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Analyzing and biasing simulations with
PLUMED

Giovanni Bussi and Gareth A. Tribello

Abstract This chapter discusses how the PLUMED plugin for molecular dynamics
can be used to analyze and bias molecular dynamics trajectories. The chapter begins
by introducing the notion of a collective variable and by then explaining how the free
energy can be computed as a function of one or more collective variables. A number
of practical issues mostly around periodic boundary conditions that arise when these
types of calculations are performed using PLUMED are then discussed. Later parts
of the chapter discuss how PLUMED can be used to perform enhanced sampling
simulations that introduce simulation biases or multiple replicas of the system and
Monte Carlo exchanges between these replicas. This section is then followed by a
discussion on how free-energy surfaces and associated error bars can be extracted
from such simulations by using weighted histogram and block averaging techniques.

Key words: PLUMED | enhanced sampling | collective variables | free energy |
replica exchange |WHAM

1 Introduction

The chapters in sections I to IV will have given you some sense of the broad range
of methods and techniques that have been used to simulate biomolecular processes.
The aim of this chapter is not to introduce more techniques but rather to focus on
how these techniques can be employed in practice. We will do so by explaining
how a particular piece of software, PLUMED [1, 2], can be used to run and analyze
many of the types of simulation that are discussed in section II. Note 1 discusses
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the various different versions of PLUMED. The most important thing to know at
the outset, however, is that PLUMED is not a molecular dynamics (MD) or Monte
Carlo code. It is instead designed to complement MD codes such as GROMACS [3],
LAMMPS [4], DL POLY [5], CP2K [6], AMBER [7], and OpenMM [8]. PLUMED
does this in two ways:

1. It can be used to post-process the molecular dynamics trajectories that are gener-
ated by these code.

2. It can serve as a plugin to these MD codes and thus allow the user to add the
additional biasing forces that are required for the enhanced sampling methods,
such as umbrella sampling or metadynamics, that are described in Section II.

The manner in which PLUMED is plugged into an MD code is illustrated in
figure 1. As you can see PLUMED is called during initialization and its input file is
read in at that time. It is then called during each run through of the main loop of the
MD code just after the forces that describe the interactions between the atoms are
calculated. Calling PLUMED at these points allows the plugin to do any analysis
that is required and also allows any forces due to bias potentials that are calculated
by PLUMED to be returned from PLUMED to the MD code so that they can be
incorporated when the equations of motion are integrated. PLUMED is not the only
piece of software that interacts with other MD codes in this manner. Two other
notable examples are the COLVARS package [9], which is also reviewed in this
book, and the recently published program SSAGES [10].

When the PLUMED package is used to post process trajectories a program that
is part of PLUMED and that is called driver is employed. When PLUMED
driver is used the trajectory is not generated by integrating the equations of
motion. The trajectory is instead read from disk so the forces calculated within
PLUMED thus play no role in the systems’ dynamics. PLUMED driver is, nev-
ertheless, useful as the PLUMED code contains numerous analysis tools that can
also be used to post process trajectories.

PLUMED is written using C++ and the object-oriented paradigm is heavily used
in the design of the code. The consequence of this is that the code contains a set
of core modules that look after the communication with the MD codes and various
other mission critical features. This code is maintained by a small cadre of core de-
velopers. Additional functionalities can be built on this core and contributed by any
user in the community. In fact, developers who wish to contribute to the project in
this way often only need to contribute one single file that contains class and method
definitions, the code itself and the sections of the manual that describe the new func-
tionality as well as files for a regression test that can be used to ensure that the new
functionality continues to work if changes are made elsewhere. The fact that it is
relatively easy to extend PLUMED ensures that the code, the associated website
and the various user meetings provide a forum that developers can use to share new
techniques and methods with the scientific community. In fact, in PLUMED v2.4, a
modular framework was introduced that allows developers to contribute groups of
functionalities that are logically connected. So far Omar Valsson (VES module, for
variational enhanced sampling), Glen Hocky and Andrew White (EDS module, for
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Fig. 1 Schematic representation of the interface between PLUMED and an MD engine. The green
arrow indicates that the function called should create the PLUMED object and the red arrow indi-
cates that the function called should delete the PLUMED object

experiment-directed simulations) and Haochuan Chen and Haohao Fu (DRR mod-
ule, for extended-system adaptive biasing force), who are all non-core developers,
have used this model to contribute modules to the code base. We expect, however,
that the number of contributed modules will increase in the future.

The size and scope of the PLUMED code ensures that we cannot describe every-
thing that it can do in this single chapter. For those who are interested we would
recommend reading the original article [2], the code’s online manual, the many
tutorials included in the manual, and some of the considerable number of papers
that describe simulations done or analyzed with PLUMED. What we will do in the
following is quickly summarize the theory behind some of the methods that are im-
plemented in PLUMED. We will also provide relevant examples of PLUMED input
files that can be used for these types of calculations. Our focus in these sections is
on describing how free energies are estimated from these types of calculations, how
results from multiple replicas can be combined, and how suitable error bars on these
estimates are determined.
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2 Collective variables

Complex biochemical reactions or conformational changes are often interpreted in
terms of free-energy surfaces that are computed as a function of a small number of
collective variables (CVs). These free energy surfaces, which are often referred to
as potentials of mean force, provide a coarse grained representation of the energy
landscape for the system, which can in turn provide useful insights into the behavior
of these biochemical systems. To see why consider the following examples:

• We know that nucleosides have multiple conformations and that inter-conversion
between these conformers involves rotation around the glycosidic bond. A free-
energy surface for such a system as a function of the torsional angle χ around
this bond is thus useful as it provides us with information on the relative free
energies of the conformations and an indication of the height of the barrier for
inter-conversion (see, e.g., Ref. [11]).

• We know that the secondary and tertiary structures of many proteins determine
their function and that it is important to understand the mechanism by which pro-
teins fold. If we run molecular dynamics simulations we can understand some-
thing about this folding process by extracting the free-energy surface along a
coordinate that counts the number of native contacts that are present (see, e.g.,
[12, 13]).

• We know that cells are constantly exchanging water and ions across their mem-
brane. To extract information on the mechanisms for these processes we can run
molecular dynamics simulations and extract a free-energy surface that describes
how the free energy of the ion changes as the ion moves through an ion channel
(see, e.g., [14]).

• We know that the behavior of biomolecules changes when their protonation state
changes. To extract information on the likely protonation state of a biomolecule
we might, therefore, calculate how the free energy of the molecule changes as
the distance between the hydrogen atoms and the various protonation sites on the
molecule changes (see, e.g., [15]).

• We know that the solute molecules in a solution must all aggregate in one place in
order for a crystal to form. To investigate the ease with which a crystal forms from
a particular solution and the earliest stages of this nucleation process we might,
therefore, calculate the free energy as a function of the number of molecules that
are in the solid phase (see, e.g., [16, 17]).

In all these examples the Hamiltonian depends on numerous degrees of freedom,
but we are only interested in the behavior of a small number of these degrees of
freedom (e.g., a torsional angle or a distance between two atoms). A CV, s, is thus
simply an arbitrary function of the atomic coordinates, q. As we will see in what
follows, in many cases the function s is very simple and thus easy to calculate from
q. In other cases, however, the function is considerably more complicated so for
these cases the scripting language of the PLUMED input file is invaluable.



Analyzing and biasing simulations with PLUMED 5

2.1 Ensemble averages

Section IV discussed a variety of different ways in which MD trajectories can be
analyzed. The simplest way to analyze the values a CV takes during a trajectory is
to compute an ensemble average. We are able to compute such averages from MD
simulations because, if we are running at temperature T on a system containing N
atoms that interact through a Hamiltonian, H(q,p), the probability, P(q,p), that a
microstate in which the atoms have positions q and momenta p will be sampled at a
particular instant in time is given by:

P(q,p) =
exp
(
−H(q,p)

kBT

)
∫

dq′dp′ exp
(
−H(q′,p′)

kBT

) (1)

where kB is Boltzmann’s constant and where the 6N-dimensional integral in the
denominator runs over all the possible values of position and momentum that each
of the atoms in the system might have. Consequently, an observable A(q) will have
an ensemble average that is equal to:

〈A〉=
∫

dqdpA(q)P(q,p) (2)

By the ergodic theorem, however, we know that if we add together the value A(q)
took in each of the frames in our molecular dynamics trajectory and if we divide this
sum by the number of frames in our trajectory we will obtain an estimate for 〈A〉.

2.2 Free-energy landscapes

A slightly more advanced way to analyze CVs is to compute the probability density
along the CV. This function is defined as:

P(s) ∝

∫
dqdpP(q,p)δ (s(q,p)− s) (3)

The free-energy surface, F(s), is then nothing more than the negative logarithm of
this probability density function expressed in units of energy:

F(s) =−kBT ln
[∫

dqdpP(q,p)δ (s(q,p)− s)
]
+C (4)

where C is an arbitrary constant.
Recognizing this connection between the value of the thermodynamic potential

and the probability of having a particular value for a collective variable is funda-
mental in terms of understanding what a free-energy landscape means. As a case in
point consider the free-energy surface shown in figure 2. This figure shows how the
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Fig. 2 Figure showing the free-energy surface as a function of the distance between two atoms
that do not interact. As you can see the free energy decreases as the two atoms move apart but this
is only because the phase space volume that is accessible to two atoms that are exactly a distance
r apart is proportional to r2.

free energy changes as the distance between two particles is increased. One might be
tempted, based on the shape of the curve, to assume that the two particles repel each
other. In actual fact, however, there is no interaction between the particles. The free
energy decreases because all possible distance vectors are equally likely. In three di-
mensions the probability of observing a particular distance, r, is thus proportional to
r2. The free energy for a pair of non-interacting particles as a function of the distance
between them is thus F(r) = −2kBT lnr+C. Hence, when free-energy landscapes
are used to provide information on the strength of the interaction between two par-
ticles, for example in a binding affinity study these two particles would be a small
drug molecule and a protein, the surface obtained is usually corrected by adding
2kBT lnr so that the free-energy surface for a pair of non-interacting particles ap-
pears flat.

Let us now suppose that we have extracted a free-energy surface that looks
something like the one shown in figure 3. This free-energy surface contains two
metastable basins, which we will, for the time being, assume correspond to the re-
actant and product states for a chemical reaction that our simulated system can un-
dergo. If we want to calculate the free-energy change associated with this reaction
we would use the expression below:

Fproducts−Freactants =−kBT log

 ∫products e−
F(s)
kBT ds∫

reactants e−
F(s)
kBT ds

 (5)

Here the integrals in the numerator and the denominator of the quotient on the right-
hand side run over the regions highlighted in figure 3. Notice, furthermore, that the
free-energy difference between the reactant and product states is calculated in this
way because the value of the CV will fluctuate when it is in either state. Calculating
the reaction free energy using the formula above incorporates the effect of these
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Fig. 3 Figure showing a typical one-dimensional free-energy surface that we might extract from an
MD simulation. It is clear from this diagram that there are two metastable basins in this landscape
and that the system must cross a substantial barrier in order to get from one to the other. The two
shaded regions in this figure indicate the two sets of limits that we would integrate over when
evaluating the free-energy difference between these two metastable basins using equation 5. To
be clear, however, the precise choice for these limits will not affect the calculated free energy
difference significantly as long as the two free-energy minima are reasonably deep.

fluctuations whereas simply calculating the difference between the values of the
free energy at the bottom of two minima does not.

A further interesting thing that is worth noting about free-energy surfaces is that,
if one has the free energy, F(s), as a function of some CV, s, and if one wishes to
determine the free energy as a function of some second CV, ζ , as long as ζ is a
one-to-one function of s with an inverse function that is differentiable one can write
an analytic expression for F(ζ ) in terms of F(s). The reason that this is possible is
that if ζ (s) is one-to-one then we know that:

P(ζ )dζ = P(s)ds = P(s)
∣∣∣∣ ds
dζ

∣∣∣∣dζ (6)

Once we recall the connection between free energy and probability we thus arrive
at:

F(ζ ) = F(s)− kBT ln
∣∣∣∣ ds
dζ

∣∣∣∣ (7)

F(ζ ) may look rather different to F(s) but these two free-energy surfaces will still
convey the same information about depths of the basins and the heights of the bar-
riers. In general, however, one should be particularly careful when discussing the
barriers found in free-energy landscapes, as the height of the barrier will depend on
the particular combination of CVs that are used to display the free-energy landscape.
As illustrated in figure 4, if the critical degree of freedom that distinguishes between
two metastable states is in a direction that is orthogonal to the CVs then these two
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states will both contribute their probability density to a single basin in the final free-
energy landscape that is extracted. If you want to extract information on barriers you
should thus probably also extract the average passage times between states as this
better characterizes the behavior of the chemical system. Strictly speaking, a free-
energy landscape alone can only tell you about the relative stabilities of the various
metastable states that can be distinguished by the CVs that were used in its con-
struction. Relating the free-energy barriers to the rates with which the system will
pass from state to state is far from trivial and the result might depend systematically
on the capability of the CVs to correctly describe the transition [18].

Fig. 4 The central panel of this figure shows a two-dimensional free-energy surface with two
metastable states that is a function of two CVs called CV1 and CV2. The panels above and to the
right of this figure show the free-energy surface as a function of CV1 and CV2 respectively. It is
clear from these two figures that while CV2 is able to distinguish the two metastable basins CV1
is not.

2.3 Analyzing simulations with PLUMED

In this section we will discuss how to compute various CVs using PLUMED. It
is important to emphasize at the outset that the PLUMED input files we provide
can be used when running a simulation using some other MD code combined with
PLUMED or when analyzing a simulation trajectory using PLUMED driver. In
the first case the command line input will depend on which precise MD code one is
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using. For instance, simulations done with GROMACS are typically launched using
a command such as:

> gmx mdrun -plumed plumed.dat

where plumed.dat is the name of the PLUMED input file. In the second case,
however, as only PLUMED is being used, the command is nearly always the same
and will be something akin to:

> plumed driver --plumed plumed.dat --igro traj.gro

where traj.gro is a trajectory file in GROMACS format and plumed.dat is
once again a PLUMED input file.

For the final end user a PLUMED input file looks like it is written in a rudi-
mentary and easy-to-use scripting language. Each line in the input file tells the code
to do something, which may be as simple as calculating a position of a center of
mass or as complex as calculating and accumulating a metadynamics bias. As these
commands can be used in a wide range of different contexts and orders the user has
the flexibility to do the full range of analyses described in the previous sections.
Furthermore, if they choose to incorporate some new functionality they can quickly
start to use it in tandem with all of the other methods developed by members of the
PLUMED community.

2.4 Distances, angles and torsions

Chemical reactions are one class of phenomena that we can investigate using MD
simulations. In many chemical reactions two atoms or groups of atoms approach
each other so that a chemical bond can form between them. The ideal CV to use to
describe this phenomenon is thus the distance between the relevant atoms. We can
calculate and print the distance between a pair of atoms using the PLUMED input
file below:

d1: DISTANCE ATOMS=1,2
PRINT ARG=d1 FILE=colvar STRIDE=10

This input instructs PLUMED to calculate the distance between the positions of the
first and second atoms in the MD code’s input file and to print this quantity to a file
called colvar every 10 steps. We can take the output from this calculation and plot
a graph showing the value of the distance as a function of time. The resulting curve
would look something like the red curve in figure 5.

We can also use PLUMED to calculate the average value of the distance between
two atoms. The following input calculates the distance every 10 steps and then cal-
culates a sample mean over the whole trajectory.

d1: DISTANCE ATOMS=1,2
a1: AVERAGE ARG=d1
PRINT ARG=a1 FILE=colvar STRIDE=100
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Fig. 5 Figure showing some things PLUMED can do with the CVs it calculates. As discussed in
the main text to calculate the curves shown in this figure we calculated the distance between atoms
1 and 2 on every 10th MD step. The red points are thus the values of these distances. The blue
points indicate the mean value of this distance calculated for a range of differently sized samples.
Lastly, the green points are running averages from the first 100 frames, the second 100 frames and
so on.

The output generated by this calculation is plotted in blue in figure 5. There are
multiple points in the output file as the above input instructs PLUMED to calculate
an ensemble average from the first 100 trajectory frames, the first 200 trajectory
frames, the first 300 trajectory frames and so on. It is worth noting that one can
also use PLUMED to calculate the running averages from the first 100 frames, the
second 100 frames and so on - points that are shown using green dots in figure 5 -
by using an input file like the one below:

d1: DISTANCE ATOMS=1,2
a1: AVERAGE ARG=d1 CLEAR=100
PRINT ARG=a1 FILE=colvar STRIDE=100

To calculate and print an angle between two bonds using PLUMED one might
use an input file like the one below:

ang: ANGLE ATOMS=1,2,3
PRINT ARG=ang FILE=colvar STRIDE=5

As shown in figure 6(a) this input calculates the angle between the vector connecting
atom 2 to atom 1 and the vector connecting atom 2 to atom 3. The assumption here
is that there are chemical bonds connecting atom 2 to atoms 1 and 3. This input
is thus measuring the angle between these bonds. As illustrated in figure 6(b) we
can, however, also use PLUMED to calculate the angle between any pair of distance
vectors. For example the input file below would calculate the angle between the
vector that connects atom 2 to atom 1 and the vector that connects atom 3 to atom
4.

ang2: ANGLE ATOMS=1,2,3,4
PRINT ARG=ang2 FILE=colvar STRIDE=2
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PLUMED can also be used to calculate and print the torsional angles illustrated
in figure 6(c) that involve sets of four atoms as shown below:

tor: TORSION ATOMS=1,2,3,4
PRINT ARG=tor FILE=colvar STRIDE=1

Fig. 6 Schematic representations of the angles and torsions that PLUMED can compute. a) Angle
defined using three atoms; b) Angle defined using four atoms; c) Torsion defined using four atoms;
d) Torsion defined using six atoms.

Much like the command to calculate the angle where three atoms are specified
the assumption made when writing this input file is that there are chemical bonds
between atoms 1 and 2, atoms 2 and 3 and atoms 3 and 4. In general, however,
a torsional angle measures the angle between two planes, which have at least one
vector in common as illustrated in figure 6(d). As shown below, there is thus an
alternate, more general, way through which we can define a torsional angle:

tor2: TORSION VECTOR1=1,2 AXIS=3,4 VECTOR2=5,6
PRINT ARG=tor2 FILE=colvar STRIDE=20

This input instructs PLUMED to calculate the angle between the plane containing
the vector connecting atoms 1 and 2 and the vector connecting atoms 3 and 4 and
the plane containing this second vector and the vector connecting atoms 5 and 6.
Notice that there is one additional syntax for selecting the atoms that should be used
to calculate a torsion that is discussed in Note 2.

2.5 Positions and RMSD

One of the processes that we stated we might want to study was the diffusion of
ions across cell membranes. If the membrane is parallel to the xy plane, one might
be tempted to conclude that that correct CV to use in this case is the z component
of the position of the ion. Assuming that the ion is atom number 1001, this can be
done with the following input file

pos: POSITION ATOM=1001
PRINT ARG=pos.z FILE=colvar STRIDE=10
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a) b)

Fig. 7 Figure illustrating the vertical position of an ion with respect to a membrane. The ion is
shown in green, whereas the atoms of the membrane are depicted as empty circles. The center of
the membrane is represented using a star. Panels a) and b) report two different structures. Notice
that the vertical coordinate of the ion is the same, but that its position relative to the membrane is
different. The correct way to describe the position of the ion with respect to the membrane is thus
to use the vertical component of the distance between the ion and the center of the membrane.

The variable POSITION that is used here has multiple components. As we want
the z component specifically, we thus use pos.z in the PRINT command. Using
this CV is a bad idea as the potential energy functions that we use within MD simu-
lations are almost always translationally invariant. As illustrated in figure 7 for our
membrane example a particular value for the z component of our ion’s coordinate
might be inside the membrane at one particular time. During the simulation, how-
ever, the membrane can move and as such this same value for the ion’s z coordinate
might be outside the membrane at some later time. It is thus usually much better
to use the z component of the distance between the coordinates of the ion and the
center of the membrane and to thus track the z position of the ion relative to the z
position of the membrane. An example input that can be used to calculate and print
this quantity is given below:

c1: COM ATOMS=1-1000
dist: DISTANCE ATOMS=c1,1001 COMPONENTS
PRINT ARG=dist.z FILE=colvar STRIDE=10

Here we assumed that the first 1000 atoms together form the membrane.
It is worth noting here how the COM command is used to keep track of the posi-

tion of the center of mass of the large number of atoms that make up the membrane
and how the position of this center of mass is referred to in the DISTANCE com-
mand using the label, c1, of the COM command. It is also important to understand
how PLUMED deals with periodic boundary conditions (see Section 2.7) and to
remember that, for the position of the center to be computed correctly, the vertical
span of the membrane must be less than half of the box height. Finally, one should
be aware that using a large number of atoms when calculating a CV may well slow
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down the calculation. It may thus be worth using only a subset of the atoms in the
membrane when calculating the position of the center by, for instance, replacing the
first line of the input file above with:

c1: COM ATOMS=1-1000:10

The extra :10 here tells PLUMED to only use every 10th atom in the range spec-
ified. This is a crude solution, however, and it is probably always better in practice
to select specific atoms using your understanding of the chemistry of the system.

It can be useful to consider the atomic positions directly when considering prob-
lems such as protein folding. Let’s suppose that you know the precise arrangement
that the atoms have in the native structure and that you want to monitor the progres-
sion of folding during a trajectory. An obvious CV to measure would be the degree
of similarity between the instantaneous coordinates of the protein and this special,
folded configuration. A method that is commonly used to calculate this degree of
similarity involves computing the root-mean-square deviation (RMSD) between the
instantaneous coordinates and the coordinates in the reference structure using:

s =

√
1
N

N

∑
i=1

(
qi−q(ref)

i

)2
(8)

In this expression N is the number of atoms, qi is used to denote the instantaneous
coordinates of atom i and q(ref)

i is used to denote the coordinates of atom i in the ref-
erence structure. It is important to note that if you were to use the formula above you
would have the same problem as if you used the position of an atom as a CV. Conse-
quently, the RMSD formula above is usually computed from a reference frame that
is found by performing translation and rotation operations on the original reference
structure that minimize the value of the RMSD [19]. An input file that can be used
to calculate and print this quantity using PLUMED is shown below:

rmsd: RMSD REFERENCE=ref.pdb TYPE=OPTIMAL
PRINT ARG=rmsd FILE=colvar STRIDE=5

This input computes the root-mean-square deviation between the instantaneous po-
sitions of the atoms that are listed in the input ref.pdb file and the positions of those
atoms in the pdb file. In this case any translation of the center of mass and rotation
of the reference frame is removed before calculating the displacements that enter
equation 8. As discussed in Note 3, however, PLUMED provides a range of options
that allow you to perform these RMSD calculations in various different ways.

As we will see, PLUMED is often used to apply a simulation bias that is a func-
tion of the CVs it computes. The forces due to this bias are then propagated onto
the atoms that were used to calculate the CV. When these CVs are calculated using
the RMSD procedure outlined above the forces required to restore invariance with
respect to translations and/or rotations must be applied to all the atoms employed
in the alignment procedure, which is computationally expensive. In fact even if you
don’t have any forces to propagate just performing the alignment operation with a
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large number of atoms is expensive. One would, therefore, typically never use the
positions of all the atoms when performing RMSD calculations.

An alternative to RMSD is the so-called DRMSD:

s =

√
1
M ∑

i j

(
di j−d(ref)

i j

)2
(9)

In this expression the sum runs over M pairs of atoms and di j is used to denote the
instantaneous distance between these pairs while d(ref)

i j is used to denote the distance
between the corresponding pair of atoms in the reference structure. An input file that
calculates and prints this quantity using PLUMED is given below. Notice how the
two cutoff keywords can be used to specify the range of values the distances should
take in the reference structure in order to be considered as part of the sum in equation
9.

# the dots here indicate that the command
# will be continued on the following line.
drmsd: DRMSD ...

REFERENCE=ref.pdb LOWER_CUTOFF=0.1 UPPER_CUTOFF=0.8
...
PRINT ARG=drmsd FILE=colvar STRIDE=5

2.6 Gyration radius and gyration tensor

The CVs that have been discussed thus far are all based on a very detailed view
of the positions of particular atoms. CVs that give a more coarse-grained view of
the instantaneous shape of a molecule can also be used, however. One particularly
popular CV of this type is the so-called radius of gyration, which can be calculated
using:

s =

√
1

∑i wi
∑

i
wi
(
q(i)−q(c)

)2 (10)

where q(c) = ∑i wiq(i)
∑i wi

and q(i) is the position of the ith atom. The wi are a set of
weights that are ascribed to each of the atoms in the system. These weights might
be, for instance, the masses of the atoms. To calculate and print this quantity using
PLUMED you would use an input like the one below:

gyr: GYRATION TYPE=RADIUS ATOMS=10-20
PRINT ARG=gyr STRIDE=1 FILE=colvar

This calculates the radius of gyration using the positions of the 10th to the 20th atom
in the MD code’s input file and sets the weights of all these atoms equal to 1.

When the gyration radius is calculated using equation 10 the quantity output pro-
vides a measure of the average radius of the molecule. No information on the shape
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Fig. 8 Figure illustrating the components of the radius of gyration of a polymer. The center of
the polymer is represented as a star. A circle with a radius corresponding to the radius of gyration
of the polymer and centered on the center of the polymer is shown using a dashed line. a) For
a globular polymer, the circle correctly represents the shape of the polymer. b) For an elongated
polymer, however, the circle does not represent the shape of the polymer correctly. An ellipsoid
with axes that have lengths corresponding to the square roots of the eigenvalues of the gyration
tensor is more representative and is shown in yellow.

of the molecule is provided, however, and so this average radius may be misleading.
For example, and as shown in figure 8, the radius of gyration for an extended poly-
mer, which has a shape that is very anisotropic, would not be representative of the
extent of the molecule in either its extended or compact directions. For this reason,
some researchers have chosen to use the eigenvalues of the gyration tensor instead
[20]. The elements of the 3×3 gyration tensor are computed using:

s jk =
1

∑i wi
∑

i
wi

(
q(i)j −q(c)j

)(
q(i)k −q(c)k

)
(11)

where q(i)j is used to denote the jth component of the position of atom i and q(c)j is
used to denote the jth component of q(c). Figure 8 shows how the square roots of the
eigenvalues of this matrix give a sense of the shape of the molecule. By changing
the word after the TYPE keyword in the PLUMED input above one can access
these eigenvalues directly or various functions of these eigenvalues that can be used
to give one a sense of the sphericity of the molecule or the cylindricity [20].

2.7 Dealing with periodic boundary conditions

Figure 9 illustrates a technical problem that can appear when PLUMED is used to
calculate some CVs. When the underlying MD code applies the periodic boundary
conditions molecules can end up split across either side of the periodic box. Con-
sequentially, atoms can appear to be much farther apart than they are in actuality
and, as shown in the figure, the position of the center of mass of the molecule can



16 Giovanni Bussi and Gareth A. Tribello

1

2

3 4 5

6

4 5

6

1

2

3 4 5

6

4 5

6

d d

a) b)

Fig. 9 An illustration showing how molecules can be split by the periodic boundary conditions and
how this can cause a problem when computing collective variables. Panels a) and b) represent the
same set of six atoms. In both of these figures these atoms sit in the periodic box indicated using
the rectangle so periodic images of atoms 4, 5, and 6 are included. The atoms used to calculate
the collective variables are highlighted. In panel a), a broken molecule is used so the position of
center of mass (indicated using a star) and the end-to-end distance (indicated using an arrow) are
computed incorrectly. In panel b), however, the molecule has been correctly reconstructed across
the periodic boundaries using WHOLEMOLECULES and the center of mass has thus been computed
correctly. Notice that the correct value for the end-to-end distance is only obtained from panel (b)
if the periodic boundary conditions are ignored when computing the distance (keyword NOPBC). If
the PBC are taken into account the incorrect image of atom 6 will be used and the incorrect result
illustrated in panel (a) will be obtained once more.

be calculated wrongly. In this case, however, and in some of the others discussed
thus far PLUMED resolves this problem automatically by adjusting the positions so
that the set of molecules that are used to calculate the position of a center of mass
or a CV form one single unbroken molecule. This is still a problem that any user
must be aware of, however, as there are some cases that PLUMED cannot fix auto-
matically. For example suppose that you wanted to calculate the end to end distance
for the molecule illustrated in 9. In order to do this correctly one must reconstruct
the whole molecule before calculating the distance between the two terminal atoms.
To resolve this problem PLUMED provides a command, WHOLEMOLECULES,
that allows one to adjust the way the positions are stored and to thus specify the
molecules that must be reconstructed. A sample input that calculates this end to end
distance and that uses a WHOLEMOLECULES command is provided below

WHOLEMOLECULES ENTITY0=1-6
d1: DISTANCE ATOMS=1,6 NOPBC

The WHOLEMOLECULES command here ensures that the bond between each pair
of adjacent atoms specified to the ENTITY keyword is not broken by the periodic
boundaries. The distance is thus computed from the positions of the atoms shown
in the right panel of figure 9. There is thus no need to apply periodic boundary
conditions. In fact if, when the molecule is extended, it has a length that is longer
than half the box length it is wrong to apply periodic boundary conditions as the
“end-to-end distance” computed this way would no longer be representative of the
distance along the chain.
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A more complicated example which has been taken from Ref. [21] and which
also requires the WHOLEMOLECULES command to be used is shown in figure 10.
In this case the reconstruction has been done using the following input file

MOLINFO STRUCTURE=ref.pdb

rna: GROUP ATOMS=1-258
mg: GROUP ATOMS=6580
wat: GROUP ATOMS=259-6579

# Make the RNA duplex whole.
WHOLEMOLECULES ENTITY0=rna

# Align the RNA duplex to a reference structure
FIT_TO_TEMPLATE REFERENCE=ref-rna.pdb TYPE=OPTIMAL
# Notice that before using FIT_TO_TEMPLATE
# we used WHOLEMOLECULES to make the RNA whole
# This is necessary otherwise you would be aligning
# to a broken molecule!

# compute the center of the RNA molecule
center: CENTER ATOMS=rna

# Wrap atoms correctly around the center of the RNA
WRAPAROUND ATOMS=mg AROUND=center
WRAPAROUND ATOMS=wat AROUND=center GROUPBY=3
# Dump the resulting trajectory
DUMPATOMS ATOMS=rna,wat,mg FILE=rna-wrap.gro

Notice here how the action FIT TO TEMPLATE has been used to align the RNA
molecules to a template structure that is at the center of the box and how the action
WRAPAROUND has been used to reposition the water molecules around the aligned
RNA molecule. In addition, notice that by aligning the molecule to a template we
have made the positions of these atoms roto-translationally invariant. We can thus
use the positions of the aligned atoms as CVs using the POSITION command that
was introduced earlier. Furthermore, when we do so the FIT TO TEMPLATE com-
mand will ensure that the process of aligning the molecule is considered correctly
when propagating any forces to the underlying positions.

As it is probably clear at this stage, correctly reconstructing the atoms across the
periodic boundary conditions is crucial as when this is not done some variables will
be computed incorrectly. In order to simplify the preparation of PLUMED input
and to decrease the number of errors, we have tried to automatize the reconstruction
in all the cases where this is easy to do. You should thus check the manual of the
PLUMED version that you are using to know when the reconstruction of molecules
that have been broken by the periodic boundary conditions is dealt with automati-
cally.
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a) b)

Fig. 10 Figures showing how PLUMED can be used to reconstruct a solvated RNA molecule that
has been split by the periodic boundary conditions. The RNA duplex is represented using licorice
and the water molecules are represented using lines. In panel (a) the molecules that cross the
periodic boundaries are broken. In panel (b), however, the RNA molecule has been reconstructed
and centered, and the periodic images of the water molecules that are closest to the center of the
RNA molecule have been selected. Notice that selecting the water molecules in this way ensures
that the water molecules are made whole.

2.8 Going further with collective variables

Hopefully the example input files in the previous sections have given you a sense
of how PLUMED input files work. In essence, all the PLUMED commands for
calculating CVs that we have introduced thus far calculate a scalar valued quantity.
Any scalar valued quantity that we calculate can then be referred to later in the
input file by using the label of the command that calculates it. So for instance in the
following PLUMED input file:

dist: DISTANCE ATOMS=1,2
PRINT ARG=dist FILE=colvar STRIDE=1

the PRINT command instructs PLUMED to print the quantity called dist which is
calculated by the first DISTANCE command to a file called colvar during every MD
step. The fact that we can pass scalar valued quantities in this way is enormously
useful as it means we can script new CVs directly from the input file. For example
suppose that we want to calculate the number of native contacts in a protein. This
CV is often computed using the continuous switching function shown below or by
using some other function that displays a similar behavior [12]:

s = ∑
i j∈NC

1
1+(ri j/r0)6 (12)
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Here the sum runs over the list of pairs of atoms that are in contact when the protein
is folded and r0 is a parameter. If we had a total of four native contacts in the protein
and if r0 were set equal to 6 Å we could compute and print this quantity using the
following PLUMED input file.

d1: DISTANCE ATOMS=1,2
d2: DISTANCE ATOMS=5,6
d3: DISTANCE ATOMS=9,10
d4: DISTANCE ATOMS=15,16
# The braces allow us to use spaces
# within the argument of the FUNC keyword
contacts: CUSTOM ...

ARG=d1,d2,d3,d4 VAR=a,b,c,d
FUNC={

1/(1+(a/0.6))ˆ6
+1/(1+(b/0.6))ˆ6
+1/(1+(c/0.6))ˆ6
+1/(1+(d/0.6))ˆ6

}
PERIODIC=NO

...
PRINT ARG=contacts FILE=colvar STRIDE=10

Notice here how we have used our familiar friend the DISTANCE command to
calculate each of the distances required and have then used the command CUSTOM
to calculate the non-linear combination of quantities that the CV requires. The fact
is that most of the more complicated CVs that have been used to analyze molecular
dynamics trajectories are simply linear or non-linear combinations of the quantities
that have been introduced thus far. One can thus compute many complicated CVs
by just using the commands that were introduced in the previous sections together
the with CUSTOM command. It is worth understanding how to use this approach, but
we would, in practice, not recommend you write your PLUMED input files in this
way. Instead, we would recommend that you use the numerous shortcuts PLUMED
provides for accessing these non-linear combinations. For example a shorter input
that does the same calculation as the input file above is as follows:

dists: DISTANCES ...
ATOMS1=1,2 ATOMS2=5,6 ATOMS3=9,10 ATOMS4=15,16
LESS_THAN={RATIONAL R_0=0.6}

...
PRINT ARG=dists.lessthan FILE=colvar STRIDE=10

This input takes advantage of the fact that many of the more complicated CVs that
we wish to compute have a functional form that can be thought of as follows:

s =
N

∑
i=1

f ({X}i) (13)
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In other words, to calculate the CV one computes the same function, f , for N
different sets, {X}i, of atomic positions. Some more complicated examples of
CVs of this form are the so-called secondary structure variables ALPHARMSD,
ANTIBETARMSD and PARABETARMSD [22]. For ALPHARMSD one takes each set
of M atoms in the protein that might together be able to form an alpha helix. For
each of these sets of variables one then computes the DRMSD distance between
the instantaneous positions of the atoms and the positions of the atoms in an ideal
alpha helix. Each of these DRMSD distances is then transformed by a continuous
switching function and these transformed values are then added together. The final
value of the CV, that is calculated and printed using the input below, thus measures
how many segments in the protein resemble an alpha helix.

MOLINFO STRUCTURE=helix.pdb
a: ALPHARMSD ...

RESIDUES=all TYPE=DRMSD
LESS_THAN={RATIONAL R_0=0.08 NN=8 MM=12}

...
PRINT ARG=a.lessthan FILE=colvar STRIDE=10

The ANTIBETARMSD and PARABETARMSD commands do something very similar
but the reference configuration in these cases are obviously an ideal anti-parallel
beta sheet and an ideal parallel beta sheet respectively. For these three commands
one could, in theory, calculate this quantity using multiple DRMSD commands and
the CUSTOM command that was introduced earlier. It is obviously much easier
though to use the input above, which determines the sets of atoms for which you
have to determine DRMSD distances from the template pdb structure directly. Hav-
ing said that, however, it can be useful to try to write input files that use only the
simple commands that were introduced in the previous sections in order to better
understand what precisely is being calculated by these shortcuts.

This chapter would be overly long if we listed all the CVs that are available in
PLUMED. If you are interested we would recommend reading the literature. To
get you started we have provided the following short, but far from exhaustive list,
of references for a range of CVs, which can be calculated by PLUMED. This list
includes the total energy of the system [23, 24], some of the components of the
energy [25, 26], the dimer interaction energy [27], discrepancy measures [28], prin-
cipal components [29, 30], path collective variables [31, 32], property maps [33],
puckering variables [34, 35], Steinhard order parameters [17] and a number of ex-
perimental observables [36]. In addition, PLUMED contains implementations of the
principle component analysis [37], multidimensional scaling [38] and sketch-map
[39] algorithms, which are all tools that can be used to analyze simulation trajecto-
ries. PLUMED input files can be prepared using a graphical user interface [40] and
this graphical user interface also allows you to compute PLUMED CVs from within
the VMD program [41].
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3 Biasing collective variables

Section 2 has hopefully given you a sense of some of the quantities we might be
interested in monitoring during the course of a simulation. If this were all that
PLUMED could do, however, there would be no reason for it to be usable on the fly.
After all, all of the quantities we have discussed can be calculated by post-processing
the trajectory files that are output during the simulation. The reason that PLUMED
runs on the fly is that it can also modify the Hamiltonian, H(q,p). These modifica-
tions introduce additional forces that must be incorporated when the underlying MD
code integrates the equation of motion. Calculation of the PLUMED potential and
the associated forces can, however, be separated from the calculation of the forces
due to the underlying potential as the bias potential, V (q, t), that is calculated by
PLUMED and that is a function of the atomic positions and possibly also time, t,
is simply added to the Hamiltonian, H(q,p), that is calculated by the MD code. In
other words, the modified Hamiltonian, H ′(q,p) is:

H ′(q,p) = H(q,p)+V (q, t) (14)

3.1 Reweighting

To understand how free energies can be extracted from biased MD simulations we
must return once again to the probability distribution that is sampled during a molec-
ular dynamics trajectory. This distribution was first introduced in section 2.1 when
we introduced the following equation:

P(q,p) ∝ e−
H(q,p)

kBT (15)

and therefore explained how the quantity on the right-hand side of this equation
is proportional to the probability of sampling any given vector of atomic posi-
tions, q, and momenta, p. Now suppose that we are not integrating the Hamilto-
nian H(q,p) given above and that we are instead integrating a modified Hamilto-
nian H(q,p)+V (q). The probability distribution, P′(q,p), that we will sample from
when we integrate this biased Hamiltonian will be proportional to:

P′(q,p) ∝ e−
H(q,p)

kBT e−
V (q)
kBT (16)

for the same reasons that the probability of sampling a particular configuration when
the system is unbiased is given by equation 15. Notice, furthermore, that the right-
hand side of equation 15 appears in the equation above and that we can thus rewrite
this expression as:

P(q,p) ∝ P′(q,p)e+
V (q)
kBT (17)
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This equation relates the probabilities that we extract from biased simulations to the
corresponding unbiased probabilities and, as we will see in the next section, it is
thus the central equation for the analysis of biased simulations. Strictly speaking,
this relationship is only valid if the bias potential does not change with time. As
discussed below, different formalisms can be used when the bias potentials are time
dependent.

3.2 Extracting the free energy

We now have all the pieces we require and can thus finally discuss the topic that
was first introduced in section 2; namely, how we analyze biased and unbiased MD
simulations so as to extract the free energy as a function of a small number of col-
lective variables. The first step in this process is to discretise the CV space and to
introduce a set of probabilities, p j, each of which tells us the probability that the
CV value falls in a particular range or bin. These bins are set up so that all possible
CV values fall within exactly one of the bins. Consequently, if we discretize the CV
space, s(qi), into M bins with centers at s j the probability that t1 of the frames from
our MD trajectory fall within the first of these bins, that t2 of frames fall within the
second bin and so on is given by the following multinomial distribution:

P(t1, t2, . . . , tM) ∝

M

∏
j=1

p
t j
j (18)

where p j is the probability that any given trajectory frame will fall into the jth
bin. It is easy to extract the set of t j values that appear in this expression from
our trajectory. All we need to do is construct a histogram that tells us the number
of times the trajectory visited each bin (see Note 4). Furthermore, once we have
this information on the values of t j we can perform a constrained optimization on
equation 18 and thus determine the most likely values for the probabilities, the p js,
given the particular set of t j values that we observed during our trajectory. It is easier
if we start this process of optimizing equation 18 by taking the logarithm of both
sides of the equation. Doing so has no effect on the position of the minimum as
the logarithm is a monotonically increasing function. Having taken the logarithm
we then recall that the set of p j values are probabilities and that as such they must
satisfy ∑

M
j=1 p j = 1. We must therefore perform a constrained optimization using

the method of Lagrange multipliers. The final function we need to optimize is thus:

L =
M

∑
j=1

t j ln p j +λ

(
M

∑
j=1

p j−1

)
(19)

where λ is a Lagrange multiplier. When this expression is maximized we obtain
(see Note 5)
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pk =
tk
T

(20)

where T = ∑ j t j is the total number of frames in the trajectory. In other words,
the most likely estimate for the probability that the CV will take a value within a
particular range is just the fraction of time that the trajectory spent with CV values
in that particular range. By recalling the relationship between probability and free
energy we can thus express the free energy for having the CV value in the kth range
as:

Fk =−kBT ln tk +C (21)

Let us now suppose that we had taken the data from a biased trajectory rather
than an unbiased trajectory and discuss how we would extract the histogram in this
case. In other words, suppose that instead of integrating the Hamiltonian, H(p,q),
directly we had integrated the biased Hamiltonian, H(p,q) +V (q). As discussed
in the previous section we know that the probability distribution that we sample
configurations from when we do this biased simulation, P′(q,p), is related to the
probability distribution, P(q,p), that we would have sampled configurations from
had we run our simulation without the bias by equation 17. We therefore might
expect that we can extract a free-energy landscape for the unbiased simulation using
the data from our biased simulations and a procedure much like that outlined above.
The trick for doing this is to recognize that we can use equation 17 to write the
multinomial distribution that we sample from when we run a biased simulations
in terms of the elements of the probability distribution, p j, that would have been
sampled if we had run our simulation without any bias as shown below:

P′(t1, t2, . . . , tM) ∝

M

∏
j=1

(w j p j)
t j , (22)

where w j = e−
V (qi)
kBT and where V (qi) is the bias potential calculated for the ith

frame. If we take the logarithm of this expression and impose the constraint that
∑

M
j=1(w j p j) = 1 we thus find that the function to optimize in this case is:

L =
M

∑
j=1

t j lnw j p j +λ

(
N

∑
j=1

w j p j−1

)
(23)

When this expression is maximized we obtain (see Note 6):

pk ∝ tke+
V (qi)
kBT (24)

By taking the logarithm of the above and by multiplying by −kBT we can thus
extract the unbiased free-energy surface from a biased simulation.
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3.3 Biasing simulations with PLUMED

The need for numerous methods based on integrating modified Hamiltonians has
been discussed at length in section II. We will thus limit the discussion of these
methods here to providing a few sample PLUMED input files that instruct PLUMED
to calculate various bias potentials. The first of these examples involves the follow-
ing input, which instructs PLUMED to use a harmonic restraint on the distance
between atoms 1 and 2 as a bias potential. The instantaneous values for the distance
and the bias potential are then output to a file called colvar.

d1: DISTANCE ATOMS=1,2
rr: RESTRAINT ARG=d1 AT=0.2 KAPPA=10
PRINT ARG=d1,rr.bias FILE=colvar

This input encourages the system to sample configurations where the distance be-
tween atoms 1 and 2 is close to 0.2 nm. Many such inputs are typically used when
performing umbrella sampling calculations with multiple restraints [42, 43].

Bias potentials do not have to be independent of time. There are, in fact, a whole
class of steered MD methods in which a time dependent bias potential is used to
force the system to change its conformation over the course of a simulation. A sam-
ple PLUMED input for such a calculation is given below.

MOLINFO MOLINFO STRUCTURE=helix.pdb
phi3: TORSION ATOMS=@phi-3
mr: MOVINGRESTRAINT ...

ARG=phi3 STEP0=0 STEP1=10000 STEP2=20000
KAPPA=100 AT0=-pi/3 AT1=pi/4 AT2=-pi/3

...
PRINT ARG=phi3,mr.* FILE=colvar

The input above is for a 20000 step steered MD simulation [44] in which the φ angle
in the third residue of protein is forced to change its value from −π

3 radians to π

4
radians before being forced to change the value of this torsional angle back to −π

3
radians once more. This input instructs PLUMED to output the instantaneous value
of the torsional angle, the bias and the work the bias has done on the system. Obvi-
ously, the user can make the path the system is forced to take through configuration
space more complicated by using linear combinations of CVs and by changing the
number of STEP and AT commands.

The final sample input below gives an example of how PLUMED can be used to
perform the metadynamics simulations [45] that were discussed at length in Chapter
4.

phi: TORSION ATOMS=5,7,9,15
psi: TORSION ATOMS=7,9,15,17
metad: METAD ...

ARG=phi,psi PACE=500 HEIGHT=1.2 SIGMA=0.35,0.35
...
PRINT STRIDE=10 ARG=phi,psi,metad.bias FILE=COLVAR
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The input here is for a classic test case for these methods: calculating the free-energy
surface for alanine dipeptide as a function of the φ and ψ backbone dihedral angles.

What you have hopefully noticed from the above input files is that PLUMED
separates the calculation of the CVs from the calculation of the bias potential. Con-
sequently, when using PLUMED we would normally express the bias as:

V (q, t) =V (s1(q),s2(q), . . . ,sn(q), t) (25)

This introduces a set of biased collective variables s(q) = {s1(q),s2(q), . . . ,sn(q)}
that allow us to represent the dynamics that all the atoms undergo in some low-
dimensional space. If we can calculate the partial derivatives of these collective
variables with respect to the atomic positions we can then use the chain rule to
calculate the forces on the atoms that result from the bias potential using:

fm =− ∂V
∂qm

=−
n

∑
i=1

∂V
∂ si

∂ si

∂qm
(26)

Here the sum runs over the n collective variables that V (s, t) is a function of. fm,
meanwhile, is the force acting on one of the three components of the position of a
particular atom, and ∂ si

∂xm
is the derivative of the ith collective variable with respect

to this particular component of the position of this same atom.
The key point to recognize is that the bias, which is some complicated function

of the atomic positions, is expressed as a function of some set of simpler functions
of the atomic positions. Consequently, as we saw in the discussion of CVs, we can
thus build very complicated bias potentials by combining simpler pieces together in
the PLUMED input file. Notice also that, as discussed in Note 7, we can make this
business of computing bias potentials and CVs compatible with multiple-time-step
algorithms for integrating the equations of motion.

As was the case for the CVs PLUMED contains implementations of other free-
energy methods that we do not have the space to discuss here. We will thus finish
this section once more with a list of methods that are implemented in PLUMED
together with relevant papers that describe them. This list of methods includes: many
variants on metadynamics [46, 47, 48, 49, 50, 51, 52, 53, 11, 54, 55] including
techniques that allow boundary conditions to be treated correctly in metadynamics
simulations [56] and methods for extracting kinetic information from metadynamics
simulations [57]. Then, in addition to metadynamics, we also have implementations
of temperature-accelerated MD [58, 59], adaptive biasing force [60, 61, 62], and
variationally enhanced sampling [63, 64]. Lastly, several bias potentials are included
that allow one to force the ensemble averages that are extracted from the simulations
to agree with data extracted from experiments. The techniques for this that have been
implemented include experiment directed simulations [65, 66], maximum entropy
restraints [67], target metadynamics [68, 69, 70], and metainference [71].
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3.4 Free Energies

To calculate the free energy as a function of the distance between two atoms using
PLUMED and the technique described in section 3.2 one would use an input like
the one shown below:

d1: DISTANCE ATOMS=1,2
h: HISTOGRAM ...

ARG=d1 GRID_MIN=0 GRID_MAX=1.0
GRID_BIN=200 KERNEL=DISCRETE STRIDE=10

...
f: CONVERT_TO_FES GRID=h TEMP=300
DUMPGRID GRID=f FILE=fes.dat

The input above creates a histogram with 200 bins that cover the range of distance
values between 0 and 1 nm. This histogram is constructed using the distance cal-
culated for every 10th trajectory frame. The free energy is then calculated from the
accumulated histogram and output once the calculation has completed.

We can also use PLUMED and the methods described in section 3.2 to calculate
the free-energy landscape from a biased simulation. Below is a sample input that
performs this type of calculation:

phi: TORSION ATOMS=1,2,3,4
psi: TORSION ATOMS=5,6,7,8
EXTERNAL ARG=phi,psi FILE=bias_potential.dat

as: REWEIGHT_BIAS TEMP=300

hh: HISTOGRAM ...
LOGWEIGHTS=as ARG=d STRIDE=10
GRID_MIN=-pi,pi GRID_MAX=pi GRID_BIN=400
KERNEL=DISCRETE

... HISTOGRAM

ff: CONVERT_TO_FES GRID=hh TEMP=300
DUMPGRID GRID=ff FILE=fes.dat

This is an input file for an enhanced sampling calculation that uses a bias that has
been read from a file called bias potential.dat. The bias potential that is
read from this file is designed to act on the two torsional angles and to thus force
them to sample configuration space more exhaustively. The histogram is constructed
using data from every 10th trajectory frame. The free energy is then calculated from
the accumulated histogram and output once the calculation has completed. This is all
very similar to what was done in the unbiased case. The major difference here, how-
ever, is that we have used the REWEIGHT BIAS command and the LOGWEIGHTS
keyword to ensure that the effect of the bias is discounted when the histogram is
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constructed. The free-energy surface output is thus the free-energy surface for the
unbiased Hamiltonian.

It is important to notice that weighting each of the simulated snapshots with a

factor of e+
V (q)
kBT is correct when V only depends on the coordinates of the systems. If

the bias potential, V , is time-dependent, more advanced procedures, that will not be
discussed at length in this chapter, should be employed. Two particularly important
enhanced sampling techniques that employ time dependent bias potential, and for
which we provided sample inputs above, are:

• Steered MD: To extract free energies from such simulations one has to run mul-
tiple steered MD calculations and then analyze the ensemble of trajectories ob-
tained using the Jarzynki equality [72].

• Metadynamics: Several procedures have been proposed that allow one to com-
pute appropriate weighting factors for these types of simulations [73, 51, 74].

4 Calculating error bars

The methods that we have introduced thus far for calculating ensemble averages and
for calculating histograms are all based on the fact that we can calculate an approxi-
mate value for the true ensemble average by taking a large number of samples from
the underlying distribution. In other words, in all these methods we are calculating
a sample mean and assuming that it provides a reasonable estimate for the true pop-
ulation mean. What has thus far been missing from this discussion, however, is how
we get an estimate for the error bar on the sample mean. Any sample mean, after
all, is itself a random variable and thus has an underlying distribution, which we
should attempt to characterize. The difficulty in doing so when our data is extracted
from an MD trajectory is, however, that there are strong and measurable (see Note
8) correlations between the configurations sampled in the frames of the trajectory
that are adjacent. As we will see in the remainder of this section, however, we can
take these correlations into account when we calculate the variance and can thus
calculate appropriate error bars.

Figure 11 shows why these correlations represent such a problem. To construct
the histogram shown in the panel on the left we generated 50000 sets of n = 20
normal random variables. We then calculated a sample average for each of these
sets, µi, and a sample mean, 〈X〉, and sample variance, σ2, for all 1000000 points
in the data set. This sample variance was calculated using:

σ
2 =

1
N−1

N

∑
i=1

(Xi−〈X〉)2 (27)

The reason for doing this is that the central limit theorem tells us that the distribution
of µi values should be a Gaussian centered on the sample mean with a variance of
σ2

n . As you can see from the left panel this is a good model for the distribution of
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Fig. 11 Histograms that are obtained by sampling independent and identically distributed random
variables (left) and by sampling CV values from a trajectory (right). Each of the quantities that
were used to calculate the histograms was constructed by taking an average of n = 20 random
variables. The central limit theorem would thus predict the distribution of these averages to be a
Gaussian with a variance of σ2

n , where σ2 is the sample variance. The red lines thus show what
this analytical function looks like for the two data sets. For the independent random variables in
the left panel it is clear that this is a good model for the sampled data. For the correlated data in the
right panel, however, this model substantially underestimates the variance in the true distribution
of averages. In fact, the green line shows a Gaussian that has the sample variance as its parameter
and it is clear that this provides a much better model for the shape of this distribution.

the sample means that was obtained by averaging the independent random variables.
The right panel shows, however, that this is not a good model when the data is taken
from an MD or Monte Carlo trajectory. As discussed in Note 9 to construct this
figure sample means for 50000 sets of n = 20 correlated random variables were
calculated once more as well as the sample mean and variance for the full set of
1000000 variables. The blue histogram shows the distribution of the sample means.
As you can see the correlation between the values of the CVs ensures that this
distribution is substantially wider than the central limit theorem (red line) would
predict it to be. In other words, for correlated data σ2

n is not a sensible estimate for
the variance of the sample mean.

This problem can be resolved using the so-called block averaging technique [75].
In essence this technique involves splitting the trajectory into a set of N blocks that
are all of equal length. N separate sample means, µi, are then calculated from each
of these blocks of data. Obviously, the mean for these N quantities that is calculated
using:

µ =
1
N

N

∑
i=1

µi (28)

is equal to the mean we would have obtained had we averaged every frame in our
trajectory. The advantage of block averaging in this way is, however, that, if each
µi is calculated over a long enough block of trajectory, the values of the µis are no
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longer correlated. We can thus calculate an error bar on our the estimate of µ that
we would calculate using the formula above as:

ε = Φ
−1
(

pc +1
2

)√
1

N(N−1)

N

∑
i=1

(µi−µ)2 (29)

where Φ−1 is the inverse of the cumulative probability distribution function for the
standard normal random variable and where pc is the level of statistical confidence
we want our error bar to represent.

Fig. 12 Figure showing how the error bars calculated using the block averaging technique depend
on the lengths of the blocks used for independent and identically distributed random variables (left)
and for data from a typical MD/MC trajectory (right). As you can see, the size of the error bar is
largely independent of the block size when the data points being averaged are samples of a random
variable. The correlations between the CV values we obtain in a trajectory, however, ensure that
the error bar is underestimated when the block size used is small. Consequently, as the length of
time over which the block averages are taken is increased the error bar increases in size until it
eventually reaches a plateau.

Figure 12 shows the outcome of applying this technique on data obtained by sam-
pling independent and identically distributed random variables and on data obtained
by calculating the value of a CV over the course of a trajectory. The mean and error
bars are shown as a function of the sizes of the blocks over which the µi averages
were calculated. In both cases you can see that the final value of µ does not depend
on the size of the blocks. The small differences in this value are due to the finite
precision algebra the computer uses. For the correlated data from the MD trajectory,
however, the size of the error bar does depend on the length of the blocks. In partic-
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ular, the error bar is smaller when the block sizes are small as the µi values are still
correlated. As the block sizes get larger, however, the µi values become decorrelated
and the size of the error bar thus plateaus to a near constant value.

A similar technique can be used to calculate error bars for histograms and free-
energy surfaces. For the weighted histograms discussed at the end of section 3.2 the
probability, g(i)j , for the jth bin of the histogram is computed using equation 24, and
the data from the ith block of trajectory data. The following input shows how these
histograms can be constructed in practise by using PLUMED.

phi: TORSION ATOMS=1,2,3,4
psi: TORSION ATOMS=5,6,7,8
EXTERNAL ARG=phi,psi FILE=bias_potential.dat

as: REWEIGHT_BIAS TEMP=300

hh: HISTOGRAM ...
LOGWEIGHTS=as ARG=d STRIDE=10
GRID_MIN=-pi,pi GRID_MAX=pi GRID_BIN=400
KERNEL=DISCRETE CLEAR=1000000

... HISTOGRAM

DUMPGRID GRID=hh FILE=histo.dat STRIDE=1000000

The simulation that is being analyzed here is the same biased calculation that was
described in section 3. The input above, however, instructs PLUMED to output in-
dependent histograms from each block of 1,000,000 MD steps in the trajectory to
a set of files called analysis.0.histo.dat, analysis.1.histo.dat, ... and histo.dat. This
procedure obviously gives multiple estimates for the probability of each bin, which
can be combined to give a single set of sample means and confidence limits using
the following or other similar expressions:

〈g j〉=
1

∑
N
i=1 wi

N

∑
i=1

wig
(i)
j (30)

ε j = Φ
−1
(

pc +1
2

)√
1

N
(
W − S

W

) N

∑
i=1

wi ∗ (g(i)j −〈g j〉)2 (31)

Here wi is used to indicate the sum of the weights of all the configurations in each
of the blocks of data. W and S are then the sum of these wi values and the sum of
the squares of these values respectively.

Example python code for taking the set of histogram files output by PLUMED
and for calculating the means and the error bars using the formulas above can be
found on the PLUMED website. Figure 13 shows how the average size of the errors
on the estimate of the free energy obtained from a metadynamics simulation changes
as the length of the blocks is increased (see Note 10). Similarly to what we observed
in the right panel of figure 12 when small blocks are used the error bar on the free
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Fig. 13 Figure showing how the average error on the estimate of a free energy obtained for a
metadynamics simulation of alanine dipeptide depends on the sizes of the blocks over which the
individual histograms were calculated. As with the example involving the ensemble average in
figure 12 the error is underestimated when small blocks are used. When larger blocks of data are
used, however, the value of the error plateaus at a constant value.

energy is underestimated and the error bars are thus too small. When sufficiently
large blocks are used, however, the size of the error reaches a plateau value.

5 Multiple replica techniques

Thus far we have considered cases where a single simulation is performed and then
analyzed. There are, however, situations where one wants to simultaneously run
multiple simulation replicas. Sometimes these replicas are run under equivalent con-
ditions and the only differences between them are the initial configurations. If this
is the case one can simply concatenate all the trajectories and analyze them using
the techniques that have been discussed in the previous sections. Alternatively, if the
simulations are short and are thus not expected to reach equilibrium, more statisti-
cally reliable results may well be obtained if they are analyzed using the Markov
state models that have been discussed in chapter IV. Oftentimes, however, the vari-
ous replicas are run using different conditions (e.g., the replicas have different tem-
peratures or different biasing potentials). In this case the replicas will often also
communicate with each other using a replica-exchange procedure. In this section
we will thus discuss how such multiple-replica simulations operate and how they
should be analyzed. The analysis described in what follows can be applied when
replicas are simulated independently of each other or when they are simulated in a
manner that permits exchanges between replicas. For best results we would always
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suggest allowing exchanges between replicas as this increases the ergodicity of the
simulation.

Replica-exchange molecular dynamics provides a rigorous theoretical framework
that can be used to swap coordinates between trajectories that are calculated simulta-
neously but performed using different conditions (see Chapter II). Perhaps the most
commonly used of these techniques is parallel tempering [76], which uses a differ-
ent temperature in each of the simulated replicas. The replicas can also experience
different simulation biases, however, so, because PLUMED is designed to bias MD
simulations and because there are a number of techniques in the literature that are
based on this principle (see, e.g., [77, 49, 78, 11]), this will be the focus in this sec-
tion. Within many of these replica-exchange techniques the Metropolis Monte Carlo
scheme is employed with proposed moves that involve swapping the coordinates of
replica i (q(i)) with the coordinates of replica j (q(i)) and an acceptance probability
that is given by:

α = min

(
1,

P(i)(q( j))P( j)(q(i))

P(i)(q(i))P( j)(q( j))

)
(32)

Here P(i)(q) is the probability that the set of coordinates q will be observed under
the conditions experienced by the ith replica. Assuming that the only difference
between the two replicas is the bias potential experienced and that the bias potentials
for replica i is V (i)(q) allows us to use equation 16 to rewrite this probability using
an expression that only depends on the bias potentials:

α = min

(
1,exp

(
−V (i)(q( j))−V ( j)(q(i))+V (i)(q(i))+V ( j)(q( j))

kBT

))
(33)

When coordinate swaps are accepted or rejected using these criteria we ensure that
the system remains at equilibrium. Consequently, any averages that we obtain are in
principle indistinguishable from those that would have been obtained if the simula-
tions had been performed independently. The advantage, however, is that the coor-
dinate swaps usually systematically increase the number of slow transitions that are
sampled. We can thus use these methods to obtain more statistically robust averages
from shorter (parallel) simulations.

5.1 The weighted histogram method

The multiple replica simulations that were introduced above provide us with a pow-
erful set of tools that allow us rapidly explore a wide region of configuration space
and to take advantage of parallel computing facilities. In this final section we will
discuss how the trajectories we obtain from these simulations are analyzed. Much
like the analysis that was discussed in section 3.2 the aim here is to extract the free
energy as a function of a CV or set of CVs. Furthermore, when analyzing these
multiple replica simulations we are again going to calculate a histogram and then
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exploit the maximum likelihood technique to convert this to a free energy. At odds
with section 3.2, however, we now have multiple trajectories, each of which was
obtained by integrating a different biased Hamiltonian. We thus calculate the proba-
bility of observing this particular set of configurations during the N trajectories that
we ran using the product of multinomial distributions shown below:

P(T) ∝

M

∏
j=1

N

∏
k=1

(ckwk j p j)
tk j (34)

In this expression the second product runs over the biases that were used when
calculating the N trajectories. The first product then runs over the M bins in our his-
togram. The p j variable that is inside this product is the quantity we wish to extract;
namely, the unbiased probability of having a set of CV values that lie within the
range for the jth bin. The quantity that we can easily extract from our simulations,
tk j, however, measures the number of frames from trajectory k that are inside the
jth bin. To interpret this quantity we must consider the bias that acts on each of the
replicas so the wk j term is introduced. This quantity is calculated using equation 17
and is essentially the factor that we have to multiply the unbiased probability of be-
ing in the bin by in order to get the probability that we would be inside this same bin
in the kth of our biased simulations. Obviously, these wk j values depend on the value
that the CVs take and also on the particular trajectory that we are investigating all
of which, remember, have different simulation biases. Finally, ck is a free parameter
that ensures that, for each k, the biased probability is normalized.

We can use equation 34 to find a set of values for p j that maximizes the likelihood
of observing the trajectory. This constrained optimization must be performed using
a set of Lagrange multipliers, λk, that ensure that each of the biased probability
distributions are normalized, that is ∑ j ckwk j p j = 1. Furthermore, much as in section
3.2, the problem is made easier if equation 34 is replaced by its logarithm.

L =
M

∑
j=1

N

∑
k=1

tk j lnckwk j p j +∑
k

λk

(
N

∑
j=1

ckwk j p j−1

)
(35)

After some manipulations (see Note 11 and the similar derivation that uses a slightly
different notation that reported in Ref.[79]), the following equations emerge:

p j ∝
∑

N
k=1 tk j

∑k ckwk j
(36)

ck =
1

∑
M
j=1 wk j p j

(37)

Equations 36 and 37 can be solved by computing the p j values using equation 36
with an initial guess for the ck values and by then refining these p j values using
the ck values that are obtained by inserting the p j values obtained into equation
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37. Usually the ck and p j values become self-consistent after a few rounds of this
iterative algorithm.

When writing scripts to do this form of analysis it is worth noting that only
∑k tk j, which is the total number of configurations from all the replicas that enter the
jth bin, enters equations 36 and 37. There is thus no need to record which replica
generated each of the frames and one can thus simply gather the trajectories from
all the replicas together at the outset.

The fact that we can simply gather the trajectories from all our replicas before
performing the weighted histogram analysis that has been described in the previous
paragraph is also evident when we consider equation 36. This expression tells us that
we can calculate p j by constructing a weighted histogram from the concatenated
trajectory and that the weight for the nth frame will be:

w̃n =
1

∑k ckwkn
(38)

where the sum runs over the replicas and where wkn is the factor the kth replica has
to be reweighted by in order to recover the unbiased probability for configuration n.
Notice, that we can also use the concatenated trajectory when extracting values for
ck using equation 37 as the sum over bins in the denominator can be replaced with a
sum over the concatenated trajectory. These observations are important as they are
the basis of the binless formulation of the weighted histogram technique (WHAM)
that is implemented within PLUMED and that has been variously proposed by a
number of different authors [80, 81, 82]

5.2 WHAM analysis with PLUMED

Section 5 discussed simulations in which multiple replicas are run in parallel and in
which exchanges are attempted between replicas. To run these types of calculations
you need an MD code that can manage the communication between these replicas.
GROMACS is able to run simulations in this way using a command line syntax
that is similar to the one shown below, which tells GROMACS to run 3 replicas in
parallel and to attempt coordinate exchanges every 1000 MD steps:

> mpirun -np 3 gmx_mpi mdrun -multi 3 \
-plumed plumed.dat -replex 1000

For MD codes that can handle multiple replicas PLUMED provides a convenient
syntax for having different biases on the various different replicas. As an example
the PLUMED input below assumes that three replicas are being run in parallel and
that these three replicas differ only in the position of the center of the harmonic
restraint:

d: DISTANCE ATOMS=10,20
RESTRAINT ARG=d AT=@replicas:1.0,1.1,1.2 KAPPA=1.0
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Fig. 14 Schematic representation of a WHAM analysis. a) Multiple simulations are performed
using different bias potentials. These simulations can be done separately, but we would always
recommend using a replica-exchange procedure. b) Trajectories are concatenated for subsequent
analysis. The first step of this analysis is to compute the value of all the biasing potentials on all
the snapshots in the concatenated trajectory. Notice that in principle it is not necessary to concate-
nate the trajectory as the order of the accumulated snapshots is irrelevant. It is critical, however,
to compute all the bias potentials for all the frames in all the trajectories as only then can you
solve equations 36 and 37. c) Once these equations are solved a weight for each snapshot in the
concatenated trajectory is obtained. d) These weights are then used to, for example, reconstruct the
unbiased probability along some a posteriori chosen CV.

Obviously, the centers of the harmonic restraint in the three simulations are at 1.0,
1.1 and 1.2 respectively. The CV on which this restraint acts and the strength of the
restraint are, however, the same in all three replicas.

Once the multiple replica simulation has run, it must be analyzed. As discussed
in section 5.1 the WHAM technique provides a good method for doing this analysis.
To do WHAM using PLUMED you must first concatenate the trajectories from the
various replicas. The exact way this will be done will depend on the format of the
trajectory file. If the format is a plain text .gro file, file concatenation may be
sufficient. For other file types, however, it may be necessary to use the specific tools
that are provided by the MD engine. Regardless of these details, however, once a
single concatenated trajectory is available it can be analyzed using PLUMED with
an input file like the one shown below:

d: DISTANCE ATOMS=10,20
RESTRAINT ARG=d AT=@replicas:1.0,1.1,1.2 KAPPA=1.0

hh: WHAM_HISTOGRAM ...
ARG=d BIAS=d.bias TEMP=300
GRID_MIN=0 GRID_MAX=10 GRID_BIN=100
KERNEL=DISCRETE
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...

ff: CONVERT_TO_FES GRID=hh TEMP=300
DUMPGRID GRID=ff FILE=fes.dat

The first part of this input will be basically identical to the input used for the biased
calculations. The rest, meanwhile, uses the functionality for reweighting that was
discussed in section 3.4 through the shortcut command WHAM HISTOGRAM (see
Note 12). It is important to remember that there are multiple replicas when running
the WHAM calculation using the input above as to deal with the replicas PLUMED
driver has to be called using a command like that shown below:

> mpirun -np 3 plumed driver --multi 3 \
--plumed plumed.dat

We will now see how to use this syntax can be used to compute the free-energy
landscape for an adenosine in water. The simulation reported here was done using
the setup and parameters described in Ref. [67]. Consequently, a simulation with 16
replicas was run using the command below:

> mpirun -np 16 gmx_mpi mdrun -multi 16 \
-plumed plumed.dat -replex 1000

with the following PLUMED input file

MOLINFO STRUCTURE=adenosine.pdb
chi: TORSION ATOMS=@chi-1
#
# Impose an umbrella potential on chi
# with a spring constant of 80 kjoule/mol
# and centered in chi=AT
#
r: RESTRAINT ...

ARG=chi KAPPA=80.0
AT=@replicas:{
0*pi/8 1*pi/8 2*pi/8 3*pi/8
4*pi/8 5*pi/8 6*pi/8 7*pi/8
8*pi/8 9*pi/8 10*pi/8 11*pi/8

12*pi/8 13*pi/8 14*pi/8 15*pi/8
}
...

The numbers listed after the @replicas instruction are basically 16 equally-
spaced values between 0 and 2π . Furthermore, in setting up this grid of restraints
we have exploited the fact that PLUMED can perform simple algebraic calculations
when interpreting its input.

The restraints on the 16 replicas that will be simulated by executing the com-
mand above ensure that all the possible values for the χ glycosidic torsion of this
nucleoside, including the unfavorable ones that correspond to free-energy barriers,
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will be explored during these simulations. Furthermore, once the simulation has
completed we can concatenate all the trajectories produced by GROMACS (called
traj0.xtc, traj1.xtc, ... traj15.xtc) into a single long trajectory called
traj-all.xtc. This trajectory can then be analyzed using the following com-
mand

> mpirun -np 16 plumed driver --multi 16 \
--plumed plumed.dat --ixtc traj-all.xtc

and a PLUMED input file that is very similar to the one described above. Instead
of writing a new file from scratch, however, it is often more convenient to include
the file that was used when the simulation was run into the analysis file by us-
ing the command INCLUDE. Doing so allows us to write an analysis file, called
plumed wham.dat, that reads as follows:

INCLUDE FILE=plumed.dat
# also compute the puckering of the sugar:
puck: PUCKERING ATOMS=@sugar-1

h1: WHAM_HISTOGRAM ...
ARG=chi BIAS=r.bias TEMP=300
GRID_MIN=-pi GRID_MAX=pi GRID_BIN=100
BANDWIDTH=0.1

...

fes1: CONVERT_TO_FES TEMP=300 GRID=h1
DUMPGRID GRID=fes1 FILE=fes1.dat

h2: WHAM_HISTOGRAM ...
ARG=cc2.chi,cc2.puck.Zx BIAS=r.bias TEMP=300
GRID_MIN=-pi,-pi GRID_MAX=pi,pi GRID_BIN=100,100
BANDWIDTH=0.1,0.1

...

fes2: CONVERT_TO_FES TEMP=300 GRID=h2
DUMPGRID GRID=fes2 FILE=fes2.dat

For RNA, it is common to analyze the conformation of the sugar using the Zx
component that is defined in [35]. To calculate this CV using PLUMED you use the
puck.Zx component of the PUCKERING command. Notice that this CV is used in
the above input because, in addition to computing the free energy as a function of
the χ torsion, it also computes a second free-energy surface that depends on both χ

and the puckering conformation of the sugar. This second variable was not biased,
but it can also be analyzed at this latter stage. The two free-energy surfaces that are
extracted when the above analysis is performed on the trajectory are shown in figure
15. In addition, this figure also shows the result of using a HISTOGRAM command
without taking the weighting factors into account.



38 Giovanni Bussi and Gareth A. Tribello

!
-"/2 +"/20 !

-"/2 +"/20

Zx0

1/2

-1/2

F 
[k

BT
]

Fig. 15 Results from a replica-exchange umbrella sampling simulation performed on adenosine
in water. As explained in the text restraints are applied on the glycosidic torsion χ in these sim-
ulations. (a) The free energy as a function of χ computed using the WHAM equation is shown
in black. This profile is in agreement with that reported in reference [67]. The free energy that
one would have obtained if one had (erroneously) collected the histogram from the replica ex-
change simulation without performing any reweighting is also shown (red line). This profile is
significantly flatter because the system is forced by the restraints to explore the entire CV span. (b)
Two-dimensional profile showing the free energy as a function of the biased χ torsion and the Zx
puckering variable, that reports on the sugar conformation. Even though this latter variable was not
biased, the two-dimensional profile can be correctly reconstructed as transitions between the two
typical conformations are accessible on the simulation timescale.

Notice that the WHAM procedure discussed here can be used to remove any
arbitrary bias that has been added to a simulation. For instance, it can be used to
analyze bias-exchange metadynamics simulations [49], which is a method that in-
volves using a replica-exchange scheme where each replica experiences a different
metadynamics bias. In these types of calculations different replicas can use differ-
ent PLUMED input files. These replicas can even use a different number of biasing
potentials. For example, in references [21, 83], a similar procedure was used to
reweight bias-exchange metadynamics simulations where, in addition to the meta-
dynamics potential, each replica was subject to a different restraint. In all these
cases, however, the replicas always share the same simulation parameters. In other
words, the only differences are in the bias that is applied by PLUMED.

6 Perspectives

This chapter has introduced the PLUMED code, explained some of the theory be-
hind the methods that are implemented in this code and given some practical exam-
ples that show how PLUMED can be used. Space constraints mean that we cannot
describe everything that PLUMED can do, so we have instead chosen to focus on
some of the issues that come up most frequently on the code’s mailing list. The
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discussion in the previous sections has thus included information on the difficulties
that can arise when treating periodic boundary conditions and a discussion on the
proper treatment of statistical errors and the analysis of multiple replica simulations.
In what follows we will finish by giving a brief perspective on how we believe that
PLUMED will evolve in the near future.

Our principal reason for developing PLUMED was to provide functionality for
performing enhanced sampling calculations. There were two interrelated reasons for
writing this as a separate piece of software. The first of these was that we wanted
an inter-operable implementation that could work with multiple MD codes. Differ-
ent MD codes contain different functionalities and as such the particular engine that
you will work with on any given project will depend on the particular system under
study. At the same time, however, the efficacy of any enhanced sampling method de-
pends strongly on the degree to which the biased CVs separate the metastable basins
and transition states in the energy landscape. Consequently, PLUMED needed to be
a large, stand-alone code not simply because some of the biasing methods that are
implemented within are rather sophisticated but also because it contains implemen-
tations for many of the, in some cases very-complicated, CVs that have been used
in these types of calculations. In fact, to our knowledge there is no other code that
contains implementations of as many different CVs. Having said that, however, a
number of recently developed CVs are not yet included and will thus be imple-
mented in the near future. We are particularly interested in some of the ideas from
machine learning [84, 85, 86, 87, 88] that are entering this field and are actively
investigating how such methods could be implemented within the PLUMED frame-
work. Furthermore, we have in the last couple of years been working with the de-
velopers of Open Path Sampling [89] in order to help them interface their code with
PLUMED so that methods such as transition path sampling and forward flux can
be performed on-the-fly using a broad range of CVs without any need to perform a
posteriori analysis.

Another issue that we need to work on in the future is the performance of the
code. As PLUMED is designed to compute and bias CVs its design is rather different
from some of the other pieces of software that are used to drive MD simulations. One
big potential performance bottleneck comes about because PLUMED needs access
to a subset of the simulated atoms during every time step. This requirement can slow
down the simulations particularly when the CVs are computed from the positions
of a large number of atoms. In the future we will thus work in order to decrease
the computational cost of the operation that transfers the atomic positions from the
MD code to PLUMED. One easy way to reduce this cost, which will be available in
version 2.5, is to allow expensive CVs that are computed within the underlying MD
code to be transferred to PLUMED. Computing the CV within the MD code would
allow you take advantage of the data structures in the MD code. Furthermore, as an
added benefit, one could also take advantage of this feature when using CVs that are
based on features that are difficult to transfer to PLUMED such as partial charges or
other functions of the electronic structure. It is still to be seen if any these features
will find a practical application, however.
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One thing that will not change a great deal in the future is PLUMED’s API.
The simple and well-documented interface between PLUMED and the various MD
codes that call it is one of the code’s great strengths so any future change will
be made in a way that ensures backward compatibility. The reason this interface
is so important is that this is what allows such a large number of MD codes to
call PLUMED. In addition, some developers have incorporated the PLUMED API
within their code base so that users can download their codes and immediately use
PLUMED without performing any sort of patching procedure. This model of hav-
ing the calls to PLUMED within the MD codes is something that we would like
to use more widely in future. Furthermore, to facilitate this, and to keep pace with
the growing popularity of python within the molecular simulation community, we
have recently provided an interface to the PLUMED API that makes the PLUMED
routines callable from python.

The most important changes to PLUMED that we foresee, however, will be the
features contributed to the code by independent groups. It is clear from the github
pages of PLUMED that a number of forks of the code are now being actively de-
veloped. Furthermore, some of the features that have been developed in these forks
have been already contributed back into the main version of the code. We are con-
vinced that transforming this project in a community effort will be the best way to
keep it lively and up to date. In fact, inviting contributions from the whole simula-
tion community is the only way to ensure that the code contains the most exciting
recent methodological developments from the field.
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8 Notes

1. The first version of PLUMED was released in 2009 [1]. A complete rewrite,
that made the code easier to maintain and extend, was published in 2014 [2].
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This second version changed the inner structure of the code and also changed the
syntax for the input file so it is this second version of the code that will be the
focus of this chapter.

2. When a reference pdb file is provided using the MOLINFO command numer-
ous shortcuts can be employed when calculating backbone torsional angles in
proteins and nucleic acids. For example the input below instructs PLUMED to
calculate and print the φ and ψ angles in the 3rd and 9th residue of a protein.

MOLINFO STRUCTURE=helix.pdb
phi3: TORSION ATOMS=@phi-3
psi3: TORSION ATOMS=@psi-3
phi9: TORSION ATOMS=@phi-9
psi9: TORSION ATOMS=@psi-9
PRINT ARG=phi3,psi3,phi9,psi9 FILE=colvar STRIDE=10

A number of other convenient shortcuts are explained in the PLUMED manual.
3. If for some reason one only wishes to only disregard translation of the center of

mass, that is to say if one wishes to include any displacements that come about
because of rotation of the reference frame, when computing the RMSD one can
replace TYPE=OPTIMAL with TYPE=SIMPLE. In addition, one can use one
set of atoms to calculate the rototranslation operation that minimizes the RMSD
and then use a different set of atoms to compute the final RMSD by adjusting
the numbers that appear in the occupancy and beta columns of the input pdb
file. Using different sets of atoms to align the molecule and compute the RMSD
displacement is commonly used when tracking the position of a ligand in the
reference frame of a protein.

4. The amount of time that the system spent in bin j can be computed as follows:

t j =
T

∑
i=1

H
(
|s(qi)− s j|

w

)
where H(x) =

{
1 if x < 1/2
0 otherwise

(39)

where w is the width of each bin.
5. When we differentiate L in Eq. 19 with respect to pk we find that at the con-

strained optimum:

∂L

∂ pk
=

tk
pk

+λ = 0 → pk =−
tk
λ

(40)

We know, however, that:

M

∑
j=1

p j = 1 → λ =−
M

∑
j=1

t j (41)

If we add together the number of trajectory frames in each of bins, however, we
get the total number of trajectory frames, T . λ is thus equal to −T and thus the
most likely value of pk is simply:
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pk =
tk
T

(42)

6. When we differentiate L in Eq. 23 with respect to pk and set its derivatives to
zero we obtain:

∂L

∂ pk
=

t j

pk
+wkλ = 0 → pk =−

(wk)
−1tk

λ
(43)

We can then recall our constraint; namely ∑
M
j=1 w j p j = 1. Notice that by enforc-

ing this constraint we are not doing anything to ensure that the unbiased distribu-
tion, p j, is normalized. The constraint instead ensures that the biased distribution
w j p j is normalized. This is important as it is this probability distribution that is
used when we compute the total probability of observing the trajectory. It is, in
fact, not at all necessary for the unbiased probability distribution, p j, to be nor-
malized. In fact, and to be clear, the unbiased distribution that emerges when this
form of analysis is performed will be unnormalized as we will obtain λ = −T
and hence pk =

(wk)
−1tk

T . The final result is thus:

pk ∝ (wk)
−1tk (44)

7. The STRIDE keyword takes a default value of one and tells you how frequently a
PLUMED command is executed. When it is used in combination with the PRINT
command, it thus controls the frequency with which the CVs are printed. In ad-
dition, PLUMED automatically knows that these CVs should only ever be calcu-
lated when they are printed. The STRIDE keyword can also be used with com-
mands that bias CVs such as RESTRAINT and METAD, however. In this context
the command tells PLUMED that the bias, and the biased CVs, should be com-
puted with a frequency as part of a a multiple-time step scheme [90, 91]. By
using these schemes you can speed up calculations especially when expensive
CVs are used. You should, however, only ever use moderate values for STRIDE
in this case – typically, something between 1 and 5.

8. We can measure the degree of correlation within a time series, Xt , of random
variables with expectation 〈X〉 and variance 〈(δX)2〉 by measuring the autocor-
relation function:

R(τ) =
〈(Xt −〈X〉)(Xt+τ −〈X〉)〉

〈(δX)2〉
(45)

The value of this function at τ gives a measure of the average degree of corre-
lation between each pair of random variables that were measured τ time units
apart. If the random variables are all independent and identically distributed this
function will decay to zero for all t > 0. If the autocorrelation function is cal-
culated for a time series of CV values taken from a trajectory the function will
not decay immediately, however, as the system will most likely not diffuse from
one edge of CV space to the other during a single timestep. The CV value that
we calculate from the (i+1)th frame of the trajectory will thus be similar to the
value obtained for the ith trajectory frame.
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9. The Monte Carlo data that was used to construct the right panel of figure 11
was generated by performing a metropolis Monte Carlo simulation that sampled
points from a standard normal distribution.

10. The error bars, ε j, obtained for the components of the histogram, 〈g j〉, that are
calculated using equation 31 must be propagated in order to obtain the error
on the free energy. As the free energy is proportional to the logarithm of the
probability, the error on this quantity is kBT ε j

〈g j〉 .
11. When we differentiate L in Eq. 35 with respect to pk we find that at the con-

strained optimum:
∂L

∂ p j
=

N

∑
k=1

tk j

p j
+

N

∑
k=1

λkckwk j = 0 (46)

which can be rearranged to give:

p j =−
∑

N
k=1 tk j

∑k λkckwk j
(47)

Similarly, when we differentiate L in Eq. 35 with respect to ck we find that

∂L

∂ck
=

M

∑
j=1

tk j

ck
+

M

∑
j=1

λkwk j p j = 0 (48)

which rearranges to give:

λk =−
∑

M
j=1 ckwk j p j

∑
M
j=1 tk j

(49)

Finally, when we differentiate L in Eq. 35 with respect to λk we obtain the
constraint:

M

∑
j=1

ckwk j p j = 1 (50)

The last two of these equations can be combined to give:

λk =−
1

∑
M
j=1 tk j

(51)

Notice that ∑
M
j=1 tk j is simply the length of trajectory k. By assuming that all the

trajectories have the same length we can thus ensure that λk is independent of k.
Inserting this result into equation 47 will thus give:

p j ∝
∑

N
k=1 tk j

∑k ckwk j
(52)

Furthermore, rearranging equation 50 gives:



44 Giovanni Bussi and Gareth A. Tribello

ck =
1

∑
M
j=1 wk j p j

(53)

12. When PLUMED reads in the command WHAM HISTOGRAM it converts it into
the input for three actions automatically. The first of these is a REWEIGHT WHAM
command that is similar to the REWEIGHT BIAS command. This command cal-
culates a set of weights for the input configurations that are used when construct-
ing weighted histograms using a HISTOGRAM command. When using WHAM
there is an important difference in computing the histogram, however. When
WHAM is used the weights can only be computed once the whole trajectory has
been processed. A special syntax and a COLLECT FRAMES command is thus re-
quired between the REWEIGHT WHAM and HISTOGRAM commands in this case.
This special syntax thus instructs the action HISTOGRAM to wait until the end of
the trajectory and to only then retrieve the weights and construct the histogram.
Notice also that equations 36 and 37 are solved in the REWEIGHT WHAM com-
mand and that this command can thus accept additional arguments in order to
fine tune the tolerance with which these equations are solved.
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