Journal of High Energy Physics

Hawking radiation, W _algebra and trace
anomalies

To cite this article: L. Bonora and M. Cvitan JHEP05(2008)071

View the article online for updates and enhancements.

Related content

- Hawking fluxes, W algebra and anomalies
L. Bonora, M. Cvitan, S. Pallua et al.

- W Algebra and High-Order Virasoro
Algebra
Zhao WeiZhong, Wang Hong and Zha
ChaoZheng

- Hawking radiation from Kerr—Newman de
Sitter black hole via anomalies
Lin Kai, Yang Shu-Zheng and Zeng Xiao-
Xiong

Recent citations

- W-hairs of the black holes in three-

dimensional spacetime
Jing-Bo Wang

- Higher spin vortical zilches from Kubo
formulae
Christian Copetti and Jorge Fernandez-
Pendas

- W algebras, Hawking radiation, and
information retention by stringy black holes
John Ellis et al

This content was downloaded from IP address 147.122.97.128 on 02/09/2019 at 14:31


https://doi.org/10.1088/1126-6708/2008/05/071
http://iopscience.iop.org/article/10.1088/1126-6708/2008/12/021
http://iopscience.iop.org/article/10.1088/1126-6708/2008/12/021
http://iopscience.iop.org/article/10.1088/1126-6708/2008/12/021
http://iopscience.iop.org/article/10.1088/1126-6708/2008/12/021
http://iopscience.iop.org/article/10.1088/0253-6102/31/4/577
http://iopscience.iop.org/article/10.1088/0253-6102/31/4/577
http://iopscience.iop.org/article/10.1088/0253-6102/31/4/577
http://iopscience.iop.org/article/10.1088/0253-6102/31/4/577
http://iopscience.iop.org/article/10.1088/1674-1056/17/8/010
http://iopscience.iop.org/article/10.1088/1674-1056/17/8/010
http://iopscience.iop.org/1674-1137/43/9/095104
http://iopscience.iop.org/1674-1137/43/9/095104
http://dx.doi.org/10.1103/PhysRevD.98.105008
http://dx.doi.org/10.1103/PhysRevD.98.105008
http://dx.doi.org/10.1103/PhysRevD.94.025007
http://dx.doi.org/10.1103/PhysRevD.94.025007

PUBLISHED BY INSTITUTE OF PHYSICS PUBLISHING FOR SISSA
RECEIVED: April 11, 2008

ACCEPTED: May 9, 2008
PUBLISHED: May 20, 2008

I

Hawking radiation, W, algebra and trace anomalies

L. Bonora® and M. Cvitan®c

@ International School for Advanced Studies (SISSA/ISAS),

via Beirut 2-4, 34014 Trieste, Italy

YINFN, sezione di Trieste,

via Valerio, 2, I - 84127 Trieste, Italy

¢Theoretical Physics Department, Faculty of Science, University of Zagreb,
p.p. 331, HR-10002 Zagreb, Croatia

E-mail: bonora@sissa.i, cvitan@sissa.if

ABSTRACT: We apply the “trace anomaly method” to the calculation of moments of the
Hawking radiation of a Schwarzschild black hole. We show that they can be explained as
the fluxes of chiral currents forming a W, algebra. Then we construct the covariant version
of these currents and verify that up to order 6 they are not affected by any trace anomaly.
Using cohomological methods we show that actually, for the fourth order current, no trace
anomalies can exist. The results reported here are strictly valid in two dimensions.
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1. Introduction

In the last few years there has been an increasing activity in calculating the Hawking
radiation [fl, P] by means of anomalies. This renewed attention to the relation between
anomalies and Hawking radiation was pioneered by the paper [[], which was followed by
several other contributions []—[]. In [[J] the method used was based on the diffeomorphism
anomaly in a two-dimensional effective field theory near the horizon of a radially symmetric
static black hole. The argument is that, since just outside the horizon only outgoing modes
may exist, the physics near the horizon can be described by an effective two-dimensional
chiral field theory (of infinite many fields) in which ingoing modes have been integrated out.
This implies an effective breakdown of the diff invariance. The ensuing anomaly equation
can be utilized to compute the outgoing flux of radiation.

A different method, based on trace anomaly, had been suggested long ago by Chris-
tensen and Fulling, [f). This method provides a full solution only in two dimensions,
the reason being that its utilization involves the region away from the horizon, where a
two-dimensional formalism does not provide a good description. The method has been
reproposed in different forms in [3, 4] and, in particular, [[fj and [[J]. In this paper we
would like to discuss a few aspects of the trace anomaly method and its implications. In [f]
the authors made the remarkable observation that the full spectrum of the Planck distri-
bution of a thermal Hawking radiation of a Schwarzschild black hole can be described by
postulating the existence, in the two-dimensional effective field theory near the horizon, of
higher spin currents and applying a generalization of the trace anomaly method. These
authors in subsequent papers fully developed this method for fermionic currents. In this



paper we do the same for bosonic higher spin currents. This allows us to clarify, first of all,
that the higher spin currents necessary to reproduce the thermal Hawking radiation form
a W algebra. We then covariantize the higher spin currents, according to the method
proposed in [, but, differently the latter reference, we do not find any trace anomaly in
the higher spin currents. This prompts us to analyze the nature of these anomalies. Using
consistency methods we find that the trace anomalies of ref. [J] are cohomologically trivial.
This means that they are an artifact of the regularization employed.

2. W, algebra and Hawking radiation

Let us review the argument that allows us to evaluate the outgoing radiation from a
Schwarzschild black hole starting from the trace anomaly of the energy-momentum tensor
(we closely follow [7]). Here we assume the point of view, advocated by several authors [[3,
4] and in particular in [fJ], that near-horizon physics is described by a two-dimensional
conformal field theory (see also [[I6], [I]). Due to the Einstein equation, the trace of the
matter energy momentum tensor vanishes on shell. However it is generally the case that
the latter is nonvanishing at one loop, due to an anomaly: T = 5i-R where R is the
background Ricci scalar. ¢ is the central charge of the matter system. This is no accident,
in fact it is well-known that the above trace anomaly is related to the cocycle that pops
up in the conformal transformation of the (holomorphic or anti-holomorphic part of the)
energy momentum tensor. If the matter system is chiral, this cocycle also determines the
diffeomorphism anomaly (which we do not consider in this paper).

In light-cone coordinates u =t — 7, v = t + 1y, let us denote by T, (u, v) and Ty, (u, v)
the classically non vanishing components of the energy-momentum tensor. Given a back-
ground metric go3 = €91),3, the trace anomaly equation (together with the conservation
equation) can be solved. It yields

c 1
Tuulu) = 5 (S0 - 50 ) + T ) (2.1)

where T, QEZOI) is holomorphic, while T;,, is conformally covariant. I.e., under a conformal
transformation u — 4 = f(u)(v — 0 = g(u)) one has

Tovu(u,v) = (Z—szm(a,ﬁ) (2.2)

Since, under a conformal transformation, @(a, ) = ¢(u,v) — In (% g—g), it follows that

740 = (4) (2 ) + i) 23)

Regular coordinates near the horizon are the Kruskal ones, (U, V'), defined by U = —e™ "%
and V = e". Under this transformation we have

) = () (10w + ) 2.9



Now we require the outgoing energy flux to be regular at the horizon U = 0 in the Kruskal
coordinate. Therefore at that point T, QEZOI) (u) is given by ZSL;. Since the background is

static, TH(ZOl)(u) is constant in ¢ and therefore also in r. Therefore isijr is its value also at
r = 00. On the other hand we can assume that at » = oo there be no incoming flux and
that the background be trivial (so that the vev of hel) (u) and Tyy(u,v) asymptotically

coincide). Therefore the asymptotic flux is

C:‘i2

<Ttr> = <Tuu> - <Tvv> = 48—71'

(2.5)

Now let the thermal bosonic spectrum of the black hole, due to emission of a scalar
complex boson (¢ = 2), be given by the Planck distribution

2

N(w) = T

(2.6)
where 1/ is the Hawking temperature and w = |k|. In two dimensions the flux moments
are defined by

1 +o0o wk,n—2
F,=— dk———
" 47r/ efw — 1

—00
They vanish for n odd, while for n even they are given by

1

00 2(—=1 n+1
By, = / dww™ I N(w) = A=)™
T Jo

Bop k" 2.
8mn 20t (2.7)

T 4r
where B,, are the Bernoulli numbers (By = %,34 = —%,...). Therefore the outgoing
flux (R.§) is seen to correspond to F». The question posed by the authors of [fj] was
how to explain all the other moments. They suggested that this can be done in terms of
higher tensorial currents. In other words the Hawking radiation flows to infinity carried
by higher tensor generalizations of the energy-momentum tensor, which are coupled to
suitable background fields that asymptotically vanish and do not back react.

The authors of [, ] used mostly higher spin currents bilinear in a fermionic field. They
also suggested an analogous construction with other kinds of fields, and briefly discussed the
case of a scalar bosonic field. In the following we would like to carry out the construction
of higher spin currents in terms of a single complex bosonic field (¢ = 2). More explicitly,
we will make use of the W, algebra constructed by Bakas and Kiritsis long ago, [{q]. To
this end we go to the Euclidean and replace u,v with the complex coordinates z, z.

2.1 The W, algebra

Following [[7] (see also [i§—F(]) we start with free complex boson having the following two
point functions

(21)p(22)) = —log(z1 — z2) (2.8)
(22)) =0
(22)) =0



The currents are defined by

1

»
|

38 (2) = B(s) Y (1A} :0F¢(2)05 " (2): (2.9)
k=1
where ,
g 2°77s!
B(s)=q 27(23 T (2.10)
and

-5 ()00 21y

They satisfy a W, algebra. The first several currents are

i =~ :0.90.9: (2.12)
3%, = —2q (:0.00%6: — :02¢0.¢:)

30, = L (20,6095 3 :020%5: + :0%0.5:)

19..s = -2 (0.0015: 6102007 +6:00075: — :0100.5:)

hese = —%‘]4 (:0:0026: —10:0260,6: +20:0:60;¢: —10:0,60;6: + :0260.9:)

Normal ordering is defined as
060" G = lim {00,6(21)00(22) — 05,0 (9(=1)5(22) } (213)

As usual in the framework of conformal field theory, the operator product in the r.h.s. is
understood to be radial ordered.

The current jg)(z) = — :0,9(2)9,4(2): is proportional to the (normalized) holomor-
phic energy-momentum tensor of the model and, upon change of coordinates z — w(z),

transforms as

:0,60.8: = (W)? 0y $Oud: —é (w, 2} (2.14)

where {w, z} — the Schwarzian derivative — is

{w,z} = vz 3 (w”(z)f (2.15)

w'(z) 2 \w'(z)

The non covariant contribution comes from the second term in (B:I1J). We have (see

e.g. [B1])

3az1¢(21)822$(22): = Zl¢(21) 5( ) a2’1822 <¢( )¢(22)> (2'16)
= w'(21)w'(22) Oy §(w1) Dy @(w2) — 0z, 0z, (D(21)(22))
= w'(z1)w'(22) 10w, G(w1) Dy p(w2): —G(21, 22)



where 0,,¢(21)0,,¢(z2) stands for the radial ordered product of the two operators, and

G(21,22) = —w'(z21)w '(22)5w15w2 (p(w1)p(wa)) + 020z, (B(21)d(22))
) — (#(21)6(22)))

_w(zw (
_( (21) — w(z2))? (Z1—z2)2 (2.17)

In the limit zp — 2 (B:17) becomes & {w, 21 }.
We are interested in the transformation properties of currents j*)(u) when w(z) is

w(z) = —e ¢ (2.18)
Analogously to (R.16), we have
s—1
i) (z) = <B(8) (—1)" 43 ¢551¢(W(Z1))5§{k_(W(22))=) + (X) s (2.19)
k=1
where
s—1
(X,) = Bls) Y (=14} lim { (05 o(w(=0))05 " B(w(=2))) — (046(:1)0% (=) |
k=1
s—1
= lim B(s) > (-1)"4305057" { (d(w(21)d(w(z2))) — (d(21)d(22)) }
k=1
5—2
= lim B(s) Yo (1R AL 0,054 20, 0, { (0w(20))Bu(22)) — (6(:1)5(22)) )
k=0
5—2
= B(s) ) _(-1)"4jyy lim 07,0574 7%G(a1, 20)
k=0
5—2
= B(9) S (~1)* A1 Ghs s (2.20)
k=0

and G, , are coefficients in the series

= amb
G(z+a,z+0b) = E ——Gmn (2.21)
pl ™
o min!

We now evaluate coefficients for the transformation (R.1§). Putting (R.1§) in (R.17) we
obtain

Gl21, 22) = Glz1 — ) 1L & 1 (2.22)
L2) =G —2)=—F———5t+ :
(21— 22)? 4 ginh? 7”(212_22)



This gives!

B
n+1_m+n+2 m+n+2
mn = (— Sl 2.2
Gmn = (=)™ k mtn+ 2 (223)
So, we obtain
s—1 s—2 SBS
(X} = () (g0 (224
We have used
23 (2s=2)!
ZAIH-I 1)'8' (225)
(B.24) is a higher order Schwarman derivative evaluated at w(z) = —e "*. It plays

a role analogous to the r.h.s. of (B.§). In the next section we will compare it with the
radiation moments in the r.h.s. of (R.7).

2.2 Higher moments of the black hole radiation
+(2)

Let us now return to the light-cone notation. We identify ju./ (u) up to a constant? with
the holomorphic energy momentum tensor

J(u) = —2x T (2.26)
(5)

Similarly we identify j,.’ ., with s lower indices, with an s-th order holomorphic ten-
sor. They can be naturally thought of as the only non-vanishing components of a two-
dimensional completely symmetric current. In analogy with the energy-momentum tensor,
we expect that there exist a conformally covariant version J£ )u of ](s) . The latter must
be the intrinsic component of a two-dimensional completely symmetric traceless current
J;(j)...us, whose only other classically non-vanishing component is Jgs)v

Now let us apply to these currents an argument similar to the one in section 2 for the
energy-momentum tensor, using the previous results from the W, algebra. Introducing
the Kruskal coordinate U = —e™"" and requiring regularity at the horizon we find that, at
the horizon, the value of j&s)u is given by (X) in eq. () Next jq(f)u(u) is constant in ¢
and r (the same is of course true for j,’,). Therefore, if we identify j&su(u) with jgs)z(z)
via Wick rotation, (X,) corresponds to its value at r = oco. Since jq(f)u(u) and Jff)u(u)

asympotically coincide, the asymptotic flux of this current is

1 1
— g,y = = (g) B (G

1 Z's—2

=
»
2!

= 5By 2.27
2rs & ( )

'Note that

1 K2 1 d (1 KT d > "
S A S (N N IR
ey a em-l)) (( )
_ = K2)" 2 o Buy2 (k3)"
o Zn B n! o an:%n—i—Q n!

2We relate ]ﬁ) with the energy momentum tensor via the factor of 27 and the minus sign. This is because
in the Euclidean we want to conform to the conventions and results of [@], where properly normalized
currents satisfy a W algebra. This holds for higher order currents too: for physical applications their W
representatives must all be divided by —2m.



provided we set the deformation parameter ¢ to the value —% (for the global —27 factor,
see the previous footnote).

The r.h.s. vanishes for odd s (except s = 1 which is not excited in our case) and
coincides with the thermal flux moments (R.7) for even s.

It remains for us to show that the covariant conserved currents J;(le)...us can be defined.

3. Higher spin covariant currents

To start with, it is natural to suppose that the covariant currents appear in an effective
action S where they are sourced by asymptotically trivial background fields Bf[? us (in BT

they were called ‘cometric functions’), i.e.
1 ]
(s)  —
iteoss = /G 8BSk ps 5

In particular B,(ﬁ,) = gW/2. We assume that all J,Ssl)___us are maximally symmetric and

(3.1)

classically traceless.

In order to find a covariant expression we first recall that the previous W, algebra is
formulated in terms of a (complex, Euclidean) chiral bosonic field. The action of a chiral
(Minkowski) scalar in 2D coupled to background gravity can be found in [f4]. When the
background gravity is of the type considered in this paper, i.e. gog = €¥1,3, the action
boils down to that of a free chiral boson, [F3]. In other words, the equation of motion of a
chiral boson coupled to background conformal gravity is

Dy = 0 (3.2)

This simplifies the covariantization process.

To proceed with the covariantization program we then reduce the problem to a one-
dimensional one. We consider only the u dependence and keep v fixed. In one dimension
a curved coordinate u is easily related to the corresponding normal coordinate x via the
relation 9, = e_‘p(“)ﬁu. We view u as u(z), assume that all jq(f)u and their W, relations
refer in fact to the flat x coordinate (i.e. x corresponds to the Euclidean coordinate z used
in the previous section) and by the above equivalence we extract the components in the

new coordinate system. For instance for a scalar field ¢:
g =e VIS e Or¢(dr)" = Vi (du)"
We recall that the W, currents are constructed out of bilinears in ¢ and ¢:
) = 01007 (33)

We split the factors and evaluate one factor in uy = u(z + €/2) and the other in us =
u(x — €/2). We expand in e and take the limit for ¢ — 0. Afterward we restore the
tensorial character of the product by multiplying it by a suitable e"?(*) factor. We use in
particular the Taylor expansion, see [H],

2
u(rz+e) =u(x)+ee ¥ — %e‘zwﬁuw—l— .



According to the recipe just explained, the covariant counterpart of jq(f)u should be
constructed using currents

n,m n+m)e(u) 1: —ne(ul)—me(u n m L C”vmh
Jimm)  tm)e(u) Jipy {e () =mptuz)gm gm g _ } (3.4)

e—0 entm

where ¢, = (—)™(n +m — 1)! are numerical constants determined in such a way that
all singularities are canceled in the final expression for JKTT). Therefore (@) defines the
normal ordered current

T = ViVire: (3.5)

U..

We use
VuvZf(uv U) = auvZf(uv U) - anZf(uv U)

for a scalar field f(u,v), where

I'= 8u()0
and
tp(ur)d(uz): = d(u1)d(uz) + hlog(ur — uz) (3.6)
After some algebra we obtain
wy _ Py
o = =T + Jyu (3.7)
6
h
1.2) = gy pgn) 4oa(12)
h
(271) — T _1—‘ (171) '(271)
h h 3
13) — g2y L L2 g 22 p(L1) _ gp g(L2) 4 (13)
h h
22) — g2y _ P2 p2 (L1 _pg(12) _pg2l) 4 (22)
h h 3
@Bh g2y L M2 Q0 22 (L) _gp p(21) 4 4(3,1)
where 1
T =050 — 5 (Oup)’ (3.8)
In appendix one can find analogous expressions for order 5 and 6 currents.
Using eq. (.19), and similarly, JL(L%L) = - &[1), 15‘& = —2¢q <J$j3) — 15?;3), ﬁi)uu =
—% (J&S?L - 3J1%32L Jﬁi%), etc., we obtain
IE) = 48— o (39
TS = G
8h 32
(4)  _ (4 27022 9% 2 5(2)
1



For s = 6 we have

512h 1607 128h 512 256
JO) e = | ——=—T3 O,T)? — =TT — ==1%J2) - —71v2 ]2
256 , 5 640 1280 1280
2T JB £ (9, TV JP — 2Ty, g2 - 22 g (2)
1280 160
+=57 T (0uT) Jé%)) 0" = =TI + I o (3.10)

It is important to verify that our previous definitions are consistent. Using the trans-
formation law for jg) (i.e. (R.14))

g (w) = (' (u)? §50 (w(w) + g {w,u} (3.11)

and its generalization for jq(ﬁl)uu which can be read out of ()

5 () = (0 @) 3B C) + () 2 G w0 (w) {0} + e 1 (w0 (3.12)

and using
¢(u,v) = G(w(u),v) + log(w'(u)) (3.13)

it can be checked that Jg) and J&i)uu transform indeed as tensors

Tl (w) = (W' (u))? I3 (w(w)) (3.14)

The next step consists in finding the covariant derivatives of the currents. The only v
dependence comes from . We have

9"V I = —1—’; (VuR) (3.15)
GG =~ (VAR) + S RILD

T =~ (VAR) + S RILD

9"V oI i = —4—710 (V3R) + % (VuR) JOLD 4 gRJSH’g)

GV TG, = o (VIR) + g RIGD + SRIGD

9N = —% (V3R) + % (Vo R) JOLD 4 gRijﬁ)

and, using (A-T]) and (A.J) in appendix,

h 1
9" Vol it = —55 (Val) + 5 (VaR) JiV + 2 (VuR) J5?) + BRI,
h 1 1
9" Vol it = ~19g (VaB) + 5 (VuB) Ji) + S RIG0 + SRIZ)
h 1 1 3
uv (32) _—_ _ " (4 Z (1,2) 4 ZpgB1) 4 2p7(22)



1
G Tt = — 5 (VAR) + 2 (VR) TP + 2 (VuR) JED + 3RIG
h 1 5
w 1,5 _ 5 3 1,1 2 1,2
+5 (VuR) Tl + 5RI i
G oIt = — 5 (VAR) + 5 (VAR) JED +2 (VuR) J32)
LRI04 3R
2 uuuUuUU uuuUuUU
h 1 1
uv (3,3) - _ " 5 - (1,3) - (3,1)
+3RICY 4 2Rye2)
2 uuuUuUU 2 uwuwuuUu
1
G oI = — s (VIR) + 5 (VAR) JU2 +2 (VuR) I3
+IRJED 4 3RIG)
2 uuuUuUU uuuUuUU
9Tt = 57 (V) + 3 (VAR) S + 2 (V2R) I3

+5 (Vo R) J&D 4 5RJAD

uUUUU

For the currents Jff)u, which are the linear combinations of Jz(ij%) we obtain

h
9"Vt = 15 (VuR) (3.16)
gV, J3) =0 (3.17)
1
VT = S (VuR) I (315)
GV T D = 20 (V) I, (319)
For s = 6:
2 12 12
5 s = (=50 (VER) V) + 5 (VuR) VIR + o (VaR) S ) o

80
+5 (VuR) Jnd® (3:20)

Now, according to [f]], after the right hand side is expressed in terms of covariant
quantities, terms proportional to A are identified as anomalies in the following way. One
assumes that there is no anomaly in the conservation laws of covariant currents, i.e that
the terms proportional to i do not appear in V#J,, . Since VF#J o = " Vodyu..u +
9"V uJypu.. u, one relates terms proportional to % in the u derivative of the trace (yy.. u
components) with the terms proportional to & in the v derivative of . , components of
the currents.

For the covariant energy momentum tensor J,(f,), the trace is Tr(J (2)) = 2¢"4J?),,,.
Thus, (B.16) reproduces the well known trace anomaly Tr(.J?)) = —%R, where in our case

¢ = 2 (for the missing factor of —27 see the footnote in section 2.2).

— 10 —



We see that the terms that carry explicit factors of & cancel out in eqgs. (B.17)-(B.20).
This implies the absence of A in the trace, and consequently the absence of the trace
anomaly.

4. Trace anomalies

In the previous section the covariant form of the current does not give rise to any trace
anomaly. This is at variance with ref. [Jj, where the fourth order covariantized current
exhibits a trace anomaly which is a superposition of three terms: V,V,R, g,,0R and
gusz. It is therefore important to clarify whether these are true anomalies or whether
they are some kind of artifact of the regularization used to derive the results.

In the framework of the effective action introduced in the previous section (see (B.1)),
the anomaly problem can be clarified using cohomological (or consistency) methods. Such
methods were applied for the first time to the study of trace anomalies in [fg, p7]. Subse-
quent applications can be found in [g, f§ and more recently in [59, p0]. The consistency
conditions for trace anomalies are similar to the Wess-Zumino consistency conditions for
chiral anomalies and are based on the simple remark that, if we perform two symmetry
transformations in different order on the one-loop action, the result must obey the group
theoretical rules of the transformations. In particular, since Weyl transformations are
Abelian, making two Weyl transformations in opposite order must bring the same result.
Although this explains the geometrical meaning of the consistency conditions, proceeding
in this way is often very cumbersome. The problem becomes more manageable if we trans-
form it into a cohomological one. This is simple: just promote the local transformation
parameters to anticommuting fields (ghost). The transformations become nilpotent and
define a coboundary operator.

In this section we will consider, for simplicity, the possible anomalies of the fourth order
current Jﬁ))\ o which couples in the action to the background field B/(fu))\p = Buuap, both
being completely symmetric tensors. The relevant Weyl transformations are as follows.
The gauge parameters are the usual Weyl parameter o and new Weyl parameters 7,
(symmetric in p,v). The variation d; acts only on By, (see [p2)

0rBuuxp = Guv Tap + Gux Top + Gup Tox + o Tup + Gup Tux + Gop Tuw (4.1)

while d, acts on g, T, and By, in the following way
O G =20 Guv (4.2)

OoTyy = (€ —2) 0 Ty

0o By = 0 By
where z is a free numerical parameter. The transformation () of 7 and B are required

for consistency with (f.])). The actual value of z turns out to be immaterial.
Now we promote o and 7 to anticommuting fields:

o2 =0
Tuv Thp + Tp Ty = 0

0Ty + Ty o =0

— 11 —



It is easy to verify that

62 =0, 62 =0, 00 0r + 0,05, =0

el T

Therefore they define a double complex.
Integrated anomalies are defined by

6, TN =nA,,  6,TW =RA,, (4.3)

where 'Y is the one-loop quantum action and A,, A, are local functional linear in ¢ and
7, respectively. The unintegrated anomalies, i.e. the traces T}, and J (4)*‘“,\,, are obtained
by functionally differentiating with respect to o and 7,, respectively.

By applying d,, 6, to the egs. (), we see that candidates for anomalies A, and A,
must satisfy the consistency conditions

89 Ay = 0 (4.4)
;A + 6, Ay = 0
5, A; =0

i.e. they must be cocycles. We have to make sure that they are true anomalies, that is that
they are nontrivial. In other words there must not exist local counterterm C' in the action
such that

A, = 0, / d*z C (4.7)
A, =6, / d?z C (4.8)

If such a C' existed we could redefine the quantum action by subtracting these counterterms
and get rid of the (trivial) anomalies.

We start by expanding candidate anomalies as linear combinations of curvature invari-
ants?

11
A, = /d2x \/—chiIi (4.10)
=2

3
A, = /d%,\/_—gak K, (4.11)
k=1

3The fact that we are in 2 spacetime dimensions reduces greatly the number of curvature invariants,
such as those in () Useful relations valid in 2 dimensions are

1
Ruvxp = iR(gw\ Gvp = Gup Gur) (4.9)
1
Ry = iguvR
0oR = —2Ro—200

- 12 —



where I; are linear in B**? and o

I, = oR (4.12)
I, = B Y ,V,V,\V,0

Iy = B" RV,V,0

I, = B" v,V,00

Is = B" V,V,Ro

Is = BORo
I; = BR?o

Iy = BV, RV,0
Iy = BROo

Lo = Bg"” V,RV,o
I, = B%0

(B* = B“")‘ngp, B = B"g,,). The term I; corresponds to the usual anomaly of the
energy-momentum trace (which is consistent and nontrivial). Therefore in the sequel we
disregard it and limit ourselves to the other terms which contain 4 derivatives. Similarly
K}, are independent curvature invariants that are linear in 7, and contain 4 derivatives:

Ky =V,V,R 1" (4.13)
Ky =R%*7
Ks=0ORT

where 7 = g 7.
Now we apply the consistency condition (4) to A, in the form (f.1(). We obtain

11 12
0elg =D A / d*x /=9I =0 (4.14)

i=2 j=1
where the variations d,1; are expressed as linear combinations of terms J]‘-"’

J7? =B" RoV,V,0 (4.15)
J3° = B V,RoV,o
J57 = BRoOo
J{° = Bg" V,Ro V,0o
J7 = B gV, V, VsV 0
J¢7 = BV ,0V,V\V,0
J2° = B" oV, V, 0o
Jg° = B V,0V,0o
Jg? = B" OoV,V,0o
¢ = B" g VoV, V,V,0
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J¥ = Bo [P0
Jiy = Bg'"'V,0V,00

with coefficients given by

0 0 0 0O z—6-10 0 00 5 0 O
r—6 0 0 0 0 0 0 0 -20 0 O
0 0 0 0 0 0 z—6-6 20 0 1
2 6 0 -1 0 0 2 0 00 0 O
Ay = 0 0 2 4 0 0 0 0 00 2 O (4.16)
0 0 4 0 0 0 0 0 00 O O
0 z—6 0 0 0 0 0 2 00 0 O
0 0 z—6 0 0 0 0 0 00 O O
0 0 0 z—6 0 0 0 0 00 0 2
0 0 0 0 0 0 0 0 00z—-6-4
This gives a homogeneous system of equations for co, ..., ¢11
11
Y eAy=0, j=1,...,12 (4.17)
i=2

The solution can be expressed in terms of 3 free parameters which we take to be ¢y, ¢,
c11. We have

ca =0 (4.18)
C3 — —2 (610 — 2611)
Cqp = —2 (Clo — 2611)

Cy — (610 — 2611)(3} — 6)
1
Cg — _ECH(:E — 6)
1
cr = Z(ﬂf —6)(c11 — c9)
cg — —6 (610 — 2611)

Now we plug this solution ([.1§) back into (f.1() and apply the consistency condi-

tion ([L.5)
12 3
(5TAJ + (50A7- = 57- (/ d2a:\/ —gZCiIZ) + (50 (/ d2x\/ —gakKk>
1=2 k=1

9 11 3
= / LENEDD (Z GATT > by g;) J77 =0 (4.19)
j=1 \i=9 k=1

Here the result of the variations is expressed as linear combinations of the curvature in-
variants denoted by J77:

J7° = v,V,00 (4.20)
J3° = RT™ V,V,0

— 14 —



J37 =™ V,RV,0
Ji° ="V, V,Ro
JI7 = TR0

J7 =10

J77 =17 R0Oo
J3® =1g"V,RV,0
Jo? =10ORo

The coefficients in the result of the §, variation in ({.19) are

0 0 0 0 —2(x—6) 0 8 0 0
AT = | —12 —12 -36 6(x — 6) 0 -2-22 z-6 (4.21)
24 24 72 —12(x—6) 2(x—6) 12 4 12 —6(x — 6)

and the coefficients in the §, variations are

2266-—2 0 00—1 0
=000 0 6-2040 0 (4.22)
000 0 0 224 6-x

Thus, we have obtained a system of 9 equations, which we use to express by, bs, b3 in terms
of ¢g, 10, €11

bl = 6010 — 12011 (4.23)
b2 = 2611 — 269
by = c10 — 6c11

Since A, does not depend on By, the consistency condition (f.4) is satisfied trivially.
In summary, using conditions (f.4) and (.J), the form of the anomalies is reduced to

11 12
A, = /d2x«/_—gZch MG, I; (4.24)
=9 i=1
1 3
b= [Eey=g Y YoM
j=9 k=1
where
00 0 0 0 &£ 0100
Mji=|0-2-2 -6 0 0 —6010 (4.25)
04 4 —2@x-6)3-22%12001
and
0 -2 0
~-12 2 —6
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Now, we check whether the anomalies A, and A, are trivial. The most general coun-
terterm C' is a linear combination

7
C= / d*xy/=g> d;C; (4.27)
j=5

of the following curvature invariants

Cs = B V,V,R (4.28)
Cs = BOR
C7; = BR?

These are the only possible terms if we take into account partial integrations. Variations
of §, and 0, of C' can be expressed as linear combinations of terms I; and K} respectively

7 12
5,0 = / Pay=gY > di AL L (4.29)

1=5 i=1
7 3
5,C = /d2:n\/_—gZZdl 1K,
1=5 k=1
with coefficients given by
0-2-2z—-6 0 0 -6 0 1 O

=100 0 0 z-6 0 0 —2-4-2 (4.30)
00 0 0O 0 z—-60 —-40 0

and
601
=1008 (4.31)
080
If we take
ds = c10 — 211 (4.32)
C
do = ——-
I
=7

both triviality conditions, (f.7) and ([.§), are satisfied.
Our conclusion is therefore that not only the trace anomalies found in [f] are trivial,
but that there cannot be any anomaly whatsoever in J®# Ap-

5. Conclusion

In this paper we have applied the trace anomaly method to the calculation of moments of
Hawking radiation. We have shown that, as suggested in [ they can be in fact explained
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as the fluxes of a W, algebra of chiral currents, which we have constructed out of two chiral
scalar field. The non-trivial flux of these currents is generated by their response under a
conformal transformation (generalized Schwarzian derivative). Then we have constructed
the covariant and Minkowski version of these currents and verified that up to order 6 they
are not plagued by any trace anomaly, except for s = 2, i.e. for the energy momentum
tensor. At this point we have set out to prove that in fact there cannot exist any trace
anomaly for higher spin currents. We have succeeded in doing so for the fourth order
current and we believe this is true also for higher order ones?.

The results of this paper are limited to two dimensions. We do not know whether they
actually extend to four dimensions. The method of diffeomorphism anomaly to calculate
the Hawking radiation, [J], seem to be more general than the trace anomaly method adopted
here. It would therefore be very interesting to investigate the use of the latter in order
to calculate the higher moments of the Hawking radiation with the same criteria we have
used in this paper.
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A. The sixth order current

Here we write down the order 5 and 6 terms corresponding to (B.7):

3
JO = =3JE013 — 91D 47 gLIT — 63T + Th ﬁ“T) L h (ggT) (A.1)
i — (OuT) JY — AT IGD
7@3)  _ 35003 _ 57022 _ 3 @012 _p0hp _ JA3) T _ 5722
3
0D ML) | e, -z
g6 3sanps -3 50902 5502 _pyp _ G _ 3722 p_ Th(9.T)
3
PO RNTE .
60
3
Jbl — 3L 92012 _ 4 LU 67D 4+ Th(9.T) R (0.7)

e 10 30
5kl —(8,T) JEY — 472D

]uuuuu uuu

1S0 it is not very appropriate to use the term ”trace anomaly method”. We should rather use the term
”Schwarzian derivative method”
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and

2% 5 17 1
J5) — 5(1.5) Bl S— + = (021 T+ — (0,1)* + = (0*T A2
_EJ(171)I‘4 — 305213 _ 157 (L2
2 uu uuu uu

-30JL3 12 _ 5(8,T) JLUT — 30721

uuUuUU

47?2 — (921) (LY — 5(9,1) JL2 — 107 g(L3) — 10000 T

uuu

JeA 24 g _2_T3 _ 2 (82T) T — 1 (0,T)° + 1 (84T)
—3JLDrt — 9 (L2335 0ps _ yp g (L2

—6J5312 — 9722712 _ (9,T) JLVT

uuuUY uuuUY

—4TJEIT — g T 6723 T — (0,T) JEY — 4TI 32 — 4TI DT

uuu uUUUUU uUUUUU

273 1 9 1
3,3 _ (3,3 2 2 4
_yanpe_ 92 02 _ 9 genps _ gy 02
_350312 -3 5602 _ 7222
2 uuuu 2 uwuuu uuuu

—37JEIT — 3533 13532 T

“T20Y = T igian = T = 3T T30 T

3
J2 ) g <_£ - 2 () T - — (0,T) + — (33T)>

wuuuun T Junuuuu o % 105

—3JLVrt - 37(LD3 972013 4 (LUT2

uuu

—6J30T? — 9522712 — (9,T) JILVT

uuuY uuuY

—ATTE)T = T D = 69550,T = (0uT) Ty — AT IS, — AT 50T

uuUUYU

2T3 5 17 1
(6.1  _ 5(5.1) Bl - 2 (2T T+ — (8, T) + — (9*T
—?J&vl)rﬁt —30JZD3 _ 157 7LD 2

—30J30 12 _5(8,T) JLYUT — 3077201

uuuUYu

—AT? T = (95T Iy = 5.(0uT) T3 — 10T T 50, — 10751
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