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Abstract

Background: The concept of reverse engineering a gene network, i.e., of inferring a genome-wide graph of putative gene-
gene interactions from compendia of high throughput microarray data has been extensively used in the last few years to
deduce/integrate/validate various types of ‘‘physical’’ networks of interactions among genes or gene products.

Results: This paper gives a comprehensive overview of which of these networks emerge significantly when reverse
engineering large collections of gene expression data for two model organisms, E.coli and S.cerevisiae, without any prior
information. For the first organism the pattern of co-expression is shown to reflect in fine detail both the operonal structure
of the DNA and the regulatory effects exerted by the gene products when co-participating in a protein complex. For the
second organism we find that direct transcriptional control (e.g., transcription factor–binding site interactions) has little
statistical significance in comparison to the other regulatory mechanisms (such as co-sharing a protein complex, co-
localization on a metabolic pathway or compartment), which are however resolved at a lower level of detail than in E.coli.

Conclusion: The gene co-expression patterns deduced from compendia of profiling experiments tend to unveil functional
categories that are mainly associated to stable bindings rather than transient interactions. The inference power of this
systematic analysis is substantially reduced when passing from E.coli to S.cerevisiae. This extensive analysis provides a way to
describe the different complexity between the two organisms and discusses the critical limitations affecting this type of
methodologies.
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Introduction

Reverse engineering a gene network means extrapolating a

graph of putative gene-gene interactions from high throughput

microarray data. Many algorithms have been proposed for this

scope in recent years (see [1,2,3] for an overview) and many are

the (very) different contexts of application: deduce/integrate/

validate various types of ‘‘physical’’ networks of interactions

between genes or gene products, see e.g. [4,5,6,7,8,9,10,11,12,

13,14].

Our aim in this paper is to address the following question: which

one among these different networks is more likely to emerge from

a completely unsupervised reverse engineering processing of the

gene expression data, and at which level of detail can we

confidently reconstruct such networks on two model organisms

(E.coli and S.cerevisiae) of different complexity? In other words: what

is the most likely biological origin of the pattern of gene-gene

expression similarities we see probing only the ‘‘layer’’ of

transcripts without adding any a priori information neither on the

‘‘upstream’’ regulatory interactions (like a direct transcriptional

activation could be considered) nor in the ‘‘downstream’’ ones (at

the level of protein or of metabolic interactions)? And finally, how

is the organism complexity influencing our ability to retrieve gene-

gene interactions via gene co-expression? For these purposes, we

choose two model organisms for which large compendia of gene

expression microarrays are available and also several networks can

be collected from the literature, like maps of transcription factors–

binding sites (TF-BS), protein–protein interactions (PPI), protein

complexes (PC), and metabolic pathways (MP). In order to take

into account also the homology and the architecture of the

genomes, we considered maps of paralog genes (PAR) [15] and,

for E.coli alone, a map of transcription units (TU) describing the

operonal structure of the prokaryotic DNA (see Tables (a) and (b)

of Fig. 1 and Supplementary Notes S1 for details and data

sources). As for gene profiling, we used three different compendia:

one for E.coli and two for S.cerevisiae (one containing cDNA

experiments, the other Affymetrix experiments).

For this last organism, as a byproduct, the comparison of the

two datasets allows the evaluation of the differences between the

two gene profiling technologies (see in particular Fig. 1).

These datasets contain profiling experiments performed in

widely different conditions. In the philosophy of reverse engineer-

ing [1,2,3] this is meant to capture as much as possible of the

different perturbations that can be applied to a system. Needles to
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Figure 1. Overrepresented physical networks. For each of the two organisms we collected several networks representing different genomic or
physical interaction properties, shown in Table (a) and (b), see Supplementary Notes S1 for data sources. The similarity matrices, computed with
Pearson correlation (R), mutual information (I), conditional mutual information (Ic), partial Pearson correlation (Rc) and graphical Gaussian model (Rcall)
and representing the predicted likelihood of an edge between any two genes, are compared with the graphs of the various networks. The AUC values
for the receiving operating characteristic are reported in the histograms for E.coli and S.cerevisiae (c). In panel (d) a coarse grain statistics is used to
describe the results. It consists in sorting the inferred weights, binning them into 100 bins and counting the percentage of ‘‘true’’ edges (of each
physical network) lying in each bin. The percentages of true positives in the top bin are shown in the bottom histograms (a randomly chosen network
would yield 1% of true positives). The same qualitative conclusions can be drawn from both scoring methods. E.coli inference: two networks are
neatly emerging, TU and PC. The first emphasizes the visibility in the expression pattern of the operonal structure of the DNA. The TU and PC
detected have an overlap which is consistent but still below 50% (of the 2632 TU edges and 1364 PC edges in the top 1%, 694 are in common),
meaning that also co-participation in a PC is a strong, independent source of co-expression. S.cerevisiae inference (cDNA and Affymetrix data):
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say reverse engineering algorithms are strongly dependent on the

quality and numerosity of the dataset used. In an effort to

overcome the limitations of current reverse engineering algorithms

and possible biases due to the microarray platform considered

[16], in this paper we consider simultaneously five different

algorithms and rely on datasets from two different platforms

(cDNA and Affymetrix technologies).

Several are the examples of how to conjugate gene expression with

one of the cited physical networks, like [6] and [11] where expression

similarity (together with sequence compatibility) is used to infer new

putative TF-BS edges. Rather than TF-BS, the same comparison

between expression similarity and a given network graph can

alternatively lead to putative new PPI edges [17,10,18]. As a matter

of fact, according to [13], for S.cerevisiae, gene expression correlation

is the most significant among the 17 indexes considered for this scope

(including, among others, ontological information, sequence simi-

larity, protein localization and domain structure, etc.). Similar uses of

gene expression have been published in the context of metabolic

pathways: see e.g. [9,19], or to predict prokaryotic operonal

structure [7,20]. Needless to say, the integration of several of the

‘‘physical’’ maps above is one of the very often used approaches in

the literature [21,22,12,23,24]. In addition, several studies investi-

gate evolution through the comparison of these physical networks, in

particular at the level of transcription circuits [25,26,27,28].

There are several motivations that justify the simultaneous use

of gene expression in these and other biological contexts, the first

and foremost being that genes, gene products and metabolites

form a unique complex interlinked system, whose unraveling is far

from complete, especially for what concerns its context-depen-

dence (condition-specific activation of regulatory mechanisms,

dynamic behavior, dependencies from internal and external

parameters such as nutrients and stimuli, etc.). Another reason is

that the gene expression ‘‘layer’’ is the only one that can be

measured in such a systematic way. A third reason is that even

zooming to this layer alone, the current amount, quality and

significance of microarray data is drastically insufficient.

The main task of this paper is to test which, among the physical

networks mentioned above, are more represented in the inferred

gene-gene networks.

The results show in both organisms that the regulation deriving

from the co-participation in the same protein-complex is strongly

overrepresented in the pattern of high co-expression. This is

observed especially in S.cerevisiae where an operonal structure is

missing. As the functional category that emerges more significantly

for both organisms is co-participation in a protein complex, by

suitably clustering the inferred networks the genes can be grouped

and the groups matched with the known protein complexes. When

we compare the outcome of this cluster matching procedure, we

see that the degree of the reconstruction resolution is higher in

E.coli than in S.cerevisiae. Most edges of each PC are correctly

inferred and the matching cluster-PC is essentially monogamic.

Results

Overrepresented networks comparison
Assuming no prior knowledge, a network structure can be

inferred solely from microarray data by means of a genome-wide

‘‘similarity matrix’’ [29] (see Supplementary Notes S1 for

definitions and algorithms) and used to test which of the types of

interactions listed in Fig. 1 emerge significantly. We carry out two

different tests to evaluate the performances of the algorithms. In the

former the area under the receiving operating curve (AUC) is

evaluated for each metric and network, see Fig. 1 (c), while in the

second the edge weights resulting from the statistical analysis are

rank-ordered and the percentages of ‘‘true’’ edges of each physical

network in the top 1% of the inferred edges are shown in the

histograms of Fig. 1 (d). The AUC histograms score the

reconstruction of the physical networks without choosing any

cutoff on edge weight (a value of 0.5 means that the result is not

statistically significant), while with the second test we look for

networks for which most of the information is retained in the

highest 1% of edges (Supplementary Notes S2 and S3). The

conclusions that can be drawn from the two procedures are largely

in agreement (and in agreement with Precision/Recall curves, see

Supplementary Notes S4 and S5). In particular for E.coli (Fig. 1(c))

we observe that an AUC index of 0.9 is reached for the TU map,

meaning that the pattern of expression similarity is strongly

influenced by the operonal structure of the DNA, as is well-known

[7,20]. The other emerging network, the (manually curated)

protein complexes, is relevant also for S.cerevisiae. Notice how in

S.cerevisiae the performances decrease drastically passing from the

manually curated protein complexes (PC1) to the complexes

identified by means of systematic screening (PC2). This consider-

ation extends to PPI on both organisms: the protein-protein

bindings detected by high throughput essays need not correspond

to stable bindings and hence to highly correlated patterns of

expression. On both organisms the direct transcriptional regulation

due to the transcription factors (TF-BS map) is far from being the

most relevant indicator. However, while for E.coli it remains in the

range of significance of other networks (around 6–8% in the most

significant bin, like MP), in S.cerevisiae the map TF-BS is below the

threshold of statistical relevance in both datasets we collected.

Concomitant causes such as combinatorial regulatory effects [4] or

condition-specific activation of the TF-BS edges [11,30] certainly

play a role in the loss of relevance of this class of interactions. Notice

that there is a substantial intersection between the true edges

detected from the cDNA and Affymetrix datasets (Supplementary

Notes S6), meaning that co-expression among certain genes emerge

robustly regardless of the particular type of perturbation applied.

To guarantee an unbiased overall picture of the major

differences between the two organisms that emerge when reverse

engineering large collections of gene expression profiles, we must

ensure that the datasets contain a comparable amount of

information in terms of perturbative stimulations on the system.

For this purpose on each of the three datasets suitably normalized

we compute a gene expression variability index (see Materials and

Methods). If on the one hand in S.cerevisiae the cDNA dataset shows

a higher variability with respect to the Affymetrix dataset (a

possible reason for the better inference performances on the

former, see Fig. 1 and Supplementary Notes S6), on the other

hand the two Affymetrix datasets (one for E.coli and one for

S.cerevisiae) are characterizable by a similar content of variability,

see Supplementary Notes S7. This consideration reinforces the

claim that the worse results obtained for S.cerevisiae are not due to

the dominant index is PC1 in both datasets, followed by the map of duplicated genes. The high magnitude of the peaks in the cDNA data alone
strongly suggests that this technology may be affected by a systematic bias towards unspecific binding and cross-hybridization of genes with
sequence similarities [46,16], see also Fig. 6. The intersection of the results for the two platforms basically corresponds to the Affymetrix edges, see
Supplementary Notes S6. With the exception of TF-BS for S.cerevisiae, all histograms in panel (c) and (d) are statistically significant (q.value ,0.05, see
Supplementary Notes S1 and S3).
doi:10.1371/journal.pone.0002981.g001

Co-Expression Patterns

PLoS ONE | www.plosone.org 3 August 2008 | Volume 3 | Issue 8 | e2981



lower quality datasets with respect to E.coli, but are likely to reflect

a more complex transcriptional regulation [31].

Clustering: E.coli
If we want any clustering algorithm to be effective, the graphs of

interactions have to be sufficiently sparse. We adopt this criterion to

select a suitable cut-off on the edges weight (see Material and

Methods for further details). The edges of highest significance,

suitably clustered, can be tested against the most relevant physical

networks emerging from the previous analysis. For E.coli, the

clustered expression correlations reproduce faithfully a large part of

the collection of PC, and the matching clusters-PC is quasi-

monogamous (see Fig. 2 and Supplementary Notes S8 for details and

statistics). A similar (even better) unambiguous correspondence is

detected between the clusters and the TU (see Supplementary Notes

S9), while for MP the percentages are lower but still significant. Most

often co-clustered genes share similar functional annotation and can

be used to infer/confirm biological hypothesis.

A thorough description of the ontological information deduced

from the cluster analysis is provided in the Supplementary Notes

S1. The most striking example is represented by the largest cluster,

which includes (in 61 genes) basically all the 50 genes known to be

involved in flagellar formation and function. Apart from the

flagellum complex subunits (24) and its transcriptional regulators

(flhDC and the factor fliA), the cluster contains chemotactic genes,

genes regulated by the flhDC complex, by the factor or the anti-

factor, other genes involved in flagellar biogenesis and motility, or

predicted regulators of the factor. Such a functional compactness

(and disconnection from the rest of the gene network, see

Supplementary Notes S10) probably originates from E.coli’s need

to activate the flagellum in every kind of experimental condition

and in constant stoichiometric ratio. Also ribosomal genes tend to

form large clusters of functionally similar genes (mainly concen-

trated in clusters 10, 20 and 25) going beyond the operonal

structure and forming different ribosomal structural components

(rpl, rps, rpm, rpo). Another remarkably homogeneous set of genes

not induced by any operon is in cluster 24: of its 10 genes, 9 are

associated with the SOS pathway.

The list of significant clusters is long, as essentially all basic

functions needed for survival and growth are captured by the

cluster analysis. Nucleotide (cluster 56 for pyrimidine, cl. 88 for

purine) and amino acid biosynthesis are recurrent biological

Figure 2. Correspondence between expression clusters and protein complexes for E.coli. Selecting an acceptance threshold of 0.8 on the
Pearson correlation coefficients, we obtain a graph of 19238 arcs involving 1998 genes. This graph is decomposed into 556 clusters (using a
hierarchical algorithm, see Methods and Supplementary Notes S10). Of the 556 expression clusters, 114 intersect with 135 protein complexes (having
at least 2 genes in the set of 1998 genes passing the correlation threshold, out of the 209 PC). The gray scale indicates the percentage of genes of the
PC in the cluster (black is 100 %). The correspondence clusters-PC is almost monogamous (the majority of PC, more than 80, belongs to a single
cluster, while more than 120 of the 135 PC are confined to at most 2 clusters, see Supplementary Notes S8 for a more detailed statistical analysis and
Supplementary Notes S9 and S11 for the correspondence between clusters and TU).
doi:10.1371/journal.pone.0002981.g002
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functions retrieved by the procedure. For this last function, the

resolution is often at the level of the single amino acid, like serine

biosynthesis and threonine biosynthesis from homoserine (cl. 7),

tryptophan and histidine biosynthesis (cl. 5), arginine biosynthesis

(cl. 36), methionine biosynthesis (cl. 69, 7), alanine biosynthesis (cl.

404), isoleucine biosynthesis from threonine (cl. 72) and cysteine

biosynthesis (cl. 9). The single resolution extends to tRNAs: valine

tRNAs (cl. 171), glutamate tRNA (cl. 175), asparagine tRNA (cl.

102), methionine tRNA (cl. 166), glycine tRNA (cl. 167), leucine

tRNA (cl. 168), although sometimes similar enzymatic functions

prevail (like in cluster 41 where genes involved in amino acid-

tRNA synthetase for five different amino acids are grouped).

Biosynthetic pathways are visible for many (other) compounds,

like, for example, thiamine (cl. 21), enterobactine (cl. 14),

spermidine (cl. 133), etc. Likewise for degradatory pathways (e.g.

alanine in cl. 404, threonine in cl. 185, L-arabidose in cl. 26, etc.),

and for many elements of the superfamily of ABC transporters.

Responses to various stresses are well detected, like osmotic (cl. 80,

139), oxidative (cl. 415), thermal (cl. 106, 184), acid (cl. 308) and

extracytoplasmatic (cl. 340). Also metabolic functions, like for

example aerobic and anaerobic respiration, are well identified by

specific and disjoint clusters. For instance for the aerobic respiration,

cluster 34 contains the sdhCDAB-sucABCD operon involved in the

two consecutive succinate-related steps of the TCA Cycle. A cluster

related to anaerobic respiration is cluster 117, which contains part of

the fixABCX TU, thought to be involved in the anaerobic

metabolism of carnitine. This last hypothesis is reinforced by the

co-clustering with caiD, a gene having a carnitine racemase activity.

Cluster 203 is also significant, containing 3 genes belonging to three

different TU but all involved in the anaerobic respiration. The

preferred electron acceptor for anaerobic respiration in E.coli is

nitrate that is reduced to nitrite which is either excreted or further

reduced. E.coli contains 3 nitrate reductases: two of them, nitrate

reductase A (NRA) and nitrate reductase Z (NRZ), are membrane

bound, while the third one, Nap, is located in the periplasm. Their

different environmental conditions for activation are reflected in the

formation of three separate and neatly defined clusters (cl. 98, 233,

140). Similar considerations extend to the 2 nitrite reductases (cl. 57

and 246). In addition, nitrate serves as a nitrogen source, an

important constituent of protein and amino acids, and nitrogen

metabolism is a function that emerges compactly from our analysis

(cl. 3). Iron transport is usually involved in the formation of proteins

belonging to the respiration chain, as it has an electron acceptor

activity, and is represented here by cluster 19. Assimilation of other

substrates such as sulfur and carbon are depicted respectively by

clusters 9, 19, 347, and 46, 291, 393.

Several other clusters contain clues about putative gene

functions, like cluster 67 encoding for two components of the

dmsABC, dimethyl sulfoxide (DMSO) reductase, a terminal

electron transfer enzyme functioning anaerobically in absence of

nitrate. The other genes in the cluster are paralogs, like, ynfF and

ynfE (highly similar to dmsA), ynfG (highly similar to dmsB), and

ydfZ. Little is known about ydfZ, but the working hypothesis [32]

is that it is activated under anaerobic growth, and the clustering

procedure reinforces this assumption. Another example of

biological inference is cluster 161. It contains sgcABC, part of

the sugar transporting phosphotransferase system (PTS), together

with ytfT, that, although part of a different TU, according to

sequence similarity may function as an ATP-dependent sugar

transporter, hypothesis consistent with our results.

Clustering: S.cerevisiae
The clustering procedure is repeated also for S.cerevisiae, this

time merging the two datasets and choosing a lower threshold in

order to make an unbiased comparison with previous results for

E.coli (similar number of edges, see Supplementary Notes S1 for

details). As can be seen in Fig. 3, while the correspondence

clusters-complexes (of type PC1) is still acceptable, the percentages

of subunits detected for the complexes are drastically reduced with

respect to E.coli. Also qualitatively, the inferred results are quite

different, with a few very accurate reconstructions of large

complexes but much less information content in the medium-

small size clusters. Large and small ribosomal subunits are

captured very precisely for both cytoplasmic (cl. 1) and

mitochondrial (cl. 3) ribosomes, in agreement with the previous

results for E.coli. The latter cluster (of 70 genes) is a good example

of compartmental homogeneity: the 56 mitochondrial ribosomal

genes are in fact co-clustered with 6 more genes from the

mitochondrial membrane translocases. Even more compact

clusters (in terms of both localization and function) are cluster 6,

with 25 of the 32 subunits of the proteasome (out of 34 genes of the

cluster), and cluster 5, which contains all the respiratory chain

complexes (34 out of 36 genes of the cluster). Notice how in this

last case also the main transcriptional regulator of the oxidative

phosphorylation (HAP4) is co-clustered, one of the very few

examples of TF-BS edges detected. In general, the large clusters

tend to co-localize but also to share complex subunits (see the

example of the RNA polymerases complexes scattered in clusters

2, 4, and 7). As for the remaining medium-small size clusters, most

of those having a significant annotation tend to be involved in

transcription and translation processes, while metabolic functions

are fragmentary and do not emerge from the clusters, mostly

because many enzymatic genes are missing (they have no

significant correlation coefficients). For example two pairs of

enzymes of glycolysis are co-clustered in cluster 8, but most of the

other genes in the pathway are not passing the correlation filter. A

few clusters containing eminently metabolic genes are however

present (e.g. cl. 12, 15, 21, 30, 31, 100), although they are not

pathway-specific. Sometimes genes co-localize also in other

compartments like the endoplasmic reticulum (15), the cytoskel-

eton (37) or the Golgi vesicles (117).

An example of how to use the clustering in the verification of

uncertain functional annotations is the following. The gene PPE1

(YHR075C, also known as MRPS2) among other annotations, is

also identified as a small subunit mitochondrial ribosomal protein

[33,34], an annotation which is contradictory with e.g. the results

of [35]. In our analysis PPE1 is lost at the correlation filter,

meaning that it has no strong and stable interaction with any other

gene. Extending for example to the 10 ‘‘newly’’ reported subunits

of mitochondrial ribosomes of [34], 7 are correctly included in

cluster 3 and 1 in cluster 8 (still mitochondrial) and only 2 are

missing (YMR158W and YPL013C).

Influence of gene distance
For E.coli, the operonal structure of the genome is certainly a

key factor in the formation of the clusters [20,7]. In Fig. 4 (a) and

(c), co-expression of genes located adjacent to each other on the

genome is quantified and genes belonging to the same or to

different strands are distinguished. However, the operonal

structure alone does not exhaust the information that can be

extrapolated from the expression correlation patterns (see Fig. 4

and Fig. 5). We can notice for instance that the distribution of

intracluster average gene distances (shown in Fig. 4(b)) although

largely comparable to that of the TU, has a heavier tail, more

related to the PC distribution. Most of the large clusters are

examples of functional information not exhausted by any operonal

structure. It is interesting to notice that the difference in the

overlap clusters/TU concerns most often the genes located at the

Co-Expression Patterns
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boundaries of the operons (see e.g. cl. 3, 5, 6, 10, and many more).

In spite of this, as a confirmation that the operonal structure and/

or protein complex interactions are much stronger mediators of

co-expression than direct DNA binding (i.e. being a pair of TF-

BS), we notice that co-clustering of these last pairs are sporadic

(e.g. cl. 1, 3, 7, 24, 38, 74, 101). The influence of the genes distance

on their co-expression is noticeable to some extent also in

S.cerevisiae [36] but decays more rapidly than in E.coli (see Fig. 4(c)).

While the decay/distance ratio is similar on the cDNA and

Affymetrix datasets, for contiguous genes the former is unable to

distinguish strain specific genes.

Discussion

The systematic observation of the patterns of gene co-

expression, inferred from compendia of experiments, tends to

unveil functional categories that are stable (i.e. co-participation in

a complex, co-localization, similar biological function, etc.) rather

than transient or condition-specific (i.e. TF-BS) [47]. The picture

emerging from the genome-wide analysis shows common aspects

in the two organisms, like the co-existence of various ‘‘layers’’ of

regulation, or the importance of the physical interactions among

the gene products in determining co-regulated expression patterns.

Many observations are hints of the different complexity charac-

terizing the two model organisms. One such result is a marked

decrease into the statistical significance of the direct transcriptional

control when passing from the prokaryotic to the eukaryotic

genome. The increase in the complexity of regulatory mecha-

nisms, genome architecture and number of functions per gene can

be the main reason for our inversely proportional ability to retrieve

significant and detailed information by means of a reverse

engineering approach. This suggests that reverse engineering

methods should be used with care for higher organisms for which

the prediction of interactions from gene expression is often

considered an ill-posed problem [48].

Materials and Methods

Gene expression databases and assessment of the
perturbational content

We downloaded the ‘‘Many Microbe Microarrays Database’’

(from http://m3d.bu.edu, T. Gardner Lab, Boston University

[37]) for E.coli (445 experiments for 4345 genes) and compiled two

separate collections of microarrays for S.cerevisiae, one containing

Figure 3. Correspondence between expression clusters and protein complexes (PC1) for S.cerevisiae. A graph of 1301 nodes and 131679
edges in the intersection of the cDNA and Affymetrix correlation matrices is retained for the clustering. Of the 299 expression clusters obtained, 212
intersect with 141 of the 217 protein complexes drawn from PC1. The gray scale indicates the percentage of genes of the complexes in the cluster
(black is 100 %). While the clustering is still sufficiently accurate, the most significant difference with respect to Fig. 2 is the percentage of complex
subunits detected in average by the thresholding, implying that the complexes have a lower degree of cohesion in terms of gene expression. A few
statistical parameters are provided in Supplementary Notes S12 and S13.
doi:10.1371/journal.pone.0002981.g003
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experiments performed with cDNA chips (958 experiments for

6203 ORF) the other with Affymetrix platform (790 experiments,

all performed with the GeneChip Yeast Genome S98 platform

and all downloaded from Gene Expression Omnibus, http://

www.ncbi.nlm.nih.gov/geo/). All 3 datasets were normalized prior

to network inference. In order to compensate for platform-specific

or organism-specific absolute expression abundances, a quantile

normalization is applied. This yields an identical distribution to all

experiments of each dataset. The perturbational content of a

normalized dataset is computed by means of a gene expression

variability index equal for each gene to the percentage of

experiments in which gene expression is an outlier with respect

to a confidence interval centered on the mean value and of width

equal to twice the standard deviation. Repeating the calculation of

this expression variability index on subsets of experiments of

different sizes yields coherent results, see Supplementary Notes S7.

Physical networks
The various networks collected are listed in Table 1(a) and (b) of

Fig. 1 of the paper. The information about duplicated genes is

downloaded from the SSDB database of KEGG (http://www.

genome.jp/kegg/ssdb/). Networks of paralog genes (PAR) are

constructed computing pairwise similarities by means of the

Smith-Waterman (SW) algorithm with acceptance threshold fixed

Figure 4. Pearson correlation and distance on the genome. Co-expression decays more rapidly with distance in S.cerevisiae than in E.coli: the
correlation drops to 0.2 at a distance of 6 Kbp in E.coli (a), as opposed to 1 Kbp in S.cerevisiae, for both cDNA and Affymetrix datasets (c). In E.coli the
value 6 Kbp is consistent with the distribution of TU width (inset panel in (a)). Genes on the same strand have much higher correlation than genes on
opposite strands. For E.coli, even if we restrict to gene pairs not involved in a TU (see dashed blu line in (a)), the influence of distance on co-expression
is still clearly visible. In S.cerevisiae, the short-range high correlation peak is represented almost completely by overlapping ORFs (the distribution of
ORF widths is shown in the inset), for which the cDNA experiments cannot discern any strand-specificity, unlike Affymetrix experiments. In panel (b),
the distribution of intracluster average distances (see Supplementary Notes S1) for E.coli is compared with the corresponding distributions of average
distances among PC and TU subunits. The histogram for the clusters is more similar to that of TU than PC, although its tail is heavier and more related
to PC. A similar analysis is impossible for S.cerevisiae as the vast majority of clusters is composed of genes located on different chromosomes.
doi:10.1371/journal.pone.0002981.g004
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to 1000 (100 is the default minimum set by KEGG). We obtained

TF-BS networks from the RegulonDB database (http://regulondb.

ccg.unam.mx), version 5.6, for E.coli [38], and from a recent

collection [4] for S.cerevisiae. For S.cerevisiae, PPI and protein

complexes networks were downloaded from the MPACT subsection

of the CYGD database at MIPS (http://mips.gsf.de/genre/proj/

mpact/). The complexes annotated from the literature and those

obtained from high throughput experiments (according to the MIPS

classification scheme these last are labeled ‘‘550’’) were kept separ-

ated and denoted respectively PC1 and PC2. Since the correspond-

ing PPI information from SGD (http://www.yeastgenome.org/) and

DIP (http://dip.doe-mbi.ucla.edu/) databases overlap for more than

50% with the MIPS PPI and PC, these will not be considered further

for the analysis. Tables of Transcription units (TU) and PC for E.coli

were downloaded from RegulonDB and EcoCyc (http://ecocyc.

org/), and high throughput PPI data from recent studies [39,40].

The PPI network contains as a subset the DIP database. The

metabolic pathways (MP) are compiled from the tables of

biochemical reactions developed by Palsson group (see http://

gcrg.ucsd.edu/In_Silico_Organisms). Reference publication for

E.coli MP is [41] and for S.cerevisiae MP [42]. Nodes of these MP

networks are enzymatic genes, and a direct edge exists between two

nodes when a product of the reaction catalyzed by one gene is a

substrate of the reaction catalyzed by the second gene. The MP

networks considered here are the enzyme projections of the reaction

graphs. To avoid overdense graphs, isoenzymes and common

abundant reactants like CO2, ATP, ADP, GLU, NAD, NADH,

NADP, NADPH, NH3, PI, PPI were neglected.

Similarity measures
We used Pearson correlation (R), mutual information (I),

conditional mutual information (Ic), partial Pearson correlation

(Rc) and graphical Gaussian model (Rcall) as similarity measures.

While correlation-based measures are linear, entropy-based

measures like the mutual information have a nonlinear nature.

See Supplementary Notes S1 for details.

Overrepresented networks
In the statistical analysis shown in Fig. 1, AUC is the area under

the receiving operating characteristic curve [43]. Overrepresenta-

tion is detected with respect to a uniform distribution of true edges

in the graph, and the level of significance of each top bin in each

network is assessed by means of a permutation test with

multiplicity correction (see Supplementary Notes S1).

Clustering procedure
For both organisms, only the Pearson correlation is used for the

clustering (the mutual information gives results which are quantita-

tively very similar). In order for a clustering procedure to be effective,

sparser graphs that the previously used 1% of edges must be

considered. Once the acceptance threshold on the correlation

coefficients is chosen (see below), the graph whose edges pass the

correlation threshold is first decomposed into disconnected compo-

nents. For both organisms, a single connected component turns out

to be much larger than the remaining disjoint subgraphs. This large

component is therefore decomposed further using a hierarchical

clustering algorithm, with weighted average linkage as cost of

merging, and taking as number of clusters the number of cuts of size

1 (i.e., of bipartite partitions of the graph joined by a single edge). In

the choice of the correlation threshold, there is a trade-off between

coverage (i.e., number of nodes with at least an edge above the cut-

off, call it n), and the connectivity degree of the nodes (representing

the density of edges in the ‘‘surviving’’ graph). If m is the number of

disconnected components and g the final number of clusters (total of

the number of clusters in which the large connected component is

subdivided plus the m21 other disconnected components), then g/m
is a (approximate) measure of the connectivity growth ratio (g/m$1)

and n/n of the coverage ratio (0,n/n#1). The trade-off between the

two can be measured for example by the logarithmic sum

r~ln
g

m

� �
zln

v

n

� �
: ð1Þ

The thresholds on the correlation coefficients for the two

organisms are chosen so as to yield a similar value for r. After this

clustering procedure, a row/column permutation algorithm based

on the Dulmage-Mendelsohn decomposition [44] is applied to

‘‘diagonalize’’ the matrix of correspondences between the cluster

and the physical network under consideration (further details in

Supplementary Notes S1).

Semantic similarity
The semantic similarity measure of Fig. 6 is drawn from [45],

and the associated p.value by means of a bootstrapping method,

see again the Supplementary Notes S1 for full detail.

Genes physical distance
Each gene in E.coli is annotated with starting and ending

positions and with strand information (+ or 2); in S.cerevisiae also

the chromosomes are taken into account. Using this information a

matrix of pairwise distances was calculated both for E.coli and

S.cerevisiae. Each gene is positioned in the middle of its start and

end coordinates. In S.cerevisiae the distance was considered only for

genes on the same chromosome. In Fig. 4 of the paper, the

intracluster average distance is computed as the mean over all

pairwise distances among the genes of a cluster. The same measure

is computed also for TU and PC. Clearly for each TU this average

distance is strictly less than the TU width (shown in the inset of

Fig. 4(a) of the paper). In S.cerevisiae the population of clusters

Figure 5. Overlap between the clusters and the main physical
networks for E.coli and for S.cerevisiae. The Venn diagram for E.coli
shows how many groups of genes of one of the three categories,
clusters, TU and PC, are completely contained in the groups of the other
two (monochromatic inclusion: a group of genes of type X belongs to a
single group of type Y, see Fig. 1 for the TU/PC overlap with a more
relaxed criterion). For example there are 72 TU contained in the 135 PC,
and 105 PC contained in the TU. Of these 105, 65 are completely
included simultaneously in TU and clusters (for the metabolic pathways
see Supplementary Notes S14 and S15). For what concerns the ability of
the clustering to infer PC and TU, if in absolute terms the
correspondence clusters/TU is certainly higher, in percentage it is of
the same order (61% for PC and 57% for TU). These percentages are
much higher than in S.cerevisiae (10%), see (b), as can be deduced
visually comparing Fig. 2 and Fig. 3.
doi:10.1371/journal.pone.0002981.g005
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whose genes co-localize on the same chromosome is statistically

too small to give a significant distribution.
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