gauge theories coupled to hypermulti-

plets, which coincide with the N = 2 models with a Lagrangian description.

From the superconformal index side, the situation looks rather similar to the SQED

one. The specialized indices are expressed as integrals over the electric fugacities dual to

the Cartan charges of the non-Abelian electric gauge group (with the appropriate gauge

invariant measure), while the integrand is a product of factors associated to the quarks

states, which have the same form as in the Abelian case, and new factors for the charged

W bosons which are essentially identical to the KS monodromy factors for BPS vector

multiplets with the W boson quantum numbers, see equation (6.1).

From the quantum monodromy side the situation looks far more complicated. In

any chamber where the Yang-Mills coupling gYM is small, the BPS spectrum of N = 2

supersymmetric quantum chromodynamics (SQCD) contains two kinds of states:

a) the perturbative spectrum, consisting of mutually-local particles with zero magnetic

charges, whose masses remain bounded as gYM → 0. There are only finitely many

such light particles, and they have spin ≤ 1, so belong to either hypermultiplets

(quarks) or vector multiplets (photons and charged W bosons);
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b) infinite towers of heavy dyonic states, with non-zero magnetic charges, whose masses

are of order 1/g2
YM as gYM → 0 and whose spins are not necessarily bounded.

Thus, in a weakly coupled chamber, the KS product (6.1) contains the factors

(±qs+1/2Xγ ; q)(−1)2s

∞

of all these infinitely many BPS states. The KS factors associated to the light states a) are

essentially equal to the corresponding factors in the specialized index integrand; but in ad-

dition we have infinitely many other factors associated to the heavy dyons. Since taking the

trace is the same as integrating over the non-flavor fugacities, up to possible subtleties with

the integration measure, the only difference between the definitions of the superconformal

index IN (q) and TrM(q)N is the insertion in the latter of the factors associated to the heavy

dyonic towers. Were we allowed to forget these dyonic factors, the two sets of SCFT invari-

ants in equation (6.4) would be equal on the nose, as they are for free theories and SQED.

The idea that at weak coupling we may simply neglect the dyonic factors sounds phys-

ically plausible. Indeed, the monodromy traces are independent of the Yang-Mills coupling

gYM, and they may be safely computed at parametrically small gYM. In this limit the dyon

masses go to infinity; physical intuition says that they decouple completely. Hence, at least

heuristically, at extreme weak coupling we may identify TrM(q)N with the corresponding

specialized index for all N = 2 models having a weakly coupled Lagrangian description.

The {TrM(q)N} are chamber independent (as long as they are well defined). Many

interesting N = 2 non-Abelian gauge theories have strongly-coupled chambers with finite

BPS spectra consisting of just h hypermultiplets. In this situation {TrM(q)N} may be

computed directly from the strongly coupled phase. In this way one may check the above

physical picture at extreme weak coupling against an independent computation of the

monodromy traces. Such a check was performed in [9] for SQCD with gauge group SU(2)

and Nf ≤ 3: it was shown that, for these models, TrM(q)−1 as computed from the

minimal BPS chamber with h = Nf + 2 agrees with the extreme weak coupling answer, i.e.

with its computation at weak coupling neglecting the dyons. For instance, for pure SU(2)

SYM TrM(q)−1, computed as an integral over the electric and magnetic fugacities with

all dyonic factors inserted in the integrand, is (appendix C),

TrM(q)−1 =

∫
dθ dφ

(2π)2

∣∣∣∣∣ (q)∞ (qei(θ+φ))∞

(q1/2eiθ)∞ (q1/2eiφ)∞

∣∣∣∣∣
2

= ψ(1, q2), (6.6)

which agrees with the Schur index (4.81) given by the corresponding integral without the

dyonic contributions [9]. The case N = −1 is especially simple since there is no subtlety

with the integration measure (involving the absorbtion of bosonic/fermionic zero modes).

Indeed, consider N = 2 SQCD with gauge group G of rank rG and let ∆+ be the set of its

positive roots. As a function of the electric fugacities eiH , H ∈ (Cartan subalgebra), the

– 35 –



J
H
E
P
1
1
(
2
0
1
7
)
0
1
3

light BPS factors in the KS product M(q)−1 are

(q)2rG
∞

 ∏
α∈∆+

(
qeiα(H); q

)
∞
(
eiα(H); q

)
∞
(
e−iα(H)

)
∞
(
qe−iα(H)

)
∞

(quark factors
)
≡

≡

Weyl measure︷ ︸︸ ︷ ∏
α∈∆+

(1− eiα(H))(1− e−iα(H))

 PE

[
− 2q

1− q
χadj(H)

](
quark factors

)
, (6.7)

so that the W boson KS factors correctly reproduce the gauge invariant Weyl measure as

well as the proper factor from the vectors fields in the Schur index integrand.

Ignoring the dyonic towers — if legitimate — would be a major simplification for the

computation of monodromy traces of N = 2 models with a Lagrangian formulation and

would make their equivalence obvious. In view of this, it is interesting to see to what

extend this procedure may be justified. In the next couple of subsections we argue why

the natural regularization of the contribution of the infinite tower of dyonic states should

set their contribution to the monodromy operator to 1. In particular we show that setting

their contribution to 1 leads to the action of monodromy operator on the line operator

which is consistent with what one expects that action of the monodromy operator be on

the line operators from other viewpoints.

6.2.1 The physical picture at extreme weak coupling

Let us make the physical picture more precise. For q ∼ 1 the quantum torus becomes classi-

cal and the {Xγ} may be identified with the Darboux coordinates {Xγ} on the hyperKähler

target space of the σ-model dual to the 3d compactification of the 4d N = 2 theory [34]. In

other words, the {Xγ} and the {Xγ} have the same transformation under the monodromy as

τ → 0. The Xγ has the physical interpretation of expectation value of the supersymmetric

Wilson-’t Hooft line operator of electro-magnetic charge γ. In a given quantum phase of the

non-Abelian gauge theory, one distinguishes two classes of such line operators, “light” and

“heavy” [35–37]. “Heavy” lines may mix with “light” ones, but “light” ones may only mix

between themselves: this is just a rephrasing in the physical language of the mathematics

of the Stokes phenomenon for the Darboux coordinates Xγ [34]. In the Coulomb phase, the

“light” lines are the electric ones while the dyonic lines are “heavy”. It follows that under

monodromy the electric lines go into themselves while the magnetic ones may mix with the

electric ones. The mixing is dictated by the Witten effect [38]. In the N = 2 case these

general non-perturbative arguments may be made more explicit as we are going to discuss.

SU(2) SQCD with Nf quarks. For definiteness, we consider the case of N = 2 SQCD

with gauge group SU(2) and Nf flavors of quark [3]; the general Lagrangian case is similar.

Since the U(1)R symmetry is anomalous, a U(1)R rotation by 2π is equivalent to a shift

of the Yang-Mills angle θ by a multiple of 2π; then the effect of the monodromy on the

electric e and magnetic charge m is(
e,m

)
−→

(
e+ 2(4−Nf ),m

)
, (6.8)
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that is, in the weakly coupled phase the electric and magnetic lines transform under mon-

odromy as

Xe → Xe, Xm → Xm+2(4−Nf )e. (6.9)

Indeed, in general one has [34]

Xγ = exp
(
Raγζ + iθγ +Raγ/ζ + · · ·

)
(6.10)

where aγ ≡ Zγ and · · · stands for terms exponentially suppressed as R→∞. Since [3]

am ≈ −
4−Nf

πi
ae log(ae/Λ), for |ae|≫ Λ, (6.11)

while the monodromy acts on the Lagrangian fields as ae → e2πiae, we have the expected

result (6.12). Thus, as q → 1 the action of the monodromy is simply

Xe → Xe, Xm → Xm+2(4−Nf )e. (6.12)

How is the physical answer (6.12) related to the quantum monodromy M(q) written

as the KS product of BPS factors (6.1)? To compare the two pictures of quantum mon-

odromy, we choose the mass-deformations so that the BPS phases of the quark states are

aligned with those of the W boson (since W bosons and quarks are mutually local, this

is still a ‘generic’ situation according to our definition). Identifying BPS particles with

representations of the corresponding BPS quiver13 Q, and using the conventions which are

standard in that context [39, 40], the BPS phase of the light BPS states (W -bosons and

quarks) is set to π/2 while the phase of the monopole is 0. Thus states whose central charge

belong to the upper (lower) half-plane have positive (negative) electric charge, while states

with central charges in the right (left) half-plane have positive (negative) magnetic charge.

The monodromyM(q) computed from the chamber at strong coupling with finite number

of BPS states is the monodromy which starts at phase zero (the monopole phase) makes a

2π rotation and comes back to zero. Instead the monodromy M(q)el which preserves the

light electric lines, eq. (6.12), starts and ends at π/2. Thus, as operators,

M(q)el = KS(0, π/2)M(q)KS(0, π/2)−1, (6.13)

whereKS(α, β) is the KS ordered product (6.1) taken over BPS states with α ≤ argZγ < β.

Thus the monodromy operators which are relevant at strong coupling and weak coupling

are different operators in the same conjugacy class (recall that monodromy is defined only

up to conjugacy). Their intertwinner, KS(0, 2π), is a quite complicated object: it is an

infinite product over the BPS dyonic towers with positive magnetic charge and non-negative

electric charge. Relating monodromy computations at strong and weak coupling requires

to give a definite meaning to the formal infinite non-commutative product KS(0, 2π).

13In this paper when we refer to quiver, we mean the quiver quantum mechanics which captures the BPS

spectrum of the 4d theory and not the quiver theory describing the Lagrangian degrees of freedom of the

4d gauge theory.
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From (6.12), we see that M(q)el commutes with Xe. Under a mild regularity assump-

tion, one concludes that M(q)el does not contain Xm, i.e. that it is a function only of Xe

and the SO(2Nf ) flavor fugacities ya

M(q)el = m(Xe, ya; q). (6.14)

The function m(Xe, ya; q) is determined from its adjoint action on the magnetic lines,

eq. (6.12),

M(q)elXm (M(q)el)−1 = Xm+2(4−Nf )e. (6.15)

If we know the singularity structure of the function m(Xe, ya; q), we may use this equation

to determine it up to multiplication by a c-number function of q and ya. In facts, eq. (6.15)

translates into a functional equation for m(Xe, ya; q) related to the Yang-Baxter equation

studied in [41]. As a preparation, consider the θ-function

θ(z; q) =
∑
n∈Z

qn(n−1)/2(−z)n = (q; q)∞ (z; q)∞ (q/z; q)∞. (6.16)

It satisfies the functional equation

θ(qz) = −z−1 θ(z) ⇒ θ(q2z) = (qz2)−1θ(z). (6.17)

Then for operators satisfying XeXm = qXmXe we have [41]

θ(qaX2e; q)
−1Xm θ(q

aX2e; q) = Xm θ(q
a+2X2e; q)

−1Xm θ(q
aX2e; q) = q2a+1XmX4e.

(6.18)

All singularities of the monodromy function m(Xe, ya; q) should have a physical origin.

The only possible mechanism to generate a singularity in the monodromy is that some

generically massive BPS particles become massless, which implies a discontinuity in the

KS product over massive BPS states. Since in the weak coupling chamber the W boson is

nowhere massless, for pure SU(2) it is natural to look for a regular solution to (6.15). We

compare the adjoint action (6.15) with the following “Yang-Baxter identity”

[θ(qaX2e; q) θ(q
bX2e; q)]

−1Xm[θ(qaX2e; q) θ(q
bX2e; q)] =

= q2(a+b)+2XmX8e = q2(a+b−1)Xm+8e.
(6.19)

Then the general regular solution to (6.12) is(
M(q)el

)−1
= f(q) θ(qX2e; q) θ(X2e; q) =

= f(q) (q; q)2
∞(qX2e; q)∞ (X2e; q)∞ (qX−1

2e ; q)∞ (X−1
2e ; q)∞,

(6.20)

with f(q) undetermined. Choosing f(q) = 1 we get the answer that we expected from the

heuristic argument that infinitely heavy particles (the dyons at extreme weak coupling)

have no effect on the physics.
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SU(2) SQCD with Nf quarks. The argument is easily generalized to Nf 6= 0. However

in this case it is possible for the quarks to get massless while keeping gYM parametrically

small. Hence we expect the solution m(Xe, ya; q) to (6.15) to have singularities as a function

of the quark fugacities ya of the appropriate form. Then, defining the theta function

θ̃(z; q) =

∞∑
n=0

qn
2/2zn, (6.21)

we solve the equation (6.15) in the form(
M(q)el

)−1
= f(q; ya)

θ(qX2e; q) θ(X2e; q)∏Nf
i=1

(
θ̃(yaXe; q) θ̃(y

−1
a Xe; q)

) . (6.22)

Setting the undetermined function f(q; ya) = (q)
2Nf
∞ we recover the physically expected

answer. In particular, the form of the singularity in flavor fugacity is consistent with

its physical interpretation in terms of BPS states becoming massless. Additional (and

stronger) arguments for equation (6.22) are presented in the following subsections.

From this analysis14 we learn that the physical picture of the quantum monodromy at

weak coupling where we simply forget the heavy dyons, and the strong coupling picture

whereM(q) is a complicated element of the quantum torus algebra depending non-trivially

on both Xe and Xm are not in contradiction since the two monodromies are different

elements in the same conjugacy class, eq. (6.13). Their intertwinner, KS(0, π/2), is a

formal operator whose precise definition is hard to pinpoint. Different prescriptions may

lead to different answers, so we must expect a degree of ambiguity in computations which

require explicit use of the strong-weak intertwinner KS(0, π/2). We can interpret the

results of [9], for the Schur case, as a confirmation of the general arguments presented here.

6.2.2 Decoupling of infinitely massive dyons and S-duality

The result of the physical argument in section 6.2.1, say equation (6.22) for SU(2) SQCD

with Nf flavors, implies strong (and somehow paradoxical) properties of the KS products in

N = 2 non-Abelian gauge theories. First of all, the mathematical legitimacy of neglecting

the heavy dyonic states in the KS product requires that the KS products over the dyons,

as operators, satisfy remarkable identities. We shall check these identities in the next

subsection.

In addition, the physical picture leads to apparent paradoxes, since at first sight it

seems to clash with S-duality. Consider SU(2) with Nf = 4. From the physical picture

advocated above, it is natural to conclude that the monodromy has the form (6.22) with

Nf = 4: this is the result of ‘forgetting’ the heavy dyons. But which ‘heavy’ dyons are we

supposed to forget? The notion of a BPS state to be a dyon depends on the S-duality frame

14We warn the reader that the ‘physical’ argument suffers from a minor ambiguity. In facts, we de-

duced (6.15) from the τ ≡ log q/2πi→ 0 limit, and hence the actual answer may differ by a factor which is

trivial in this limit. In practice, viewing the KS product as a partition function for BPS states, the answer

may be off by finitely many modes. An example is given by eq. (6.7) where the monodromy differs from

the index integrand by the zero-mode factors which produce the correct gauge invariant measure. This will

not affect robust quantities like ceff.
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we use, and its being ‘heavy’ or not depends on the value of the Yang-Mills coupling gYM.

But the KS monodromy does not depend on gYM. Our physical picture would describe the

monodromy in one S-frame as the function (6.22) of Xe, M(q) = m(Xe, ya; q), and in a

different frame as the same function but of different arguments, M(q) = m(Xpe+qm, y
′
a; q),

(here (p, q) are coprime integers). It seems we got a paradox.

The solution of the paradox is that the monodromy M(q) is not unique, only its

conjugacy class is an absolute invariant. The physical picture is consistent provided the

two candidate monodromies are conjugate by the appropriate KS operator i.e.

m(Xpe+qm, y
′
a, q) = KS(argZpe+qm, argZe)

−1 m(Xe, ya; q) KS(argZpe+qm, argZe), (6.23)

where KS(θ, θ′) is the KS product over all BPS states with charges γ satisfying

θ′ < argZγ < θ. (6.24)

That m(Xpe+qm, y
′
a, q) and m(Xe, ya; q) are conjugate in the quantum torus algebra is

obvious (at least when ya ≡ 1); that the required action of SL(2,Z) is generated by the KS

products in the appropriate angular sectors will be shown, for the SU(2) Nf = 4 example,

in section 6.3 starting from the monodromy as computed from the strongly-coupled finite

BPS chamber.

6.2.3 Product identities for dyonic towers

The ‘physical’ picture implies some remarkable identities for the KS products over dyonic

towers. Here we focus on pure SU(2), but the results apply with minor modifications to

all Lagrangian theories.

The notion of the quantum monodromy arises from considering a closed path in pa-

rameter space along which the phase of the central charge increases by 2π

Z → e2πi tZ t ∈ [0, 1].

At t → 1 we go back to the original theory, but the line operators Xγ do not return

to themselves. The map {Xγ}t=0 → {Xγ}t=1 defines the adjoint action of the quantum

monodromy M(q). However, the theory has come back to itself already at t = 1/2, since

γ → −γ corresponds to the action of the SU(2) Weyl symmetry, which is part of the gauge

group. Hence the argument of the previous subsection should hold also for the KS product

of BPS states whose central charges belong to a half-plane. In our conventions that the

BPS phase of the W -boson is π/2, the previous argument would imply that the product

over all BPS states with central charge in the positive half-plane, i.e. over all dyons with

positive magnetic charge, is just 1

y∏
BPS states with
−π/2<argZγ<π/2

(
q1/2Xγ ; q

)
∞ = 1, (6.25)

or, explicitly,
←∏
j∈Z

(q1/2Xm+2je; q)∞ = 1, (6.26)
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where the notation
←∏

means that the factor (q1/2Xm+2je; q)∞ is on the left of the factors

(q1/2Xm+2`e; q)∞ with ` < j, and Xm, X2e satisfy the commutation relations X2eXm =

q2XmX2e. Showing that the identity (6.26) holds (in the appropriate sense) is a important

check on the full picture.

Formally, we may expand the inverse of the l.h.s. of (6.26) into terms of definite

magnetic charge M

→∏
j∈Z

(q1/2Xm+2je; q)
−1
∞ =

∞∑
M=0

XM
m AM (X2e; q). (6.27)

To write the AM (X2e; q) in compact form, we introduce the following notation: for M ∈ N,

we write A(M) for the set of all maps k : Z → N, j 7→ kj , such that
∑

j kj = M (in

particular, at most M kj ’s are non zero). Then we put

|k| =
∑
j∈Z

kj , [k] =
∑
j∈Z

jkj , (q)k =
∏
j

(q)kj , (6.28)

and consider the quadratic form

Q(k) =
∑
i,j

min(i, j)kikj (6.29)

which is an inverse of the A∞∞ Cartan matrix∑
j

(
2δij − δi,j−1 − δi,j+1

)
min(j, k) = δi,k. (6.30)

Then formally

AM (X2e; q) = qM/2
∑

k∈A(M)

qQ(k)

(q)k
X

[k]
2e . (6.31)

To give a concrete meaning to the operator in the l.h.s. of (6.27), we have to make sense

of the infinite sums {AM (X2e; q)}M∈N. For M = 0 we have simply AM (X2e; q) = 1.

For M > 0 we focus on the set of functional equations satisfied by the would be sums.

The group Z acts on the set A(M) by the shift operators [n] : A(M) → A(M) given by

k[n]j = kj−n. Under the unit shift [1] we have

|k| → |k|, [k]→ [k] + |k|, Q(k)→ Q(k) + |k|2, (q)k → (q)k. (6.32)

Summing over the shifted maps k[1] ∈ A(M), we get

AM (X2e; q) = qM/2
∑

k[1]∈A(M)

qQ(k[1])

(q)k[1]
X

[k[1]]
2e =

=
(
qM

2
XM

2e

)
qM/2

∑
k∈A(M)

qQ(k)

(q)k
X

[k]
δ ≡ q

M2
XM

2e AM (X2e; q),

(6.33)

so that AM (X2e; q) satisfies the functional equation(
1− qM2

XM
2e

)
AM (X2e; q) = 0. (6.34)
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For M > 0 the only regular solution to this equation is AM (X2e; q) = 0. The regularity

condition we use here reflects the regularity condition we used to pinpoint a unique solution

for the Yang-Baxter equation of pure SU(2) in the previous subsection. Then we conclude

that AM (X2e; q) = δM,0, that is

→∏
j∈Z

(q1/2Xm+2je; q)
−1
∞ = 1, (6.35)

in agreement with the decoupling of infinitely massive dyons.

6.3 SU(2) SQCD with Nf = 4 and S-duality

To further illustrate and corroborate the above physical picture of the quantum monodromy

M(q), we present some non-trivial monodromy computations in SCFT examples.

The simplest non-trivial N = 2 SCFT with a Lagrangian description is SQCD with

gauge group SU(2) and four fundamental quarks. We choose its BPS quiver in the

form [42–44]

c1

  ''
a1

77

a2

>>

b1

~~

b2

ww
c2

gg `` (6.36)

which has the Z2 symmetry ι

(a1, a2, c1, b1, b2, c2)
ι←→ (b1, b2, c2, a1, a2, c1), (6.37)

which is a simple instance of Galois symmetry in the sense of [45] which, when present,

is the most powerful tool to compute the quantum monodromy. Since ι is an involutive

automorphism of the quiver, for all γ, γ′ ∈ Γ,

〈ι(γ), γ′〉 = 〈γ, ι(γ′)〉 ⇒ 〈γ, ι(γ)〉 = 0 (6.38)

i.e. BPS states in the same orbit of the Galois symmetry are automatically mutually-local.

SU(2) with Nf = 4 has a strongly-coupled finite BPS chamber with 12 hypermulti-

plets [42–44], which is invariant under the Z2 symmetry ι in the sense that if γ ∈ Γ is

the charge of a stable hypermultiplet so is ι(γ). Indeed the set of the charge vectors of

the 12 hypermultiplets is given by the union ∆+ q ∆+ of the positive roots ∆+ of the

two A3 Dynkin full subquivers over the nodes {a1, a2, c1} and {b1, b2, c2} which are inter-

changed by ι [42, 44, 45]. Inside this strongly-coupled chamber there is a locus where the

central charge is also ι-symmetric, i.e. Zι(γ) = Zγ . Finally the quadratic refinement is also

ι-invariant. Then the monodromy KS product, as computed at the ι-invariant locus in the

strongly-coupled finite chamber, takes the form [45]

M(q) = (q)−2
∞

�∏
Galois
orbits

{(
± q1/2Xγ ; q)∞ (±q1/2Xι(γ); q)∞

}
, (6.39)

where the two factors inside each curly bracket commute between themselves by eq. (6.38).
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This model has an SO(8) flavor symmetry; correspondingly the exchange matrix Bij
of the quiver (6.36) has rank 2, and we may parametrize its quantum torus algebra TQ in

terms of four commuting flavor fugacities ya and two operators Xe1 , Xe2 satisfying the T ~A2

quantum torus algebra Xe1Xe2 = q Xe2Xe1 as follows

Xc1 = y1Xe1 , Xc2 = y1X
−1
e1 ,

Xb1 = y2y3Xe2 , Xb2 = y−1
2 y3Xe2 Xa1 = y4y3X

−1
e2 , Xa1 = y−1

4 y3X
−1
e2 .

(6.40)

The monodromyM(q) may then be seen as an element of the T ~A2
algebra which depends on

the ya parameters. Although we could be more general, since the flavor fugacity dependence

plays a secondary role in our discussion, for simplicity we set ya = 1. At this special point

in flavor fugacity space eq. (6.40) implies

Xι(γ) = X−1
γ , (6.41)

and hence each curly bracket in eq. (6.39) takes the form{(
± q1/2Xγ ; q)∞ (±q1/2Xι(γ); q)∞

}
−→ θ(±q1/2Xγ ; q)

(q)∞
(6.42)

where θ(z; q) is the function defined in eq. (6.16). Hence we may write,

M(q)
∣∣∣
ya=1

= (q)−12c
∞

(
L2

4 L3 L2 L1

)2
, (6.43)

where c = 14/12 is the 4d conformal central charge, and the Li, (i = 1, 2, 3, 4)

are Kontsevich-Soibelman products in suitably angular sectors containing two (or four)

mutually-local stable hypermultiplets. Explicitly,

L1 = θ(q1/2Xe1 ; q) L2 = θ(−q1/2Xe2−e1 ; q)2

L3 = θ(q1/2X2e2−e1 ; q) L4 = θ(q1/2Xe2 ; q).
(6.44)

Using the functional equation (6.17) for θ, we get

L1

{
Xe1

Xe2

}
L−1

1 =

{
Xe1

−Xe2−e1

}
, L2

{
Xe1

Xe2

}
L−1

2 =

{
X2e2−e1

X3e2−2e1

}

L3

{
Xe1

Xe2

}
L−1

3 =

{
X4e2−e1

−X3e2−e1

}
, L4

{
Xe1

Xe2

}
L−1

4 =

{
Xe1+e2

Xe2

}
,

(6.45)

so that the half-monodromy acts as

(L2
4L3L2L1)

{
Xe1

Xe2

}
(L2

4L3L2L1)−1 =

{
X−e1

X−e2

}
(6.46)

and the full-monodromy M(q) as

M(q)

{
Xe1

Xe2

}
M(q)−1 =

{
Xe1

Xe2

}
(6.47)

– 43 –



J
H
E
P
1
1
(
2
0
1
7
)
0
1
3

in agreement with eq. (6.12).

We may fix our reference S-duality frame so that the operator Xae1+be2 has elec-

tric/magnetic charges (a, b). Then eq. (6.45) may be rephrased as the statement that the

KS operators Li induce the following SL(2,Z) S-duality transformations on the electro-

magnetic charges of the line operators

L1 →

(
1 0

−1 1

)
, L2 →

(
−1 2

−2 3

)

L3 →

(
−1 4

−1 3

)
, L4 →

(
1 1

0 1

)
.

(6.48)

In particular L1, L4 suffice to generate the full SL(2,Z) action on line operators. We

conclude that the KS product of BPS factors associated to an angular sector is the same

thing as the telescoping operator15 implementing the S-duality by the corresponding angle.

Equation (6.47) is the same as (6.15) for Nf = 4. It has many solutions. If we assume it

to be a function only of the ‘electric’ fugacity Xe1 , as suggested by the ‘oblique confinement’

physical picture we wish to check, we have solutions of the general form

M(q) = f(q)

K∏
a=1

θ(q`aXma
e1 ; q)na (6.49)

with K even and∑
a

nam
2
a = 0,

∑
a

mana

(
`a +

ma − 1

2

)
= 0,

∑
a

mana = 0 mod 2. (6.50)

Two particular solutions to these Diophantine equations correspond to the extreme weak

coupling description of the monodromy for the two Lagrangian SCFT with one-dimensional

Coulomb branch, i.e. SU(2) N = 2∗ and Nf = 4 respectively

• N =2∗ (`a,ma,na)=

W boson︷ ︸︸ ︷
(1,2,1),(0,2,1),

adj. quark︷ ︸︸ ︷
(1/2,2,−1)(1/2,2,−1) (6.51)

• Nf =4 (`a,ma,na)=

W boson︷ ︸︸ ︷
(1,2,1),(0,2,1),

(8 times) quarks︷ ︸︸ ︷
(1/2,2,−1)(1/2,2,−1)···(1/2,1,−1) (6.52)

These are (essentially) the unique solutions if we require the singularities to be of the

respective ‘right’ form (i.e. singularities allowed only if they may arise from quarks

becoming massless).

15These operators correspond to the mathematicians’ telescopic (endo)functors in the corresponding

derived category [46]. For a review in the present physical context, see [47]. In the categoric language, the

BPS states of SU(2) with Nf quarks are the stable objects in the derived category Db(cohPNf ) of coherent

sheaves on the orbifold of P1 with Nf double points. The quantum monodromyM(q) is the autoequivalence

(τ−1[1])2 of Db(cohPNf ) [6]. The physical equations (6.12) are just Serre duality on PNf . In particular, the

monodromy is an autoequivalence of the Abelian category of objects with m = 0, e > 0, (the category of

finite-length coherent sheaves) i.e.M(q)XeM(q)−1 = Xe. If the orbifold PNf has zero Euler characteristic,

i.e. for Nf = 4, we have also M(q)XmM(q)−1 = Xm.
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General KS theory implies, in particular, that the monodromies written with respect

to two different S-duality frames are equal modulo conjugacy, more precisely that they

differ by the adjoint action of an operator which is a KS product of BPS factors. Then

consider the monodromy written with respect to the frame in which the weakly coupled W

boson has charge 2(pe1 + qe2) with p, q coprime. If the monodromy in the original S-frame

was given by equation (6.49), the monodromy in the new frame should be simply

M(q)new = f(q)
K∏
a=1

θ(q`aXma
pe1+qe2 ; q)na (6.53)

i.e. the same function where we replaced Xe1 by Xpe1+qe2 . Consistency of the physical

picture of monodromy proposed in section6.2 with the Kontsevich-Soibelman formula then

requires that there exists an operator W ∈ T such that

M(q)new = WM(q)oldW−1, (6.54)

and moreover that W can be chosen to be equal to the product of BPS factors with phases in

the range argZe1 < θ < argZpe1+qe2 . The existence of a W with the prescribed properties

for all pair of coprime integers (p, q) is a significant check on the physical scenario.

The existence of W follows from the previous monodromy computation in the strong

coupling chamber. For each (p, q) coprime there is an A ∈ SL(2,Z) which transforms e1 into

pe1 + qe2. Since L1, L4 generates SL(2,Z), there is a word W in L1, L2 equal to A. Then

WXe1W
−1 = Xae1+be2 , (6.55)

and eq. (6.54) is satisfied. By construction, W is a product of BPS factors (±q1/2Xγ , q)∞.

So the physical picture passes this check of consistency with KS theory.

6.4 A non-Lagrangian example

The above results for SU(2) with Nf = 4 generalize to all N = 2 SCFTs with a finite

chamber such that all operators have integral U(1)R charge [6], even if they do not have a

Lagrangian description. When the Coulomb branch has dimension 1, one gets a SL(2,Z) ac-

tion on the line operators Xγ implemented by the KS products which is similar to the one we

described for SU(2) with Nf = 4. If the model has no Lagrangian formulation, the physical

implications of this SL(2,Z) auto-equivalence is less obvious since we have no weak coupling

intuition. We illustrate these facts in the simplest non-Lagrangian model of this class.

SU(2) with Nf = 4 is a special instance of a sequence of N = 2 models with one-

dimensional Coulomb branch and large flavor symmetry. They are described by the class

of the Q(r, s) quivers in figure 2 where r, s are non-negative integers not both zero. These

models have a non-Abelian flavor symmetry of rank r + s described by the Dynkin graph

in the lower part of the figure. Since the flavor symmetry group of a meaningful QFT

must be compact, only pairs (r, s) such that the lower graph is a Dynkin graph of finite-

type correspond to a N = 2 model. In particular, Q(2, Nf ) is the quiver of SU(2) with

Nf quarks, and Q(3, 3), Q(3, 4) and Q(3, 5) are the quiver of the Minahan-Nemeschansky

theories with flavor symmetry Er+s.
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Figure 2. The Q(r, s) ≡ Q(s, r) quiver (r + s) > 0. The corresponding N = 2 theory has one-

dimensional Coulomb branch and rank (r + s) flavor symmetry group GF with the Dynkin graph

in the lower graph.

The SCFTs described by a Q(r, s) quiver — which are known as H1, H2, D4, E6, E7, E8

— as well as many others like the Argyres-Douglas theories of type D, have in common

some remarkable properties that we shall use in section 7 as a guiding principle to

compute in an efficient way their monodromy traces. From the viewpoint of the 2d/4d

correspondence of [8] the property may be stated as follows: these SCFT have a flavor

group GF with a 4d level k and a conformal central charge c to which there correspond the

2d CFT quantities c2d = −12c and k2d = −k/2. These models have the special property

that the 2d Sugawara energy-momentum tensor of the flavor symmetry GF saturates the

Virasoro central charge, i.e. we have the equality

c2d =
k2d · dimGF
hGF + k2d

. (6.56)

The same SCFTs were shown in [44] to have a finite BPS chamber which is c-saturating,

i.e. such that the conformal central charge c computed from the BPS spectrum pretending

it consists of free particles is, for that particular chamber, equal to its actual value. The

c-saturating chambers lead to very convenient expressions for the monodromy which

greatly simplify the task of computing their traces. A first example of c-saturating is the

12 hyper chamber of SU(2) with Nf = 4: in eq. (6.43) the monodromy, as written in the

c-saturating chamber, is equal to (q)−12c
∞ times a product of theta functions. This formula

is true (for an appropriate product of theta functions) for all rank 1 SCFT models in the

above list (again switching off flavor fugacities). In particular, experience suggests that in

all SCFTs for which (6.56) holds, for all N > 0 such that TrM(q)N makes sense, we have

TrM(q)N =
ΘN (ya; q)

(q)12Nc
∞

(6.57)

where c is the 4d SCFT central charge and ΘN (ya; q) is the theta-function of some lattice.

In section 7 we shall find many instance of this phenomenon so helpful in computing the

traces.
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For brevity we discuss only the first Minahan-Nemeschansky model with GF = E6 .

Its quiver Q(3, 3) also has a Z2 Galois automorphism ι

ai
ι←→ bi c1

ι←→ c2, (6.58)

which is a symmetry of the BPS spectrum in the finite c-saturating 24 hypers chamber.

Since the Coulomb branch is one-dimensional, we may parametrize the quantum torus

algebra TQ(3,3) in terms of the algebra T ~A2
, Xe1Xe2 = qXe2Xe1 and six flavor fugacities

ya. Setting the E6 fugacities to 1, we again get Xι(γ) = X−1
γ and, by the same argument

we used for SU(2) with Nf = 4, the monodromy reads

M(q) = (q)−12c
∞

(
L6L5L4L3L2L1

)2
(6.59)

where c = 13/6 is the model’s conformal central charge and

L1 = θ(q1/2Xe1 ; q) L2 = θ(−q1/2Xe2−e1 ; q)3 L3 = θ(q1/2X3e2−2e1 ; q)

L4 = θ(q1/2X2e2−e1 ; q)3 L5 = θ(−q1/2X3e2−e1 ; q) L6 = θ(q1/2Xe2 ; q)3.
(6.60)

Using (6.17), we get

L1

{
Xe1

Xe2

}
L−1

1 =

{
Xe1

−Xe2−e1

}
, L2

{
Xe1

Xe2

}
L−1

2 =

{
−X3e2−2e1

−X4e2−3e1

}

L3

{
Xe1

Xe2

}
L−1

3 =

{
−X9e2−5e1

−X7e2−4e1

}
, L4

{
Xe1

Xe2

}
L−1

4 =

{
X12e2−5e1

−X7e2−3e1

}
,

L5

{
Xe1

Xe2

}
L−1

5 =

{
−X9e2−2e1

−X4e2−e1

}
, L6

{
Xe1

Xe2

}
L−1

6 =

{
−Xe1+3e2

Xe2

}
(6.61)

so that the adjoint action of each Li, and hence of their products, acts (a part for the signs

from quadratic refinement) is just a SL(2,Z) transformation

LiXγL
−1
i = XAi(γ) Ai ∈ SL(2,Z). (6.62)

However now the half-monodromy acts as the identity

(L6L5 · · ·L1)

{
Xe1

Xe2

}
(L6L5 · · ·L1)−1 =

{
Xe1

Xe2

}
. (6.63)

The situation for E7 and E8 Minahan-Nemeschansky is similar, but the monodromy has a

less compact expression since these models have no Galois symmetry. The analysis of their

monodromy in the classical limit q → 1 (but general flavor fugacities) may be found in [48].

6.5 Generalities on monodromy traces

Having discussed the Lagragian cases and some extensions of them, in this section we

turn to some general properties of the monodromy traces which follow from their formal
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structure. Appendix C contains a survey of the main techniques to compute monodromy

traces. The interested reader can find more details and explicit expressions for all quantities

related to the traces that we will need.

The methods of [6] work for models having a finite BPS chamber i.e. a chamber whose

BPS spectrum consists of finitely many hypermultiplets; then the KS product M(q)N

contains finitely many factors (q1/2Xγ ; q)∞. One expands each such factor in the basis

{Xγ}γ∈Γ of the quantum torus algebra T and then multiplies them with the rule (6.2) to

get a (formal) expression of the form

M(q)N =
∑
γ∈Γ

µ(N ; q)γ Xγ , (6.64)

for certain coefficient functions {µ(N ; q)γ}γ∈Γ given by multiple q-hypergeometric sums.

The trace on the quantum torus algebra T is defined by the rule16

TrXγ =

{
yγ γ is a flavor charge

0 otherwise.
(6.65)

A charge γ is a flavor charge iff it belongs to the radical of the Dirac form, i.e. 〈γ, ν〉 = 0

for all ν ∈ Γ. The flavor charges form a sublattice Γf ⊂ Γ of the charge lattice.

From (6.64), (6.65) the monodromy traces, as functions of q and the flavor fugacities ya,

are then

TrM(q)N =
∑
φ∈Γf

µ(N ; q)φ yφ. (6.66)

The computation of TrM(q)N is thus reduced to the evaluation of q-hypergeometric sums

{µ(N ; q)φ}φ∈Γf which have the general form [6]

∑
n1,...,ns≥0

qQ(ni)/2
∏
i z
ni
i∏

i(q)ni

∏
a

δbaini,ta , (6.67)

where Q(ni) ≡ niAijnj is an integral quadratic form and the Kronecker deltas enforce

the proper restriction on the summation range; see appendix C for full details, including

explicit expressions for all elements appearing in (6.67). q-sums of this form are familiar

from the thermodynamical Bethe ansatz (TBA) and related Y -systems, see e.g. [49]. Ideas

and techniques developed in those contexts may be applied also to monodromy traces.

Depending on N and the particular model at hand, the sum (6.67) may or may not be

absolutely convergent; if not an appropriate prescription is required to define TrM(q)N .

16This is slightly different from the notion of ‘canonical trace’ used in [6] where the trace included a

projection also to flavor neutral sector. The relation between the two notions of trace is as follows:

TrM(q)N
∣∣∣∣
CNV
sense [6]

=

∮
TrM(q)N

∣∣∣∣
present
sense

∏
a

dya
2πi ya

.
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Moyal functions. Let {es} be a set of generators of the charge lattice Γ, and set Bs,t =

〈es, et〉. The quantum torus algebra T, which has generators {Xes} and commutation

relations XesXet = qBstXetXes , is isomorphic to the algebra of holomorphic functions on

the classical torus T = (C∗)rank Γ, with coordinates us ∈ C∗, endowed with the Moyal

product ∗ defined by the 2-vector Bts, i.e.

f ∗ g(us) = exp
(
πiτBst xsyt ∂xs∂yt

)
f(us + xs)g(us + ys)

∣∣∣
x=y=0

where q = e2πiτ . (6.68)

To the charge γ =
∑

s nses ∈ Γ we associate the function uγ =
∏
s u

ns
s on T . If γ is a flavor

charge, the corresponding function uγ is called a flavor fugacity. In the basis {Xγ} of T
the isomorphism between T and the Moyal functions is simply

Xγ ↔ uγ . (6.69)

Comparing with (6.64), we see that the Moyal function µ(us; q)
(N) on T which corresponds

to the operator M(q) ∈ T is

µ(us; q)
(N) =

∑
γ

µ(N ; q)γ uγ . (6.70)

Then

TrM(q)N =

∮
dvs

2πivs
µ(us; q)

(N) , (6.71)

where the integral is on the unit circle |us| = 1 at fixed values of the flavor fugacities ya.

The Moyal formalism has two advantages with respect to the quantum torus algebra: first

the quantum cluster mutations [6] may be rephrased as functional equations for the Moyal

functions which are often easier to solve. Second, it is usually simpler to find a prescription

to make convergent an integral like (6.71) than a q-series.

In appendix C it is shown that the integral (6.71) may be recast in the form (q = e2πiτ )∫
C

exp

(
−S(ti, ya; τ)(N)

2πiτ

)∏
i

dti, (6.72)

where S(ti, ya; τ)(N) is a function which is regular as τ → 0 (see appendix C for its explicit

form). The integral (6.71) belongs to the well known class of “oscillatory integrals”, which

may be interpreted as brane amplitudes
∫
C dXi exp(−W (Xi)/ζ) for 2d (2,2) SCFTs [50].

For such an integral, giving the appropriate convergence prescription amounts to specifying

the correct integration contour C. We stress that, while the contour C (and hence the

proper definition of TrM(q)N ) may be rather subtle, the function S(ti, ya; τ)(N) contains

information on the quantum traces TrM(q)N which is both very valuable and totally

non-ambiguous.

The effective central charge ceff. In particular the function S(ti, ya; τ)(N) contains

the “2d CFT data”, ceff and {hi}, associated with the monodromy trace TrM(q)N . These

data are defined as follows: view TrM(q)N as a power series in q

TrM(q)N =
∑
n≥0

an(y) qn (6.73)
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whose coefficients an(y) are Laurent polynomials in the flavor fugacities ya with integral

coefficients. The effective central charge ceff of the power series
∑

n≥0 an q
n is defined as

ceff =
3

2π2
lim
n→∞

(log an)2

n
, (6.74)

or equivalently (setting q = e2πiτ ) by its τ → 0 asymptotic behavior

∑
n≥0

an q
n ' exp

(
2πi

τ

ceff

24
+O(1)

)
as τ → 0. (6.75)

The name ‘effective central charge’ stems from the fact that, when the q-series (6.73) is a

conformal block of a (not necessarily unitary) 2d CFT, one has

ceff ≡ c− 24 min
i

(hi) (6.76)

with hi, c the conformal weights and Virasoro central charge of the CFT. In particular, for

unitary CFTs, ceff ≡ c. If there are flavor symmetries, from eq. (6.74) we get a function of

the flavor fugacities, ceff(ya); in this case, we define the effective central charge ceff as the

value of this function at a (suitable) critical point, ∂yaceff(y) = 0.

To compute ceff, it suffices to evaluate the integral (6.72) in the limit τ → 0. This

can be done by standard saddle point techniques: ceff for TrM(q)N is essentially the value

of the function S(ti, ya; τ)(N) at its dominating critical point. The saddle point equations

may be solved explicitly by adapting standard TBA methods [49] to our situation. The

details may be found in appendix C. Here we quote the final result: ceff for TrM(q)N (as

computed from a chamber with h hypers) is given by

ceff = 2rN + 2|N |
h∑
i=1

6

π2
L(zi), (6.77)

where L(z) is the Roger dilogarithm

L(z) = Li2(z) +
1

2
log z log(1− z), (6.78)

and the zi are the solutions to the Nahm-like equations

z2
i =

{
(1− zj)Cij , N > 0

(1− zj)2 δij−Cij N < 0
(6.79)

where Cij is the integral symmetric h× h matrix specified in appendix C.

Below we will need to recall that c4d, a4d for AD (A,A′) theory:

c4d =
dimA dimA′ − rArA′

12(hA + hA′)

a4d =
4 dimA dimA′ − 5rArA′

48(hA + hA′)
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Example 1: (G,A1) models with N > 0. In this case the equations (6.79) take the

form

z2
i = (1− zj)Cij (6.80)

where Cij the Cartan matrix of the simply-laced Lie algebra G. Writing zi = w
−Cij
j , the

equations take the form

1 + w
2δij−Cij
j = w2

i . (6.81)

The equations (6.80) have a unique solution with 0 < zi < 1 which corresponds to the

vacuum character of the 2d coset CFT G(2)/U(1)rG [49, 51]. Then 6
∑

i L(zi)/π
2 is just

the central charge of the G(2)/U(1)rG coset CFT, and

ceff = 2N

(
r +

rG hG
hG + 2

)
, (6.82)

where r is the rank of the Coulomb branch of the AD theory, and rG, hG are the rank and

the Coxeter number of the Lie algebra G (related to its dimension by the Coxeter formula

dimG = rG(hG + 1)). 2r is equal to rG minus the multiplicity of hG/2 as an exponent of

G. For (A1, G) Argyres-Douglas theories the 12Nc4d is expected to be given by the above

formula for ceff and this is in agreement with the expected answer (A1, ArG).

Example 2: (G,A1) models with N < 0. In this case the equations (6.79) take the

form

z2
i = (1− zj)2δij−Cij . (6.83)

Setting zi = −w2δij−Cij
j we get back the Nahm equations (6.81). For N < 0 we are

interested in a different solution of these equation. We may find it by the same Lie theoretic

methods as for N > 0 [49]. For instance, for the (A1, A2`) model with N < 0 one finds

(appendix C)

ceff =
2|N |`
2`+ 3

. (6.84)

Note that this agree with the expected answer −48N(c4d − a4d) for the AD theory when

G = A2l.

The effective central charge of the (p, q) Virasoro minimal model is

ceff(p, q) = c− 24 min
r,s

hr,s = 1− 6

pq
. (6.85)

Taking p = 2 and q = 2`+ 3, we get the effective central charge (6.84) for N = −1. Note

that this agrees with the general prediction that hmin = (−1/2)(5c4d − 4a4d).

Example 3: (G,G′) models with N > 0. Again we reduce the saddle point conditions

to systems of algebraic equations already studied in a related context by Nahm [49]. Using

his results, one obtains the following formula

c2d = ceff = 2Nr +N
rGrG′hGhG′

hG + hG′
= 12Nc4d, (6.86)
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which has been checked explicitly for (G,A2). Using this and the r-charges for the Coulomb

branch of the (G,G′) models which are known, one can also deduce a4d for all (G,G′) AD

theories from the relation [22]

4(2a4d − c2d) =
∑
i

(2ri − 1) , (6.87)

where the sum is over all the Coulomb branch operators with dimension given by ri.

7 Monodromies and 2d chiral algebras of Argyres-Douglas theories

7.1 Insertion of line operators and characters of chiral algebras

The Argyres-Douglas (AD) theories are isolated fixed points of 4d N = 2 supersymmetric

field theories with finite number of BPS states in all chambers [52]. Therefore to write

down q-series expressing TrM(q)N is straightforward. (But, for large |N |, the resulting

q-series are not absolutely convergent, and suitable prescriptions are required to make sense

out of them). On the other hand, the computation of the supersymmetric indices IN (q) of

AD theories is difficult even in principle, because most of them do not have a Lagrangian

description. In view of the proposed correspondence (6.4), the “easy” computation of

the monodromy traces may be used as a prediction of superconformal indices in the limit

t = qpN+1 and p→ exp(2πi).

More generally, we may consider monodromy traces with line operator insertions

〈Xγ〉N = Tr
[
M(q)N Xγ

]
γ ∈ Γ. (7.1)

We stress that the 〈Xγ〉N are not absolute invariants, since M(q) is unique only up

to conjugacy. M(q) depends on the choice of a reference ray in the Z-plane, which

conventionally we take to be the positive real axis. 〈Xγ〉N is invariant only under the

deformations of the parameters such that no central charge Zγ of a BPS particle crosses

the real axis. In short, in the standard quiver formulation [39] the 〈Xγ〉N depend on the

choice of a quiver in the mutation class, but not on the point in parameter space, as long

as it is covered by the given quiver.

Fixing the quiver Q, the 〈Xγ〉N may be read directly from the expansion of the operator

M(q)N in the standard basis of the quantum torus algebra T (see eq. (6.64))

M(q)N =
∑
γ∈Γ

〈Xγ〉N X−γ . (7.2)

The 〈Xγ〉N may be used to compute traces of powers of M(q)N . For instance

TrM(q)2N =
∑
γ∈Γ

〈Xγ〉N 〈X−γ〉N . (7.3)

In this section we choose the quiver to have the Dynkin form with the linear orientation.

7.2 (A1, A2) AD theory

Let us start the discussion with the AD theory of the (A1, A2) singularity. The BPS quiver

of this theory is shown in figure 3.
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1 2

Figure 3. BPS quiver.

Trace ofM(q)−1. The trace of the inverse monodromy for the (A1, A2) theory was first

computed in [6]. The result is (see appendix D.2)

TrM(q)−1 = H(q), (7.4)

where H(q) is the Rogers-Ramanujan function,

H(q) =

∞∑
l=0

ql
2+l

(q)l
=

∞∏
n=1

1

(1− q5n−2)(1− q5n−3)
. (7.5)

It is known that q11/60H(q) is the vacuum character χ1,1 of the (2, 5) Virasoro minimal

model. The central charge of the (2, 5) minimal model is −22/5, with matches our pre-

diction in table 6 of appendix B (see also equation (C.49)). The central charge of the 2d

chiral algebra is −12 times the central charge of the 4d theory as noted in [8, 9, 53].

Trace of M(q). The monodromy trace TrM(q) is equal to [6]

TrM(q) =
G(q)

(q)4
∞
, (7.6)

where G(q) is the other Rogers-Ramanujan function,

G(q) =

∞∏
k=1

1

(1− q5n−1)(1− q5n−4)
. (7.7)

The effective central charge of TrM(q) is 22/5 as shown in table 6 (cfr. equation (C.45)).

Indeed, q−1/60 (q)4
∞TrM(q) is the character χ1,3 of the (2, 5) minimal model which has an

effective central charge

ceff = 1− 6

2 · 5
≡ 22

5
− 4. (7.8)

We have provided evidence in the Lagrangian cases that at least in the extreme weak

limit we have a chiral algebra, whose character is computed by the trace of the monodromy.

We now can test this for the TrM(q). Which chiral algebra has the character G(q)/η(q)4?

Note that G(q) is a character of a representation of the (2, 5) model but it is not the char-

acter of the corresponding algebra (i.e. of the vacuum module). So our general conjecture

anticipates that there should be nevertheless another chiral algebra whose vacuum charac-

ter gives G(q)/η(q)4. The 1/η4 is simply the chiral algebra associate to 4 free boson (with

zero modes deleted). So the question is whether we can view G(q) as the character of a

chiral algebra.
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The chiral algebra A1 associated to TrM(q). As shown in [54], G(q) is the vacuum

character of the subalgebra of SU(2) at level k = 1 generated by J+(z) = J1(z) + iJ2(z).

For level 1 this algebra is simple and has only one relation given by

J+(z)J+(z) = 0. (7.9)

Let us see why the characters of this algebra is given by G(q). To see this we rewrite G(q) as

G(q) =

∞∑
n=0

qn
2∏n

i=1(1− qi)
= 1 +

q

1− q
+

q4

(1− q)(1− q2)
+ · · · . (7.10)

Clearly J+(z) and its derivatives gives the module q/(1 − q). There is no q2 and q3 term

because of the relation ∂(J+(z)J+(z)) = 0 and J+(z)∂J+(z) = ∂(J+(z)J+(z)) = 0. The

module q4/((1−q)(1−q2)) comes from ∂J+(z)∂J+(z) and its derivatives, the denominator

is (1 − q)(1 − q2) instead of (1 − q)2 is due to the symmetry between two ∂J+(z)’s. The

algebra behind positive monodromy TrM(q) is just the aforementioned J+ subalgebra

of SU(2)1 together with four free scalars. One interesting fact is that TrM−1(q) = H(q)

which is the character of the module for N = −1 is the character of the other module of

this J+ subalgebra of SU(2)1, which has as the vacuum the fundamental representation.

Moreover one can get to H(q) for TrM(q) by inserting a line operator (as was shown

in [6] and we will now review).

Insertion of line operators. With reference to the quiver in figure 3, the N = +1 traces

〈Xγ〉+1 were computed17 in [6]; there it was shown that they satisfy a three-term recursion

in the charge γ of the inserted line operator. This recursion relation is a manifestation of

the Verlinde algebra of the underlying 2d CFT. Explicitly [6]

〈Xme1+ne2〉N=+1 =
(−1)m+n

(q)4
∞

q(m2+n2−mn)/2Gm−n(q) (7.11)

where G`(q) is the Rogers-Ramunjan function

G`(q) :=
∑
k≥0

qk
2+`k

(q)k
(7.12)

which for ` ≥ 0, G`(q) may be written as a sum of (at most) ` theta-functions18

G`(q) =
1

(q)∞

∑̀
s=0

[
`

s

]
q

q2s(s−`) θ
(
q3+4s−2`; q5

)
, ` ≥ 0. (7.13)

In particular, G0(q) ≡ G(q) and G1(q) ≡ H(q). The Garrett-Ismail-Stanton theorem19 [55]

solves the Verlinde algebra three-terms recursion for G`(q) in terms of the Schur polynomi-

als e`(z) and d`(z) (` ∈ Z). This allows to write G`(q) for ` ∈ Z in a form which generalizes

the r.h.s. of eqs. (7.5), (7.7)

G`(q) =
e−`(1/q)

(q, q4; q5)∞
+

d−`(1/q)

(q2, q3; q5)∞
(7.14)

17In the conventions of [6] the reference ray was θ = π instead of θ = 0. Hence 〈Xγ〉
∣∣
[6]

= 〈X−γ〉
∣∣
this paper

.
18θ is defined as in eq. (6.16).
19We thank Ole Warnaar for pointing out the GIS theorem to us.
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where the Schur polynomials e`(x), d`(x) are defined for ` ≥ 0 as

d`−1(q) =
∑
j

qj
2+j

[
`− j − 2

j

]
q

e`−1(q) =
∑
j

qj
2

[
`− j − 1

j

]
q

, (7.15)

and for ` < 0

e−`(1/q) = (−1)` q−(`2) d`−1(q), d−`(1/q) = −(−1)` q−(`2) e`−1(q). (7.16)

The N = −1 trace with line operators insertions is computed in appendix D.2. Using

the identities in appendix D.1 we get an expression in terms of partial theta functions ψ(z, q)

〈Xme1+ne2〉N=−1 = (7.17)

=
qmn/2

(q)2
∞

∑
k≥0

(−1)k
q(k2+k+|m−k|+|n+k|)/2

(q)k
ψ(−q|m−k|, q)ψ(−q|n+k|, q).

This sum may be explicitly evaluated in each quadrant of Z2 in terms of Rogers-Ramanujan

functions G`(q). The simplest case is m ≥ 0 and n ≤ 0 where one gets (see appendix D.2)

〈Xme1+ne2〉N=−1 = q(m−n−nm)/2Gm−n+1(q) for m ≥ 0, n ≤ 0, (7.18)

which, in particular, reduces to TrM(q)−1 = H(q) for m = n = 0. In the other three

quadrants one gets the same formula up to a finite sum

〈Xme1+ne2〉N=−1 = q(m−n−nm)/2

(
Gm−n+1(q) + a finite q-sum

)
. (7.19)

See appendix D.2 for explicit expressions in the various cases and additional details.

The traces TrM(q)±2. For any N = 2 model and any N one has the identity

TrM(q)2N =
∑
γ∈Γ

〈Xγ〉N 〈X−γ〉N , (7.20)

where 〈Xγ〉N is defined as in (7.2) (we may see the monodromy traces as norms, see

section C.2). Thus for the (A1, A2) model we may write TrM(q)±2 as a bilinear sum of

Rogers-Ramanujan functions G`(q). Note that as q → 0

〈Xme1+ne2〉N=+1 〈X−me1−ne2〉N=+1 = O(qm
2+n2−mn+[|n−m|/2]2)

〈Xme1+ne2〉N=−1 〈X−me1−ne2〉N=−1 = O(q|m|+|n|),
(7.21)

so both traces TrM(q)±2 have a nice expansion in integral non-negative powers of q.

Checking the q-expansion of TrM(q)2, one is lead to the following expression

TrM(q)2 =

(
G(q)

(q)4
∞

)2
(

1−10
∞∑
k=1

(
q5k+1

1−q5k+1
−2

q5k+2

1−q5k+2
+2

q5(k+1)−2

1−q5(k+1)−2
− q5(k+1)−1

1−q5(k+1)−1

))
.

(7.22)

which can be rewritten

TrM(q)2 =

(
G(q)

(q)4
∞

)2(
1− 10

∂

∂ ln a
θ(a, q5)|a→q + 20

∂

∂ ln a
θ(a, q5)|a→q2

)
. (7.23)

Therefore we see TrM2 is (TrM)2 multiplied by a modular function. This again suggests

that there may be a chiral algebra associated with it.
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7.3 (A1, A2n) AD theories

Trace of M(q)−1. The trace of the inverse monodromy TrM(q)−1 for the model

(A1, A2n) (as computed from the minimal chamber) is [9]

TrM(q)−1 = (q)2n
∞

∑
`1,··· ,`2n≥0

q
∑
i(`i`i−1+`i)∏
i(q)

2
`i

. (7.24)

The sum in the r.h.s. is explicitly evaluated in appendix D.3; one gets

TrM(q)−1 =
1∏n−1

i=0 (q2i+2; q2n+3)(q2n+1−2i; q2n+3)
. (7.25)

It can be also written as

TrM(q)−1 =
1∏r

i=1 θ(Q
Ri/2;Q = q2n+3)

, (7.26)

where r is the dimension of the Coulomb branch and Ri are the dimension of the Coulomb

branch operators.

The r.h.s. of (7.25) is the Feigin-Nakanishi-Ooguri formula for the vacuum character

of the (2, 2n + 3) Virasoro minimal model [56, 57]. This confirms the claim of [9] that

TrM(q)−1 is equal to the vacuum character of the minimal model. The central charge of

(2, 2n+ 3) minimal model is

c2,2n+2 = −2n(6n+ 5)

2n+ 3
. (7.27)

Its effective central charge is then

ceff =
2n

2n+ 3
(7.28)

in agreement with eq. (6.85). The 2d central charge is again −12 times the 4d central

charge, implying that this the correct 2d chiral algebra constructed in [8, 53]. It also

agrees with the TQFT computation of the Schur index [58].

Trace of M(q). The monodromy traces TrM(q) for (A1, A2n) were computed in [6];

with the present normalizations they are

TrM(q) =
1

(q)4n
∞

∑
l∈Z2n−1

+

ql·C2n−1·l/2

(q)l1 · · · (q)l2n−1

, (7.29)

where C2n−1 stands for the Cartan matrix of A2n−1. The sum in the r.h.s. is the Nahm

sum associated to the pair of graphs (T1, A2n−1) [49]. Then its effective central charge is

c(A1,A2n) =
2n(6n+ 5)

2n+ 3
. (7.30)

in agreement with eq. (6.82) with r = n, rG = 2n, and hG = 2n + 1. The sum in the

r.h.s. of (7.29) is evaluated in [59] Theorem 1.2, where they are related to the Macdonald

identities for the twisted Kac-Moody algebra A(2) as well as to the Feigin-Stoyanovsky

theorem [54] we are going to discuss.
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The chiral algebra associated to M(q) for the (A1, A2n) model. The Feigin and

Stoyanovsky theorem [54] describes20 a class of q-sum of the form

Φg(q) :=
∑
l∈Zr+

ql·Cg·l/2

(q)l1 · · · (q)l2n−1

, (7.31)

where Cg is the Cartan matrix of a simply-laced Lie algebra g ∈ ADE of rank r. They

consider a Cartan splitting g = n−⊕h⊕n+ and consider the loop algebra n̂+ of the nilpotent

Lie algebra n seen as a subalgebra of the affine ĝ(1) Lie algebra of type g and level 1. One

takes the vacuum integrable highest weight module V of ĝ(1) with vacuum vector |v〉 and

focus on the cyclic submodule

U(n̂+)|v〉 ∈ V , (7.32)

where U(·) stands for the universal covering algebra. The theorem states that Φg(q) is just

the character restricted to the submodule

Tr qL0

∣∣∣∣
U(n̂+)|v〉

= Φg(q). (7.33)

In other words, the construction described around eq. (7.9) for g = su(2), in relation with

the (A1, A2) AD model, extends to all simply-laced Lie algebras g (and, in fact, to other

situations as well). For all g the function Φg(q) is the vacuum character of the chiral algebra

U(n̂+).

In particular, for the (A1, A2n) AD model the chiral algebra A1, whose partition func-

tion is TrM(q), is generated by the upper triangular ŜU(2n) currents at level 1. Again

this is a highly non-trivial realization of our conjecture that the relevant characters can be

viewed as characters of a 2d chiral algebra.

7.4 (A1, A2n+1) AD theories

The models (A1, A2n+1) have a U(1) flavor symmetry, enhanced to SU(2) for n = 1, and a

Coulomb branch of dimension n. The monodromy traces are function of q and the flavor

fugacity y.

Trace of M(q)−1. The minimal chamber expression for the trace of the inverse mon-

odromy of the (A1, A2n+3) model, as a function of q and the flavor fugacity y, is given by

TrM(q)−1 ≡
∑
m∈Z

ymM(q)(n)
m = (q)2n

∞
∑
m∈Z

ym×

×
∑

k1,···k2n+1≥0

`1,··· ,`2n+1≥0

q(
∑
i ki(ki+1−`i+1+`i+1)+

∑
i `i(`i+1+1))/2∏

i(q)ki(q)`i

n+1∏
j=1

δk2j−1,`2j−1+|m| δk2j ,`2j

(7.34)

20In fact, at least conjecturally, their results are expected to describe the chiral algebra of all N = 2

models of the class (Ak, G), with G a simply laced Lie algebra. The relation level/rank in their theorem is

the same one as in the monodromy trace case, see [6].
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(where we used the convention k2n+2 = `2n+2 = 0). The multiple sum in the second line

of the r.h.s. may be evaluated analytically, see appendix D.4. The coefficient M(q)
(n)
m of

ym has the form

M(q)(n)
m =

q|m|

(q)∞ (qm+1)∞

∑
`≥0

q(2n+1)`(`+m+1) α(|m|)`, (7.35)

where the Bailey coefficients α(|m|)` are given by finite sums, see appendix D.4 for explicit

formulae and alternative expressions.

Trace ofM(q). The argument in section 9.8.1 of [6] yields for the trace TrM(q) of the

(A1, A2n+1) model, seen as a function of q and y,

TrM(q) =
1

(q)4n+1
∞

∑
k∈Z

ykq(n+1)k2/2

∑
l∈Z2n

+

ql·C2n·l/2−k
∑
i(−1)ili

(q)l1 · · · (q)l2n

 , (7.36)

with C2n the Cartan matrix of A2n. Each sum in the large parenthesis belongs to the

Nahm class for the pair of graphs (T1, A2n). For k = 0, 1 these sums have been evaluated

in [59] (see their Theorem 2.3). The effective central charge is then

c(A1,A2n+1) =
2(3n2 + 5n+ 1)

n+ 2
, (7.37)

in agreement with section 6.5.

As before, the chiral algebra A1 for the (A1, A2n+1) model is generated by the upper

triangular ŜU(2n + 1) currents at level 1. Moreover, according to Fortin et al. [60] this is

given by the character of Ŝp(2n) at level 1.

7.4.1 The special (A1, A3) model

The model (A1, A3) is special in three (not unrelated) respects. First the Abelian flavor

symmetry U(1) in this case enhances to SU(2). Second, since su(4) ' so(4) this model is

equivalent to (A1, D3) AD, and hence enjoys the special properties which single out the

type D Argyres-Douglas models from their type A, E brothers. Third, it the H1 model in

the sequence of SCFT with one-dimensional Coulomb branch and maximal flavor symmetry

compatible with the dimension ∆ of the Coulomb branch field. Hence, as discussed inn

section 6.4, it has a c-saturating BPS chamber which implies the formula

TrM(q) =
Θ(y, q)

(q)12c
∞

, (7.38)

for some theta-function Θ(y, q) function. The 4d SCFT central charge for this model is

c = 1/2. Let us show that the prediction (7.38) is correct. The simplest way is to use the

identity

Φ1(z; q) :=
∑

`1,`2≥0

q`
2
1+`22−`1`2z`2−`1

(q)`1(q)`2
=

=

+∞∑
k=−∞

qk
2
zk

 ∞∑
`1=max{0,−k}

q`1(`1+k)

(q)`1 (q)`1+k

 ≡ 1

(q)∞

+∞∑
k=−∞

qk
2
zk,

(7.39)
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where in the first equality we wrote `2 = `1 + k and in the second one we used Cauchy’s

identity. Indeed, from eq. (7.36) with n = 1

TrM(q) =
1

(q)5
∞

∑
k∈Z

yk qk
2

Φ1(q−k; q) =
1

(q)6
∞

∑
k∈Z2

qk·C2·k/2 yk1 , (7.40)

i.e. we get (7.38) with Θ(y, q) the following one-parameter specialization of the SU(3)

theta-function
Θ(y, q) = θSU(3)(y, 0, q)

where θSU(3)(y1, y2, q) =
∑
k∈Z2

qk·C2·k/2 yk1
1 yk2

2 .
(7.41)

7.5 (A1, D2n+1) AD theories

The Argyres-Douglas models (A1, D2n+1) have a SU(2) flavor symmetry with level k =

8n/(2n + 1); its conformal central charge is c = n/2. The corresponding 2d quantities,

c2d = −12c and k2d = −k/2 then satisfy the SU(2) Sugawara bound (6.56). The model

has a c-saturating BPS chamber.

Trace ofM(q)−1. The traces of the inverse monodromy for the (A1, D2n+1) AD models

have been studied in [9] where they were found to agree with the vacuum character of

ŜU(2) at level −4n/(2n+1) as expected from the arguments of [8] in view of the Sugawara

saturation of c2d. Then

TrM(q)−1 =
1

(q)∞(y2q)∞(y−2q)∞

∞∑
m=0

q(2n+1)m(m+1)/2 z
2m+1 − z−(2m+1)

z − z−1
. (7.42)

Trace of M(q). Since these models saturate the two-dimensional SU(2) Sugawara

bound, one expects that, as a function of q and the flavor fugacity z,

TrM(q) =
Θ(z, q)

(q)12c
∞

(7.43)

for some theta function Θ. We check this prediction and identify Θ which turns out to

the a one-parameter specialization of the theta-function for the SU(2n+ 1) root lattice.

Following section 9.8.1 of [6], for all (A,Dr) models we choose the quiver Q in the form

1

r // r − 1 // r − 2 // · · · // 3

@@

��
2

(7.44)

Then in the minimal chamber we have (setting Θ(z) ≡
∑

k∈Z q
k2/2(−z)k)

M(q) =
1

(q)
r+2[(r−1)/2]
∞

(7.45)

×Θ(Xe1 ;q)(q1/2Xe2)∞(q1/2Xe1+e2−e3)∞(−q1/2Xe1−e3)∞(−q1/2Xe2−e3)∞×
×Θ(Xe3)(q1/2Xe3−e4)∞Θ(Xe4)(−q1/2Xe4−e5)∞ ···(−q1/2Xer−1−er)∞Θ(Xer).
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1

r − 1 r − 2 · · · 4 3 0

2

Figure 4. The bi-graph of the ideal triangulation of the punctured disk with r marks on the

boundary having a self-folded triangle inside an internal 2-gon.

The Dynkin quiver (7.44) is the incidence quiver of an ideal triangulation of the punctured

disk with r marks with a self-folded triangle inside a 2-gon having a side on the bound-

ary [52]. Flipping the internal arc of the 2-gon we get an equivalent quiver whose Dynkin

bi-graph is represented in figure 4. We recall that a Dynkin bi-graph encodes a generalized

Cartan matrix Aij : along the main diagonal one sets Aii = 2, while for i 6= j

Aij = #{dashed edges between i and j} −#{solid edges between i and j}, (7.46)

The Tits form of a bi-graph is the quadratic form Q(m) = m · A ·m/2. See [45] for the

physical properties of the Tits forms arising from N = 2 BPS quivers. For the bi-graph in

figure 4 we have

2Q(m) = m2
r−1+

r−1∑
j=4

(mj−mj−1)2+
1

2
(m3−m0−2m1)2+

1

2
(m3−m0−2m2)2+m2

0, (7.47)

The Z-equivalence class of the Tits form is a mutation-invariant [45]; hence the quadratic

form Q(m) is Z-equivalent to the standard Tits form of Dr. In particular it is positive

definite.

Now we specialize to the odd rank case, r = 2n + 1 (see below for r even). Expand-

ing (7.45) in the basis of TQ and taking the trace one finds

TrM(q) =
1

(q)4n+1
∞

∑
k∈Z

qk
2
zk

 ∑
m0,m1,··· ,m2n≥0

qQ(m)+k(m2−m1)

(q)m

 (7.48)

The sum inside the large parenthesis is a Nahm series [49] for the positive definite ‘flipped’

quadratic form Q(m), eq. (7.47). More generally, we may consider the Nahm sum21

Φ(x; q) :=
∑

m0,m1,··· ,m2n≥0

qQ(m) xm1−m2

(q)m
(7.49)

Eq. (7.48) may then be written in the form

TrM(q) =
1

(q)4n+1
∞

∑
k∈Z

qk
2
zk Φ(q−k; q). (7.50)

21Here and below we use the compact notation (q)m =
∏r−1
i=0 (q)mi .
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The fact that for the (A1, D2n+1) model the 2d central charge c2d is saturated by

the Sugawara value for its SU(2) current algebra, eq. (6.56), strongly suggests that the

following magical identity holds

Φ(x; q) =
1

(q)2n−1
∞

∑
k∈Z2n−1

qk·C2n−1·k/2 xk1 , (7.51)

where C2n−1 is Cartan matrix of A2n−1. In other words, (q)2n−1
∞ Φ(z; q) is just a one-

parameter specialization of the SU(2n) theta-function. Thus

TrM(q) =
1

(q)6n
∞

∑
k∈Z2n

zk0qk
2
0+k·C2n−1·k/2−k0k1 ≡ 1

(q)6n
∞

∑
k∈Z2n

zk1qk·C2n·k/2 (7.52)

in agreement with the physical expectation in eq. (7.43), where now we see that Θ is the

one-parameter specialization of the SU(2n+ 1) theta-function in the r.h.s. of (7.52).

Specialized to z = 1, TrM(q) is (q)−2n
∞ times the vacuum character of ŜU(2n + 1)1,

while the CNV trace

TrM(q)
∣∣∣
CNV

≡
∮

dz

2πiz
TrM(q), (7.53)

is (q)
−(2n+1)
∞ times the vacuum character of ŜU(2n)1.

The magical identity (7.51), as well as its counterpart for (A1, Dr) with r even (cfr.

eq. (7.59)), originally motivated by the Sugawara saturation and its implications for the

monodromy M(q), has recently been proved by O. Warnaar [61].22

7.6 (A1, D2n) AD theories

These Argyres-Douglas models have SU(2) × U(1) flavor symmetry for n > 2, which is

further enhanced to SU(2) × SU(2) for n = 1 and to SU(3) for n = 2 [52]. Then SCFT

charges are

c = (3n− 2)/6, and k = 2(2n− 1)/n. (7.54)

The corresponding 2d quantities c2d = −12c and k2d = −k/2 saturates the Sugawara

conditions for all23 n ≥ 2 (
−2n−1

n

)
· 3

2 +
(
−2n−1

n

) + 1 = −6n+ 4 ≡ c2d. (7.55)

Note that the +1 in the above formula comes from the central charge of the chiral algebra

of the current associate to the U(1) global symmetry. Correspondingly, we expect

TrM(q) =
Θ(u, v; q)

(q)12c
∞

(7.56)

for the theta-function Θ(u, v; q) of some positive-definite lattice Λn, specialized to two

parameters i.e. the SU(2) fugacity v and U(1) fugacity u. Below we shall show that this

prediction is correct, and identify the lattice Λn and the precise two variable specialization.

22We thank Ole Warnaar for communicating his proof to us.
23Also for n = 1, taking into account that the quoted value of k refers to the diagonal SU(2) subgroup.
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Traces ofM(q)−1. These traces were studied in [9] and shown to match the conjectural

Schur index for these Argyres-Douglas models [62, 63]. We refer the reader to those papers

for further details.

Traces of M(q). Setting r = 2n in eq. (7.45), and computing the trace, eq. (7.48) gets

replaced by

TrM(q) =
1

(q)4n−2
∞

∑
k,`∈Z

ukv` qk
2+(2n−1)`2 Φ(q−k, q−`; q), (7.57)

where Φ(w, z; q) is the following Nahm sum for the Tits form Q(m) of the bi-graph in

figure 4 (with r = 2n)

Φ(w, z; q) =
∑

m0,m1,··· ,m2n−1≥0

qQ(m)

(q)m
wm1−m2 zm1+m2+2m0+2

∑n−1
j=3 (−1)jmj (7.58)

The even rank counterpart to the magic identity (7.51) is the following identity

Φ(w, z; q) =
1

(q)2n−2
∞

∑
m∈Z2n−2

qm·C2n−2·m/2 wm1−m2 zm1+m2+2
∑
j≥3(−1)jmj (7.59)

where C2n−2 is the Cartan matrix of A2n−2. In other words, (q)2n−2
∞ Φ(w, z; q) is a two-

variable specialization of the theta function for the SU(2n−1) root lattice. Also this second

magic identity is now a proven mathematical theorem [61].

In conclusion, we get (7.56) with

Θ(u, v; q) =
∑

(k,`,m)∈Z2n

qm·C2n−2·m/2+k2+(2n−1)`2+k(m2−m1)−`{m1+m2+2
∑
j≥3(−1)jmj} uk v`.

(7.60)

from which we read the lattice Λn. In particular we note that∮
dv

2πi v
Θ(u, v; q) = theta-function for the SU(2n− 1) lattice∮

du dv

(2πi)2u v
Θ(u, v; q) = theta-function for the SU(2n− 2) lattice.

(7.61)

8 Concluding remarks

In this paper we have shown that an integer sequence of specializations of the 4d super-

conformal index for N = 2 theories has interesting connections to 2d chiral algebras, and

moreover the characters of this algebra are captured by the traces of the powers of KS

monodromy operator.

There are many things that can be done to extend the present work. The most im-

portant unanswered question is whether there always is a canonical unambiguous meaning

to the trace of the powers of the monodromy operator. Moreover it would be nice to make

the corresponding 2d theory more physical. There is a sense in which we have succeeded

in doing this: namely there is a closely related family of 2d CFT’s whose characters give

the same integrand as the ones we get in chiral algebras. Namely the 2d theories obtained
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by N
2 U(1)r twisted KK reduction of the 4d theory. It would be interesting to explore the

connections between these two dual perspectives.

Finally, and perhaps most importantly, we have conjectured the existence of an algebra

for all N , but we only have circumstantial evidence for their existence (except for N = −1).

It would be important to come up with an a priori definition of these algebras in general.

A starting point for this is to show their existence in Lagrangian theories. For this class

we managed to prove that in the extreme weak limit, there is a chiral algebra realizing the

character.
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A Partial topological twisting and effective 2d central charges

Let us put 4d N = 2 theory on a Riemann surface Cg of genus g and take the small volume

limit to get an effective 2d theory. In order to preserve any supersymmetry, we need

to perform topological twisting along Cg [24, 25]. The symmetry group of the 4d N = 2

superconformal theory includes SU(2)1×SU(2)2×SU(2)R×U(1)r, where SU(2)1×SU(2)2 =

SO(4) is the (Euclidean) Lorentz group and SU(2)R×U(1)r is the R-symmetry group. Upon

dimensional reduction, the symmetry group becomes SO(2)E × SO(2)C × SU(2)R ×U(1)r,

where SO(2)E and SO(2)C are the Lorentz group along the R2 and Cg respectively.

There are two linearly independent choices of twisting. We can twist with either

U(1)r or SU(2)R. If we twist by U(1)r, we get N = (0, 4) SUSY in two-dimension since

Q1
−, Q

2
−, Q̃

1
−, Q̃

2
− are preserved in 2d. Note that they all have charge −1

2 under SO(2)E .

If we twist with SU(2)R, the conserved supercharges are Q1
−, Q

2
+, Q̃

1
+, Q̃

2
− so that we get

N = (2, 2). See the table 2. Also, if we choose to do more general twisting by considering

a linear combination of the two, we get N = (0, 2) SUSY in 2d.24

24Closely related twisting in the context of M5-branes wrapped on 4-cycles has been also considered

in [64–66].
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Q U(1)E U(1)C SU(2)R U(1)r U(1)
(a,b)
R U(1)

(a,b)
C

Q1
− −1

2 −1
2

1
2

1
2

1
2 0

Q1
+

1
2

1
2

1
2

1
2

1
2 1

Q2
− −1

2 −1
2 −1

2
1
2

1
2 − a −a

Q2
+

1
2

1
2 −1

2
1
2

1
2 − a 1− a

Q̃1
− −1

2
1
2

1
2 −1

2 a− 1
2 a

Q̃1
+

1
2 −1

2
1
2 −1

2 a− 1
2 a− 1

Q̃2
− −1

2
1
2 −1

2 −1
2 −1

2 0

Q̃2
+

1
2 −1

2 −1
2 −1

2 −1
2 −1

Table 2. Supercharges of the d = 4,N = 2 supersymmetry upon twisting. Here U(1)
(a,b)
R = aR+br

with a + b = 1, and U(1)E is the 2d Lorentz group, and U(1)C is the Lorentz group on C before

twisting. We see that for general twisting, only 2 supercharges Q1
−, Q̃

2
− are preserved, which are

both right-moving.

A.1 Twisting of the free theory25

Let us consider the effect of twisting for the free hypermultiplet and vector multiplet.

Aspects of this twisting has been already discussed in [26], and what we do here is simply

to consider a linear combination of the two twists U(1)r and SU(2)R.

One can consider a linear combination of the SU(2)R twist and U(1)r twist,

C(a,b) = C + aR+ br , (A.1)

which yields N = (0, 2) theory. When (a, b) = (1, 0), we get N = (2, 2) theory and for

(a, b) = (0, 1) we get N = (0, 4) theory. We also need to have a+ b = 1.

Upon the general twisting of a hypermultiplet, we get the charges as in the table 3.

We see that (q, ψ+) and (q̃, ψ̃+) form N = (0, 2) chiral multiplets, and become sections of

K
a
2 , where K is the canonical bundle over the Riemann surface Cg. Also, we get Fermi

multiplets from (ψ†−̇) and (ψ̃†−̇), which are sections of K1−a
2 . We expect that the twisted

Lorentz group on the Riemann surface U(1)
(a,b)
C becomes a global symmetry of the 2d

theory, and U(1)
(a,b)
R to become R-symmetry of the theory.

For the case of vector multiplet, we get an N = (0, 2) vector from (A++̇, λ−), and chiral

multiplets from (A+−̇, λ+) in the section Γ(Cg,K). Also, we get another chiral multiplets

from (φ, λ̃−) in Γ(Cg,Kb) and Fermi multiplets from (λ†−) in Γ(Cg,Ka). We summarize this

in the table 5.

We see that when a = 1, b = 0, (U,Φ) forms an N = (2, 2) vector multiplet and (Σ,Θ)

forms an N = (2, 2) chiral multiplet in the adjoint representation, and (Q,Γ) and (Q̃, Γ̃)

form N = (2, 2) chiral multiplets in the conjugate representations. When a = 0, b = 1,

(U,Θ), (Σ,Φ) form N = (0, 4) vector, twisted hypermultiplet respectively. Also, (Q, Q̃)

forms an hypermultiplet.

25We thank Vasilis Stylianou for the discussions and sharing his note related to this section.
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U(1)E U(1)C SU(2)R U(1)r U(1)
(a,b)
R U(1)

(a,b)
C

ψ± ±1
2 ±1

2 0 −1
2

a−1
2 (a2 ,

a
2 − 1)

ψ̃†±̇ ±1
2 ∓1

2 0 1
2

1−a
2 (−a

2 , 1−
a
2 )

ψ†±̇ ±1
2 ∓1

2 0 1
2

1−a
2 (−a

2 , 1−
a
2 )

ψ̃± ±1
2 ±1

2 0 −1
2

a−1
2 (a2 ,

a
2 − 1)

q 0 0 1
2 0 a

2
a
2

q̃† 0 0 −1
2 0 −a

2 −a
2

q† 0 0 −1
2 0 −a

2 −a
2

q̃ 0 0 1
2 0 a

2
a
2

Table 3. Twisting hypermultiplets with both SU(2)R and U(1)r.

U(1)E U(1)C SU(2)R U(1)r U(1)
(a,b)
R U(1)

(a,b)
C

Aαβ̇ (1,−1, 0, 0) (0, 0, 1,−1) 0 0 0 (0, 0, 1,−1)

λ± ±1
2 ±1

2
1
2

1
2

1
2 (1, 0)

λ̃± ±1
2 ±1

2 −1
2

1
2

1
2 − a (1− a,−a)

λ†±̇ ±1
2 ∓1

2 −1
2 −1

2 −1
2 (−1, 0)

λ̃†±̇ ±1
2 ∓1

2
1
2 −1

2 a− 1
2 (a− 1, a)

φ 0 0 0 1 1− a 1− a
φ† 0 0 0 −1 a− 1 a− 1

Table 4. Twisting vector multiplets with both SU(2)R and U(1)r.

superfield components SU(2)R U(1)r U(1)
(a,b)
R0

U(1)R multiplicity Cg = P1

vector U (A++̇, λ−) (0, 1
2) (0, 1

2) 0 0 h0(Cg,O) = 1 1

chiral Σ (A−+̇, λ
†
+̇

) (0,−1
2) (0,−1

2) 0 0 h0(Cg,K) = g 0

chiral Φ (φ, λ̃+) (0,−1
2) (1, 1

2) 2− 2a 2− 2α h0(Cg,Kb) 2a− 1

Fermi Θ (λ̃−) −1
2

1
2 2b− 1 1− 2α h0(Cg,Ka) 2b− 1

chiral Q (q, ψ+) (1
2 , 0) (0,−1

2) 1− b α h0(Cg,K
a
2 ) b

chiral Q̃ (q̃, ψ̃+) (1
2 , 0) (0,−1

2) 1− b α h0(Cg,K
a
2 ) b

Fermi Γ (ψ†−̇) 0 1
2 1− a 1− α h0(Cg,K1−a

2 ) a− 1

Fermi Γ̃ (ψ̃†−̇) 0 1
2 1− a 1− α h0(Cg,K1−a

2 ) a− 1

Table 5. Summary of general N = (0, 2) twist of 4d N = 2 multiplets. R0 = 2(aR + br),

R = 2(αR+ βr) with a+ b = 1, α+ β = 1.
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The Riemann-Roch theorem for Cg tells us that

h0(Cg,Ka)− h0(Cg,K1−a) = (2a− 1)(g − 1) , (A.2)

from the fact that the degree of K is 2g− 2. This can be used to determine the number of

each multiplets in 2d. Especially, when a = 1, this is nothing but Poincare duality between

1-forms and vectors. When a > 1, g > 1, we have h0(Cg,K1−a) = 0. Hence we have

h0(Cg,Ka) = (2a− 1)(g − 1) (a > 1, g > 1) . (A.3)

For the case of g = 0, we have h0(P1,O(n)) = n+ 1 for n ≥ 0, and 0 for otherwise. Since

KP1 = O(−2), we have

h0(P1,Ka) = h0(P1,O(−2a)) = 1− 2a = 2b− 1 (a ≤ 0, b ≥ 1). (A.4)

Generally, one cannot choose a or b to be half-integer because there is no square root of

the spinor bundle. But, we can further twist the hypermultiplet by U(1) baryonic symmetry

to split Q and Q̃ or Γ and Γ̃. This makes the table effectively correct with half integers by

picking up only one of the chiral or Fermi multiplets between the pair.

A.2 Central charge of the 2d effective theory

The central charge of the 2d N = (0, 2) gauge theory can be computed easily from the ’t

Hooft anomalies of the R-symmetry as

cR = 3Trγ3R2, cR − cL = Trγ3 . (A.5)

Once we know the effective number of 4d hypermultiplets and vector multiplets, we can

compute the central charges of the 2d theory using the above formula and the table 5.

Now, for the twist parameter N ≡ −2b = 2− 2a, we get

cR = 3nv((2α− 1)2(2a− 1)− 1) + 6nh(1− α)2(1− a) , (A.6)

cL = cR − 2(a− 1)(nv − nh) , (A.7)

where we have not specified the R-charge α of the chiral multiplet Q, Q̃ yet. If we pick

α = 0, we get a central charge for the CFT on the Higgs branch of the theory. If we pick

α = 1, we set the chiral adjoint Φ to have R-charge 0, therefore we are looking at a CFT

on the Coulomb branch. For α = 0, we get

c0
L = −2N(nh − nv) , c0

R = −3N(nh − nv) , (A.8)

and for α = 1, we get

c1
L = N(nh + 2nv) , c1

R = 3Nnv . (A.9)
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Argyres-Douglas theories. The 4d central charge (a, c) of the generalized Argyres-

Douglas theory of type (Ak−1, An−1) is given as [22, 67, 68]

a(k, n) =
RA(k, n)

4
+
RB(k, n)

6
+

5rk,n
24

, (A.10)

c(k, n) =
RB(k, n)

3
+
rk,n
6

, (A.11)

where

RA(k, n) =

lm∑
i=m+2+bj(l−1)/kc

(
ik − lj

k + km− j
− 1

)
, (A.12)

RB(k, n) =
(k − 1)(n− 1)nk

4(n+ k)
, (A.13)

with n = km + j and r(k, n) being the dimension of the Coulomb branch of the theory.

When k and n are coprime, the central charges are given by

a(k, n) =
(n− 1)(k − 1)(4kn+ 4n+ 4k − 1)

48(n+ k)
, (A.14)

c(k, n) =
(n− 1)(k − 1)(nk + k + n)

12(n+ k)
. (A.15)

We can covariantize the above expression by writing h∨G1
= n, h∨G2

= k and k−1 = rank(G1)

and n− 1 = rank(G2). From this, we can extract the effective number of hypermultiplets

and vector multiplets by using

nh = 4(2a− c) , nv = 4(5c− 4a) . (A.16)

From this data, we can compute the effective 2d central charge via (A.8), (A.9). When

k and n are coprime, we find

c0
L =

−N(k − 1)(n− 1)

n+ k
, c0

R =
−3N(k − 1)(n− 1)

2(n+ k)
, (A.17)

and

c1
L =

N(k − 1)(n− 1)(nk + n+ k)

n+ k
, c1

R =
N(k − 1)(n− 1)(2nk + 2n+ 2k − 1)

2(n+ k)
.

(A.18)

Here we tabulate a number of examples in table 6. We find when N = −1, c1
L coincide

with the central charge of the chiral algebra of [8].

B Superconformal index for Lagrangian theories

The 4d superconformal index is evaluated by a trace formula,

I(µi) = Tr(−1)F e−µiTie−βδ, δ = 2{Q,Q†}, (B.1)
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theory a c nh nv c0
L c0

R c1
L c1

R

(A1, A2) 43/120 11/30 8/5 7/5 −2N/5 −3N/5 22N/5 21N/5

(A1, A3) 11/24 1/2 8/3 5/3 −2N −3N 6N 5N

(A1, A4) 67/84 17/21 24/7 22/7 −4N/7 −6N/7 68N/7 66N/7

(A1, A5) 11/12 23/24 9/2 7/2 −2N −3N 23N/2 21N/2

(A2, A2) 7/12 2/3 4 2 −4N −3N/5 8N 21N/5

(A2, A3) 75/56 19/14 40/7 37/7 −6N/7 −3N 114N/7 5N

Table 6. 4d/2d central charges for Argyres-Douglas theories. Here (c0L, c
0
R) = (2(nh − nv), 3(nh −

nv)) and (c1L, c
1
R) = (nh + 2nv,−3nv). For the N -twist corresponding to the TrMN , multiply the

expression by −N .

Q SU(2)1 SU(2)2 SU(2)R U(1)r δ Commuting δs

Q1− −1
2 0 1

2
1
2 δ1− = ∆− 2j1 − 2R− r δ2+, δ̃1+̇, δ̃1−̇

Q1+
1
2 0 1

2
1
2 δ1+ = ∆ + 2j1 − 2R− r δ2−, δ̃1+̇, δ̃1−̇

Q2− −1
2 0 −1

2
1
2 δ2− = ∆− 2j1 + 2R− r δ1+, δ̃2+̇, δ̃2−̇

Q2+
1
2 0 −1

2
1
2 δ2+ = ∆ + 2j1 + 2R− r δ1−, δ̃2+̇, δ̃2−̇

Q̃1−̇ 0 −1
2

1
2 −1

2 δ̃1−̇ = ∆− 2j2 − 2R+ r δ̃2+̇, δ1+, δ1−

Q̃1+̇ 0 1
2

1
2 −1

2 δ̃1+̇ = ∆ + 2j2 − 2R+ r δ̃2−̇, δ1+, δ1−

Q̃2−̇ 0 −1
2 −1

2 −1
2 δ̃2−̇ = ∆− 2j2 + 2R+ r δ̃1+̇, δ2+, δ2−

Q̃2+̇ 0 1
2 −1

2 −1
2 δ̃2+̇ = ∆ + 2j2 + 2R+ r δ̃1−̇, δ2+, δ2−

Table 7. For each supercharge Q, we list its quantum numbers, the associated δ ≡ 2
{
Q,Q†

}
, and

the other δs commuting with it. Here I = 1, 2 are SU(2)R indices and α = ±, α̇ = ± Lorentz indices.

∆ is the conformal dimension, (j1, j2) the Cartan generators of the SU(2)1⊗SU(2)2 isometry group,

and (R , r), the Cartan generators of the SU(2)R ⊗U(1)r R-symmetry group.

where Q is the supercharge “with respect to which” the index is calculated and {Ti} a

complete set of generators that commute with Q and with each other.

For 4d N = 2 superconformal algebra SU(2, 2|2), the commuting subalgebra with a

single supercharge is SU(1, 1|2), which has rank three, so the N = 2 index depends on

three superconformal fugacities together with flavor fugacities. Table 7 summarizes the

superconformal generators commuting with each Q.

We use supercharge Q1− to define the index and write it as

I(ρ, σ, τ) = Tr(−1)Fρ
1
2

˜δ
1
−̇
σ

1
2
δ2+τ

1
2
δ̃1+̇e−βδ̃1− , (B.2)

or in another parametrization,

I(p, q, t) = Tr(−1)F pj1−j2+rqj1+j2+rtR−re−βδ̃1− , (B.3)
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Letters ∆ j1 j2 R r I(p, q, t)

φ̄ 1 0 0 0 1 pq/t

λ1+
3
2

1
2 0 1

2 −1
2 −t

λ̄1±̇
3
2 0 ±1

2
1
2

1
2 −q, −p

F++ 2 1 0 0 0 pq

∂+−̇λ̄1+̇ + ∂++̇λ̄1−̇ = 0 5
2

1
2 0 1

2
1
2 pq

q 1 0 0 1
2 0

√
t

ψ+
3
2

1
2 0 0 1

2 −pq/
√
t

∂+±̇ 1 1
2 ±1

2 0 0 q, p

Table 8. Contributions to the index from “single letters”. We denote by (φ, φ̄, λI,α, λ̄I α̇, Fαβ , F̄α̇β̇)

the components of the adjoint N = 2 vector multiplet, by (q, q̄, ψα, ψ̄α̇) the components of the

N = 1 chiral multiplet, and by ∂αα̇ the spacetime derivatives.

and the fugacities satisfy

|p| < 1, |q| < 1, |t| < 1, |zi| = 1,
∣∣∣pq
t

∣∣∣ < 1 . (B.4)

Only states satisfying

δ1− ≡ ∆− 2j1 − 2R− r = 0 , (B.5)

contribute to the index.26

Contribution to the index from “single letters” inside N = 2 hyper-multiplet and

vector multiplet is summarized in table 8. The single letter index for each multiplet is

f
1
2
H(p, q, t) =

√
t− pq√

t

(1− p)(1− q)
, (B.6)

fV (p, q, t) = − p

1− p
− q

1− q
+

pq
t − t

(1− p)(1− q)
. (B.7)

From the single letter index, we obtain partition function by taking so-called the Plethystic

exponential, defined as

PE [nx]x =
1

(1− x)n
, (B.8)

where n is an integer and x is a fugacity appear in the index. The index after taking the

plethystic exponent (with respect to all the fugacities) is

IH(p, q, t; a) = PE

[
f

1
2
H(p, q, t)

∑
w∈R

aw

]
p,q,t,a

=
∏
w∈R

∞∏
m,n=0

(1− awt−
1
2 pm+1qn+1)

(1− awt
1
2 pmqn)

, (B.9)

for the hypermultiplet and

IV (p, q, t; z) =
∏
α∈∆

∞∏
m=0

(1− zαpm+1)(1− zαqm+1)

∞∏
m,n=0

1− tpmqnzα

1− t−1pm+1qn+1zα
, (B.10)

26Our definition is slightly different from the definition given in [15], where they define the index with

respect to Q̃1−̇, but agrees with the one given in [8].
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for the vector multiplet. Here we introduced the flavor fugacity a for the hypermultiplet,

and gauge fugacity z for the vector multiplet. Here w ∈ R denotes weights of the repre-

sentation R and ∆ is the set of all roots (including the Cartans) of the gauge group. zα is

a short-hand notation for zα ≡
∏r
i=1 z

αi
i . For example, when the gauge group is SU(2), zα

can be z2, z−2, 1.

C The tool box for monodromy traces

There are various techniques to compute the {TrM(q)N}. We quickly review some of

them.

C.1 q-hypergeometric series

This technique [6] works for models having a finite BPS chamber i.e. a chamber whose

BPS spectrum consists of just h < ∞ hypermultiplets, so that the KS product M(q)N

contains finitely many factors (q1/2Xγ ; q)∞. In this case the most obvious technique is to

expand each BPS factor in the basis {Xγ}γ∈Γ of the quantum torus algebra T using the

two Euler’s sums

(
± q1/2Xγ ; q

)−1

∞ =
∑
n≥0

(±q1/2)n

(q; q)n
Xnγ , (C.1)

(
± q1/2Xγ ; q

)
∞ =

∑
n≥0

(∓1)n qn
2/2

(q; q)n
Xnγ . (C.2)

Multiply all these factors with the rule (6.2), we get a (formal) expression of the form

M(q)N =
∑
γ∈Γ

µ(N ; q)γ Xγ , (C.3)

for certain coefficient functions {µ(N ; q)γ}γ∈Γ which are given by multiple q-hypergeometric

sums of the general form27

µ(N ; q)γ =
1

(q)2rN
∞

∑
ni∈N2h|N|

(−1)εini
qniAijnj/2+Bini/2∏

i(q)ni
δ(γ, niγi), (C.4)

where:

• γi is the charge of the i-th state in the ordered KS product which (by PCT) satisfy

γi+h = −γi i = 1, 2, . . . , 2h|N |; (C.5)

• δ(γ, γ′) is the Kronecker delta in the charge lattice Γ;

27Here and below, by N we mean the set of non-negative integers, including zero.
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• A (resp. B) is a certain integral quadratic (resp. linear) form which often has a nice

interpretation in terms of Cartan matrices (see [6]). Explicitly28

N > 0 : Aijninj =

2hN∑
i=1

n2
i +

∑
1≤i<j≤2hN

〈γi, γj〉ninj , Bi = 0

N < 0 : Aijninj =
∑

1≤i<j≤2h|N |

〈γi, γj〉ninj , Bini =
∑
i

ni.

(C.6)

• the εi = 0, 1 are related to the quadratic refinement; one has εi+h = εi.

The Kontsevitch-Soibelman formula says that the functions {µ(N ; q)γ} are invariant under

all deformations of the N = 2 central charge Z provided no BPS state phase crosses the

reference ray (which we fix on the positive real axis). Since M(q)N+M =M(q)N ·M(q)M ,

µ(N +M ; q)γ =
∑
δ∈Γ

q〈γ,δ〉/2 µ(N ; q)γ−δ µ(M ; q)δ, M,N ∈ Z, (C.7)

so, in principle, we can compute all monodromy traces {TrM(q)N}N∈Z using only the

coefficient functions µ(±1; q)γ .

The trace on the quantum torus algebra T is defined by the rule

TrXγ =

{
yγ γ is a flavor charge

0 otherwise.
(C.8)

We recall that a charge γ is a flavor charge iff it belongs to the radical of the Dirac form,

i.e. 〈γ, ν〉 = 0 for all ν ∈ Γ. The flavor charges form a sublattice Γf ⊂ Γ of the charge

lattice. Let {es} be a set of generators of the lattice Γ and let {φa ≡ φases} be a set of

generators of the flavor sublattice Γf ⊂ Γ; as a matter of notation, given the flavor charge

γ ≡
∑

a naφa we write yγ ≡
∏
a y

na
a , where ya is the fugacity of the a-th flavor charge φa.

Then, for all elements γ ≡ mses ∈ Γ, we have (here f = rank Γf ≡ rank Γ− 2r)

TrXγ =
∑
ka∈Zf

δ
(
γ,
∑

a
kaφa

) ∏
a

ykaa =
∑
ka∈Zf

∫ ∏
s

(
dxs

2πi xs
xms−kaφass

)∏
a

ykaa . (C.9)

From (C.3), (C.8) the monodromy traces, as functions of q and the flavor fugacities ya, are

TrM(q)N =
∑
φ∈Γf

µ(N ; q)φ yφ, (C.10)

or, more explicitly,

1

(q)2rN
∞

∑
ka∈Zf

∏
a

ykaa
∑

ni∈N2h|N|

(−1)εini
q(niAijnj+Bini)/2∏

i(q)ni

∫ ∏
s

(
dxs

2πi xs
xniγis−kaφass

)
, (C.11)

where γi ≡ γises (γis ∈ Z) is the charge vector of the i-th hypermultiplet.

28The ordering of the γi for N > 0 and N < 0 are inverse of each other, so the off-diagonal entries of A

differ in sign in the two cases.
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Although this way of defining the monodromy traces is straightforward, and in many

examples it leads to nice expressions [6], it is far from being fully satisfactory. The q-

hypergeometric sums are seldom absolutely convergent, and even when they are one would

like to have expressions which are easier to handle. When the series is not convergent,

one would like to have a controlled regularization procedure. This suggests replacing sums

with integrals.

C.2 The Moyal approach and Hardy norms

Although it is not necessary, for simplicity we shall assume our N = 2 theory has a

BPS quiver description [39]; we fix a quiver Q in the mutation class and write Bst for its

exchange matrix and es for the dimension vector which is 1 on the s-th node of Q and

zero elsewhere. To Q there is associated the quantum torus algebra TQ with commutation

relations XesXet = qBstXetXes . The quantum torus algebra TQ is isomorphic to the

algebra of functions on the corresponding classical torus endowed with the Moyal product

∗ defined by the 2-vector Bts. It is more convenient to use the equivalent description as

the space of holomorphic functions on the complexified classical torus TQ (endowed with

the holomorphic Moyal product). Then

(quantum torus algebra) ←→ (holomorphic functions on TQ with ∗ product) (C.12)

To the s-th node of the quiver Q we attach a C∗ variable us, the s-th simple fugacity. The

{us} form a global coordinate system on the torus TQ. To the charge γ =
∑

s nses we

associate the function uγ =
∏
s u

ns
s called the fugacity of γ. If γ is a flavor charge, the

corresponding function is called a flavor fugacity; in this case, to avoid confusion, we replace

the symbol uγ with yγ . In the basis {Xγ} of TQ the correspondence (C.12) simply reads

Xγ ↔ uγ . (C.13)

In particular, under (C.12) the operator M(q)N is mapped to the holomorphic function

µ(u)∗N =
∑
γ∈Γ

µ(N ; q)γ uγ =

N factors︷ ︸︸ ︷
µ(u) ∗ µ(u) ∗ · · · ∗ µ(u) . (C.14)

The trace is then defined as the integral on the quotient of the real torus |us| = 1 by

its flavor subtorus with respect to the normalized Haar measure, i.e. we integrate the

non-flavor fugacities along the unit circle at fixed values of the flavor fugacities ya.

The function µ(u) is often easier to handle than the corresponding q-hypergeometric

sum. µ(u) satisfies a set of functional equations, which may be used to determine it without

bothering to give a precise sense to the poorly convergent q-series. The most basic function

is the one associated via (C.12) to the half-plane KS product: given a N = 2 model, a

choice of quiver Q, and a BPS chamber (not necessarily finite) we define its Moyal function

κ(us | q) (C.15)
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to be the holomorphic function on TQ which corresponds under (C.12) to the inverse KS

product associated to the upper half-plane

K−1 ≡ (q)r∞

x∏
BPS states with

0≤argZγ<π

(
qs+1/2Xγ ; q

)−(−1)2s

∞ , (C.16)

where the normalization factor (q)r∞ take into account the massless photons. Equivalently,

the product is taken over all stable representations of the quiver Q. By definition, their

charges γ belong to the positive cone Γ+ ⊂ Γ (which is a strictly convex cone). Then K−1

belongs to the positive part of the quantum torus algebra, T+
Q ≡ Span{Xγ}γ∈Γ+ , and the

function κ(us | q) contains only non-negative powers of the simple fugacities ui

κ(ui | q) =
∑
ns≥0

κns(q)
∏
s

unss . (C.17)

The KS wall-crossing formula states that κ(us | q) is invariant under any change of the

central charge Z as long as we remain in the region of parameter space covered by the

given form of the quiver. The trace of the inverse monodromy is given by

TrM(q)−1 =

∫
unit
circle

dvr κ(us | q) κ(1/us | q) (C.18)

where the integral is over the non-flavor fugacities vr at fixed value of the flavor ones.

TrM(q)−1 is a holomorphic function of q and the flavor fugacities ya. Hence it is uniquely

determined by its restriction for q real and ya on the unit circle. So restricted, TrM(q)−1

becomes the H2 norm of the holomorphic (in the non flavor fugacities vs’s) Moyal function κ

TrM(q)−1 = ‖κ‖2H2 =

∫
unit
circle

dvr
∣∣κ(vr, ya | q)

∣∣2 (C.19)

Hence, if at a fixed value of q and the flavor fugacities, the holomorphic function κ belongs to

the Hardy space H2(D2r) (D being the unit disk) TrM(q)−1 exists and integration term by

term in (C.19) is fully justified. It may happen that the radius of convergence in non-flavor

fugacity space is exactly 1. In this case the H2 norm diverges but the integral on the slightly

smaller circles |vr| = e−ε would converge, giving a way of regularizing the monodromy trace.

Example: pure SU(2). For SU(2) SYM the associated quantum cluster mutations [6]

may be seen as a functional equation for the basic Moyal function κ(u1, u2 | q)

κ(u1, u2 | q) = κ(u2, u1 | q) and κ(qu1, u2 | q) =
1− q1/2u1

1− qu1u2
κ(u1, u2 | q), (C.20)

whose solution is essentially the inverse of the q-binomial coefficient

κ(u1, u2 | q) =
(q)∞ (qu1u2)∞

(q1/2u1)∞ (q1/2u2)∞
= (1− u1u2)−1

[
α

β

]−1

q

, (C.21)
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where qα ≡ qu1u2, qβ = q−1/2u1. Then, for pure SU(2)

TrM(q)−1 =

∫
dθ

2π

∣∣∣∣ (q)∞

(q1/2eiθ)∞

∣∣∣∣2 ∫ dφ

2π

∣∣∣∣∣(qei(θ+φ))∞

(q1/2eiφ)∞

∣∣∣∣∣
2
 . (C.22)

The internal integral is easily computed with the help of the q-binomial theorem∫
dφ

2π

∣∣∣∣∣(qei(θ+φ))∞

(q1/2eiφ)∞

∣∣∣∣∣
2

= 2φ1(q1/2eiθ, q1/2e−iθ; q; q; q) ≡

≡

∣∣∣∣∣(q1/2eiθ)∞
(q)∞

∣∣∣∣∣
2∑
n≥0

qn/2einθ

1− qn+1/2e−iθ
,

(C.23)

so that

TrM(q)−1 =
∑
n≥0

qn(n+1) = ψ(1, q2), (C.24)

where ψ(z, q) is Ramunajan’s partial theta function (see equation (D.3)).

C.3 The Moyal function of the operator M(q)N

Let Aij be a symmetric m×m matrix. We define the function29

fA(zi; q) :=
∑
ni∈Nm

qAijninj/2 znii
(q)ni

=

∮ +∞∑
ni=−∞

qAijninj/2(zi/wi)
ni
∏
i

dwi
2πiwi (wi; q)∞

=

= (−2πτ)−m/2 (detA)−1/2

∫
exp

[
−
A−1
ij titj

4πiτ

]∏
i

dti
(zieti ; q)∞

,

(C.25)

where we set q = e2πiτ and used Euler’s first sum and Poisson summation. In equa-

tion (C.25) sums and integrals are convergent provided the matrix Aij is positive definite.

In facts, for |zi| < 1 the series converges absolutely under the milder condition that the

quadratic form Aijninj is weakly semi-positive.30 For general A’s one should define fA(zi; q)

by analytic continuation e.g. by modifying in the last integral the integration contours from

the straight lines Li = iR + ci to suitable Ci. Series and integrals of the general form in

equation (C.25) are familiar from the theory of integer partitions and the Thermodynami-

cal Bethe Ansatz (TBA). We shall refer to a q-series of the above form as a Nahm sum for

the quadratic form Aij ; see [49] for a survey.

The Moyal functions corresponding in the sense of (C.12) to the KS products for the

BPS phase sectors 0 ≤ θ < 2πN and its inverse are of this form with A as in equation (C.6)

(we allow N to be half-integral). More precisely,

Moyal function of M(q)N =
1

(q)2rN
∞

fA

(
(−1)εiqBi/2ui; q

)
N ∈ 1

2
Z. (C.26)

29The integral in the first line is along circles of radius less than 1, |wi| < 1, while the one in the second

line is taken along straight lines Li parallel to the imaginary axis iR so that |zieti | < 1.
30A quadratic form q : Zn → Z is said to be weakly positive (resp. weakly semi-positive) if q(v) > 0 (resp.

q(v) ≥ 0) for all v ∈ Nn v 6= 0.
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Unless the quadratic form A is weakly semi-positive, to define this Moyal function we need

a prescription such as a deformation of contours Li → Ci. The correct contour prescription

should be dictated by the physical interpretation of M(q)N as a relative SCFT invariant.

We note that A may be weakly semi-positive only for N = ±1/2 and in this case only if

the quiver is acyclic and the chamber is minimal.

Assuming a proper contour prescription exists, the monodromy trace is then

TrM(q)N =
1

(q)2rN
∞

∮
fN

(
(−1)εiqBi/2xs(u, y)γis ; q

)∏
r

dur
2πi ur

, (C.27)

where xs(u, y) is the s-th simple fugacity written as a Laurent monomial in the flavor ya
and non-flavor ur fugacities. Alternatively, we may write the trace as the integral of the

absolute value (for N odd) or the square (for N even) of the Moyal function for M(q)N/2.

(This last expression has typically better convergence properties).

C.4 Asymptotic analysis of TrM(q)N : the effective central charge ceff

We may view the monodromy traces as powers series in q∑
n≥0

an(y) qn (C.28)

whose coefficients an(y) are Laurent polynomials in the flavor fugacities ya with integral

coefficients. Given a power series
∑

n≥0 an q
n one defines its effective central charge ceff as

ceff =
3

2π2
lim
n→∞

(log an)2

n
, (C.29)

or equivalently (setting q = e2πiτ ) via its τ → 0 asymptotic behavior

∑
n≥0

an q
n ' exp

(
2πi

τ

ceff

24
+O(1)

)
as τ → 0. (C.30)

The name ‘effective central charge’ stems from the fact that, when the q-series (C.28) is a

conformal block of a (not necessarily unitary) 2d CFT, one has

ceff ≡ c− 24 min
i

(hi) (C.31)

with hi, c the conformal weights and Virasoro central charge of the CFT; in particular,

for unitary CFTs, ceff ≡ c. If there are flavor symmetries, from equation (C.29) we get a

function of the flavor fugacities, ceff(ya); in this case, we define the effective central charge

ceff as the value of this function at a (suitable) critical point ∂yaceff(y) = 0.

To compute ceff, we study the τ → 0 asymptotics of the Moyal function fN (zi; e
2πiτ )

adapting the standard TBA methods [49] to our situation. Since

1

(w; q)∞
∼ exp

(
− 1

2πiτ
Li2(w) +O(1)

)
as τ → 0, (C.32)
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the integral in the second line of equation (C.25) is∫
exp

[
− 1

2πiτ

(
A−1
ij titj/2 +

∑
i

Li2(zie
ti)

)
+O(1)

]
dt. (C.33)

As τ → 0 this integral may be evaluated by saddle point. The saddle point condition is

A−1
ij tj − log(1− zi eti) = 0 (C.34)

i.e. setting Ui = eti ,

U
A−1
ij

j + zi Ui = 1 (C.35)

Let Ui = Ui(zj) be the solution. As τ → 0 we have

fN (zi; e
2πiτ ) ∼ exp

[
− 1

2πiτ

∑
i

(
Li2(zi Ui) +

1

2
logUi log(1− zi Ui)

)
+O(1)

]
(C.36)

Plugging this asymptotic expression in equation (C.27), we see that the integrals in ur may

also be evaluated by saddle point in the τ → 0 limit, so that ceff(y) is given by the value

of the exponent at a critical point with respect to the non-flavor fugacities at fixed values

of the flavor fugacities y. Then ceff is the value of the exponent extremized with respect to

all fugacities (flavor and non-flavor) xs = evs . In conclusion31

ceff = 2rN +
6

π2

(
A−1
ij titj/2 +

∑
i

Li2(eγisvs eti)

)
at a critical point

in the ti’s and vs’s.
(C.37)

At a critical point

A−1
ij titj

∣∣∣
critical
point

≡
∑
i

(ti + γisvs) log(1− eγisvs+ti), (C.38)

so ceff is written in terms of the Rogers dilogaritm L(z) = Li2(z) + 1
2 log(z) log(1− z) as

ceff = 2rN +
6

π2

2h|N |∑
i=1

L(zi) where zi = eγisvs+ti at the critical point. (C.39)

Eq. (C.39) gives ceff as a critical value of a multi-valued function. On the appropriate

Riemann surface on which its analytic continuation is uni-valued there are infinitely many

critical points. We have to pick out the physically correct one. This is a solution to the

saddle point equations having all the symmetries of the physical problem. We have various

symmetries: first we have a Z|N | replica symmetry (cfr. section...) which acts on the above

variables as ti → ti+2h. Then in a Z|N | symmetric critical points the ti depend on i only

mod 2h. Next we have the CPT symmetry which acts as ti → ti+h while γi+h = −γi; the

symmetric condition is zi ≡ eγisvs+ti = zi+h, i.e. ti+h = ti + 2γisvs. This symmetric ansatz

31The contribution 2rN arises from the overall factor (q)−2rN
∞ .
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automatically solves the equations ∂vsS(ti, vs) = 0 (S being the function in the parenthesis

of (C.37)). The bottom line is that we have

ceff = 2rN + 2|N |
h∑
i=1

6

π2
L(zi), (C.40)

where the zi are the solutions to the reduced Nahm equations

z2
i = (1− zj)C

±
ij , (C.41)

where the symmetric integral matrix C±ij is the first principal h× h minor of the 2h|N | ×
2h|N | matrix 2Aij which depends only on the sign ± of N . One has

C−ij = 2δij − C+
ij . (C.42)

We stress that for |N | large the corresponding q-hypergeometric series (C.4) would

not converge and so our monodromy operator and traces are implicitly defined through a

suitable deformation of the integration contours Ci consistent with the CPT symmetry (i.e.

Ci+h = Ci). Then eqs. (C.40), (C.41) give the physically correct ceff independently of the

details of the precise contour prescription required to define M(q)N , provided only such a

prescription exists. Thus ceff is a robust invariant of the monodromy traces which does not

suffer ambiguities in its definition. However, from (C.40) we see that only the values of ceff

for N = ±1 yield independent information.

Example 1: (G,A1) models with N > 0. In this case the equations (C.41) take the

form

z2
i = (1− zj)Cij (C.43)

where Cij the Cartan matrix of the simply-laced Lie algebra G. Writing zi = w
−Cij
j , the

equations take the form

1 + w
2δij−Cij
j = w2

i . (C.44)

The equations (C.43) have a unique solution with 0 < zi < 1 which corresponds to the

vacuum character of the 2d coset CFT G2/U(1) [49, 51]. Then 6
∑

i L(zi)/π
2 is the central

charge of the G2/U(1) coset CFT, and

ceff = 2N

(
r +

rG hG
hG + 2

)
, (C.45)

where rG, hG are the rank and the Coxeter number of the Lie algebra G (related to its

dimension by the Coxeter formula dimG = rG(hG+1)). Moreover, 2r is equal to rG minus

the multiplicity of hG/2 as an exponent of G.

Example 2: (G,A1) models with N < 0. In this case the equations (C.41) take the

form

z2
i = (1− zj)2δij−Cij . (C.46)

Setting zi = −w2δij−Cij
j we get back the Nahm equations (C.44). For N < 0 we are

interested in a different solution of these equation; nevertheless we may find it using the
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same Lie theoretic methods as in the original case [49]. For instance, for G = A2` the

unique solution of these equations with 0 < zj < 1 is

zj = −sin[(j + 2)π(k + 1)/(2k + 3)] sin[jπ(k + 1)/(2k + 3)](
sin[π(k + 1)/(2k + 3)]

)2 . (C.47)

We recall the following special case of an identity by Kirillov [69]

48

π2

∑̀
k=1

L

(
−sin[(k + 2)π(`+ 1)/(2`+ 3)] sin[kπ(`+ 1)/(2`+ 3)]

sin2[π(`+ 1)/(2`+ 3)]

)
=

= 4`+
3(2`+ 1)

2`+ 3
− 1

(C.48)

so that, for (A2`, A1) and N < 0

ceff =
2|N |`
2`+ 3

. (C.49)

The effective central charge of the (p, q) Virasoro minimal model is

ceff(p, q) = c−min
r,s

hr,s = 1− 6

pq
. (C.50)

Taking p = 2 and q = 2`+ 3, we get the effective central charge (C.49) for N = −1.

Example 3: (G,G′) models with N > 0. Again we reduce the saddle point conditions

to systems of algebraic equations already studied in a related context by Nahm [49]. Using

his results, one obtains the following formula

ceff = 2Nr +N
rGrG′hGhG′

hG + hG′
. (C.51)

which has been checked explicitly for (G,A2).

The general relation: N < 0 versus N > 0. The relation between N > 0 and N < 0

traces found in the (G,A1) example may be generalized to arbitrary N = 2 models (having

a finite chamber). For simplicity, we write Cij for C+
ij even if, in general, it is not a Cartan

matrix in the Kac sense. Then, writing

zi =

{
w
−Cij
j N > 0

−w2δij−Cij
j N < 0,

(C.52)

we end up for both signs with equation (C.44). Using that equation, we have

6

π2

h∑
i=1

L(zi) =


6

π2

∑
i

L(w
−Cij
j ) =

6

π2

∑
i

L(1− w−2
i ) = h− 6

π2

∑
i

L(w−2
i )

6

π2

∑
i

L(−w2δij−Cij
j ) =

6

π2

∑
i

L(1− w2
i ) = −h+

6

π2

∑
i

L(w−2
i ),

(C.53)
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where we used the two functional equations for the Rogers dilogarithm

L(x) + L(1− x) =
π2

6
, L(x) + L(x−1) =

π2

3
. (C.54)

Hence, as a function of the wi’s the central charge for N < 0 is given by minus the expres-

sion valid for N > 0. However, the wi’s for N < 0 correspond to a different solution to

eqs. (C.44) than the wi’s for N > 0. In other words, in the two cases the total set of saddle

points are the same, but switching the sign of the exponent we interchange the most domi-

nating point with the less dominating one. Now, assuming the N = 1 trace to correspond to

a unitary CFT character, the set of all saddle point values is given in terms of this 2d CFT as{
ceff

}
all saddle
points

=
{
c− 24hi mod 24

∣∣ hi the dimension of a Virasoro primary
}

(C.55)

Then the sum of ceff for N = +1 and N = −1 is 24 times the dimension of an operator in

the 2d unitary CFT.

D Some q-hypergeometric identities

For the benefit of the reader, in this appendix we collect various identities we used in the

main body of the paper and sketch the proof of some of them.

D.1 Expansion of 1/Θ in Ramanujan’s partial thetas

In section 4.3.1 we introduced a function Ξ(z; q) which differs from the inverse of a Jacobi

theta function only by an overall (q)3
∞ factor

Ξ(z; q) :=
(q)2
∞

(q1/2z; q)∞ (q1/2z−1; q)∞
≡ (q)3

∞
Θ(−z; q)

(D.1)

(here Θ(z; q) =
∑

n∈Z q
n2/2zn) and used the identity

Ξ(z; q) =
∑
m∈Z

zmq|m|/2 ψ(−q|m|, q), (D.2)

where ψ(z, q) is the Ramanujan partial theta function (see [70] section 6.4)

ψ(z, q) =
∞∑
n=0

zn qn(n+1)/2 (D.3)

(in a partial theta function the sum is over the non-negative integers rather than all integers

as in a complete theta function). We present two proofs of identity (D.2) since elsewhere

we use some of the intermediate identities of both proofs.

First proof. From Euler’s first sum one has

1

(q1/2z; q)∞ (q1/2z−1; q)∞
=
∑
m,n≥0

q(m+n)/2 zm−n

(q)m (q)n
=
∑
m∈Z

zmq|m|/2
∑
n≥0

qn

(q)n (q)n+|m|
(D.4)

The internal sums in the r.h.s. may be computed using the identity in Entry 6.3.1 of

Ramunjan’s lost notebook (see [70] p.115) specialized to a = −1 and with b = −z:
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Entry 6.3.1. For all complex z

∞∑
n=0

qn

(q)n (zq; q)n
=

1

(q)∞ (zq; q)∞

∞∑
m=0

(−z)m qm(m+1)/2 ≡ ψ(−z, q)
(q)∞ (zq; q)∞

. (D.5)

Then for all integers m one has∑
n≥0

qn

(q)n (q)n+|m|
=

1

(q; q)|m|

∑
n≥0

qn

(q)n (q|m|+1; q)n
= [by equation (D.5)]

=
ψ(−q|m|, q)

(q)∞ (q; q)|m| (q|m|+1; q)∞
≡ ψ(−q|m|, q)

(q)2
∞

.

(D.6)

Second proof. We recall Entry 12.2.2 of Ramanujan’s lost notebook (see [71] p.264)

which expresses Ξ(z, q) as a bilateral Lambert series

Ξ(z, q) =
∑
k∈Z

(−1)k
qk(k+1)/2

1− z qk+1/2
. (D.7)

The r.h.s. may be expanded as

∑
k≥0

(−1)kqk(k+1)/2

[
1 +

z qk+1/2

1− z qk+1/2
+

z−1 qk+1/2

1− z−1 qk+1/2

]
=

=
∑
m∈Z

zm q|m|/2
∑
k≥0

(−1)kqk(k+1)/2+|m|k ≡
∑
m∈Z

zm q|m|/2 ψ(−q|m|, q).
(D.8)

D.2 Tr[M(q)−1 Xγ ] for the (A1, A2) model

We wish to compute the line operator insertions in the inverse monodromy trace,

〈Xγ〉N=−1 ≡ Tr[M(q)−1Xγ ] with respect to the quiver orientation in figure 3. As ex-

plained in the main body of the paper, one has

M(q)−1 =
∑
m,n∈Z

〈X−me1−ne2〉N=−1 Xme1+ne2 . (D.9)

Using the minimal chamber BPS spectrum

M(q)−1 = (q)2
∞ (q1/2Xe1 ; q)−1

∞ (q1/2Xe2 ; q)−1
∞ (q1/2X−1

e1 ; q)−1
∞ (q1/2X−1

e2 ; q)−1
∞ =

= (q)2
∞

∑
a,b,c,d≥0

q(a+b+c+d)/2

(q)a(q)b(q)c(q)d
q[a(b−d)+bc+cd]/2 X(a−c)e1+(b−d)e2 .

(D.10)

Comparing with equation (D.9) we have

〈Xme1+ne2〉N=−1 = (q)2
∞

∑
a,b,c,d≥0

q(a+b+c+d)/2

(q)a(q)b(q)c(q)d
q[a(b−d)+bc+cd]/2 δ−m,a−c δ−n,b−d. (D.11)
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From this expression it is manifest that

〈X−me1−ne2〉N=−1 = 〈Xne1+me2〉N=−1 (D.12)

so it suffices to consider three cases: i) m ≥ 0, n ≤ 0, ii) m,n ≥ 0 and iii) m ≤ 0, n ≥ 0.

One finds

m≥0, n≤0: 〈Xme1+ne2〉−1 =q(m+|n|+|m|n)/2Gm+|n|+1(q) (D.13)

m≥0, n≥0: 〈Xme1+ne2〉−1 =q(m−n−mn)/2

(
Gm−n+1(q)−

n−1∑
`=0

q`
2+`(m−n+1)

(q)`

)
(D.14)

m≤0, n≥0: 〈Xme1+ne2〉−1 =q(−|m|−n+|m|n)/2

(
G−|m|−n+1(q)−

n−1∑
`=0

q`
2+`(m−n+1)

(q)`
−

− q−|m|(n+1)
n−1∑
b=0

n−b−1∑
c=0

(−1)c
(qb−n+1;q)c

(q)b(q)c
qc(c+1)/2+c|m|+b

)
(D.15)

so that in all cases we have

〈Xme1+ne2〉N=−1 = q(m−n−mn)/2Gm−n+1(q) + finite q-sum. (D.16)

Note that the r.h.s. of eqs. (D.13), (D.14), (D.15) reduce to G1(q) ≡ H(q) for m = n = 0.

The proofs of eqs. (D.13), (D.14), (D.15) are long and tedious. We present only the

simplest one (D.13); the strategy of proof for the other two is similar.

Lemma. Consider the double q-hypergeometric sum

g(w, z; q) :=
∑
k,l≥0

qkl zk wl

(q; q)k (w; q)k (q; q)l (z; q)l
. (D.17)

One has

g(w, z; q) =
0φ1(−; 0; q;wz)

(w; q)∞ (z; q)∞
, (D.18)

where 0φ1(−; c; q; z) is the basic hypergeometric series [72]

0φ1(−; c; q; z) =
∑
n≥0

qn(n−1)zn

(q; q)n (c; q)n
. (D.19)

Note that the Rogers-Ramanujan functions G`(q) may be written as

G`(q) = 0φ1(−; 0; q; q`+1), (D.20)

so that whenever z = q`/w (` ∈ Z) the function g(w, z; q) is equal to the Rogers-Ramanujan

function G`−1(q) up to the simple pre-factor (w; q)−1
∞ (q`/w; q)−1

∞ . Eq. (D.13) is an imme-

diate consequence of the Lemma. Indeed, for m ≥ 0 and n ≤ 0, only the terms with

c = a+m and b = d+ |n| contribute to the sum (D.11) which then reduces to

(q)2
∞
∑
a,d≥0

q[2da+2a|n|+2dm+m|n|+2a+2d+m+|n|]/2

(q)a(q)d(q)a+m(q)d+|n|
≡ (q)2

∞
q(m|n|+m+|n|)/2

(q; q)m (q; q)|n|
g(q|n|+1, qm+1; q).

(D.21)

Evaluating the r.h.s. with the help of the Lemma yields equation (D.13).
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Proof of the Lemma. Repeated use of limiting forms of Heine’s transformation [72]:∑
k,l≥0

qklzkwl

(q;q)k (w;q)k (q;q)l(z;q)l
=
∑
k≥0

zk

(q;q)k (w;q)k

∑
l≥0

(wqk)l

(q;q)l(z;q)l
=

=
∑
k≥0

zk

(q;q)k (w;q)k
2φ1(0,0,z;q;wqk)=

∑
k≥0

zk

(q;q)k (w;q)k

1

(wqk;q)∞
0φ1(−;z;q;wzqk)=

=
1

(w;q)∞

∑
k≥0

zk (w;q)k
(q;q)k (w;q)k

0φ1(−;z;q;wzqk)=
1

(w;q)∞

∑
k≥0

zk

(q)k

∑
l≥0

ql(l−1)wlzlqkl

(q;q)l(z;q)l
=

=
1

(w;q)∞

∑
l≥0

ql(l−1)wlzl

(q;q)l(z;q)l

1

(zql;q)∞
=

1

(w;q)∞(z;q)∞

∑
l≥0

ql(l−1)wlzl

(q;q)l(z;q)l
(z;q)l=

=
1

(w;q)∞(z;q)∞

∑
l≥0

ql(l−1)(wz)l

(q;q)l
=

0φ1(−;0;q;wz)

(w;q)∞(z;q)∞
.

D.3 TrM(q)−1 for (A1, A2n) is the character of the (2, 2n+3) minimal model

For n,m ∈ Z+, we define recursively the functions A(n)(q)m

A(0)(q)m = 1

A(n+1)(q)m = (q)∞
∑
k≥0

qk(m+1)

(q)2
k

A(n)(q)k.
(D.22)

For the model (A1, A2n) then we have

TrM(q)−1 = (q)2n
∞

∑
`1,··· ,`2n≥0

q
∑
i(`i`i−1+`i)∏
i(q)

2
`i

= A(2n)(q)0. (D.23)

Lemma. For all n ∈ Z+ we have

A(2n)(q)m =
∑
s1≥0

(q)m+s1

(q)2
s1

qs1(s1+1)
∑
s2≥s1

qs2(s2+1)

(q)s2−s1

∑
s3≥s2

qs3(s3+1)

(q)s3−s2
· · ·
∑

sn≥sn−1

qsn(sn+1)

(q)sn−sn−1

. (D.24)

Proof. Induction on n. For n = 0 is true. Assume the results holds for 2n. Then

A(2n+1)(q)m=(q)∞
∑
k≥0

∑
s1≥0

qk(m+1)

(q)2
k

(q)k+s1

qs1(s1+1)

(q)2
s1

∑
s2≥s1

qs2(s2+1)

(q)s2−s1
···

∑
sn≥sn−1

qsn(sn+1)

(q)sn−sn−1

=

=(q)∞
∑
k≥0

∑
s1≥0

qk(m+1)

(q)2
k

(qs1+1)k
qs1(s1+1)

(q)s1

∑
s2≥s1

qs2(s2+1)

(q)s2−s1
···

∑
sn≥sn−1

qsn(sn+1)

(q)sn−sn−1

=

=(q)∞
∑
s1≥0

2φ1(0,qs1+1;q;q;qm+1)
qs1(s1+1)

(q)s1

∑
s2≥s1

qs2(s2+1)

(q)s2−s1
···

∑
sn≥sn−1

qsn(sn+1)

(q)sn−sn−1

= (D.25)

=(q)∞
∑
s1≥0

1

(qm+1)∞
1φ1(q−s1 ;q;q;qm+s1+2)

qs1(s1+1)

(q)s1

∑
s2≥s1

qs2(s2+1)

(q)s2−s1
···

∑
sn≥sn−1

qsn(sn+1)

(q)sn−sn−1

=

=(q)m
∑
s1≥0

s1∑
k=0

(−1)k
(q−s1)k

(q)2
k

qk(k−1)/2+k(m+s1+2) q
s1(s1+1)

(q)s1

∑
s2≥s1

qs2(s2+1)

(q)s2−s1
···

∑
sn≥sn−1

qsn(sn+1)

(q)sn−sn−1

,
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where we used various limiting forms of Heine’s 2φ1 transformation [72]. Now [72]

(q−s1)k =
(q)s1

(q)s1−k
(−1)kqk(k−1)/2−ks1 , (D.26)

so

A(2n+1)(q)m = (q)m
∑
k≥0

∑
s1≥k

qk(k+1)+km+s1(s1+1)

(q)2
k(q)s1−k

∑
s2≥s1

qs2(s2+1)

(q)s2−s1
· · · (D.27)

Finally,

A(2m+2)(q)m ≡ (q)∞
∑
`≥0

q`(m+1)

(q)2
`

A(2n)(q)` =

= (q)∞
∑
`≥0

q`(m+1)

(q)`

∑
k≥0

∑
s1≥k

qk(k+1)+k`+s1(s1+1)

(q)2
k(q)s1−k

∑
s2≥s1

qs2(s2+1)

(q)s2−s1
· · · =

= (q)∞
∑
k≥0

∑
s1≥k

qk(k+1)+s1(s1+1)

(q)2
k(q)s1−k

1

(qm+k+1)∞

∑
s2≥s1

qs2(s2+1)

(q)s2−s1
· · · =

=
∑
k≥0

(q)m+k

(q)2
k

qk(k+1)
∑
s1≥k

qs1(s1+1)

(q)s1−k

∑
s2≥s1

qs2(s2+1)

(q)s2−s1
· · ·

(D.28)

which completes the proof of the Lemma.

Corollary. For (A1, A2n) one has

TrM(q)−1 =
∏

n 6=0,±1 mod(2n+3)

(1− qn)−1. (D.29)

Proof. Set m = 0 in (D.24); the resulting sum for A(2n)(q)0 is the l.h.s. of the celebrated

Andrews-Gordon (AG) generalization of the Rogers-Ramanujan identities [73, 74]. The

r.h.s. of (D.29) is the r.h.s. of the AG identities.

D.4 TrM(q)−1 for the (A1, A2n+1) AD model

One has

TrM(q)−1 =
∑
m∈Z

ymM(q)(n)
m with M(q)

(n)
−m = M(q)(n)

m . (D.30)

The zero coefficient M(q)
(n)
0 in the trace ofM(q)−1 in the sense of [6]; in the notation

of appendix (D.3) then one has

M(q)
(n)
0 ≡ 1

(q)∞
A(2n+1)(q)0 =

=
1

(q)∞

∑
s2n+1≥s2n≥···≥s1≥0

qs1(s1+1)+s2(s2+1)+···+s2n+1(s2n+1+1)

(q)s2n+1−s2n(q)s2n−s2n−1 · · · (q)s2−s1
1

(q)2
s1

.
(D.31)

The expression of M(q)
(n)
0 for m > 0 should be a generalization of this formula. We claim

the following
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Lemma. For m ≥ 0 the coefficient M(q)
(n)
m is given by

qm

(q)∞

∑
s2n+1≥···≥s1≥0

qs1(s1+m+1)+s2(s2+m+1)+···+s2n+1(s2n+1+m+1)

(q)s2n+1−s2n(q)s2n−s2n−1 · · · (q)s2−s1
1

(q)s1 (q)s1+m
. (D.32)

The proof is similar to the previous ones in this appendix and shall be omitted for

brevity. Next we need the following fundamental result of Andrews ([74] Theorem 2)

Theorem (Andrews). Assume the two sequences {αn}n≥0, {βn}n≥0 form a Bailey pair,

i.e.

βn =
n∑
r=0

αr
(q)n−r(aq)n+r

for all n ≥ 0. (D.33)

Then

1

(aq)∞

∑
n≥0

qkn
2
aknαn =

∑
sk≥sk−1≥···≥s1≥0

as1+s2+···+sk qs
2
1+s22+···+s2k

(q)sk−sk−1
(q)sk−1−sk−2

· · · (q)s2−s1
βs1 . (D.34)

The sum in the r.h.s. of (D.32) as the same form as the one appearing in the r.h.s.

of (D.34) with

k = 2n+ 1, a = qm+1, βs =
1

(q)s(q)s+m
. (D.35)

To get the sequence {αn} corresponding to the Bailey sequence {(q)−1
n (q)−1

n+m} one uses

the inversion formula of (D.33), see [74]

αn = (1− aq2n)

n∑
j=0

(−1)n−j
(aq)n+j−1

(q)n−j
q(n−j)(n−j−1)/2 βj . (D.36)

Then

M(q)(n)
m = (D.37)

=
q|m|

(q)2
∞

∑
j,`≥0

(−1)`
1− q2`+2j+|m|+1

1− q|m|+1

(q)`+2j+|m|

(q)` (q)j (q)j+|m|
q(2n+1)(`+j)(`+j+|m|+1)+`(`−1)/2.
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