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Abstract 

Neuronal polarization is one of the most studied topics in neuroscience. In less 

than seven days neurites sprout out from the neuron, explore the surrounding 

environment and mature in axon or dendrites. This process is possible because 

the neuronal cytoskeleton can rapidly modify its architecture changing neuronal 

shape and length. Among all, two main proteins are involved: tubulin that 

supports the neurite elongation and builds a solid frame, while actin supports 

pathfinding. In this period of important cytoskeletal changes, it is possible to 

observe the actin waves (AW) that are highly dynamic structures emerging at the 

neurite base which move up to its tip, causing a transient retraction of the growth 

cone (GC). Since their discovery in 1988, there have been only few studies about 

AWs, usually linked to the neurite outgrowth and axon elongation. 

In the present work, I used long term live cell imaging to investigate alternative 

roles of such cytoskeletal phenomena. I examined in details AWs and I concluded 

that they do not promote the neurite outgrowth and that neurites can elongate for 

hundreds of microns without the AWs. Super resolution nanoscopy indicates that 

myosin II shapes the GC like AWs structure. The highly concentrated myosin 

inside the wave can bend the tubulin that support the neurite provoking twists and 

kinks in the microtubular cytoskeleton. These tubulin twists (TT) cause the GC 

retraction and are completely abolished with the inhibition of myosin II, that 

compromises the AW morphology. 

My results indicate that myosin II has an important role in the AWs dynamics and 

can bend the tubulin in a way that was not previously observed. Finally, we 

suggested a role for AWs and TTs in GC exploration and in neurite maturation. 

Part of these results have already been published in Frontiers in Cellular 

Neuroscience in the article: Actin waves do not boost neurite outgrowth in the 

early stages of neuron maturation. 

We have a second manuscript in preparation entitled “Tubulin twists drive Growth 

Cone retraction and promote tubulin mixed polarity”. 
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Introduction 

 

Neurons are highly specialized cells, with different structural and functional 

districts. Neuronal polarization generates the fundamental asymmetries that are 

necessary for the function of neurons.  

These cells have two unique regions at the end of the development: axons and 

dendrites, that extends from the soma to transmit signals through the nervous 

system. The axon is typically a long process that mediate information to other 

neurons releasing neurotransmitters. Dendrites are multiple processes that are 

specialized in receiving signals from other neurons with the neurotransmitter 

receptors located on the dendritic spines. 

In this introduction I review the state of art of the field to set the background of 

my PhD work. Therefore, I will initially describe the neuronal polarization, then 

the role of individual cytoskeletal elements and of myosin II in force generation 

and motility will be discussed. 

 

1.1  Neuronal polarization 

In 1980s, Banker and colleagues established the first basic model for the 

neuronal polarization, that is still nowadays used, and divided the morphological 

changes of cultured neurons into five stages (Figure 1)1. 

Upon dissociation, although they have lost the original connectivity, hippocampal 

neurons re-grow their processes and recapitulate the morphological, synaptic 

and neurochemical features of their in vivo counterparts. 

Shortly after plating, cells extend a motile lamellipodia around the cell body, an 

event known as stage 1 of polarization. Next, during stage 2, the lamellipodia 

clusters at particular sites until small cylindrical processes, the ‘minor’ neurites, 

form. These neurites are highly dynamic, exhibiting periods of extension and 

retraction, until one of them initiates a sudden and sustained growth; this neurite 

becomes the neuron’s axon, and this event characterizes stage 3. Stage 2 and 

3 are characterized by the presence of the growth cones located at the tips of 
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growing neurites. Growth cones (GCs) located at the tip of growing axons are the 

major motile structures guiding neuronal navigation. GCs are composed of a 

lamellipodium, flat (sheet-like) protrusion from which thin finger-like projections 

called filopodia emerge and are decorated by a variety of receptors able to sense 

the presence of appropriate chemical cues, such as guidance molecules2. During 

stage 4, the remaining minor neurites develop as dendrites, and in stage 5, 

synaptic specializations and contacts are established. 

 

Figure 1. Stages of development of hippocampal neurons in culture. The approximate time at which cells 

enter each of the stages is indicated3. 

 

1.2  Neurite Cytoskeleton 

The function, polarity, motility and efficiency of the cell are defined by intracellular 

filamentous networks that constitute the cytoskeleton. Structural proteins such as 

actin, tubulin and those of intermediate filaments by their polymerization and 

depolymerization can create highly ordered structures and orchestrate the driving 

forces of cell movement, neuronal shape and stability. 

In this work I focused on the early stages of neuronal polarization (stage 2 and 

3). In this time window, the main cytoskeletal proteins are actin and tubulin. On 

the other hand, neurofilaments are very important for the axonal support and 

function, but they can reach a significant number only after axon myelination4. 

For these reasons in the present work I will discuss only the role of Actin and 

Tubulin. 
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1.2.1 Actin 

Actin is one of the most plentiful protein and is involved in multiple processes, 

such as: membrane protrusion, cell division and morphogenesis. In developing 

neurons, actin cytoskeleton is essential to generate mechanical forces required 

for many cellular functions, like neurite outgrowth, cell motility, active shape 

control and exocytosis. 

Actin is an enzyme that slowly hydrolyzes ATP, it is able to make interactions with 

a lot of other proteins and performs a variety of functions. However, actin is 

codified by a gene family, with more than 30 elements, therefore there is not a 

unique type of actin. These genes give rise to α-actin, which is usually found in 

contractile structures, β-actin localized at the leading edge of cells that project 

their cellular structures as their means of mobility and γ-actin which is peculiar of 

the stress fibers. 

In the cell is possible to found actin in two different forms: the globular actin, G-

actin and the polymerized filamentous form, called F-actin (Figure 2)5. 

 

Figure 2. Ribbon diagram of G-actin. ADP bound to actin's active site (multi color sticks near center of figure) 

as well as a complexed calcium dication (green sphere) are highlighted5. 

G-actin has a globular structure, formed by two domains separated by a cleft 

which is a center of enzymatic catalysis that binds ATP and Mg2+ and hydrolyzes 

ATP to ADP + Pi. G-actin can operate only when it is bound with ADP or ATP, 

but the ATP form is predominant in cells with actin in its free state6. 
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F-actin is a levorotatory filament with a rotation of 166° around the helical axis, it 

is a polarized structure because all the subunits point towards the same end. 

Therefore, the (-) end has an actin with its ATP binding site exposed, while the 

(+) end is where the cleft is directed towards the adjacent monomer6,7.  

 

1.2.1.1 Growth cones 

During the development of the nervous system, neurons extend multiple neurites, 

through a complex environment to reach their final destinations. At the tip of each 

neurite is the growth cone (GC). They were firstly observed on fixed cells by a 

famous Spanish scientist Santiago Ramòn y Cajal in 1890. GCs are located at 

the tip of neurites and are composed by filopodia and lamellipodia. 

The GC builds its cytoskeleton to move forward and turn continuously 

progressing through three stages of advance, influenced by environmental 

factors: protrusion, engorgement and consolidation8. To understand the motility 

of the GC and the mechanism that influence its way it is essential to understand 

the cytoskeletal mechanisms that move forward and can be affected 

asymmetrically. 

GC have fine extensions finger like called filopodia, they contain bundles of actin 

filaments that can extend several micrometers beyond the edge of the growth 

cone. Between filopodia there are flat regions of dense actin meshwork called 

lamellipodia, these areas appear like a thin veil and usually new filopodia emerge 

from inter filopodia veils9–11. 

In the GC we can define three regions: the peripheral domain, the transitional 

domain and the central domain12 (Figure 3). The peripheral domain is the external 

part of the GC, it is mainly composed by an actin-based cytoskeleton. Filopodia 

play an important role in sensing guidance cues while lamellipodia are 

responsible for the advancement of the GC. Transiently microtubules can enter 

in the peripheral region via a process called dynamic instability13. The central 

domain is in the central part of the GV and contains a dense microtubule 

cytoskeleton and is generally thicker. It is enriched in cellular organelles such as 
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mitochondria and exocytotic vesicles. The transitional domain is the region that 

is located where the actin filaments from the peripheral domain and the 

microtubules from the central domain overlap at the interface. 

Although actin might not be the only propellent for the neurite outgrowth, it plays 

a central role in the advancement and growth cone exploration. It has been 

observed that F-actin retrograde flow is directly related to growth cone motility. 

This movement is driven both by contractility of the motor protein myosin II which 

seems to interact through a protein-protein link in the transition (T) zone and the 

push from F-actin polymerization in the peripheral (P) domain12. Myosin II activity 

can create compressions across the T zone circumference that cause buckling 

of the F-actin bundles, this might be enhanced by pushing from the leading-edge 

actin polymerization. This leads to bundle severing, then the actin fragments can 

be recycled into individual actin subunits G-actin, available for further actin 

polymerization at the leading edge14. 

 

Figure 3. The structure of the growth cone8. 

How does the growth cone advances using actin as an engine? This was 

explained by Mitchison and Kirschner with the “clutch hypothesis” also called 

substrate-cytoskeletal coupling model. They proposed the growth cone receptors 

bind an adhesive substrate to form a complex that works like a molecular clutch, 

they are mechanically coupled to the F-actin flow, that prevent the retrograde flow 

and drives actin-based forward protrusion of the growth cone on the adhesive 

substrate15,16. Filopodia are considered the guidance sensors at the front line of 
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the growth cone, in fact they have a major role in the detection of the substrate 

adhesive contacts during the environmental exploration. 

Commonly the GC advancement is divided into three stages: protrusion, 

engorgement and consolidation. The binding of growth cone receptors activates 

intracellular signalling cascade, starting the formation of a molecular “clutch” that 

connects the actin cytoskeleton to the substrate. During protrusion, the clutch 

gets stronger, slowing down locally the F-actin retrograde flow. This fix the actin 

to the substrate, as F-actin polymerization continues in front of the clutch site and 

lamellipodia and filopodia of the peripheral (P) domain move forward to extend 

the leading edge. Engorgement starts after the actin behind the clutch is 

removed, F-actin are reoriented from the C domain to the site of new growth and 

the microtubles in the C domain invade this region17.  

We have described the cytoskeletal machinery that drive the progression of the 

growth cone, but growth cone pathfinding does not consist only in moving 

forward. There are a multiple signals that participate to the guidance of the growth 

cone, including kinases, phosphatases and calcium ions, our most 

comprehensive is the Rho family of GTPases, a group of molecules that control 

the cytoskeleton rearrangement with the guidance of the signalling receptors18. 

Rho GTPases are a subfamily of the Ras superfamily. Cdc 42, Rac 1 and RhoA 

regulates the F-actin assembly and disassembly and the actomyosin complex19. 

1.2.1.2 Actin Waves 

In 1988, Ruthel and Banker documented for the first time a growth cone-like 

structure that moves through the neurites in cultures of immature hippocampal 

neurons3,20 (Figure 4). These cultures provide an excellent model to analyse 

these events, in fact these events can be easily identified along the neurite shaft, 

forming lamellipodia and filopodia, as in the neuronal growth cone. 
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Figure 4. Time-lapse series showing the progression of a wave along an axon a: A typical neuron is pictured 

at approximately 34 h in culture. A growth-cone-like structure, or ‘‘wave,’’ (arrow) was present on the axonal 

shaft. The cell was not in contact with any other cells within the culture, indicating that this structure was not 

the growth cone of a fasciculating axon. b: The wave is shown at higher magnification in successive 5-min 

intervals taken from a time-lapse recording of the wave as it moved along the axon. The wave (arrow) was 

approximately the size of the growth cone and moved unidirectionally toward the tip of the axon at a fairly 

constant rate, about 2 μm/min. The wave’s lamellipodia and filopodia extended and retracted as it advanced 

toward the tip. Relative times in minutes are indicated in the upper right corner. Scale bars = 10 μm. 

Actin waves are observed mainly during neuronal polarization and are dependent 

on actin polymerization. They emerge at the cell body and travel along the 

immature neurites migrating toward the tip at an average rate of 3 μm/min. In 

addition, these structures are enriched with actin filaments and actin-related 

molecules, such as cortactin, shootin1, GAP-43, ezrin, cofilin, LIM-kinase, 

Slingshot, phosphatidylinositol (3,4,5)-trisphosphate (PIP3), Arp2/3, Cdc42, 

Rap1, Rac1, and doublecortin (DCX)21–23. 

Ruthel and Banker, in their seminal paper, proposed that the role of actin waves 

is associated to transport proteins to the growth cone at the tip of an extending 

neurite. Indeed, the arrival of an actin wave increase the actin concentration in 

the GC20. As in the GC, the actin associated proteins cortactin, cofilin, Arp2/3, 

ezrin, shootin1 and Slingshot colocalize and move within the AW24,25. The actin 

migration is anterograde and is characterized by an anterograde movement of 

actin and actin filament binding proteins. The actin filaments in AWs migrate to 

the GC through a directional process of polymerization and depolymerization. 

The actin filament binding proteins comigrate through a cycle of association, 

dissociation and directional movement with the filaments, given by passive 

diffusion from the region of depolymerizing to the polymerizing ends. Therefore, 
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from a district with high concentration of actin and actin associated proteins, 

depolymerizing ends, to a district with low concentration, polymerizing ends, 

allowing the recycling of depolymerized molecules. This mechanism can 

translocate actin subunits and actin binding proteins to the growth cone and it is 

very different from the largely studied model involving motor proteins such as 

dynein and kinesin26,27. 

 

Figure 5. Directional Assembly–Disassembly Mechanism for Actin Wave Migration and Protein Transport 

along Axons. (A) Mechanism for axonal actin wave migration. The upper left panel shows a fluorescent 

speckle image of mRFP-actin in a wave. A kymograph of the indicated rectangular region at 5-second 

intervals is shown to the right. Actin filaments polymerize at the leading edge, accompanied by their 

retrograde flow (dashed yellow lines). The illustrations describe the molecular mechanism. The actin 

filaments in axonal actin waves undergo directional polymerization and depolymerization, in which the 

polymerizing ends are on average oriented toward the neurite tip (top view, lower left), and are anchored to 

the plasma membrane and substrate through the linker clutch molecules shootin1 and cortactin and the cell 

adhesion molecule L1-CAM (side view, right). As actin filaments in the wave are anchored in parallel with 

the membrane, directional polymerization/depolymerization of actin filaments leads to wave migration on the 

membrane toward the neurite tip. (B) Axonal actin waves as a new type of intracellular transport system. 
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Arrays of actin filaments in a wave migrate through directional polymerization and depolymerization (upper 

panel). Actin filament-binding proteins comigrate with the actin filament array through cycles of dissociation, 

directional diffusion, and association with the filaments. The transport velocity is approximately 100 times 

slower than that of motor protein-based transport (lower panel). Although individual actin subunits and actin-

associated proteins may shuttle between the reutilizing pool and the other diffusible pool (double arrows), 

net amounts of actin and actin-associated proteins that are equivalent to those constituting the actin wave 

are translocated by the directional diffusion. Scale bar, 5 mm (A). 

AWs are usually associated with neurite outgrowth, in fact live imaging 

experiments have revealed that the arrival of AWs at the GC produce neurite 

protrusion, that is preceded by a GC retraction. In addition, waves after their 

arrival can promote neurite branching and increase of the growth cone size. In 

this way, AWs play an important role in the maintenance of the GCs20,21,24,28. 

Furthermore, recently it was reported that waves enhance microtubules 

polymerization along neurites and transiently enlarge the neurite shaft, promoting 

the microtubule polymerization and kinesin driven transport for neurite 

outgrowth29. 

 

1.2.2 Tubulin 

During all the different stages of neuronal development, besides the actin 

cytoskeleton, the assembly, organization and remodelling of the microtubule (MT) 

cytoskeleton are essential. MTs provide tracks for intracellular transport and 

vesicular release, act as signalling devices, or generate cellular forces27,30–32. 

MT cytoskeleton have a huge important in neuronal development and to 

understand that, it is sufficient to consider the wide range of nervous system 

abnormalities and several human neurodevelopmental disorders linked to altered 

microtubules mediated processes. In addition, several developmental problems 

are linked to mutations in microtubule related genes that encode for microtubule-

associated proteins (MAPs), MT motor associated regulators or MT severing 

proteins33,34. 

Although many of the molecular mechanisms regarding the assembly of 

microtubules remain largely unknow, in the last decades the neuronal MT 

architecture has been studied in detail using electron microscopy and live cell 

imaging35,36. 
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The MT structure is built from heterodimers of α and β tubulin, bound in a head 

to tail relation to form polarized structures that associate laterally to form a hollow 

tube, with a diameter of 25 nm30. MTs are very dynamic structures, they 

continuously switch between growth and disassembly, in a process called 

dynamic instability, which allow individual MT to explore cellular regions and 

retract if it does not find the proper environment37. 

MT dynamics are regulated by the properties of tubulin, free tubulin binds GTP, 

which is hydrolysed after incorporation into MT structure. The growth of the MT 

promoted by the GTP cap, in fact, GDP-tubulin tends to destabilize the 

architecture, therefore stable growth is believed to depend on the presence of a 

GTP-tubulin cap at the MT plus end38. In this model, the loss of the cap will result 

in a collapse of the structure, called catastrophe. 

At the tip of the microtubule there is a minus end and a plus end, these can grow 

and depolymerize, but the two dynamics are very different. The plus end, 

terminated by β-tubulin, grows with polymerization of the subunits, undergoes 

catastrophe more frequently and is a crucial site for regulating MT dynamics39. 

Plus end tracking proteins (+TIPs) accumulate at the ends of growing MTs and 

control different aspects of neuronal development and function. Nevertheless, the 

polymerization of microtubule based structures not only depends on +TIPs, but 

also requires many factors, such as MAPs, motor proteins and tubulin isotypes30. 

Relying on different mode of action, five groups of proteins can be deduced from 

the microtubule related proteins. The proteins that can bind to MT ends and 

regulate their dynamics, that contains the +TIPs and minus end targeting proteins 

(-TIPs)30,39. The group of proteins that bind to the MT lattice and can stabilize or 

crosslink MTs40,41. The third group contains proteins that modulate the MT 

numbers, enzymes that sever MTs and regulators of the nucleation42,43. The 

fourth group includes the kinesin and dynein families that generate forces and 

move directionally along MTs44. The last group comprises tubulin folding 

cofactors and tubulin modifying enzymes that through post translational 

modifications can generate distinct MT subtypes45 (Figure 6). 
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Figure 6. Cartoon illustrating how different microtubule-related proteins interact with microtubules46. 

 

1.2.2.1 Neuronal Microtubule Cytoskeleton 

Neuronal MTs are involved in the morphological changes during the phases of 

neuronal development, in the intracellular transport and synapse formation. 

For neurons is fundamental to have an active and efficient transport mechanism, 

to properly distribute many cellular components and establish signalling 

pathways. Kinesin and dynein families are the transporters that travel along the 

neuronal MTs. These proteins carry many types of neuronal cargo, including 

synaptic vesicles, neurotransmitter receptors, organelles, cell adhesion 

molecules, cell signalling molecules and mRNAs. In addition, cargo-adaptor 

proteins, regulatory molecules and MT cytoskeleton play an important role in the 

delivering of the cargo in the correct location44. 

The selective presence of minus end in dendrites enable the dynein to selectively 

transport the cargoes in the dendrites. On the other hand, kinesin 1 has been 

shown to selectively transport cargoes into the axon, formed by plus end MT out 

oriented47,48. 

MTs are very important also for morphological transitions that occur during 

neuronal development, such as neurite initiation, migration, polarization and 

differentiation. 

Neuronal migration is a complex sequence of motile and morphogenetic events, 

in which neurons extend leading process and translocate the nucleus into this 
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process. These movements are driven by actin and MT: actin promotes neuronal 

migration by propulsive contractions at the cell rear and MTs which are anchored 

to the centrosome extends the leading process and form a cage like structure 

around the nucleus. Cytoskeletal forces in the leading edge can pull the 

centrosome into the proximal part of the leading process and move the nucleus 

in the direction of migration49. 

Neurite initiation and outgrowth begins with the breakage of the round shape of 

newborn neurons by sprouting neurites. These neurites are formed by bundled 

MTs and a growth cone which mediate the pushing and pulling forces that 

contribute to membrane protrusion50,51. 

MT stabilization plays a key role in the axon differentiation during neuronal 

polarization. The increased MTs stability in the future axon lead to kinesin 

mediated flow and contribute to determining the axon formation. The whole 

mechanism of axon differentiation remains unknown, but internal signals like 

Golgi position, centrosome localization and cytoskeleton architecture could 

initiate a local imbalance inside the MT network and stabilize MTs in only one of 

the neurites47,52. 

During axon elongation MT cytoskeleton participates in functional interactions 

with adhesion complex and actin, that with +TIPs can modulate the MT dynamics 

and stability47. In addition, to MT polymerization recent studies found that 

translocation of whole MT bundles in the axon contribute to the axon elongation, 

presumably generated by molecular motors53,54. 

Dendritic spine morpho dynamic and synapse functioning are linked directly to 

MT dynamics, in fact, evidences suggest that MTs are associated with transient 

changes in spine shape, such as the formation of the spine and the spine 

enlargement. MTs entire into the spines are regulated by neuronal activity and 

brain derived neurotrophic factor (BDNF), these MTs with microtubule dependent 

motors are responsible to drive postsynaptic cargoes into spines55. 

MTs architectures are organized in bundles, axonal cross sections are usually 

composed by 10-100 MTs. In many cell types, MTs are nucleated at the 

microtubule organizing centre (MTOC), such as the centrosome, but they can be 

generated even in other position, such as the Golgi apparatus or along existing 
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MTs, where not all the minus ends are directed towards a central organization 

centre46,56. In newborn neurons the centrosome first acts as an active MTOC, but 

with time this activity is completely lost. Electron microscopy and super resolution 

studies have shown that MTs are not anchored to the centrosome and often the 

ends are free in the mature neuron (Figure 7). 

 

Figure 7. Changes in Microtubule Organization during Development. After their final division, neurons transit through 
several developmental stages and the MT cytoskeleton has a pivotal role at all stages. During these stages, the MT 
organization changes from a radially centrosome-based and largely plus-end outward-oriented network to an 
acentrosomal network with uniform orientations in the axon and mixed orientation in dendrites. 

Because most MTs do not emerge from the MTOC, their relative orientations can 

vary. Electron microscopy with hook decoration technique revealed that MT 

orientations in axons and dendrites have different patterns35. Whereas in axons 

we can observe uniformly plus end out oriented MTs, in proximal dendrites the 

orientations of MTs are non-uniformly, in fact MTs are half plus end out and half 

minus end out. 

This different distribution in MTs orientation contribute to polarize the trafficking 

to dendrites or axons, allowing dyneins to act as a anterograde motor in 

dendrites57. 

 

1.2.3 Force generation protein non-muscle myosin II 

Myosins are mechanoenzymes that generate forces through the interaction with 

actin filaments and the hydrolyzation of ATP. These proteins can influence the 

structure and the dynamics of actin cytoskeleton and affect the localization of 

cellular components58,59. 

There are 35 known classes of myosin and humans have 40 myosin genes that 

produce 13 classes (I, II, III, V, VI, VII, IX, X, XV, XVI, XVIII, XIX and XXXV)60. 
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Here we will focus on a neuronal myosin that participate in growth cone and actin 

wave remodelling, the non-muscle myosin II (NMII). 

Class II myosins are composed by six monomers, two myosin heavy chains and 

four calmodulin-related light chains. A peculiar feature of myosins II is their ability 

to assemble into bipolar filaments that contain 14 -20 copies (NMII) or several 

hundred copies (sarcomeric myosin II) of hexameric molecules with actin binding 

heads oriented towards opposite ends61,62. 

NM II is fundamental in cell migration, protrusion, cytokinesis and cell adhesion. 

It mediates the retrograde flow of lamellar actin and attenuates cell protrusion 

and is very important in the recruitment of focal adhesions proteins. 

The actin retrograde flow in the neuronal GC determine the growth cone 

protrusion or retraction, myosin is the key player in this phenomenon with the rate 

of actin polymerization. To do the retrograde flow myosin II binds actin filaments, 

forming the actomyosin complex which exert a contractile force on anti-parallel 

actin filaments. Furthermore, NMII mediates adhesion with actin and adhesion 

related proteins such as integrins that are clustered at the end of these actin 

filaments62. 

In neurons, there are three isoforms of NMII: myosin II A, B, C. All these isoforms 

have a similar structure and properties, but they have different functions and 

localizations. Myosin II B is the predominant form in the nervous system, it 

promotes the neurite outgrowth, modulate dendritic spines morphology and 

synaptic function. On the other hand, myosin II A is required to maintain tensile 

adhesion and favour the neurite retraction. Myosin II C is the least represented 

isoform and it is involved in the regulation of cell membrane extension and the 

formation of focal contacts in collaboration with Myosin II A and B61,63. 

A further demonstration of the importance that myosin II plays an important role 

in the neuronal cytoskeleton is confirmed by the observation that inhibition of 

myosin II with blebbistatin promote the reorganization of both actin and MTs in 

the GC64. 

Blebbistatin is a myosin II specific inhibitor, it is used in research for NMII in 

neurons and for skeletal muscle myosin. Blebbistatin blocks the myosin ATPase 

activity, it binds between the nucleotide binding pocket and the actin binding cleft 
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of myosin, relaxing the acto-myosin filaments. The blebbistatin was found to 

promote the outgrowth of neurites in neurons and it is widely used to study the 

involvement of myosin II in the cytoskeleton dynamics64,65. On the other hand,  

the 4-hydroxyacetophenone (4-HAP), a myosin II activator was recently 

discovered and this compound can alter the mechanics of myosin II heavy chain 

phosphorylation in an independent manner, specifically targeting the myosin II 

power stroke of the myosin II ATPase cycle66. 
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Results 

Neuronal polarization is a very complex and large field of research, usually people 

try to understand the small changes in the protein levels or study the 

colocalization of particular proteins. To do that they commonly use molecular 

biology or fixed preparations of developing neurons at different stages, mainly 

alter 5 DIV when you can start to see the firsts mature axons. We thought that it 

is necessary a more physiological approach to observe protein interactions and 

avoid fixation artefacts. Starting from that we started to study the period before 

the axonal maturation and we focused our attention on a phenomenon that is 

highly spectacular and surprisingly poor studied, the actin waves. Our team 

performed live imaging experiments to study these particular events and in doing 

that we find out that some dynamics of these actin waves were not correctly 

characterised and that they can have a fundamental relevance in the neurite 

maturation. 

 

2.1 Actin Waves Do Not Boost Neurite Outgrowth in the Early 

Stages of Neuron Maturation 

 

Simone Mortal, Federico Iseppon, Andrea Perissinotto, Elisa D'Este, Dan 

Cojoc, Luisa M. R. Napolitano and Vincent Torre 

 

Original Research ARTICLE 

 

Front. Cell. Neurosci., 18 December 2017 | 

https://doi.org/10.3389/fncel.2017.00402 
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Tubulin twists drive Growth Cone retraction 
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Abstract 

Microtubules are formed by tubulin heterodimers and are the main building blocks 

of the cytoskeleton. Microtubules are considered rigid structures and their flexural 

rigidity is 1000 times larger than that of actin filaments. We performed live cell 

imaging of developing neurons by staining actin with LifeAct and by marking 

tubulin with Sirtubulin. Under these conditions, microtubules have sharp bends 

which are not apparent upon fixation. These Tubulin twists (TT) are often 

associated with actin waves (AW) and disappear after inhibition of myosin. 

Formation of TT is promoted by the myosin activator 4’-HAP. TTs represent a fast 

mechanism for neurites shortening. In addition, TTs remodel the tubulin polarity 

creating kinks so that following severing of the microtubules, the obtained 

segments have opposite polarity as seen in dendrites but never explained. 
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Background  

During neuronal development, the cytoskeleton architecture undergoes important 

modifications as neurites start to sprout out from the soma and explore the 

surrounding environment. Tubulin and Actin are the key players in this process, 

and the fast outgrowth of the microtubules provides support and rigidity during 

neurite elongation46. The fast actin remodeling promotes the growth cone mobility 

for the correct pathfinding and Actin Waves maintain the growth cone shape and 

provoke the typical pulling effect3,20. In the great majority of cases observed so 

far however, microtubules appear straight and exhibit a significant rigidity 

prohibiting kinks and sharp bending67. In contrast, by performing live imaging 

using indicators which have only recently become available, we found that tubulin 

is actually rather dynamic, and bends and twists in concert with actin waves. 

 

What we have done 

We performed live cell imaging of developing neurons by staining actin with 

LifeAct (Ibidi) and tubulin marked with Sirtubulin (Cytoskeleton, Inc). We found 

that: 

• Microtubules can have TTs 

• TTs are associated to AWs 

• TTs disappear after inhibition of myosin II 

• TTs are promoted by the myosin activator 4’-HAP66 
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Results  

 

Figure1. Tubulin twists. A. Example of the transient bending of tubulin. B. Time-lapse of a living 

neuron stained in green for Actin and in red for tubulin. It is possible to observe the appearance 

of the tubulin twists, in the magnification in C and D. E. Plot of the tubulin local curvature of the 

neurite for multiple timepoints. Scalebar = 10 µm. 

 

We performed live cell imaging of dissociated neurons during the first three days 

of development. We observed the appearance of kinks and twists in microtubules 

(Fig. 1 A, B). Tubulin twists (TTs) were coincident with an Actin Wave (AW), but 

not all the AW had a TT. While the AW proceeds along the neurite, often the 

microtubules bend leading to the classical retraction of the growth3,20. To quantify 

these phenomena, we computed the local curvature along the length (Fig 1E). 

 

 

Figure 2. A. Comparison of a TT before and after the addition of 4% PFA. B. TT on an astrocytes 

carpet. C. Reconstruction (in orange) of the TT shown in B. D. Time-lapse of a living neuron while 

it performs TTs. Scalebar = 10 µm. 
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TTs were rarely observed when developing neurons were fixed and tubulin and 

actin are imaged with conventional immunofluorescence. Therefore, we verified 

that TT clearly present in live cell imaging experiments disappeared after a fast 

fixation with PFA (Fig.2A). TTs were still observed when neurons where cultured 

and grown on a carpet of glia cells (Fig.2B-D).  

 

 

Figure 3. A. Blebbistatin effect, we tested the effect of blebbistatin on TTs before, there is a normal 

TTs activity. After the addition of blebbistatin 20 µM, we can observe neurite outgrowth and the 

disappearance of the TTs. B. 4’-HAP effect, after addition of 4’-HAP 50 µM, we can observe an 

increment in the tubulin twists appearance. Scalebar = 10 µm. 

 

The formation of a TT requires the action of a strong force able to bend the rigid 

microtubes. We found that the addition of Blebbistatin a well-known inhibitor of 

myosin II, instantly promotes the neurite outgrowth, modifies the AW and most 

importantly abolishes the TTs (Fig. 3A). To confirm this AW-TT link, we tested the 

effect of the application of 4’-HAP, a well-known myosin activator66. This 

compound enhances the myosin contractility and induces more frequent TTs 

(Fig.3B). 
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Conclusions 

The present MS shows that in contrast with the current view of microtubules, 

these structures are not rigid and undergo reversible bending. TT have two 

fundamental functions, never envisaged before: 

• TTs represent a fast mechanism (Fig.4A) by which neurites can shorten 

their length, which is likely to be necessary during development when 

growth cones have to find their final destination. 

• TTs are the cause of the pulling effect previously described Routhel and 

Banker 19983 but never fully understood. 

• TTs remodel the tubulin polarity creating kinks so that following severing 

of the microtubes the obtained segments have opposite polarity (Fig.4B) 

as seen in dendrites but never explained. 

 

 

Figure 4. Model of the TT dynamics. A. TT formation during the AW traveling. B. Model to make 

the microtubules mixed polarity. 
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Conclusions 

AWs were discovered in 1988 by Ruthel and Banker as wave-like membrane 

protrusions containing actin filaments along the axons and immature neurites of 

cultured rat hippocampal neurons3. These authors proposed a key role for the 

AWs in transporting actin and associated proteins to the GC at the tip of an 

extending axon3,20. In this 20 years, other groups found a dual role for AWs as 

drivers in the neurite extension and in the growth cone exploration21,24,29. Here 

we describe AWs generated at a frequency of 1 wave every 20 minutes and with 

an average speed of ~2-3 μm per minute. Long term live cell imaging experiments 

reveal that the constant arrival of AWs generates retraction/elongation cycles, 

resulting in a transient increase of GC size and not in a net neurite elongation. 

This incongruity with other studies could be related to the use of P1-P2 

hippocampal neurons, while previous studies used embryonic mouse or 

rats29,51,68. Indeed, “older” neurons can exhibit a different behaviour. It is also true 

that my work is the first one to give a complete picture of the long-term behaviour 

of the AWs, that although not promoting neurite elongation, seems to contribute 

in neuronal polarization as suggested in other papers21,28,29. AWs can even 

contribute in the GC support. In fact, the GC continuously reduces its size during 

environment exploration and recover its original size after the arrival of an AW, 

that provides fresh actin oligomers and other metabolic product. 

From there I started wondering if the AWs can influence other cytoskeletal 

components, so that I investigated the possibility of a crosstalk with microtubules. 

I found that the pulling effect of the AWs is due to the bending of tubulin and I 

named this phenomenon as tubulin twist. Despite the large dimensions, this 

structure was surprisingly never observed, and my explanation is that only the 

use of live imaging in young neurons combined with new dyes could give the 

opportunity to observe TTs. In fact, the studies on cytoskeleton are usually done 

on fixed cells, where is impossible to observe this structures, and historically very 

poor attention has been reserved to AWs. In addition, the huge problem of 

transfection in primary cultures has probably contributed to postpone the 

discovery of TTs. 



51 
 

To conclude, I think that this novel structure producing kinks in the microtubules 

might produce tubulin segments with opposite polarity. Thus, the microtubule 

mixed polarity induced by TTs is a fundamental component of the dendrites and 

part of the axon. Therefore, the TTs should be considered as part of the 

mechanism that leads the neurites to their maturation in axons and dendrites. 
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Abstract 

Photoreceptors are specialized cells devoted to the transduction of the incoming 

visual signals. Rods are able also to shed from their tip old disks and to synthetize 

at the base of the outer segment (OS) new disks. By combining 

electrophysiology, optical tweezers (OT) and biochemistry we investigate 

mechanosensitivity in the rods of Xenopus laevis and we show that: i- that 

mechanosensitive channels (MSC), TRPC1 and Piezo1 are present in rod inner 

segments (IS); ii- mechanical stimulation – of the order of 10 pN – applied briefly 

to either the OS or IS evokes calcium transients; iii- inhibition of MSCs decreases 

the duration of photoresponses to bright flashes; iv- bright flashes of light induce 

a rapid shortening of the OS; v- the genes encoding the TRPC family  has an 

ancient association with the genes encoding families of protein involved in 

phototransduction. These results suggest that MSCs play an integral role in rods’ 

phototransduction. 
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Introduction 

Photoreceptors are thought to be specialized cells devoted to the transduction of 

the incoming visual signals. Nevertheless, rod photoreceptors are known to shed 

from their tip old disks and to synthetize at the base of the outer segment (OS) 

new disks. Following strong illumination rod outer segments (OSs) from mice 69 

and fly photoreceptors 70 have been reported to increase their length, but rod OSs 

from Xenopus laevis frogs shrink their length by about 0.4-0.6 µm 71. These 

observations indicate the existence of a mechanical machinery inside rod OSs 

but its action and role in phototransduction are completely unknown.  

Mechanosensitive channels (MSCs) 72 are not expressed only in specialized 

sensory neurons but have been found in olfactory sensory neurons 73 and 

possibly are expressed in many - if not all - neurons of the central nervous system. 

In bacteria MSCc are supposed to play a major role in keeping osmotic 

equilibrium across their membrane especially during hypo-osmotic conditions: in 

these conditions, the opening of poorly selective MSCs contribute to the control 

of osmotic equilibrium 74; 75; 76. MSCs in eukaryotic cells can be activated by light 

mechanical forces in the 10 pN 77.  

 There are now several classes of ion channels implicated in the eukaryotic 

mechanotransduction machinery, including TRP channels and Piezo channels 78. 

The TRP channels are non-selective permeable cationic channels with a 

selectivity ratio Ca2+/Na+ that varies between the different family members 79. 

Within the TRPC family, TRPC 1 and TRPC6 have been reported to be activated 

directly by membrane stretch and curvature 80. 

By combining electrical recordings, OT and biochemical tools in the present 

manuscript we demonstrate that: i- weak mechanical stimulation – of the order of 

10 pN – applied briefly to either the OS or IS evokes a clear calcium transient; ii- 

inhibition of MSCs decreases the duration of photoresponses to bright flashes, 

and the magnitude of this effect increases with flash intensity; iii- bright flashes of 

light induce a rapid shortening – of the order of 200-300 nm – of the rod OS; iv-  

the genes encoding the TRPC family of MSCs appear to have an ancient 

association with the genes encoding three families of protein that are directly 

involved in phototransduction in the rod OS. We show also that the MSCs TRPC1 
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and Piezo1 are present abundantly in rod inner segments; whereas, our analysis 

together with two proteomic studies investigating the protein composition of the 

disks (Panfoli et al., 2008) and of the OSs (Kwok et al., 2008), do not support 

their expression in  OS.  
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Results 

 

To investigate mechanosensitivity in rod photoreceptors we decided to use OT 

81, which was used previously in our lab to trigger calcium transients in response 

to very weak forces, in the 10 pN range 77.  Application of this approach requires 

that the rods be held in an environment of high mechanical stability, for example 

lying on a rigid substrate, and this makes it extremely difficult to simultaneously 

record their electrical responses using either suction or patch pipettes.  Instead, 

we chose to measure the functionality of rods that were isolated in this 

configuration by using the new infra-red-sensitive calcium indicator dye, CaSiR-1 

82.  Specifically, we loaded retinas using the AM-ester of this dye (see Methods), 

and then we mechanically dissociated individual rod photoreceptors and/or outer 

segments. We viewed the preparation using IR illumination at 750 nm and an IR-

sensitive video camera attached to the microscope. Then, from regions of 

interest, we recorded the fluorescence emitted by CaSiR-1 upon excitation with 

deep red 650 nm light (Fig. 1A). This established that outer segments lacking an 

inner segment fluoresced intensely (Fig.1A, left inset), and showed further that 

this fluorescence was not reduced by illumination with green light. Thus, isolated 

outer segments were unresponsive to green light. 

More-nearly intact rods, in which the outer segment remained connected to at least part 

of its inner segment, fell into two categories. On the one hand, we found one category of 

‘unresponsive’ cells that showed no change in fluorescence upon exposure to blue light 

(Fig.1E). These cells were characterized by approximately uniform fluorescence along 

the OS, at a moderate to high level, and often showed a high level of fluorescence in the 

IS (Fig.1E, n >40). A second category of ‘responsive’ cells exhibited a distinct drop in OS 

fluorescence in response to blue light (Fig.1D, blue trace; n = 10), together with a marked 

gradient of fluorescence along the outer segment, with the basal section fluorescing only 

weakly (Fig.1A right inset, and Fig.1B; n > 30). We hypothesize that this second category 

represents functional rods, that exhibited a light-induced decrease in OS free intracellular 

calcium concentration, as a result of the combination of activation of the 

phototransduction cascade and the existence of a circulating ‘dark current’ (Lamb & 

Pugh 2006) driven by the ion gradients maintained by IS metabolism. The longitudinal 

gradient in OS calcium concentration is likely to arise from a gradient of Na+-Ca2+-K+ 

exchanger activity along the OS, as a result of the gradient in Na+ ion concentration 
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caused by longitudinal diffusion of Na+ ions towards the ‘sink’ for intracellular Na+ 

provided by Na-K-ATPase activity in the IS (Lamb & Pugh 2006). For the unresponsive 

cells (and for isolated OSs), it is plausible that there is a physical disconnect between 

the IS and OS that disrupts the maintenance of the required low Na+ ion concentration 

in the OS. 
For our experiments using OT, we conclude from the results above that we can 

identify the functionality of rods lying on a rigid substrate: the cells need to have 

been pre-loaded with CaSiR-1, and then their emitted fluorescence is viewed 

upon excitation with 650 nm light.  Functional rods display a pronounced 

longitudinal gradient of emitted fluorescence, with the basal end appearing dark.  

In separate electrophysiological experiments we measured the effect of the 650 

nm excitation light on the circulating current of functioning rods measured by 

presentation of a bright flash (Fig.1F).  Compared with dark-adapted conditions 

(black trace), the circulating current in the presence of the 650 nm excitation light 

(red trace) was reduced to about 40% (response amplitude 14 ± 2.5 pA in 

darkness, and around 5.5 ± 2 pA with excitation; n = 7).  Therefore, our 

measurements of changes in calcium concentration elicited by mechanical 

stimulation were performed during the equivalent of dim to moderate illumination 

of the rod, and we refer to this as ‘semi-dark-adapted’ conditions. 

 

 

Figure 1: Fluorescence emitted by the calcium-sensitive indicator, CaSiR-1, 

incorporated into rods isolated from the Xenopus laevis retina.  A: Isolated rods in a dish, 

showing a mixture of rods comprising both an isolated OS (left) and an OS that remains 
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connected to its IS (right) (scale bar 100 μm).  B: Intact rods comprising an OS+IS 

typically display a pronounced longitudinal gradient of fluorescence, with the base of the 

OS quite dim. These two rods were responsive to green light, as typified by panel D 

(scale bar 10 μm).  C: Some OS+IS exhibited fairly uniform high fluorescence along the 

outer segment, and were unresponsive to green light, as typified by panel E (scale bar 

10 μm).  D: Photoresponses from an OS+IS of the kind shown in panel B, from a ROI 

corresponding to 100x300 pixels of the OS (blue trace), and from an ROI corresponding 

to the IS (green trace).  E: No photoresponse was seen from the OS of OS+IS of the 

kind shown in panel C.  F: Suction pipette recordings in response to stimulation by bright 

blue flashes (~2500 photoisomerization (R*)) from an OS+IS loaded with CaSiR-1, in the 

absence (black trace) and in the presence (red trace) of the intensity of 650 nm light 

used for calcium imaging in the other panels. 

 

Mechanosensitivity of rods 

Using the criteria developed above, we identified responsive isolated rods that 

had been loaded with the calcium-sensitive dye CaSiR-1, and we applied 

mechanical stimuli of approximately 10 pN to either the OS or the IS, by means 

of an oscillatory optical trap (see Fig. SI 3 and 77. In semi-dark-adapted 

conditions, a mechanical pulse applied to a silica bead contacting the IS (Fig.2A) 

evoked a local increase in fluorescence (Fig.2B), with a magnitude DF/F that 

could reach around 0.2 in 10–20 s (Fig.2C). The increase in fluorescence began 

with little delay from the mechanical stimulus (270 ms ± 80, n=12, p < 0.05), and 

the fluorescence signal remained localized to the IS, with no propagation to the 

OS (Fig.2B). Comparable results were obtained when the stimulating bead was 

touching the OS (Fig.2E): upon mechanical stimulation, the fluorescence 

increased locally (Fig.2F), reaching peak in about 10 s (Fig.2G), after a delay of 

no more than ~300 ms (Fig.2H).  Collected results from 12 experiments on the IS 

and 8 experiments on the OS indicate a peak fluorescence increase (DF/F) of 

0.14 ± 0.03 and 0.07 ± 0.01, respectively (Fig.2I and statistically different with p 

< 0.05); whereas the mean duration of these transients was around 35.1 s ± 4.05 

in the IS and 33.2 s ± 4 in the OS (Fig.2L). In several experiments we repeated 

the same mechanical stimulation for at least three times and we observed that 

the initial and fast component of the calcium transients 77 was reproducible, but 

the second and larger component – presumably caused by the calcium release 
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from internal stores – declined (Fig.2 SI).In 3 experiments in which mechanical 

stimulation of the OS evoked a calcium transient, application of 5 M GsMTx-4 

abolished the response to subsequent mechanical stimulation.  

 

 

  

Figure 2: Calcium response of Xenopus leavis rods (OS+IS) to weak mechanical 

stimulation applied along the vertical direction.  A: A trapped bead in contact with the tip 

of the rod IS, under bright-field IR imaging.  B: Fluorescence change (DF/F) images, 

showing the ROI used to quantify the fluorescence change vs time.  C: Time course of 

the evoked DF/F change from the ROI in B.  Mechanical stimulation was applied at time 

zero, as indicated by the arrow.  D: Trace from panel C on an expanded time-base, 

additionally showing the FTL driving command (green trace) used to move the trapped 

bead, and the resulting force pulse (blue trace); the force applied to the IS was about 8 

pN. E, F, G and H: As in A, B, C, D but for mechanical stimulation of the rod OS. I: 

Collected results for peak DF/F (mean ± SD) induced by mechanical stimulation, for IS 

and OS respectively.  J: Mean duration of calcium transients, for IS and OS respectively. 

A calcium transient was detected when DF/F was above 0.004, approximately equivalent 

to 5-fold the background noise. Termination of detected transients occurred when DF/F 

decreased below 0.004. 
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These results indicate compartmentalization of calcium dynamics within the rod 

cytoplasm, and they suggest that rods are indeed mechanosensitive, i.e. that they 

express channels that can be activated by direct mechanical stimulation.   

 

Light-induced changes in rod outer segment length 

Given that Xenopus rods respond to mechanical stimuli, we decided to test 

whether they also exhibited changes in OS length upon illumination, such as the 

shrinkage of about 0.4–0.6 µm reported by Lu et al 7183 71.  We chose to use OT, 

because of its high sensitivity, of the order of 1–10 nm, and rapid temporal 

resolution, in the ms range 81; see also Methods and Fig. SI 3. 

 

 

 

Figure 3: Mechanical response of a Xenopus leavis rod to light flashes.  The position of 

a bead sealed against the tip of the rod OS is monitored with OT (see Methods).  

Following a bright flash of 490 nm, equivalent to about 104 R*, a transient shrinkage is 

observed.  A: Bright-field IR image, showing a trapped bead in contact with the tip of the 

rod OS (scale bar 20 μm). B: Detail of the 3D tracking system.  C: Light-induced vertical 

shifts of the trapped bead (downward is negative).  Different colors indicate traces from 

different OS+ISs – and each trace is the average of at least two responses and the black 
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trace is the average from 5 different experiments. D: Expansion of the time-base in B, to 

examine the delay between light stimulus and bead movement.  E: Bead displacement 

along the direction of the rod OS.  F: Bead displacement in the direction perpendicular 

to the rod OS axis (shrinkage is negative and elongation is positive).  

 

We used the OT to position a silica bead above the tip of a rod OS, and then gently 

lowered the bead until it made contact with the OS (Fig.3A), and then established good 

adhesion, as indicated by a decrease of the noise in the quadrant photodetector (QPD) 

trace 77.  Once the bead has sealed to the tip of the OS in this way, its precise position 

(monitored by the OT) provides a measure of the length of the OS, so that any light-

induced changes in OS length are recorded as displacements of the bead. We were able 

to measure the bead displacement in the X, Y and Z directions, and we could then 

express the motion in terms of a longitudinal displacement in the X, Y plane along the 

direction of the OS (monitoring OS shrinkage or elongation) and a displacement in its 

orthogonal direction and along the vertical Z axis (see Fig.3B). 

Fig.3 shows bead displacements in response to brief flashes delivering around 

2500 R*/rod. We consistently observed a light-induced shortening of the OS, of 

the order of 100–200 nm in different experiments (different colors in Fig.3).  The 

delay of the onset of the bead displacement was less than 50 ms (Fig.3C, mean 

42.5 ms ± 12, n=5), which is similar to the delay in the electrical response to 

flashes of this intensity.  The shortening was transient, and in all experiments the 

bead returned to its original position within about 10 s, which is again faster than 

recovery of the electrical response to a flash of this intensity.   

To avoid the possibility of artifacts caused by the optical trap, we decided to use 

conventional video imaging to measure OS length.  Thus, we turned off the IR 

laser used for optical trapping, and used IR video imaging; by comparing bright-

field images obtained before and after a stimulus, we could detect small 

movements, though inevitably the resolution was much lower (Fig.3 SI).  For 

isolated rods (OS+IS) visualized using 750 nm illumination, the same flash 

intensities as used in Fig.3 elicited shortening of the OS of 2–4 camera pixels, 

corresponding to approximately 100–300 nm. The combination of these two 

approaches confirms that flashes delivering approximately 2500 R*/rod trigger 
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transient shortening of Xenopus laevis rods, similar to that reported recently 83,  

who referred to it as transient retinal phototropism. 

 

Rod photoresponses in the presence of MSC inhibitor 

Given that rod photorerceptors show mechanosensitivity, we investigated their 

role in phototransduction by recording rod photocurrents with a suction pipette 

and then applying the MSC inhibitor GsMTx-4 84.  GsMTx-4 is a small peptide 

obtained from a spider venom, and has been shown to inhibit several MSCs from 

both the Piezo and TRP families 8586.  It is thought to act at the interface between 

the lipids in which the MSC is embedded 87, thereby reducing the effective 

magnitude of the mechanical stimulus acting on the MSC gate: thus, GsMTx-4 is 

a gate modifier rather than a specific  ion pore blocker. We delivered GsMTx-4 

using a second similar pipette connected to a picospritzer and positioned 50-100 

m from the OS of the recorded rod (Fig.4A). Prior to drug exposure, presentation 

of bright flashes of about 2500 R*/rod 88 triggered suppression of the rod 

circulating current for 2–5 s (Fig.4B and C).  When the inhibitor was gently 

injected into the bath, using around 4 psi of pressure, the OS of the recorded rod 

was displaced from its original position (compare upper and lower panels in 

Fig.4A) signaling the arrival of GsMTx-4.  The same illumination then elicited 

photoresponses of shorter duration (compare black and red traces in Fig.4C; 

n=13).  Subsequently, after the injection of GsMTx-4 had been terminated, the 

photoresponses recovered their original time course (compare black and blue 

traces).  When the same experiment was repeated in the absence of GsMTx-4 in 

the pipette, but with a similar degree of OS displacement, no significant 

shortening of photoresponses was observed (Fig.4D and E; n=15).   
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Figure 4: The effect of MSC blocker GsMTx-4 on photoresponses from Xenopus rods.  

A: The upper pipette records the photocurrent of an isolated rod, while the lower pipette 

is connected to a picospritzer and can be used to expose the rod OS to the MSC inhibitor 

GsMTx-4.  When the picospritzer was activated (lower panel), the rod OS tilted, and then 

returned to its initial position upon termination of injection (not shown)(scale bar 20 μm).  

B: The photocurrent elicited by flashes of about 2500 R*/rod, before, during, and after an 

exposure to GsMTx-4 lasting 120 s.  C: Exposure to GsMTx-4 (red trace) shortens the 

duration of the bright-flash photoresponse by about 2 s compared with those obtained 

immediately before (black) and immediately after (blue) exposure to GsMTx-4; mean 

duration 4.7 ± 1.8 sec in control and 3.4 ± 1.3 sec when GSMTX was injected through 

the pipette (p < 0.001).  D and E: As in B and C but the picospritzer injected Ringer 

solution. Mean duration 6.2 ± 1.7 sec in control and 5.9 ± 1.9 sec when Ringer was 

injected through the patch pipette with no significant statistical difference. F: Comparison 

of photoresponses in control conditions (black traces) and in the presence of GsMTx-4 

(red traces), for one cell exposed to flash intensities of approximately 5, 10, 25, 50, 100, 

250, 500, 1000 and 2500 R*/rod.  G: As in F, but in this case each trace was averaged 

over photoresponses obtained from 6-7 different rods. The amplitude of the maximal 

photoresponse was normalized to unity, for recordings both in Ringer (black traces) and 

in the presence of GsMTx-4 (red traces).  H: The effect of GsMTx-4 on dim flash 
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photoresponses for one cell; the flash intensities were 5 and 10 R*/rod.  For each trace, 

6-7 photoresponses have been averaged.  I: Relation between the GSTMX-4-induced 

shortening (ΔT) of photoresponse duration and the saturation time (Tsat) of the 

response. For 250, 500, 1000 and 2500 R*/rod, the shortened time courses were of 0.3 

s, p < 0.05; 0.5 s, p < 0.01; 0.7 s, p < 0.05 and 1.3 s, p < 0.001 respectively. In all 

experiments, the concentration of GsMTx-4 in the pipette connected to the picospritzer 

was 5 M, and we estimate that the concentration reaching the rod OS following 

activation of the picospritzer was in the micromolar range; n= 6-7.   

We analyzed the effect of GsMTx-4 on photoresponses to flashes with intensity 

ranging from dim (5 R*/rod) to bright (2500 R*/rod); compare black and red traces 

in Fig.4F and G (n = 7 rods).  Application of the MSC inhibitor had negligible effect 

on photoresponses to dim flashes (n = 8; Fig.4H), and it had relatively little effect 

for flashes of intermediate intensity (Fig.4F, G, I).  It was only for flashes of 

saturating intensities (i.e. greater than ~100 R*/rod) that the time-course was 

shortened by GsMTx-4, and for these saturating flashes the magnitude of the 

response shortening increased with increasing flash intensity (see Fig.4I).   

 

Relationship of the TRPC1 gene to the genes underlying vertebrate phototransduction 

We examined molecular phylogeny gene and synteny for both TRPC1 and 

Piezo1, and we discovered that the TRPC1 gene is closely associated with 

several genes that encode proteins involved in the vertebrate phototransduction 

cascade.  In particular, TRPC1 is clearly a member of the paralogon that 

comprises the visual GRKs, the arrestins, and the visual GCs (guanylyl cyclases).  

In contrast, if any such relationship exists for the Piezo1 gene, we were unable 

to detect it. 

The syntenic relationship between the TRPCs and the three other families of 

genes mentioned above is summarized in Fig.5; note that, for purposes of 

illustration, we have chosen to show just four families and just two species from 

the much larger set that is presented in Supplementary Information.  Each column 

represents the remaining members of the quartet of genes that were generated 

from a single ancestral gene through two rounds of whole-genome duplication 

(2R WGD) in a proto-vertebrate organism some 500 Mya (million years ago); 

thus, ARRB1, ARRB2, ARR3 and SAG arose through quadruplication of a single 
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ancestral arrestin gene.  Each row shows a region of either one or two 

chromosomes in an extant organism, and where two regions are shown this is 

presumed to be the result of chromosomal rearrangements over 500 My.  

Examination of the larger dataset in SI provides powerful evidence that each of 

the four rows is contiguous and represents the current re-arrangement of genes 

on the four ancestral chromosomes that existed shortly after 2R WGD.  

Furthermore, for each of the four gene families, analysis of molecular phylogeny 

shows clear evidence of expansion during 2R WGD; for the TRPCs this is shown 

in Fig. SI ?, and for the GRKs, GCs and arrestins was established by Lamb & 

Hunt 89. 

 

 

 

Figure 5.  Summary of synteny for four gene families from two species.  Gene 

locations are shown for TRPCs, visual GRKs (G-protein receptor kinases), visual GCs 

(guanylyl cyclases), and arrestins.  Number under each gene name represents the gene 

position in Mb on the indicated chromosome.  Note that there is strong evidence that 

each interrupted row (where there is a break in continuity of a chromosome) corresponds 
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to a contiguous set of genes in the ancestral quadruplicated genome.  See Fig. SI Y and 

Table SI Y for synteny across XX gene families and four species. 

 

In Fig.5, the proximity of TRPC family members to members of the other three 

families is impressive.  For example, the distance from TRPC1 to GRK7 is just 

0.2 Mb in both spotted gar (Fig.5A) and chicken (Fig. SI ?B), and is <1 Mb in both 

human (Fig. 6B) and opossum (Fig. SI ?C).  Likewise, the distance from TRPC5 

to GC-F (=GUCY2F) is <1 Mb in spotted gar (Fig.5A) and <2.5 Mb in human 

(Fig.5B); in the other two species, the loss of the gene for GC-F precludes this 

comparison.  Furthermore, as shown previously 89, in several cases members of 

the other three families of phototransduction genes are close to each other; e.g. 

GRK1B, GE-E and ARRB2 are close to each other in spotted gar (Fig. 6A).  Such 

proximity in extant chromosomes is an important telltale sign of ancient proximity, 

because of the very low likelihood that random chromosomal rearrangements 

could bring so many genes into mutual proximity; instead, random 

rearrangements are likely to obscure any proximity that originally occurred.  

Therefore, we conclude that it is very likely that in a proto-vertebrate organism 

the ancestral genes (TRPC, visual GRK, visual GC, and arrestin) were arranged 

in close proximity to each other, prior to quadruplication during 2R WGD. 

 

Localization of MSCs in Xenopus laevis rods 

To better investigate the expression of MSCs Piezo1 and TRPC1 in rods, we 

stained retinas by immunofluorescence, with antibodies for Piezo1 and TRPC1 

MSC (see Methods). Immunolabelling for Piezo1 (Fig.6A) shows a clear staining 

in rods, with a punctate expression in the ellipsoid region of the IS, whereas 

TRPC1 staining displays a broader expression along the OS (Fig.6B). However, 

from these images we were not able to determine conclusively whether TRPC1 

channels were located also in OS. Indeed, the significant presence of 

autofluorescence in rod OSs, presumably associated to the high density of 

rhodopsin molecules 90 could be responsible of a false positive detection of 

TRPC1 in rod OS and the bright green staining of Fig.6B could be an artifact.  
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91TRPC1 are expressed mostly in rod inner segments in mouse, using RNA in 

situ hybridization with nitroblue tetrazolium. To get clearer evidences on the 

expression patterns of TRPC1, we decide to perform immunohistochemical 

staining of Xenopus retinas with the same antibody used for the 

immunofluorescence. Indeed, immunohistochemical staining confirmed that 

TRPC1 is expressed primarily on the IS membrane of rod photoreceptors 

(Fig.6C) with possible weaker staining also in the OSs. We isolated   OS (Fig.6D), 

IS+OS   by purification on a sucrose density gradients (McDowell 1993) and we 

performed standard WB with antibodies for TRPC1 and Piezo 1 (Fig6E) .  This 

analysis shows that TRPC1 and Piezo 1channels are abundantly present in the 

retina and in ISs , but not in the OSs(Fig.6D). This conclusion is in agreement 

with the conclusions of previous proteomic studies (Panfoli et al., 2008; Kwok et 

al., 2008) which did not report the presence of Piezo and TRP channels neither 

in OS nor in discs. We were not able to determine by WB analysis the presence 

or absence of TRPC1 and Piezo1 channels in a population of isolated and purified 

disks (data not shown).    

 

 

Figure 6: Expression of mechanosensitive channels in the Xenopus laevis retina: A: 

immunofluorescence for TRPC1 in green and DAPI in blue. B: immunofluorescence for 

Piezo1 in green and DAPI in blue. C: immunohistocemistry for TRPC1. D: isolated OS 

obtained by sucrose centrifugation; E: western blot for TRPC1 from the whole retina and 

isolated ROS as those shown in D.  
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Discussion 

The present manuscript shows a number of novel features of rod photoreceptors 

involving mechanosensitivity and mechanosensitive channels. TRPC1 and 

Piezo1 MSCs are present in rod photoreceptors; in addition, it has long been 

known that the actomyosin complex is associated with the ciliary machinery 

linking the light-sensitive OS to the IS 92. Interestingly, weak mechanical 

stimulation – of the order of 10 pN – applied briefly to either the OS or IS evoke 

clear calcium transients, which are inhibited by the toxin GsMTx-4.  Moreover, 

the inhibition of MSCs through GsMTx-4 decreases the duration of 

photoresponses to bright flashes, and the magnitude of this effect increases with 

flash intensity. The genes for the TRPC family appear to have an ancient 

association with the genes for three other families of genes that are directly 

involved in phototransduction in the rod OS.  These results suggest that MSCs 

play an integral role in the regulation of rod phototransduction. 

Both TRPC1 and Piezo1 channels are multimodal, and have been reported to be 

gated and modulated by temperature and second messengers.  The observation 

that very weak mechanical stimulation of the IS elicits a transient increase in 

intracellular calcium concentration is consistent with the view that these ionic 

channels in the IS are mechanosensitive. Mechanosensitivity in OSs seems to 

have a more complex origin: weak mechanical stimulations evoke brief calcium 

transients (Fig.1) but we have not been able to determine in a conclusive way the 

presence of TRPC1 and Piezo1 and 2 channels in OSs. It is possible, however, 

that in the OSs there are additional MSCs or that mechanosensitivity has a 

different origin: it is conceivable, indeed, that the small indentation occurring 

during the applied mechanical stimulations – in the order of some hundreds of 

nm – disrupt disks, known to be filled by calcium ions (Chen et al., 2002) and 

therefore inducing a localized transient calcium increase. In some experiments 

(see SI 4), we observed that in the presence of GSMTX-4 mechanical 

stimulations did not evoke any calcium transients, but spontaneous calcium 

transients could be observed. This observation suggests that calcium transients 

could occur in absence of any apparent mechanical stimulation and that 

mechanical stimulations could modulate and increase the frequency of these 

transients.  
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We observed that GsMTx-4 caused a shortening of the duration of bright flash 

responses (Fig. 4B and C). The exposure to GSMTX-4 does not induce any 

measurable change in the amplitude of the saturating current (Fig.4C), indicating 

either that MSCs are not activated in dark adapted conditions, i.e. before the 

exposure to the bright light and/or that the ionic current flowing through MSCs is 

small and cannot be easily measured. On the basis of these observations, we 

suggest that in the presence of GSMTX-4, a bright flash results in a more 

pronounced light-induced drop in calcium concentration because the MSCs are 

inhibited. Thus, the inhibition of MSCs will block an influx of calcium into the 

cytoplasm, that is normally stimulated by mechanical movement of the OS 

triggered by the bright flash, and thereby result in a larger decline in free calcium 

concentration.  The ensuing shortening of the bright-flash photoresponses could 

result from an effect of the lowered calcium concentration via either increased 

cyclase activity 93 or decreased R* lifetime 94;95, or both.  

If MSC channels are activated during phototransduction, a key issue is what 

mechanical stimulation activates them?  Three possibilities spring to mind: 

activation of the actomyosin complex; a drop of intracellular osmotic pressure 

caused by the transient abolition of the photocurrent and dimensional changes, 

such as the light induced shortening of the rod OS (Fig.3 and 83, 2018).  We 

suggest that the first of these is unlikely, because although the IS is rich in actin 

but in the OS actin is present only at its base and is not present in the whole OS 

(see Fig.6). 

We have not been able to estimate the magnitude of any light-induced change in 

intracellular osmotic pressure, though we expect it will be small.  Although 

suppression of the dark current of 50 pA corresponds to a reduction in the entry 

into the OS of around 3x108 monovalent cations per s, this is counterbalanced by 

an equal reduction of current flow out of the OS and into the IS (Lamb & Pugh 

2006). Therefore following a saturating flash of light, it is possible the 

development of a drop of the osmolarity but the cessation of the ionic flux through 

the light sensitive channels is likely to be compensated by a the cessation of an 

equal flux of positive charge from the outer segment to the inner segment through 

the ciliary neck.  Furthermore, we are not aware of any experimental evidence for 

a significant change in intracellular ionic concentration during the light response. 
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In agreement with previous observations 83, we confirm that bright flashes of light 

elicit a transient shortening of the rod OS.  These light flashes-induced 

movements begin with a delay around 50 ms for a flash of about 2500 R*/rod 

(Fig.3) not longer than the onset of the suppression of the photocurrent.  This 

transient shortening of OSs, also referred as transient retinal phototropism is 

thought to be associated with early, disk-based stages of the phototransduction 

cascade 83, and is not caused by the light-induced suppression of the 

photocurrent.  Transmission electron microscopy shows that the shrinkage is 

associated with a decrease in the space between disks, rather than any change 

in thickness of the disk itself 83, and this decrease in OS cytoplasmic volume will 

necessarily cause an increase in osmotic pressure.  Hence, we propose that 

activation of MSCs is elicited either directly by the change in inter-disk spacing 

(especially if MSC channels are located in the disk membranes), or secondarily 

by the change in cytoplasmic osmotic pressure. We are aware, however, that this 

reduction of inter-disk spacing will initiate adjustments of the hydrostatic pressure 

and of water volume, which have to be properly addressed and understood. 

The transient shortening of rod OS is likely to play a major role in 

phototranduction, which is at the moment not entirely understood. This shortening 

is associated to the early stages of phototransduction occurring within some tens 

of milliseconds following rhodopsin activation 83 and it is not clear how the 

biochemical cascade initiated by the absorption of photons by  rhodopsin  lead to 

a shrinkage of the inter-disk space: we strongly believe that  this shrinkage 

represents a missing step for a complete and full understanding of 

phototransduction. We speculate that the activation of phosphodiesterase, which 

occurs in the OS cytoplasm 96 and in the inter-disk space before the suppression 

of the photocurrent 97 could be involved - or even responsible - of this shrinkage.  

Although it is widely thought that sensory neurons (such as photoreceptors) are 

specialized to transduce just a single sensory modality, the present investigation 

shows that rods not only express mechanosensitive channels but also 

demonstrated that they display mechanosensitivity.  We hypothesize that rod 

photoreceptors require such mechanosensitivity, firstly for the optimal operation 

of the phototransduction machinery, and for the maintenance of cellular integrity 

through processes such as disk shedding.   
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Fig. SI 1:  Optical manipulation and imaging setup Optical manipulation and 

imaging setup: 1, inverted microscope; 2, oscillatory optical trap OOT; 3, Force 

measurement module. Optical components: L1, L2, convergent lenses, f1 = f2 = 

100mm; M1, mirror; FTL, Focus Tunable Lens, fFTL = 55–90mm; FL, Fixed focal 

Lens, f = 150mm; DM1, dichroic mirror (900 dcsp, Chroma); DM2, dichroic mirror 

(XF22045, Chroma); TL, Tube Lens; MO, Microscope Objective, Olympus 60X, 

NA 1.4, oil immersion; DO, condenser objective, 10 X, NA 0.3; DM3, Dichroic 

Mirror (900dcsp, Chroma); L3, convergent lens, f = 40mm; QPD, Quadrant Photo 

Diode. 
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Fig2 SI: The effect of repeated mechanical stimulations: A: A: trapped bead in contact 

with the tip of the rod OS, under bright-field IR imaging.  B: Fluorescence change (DF/F) 

images, showing the ROI used to quantify the fluorescence change vs time C: Calcium 

transients evoked by the repeated mechanical stimulations (indicated by the dark arrow). 

The amplitude of the first and fast calcium transient ( indicated by the horizontal red line) 

is reproducible, while the second and larger component declines.  
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Fig.3 SI: Video imaging 

of the effect of light on 

the length of rod OS. A: 

a Bright field view of a 

piece of retina under IR 

light at 750 bn. B: zoom 

of the yellow dotted box 

in A. C: zoom of the tips 

of OS in the yellow 

dotted squares before, 

during illumination and after 20 sec. The light induced shortening of the rod OS 

correspond to 2-4 pixels: given that a pixel corresponds to approximately 120 nm the 

shortening is in the order of 200-400 nm. The enclosed video provides addi      tional 

support to the light induced OS shortening.  
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Fig.4 SI: Spontaneous calcium transients in the presence of GSMTX-4.  A: A trapped 

bead in contact with the rod OS, under bright-field IR imaging.  B: Fluorescence change 

(DF/F) images, showing the two ROIs used to quantify the fluorescence change vs time.  

C: Time course of the evoked DF/F change from the two ROIs in B.  Mechanical 

stimulation (MS) as indicated in B . In the presence of GSMTX-4 mechanical stimulation 

did not evoke any calcium transients, but spontaneous calcium transients could be 

observed. 
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Methods 

 

Immunofluorescence  

Retinas were fixed with 4% paraformaldehyde for 60 min at room temperature followed 

by permeabilization with PBS plus 0.1% Triton X-100, blocked with 1% BSA (Bovine 

Serum Albumin) and incubated overnight with primary antibodies anti Piezo1 (1:300) or 

anti Trpc1(1:300) from Alomone Labs. Retinas were then washed with cold PBS three 

times for 5 min each, and incubated with Alexa 488-labeled goat anti-mouse secondary 

antibody (1:400) or Alexa 594-labeled goat anti-rabbit secondary antibody (1:400) and 

and Actin (Phalloidin) (1:50) at room temperature for 1 h and then stained with Hoechst 

(all from Life Technology). Retinas were examined with a NIKON A1R confocal 

microscope equipped with 405, 488 and 561 excitation lasers, 40x objective (NA 0.75) 

and 60x oil immersion objective (NA 1.40).  

 

 

Isolation of Photoreceptors and electrical recordings 

Eyes of Xenopus laevis were enucleated and hemisected under infrared 820-nm 

illumination. Dissociated rods were obtained as reported previously (Bocchero et al 

2018). Isolated intact rods obtained by mechanical dissociation were immersed in Ringer 

solution containing (in mM) 110 NaCl, 2.5 KCl, 1 CaCl2, 1.6 MgCl2, and 3 HEPES-NaOH, 

0.01 EDTA, and 10 glucose (pH 7.7–7.8 buffered with NaOH). All chemicals were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). All experiments were performed at 

22°C to 24°C. Images were acquired using HCImage software 4.3.1.33 (Hamamatsu 

Corporation, Bridgewater, NJ, USA).  

After mechanical isolation, electrical recordings were obtained as described in Bocchero 

et al 2018. Rods were viewed under 900-nm light using two cameras (Hamamatsu 

ORCA-Flash 4.0; Hamamatsu Corporation, Bridgewater, NJ, USA; and Jenoptic 

ProgRes MF; JENOPTIK I Optical Systems, Goeschwitzer, Jena, Germany) at two 

magnifications and stimulated with 491-nm diffuse light (Rapp OptoElectronic, Hamburg, 

Germany) from the ×10 objective of an inverted microscope (Olympus IX71; Olympus 

Corporation, Tokyo, Japan). Photoresponses were recorded  using an Axopatch 200A 

(Molecular Devices, LLC., San Jose, CA, USA) in voltage clamp-mode. The current was 
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low-pass filtered at 20 Hz and digitized at 100 Hz. All recordings were processed, 

analyzed, and baselines corrected with Clampfit 10.3 (Molecular Devices).  

 

Calcium Imaging 

Retinas were loaded with a cell-permeable calcium dye CasIR-AM (Life Technologies) 

and Pluronic F-127 20% solution in DMSO (Life Technologies) at a ratio of 1:1 in Krebs-

Ringer's solution containing 119 mM NaCl, 2.5 mM KCl, 1 mM NaH2PO4, 2.5 mM CaCl2, 

1.3 mM MgCl2, 11 mM D-glucose, and 20 mM HEPES (pH 7.4) at 37°C for 45 min. After 

incubation the isolated rods were washed three times for at least 15 min total to allow 

complete intracellular de-esterification of the dye then transferred to the stage of an 

Olympus IX-81 inverted microscope equipped with LED illumination (X-Cite XLED1 from 

Excelitas Technologies). The experiments were performed at room temperature 

(between 22 and 24 C), and images were acquired using Micromanager software with 

an Apo-Fluor 60x/1.4 NA objective at a sampling rate of 5 Hz for 3–10 min.  

Mechanical l Stimulation Using the Oscillatory Optical Trap 

To mechanically stimulate the cell, we used a polystyrene bead with a diameter d = 3.5-

μm diameter (G. Kisker GbR,) optically manipulated in an oscillatory optical trap (OOT) 

(Fig. 1  SI). The main component of the OOT is the Focused Tunable Lens (EL-10-30-

NIR-LD, Optotune AG), of which its focal length can be precisely tuned to change the 

vertical position of the trapped bead. Cell stimulation is achieved by trapping the bead 

above the cell and then moving it against the cell membrane. A complete description of 

all components of the used set-up are found in Falleroni et al 2018. The set-up can be 

used for measuring displacements (Fig.5) and for applying forces (Fig.4) and the shift 

from the two modes of operation is obtained by inserting in the optical path of the laser 

the Focused Tunable Lens when applying forces (see Fig. 1 SI). 

 

Data and Statistical Analysis 

For calcium experiment the DF/F was quantified by custom developed code Matlab 

(MathWorks, Inc.) and Imagej software v1.6 (National Institutes of Health). All the results 

are presented as mean ± SD and statistically differences were determined using a t-test, 

as appropriate with p < 0.05 considered statistically significant (GraphPad Prism 7, 

GraphPad software, San Diego, CA). 
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For electrophysiological experiments, the parameters of rod responses were analyzed 

with Clampfit 10.3 and the statistical significance was determined using the paired t-test 

in SigmaPlot 13.0. 
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