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Chapter 1

Introduction and Scope

One of the most challenging issues of numerical mathematics of all times can
be formulated as follows:how can we compute a discrete approximating solu-
tion to a given continuous problem with the best accuracy and with a minimal
computational cost? When solving numerically Partial Di�erential Equations
(PDEs) through Finite Element (FEM) schemes, one of the most successful ways
to balance computational costs and accuracy is represented byadaptive mesh-
re�ning techniques. In attempt of capturing the �essence�in the various processes
during mesh-re�ning techniques, this thesis proposes and analyses the Smoothed-
Adaptive Finite Element Method (S-AFEM), a new algorithm for Adaptive Finite
Element Method (AFEM) which takes its inspiration by the ascending phase of
the V-cycle multigrid (MG) method.

The overarching goal is to provide rigorous algebraic error analysis, a poste-
riori error analysis and numerical validation to prove that S-AFEM drastically
improves the computational costs of the classical AFEM, by maintaining almost
the same accuracy of the �nal solution.

Characterized by `...a great geometric �exibility, practical implementation and
powerful and elegant theory' ([73]), the Finite Element Method (FEM) represents
one of the most prominent techniques for the numerical solution of PDEs. In FEM
simulations, the domain of a PDE is discretised into a large set of small and sim-
ple subdomains (the cells or elements) depending on a size parameterh > 0.
Typical shapes that are used for the discretisation are triangles, quadrilaterals,
tetrahedrons, or hexahedrons. The solution space is constructed by gluing to-
gether simpler �nite dimensional spaces, de�ned on a piecewise manner on each
cell, and the original problem is solved on this simpler, �nite dimensional space,
transforming the original PDE into an algebraic system of equations.

Finite Element Analysis (FEA) �nds its roots in 1943 in a paper by Courant
(see [48]), who used the Ritz method of numerical analysis and minimization
of variational calculus (see also the previous work [82]). Meanwhile and inde-
pendently, the concept of FEM originated during the 1940s from engineers that
studied stresses in complex airframe structures. Subsequently, the mathematical
foundation was laid down in the mid-1950s with the papers of [88], [4] and [8].
The term �Finite Element� was coined by Clough ([45, 47, 46]). Moving on in
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history, in the early 1960s engineers used the method to approximate solutions
not only of problems in stress analysis, but also in �uid �ow, heat transfer, and
other areas. Most commercial FEM software packages originated in the 1970s and
the �rst book on FEM by Zienkiewicz and Cheung was published in 1967 ([95]),
followed by the book [86], that laid solid grounds for future development in FEM.
Since then, the �eld of applications has widened steadily and nowadays encom-
passes a vast diversity of problems in nonlinear solid mechanics, �uid/structure
interactions, turbulent �ows in industrial or geophysical settings, multicompo-
nent reactive �ows, mass transfer in porous media, viscoelastic �ows in medical
sciences, electromagnetism, wave scattering problems, and option pricing ([52]).

Numerous commercial and academic codes based on the �nite element method
have been developed over the years, however, in the �nite element numerical
solution of practical problems of physics or engineering such as, e.g., computa-
tional �uid dynamics, elasticity, or semi-conductor device simulation, we often
encounter the di�culty that the overall accuracy of the numerical approximation
is deteriorated by local singularities arising, e.g., from re-entrant corners, interior
or boundary layers, or sharp shock-like fronts ([91]). An obvious remedy is to
re�ne the discretisation near the critical regions, i.e., to consider a bigger num-
ber of smaller elements where the solution is less regular. This is the core of
the Adaptive Finite Element Method (AFEM), which is a numerical scheme that
automatically and iteratively adapts the �nite element space until a su�ciently
accurate approximate solution is found ([6]).

A few questions closely related to each other arise naturally in the adaptivity
context. How to identify the regions with more irregular behaviour? How to
obtain a good balance between the re�ned and unre�ned regions such that the
overall accuracy is optimal? How to obtain reliable estimates of the accuracy of
the computed numerical solution? Can we think of any �intelligent� shortcuts that
guarantee the same accuracy of the solution, at a fraction of the computational
cost? While former questions have been widely and successfully treated in the
literature, in this thesis work we provide a novel and successful method to address
the latest.

Classical a priori error estimation theory provides little such information, be-
cause it involves the exact solution and the estimates are of asymptotic nature.
We brie�y discuss the main related results in Chapter 2, Section 2.1. The missing
link is given by a posteriori error estimators, which hinge exclusively on accessible
data, i.e. they extract information from the given problem and the approximate
solution, without invoking the exact solution. These are computable quantities
that can be used to assess the approximation quality and improve it adaptively.
In the 1980s and 1990s a great deal of e�ort was devoted to the design of a pos-
teriori error estimators, following the pioneering work [9]. Since then, a lot of
work has been devoted to them. We refer to [90], [10] and [2] for an overview
of the state-of-the-art. We de�ne them and introduce their basic properties in
Section 2.3 of Chapter 2. Our focus is on residual-based a posteriori estimators,
which are derived by theresidual functional and provide an equivalent measure
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of the discretisation error in a suitable norm.

Let us now brie�y explain the AFEM scheme.

The Adaptive Finite Element Method (AFEM) can be represented by succes-
sive loops of the steps

Solve �! E stimate �! M ark �! R ef ine (1.1)

to decrease the total discretisation error, by repeating the FEM solution process
(step Solve) on a mesh that has been re�ned (stepRef ine ) on the areas where
the a posteriori error analysis has shown that the error is larger (stepsEstimate
and M ark) (see, e.g., [39]). Despite their practical success, adaptive processes
have been shown to converge, and to exhibit optimal complexity, only recently.
A brief literature review of AFEM is presented in Chapter 2, Section 2.3.

The mathematical framework of our work is as follows. We consider linear
second-order elliptic boundary value problems (BVPs) whose variational formu-
lation reads: seeku 2 V s.t.

Au = f in V; (1.2)

under suitable boundary conditions, where(V;k � k) is a normed Hilbert space
de�ned over a Lipschitz bounded domain
 , the linear operator A : V ! V ? is
a second-order elliptic operator, andf 2 V ? is a given datum. FEM transforms
the continuous problem (1.2) in a discrete model of type

A huh = f h in Vh; (1.3)

where an example ofA h is given by the restriction of the continuous operator
A h := A j Vh , and whereVh � V is the �nite dimensional solution space, typically
made up by continuous and piecewise polynomial functions. GivenN = dim( Vh),
the overall procedure leads to the resolution of a (potentially very large) linear
algebraic system of equations of type

Au = f in RN : (1.4)

When solving real-world practical applications, the main di�culty we have to
face is that exact (or even near-to-exact) solutions of the algebraic problem (1.4)
cannot be computed, we only have available an approximationuc

h that we obtain
in a computer. The total error is therefore written as the sum of two contributions

u � uc
h| {z }

total error

= ( u � uh)
| {z }

discretisation error

+ ( uh � uc
h)

| {z }
algebraic error

: (1.5)

The algebraic error may have a signi�cant e�ect on the computed approximation,
and the solution of the algebraic problem has to be considered anindivisible part
of the overall solution process. This issue isunavoidably re�ected in adaptive
mesh-re�ning procedures. The common practical assumption in computational
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sciences and engineering community has been that in stepSolve, one obtains
the exact solution of the algebraic system (1.4), therefore to replaceuh by uc

h

in the expression of the error estimator during the moduleEstimate. However,
numerical roundo� (cf., e.g., [85]) and the need for solving real world large-scale
problems con�ict with this assumption and this procedure leads to the urgent
challenges that the derivation and application of the a posteriori error estimates
should resolve

1. The derivation and the construction of the a posteriori estimator should be
done on the available inexact approximationuc

h: The biggest problem here
is that uc

h does not satisfy theGalerkin property ([33]), that is the funda-
mental property under which classical residual-based a posteriori estimates
are derived.

2. The estimation of the total error (1.5) should incorporate the algebraic error
uh � uc

h.

The question of stopping criteria for iterative PDE solvers that account for
inexactness of the algebraic approximations is nowadays becoming a widely ad-
dressed topic [64, 6, 76]. The main focus of the existing literature concerns ways
to estimate the algebraic error and introduce stopping criteria by highlighting the
interplay between the discretisation and algebraic error (see, e.g., [6, 74, 75, 76]).

The overarching goal of this thesis work is to exploit and reveal the other
part of the coin: rough approximate solutions, with large algebraic error, may
still o�er large computational savings when used in the correct way. Through
our project we successfully push the boundaries to explore this new di�erent
direction by introducing and analysing a new algorithm that reduces the overall
computational cost of the AFEM algorithm, by providing a fast procedure for the
construction of a quasi-optimal mesh sequence which does not require the exact
solution of the algebraic problem in the intermediate cycles.

We propose the Smoothed Adaptive Finite Element algorithm (S-AFEM)
which takes its inspiration from the ascending phase of the V-cycle multigrid
method (see [61, 21]), where a sequence of prolongation and smoothing steps is
applied to what is considered an algebraically exact solution at the coarsest level.
In MG methods, the prolongation is used to transfer the low frequency informa-
tion contained in the coarse solution to a �ner �nested� grid, where some steps of
a smoothing iteration are applied in order to improve the accuracy of the solution
in the high frequency range. This procedure is based on the principle that even a
small number of smoothing iterations is su�cient to eliminate the high frequency
error, while the prolongation from coarser grids guarantees the convergence in
the low frequency regime, resulting in an overall accurate solution.

The main di�erence between the ascending phase of the V-cycle multigrid
method and AFEM is that in AFEM the next grid in the sequence is unknown,
and requires an exact algebraic solution on the current grid to trigger theEstimate-
M ark-Ref ine steps. On the other hand, the exact algebraic solutions in the
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intermediate cycles are instrumental to the construction of the �nal grid, and
�nd no other use in the �nal computations.

Our strategy consists in

1. replacing accurate algebraic solutions in intermediate cycles of the classical
AFEM with the application of a prolongation step, followed by a �xed
number of few smoothing steps (say three or �ve)

2. solving exactly the linear algebraic system derived from the discrete problem
on the coarsest level and on the �nest level

3. executing the Estimate and Ref ine steps on the approximate solutions
derived in the intermediate steps.

Even though these intermediate solutions are far from the exact algebraic solution,
we will show that their a posteriori error estimation produces a re�nement pattern
that is substantially equivalent to the one that would be generated by classical
AFEM, leading to the same set of cells marked for re�nement, at a considerable
fraction of the computational cost.

Let us now brie�y describe the structure of the thesis and present a panoramic
view of the original contributions that we tried to give in this �eld.

1.1 Structure of the thesis

In Chapter 2 we brie�y present the main features of the Finite Element Method
(FEM) and of the Adaptive Finite Element Method (AFEM) for the solution
of second-order elliptic boundary value problems (BVPs), encompassing their de-
sign, basic properties and classical results. The discussion in this chapter includes
the literature review of both methods. In Section 2.1 we brie�y recall some basic
de�nitions of Sobolev spaces and follow by introducing the Ritz-Galerkin method
for the discretisation of symmetric elliptic PDEs of order2m, with emphasis
on FEM, whose de�nition arises naturally as a particular class of Ritz-Galerkin
methods. A priori error estimates are presented. We will restrict ourselves to
Poisson's equation with homogeneous Dirichlet boundary conditions as a model
problem, to which we dedicate Section 2.2. Finally, we present a posteriori error
estimators and discuss the main features of AFEM in Section 2.3.

We follow with a presentation of the Finite Element Multigrid method in
Section 3.1 and in Section 3.2 of Chapter 3. Smoothed-Multilevel Methods can
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be introduced as a natural remedy to restore and improve the performance of
basic relaxation schemes. The remainder of the chapter is dedicated to the dis-
cussion and analysis of Smoothed-Multilevel Methods. Precisely, we consider
a generic multilevel context, where a nested sequence of �nite element spaces
V1 � V2 � � � � � V�k is given. The repetition of the FEM procedure for any level
k = 1; 2; : : : ; �k gives rise to the associated linear algebraic systemsAkuk = fk in
RN k , whereNk = dim(Vk). For the algebraic resolution of these systems we ap-
ply successive prolongation (Prolongate) and smoothing (Smooth) steps and we
prove a series of theorems and results that rigorously estimate the algebraic error
propagation between di�erent nested levels following [72]. In particular, for the
moduleSmooth, we consider Richardson smoothing iterations (see e.g., [61, 80]),
which we analyse in Subsection 3.3.1.

Chapter 4 extends the a posteriori error analysis previously presented in Sec-
tion 2.3 to the case when inexact approximations and the algebraic error are taken
into consideration. Our attention in Section 4.1 is devoted to the main issues that
a posteriori error analysis accounting for the algebraic error has to deal with. In
Section 4.2, we are going to prove a bound on the estimator for a generic function
in terms of the estimator for the Galerkin solution and the corresponding alge-
braic error. Finally, in Section 4.3 we slightly touch upon an ongoing work that
aims to quantify qualitatively di�erent contributions of di�erent eigenfunctions
in the expression of the error estimator.

We devote Chapter 5 to the introduction and description of S-AFEM. We
start by providing some motivation through some empirical numerical evidence
that justi�es the use of S-AFEM, and then connect it to the theoretical results
on the error propagation that we proved in Section 3.4. In Section 5.3 we pro-
vide numerical validation for our method presenting two-dimensional examples
in Subsection 5.3.1 and three-dimensional examples Subsection 5.3.2. We show a
comparison of the computational cost associated to the classical AFEM and to
the smoothed AFEM for the presented examples in Subsection 5.3.3.

In Section 5.4 we present di�erent variants of our algorithm S-AFEM, where
di�erent smoothers are considered for the intermediate cycles, (respectively Richard-
son iteration, the CG method, and the GMRES method) and we investigate the
accuracy and of S-AFEM for high order �nite element discretisations. We provide
several numerical evidences that S-AFEM turns out to be a good strategy also
for higher order �nite element discretisations, and one could use directly the CG
method (or, alternatively,the GMRES method) as smoothers for the intermedi-
ate iterations. Our numerical evidences show that two smoothing iterations are
enough for the two dimensional case, and around �ve smoothing iterations are
enough for the three dimensional case, independently on the polynomial degree
of the �nite element approximation.

In Section 5.5 we show that S-AFEM strategy (for di�erent FEM degrees)
works well also for more complex and non symmetric problems, by providing and
example of a transport-di�usion two-dimensional problem. Finally, Section 5.6
brie�y describes the main conclusions of the thesis.
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1.2 Main results and contributions

S-AFEM is an entirely novel idea that originated during this thesis project. Its
novelty and originality is given not only by its unique strategy and analysis, but
also by an approach to adaptive algorithms with an awareness that is missing in
the current literature. Our work has lead us to some fascinating conclusions and
beautiful discoveries. The key results and contributions in this dissertation are
presented in Chapter 3 through Chapter 5 and include the following.

� One of the key �ndings of this research program has been that the combined
application of the Estimate-M ark steps of AFEM is largely insensitive to
substantial algebraic errors in low frequencies, justifying the formalisation of
a newSmoothed Adaptive Finite Elementalgorithm (S-AFEM), where the
exact algebraic solution in intermediate steps is replaced by the application
of a prolongation step (Prolongate), followed by a �xed number of smooth-
ing steps (Smooth). The principal motivation is that we've found out that
classical a posteriori error estimators are not sensitive to low frequencies
in the solution, and that their application to very inaccurate approximate
solutions in intermediate cycles � only capturing high frequency oscillations
� would produce an equally good grid re�nement pattern.

� We have introduced and analysed the Smoothed-Multilevel Methods, where,
in the context of a nested sequence of �nite element spaces corresponding to
nested grids, we solve exactly on the coarsest grid (reaching convergence in
all components), and then perform a sequence of prolongations followed by a
�xed number of smoothing steps, to improve convergence in the �ner grids,
under the assumptions that lower frequencies have already been taken care
of in the previous levels. This is the core idea behind S-AFEM. We prove
a series of theorems and results that rigorously estimate the algebraic error
propagation between di�erent nested levels, which shows that the algebraic
error is made up by small contributions given by the accumulation of low
frequency terms, which have in general a smaller in�uence on the estimator.

� A parallel exciting challenge of our research has been to show how the alge-
braic error derived in Theorem 3.4.4 relates to theEstimate phase of AFEM.
This is found in discussion in Section 4.2 and in Theorem 4.2.2, which proves
an upper bound on the estimator for generic functions of the �nite element
space in terms of the estimator for the Galerkin approximation and the
algebraic error, up to some oscillating terms of the data.

� We provide several numerical evidences for the case of Poisson's equation
in two and three dimensions with di�erent data realized using a custom
C++code based on thedeal.II library ([13, 3]), and on the deal2lkit
library ([81]) that show that S-AFEM algorithm is competitive in cost and
accuracy. For three dimensional problems, the speedup in the intermediate
steps is in the hundreds, and even if the �nal grid is not exactly identical
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to the one that would be obtained with the classical AFEM, the accuracy
of the �nal solutions is comparable.

� Another very interesting conclusion has been that only a few smoothing
iterations, only three, were enough for the estimator to produce the same
set of marked cells for re�nement at each cycle. We discuss this theory and
provide numerical evidences in Chapter 4 and Chapter 5.

� Another key conclusion been that di�erent smoothers (for instance Richard-
son iteration, the CG method and the GMRES method) work equally well
as smoother candidates for the intermediate levels. A particular attention
has to be paid to the Richardson iteration when used as a smoother, that
has to come along with the investigation and the subsequent choice of the
optimal relaxation parameter.

� As another relevant conclusion, we show that S-AFEM turns out to be a
good method not only for piecewise bi-linear FEM discretisations, but also
for high order FEM discretisations, for instance when we take the FEM
polynomial degreedeg= 2; 3; 4; 5.

� Finally, we provide a large variety of experiments to validate numerically our
strategy, that include classical two and three dimensional problems that are
used to benchmark adaptive �nite elements (for instance the peak problem
and the corner problem), but also a two dimensional non symmetric problem
of di�usion-transport type. In all results of this large variety of numerical
experiments, the accuracy of the �nal approximation generated by S-AFEM
is almost the same to the one that would be generated by classical AFEM,
at a fraction of the computational cost, making S-AFEM a highly valuable
algorithm for many practical and realistic applications.

� Motivated by the theoretical results and the numerical evidence, we argue
that in the intermediate AFEM cycles it is not necessary to solve exactly
the discrete system. What matters instead is to capture accurately the
highly oscillatory components of the discrete approximation with a chosen
smoother. Low frequency componentsmay have an in�uence on the error
estimator, however, this is mostly aglobal in�uence, that has a small e�ect
on the cells that will actually be marked for re�nement in theM ark step.

Finally, some interesting questions for future investigations are as follows.

� Although we have evidences that this technique works well for more com-
plex second-order elliptic problems, such as non symmetric problems of
transport-di�usion type, there are theoretical results that need to be de-
veloped to validate theoretically the strategy also for these more complex
situations.
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� An ongoing and future project introduces local smoothing in the parts of
the domain in need for re�nement to further improve the speedup of the
algorithm.

List of included papers:
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tion through Smoothed Adaptive Finite Element Methods, 2019, submitted
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� Algorithm 4, Subsection 3.3.2, Section 3.4, 3.4.1, De�nition 3.4.1, Theo-
rem 3.4.2, Theorem 3.4.3, Subsection 3.4.2, Assumption 3.4.1, 3.4.4, Re-
mark 3.4.1.

� Section 4.2, Theorem 4.2.1, Remark 4.2.2, Section 4.3.

� Section 5.1, Section 5.2, Algorithm 5, Numerical Evidences in Subsec-
tion 5.3.1 and in Subsection 5.3.2, Subsection 5.3.3.

� Section 5.4 and all numerical evidences included in the respective subsec-
tions.

� Section 5.5 and all numerical evidences included.
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Chapter 2

Prolegomena

For a solid understanding of the basics behind this thesis project, we dedicate this
chapter to the basics of the Finite Element Method (FEM) and of the Adaptive
Finite Element Method (AFEM) for the solution of second-order elliptic boundary
value problems (BVPs). Classical a priori error estimates described in Section 2.1
yield useful information on the asymptotic error behaviour. The price to pay for
this information is in terms of regularity conditions of the solution, which are
unfortunately not satis�ed in the presence of singularities as introduced above.
These considerations highlight the need for an error estimator which can be ex-
tracted in a posteriori fashion from the computed numerical solution and the
given data of the problem. In Section 2.2 we introduce our model problem and
in Section 2.3 we discuss a posteriori error estimators, as well as mesh re�ning
strategies.

2.1 The Finite Element Method for Linear Elliptic
second-order Boundary Value Problems

Let 
 be a open bounded domain inRd, whered = 1; 2; 3, with piecewise smooth
boundary � := @
 . For a positive integerm, the Sobolev spaceH m (
) ([1]) is the
space of square integrable functions whose weak derivative up to orderm is also
integrable. H m (
) is a Hilbert space equipped with the normkukH m (
) de�ned
by

kukH m (
) =

0

@
X

j � j� m






@� u
@x�






2

L 2 (
)

1

A

1=2

: (2.1)

We will also consider the seminorm

jujH m (
) =

0

@
X

j � j= m






@� u
@x�






2

L 2 (
)

1

A

1=2

: (2.2)

Using Sobolev spaces we can represent a large class of symmetric elliptic BVPs
of order 2m in the abstract form:
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Find u 2 V � H m (
) , whereV is a closed subspace ofH m (
) , such that

a(u; v) = l(v); 8 v 2 V; (2.3)

where l : V ! R is a bounded linear functional onV and a(�; �) is a symmetric
bilinear form that is bounded

ja(u; v)j � C1
1kukH m (
) kvkH m (
) ; 8u; v 2 V; (2.4)

and V-elliptic
ja(v; v)j � C2kvk2

H m (
) ; 8v 2 V: (2.5)

For symmetric problems, conditions (2.4) and (2.5) imply that the bilinear form
a(�; �) de�nes an inner product onV that induces the normk � ka := ( a(�; �))1=2,
which is equivalent to the Sobolev normk � kH m (
) . The Riesz Representation
Theorem ([78]) and conditions (2.4) and (2.5) guarantee existence and uniqueness
of the solution of (2.3).

The Ritz-Galerkin method for the discretisation of (2.3) reads:
Given l 2 V ?, �nd ~u 2 ~V such that

a(~u; ~v) = l(~v); 8~v 2 ~V ; (2.6)

where ~V is a �nite dimensional subspace ofV. The approximate solution ~u is
called a Galerkin solution.

By subtracting (2.6) from (2.3) applied to functions that lie in ~V, we get the
Galerkin orthogonality property

a(u � ~u; ~v) = 0 ; 8~v 2 ~V ; (2.7)

which implies that

ku � ~uka = inf
~v2 ~V

ku � ~vka: (2.8)

By combining together (2.8), (2.4) and (2.5) we get Cea's Lemma

ku � ~ukH m (
) �
C1

C2
inf
~v2 ~V

ku � ~vkH m (
) ; (2.9)

that is, the error of the Galerkin solution is quasi-optimal in the Sobolev norm.
The solution of the approximation problem (2.9) depends on the regularity of the
exact solutionu and the nature of the space~V.

We consider the �nite element spaces which are introduced and described in
Subsection 2.1.

We brie�y recall the main regularity results. In particular, if the boundary @

is smooth and the homogeneous boundary conditions are also smooth, then the

1We use C, with or without subscript, to represent a generic positive constant that takes
di�erent values in di�erent situations.
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solution of the elliptic boundary problem (2.3) obeys the classicalShift Theorem
([60, 34]) , which states that if the right-hand side of the equation belongs to
the Sobolev spaceH l (
) , then the solution of a 2mth-order elliptic boundary
problem belongs to the Sobolev spaceH 2m+ l (
) . This theorem does not hold for
domains with piecewise smooth boundary in general. For instance, it does not
hold true when the types of boundary condition change abruptly.

For two dimensional problems, the vertices of
 and the points where the
boundary condition changes type are singular points. Away from these singular
points, the Shift Theorem is valid. For a2mth order problem, the regular part of
the solution belongs to the Sobolev spaceH 2m+ k(
) if the right-hand side function
belongs toH k(
) , and the singular part of the solution is a linear combination of
special functions with less regularity. The situation in three dimensions is more
complicated because of the presence of edge singularities, vertex singularities and
edge-vertex singularities and it remains an active area of research ([34]).

Finite Element Methods. A successful and widely used class of Ritz-Galerkin
methods is represented by the Finite Element Methods (FEMs). In FEM, the
domain of a partial di�erential equation (PDE) is discretized in a large set of small
and simple domains (the cells or elements) depending on a size parameterh > 0.
Typical shapes that are used for the discretisation are triangles, quadrilaterals,
tetrahedrons, or hexahedrons. The solution space~V � V is constructed by gluing
together simpler �nite dimensional spaces, de�ned on a piecewise manner on each
cell, and the original problem is solved on this simpler, �nite dimensional space,
transforming the original PDE into an algebraic system of equations, see, e.g.,
some of the numerous books dedicated to FEM [11, 43, 96, 42, 33, 52, 63, 34].

We recall the formal de�nition of �nite element, according to [43], [33]. A
d-dimensional �nite element is a triple(T;PT ; NT ), whereT is a closed bounded
subset ofRd with nonempty interior and piecewise smooth boundary,PT is a
�nite dimensional vector space of functions de�ned onT, and NT ) is a basis of
the dual spaceP0

T . Functions in PT are called shape functions, while functionals
in NT are called nodal variables or degrees of freedom. Typically, the spacePT is
taken asPk

T ; k > 0: the space of polynomials of orderk > 0 de�ned over T.
In this work, we restrict to considering polyhedral domains. We introduce the

basic notions ofpartition and triangulation of the computational domain
 .
A partition P of 
 is a collection of subdomains of
 such that

(P1) �
 =
S

T 2P
�T

(P2) each elementT is a non-empty, open subset of


(P3) T \ T0 = ; , if T; T0 2 P and T 6= T0

(P4) each elementT is a polyhedron

The subdomainsT are usually calledcells or elements. We will consider a family
of triangulations Th h > 0 of 
 , which are partitions satisfying the following
condition

13
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� Admissibility : any two subdomainsT; T0 in P are either disjoint, or have
an edge/face in common or share a vertex.

The notions of partition and triangulation are di�erent for d > 1, while for d = 1
every partition is a triangulation. We will consider triangulations consisting of
triangles or convex quadrilaterals in two dimensions and tetrahedrons or convex
hexahedrons in three dimensions. The shape regularity of the subdomains is
measured by the aspect ratio. For triangles (or tetrahedrons), the aspect ratio is
measured by the parameter T

 T :=
hT

� T
; (2.10)

wherehT is the diameter ofT and � T is the diameter of the largest ball inscribed
into T. For convex quadrilaterals (or hexahedrons), the aspect ratio is measured
by  T de�ned in (2.10) and by the parameter

� T := max
�

je1j
je2j

: e1; e2 any two edges ofT
�

: (2.11)

We will refer to the numbermax( T ; � T ) as the aspect ratio of the convex quadri-
lateral (hexahedron). We will consider family of triangulations that satisfy the
following condition:

� Shape regularity: there exists a positive constant T < 1 that bounds the
aspect ratios of all subdomains.

Next, we de�ne the �nite element approximation spaces. LetT be a triangulation
of 
 , and a �nite element ( �T ;P �T ; N �T ) be associated with each subdomainT 2 T .
We de�ne the corresponding �nite element space to be

FET = f v 2 L2(
) : v j �T 2 T 8T 2 T ;

and v jT and v jT 0 share the same nodal values on�T \ �T0 g (2.12)

A Cr �nite element space is a �nite element spaceFET � C r (
) . In this
case, it is automatically a subspace of the Sobolev spaceH r +1 (
) and therefore
appropriate for elliptic boundary value problems of order2(r + 1) .

There are two types of error estimation procedures available for the discretisa-
tion error u � ~u. A priori error estimators provide information on the asymptotic
behavior of the discretisation errors but are not designed to give an actual error
estimate for a given triangulation. In contrast, a posteriori error estimators em-
ploy the �nite element solution itself to derive estimates of the actual solution
errors. They are also used to steer adaptive schemes where either the mesh is
locally re�ned (h-version) or the polynomial degree is raised (p-method) ([58]).

Let T be a triangulation of 
 . Consider a �nite element spaceFET and a
�nite element ( �T ;P �T ; N �T ) be associated with each subdomainT 2 T . Assume

14
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that the resulting �nite element space is a subspace ofCm� 1( �
) � H m (
) . By
imposing appropriate boundary conditions, we can obtain a subspaceVT of FET

such that VT � V .
We will focus on second-order problems. Assume that
 � R2 and that

the right-hand side of the elliptic boundary value is in the Sobolev spaceL2(
) .
Then u 2 H 1+ � (T )(T) for each T 2 T , where � (T) 2 (0; 1] and � (T) = 1 ,
for T away from the singular points ([49]). LetV � H 1(
) be de�ned by ho-
mogeneous Dirichlet boundary conditions on� � @
 and assume thatT is a
triangulation of 
 such that the resulting �nite element spaceFET is a subspace
of C0(
) � H 1(
) (this can be achieved, for e.g., by considering Lagrange �nite
elements ([34]). We takeVT = V \ FET . The proofs adopt the use of the nodal
interpolation operator ([34]) and corresponding estimates.

The following a priori discretisation error estimate holds true

ku � uT kH 1 (
) � C

 
X

T 2T

(hT )2� (T ) juj2H 1+ � ( T ) (T )

! 1=2

; (2.13)

where hT is the diameter ofT and C is a positive constant depending only on
the aspect ratios of the cellsT.

In particular, if fT i ; i 2 I g is a shape regular family of triangulations, and
the solution u of (2.3) belongs to the Sobolev spaceH 1+ � (
) for some� 2 (0; 1],
then (2.13) implies that

ku � uTi kH 1 (
) � Ch�
i juj2H 1+ � (
) ; (2.14)

where hi = maxT 2T i hT is the mesh size ofTi and C is independent ofi 2 I .
Furthermore, the following estimate in theL2(
) -norm holds true

ku � uTi kL 2 (
) � Ch2�
i juj2H 1+ � (
) (2.15)

where C is also independent ofi 2 I . The above two dimensional results also
hold true for three dimensional elements if the solutionu 2 H 1+ � (
) where
1=2 < � � 1, since the nodal interpolation operator is well-de�ned by the Sobolev
embedding theorem [35]. A case where this is veri�ed is when� = @
 .

2.2 Model Problem

Let 
 � Rd (d = 1; 2; 3) be a bounded, polyhedral domain (an open and connected
set with polygonal boundary). We look for the solutionu 2 H 1

0 (
) s.t.

� � u = f in 
 and u = 0 on � := @
 ; (2.16)

wheref 2 L2(
) is a given source term. We use the standard notation for norms
and scalar products in Lebesgue and Sobolev spaces (cf. [1]) : foru 2 H 1

0 (
)
and ! � 
 ; we write juj1;! := (

R
! jr uj2)1=2 and denote by(�; �)! the L2(! )- scalar
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product with corresponding normk � k! : For ! = 
 ; we omit the corresponding
subscripts. The weak form of (2.16) is to �ndu 2 H 1

0 (
) s.t.

(r u; r v) = ( f; v ); 8v 2 H 1
0 (
) : (2.17)

We consider a shape regular family of triangulationsfT hgh of 
 depending
on a parameterh > 0 with shape regularity parameterCTh : We will consider
triangulations consisting of triangles or convex quadrilaterals in two dimensions,
and tetrahedrons or convex hexahedrons in three dimensions.

We denote byz the nodes ofTh (i.e. the vertices of the cells) and byNh the
set of all nodes, whileNh;int := Nh n � denotes the set of the free nodes. The set
of all edges/facesE of the cells is denoted byEh and similarly, Eh;int := Eh n � is
the set of internal edges/faces. Let' z be the nodal basis function associated to a
nodez 2 N h with support ! z; which is equal to the patch! z = [f T 2 Th jz 2 Tg:
We use the Courant �nite element spaceVh := spanf ' zjz 2 N h;int g � H 1

0 (
) :
The Galerkin solution uh 2 Vh is de�ned by the discrete system

(r uh; r vh) = ( f; v h); 8vh 2 Vh: (2.18)

2.3 Local Mesh Re�nement

The Adaptive Finite Element Method (AFEM) consists of successive loops of the
steps

Solve �! E stimate �! M ark �! R ef ine (2.19)

to decrease the total discretisation error, by repeating the FEM solution process
(Solve) on a mesh that has been re�ned (Ref ine ) on the areas where the a-
posteriori analysis has shown that the error is larger (Estimate and M ark).

FEM provides numerical solutions to the above problem in the discrete �nite
dimensional spaceVh � V , and transforms the continuous problem above in a
discrete model of typeA huh = f h in Vh under suitable boundary conditions,
whereA h = A j Vh : The overall procedure leads to the resolution of a (potentially
very large) linear algebraic system of equations of typeAu = f in RN , where
N = dim( Vh). The standard AFEM algorithm (following [39]) can be summarised
in the following steps:

This procedure solves for any levelk = 1; 2; : : : ; �k the following discrete prob-
lems: seekuk 2 Vk s.t A kuk = f k in Vk under suitable boundary conditions,
where A k : Vk ! Vk

?, A k := A j Vk . The �nite element spaces are nested
V1 � V2 � � � � � V�k and the inequality N1 < N 2 < � � � < N �k holds for the
relative dimensions of the �nite element spaces.

Next, we brie�y describe the modulesEstimate, M ark and Ref ine . We start
by providing an insight into classical a posteriori error estimation theory for the
module Estimate. Our focus is on residual-based a posteriori error estimators,
which were historically de�ned and derived in terms of the Galerkin approxima-
tion.
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Algorithm 1: AFEM Algorithm
Input : initial mesh T1

Loop: for k = 1; 2; : : : ; �k do steps1: � 4:

1. Solve: Akuk = fk in RN k ; wheredim(Vk) = Nk ; based onTk .

2. Estimate: Compute � T (uk) for all T 2 Tk :

3. M ark: Choose set of cells to re�neM k � T k based on� T (uk):

4. Ref ine : Generate new meshTk+1 by re�nement of the cells inM k :

Output: nested sequence of meshesTk , approximations uk , and local
estimators � T (uk), for k = 1; : : : ; �k � 1, and �nal problem-adapted
approximation u�k :

The concepts of Error Estimator, E�ciency and Reliability. Classical
a posteriori error estimation theory focuses on measuring a suitable norm of
the discretisation error eh by providing upper and lower bounds in terms of a
posteriori error estimators.

By de�nition, �regarded as an approximation to an (unknown) suitable norm
of the discretisation errorkehk; a (computable) quantity � (uh) is called apos-
teriori error estimator if it is a function of the known domain 
 ; its boundary
� , the right-hand side f as well as of the discrete solutionuh, or the underlying
triangulation� ([34]).

There are two main requirements that an a posteriori error estimator� (uh)
should satisfy, apart from being easy and cheap to compute: it has to bereliable
in the sense of an upper bound

kehk � Crel � (uh) + h:o:t:rel ; (2.20)

and e�cient in the sense of a lower bound

� (uh) � Ce� kehk + h:o:t:ef f : (2.21)

The multiplicative constants Crel and Ce� are independent on the mesh size and
h.o.t. refer to high order terms which are due to oscillations of the right-hand
side f , and which in generic cases are of magnitudes smaller thankehk:

Residual-based a Posteriori Error Estimators. Standard residual-based
a posteriori error estimators are the most widely used for adaptive techniques.
They were �rst introduced in the context of FEM by Babu²ka and Rheinboldt in
[9] and they have been thereafter widely studied in the literature; we refer, e.g.,
to the books [90] and [2].

Their derivations is based on the residual functional associated to the Galerkin
solution, which is de�ned asRf uhg : H 1

0 (
) �! R, Rf uhg := ( f; �) � a(uh; �)
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with corresponding dual norm

kRf uhgk? := sup
v2 H 1

0 (
) nf 0g

Rf uhg(v)
jvj1

= sup
v2 H 1

0 (
) nf 0g

(f; v ) � a(uh; v)
jvj1

: (2.22)

The identity jeh j1 = kRf uhgk? leads to reliable and e�cient residual-based a pos-
teriori bounds for the discretization error via estimation of the residual function.
The main tool exploited in the derivation is the Galerkin orthogonality (2.7). We
will come back to the a posteriori error estimation theory in Chapter 4.

The module M ark. Given a standard residual based a posteriori estimator
expressed as a sum over all elementsT 2 Tk

� =

(
X

T 2T k

� 2
T

) 1=2

; (2.23)

the marking strategy is an algorithm that, for any levelk selects for re�nement
the subset of elements

M k := f T 2 Tk : � T � Lg; (2.24)

whereL is a treshold error. Typical examples for the computation ofL are the
maximum criterion, which is de�ned as the largest value such that

L := � max f � T : T 2 T g; (2.25)

or the bulk criterion ([50]), whereL is the largest value such that

� 2
X

T 2T k

� 2
T �

X

T 2M k

� 2
T : (2.26)

The parameter � is such that 0 � � � 1, where � = 1 corresponds to an
almost uniform re�nement, while � = 0 corresponds to no re�nement.

�Hanging nodes�. After the re�nement procedure, consistency of the �nite
element functions between the re�ned and the coarse part of the mesh must be
ensured. We use the �hanging nodes� technique, which is particularly favorable
to deal with all-quadrilateral and all-hexahedral meshes (cf. [13]). Consistence is
ensured by adding additional algebraic constraints to the linear system. The only
restriction we require mostly for algorithmic reasons is that each face of a cell is
divided at most once (�one-irregular� mesh). This can be ensured by re�ning a
few additional cells in each cycle as necessary and has no signi�cant detrimental
e�ects on the complexity of a mesh.
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Literature on AFEM. One of the �rst AFEM analysis was provided by
Babu²ka and Vogelius in [37] for linear symmetric elliptic problems in one di-
mension. Despite their practical success, adaptive processes have been shown to
converge, and to exhibit optimal complexity, only recently and for linear elliptic
PDE. The �rst multidimensional convergence result was given by Dör�er in [50],
which introduced the marking criterion and proved linear convergence of the er-
ror for some FEM for the Poisson problem up to some tolerance. [69] extended
the analysis and included data approximation to prove convergence of a practical
adaptive algorithm. The �rst complexity result was given by Binev, Dehmen,
and DeVore in [17], which �rst proved convergence with optimal rates for the
Poisson problem. [84] proved convergence with optimal rates for the adaptive al-
gorithm. [41] included standard newest vertex bisection as mesh re�nement into
the mathematical analysis. Until then, only variations of FEM for the Poisson
model problem with homogeneous Dirichlet boundary conditions were analyzed
in the literature.

Independently, [56] and [57] developed the analysis for integral equations and
proved convergence with optimal rates for standard boundary element methods
(BEMs). [7] proved optimal convergence rates for FEM for the Poisson problem
with general boundary conditions. Finally, [55] concluded the theory for general
second order linear elliptic PDEs.

The work [39] collects all the mentioned seminal works in a unifying and
abstract framework. The work identi�es the axioms of adaptivity and proves
optimal rates for any problem that �ts in the abstract setting. The latter covers
the existing literature on rate optimality for conforming FEM (also the known
results for nonlinear problems) and BEM as well as nonconforming and mixed
FEM. With some additional (resp.relaxed) axioms, the abstract framework [39]
covers also inexact solvers and other types of error estimators.

In recent years, convergence, convergence rate, and complexity results have
been incrementally improved for AFEM applied to second-order elliptic problems
for conforming �nite element methods. For a detailed description on AFEM we
refer to the books [51, 70, 58, 73, 14].
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Chapter 3

Multilevel Methods

3.1 Introduction

This chapter presents the essential ideas behind the Finite Element Multigrid
Method (cf. Section 3.2). The aim is to present the multigrid (MG) method
as a representative example of a larger family of methods, referred to by its
chief developer Achi Brandt asmultilevel methods([36]). This is also required
to understand the motivation and theory behind Smoothed-Multilevel Methods
(cf. Section 3.3) and our Smoothed-Adaptive Finite Element Method (cf. Chapter
5). Multigrid techniques exploit discretisations with di�erent mesh sizes of a
given problem to obtain optimal convergence from relaxation techniques. For
the resolution of elliptic PDEs, the MG method turns out to be very e�ective in
providing accurate algebraic solutions inO(N ) time, where N is the dimension
of the corresponding algebraic system.

At the foundation of these techniques is the basic and powerful principle of
divide and conquer. Though most relaxation-type iterative processes, such as
Gauss-Seidel, Richardson, etc, may converge slowly for typical problems, it can
be noticed that the components of the errors (or residuals) in the directions of
the eigenvectors of the iteration matrix corresponding to large eigenvalues are
damped very rapidly. These eigenvectors are known as the oscillatory modes
or high-frequency modes. Other components, associated with low-frequency or
smooth modes, are di�cult to damp with standard relaxation. This causes the
observed slow down of all basic iterative methods. However, many of these modes
(say half) are mapped naturally into high-frequency modes on a coarser mesh.
Hence the idea of moving to a coarser mesh to eliminate the corresponding error
components. The process can obviously be repeated with the help of recursion,
using a hierarchy of meshes. Some of the modes which were smooth on the �ne
grid, become oscillatory. At the same time the oscillatory modes on the �ne
mesh are no longer represented on the coarse mesh. The iteration fails to make
progress on the �ne grid when the only components left are those associated
with the smooth modes. Multigrid strategies do not attempt to eliminate these
components on the �ne grid. Instead, they �rst move down to a coarser grid
where smooth modes are translated into oscillatory ones. This is done by going
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back and forth between di�erent grids ([80]).
The review material presented in this chapter is based on several sources.

Foremost among these are the references [18, 22, 25, 80, 36] and [33]. Nowadays,
the body of multigrid literature is vast and continues to grow at an astonishing
rate. However, there are several classical text books that we recommend as
detailed volumes. In particular, we recommend [36], which provides an excellent
and easy to read introduction to the subject. This tutorial includes enough
theory to understand how multigrid methods work. Other classical books are
[68, 61, 62, 92], [36] and [87].

Early works on multigrid methods date back to the 1960s and include the
papers by [19, 53, 54, 12, 65]. However, multigrid methods have seen much of
their modern development in the 1970s and early 1980s, essentially under the
pioneering work of Brandt ([27, 28, 29]). Brandt played a key role in promoting
the use of multigrid methods by establishing their overwhelming superiority over
existing techniques for elliptic PDEs and by introducing many new concepts which
are now widely use in MG literature ([80]). Algebraic multigrid (AMG) methods
were later developed to attempt to obtain similar performance. These methods
don't use any partial di�erential equation nor geometrical problem background
to construct the multilevel hierarchy. Instead, they construct their hierarchy of
operators directly from the system matrix. In classical AMG, the levels of the
hierarchy are simply subsets of unknowns without any geometric interpretation.
These methods were introduced in [31] and analyzed in a number of papers (see
e.g., [30, 79]). Today MG methods are still among the most e�cient techniques
available for solving Elliptic PDEs on regularly structured problems.

The remainder of the chapter (cf. Section 3.3 and Section 3.4) is dedicated
to the discussion and analysis of Smoothed-Multilevel Methods. Inspired by the
ascending phase of theV-cycle multigrid method, the strategy of Smoothed-
Multilevel Methods is to solve exactly on a coarse grid (reaching convergence
in all components), and then perform a sequence of prolongations followed by
a �xed number of smoothing steps, to improve convergence in the �ner grids,
under the assumptions that lower frequencies have already been taken care of
in the previous levels. In Section 3.3 and Section 3.4, we introduce them and
provide rigorous algebraic error analysis following [72].
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3.2 The Finite Element Multigrid Method

The multigrid method provides an optimal order algorithm for solving elliptic
BVPs. The error bounds of the approximate solution obtained from the full
multigrid algorithm are comparable to the theoretical bounds of the error in the
�nite element method (cf. Theorem 3.2.2), while the amount of computational
work involved is proportional only to the number of unknowns in the discretised
equations (cf. Theorem 3.2.3) ([33]).

Geometric multigrid methods use a hierarchy of mesh levels. On each level, an
approximate solver �a so called smoother� is employed, which reduces the error in
the high frequency, and then an approximation on a coarser level is used to reduce
the error in lower frequencies. This is done down to the coarsest level, where we
assume that the solution process is exact and cheap. The method has two main
features: smoothing on the current grid and error correction on a coarser grid.
The smoothing step has the e�ect of damping out the oscillatory part of the error.
The smooth part of the error can then be accurately corrected on the coarser grid
([33]).

Recall the classical a priori error estimate for piecewise linear �nite elements
(cf. [33])

ku � ukkH s 
 � Ch2� s
k kukH 2 
 ; s = 0; 1 ; 8k = 1; 2; : : : ; (3.1)

whereC is a generic positive constant independent ofk. Let Nk = dimVk . The
goal of the multigrid method is to calculateûk 2 Vk in O(Nk) operations such
that

kuk � ûkkH s 
 � Ch2� s
k kukH 2 
 ; s = 0; 1 ; 8k = 1; 2; : : : : (3.2)

The O(Nk) operation count means that the multigrid method is asymptotically
optimal.

The discussion in this chapter is based on the papers [22, 24] and on the books
[80] and [33]. We recommend the classical books [62], [68], and [20] and the survey
article [26], and the references therein for the general theory of multigrid methods.

3.2.1 The kth Level Iteration

Following [22, 24], we give a general framework for the development of multilevel
algorithms. We start by de�ning a hierarchy of spaces and the corresponding
discrete problems. We then follow by de�ning the multigrid method through its
ingredients and present the algorithm.

De�nition 3.2.1. A hierarchy of spaces f Vkg1� k� �k is a sequence of spaces of
the form

V1 � V2 � � � � � V�k : (3.3)

We assume thatV�k is the high resolution space on which we want to solve
(2.3), but where the condition number of the matrixA �k is bad. On the other
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end of the spectrum, we assume that the solution of (2.3) onV1 is easily possible.
We restrict the discussion to model problem (2.16) for simplicity. The discrete
problems associated with the hierarchy of spaces (3.3) read:

Find uk 2 Vk such that

a(uk ; vk) = ( f; v k); 8vk 2 Vk : (3.4)

De�ne the operator Ak : Vk �! Vk
? by

(Akvk ; wk) = a(vk ; wk); 8vk ; wk 2 Vk : (3.5)

In terms of the operatorAk , the discretised equation (3.4) can be written as

Akuk = f k ; (3.6)

wheref k 2 Vk satis�es

(f k ; vk) = ( f; v k); 8vk 2 Vk : (3.7)

De�nition 3.2.2. Given a hierarchy of spaces like in(3.3), a multigrid method
consists of the following components:

1. A smootherRk acting on the level spaceVk , usually an iterative method like
Richardson, Jacobi, Gauÿ-Seidel or a Schwarz method.

2. A coarse grid solver solving the problem onV1 exactly.

3. Transfer operators between the levelsVk� 1 and Vk .

We refer the reader to [23] for the analysis of smoothers for multigrid algo-
rithms. For standard �nite element methods, the transfer operator is typically
the embedding operator. The transfer in opposite direction is achieved by the
L2-projection. We recall their de�nition following [33].

De�nition 3.2.3 (Intergrid Transfer Operators ). The coarse-to-�ne in-
tergrid transfer operator

I k
k� 1 : Vk� 1 �! Vk (3.8)

is taken to be the natural injection. In other words,

I k
k� 1v = v; 8 v 2 Vk� 1: (3.9)

The �ne-to-coarse intergrid transfer operator

I k� 1
k : Vk �! Vk� 1 (3.10)

is de�ned to be the transpose ofI k
k� 1 with respect to theL2-inner product (�; �). In

24



Ornela Mulita CHAPTER 3. MULTILEVEL METHODS

other words,

(I k� 1
k w; v) = ( w; I k

k� 1v); 8 v 2 Vk� 1; 8 w 2 Vk : (3.11)

On a given levelVk , the multigrid method consists of an alternating sequence
of smoothing steps and coarse grid corrections, where the latter consist of a
projection of the residual to the spaceVk� 1 and then recursive application of
the same sequence. The standard multigrid algorithm is de�ned as a process
which produces a functionMG k(w(0) ; f k) 2 Vk , an improved approximation to
the solution uk = A � 1

k f k of (3.6). Here,k is the grid level, w(0) 2 Vk is a given
approximation to the solution uk , and f k 2 Vk

?. A standard presentation of this
algorithm is given below.

Algorithm 2: The kth Level Iteration of the Multigrid Algorithm.

For k = 1, MG 1(w(0) ; f 1) is the solution obtained from a direct method. In
other words,

MG 1(w(0) ; f 1) = A1
� 1f 1: (3.12)

For k > 1, MG k(w(0) ; f k) is obtained recursively in three steps.

1. Pre-smoothing step: apply� steps of a Richardson iteration
preconditioned with the smootherRk :

w(i +1) = w(i ) + Rk(f k � Akw(i )); 0 � i � � � 1: (3.13)

2. Coarse grid correction step: letq(0) 2 Vk� 1 and f k� 1 2 Vk� 1
? such that

f k� 1 = I k� 1
k (f k � Akw(� )); q(0) = 0: (3.14)

Compute
q(i ) = MG k� 1(q(i � 1); f k� 1); 1 � i � p: (3.15)

Then,
w(� +1) = w(� ) + I k

k� 1q(p) : (3.16)

3. Post-smoothing step: apply� steps of a Richardson iteration
preconditioned with the smootherRk :

w(i +1) = w(i ) + Rk(f k � Akw(i )); � + 1 � i � � + �: (3.17)

Then, the output of the k-th level iteration is

MG k(w(0) ; f k) := w(� + � +1) : (3.18)

Remark 3.2.1. The kth level iteration of the multigrid method has three parame-
ters, the numbers of pre- and post- smoothing steps� and � , as well as the number
of coarse grid iterationsp. The parameters are taken as positive integers and of
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the three,p has a strong impact on the structure of the iteration. It de�nes what
is called the cycle type. Forp = 1, the method is called aV-cycle method, while
for p = 2 it is called a W-cycle method. The complexity analysis of the method
shows that higher values ofp do not lead to e�cient algorithms.

The kth level iteration results in a very simple error reduction process. More
precisely, we can analyse directly the relation between the initial erroruk � w(0)

and the �nal error uk � MG k(w(0) ; f k) after one application of the multigrid
process on thekth subspace in terms of a linear operatorEk (cf (3.20)). The
latter is de�ned in terms of the following orthogonal projection operator.

De�nition 3.2.4. Let Pk : V �! Vk be the orthogonal projection with respect to
a(�; �). In other words, for any v 2 V, Pkv 2 Vk and

a(v � Pkv; w) = 0 ; 8w 2 Vk : (3.19)

De�nition 3.2.5. The error operator Ek : Vk �! Vk is de�ned recursively by

E1 = 0

Ek = ( I � RkAk)� [I � (I � Ek� 1)Pk� 1]p(I � RkAk)� ; k � 1:
(3.20)

In other words,Ek relates the �nal error of the kth level iteration to the initial
error by the relation

Ek(uk � w(0) ) = uk � MG k(w(0) ; f k): (3.21)

Relation (3.21) can be proved by induction. We refer to the paper [24] for a
version of the proof.

The multigrid process is often applied repeatedly to develop an iterative
method for solving A �ku�k = f �k . Given an initial approximation v0, subsequent
approximations are de�ned by

vi +1 = MG �k(vi ; f ); 8 i = 0; 1; : : : (3.22)

From the above discussion, the erroru � vi is given by

u � vi = ( E �k) i (u � v0): (3.23)

Consequently, the multigrid iterative process corresponds to a linear iterative
procedure. This can be written equivalently as

ui +1 = ui + B �k(f � A �kui ); (3.24)

for the operator B �k = ( I � E �k)A � 1
�k . In particular, B M

k satis�es

I � BkAk = Rk [(I � Pk� 1) + ( I � Bk� 1Ak� 1)Pk� 1]Rk ; (3.25)

i.e., Ek = I � BkAk , for k = 1; : : : ; �k. This is an important observation because
it allows the use of the multigrid process to de�ne preconditioning operators
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B �k . For example, the operatorB �k can be used as a preconditioner with the
conjugate gradient method to develop more e�ective iteration procedures in many
applications.

This linear iterative procedure can be thought of as de�ning an operator
B �k : V�k �! V�k which approximately invertsA �k . The goal of the multigrid analysis
is to provide estimates for either the spectrum ofB �kA �k or an appropriate norm
of I � B �kA �k .

3.2.2 The Full Multigrid Algorithm

In the application of the kth level iteration to Equation (3.6), we take the initial
guess to be the prolongationI k

k� 1vk� 1, where vk� 1 is the approximate solution
obtained solvingAk� 1uk� 1 = f k� 1. Then we apply thekth level iteration r times.
The full multigrid algorithm therefore consists of the following nested iterations
(following [33]) :

Algorithm 3: The Full Multigrid Algorithm.
For k = 1, the approximate solution is obtained by applying a direct or
iterative method to A1u1 = f 1.

For k � 2, the approximate solutionsûk are obtained via the iteration

u(0)
k = I k

k� 1ûk� 1

u(l )
k = MG k(u(l � 1)

k ; f k); 1 � l � r;

ûk = u(r )
k :

(3.26)

It turns out that the techniques used for the analysis of theV-cycle and
W-cycle, respectively are quite di�erent. We recall the basic convergence and
complexity results of the symmetricV-cycle algorithm, corresponding to Algo-
rithm 2 with p = 1 and � = � . The following theorems show that thekth level
iteration scheme for aV-cycle method has a contraction number bounded away
from 1 for every � . In turn, the convergence of the full multigrid method is a
simple consequence of the convergence of thekth level iteration. We recall the
following classical results by Braess and Hackbusch (cf. [18]):

Theorem 3.2.1 (Convergence of the kth Level Iteration for the V cycle). Let �
be the number of smoothing steps. Then,

kuk � MG k(w(0) ; f k)kE �
C?

� + C?
kuk � w(0) kE (3.27)

Hence, thekth level iteration for any � is a contraction, with the contraction
number independent ofk.

Next, follows Theorem 3.2.2, which only consideres the piecewise linear case,
since higher-order �nite element equations would be preconditioned by a low-
order solver.
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Theorem 3.2.2 (Full Multigrid Convergence ). If the kth level iteration is a
contraction with a contraction number independent ofk and if r in Algorithm 3
is large enough, then there exists a constantC > 0 such that

kuk � ûkkE � Chk jujH 2 (
) : (3.28)

We �nally turn our attention to the work estimate and recall the following
main theorem.

Theorem 3.2.3. The work involved in the full multigrid algorithm isO(Nk),
whereNk = dim(Vk).

We refer to [33] for a version of the proof.
For the theory regarding the general case, see [83]. For a detailed theory of

the convergence analysis of the multigrid method we refer to [15, 25, 94, 24, 32].
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3.3 Smoothed-Multilevel Methods

Multilevel methods can be easily motivated by taking an in-depth look at simple
smoothing iterative schemes, such as Richardson, Gauss-Seidel, Jacobi, SOR (
cf., eg., [80]). As an example and prototype for all other iterative methods, in
this work we only use Richardson iteration as a smoothing iteration, but other
choices are possible, see, for example, the review in [93, 59, 21]. In the next
subsection, we consider the algebraic resolution of model problem (2.16) and
discuss Richardson smoothing iteration, a �rm understanding of which is essential
for the development of multilevel concepts. With an appreciation of how the
conventional methods work and why they fail, Smoothed-Multilevel Methods can
be introduced as a natural remedy for restoring and improving the performance
of basic relaxation schemes. We discuss them in Section 3.3 and provide rigorous
algebraic analysis in Section 3.4.

3.3.1 Smoothing iterations

Let Nk = dim( Vk); then the discrete systems (3.4) lead to linear algebraic systems
of type

Akuk = fk in RN k ; (3.29)

where Ak denotes the symmetric positive de�nite (SPD) sti�ness matrix with
entries a(k)

ij := ( r ' (k)
j ; r ' (k)

i ) 8 i; j = 1; ::; Nk ; uk = [ u1; : : : ; uN k ]T denotes the

coe�cients vector in RN k of the discrete approximationuk =
P N k

j =1 uj '
(k)
j 2 Vk

and fk = [ f 1; : : : ; f N k ]T is the vector with entriesf j = ( f; ' (k)
j ); 8j = 1; : : : ; Nk .

Let
n

w (k)
j

oN k

j =1
denote the eigenvectors ofAk , which by the Spectral Theorem

form an orthonormal basis ofRN k (cf., eg., [66]), and let

0 < � (k)
1 � ::: � � (k)

N k
; (3.30)

denote the corresponding eigenvalues, ordered non-decreasingly. Eigenvectors
corresponding to higher eigenvalues are increasingly oscillatory, i.e., theirAk �
norm is larger. This follows trivially from the fact that � (k)

i = kw (k)
i k2

A k
=kw (k)

i k2
`2 =

kw (k)
i k2

A k
.

Next, we de�ne the notions of smoothing iteration and Richardson iteration.
For simplicity of the exposure, we omit the indexk, whenever we're referring to
the linear systems (3.29), and consider the generic form

Au = f in RN : (3.31)

De�nition 3.3.1. (Smoother vector ) Consider two generic vectorsa; b 2 RN ,
which can be uniquely decomposed asa =

P N
i =1 ai w i and b =

P N
i =1 bi w i . We

say that b is smoother thana if kbk � k ak for a suitable norm k � k, and its
components along the most oscillatory eigenvectors are smaller. By convention
we de�ne as �oscillatory� the components fromN=2 onwards. Thenb is smoother
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than a if bi � ai for i 2 (N=2; N ].

De�nition 3.3.2. (Smoothing Iteration ) Given an initial guessu (0) 2 RN ;
consider the classical linear iteration for the resolution of(3.31) of the form

u (i +1) = u (i ) + R(f � Au (i )) for i = 0; 1; : : : ; (3.32)

with some nonsingular matrixR: Let u denote the exact solution of(3.31), we
denote bye(i ) := u � u (i ) the error after i iterations. We say that (3.32) is a
smoothing iteration if (I � RA)e(i ) is smoother thane(i ) for any i:

The matrix I � RA is called theiteration matrix and it is generally denoted
by M := I � RA. From (3.32) it is immediate that

e(i +1) = e(i ) � R(f � Au (i )) = e(i ) � RAe(i ) = M e(i ) = � � � = M i +1 e(0) : (3.33)

De�nition 3.3.2 and equation (3.33) imply that, for smoothing iterations, the
iteration matrix M has a �smoothing" e�ect on the error, by dumping the highly
oscillatory components of the error.

De�nition 3.3.3. (Richardson Iteration ) Given a �xed parameter! 2 R and
an initial guessu (0) , Richardson iteration for the resolution of (3.31) takes the
form:

u (i +1) = u (i ) + ! (f � Au (i )) for i = 0; 1; : : : (3.34)

Richardson iteration can also be written as

u (i +1) = ( I � !A )u (i ) + ! f for i = 0; 1; : : : (3.35)

Remark 3.3.1. Richardson iteration (3.34) is of type (3.32) where the matrixR
is given by!I: The optimal choice for the parameter! is ! = 1= , where  is a
damping parameter of the same order as the spectral radius ofA

� (A) := max f � i j1 � i � N g: (3.36)

In practical situations,  = � (A) or  � � (A) ( see, eg., [61, 80]).

Remark 3.3.2. Richardson iteration (3.34) is a smoothing iteration. Consider
the errors after respectivelyi , and i + 1 Richardson iterations

e(i ) =
NX

j =1

c(i )
j w j and e(i +1) =

NX

j =1

c(i +1)
j w j (3.37)

for some coe�cients f c(i )
j gN

j =1 and f c(i +1)
j gN

j =1 . Observe that by construction,M
and A share the same eigenvectorsf w i gN

i =1 , and we can easily derive from the
error propagation formula (3.33) that

c(i +1)
j = � j c

(i )
j 8j = 1; : : : ; N; (3.38)
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Figure 3.1: Number of required iterations to bring the error for di�erent compo-
nents below 1e-8 on a one-dimensional problem with 161 uniformly distributed
degrees of freedom.

where � j := 1 � � j = is the j-th eigenvalue of the iteration matrixM , and it
represents the reduction factor associated to the error component in the direction
of w j . Notice that the de�nition of � j is independent on the iteration stepi . For
the practical choice = 1=� (A);

� 1 = 1 �
� 1

� N
� 1 and � N = 1 �

� N

� N
= 0: (3.39)

This implies that after a single Richardson iteration

c(i +1)
1 = � 1c(i +1)

1 � c(i +1)
1 and c(i +1)

N = � N c(i )
N = 0; (3.40)

i.e. the slowest converging component corresponds to the smallest eigenvalue� 1,
while the fastest converging component corresponds to the largest eigenvalue� N :

In general, the reduction factor for the Richardson iteration is �close to zero�
for components corresponding to large eigenvalues and close to one for compo-
nents corresponding to small eigenvalues. After a single Richardson iteration, the
high oscillatory components will have been strongly reduced.

Figure 3.1 shows in a practical example the number of required iterations
to bring the error in each component below10� 8 for a one-dimensional model
problem with 161 uniformly distributed degrees of freedom, showing how higher
frequencies require a smaller number of iterations.

This characteristic of Richardson iteration makes it a good smoother candidate
for many multilevel algorithms, where one solves exactly on a coarse grid (reaching
convergence in all components), and then performs a sequence of prolongations
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followed by a �xed number of smoothing steps, to improve convergence in the
�ner grids, under the assumptions that lower frequencies have already been taken
care of in the previous levels.

This is achieved by considering the canonical embedding operator which is
represented by the coarse to �ne operator (3.8). We still denote byI k+1

k : RN k !
RN k +1 the corresponding discrete linear operator. Notice that its matrix repre-
sentation won't be the identity matrix, since we're using di�erent basis functions
in Vk and in Vk+1 : As an example, consider linear �nite element functions. These
are uniquely determined by their values in the nodes. For nodes that exist both
in Tk and Tk+1 , the value at those nodes can be determined inTk and it remains
the same. For the nodes inTk+1 that are not in Tk ; their values are determined
by linear interpolation.

We will refer to multilevel algorithms that adopt the above procedure of res-
olution as smoothed-multilevel methods.

Algorithm 4: The Smoothed-Multilevel Algorithm.
For k = 1, û1 = A � 1

1 f 1.
For k � 2, the approximate solutionsûk are obtained iteratively from

u(0)
k = I k

k� 1ûk� 1

u(i )
k = u(i � 1)

k + ! (k)(f k � Aku(i � 1)
k ); 1 � i � l;

ûk = u(l )
k :

(3.41)

In order to understand the principle behind many multilevel algorithms, and
behind our S-AFEM algorithm (cf. Chapter 5), in [72] we provide a discussion
on a simple one-dimensional example, which we present in the next subsection.

3.3.2 Smoothed-Multilevel Methods

Consider model problem (2.16) with constant functionf = 1 on the right-hand
side. We solve (without preconditioner) using either the CG method or Richard-
son iterations, on a sequence of uniformly re�ned grids.

We set a stopping tolerance of10� 6, and �x a maximum number of iterations
to 1; 000; 000. Moving from one level to the next, the mesh is globally re�ned,
doubling the number of cells of the grids.

Tables 3.1 and 3.2 show a comparison between the number of iterations re-
quired to reach convergence when we apply the two iterative methods with the
initial guess set to zero, or to the prolongation of the solution from the previous
cycle.

Surprisingly, the CG method does not seem to gain any advantage from the
prolongation step. On the other hand, Richardson iteration shows a dramatic
decrease in the number of required iterations when we use the prolongation of
the previous solution as initial guess for the iterative procedure.
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After the �rst few levels, Richardson iteration becomes even faster than CG,
thanks to its spectral behaviour. The convergence on the coarsest levels captures
the less oscillatory part of the solution. Their prolongation allows the iterative
solver to start from an already good approximation of the solution in its low
frequency part. Intuitively, the prolongation operation substantially leaves unal-
tered the low frequencies of the previous mesh. By applying smoothing iterations,
we're converging towards the solution in the highest frequencies.

Level DoF Iterations CG Iterations CGProl
2 41 20 20
3 81 40 40
4 161 80 80
5 321 160 160
6 641 320 320
7 1281 640 640
8 2561 1280 1280

Table 3.1: Comparison of the number of iterations between CG without prolon-
gation and CG with prolongation with stopping tolerance of10� 6 and maximum
number of iterations1; 000; 000.

Level DoF Iterations Richardson Iterations RichardsonProl
2 41 5523 1333
3 81 20321 1072
4 161 74115 119
5 321 267713 9
6 641 955805 2
7 1281 ****** 2
8 2561 ****** 2

Table 3.2: Comparison of the number of iterations between Richardson and
Richardson with prolongation with stopping tolerance of10� 6 and maximum
number of iterations1; 000; 000.

The CG method, on the other hand, is a projection method ofKrylov sub-
space type. The main idea of the projection process in general is to �nd an
approximate solution of system (3.31), where the dimensionN is possibly very
large, by solving at each step a system of much smaller dimensionality, which is
obtained by projecting the original system (3.31) onto a suitable subspace ofRN

([67]). Speci�cally, the approximate solution at iterative stepm is searched in
x0 + Km (r 0; A), wherex0 is a given initial guess andKm (r 0; A) � RN is the search
spacegiven by the Krylov subspaceof dimensionm � N generated byA and r 0

and de�ned as

Km (r0; A) := spanf r 0; Ar 0; A2r 0; : : : ; Am� 1r 0g; (3.42)

where r0 := f � Ax0 is the initial residual. Krylov subspaces form a nested
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sequence of subspaces.
De�nition (3.42) implies that the error at step n can be written as

en = pn (A)e0; (3.43)

wherepn 2 P(0;1)
n := f p 2 Pn ; s.t. p(0) = 1 g.

In particular, the optimality property of CG (cf. eg. [67]) implies that

kenk2
A = min

p2 P(0 ;1)
n

kp(A)e0k2
A : (3.44)

In each iteration, the conjugate gradient method improves the convergence in
all error components relying on the optimality property (3.44), instead of captur-
ing only the high oscillatory ones. A particular characteristic is that theysave all
information along the way, i.e., they use at any given iteration the information
computed in all previous iterations.

On the other hand, by their nature, smoothing iterations combine aspects of
the underlying PDE and the corresponding �nite element discretisation. Despite
being far less competitive as solvers for large systems in general, smoothing it-
erations turn out to be very useful in our context, similarly to what happens in
multigrid methods: they use the spectral decomposition ofM and exploit the
strong relation between eigenfunctions of the iteration matrixM and the under-
lying mesh in order to take advantage of coarser meshes.

3.4 Algebraic Error Analysis for Smoothed-Multilevel
Methods

In this section we analyse the algebraic error propagation in smoothed-multilevel
methods following [72]. We �rst provide a one step error propagation recursive
formula, and afterwards we provide a compact error propagation formula after
introducing the Frequency-Coupling and Smoothing (FCS) Matrices. Finally, we
provide the algebraic error analysis under the assumption that the prolongation
operator preserves low frequencies from the previous level.

3.4.1 Error propagation

Theorem 3.4.1 (Error propagation ([72])). Let e(l )
k and e(l )

k+1 denote the al-
gebraic errors after l smoothing iterations respectively at stepk and k + 1; for
k = 1; : : : ; �k � 1: Let

ak+1 := uk+1 � I k+1
k uk 2 RN k +1 (3.45)

denote the di�erence between the exact algebraic solutionuk+1 at levelk + 1 and
the prolongation of the exact algebraic solutionuk from the previous levelk to the
current level k + 1; for k = 1; : : : ; �k � 1: Then, the following error propagation
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recursive formula holds true

e(l )
k+1 = M k+1

l (ak+1 + I k+1
k e(l )

k ); for k = 1; : : : ; �k � 1: (3.46)

Proof. Let e1 = u1 � uc
1 be the error after the �rst cycle k = 1, where uc

1 is
the numerical computed approximation. After prolongatinguc

1 to the next level
k = 2; there is an initial error

e(0)
2 = u2 � I 2

1uc
1

= u2 � I 2
1u1 + I 2

1e1

= a2 + I 2
1e1:

(3.47)

After l smoothing iterations there is a smoothed approximationu (l )
2 produced

and the �nal error is given by

e(l )
2 = M 2

le(0)
2

= M 2
la2 + M 2

l I 2
1e1:

(3.48)

Let now k = 2; 3; : : : ; �k� 1 be generic. We prolongate the smoothed approximation
u (l )

k = uk � e(l )
k from step k to obtain the initial guess for stepk + 1

u (0)
k+1 = I k+1

k u (l )
k

= I k+1
k uk � I k+1

k e(l )
k ;

(3.49)

which produces the initial error

e(0)
k+1 = uk+1 � u (0)

k+1

= uk+1 � I k+1
k uk + I k+1

k e(l )
k

= ak+1 + I k+1
k e(l )

k :

(3.50)

After l smoothing iterations the �nal error at step k + 1 is

e(l )
k+1 = M k+1

le(0)
k+1

= M k+1
l (ak+1 + I k+1

k e(l )
k );

(3.51)

which proves the recursive formula.

Observation 3.4.1. If we repetitively apply the one-step error propagation equa-
tion (3.51), we get a recursion of the type

e(l )
k+1 = M k+1

l (ak+1 + I k+1
k e(l )

k )

= M k+1
l (ak+1 + I k+1

k (M k
l (ak + I k

k� 1e(l )
k� 1)))

: : :

= M k+1
l (ak+1 + I k+1

k M k
l (ak + I k

k� 1M k� 1
l (ak� 1 + : : : ))) :

(3.52)
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By applying all the multiplications extensively we get the following extended
error propagation formula for Smoothed-Multilevel Methods

e(l )
k+1 = M k+1

lak+1 + M k+1
l I k+1

k M k
lak + M k+1

l I k+1
k M k

l I k
k� 1M k� 1

lak� 1 + : : :

� � � + M k+1
l I k+1

k M k
l I k

k� 1M k� 1
l � � � M 3

l I 3
2M 2

la2

+ M k+1
l I k+1

k M k
l I k

k� 1M k� 1
l � � � M 3

l I 3
2M 2

l I 2
1e1:

(3.53)

Observation 3.4.2. If we let

a := ak+1 + I k+1
k M k

lak + I k+1
k M k

l : : : I k
k� 1M k� 1

lak� 1

� � � + I k+1
k M k

l I k
k� 1M l

k� 1 � � � M 3
l I 3

2M 2
l I 2

1e1;
(3.54)

then equation(3.53) becomes

e(l )
k+1 = M k+1

la; (3.55)

which means that the algebraic error at any stepk + 1 is the result ofl smoothing
iterations applied to the vectora that de�nes the error accumulated from prolon-
gating the contribution of the algebraic errors coming from all previous steps.

De�nition 3.4.1 (Frequency-Coupling and Smoothing (FCS) Matrices ).
De�ne the frequency-coupling and smoothing (FCS) matrix

B j +1 ;j := I j +1
j M l

j 2 RN j +1 � N j for j = 2; : : : ; k: (3.56)

and the frequency-coupling and smoothing product (FCSP)

Bk+1 ;i := Bk+1 ;k : : : B i +1 ;i 2 RN k +1 � N i for i = 2; : : : ; k: (3.57)

Theorem 3.4.2 (Error propagation formula for Smoothed-Multilevel
Methods ([72])). The algebraic error in Smoothed-Multilevel Methods satis�es
the following error propagation formula for any stepk; for k = 2; : : : ; �k � 1

e(l )
k+1 = M k+1

l

 

ak+1 +
kX

j =2

Bk+1 ;j aj + Bk+1 ;2I 2
1e1

!

; (3.58)

where the vectorsaj are de�ned by (3.45).

Proof. The proof is a trivial consequence of substituting De�nition 3.4.1 in the
extended error propagation formula (3.53), which gives

e(l )
k+1 = M k+1

l (ak+1 + Bk+1 ;kak + : : :

� � � + Bk+1 ;kBk;k � 1 : : : B3;2a2 + Bk+1 ;kBk;k � 1

: : : B3;2I 2
1e1)

= M k+1
l (ak+1 + Bk+1 ;kak + Bk+1 ;k� 1ak� 1+

� � � + Bk+1 ;2a2 + Bk+1 ;2I 2
1e1):

(3.59)
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Next, we de�ne the frequency cuto� projection operators, which are a useful
tool to analyse the structure of the FCS matrixB j +1 ;j . In Theorem 3.4.3 we
provide a decomposition of the FCS matrix in the product of the prolongation
matrix I j +1

j with the low frequency cuto� projection operator and another matrix,
which has a contraction e�ect on the norms of the vectors.

De�nition 3.4.2 (Frequency cuto� operators ). We de�ne the projection op-
erator L j : RN j ! RN j , such that v 7! L j v :=

P N j =2
i =1 vi w

(j )
i and the projection

operator H j : RN j ! RN j , such thatv 7! H j v :=
P N j

i = N j =2+1 vi w
(j )
i :

In particular,

L j � H j = IdN j and kvk2 = kL j vk2 + kH j vk2 8v 2 RN j : (3.60)

Theorem 3.4.3 (Structure of the FCS matrix ). ([72]) Let j = 2; : : : ; k be
�xed. The FCS matrix can be decomposed as

B j +1 ;j = I j +1
j L j + Cj ; (3.61)

where the matrixCj 2 RN j +1 � N j is de�ned as

Cj := I j +1
j ((M j

l � IdN j )L j + M j
lH j ) (3.62)

and it is such that

kCj vk � ckvk; 8v 2 RN j ; wherec < 1: (3.63)

Proof. We apply de�nition (3.56) of the FCS matrix and relation (3.60) and we
get

B j +1 ;j = I j +1
j M j

l

= I j +1
j M j

lL j + I j +1
j M j

lH j

= I j +1
j L j + ( I j +1

j M j
lL j � I j +1

j L j + I j +1
j M j

lH j )

= I j +1
j L j + Cj ;

(3.64)

whereCj := I j +1
j ((M j

l � IdN j )L j + M j
lH j ).

Next, in order to prove (3.63), considerv 2 RN j and estimate

kCj vk2 = kI j +1
j ((M j

l � IdN j )L j + M j
lH j )vk2

= k((M j
l � IdN j )L j + M j

lH j )vk2

� (k(M j
l � IdN j )L j vk + kM j

lH j vk)2

� 2(k(M j
l � IdN j )L j vk2 + kM j

lH j vk2);

(3.65)

where we've applied the triangle inequality and the discrete Cauchy-Schwarz in-
equality.
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Consider the �rst term in the rhs

k(M j
l � IdN j )L j vk2 =








N j =2X

i =1

�
(� (j )

i ) l � 1
�

vi w
(j )
i








2

=
N j =2X

i =1

�
(� (j )

i ) l � 1
� 2

v2
i

�
�

(� (N j =2)
i ) l � 1

� 2
N j =2X

i =1

v2
i

=
�

(� (j )
(N j =2))

l � 1
� 2

kL j vk2:

(3.66)

Likewise,

kM j
lH j vk2 =








N jX

i = N j =2+1

(� (j )
i ) lvi w

(j )
i








2

=
N jX

i = N j =2+1

(� (j )
i )2lv2

i

� (� (j )
N j =2+1 )2l

N jX

i = N j =2+1

v2
i

= ( � (j )
N j =2+1 )2lkH j vk2:

(3.67)

We let c := 2 max
� �

(� (j )
(N j =2))

l � 1
� 2

; (� (j )
N j =2+1 )2l

�
< 1, we substitute it into

(3.65), and we get estimate (3.63).

3.4.2 Non-interacting Frequency Coupling Hypothesis

In order to give a qualitative interpretation to the error propagation formula, we
consider the following (reasonable) Assumption 3.4.1 :

Assumption 3.4.1 (Non-interacting Frequency Coupling Hypothesis for
Smoothed-Multilevel Methods ([72])). We assume that

L j I
j
j � 1L j � 1 = I j

j � 1L j � 1 8j = 1; : : : k; (3.68)

i.e. the prolongation operator preserves low frequencies from the previous level.

Finally, we propose the main result of the section, which is given in Theorem
3.4.4 where we derive the propagation formula for the algebraic error under hy-
pothesis (3.68). For the proof, we take advatage of decomposition (3.61) of the
FCS matrix to obtain a decompostion for the FCSP (3.57) and we substitute the
results to Theorem 3.4.2.
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Theorem 3.4.4 (Error propagation formula for smoothed-multilevel meth-
ods under the Non-interacting Frequency Coupling Assumption ). The
algebraic error in smoothed-multilevel methods satis�es the following error prop-
agation formula for any stepk; for k = 2; : : : ; �k � 1

e(l )
k+1 = M k+1

l

 

ak+1 +
kX

j =2

I k+1
j L j aj + I k+1

2 L2I 2
1e1+

kX

j =2

Dk+1 ;j aj + Dk+1 ;2I 2
1e1

!

; (3.69)

where the matrixDk;m 2 RN k � Nm is such thatkDk;m vk � ckvk; 8v 2 RNm , where
c < 1, the matrix I k

m := I k
k� 1 : : : I m+1

m ; 8k > m + 1 and the vectorsaj are de�ned
by (3.45), i.e., aj := u j � I j

j � 1u j � 1.

Proof. Observing that

Bk;m = Bk;k � 1Bk� 1;m ; 8k > m + 1; (3.70)

we can recursively apply the decomposition ofBk;k � 1, and, using assumption 3.68,
we conclude that

Bk;m = I k
mLm + Dk;m ; (3.71)

where the matrix Dk;m is in RN k � Nm , and contains all the mixed products. In
particular, in every one of these products, there will always be at least one of the
matrices Cj for somej , that is,

kDk;m vk � ckvk; 8v 2 RNm ; (3.72)

where c < 1. We conclude by substituting decompostion (3.71) to the error
propagation formula (3.58) in Theorem 3.4.2.

Remark 3.4.1. Theorem 3.4.4 quanti�es the algebraic error that is accumulated
after k + 1 cycles in smoothed-multilevel methods, under the assumption that low
frequencies are preserved by the prolongation operator. The smoothing matrix
at cycle k + 1 is responsible for dumping the most oscillatory part of this error.
There is a contribution given by the accumulation of all low frequency-parts of the
errors of all previous cycles (c.f. second and third term in the summation in the
rhs of (3.69)), which is expected to be �small", since low frequencies of the exact
algebraic solution at a mesh are close to the low frequencies of the exact algebraic
solution at the successive mesh. Finally there is a last type of contribution, which
is given by mixed products (cf. fourth and �fth term in the summation in the rhs
of (3.69)), which is also �small" due toc < 1.

Notice that Assumption 3.4.1 is only useful to distinguish between high and
low frequency parts in the error propagation formula, but it is not essential for
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Figure 3.2: An example of grid re�nement that does not satisfy Assumption 3.4.1

its proof, given in Theorem 3.4.2. The assumption is useful to identify qualita-
tively how the error propagates between successive re�nement levels, and can be
interpreted as a condition on the distribution of the degrees of freedoms between
grids on di�erent levels. In particular, it implies that all low eigenfunctions of the
spaceVj � 1, in particular those corresponding to the �rstN j � 1=2 eigenvalues, can
be representedexactly by low frequencies ofVj , i.e., they should be representable
as linear combinations of the �rstN j =2 eigenfunctions ofVj .

In general, it is not trivial to verify this assumption for practical applications.
In fact, for �nite element methods of elliptic equations with variable coe�cients
based on general triangulations, the eigenvalue and eigenvectors of the sti�ness
matrix are not easy to �nd out. Indeed it is even harder than solving the linear
algebraic equation (cf. eg., the many references [93], [26], [62], [21]). However,
it is safe to state that local re�nement in �nite element simulations introduces
more frequencies in the higher part of the spectrum, perturbing only slightly the
lowest part of the spectrum.

Assumption 3.4.1 may also be satis�ed only approximately. In this case, The-
orem 3.4.4 should be modi�ed to take this into account. The main statement
would still remain valid, but we would also have higher order error terms appear-
ing in the error propagation formula (3.69), due to the inexactness of the low
frequency prolongations.

Figure 3.2 provides an example of grid re�nement that may be troublesome
for the above hypothesis: when passing from the left grid to the right one, we are
introducing some low-frequency terms (in the middle left side of the mesh), that
may invalidate the assumption. Notice that, from the practical point of view, the
assumption is veri�ed for most re�nements that do not add too many degrees of
freedom between re�nement levels.

When this occurs, it may be necessary to use higher frequencies to describe
the low modes of the previous grid, but these high frequencies would be damped
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very quickly by the smoothing steps nonetheless, thanks to the presence of the
matrix M l

k+1 in front of the propagation formula (3.69).
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Chapter 4

A Posteriori Error Analysis with
algebraic error

This chapter is dedicated to a posteriori error analysis with algebraic error. The
purpose is to expand the classical theory on residual-based a posteriori error
estimators that we introduced in Section 2.3, and which are historically de�ned
and derived in terms of the Galerkin solution.

We dedicate Section 4.1 to discuss the need to account for inexact algebraic
approximations. Our attention is devoted to the main issues that a posteriori error
analysis accounting for the algebraic error has to deal with. More speci�cally, the
derivation and the construction of the a posteriori estimator should be done on
the available inexact approximation, instead of the Galerkin solution and the
algebraic error should be incorporated in the estimate.

In Section 4.2, we are going to prove a bound on the estimator for a generic
function in terms of the estimator for the Galerkin solution and the corresponding
algebraic error, following [72].

Finally, in Section 4.3 we slightly touch upon a still ongoing work in [71] that
quanti�es qualitatively di�erent contributions of di�erent eigenfunctions in the
expression of the error estimator.

4.1 A Posteriori Error Estimates with Algebraic
Error

When solving real-world practical applications, the main di�culty one has to face
is that exact (or even near-to-exact) solutions of the algebraic problem associated
to �nite element problems cannot be computed. The approximationuc

h that one
obtains in a computer, does not satisfy the Galerkin property (2.7). The total
error can be written as the sum of two contributions

u � uc
h| {z }

total error

= ( u � uh)
| {z }

discretisation error

+ ( uh � uc
h)

| {z }
algebraic error

: (4.1)
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The algebraic error may have a signi�cant e�ect on the computed approxima-
tion, and the solution of the algebraic problem has to be considered an indivisible
part of the overall solution process ([76]).

This issue is re�ected in adaptive mesh re�ning procedures. The common
practice in computational sciences and engineering community has been to replace
uh by uc

h in the expression of the error estimator� during the moduleEstimate.
As a result, there are some urgent challenges that the derivation and application
of the a posteriori error estimates should resolve

1. The derivation and the construction of the a posteriori estimator should be
done on the available inexact approximationuc

h:

2. The estimation of the total error u � uc
h should incorporate the algebraic

error uh � uc
h:

The classical reliability and e�ciency bounds (2.20) and (2.21) have to be
consequently revised and extended to take into account the above points.

A vast literature proposes the use of standard residual-based a posteriori error
estimator on the discretisation error as a basic building block and extends it, using
various heuristics arguments, to incorporate the algebraic error. We refer to the
seminal and investigative paper by Pape�z and Strako�s [75] and the references
therein for various approaches.

Residual-based a posteriori error estimates for the total error for the model
problem have been pubblished in [16], [5] and [75].

In [75], the authors give the detailed proof of the residual-based upper bound
on the energy norm of the total error

ju � vh j21 � 2C2(J 2(vh) + osc2) + 2 C2
intp juh � vh j21; (4.2)

for vh 2 Vh; with the positive multiplicative factors C and Cintp that are indepen-
dent of u; uh and h; but depend on the shape regularity of the triangulation. The
term accounting for the algebraic error is scaled by a multiplicative factorCintp

that was introduced in [40]. It represents however a worst case scenario that can
lead to an overestimation and it is in general not easy to estimate.

As one of the main still unresolved challenges, the authors point out that a
tight upper bound of juh � uc

h j1 is not available yet. The use of �nite precision
arithmetic and the neglection of roundo� errors may therefore lead to inaccurate
and unrealistic estimates.

Last but not least, the authors emphasize that since a lot of methodological
di�culties are there already for a simple model problem such as the Poisson
problem, it is not clear whether the extension of the estimator to incorporate
the algebraic error for more complicated model problems could lead to further
complications.

The above discussed issues make the application of the residual-based error es-
timator for the mesh re�nement adaptivity in presence of algebraic errors an open
problem, as claimed in [75]. Moreover, when considering h-adaptive algorithms,
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another di�culty is added: in the bound (4.2) the algebraic error is estimated
globally and its local contributions cannot guarantee an indication of the spa-
tial distribution of the discretisation error over the domain (cf. [67] and [74]). In
this regard, there have been recently developed �ux reconstruction methodologies
that introduce robust stopping criteria and balance the algebraic and discretisa-
tion error; we refer to the work by [76] and to the references therein for a more
elaborated insight on the topic.

4.2 An upper bound on the Error Estimator ap-
plied to generic functions

We recall standard upper bounds on the discretisation error and lower bounds on
the total error (see [38] and [16]), and we prove an upper bound on the estimator
de�ned for a generic �nite element functionvh 2 Vh, in terms of the estimator
de�ned for the Galerkin solution and the algebraic error. LethT =diam( T) for
T 2 Th; hz=diam( ! z) for z 2 N h;int ; and hE =diam( E) for E 2 Eh: Consider the
mean value operator� ! z : L1(
) �! R; � ! z (f ) :=

R
! z

f= j! zj:
For a givenz 2 N h; de�ne an oscillation term

oscz := j! zj1=2kf � � ! z f k! z ; osc:=

 
X

z2N h

osc2z

! 1=2

: (4.3)

For a given function vh 2 Vh; de�ne for E 2 Eh and T 2 Th

JE (vh) := h1=2
E






�
@vh
@nE

� 




E

; JT (vh) :=
X

E 2 @T

JE (vh);

J (vh) :=

 
X

E 2Eh

JE (vh)2

! 1=2

=

 
1
2

X

T 2T h

JT (vh)2

! 1=2

;

(4.4)

where [�] is the standard notation for denoting the jump of a piecewise con-
tinuous function across the edge/faceE in normal direction nE and where we've
taken into consideration that when summing overall the elements each edge/face
is counted twice.

Lemma 4.2.1 recalls the classical upper bound on the discretization error,
which is stated and proved in [38].

Lemma 4.2.1 (Upper bound on the discretization error ([72]).). There
exists a constantC? > 0 which depends on the shape of the triangulation, on
 ;
on � ; and which is independent off and of the mesh-sizeshT such that

ju � uh j1 � C?(osc2 + J 2(uh))1=2: (4.5)

The a posteriori residual-based estimator in the rhs of (4.5) is made up by an
oscillating-contribution (volume-contribution) that measures the variations of the
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rhs function f from its mean value� ! z (f ) on each patch! z; and by an edge/face-
contribution that measures the jump of the gradient of the Galerkin solution
across the inner edges/faces. Notice that the global upper estimate (4.5) is made
up by local cell-wise estimations.

Remark 4.2.1. The proof of (4.5) is based on a quasi-interpolation operator
that was �rst introduced in [38]. It represents a modi�cation of the classical
quasi-interpolation operator due to Clément ([44]) in the setting of a partition
of the unity, which has the e�ect that the volume contribution term(4.3) in the
a posteriori residual based estimate(4.5) is smaller compared to the one in the
standard estimate according to [90], [2]. The edge/face-contribution(4.4) domi-
nates the residual based standard a posteriori estimates for a�ne �nite element
approximations ([38], [40]), and if the right-hand-sidef is smooth, a Poincaré
inequality shows that the oscillating term(4.3) is of higher order ([38]).

In [16], the authors use standard bubble-function techniques of [89] to prove a
global lower bound on thej�j 1-norm distance between the true solutionu 2 H 1

0 (
)
and a generic functionvh 2 Vh:

Lemma 4.2.2 (Lower bound on the total error). There exists a constantC? > 0
which only depends on the minimum angle of the triangulation, on
 ; on � ; and
which is independent off; u; u h and of the mesh-sizeshT such that

J 2(vh) � C?(ju � vh j21 + osc2) 8vh 2 Vh: (4.6)

Now we can use Lemma 4.2.1 and 4.2.1 to prove our main result for this
section.

Theorem 4.2.1. There exist positive constantsC1; C2; C3 that only depend on
the minimum angle of the triangulation, on
 ; on � ; and which are independent
of f; u; u h and of the mesh-sizeshT such that

J 2(vh) � C1J 2(uh) + C2juh � vh j21 + C3osc2 8vh 2 Vh: (4.7)

Proof. For a given functionvh 2 Vh; we decomposeu � vh = ( u � uh) + ( uh � vh)
and we apply the equalityju � vh j21 = ju � uh j21 + juh � vh j21 (see, e.g. [67]) to the
lower bound (4.6)

J 2(vh) � C?(ju � vh j21 + osc2)

= C?(ju � uh j21 + juh � vh j21 + osc2)

� C?(C?2(osc2 + J 2(uh)) + juh � vh j21 + osc2)

= C?C?2J 2(uh) + C?juh � vh j21 + C?(C?2 + 1) osc2

= C1J 2(uh) + C2juh � vh j21 + C3osc2;

(4.8)

where we have used the upper bound (4.5) in (4.8).
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Remark 4.2.2. Theorem 4.2.1 gives an upper bound onJ 2(vh) where vh is a
generic function (for instance, accounting for inexact approximations) in terms
of J 2(uh), the square energy norm of the algebraic error, which is equal tojuh � vh j21
and oscillation terms which only depend on the triangulation and the data, but
are independent ofuh and vh.

A related result is found in the paper [5], where the authors set the stopping
criterion for the CG method by using a residual-based error estimator in the
context of elliptic self-adjoint problems. They provide an upper bound on� (vh)
in terms of � (wh) and jvh � wh j1, wherevh and wh are generic functions inVh.
However, their proof proceeds di�erently, and it is based on the use of the full
a-posteriori error estimator, while here we prove that a similar result holds also
for the case where onlyJ (vh) is used, i.e., when only face terms are considered
in the estimator.

This result, together with Theorem 3.4.4, gives us a sound theoretical basis for
a smoothed AFEM algorithm, where the algebraic errorjuh � vh j21 in the interme-
diate steps is given explicitly by the error propagation formula 3.69.

More speci�cally, in the context of Smoothed-Multilevel Methods, letVk+1 be
the �nite element space afterk + 1 cycles and letvk+1 := ul

k+1 denote the �nite
element function, which has discrete corresponding vectoru l

k+1 . Then, it can be
easily proved thatjuk+1 � ul

k+1 j21 is exactly theAk+1 -square energy normkuk+1 �
u l

k+1 k2
A k +1

= ke(l )
k+1 k2

A k +1
, which has been quanti�ed rigorously in Theorem 3.4.4.

4.3 Dominating terms in the expression of the edge
contribution of the estimator

In this section we brie�y comment and report some ideas that are an ongoing
work in [71]. Let us �for the reader's sake� rewrite the expression of the edge
contribution in the expression of the residual based error estimator for a given
function vh 2 Vh; for E 2 Eh and T 2 Th

JE (vh) := h1=2
E






�
@vh
@nE

� 




E

; JT (vh) :=
X

E 2 @T

JE (vh);

J (vh) :=

 
X

E 2Eh

JE (vh)2

! 1=2

=

 
1
2

X

T 2T h

JT (vh)2

! 1=2

:

(4.9)

Motivated by the numerical evidences in Chapter 5, we want to investigate
qualitatively the action of the jump operator on eigenfunctions of di�erent fre-
quencies.

Let wi be an eigenfunction of the eigenvalue problem corresponding to Prob-
lem 2.18, i.e.

(r wi ; r vh) = � i (wi ; vh); 8vh 2 Vh; 8i = 1; : : : ; N: (4.10)
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� We want to investigate the action of the estimator on an eigenfunction. In
particular, we expect to obtain that

J 2(wi ) � � 2
i w2

i : (4.11)

This result would nicely �t with the observed numerical results in Section 5
that the error estimator is small for small eigenvalues and big for big eigen-
values.

� From the operatorial point of view, we are interested in investigating the
relationship between theAT A-norm of uh and J (uh)2. Again, we suspect
that

kuhkA T A � J 2(uh): (4.12)

However, this is still an ongoing work and more speci�c details followed by
the proofs will be provided in [71].
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Chapter 5

Smoothed Adaptive Finite Element
Method (S-AFEM)

In this chapter, we introduce and describe the Smoothed AFEM algorithm (S-
AFEM). To �x the ideas, we provide a small discussion with some empirical
numerical evidence that justi�es the use of S-AFEM in Section 5.1, which is
explained in detail in Section 5.2. The discussion and results in this chapter are
taken by [72].

For completeness, we report here the error propagation formula (3.69):

e(l )
k+1 = M k+1

l

 

ak+1 +
kX

j =2

I k+1
j L j aj + I k+1

2 L2I 2
1e1+

kX

j =2

Dk+1 ;j aj + Dk+1 ;2I 2
1e1

!

:

We observe that the presence ofM l
k+1 in front of the error expression guaran-

tees that high frequencies would be damped very quickly by the use of Richardson
smoothing. On the other hand, the largest part of the low frequency error is given
by the term

I k+1
2 L2I 2

1e1;

and by the accumulation of the error in low frequency that is due to the di�erence
between the exat algebraic solutions in the di�erent levels

kX

j =2

I k+1
j L j aj :

Of all terms, the ones that containe1 could be controlled easily (and in a
computationally inexpensive way), by ensuring that �rst iteration of AFEM is
solved accurately, i.e., consideringe1 = 0.

In particular, it is still acceptable to have a large di�erence betweenuh and
ul

h (implying a large a posteriori error estimate on the algebraic approximation
J (vh)), provided that this di�erence is roughly equally distributed over the grid,
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since a (almost) constant di�erence between� T (uh) and � T (vh) for all T would
result in (almost) the same cells marked for re�nement.

5.1 Some Numerical Evidences

To �x the ideas, we consider the Peak Problem in two dimensions as described in
Subsection 5.3.1, and we apply ten cycles of the classical AFEM Algorithm 1.1
using non-preconditioned Richardson iterations for the algebraic resolution of the
system with initial guess given by the prolongation of the previous approxima-
tion for each cycle. We use standard residual-based a posteriori error estimators
(4.4) which are locally de�ned through the jump of the gradient of the discrete
approximation across the edges/facesE of the cells (cf. Section 2.3). In Fig-
ure 5.1 we plot the`2-norm of the residual r (l )

k := Ake(l )
k and the value of the

estimator � (ul
k) for all cycles as the Richardson iteration countl increases from

1 to 30. The same behaviour is present in every re�nement cycle. The residual
norm shows two distinguishable speeds of convergence. The �rst few iterations
induce a rapid drop in the residual norm (due to convergence of the highly os-
cillatory terms in the solution), while the second part of the iterations converge
very slowly, corresponding to the convergence speed of the low frequency in the
solution. The estimator, on the other hand, stagnates after very few Richardson
iterations (around two or three). In other words,J (ul

h) is almost the same as
J (uh) for l � 3, empirically suggesting that the error estimator (4.4) is mainly
a�ected by the highly oscillatory components of the discrete algebraic solutionul

h,
and that the estimate provided by Theorem 4.2.1 may be improved by exploiting
the structure of the algebraic iterative solution in Richardson iteration provided
by Theorem 3.4.4.

Although the value we plot in Figure 5.1 for the estimator is a global one, and
gives no information on the distribution of the local estimator on the grid, it is a
good hint that the overall behaviour of such distribution will not be changing too
much after the �rst few Richardson iterations. We show some numerical evidence
that this is actually the case in the numerical validation Section 5.3.

Motivated by these numerical evidences and by the earlier observations, we
argue that in the intermediate AFEM cycles it is not necessary to solve exactly
the discrete system. What matters instead is to capture accurately the highly
oscillatory components of the discrete approximation. Low frequency components
may have an in�uence on the error estimator, however, this is mostly aglobal
in�uence, that has a small e�ect on the cells that will actually be marked for
re�nement in the M ark step.

5.2 Smoothed Adaptive Finite Element Algorithm

We present theSmoothed Adaptive Finite Elementalgorithm (S-AFEM), where
the exact algebraic solution in intermediate steps is replaced by the application
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Figure 5.1: Residual norm (top) and Estimator (bottom) for intermediate cycles
of the classical AFEM algorithm when using Richardson iteration without pre-
conditioner as a solver, with prolongation from the previous solution as starting
guess. Darker lines correspond to earlier cycles. Only the �rst 30 iterations are
shown.
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of a prolongation step (Prolongate), followed by a smoothing step (Smooth):

The �rst and last steps of the S-AFEM algorithm coincide with a classical
AFEM. In the intermediate steps, however, the solution of the algebraic problem
is replaced by a prolongation step (Prolongate) followed by a �xed number of
smoothing iterations (Smooth).

The strategy consists precisely in

1. solving exactly the linear algebraic system derived from the discrete problem
on the coarsest levelk = 1 and on the �nest level k = �k;

2. applying a few smoothing iterations on the linear algebraic system in the
intermediate levelsk = 2; : : : ; �k � 1 by using the prolongation of the ap-
proximation from the previous level as an initial guess;

3. executing theEstimate and Ref ine steps on the approximate solutions for
k = 2; : : : ; �k � 1.

In particular, we propose Algorithm 5.

Algorithm 5: Smoothed-adaptive mesh-re�ning algorithm ([72]) .
Input : initial mesh T1

Step k=1: SolveA 1u1 = f 1 based onT1.
Loop: for k = 2; : : : ; �k � 1 do steps1 � 4

1. Smooth : Compute l smoothing iterations on the discrete system
Akuk = fk , with initial guess u (0)

k := I k
k� 1u (l )

k� 1, which produceu (l )
k 2 RN k

with correspondingul
k 2 Vk .

2. Estimate : Compute � 2
T (ul

k) for all T 2 Tk :

3. M ark : Choose set of cells to re�neM k � T k based on� 2
T (ul

k):

4. Ref ine : Generate new meshTk+1 by re�nement of the cells inM k :

Stepk = �k: Solve the discrete systemA �ku �k = f �k :
Output: sequence of meshesTk , smoothed approximationsul

k , and
estimators � (ul

k), �nal adapted-approximation ul
�k .

In step k = 1, we capture the smoothest (i.e. less oscillatory) part of the
discrete approximation by solving the discrete system exactly on the coarsest
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level. As the mesh is locally re�ned from one level to the other, we increase the
higher portion of the spectrum of the matrixAk . Thanks to the structure of the
re�nement in typical �nite element methods, mostly high frequencies are added
to the system, while low frequencies are substantially left unaltered. This is
formalized by the Non-interacting Frequency Coupling Hypothesis for smoothed-
multilevel methods (3.68).

The advantage of S-AFEM is that, on one hand, we save a substantial amount
of computational time that would be needed for the algebraic solution in the
intermediate steps, and on the other hand we obtain roughly the same mesh-
sequence, hence the same re�nement at each step, with an accuracy on the �nal
approximation step that is comparable to the classical AFEM algorithm, at a
fraction of the computational cost.

5.3 Numerical validation

The numerical results presented in this work were realized using a customC++
code based on thedeal.II library [13, 3], and on thedeal2lkit library [81].
We consider two classical experiments used to benchmark adaptive �nite element
methods. In our implementation we use the classical marking strategy following
[50], which we described in Section 2.3. In our numerical tests, unless otherwise
stated, we set� = 0 :3. The re�nement strategy that we adopt in this work is
based on the use of �hanging nodes� (see [13] for a detailed discussion on the
implementation details).

5.3.1 Two-dimensional examples

Smooth domain, peak right hand side, two dimensions. The �rst exam-
ple we consider consists in solving the model problem on a square domain, with
a custom forcing term that contains a peak in a speci�ed point in the domain,
forcing the exact solution to be

u(x; y) = x(x � 1)y(y � 1)e� 100
�

(x� 0:5)2+( y� 0:117)2
�
; (5.1)

(see Figure 5.2).

Fichera corner domain, smooth right hand side, two dimensions. In
the second two-dimensional test case, we consider a Fichera corner domain, i.e., a
square where the upper right corner is removed, and the reentrant corner coincides
with the origin. No forcing term is added to the problem, but the boundary
conditions are set so that the following exact solution is obtained (when expressed
in polar coordinates)

u(r; � ) = r 2=3 sin
�

2� + 5�
3

�
; (5.2)
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Figure 5.2: Solution to peak problem (5.1) in two dimensions.

as shown in Figure 5.3.
In all cases, we apply ten cycles of classical AFEM and of S-AFEM. For the

AFEM algorithm, we use the CG method as iterative solver, with an algebraic
multigrid preconditioner (AMG), and we iterate until the `2 norm of the residual
is below a tolerance of10� 12 for each cycle. For S-AFEM, we modify the inter-
mediate cylces and we only apply three Richardson iterations. For reference, we
report a comparison between the cells marked for re�nement by AFEM and S-
AFEM after four cycles for the two-dimensional Fichera corner problem in Figure
5.4, and after nine cycles for the two-dimensional peak problem in Figure 5.7. In
both cases, the set of marked cells, although di�erent in some areas, produces a
re�ned grid that is very similar between the classical AFEM and the S-AFEM,
and where the accuracy of the �nal solution is comparable.

In Figures 5.5 and 5.8 we compare the values of the global estimatorsJ (uh)
and J (ul

h) and of theH1 semi-norm of the total errors for each cycle for the two-
dimensional peak problem, and for the two-dimensional Fichera corner problem
when using S-AFEM. For reference, Figures 5.6 and 5.9 show the error and the
estimator in the classical AFEM algorithm for the two examples. Notice that the
�rst step of AFEM and of S-AFEM are the same. The last step in the S-AFEM
case shows comparable results as in the AFEM algorithm for both examples.

Notice that in S-AFEM the value of the global estimator is almost the same
of the one that would be obtained by solving using CG and AMG (J (uh) in
Figures 5.5 and 5.8), showing that in the two dimensional setting the error es-
timator (4.4) is mainly a�ected by the high frequencies of the discrete solution,
which are well captured with just a few Richardson iterations. On the other
hand, the total error increases in the intermediate cycles, due to the algebraic er-
ror that has been accumulated by applying smoothing iterations instead of solving
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Figure 5.3: Solution to the Fichera corner problem (5.2) in two dimensions.

Figure 5.4: Comparison between the cells marked for re�nement in AFEM (on
the left) and S-AFEM (on the right) after 5 cycles.
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Figure 5.5: True error, algebraic error, and estimator for the Peak problem in
two dimensions.

the algebraic problem until convergence, as quanti�ed by Theorem 3.4.4. This
error measures the distance between the exact algebraic solution and the smooth
non-oscillatory components of the approximate solution that are not captured by
Richardson iteration, and have little or no in�uence on the error estimator, and
therefore on the generated grid. After ten cycles, we solve the algebraic problem
until converge using CG and AMG, as in the �rst cycle, and we obtain a solution
whose error is controlled by the estimator, as expected.

5.3.2 Three-dimensional examples

Smooth domain, peak right hand side, three dimensions. The �rst three-
dimensional test case that we propose is a model problem on a cube domain, where
the forcing term contains a peak in a speci�ed point that forces the exact solution
to be given by (see Figure 5.10):

u(x; y; z) = x(x � 1)y(y � 1)z(z � 1)e� 100
�

(x� 0:5)2+( y� 0:117)2+( z� 0:331)2
�
: (5.3)

Fichera Corner, smooth right hand side, three dimensions. In the sec-
ond three-dimensional example, we consider again the classic Fichera corner do-
main, i.e., a cube where the upper right corner is removed, and the reentrant
corner coincides with the origin. We set the exact solution to be

u(r; �; � ) = r 1=2; (5.4)
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