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The surprising insulating and superconducting states of narrow-band graphene twisted bilayers have
been mostly discussed so far in terms of strong electron correlation, with little or no attention to phonons
and electron-phonon effects. We found that, among the 33 492 phonons of a fully relaxed θ ¼ 1.08° twisted
bilayer, there are few special, hard, and nearly dispersionless modes that resemble global vibrations of
the moiré supercell, as if it were a single, ultralarge molecule. One of them, doubly degenerate at Γ with
symmetry A1 þ B1, couples very strongly with the valley degrees of freedom, also doubly degenerate,
realizing a so-called E ⊗ e Jahn-Teller (JT) coupling. The JT coupling lifts very efficiently all degeneracies
which arise from the valley symmetry, and may lead, for an average atomic displacement as small as
0.5 mÅ, to an insulating state at charge neutrality. This insulator possesses a nontrivial topology testified
by the odd winding of the Wilson loop. In addition, freezing the same phonon at a zone boundary point
brings about insulating states at most integer occupancies of the four ultraflat electronic bands. Following
that line, we further study the properties of the superconducting state that might be stabilized by these
modes. Since the JT coupling modulates the hopping between AB and BA stacked regions, pairing occurs
in the spin-singlet Cooper channel at the inter-(AB-BA) scale, which may condense a superconducting
order parameter in the extended s-wave and/or d� id-wave symmetry.
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I. INTRODUCTION

The recent discovery of superconductivity in magic
angle (θ ≈ 1.1°) twisted bilayer graphene (TBLG) [1–4]
has stimulated intense theoretical and experimental
research activity. This unexpected phenomenon occurs
upon slightly doping insulating states found at fractional
fillings, the latter contradicting the metallic behavior
predicted by band structure calculations. Despite the huge
size of the unit cell, containing more than ≈11 000 atoms,
the band structure of TBLG at the first magic angle has
been computed with a variety of methods, including tight
binding [5–10], continuum models [11,12], and density
functional theory (DFT) [13,14]. These approaches predict
that all the exotic properties mentioned above arise from
four extremely flat bands (FBs), located around the charge
neutrality point, with a bandwidth of the order of
≈10–20 meV. Owing to the flatness of these bands, the
fractional filling insulators found in Refs. [1,2] are

conjectured to be Mott insulators, even though rather
anomalous ones, since they turn frankly metallic above a
critical temperature or above a threshold Zeeman splitting
in a magnetic field, features not expected from a Mott
insulator. Actually, the linear size of the unit cell at the
magic angle is as large as ≈14 nm, and the effective on-site
Coulomb repulsion, the so-called Hubbard U, must be
given by the charging energy in this large supercell
projected onto the FBs, including screening effects due
to the gates and to the other bands. Even neglecting the
latter, the estimated U ∼ 9 meV is comparable to the
bandwidth of the FBs [15]. Since the FBs are reproducibly
found in experiments [1–4,16–20] to be separated from the
other bands by a gap of around ∼30–50 meV, the actual
value of U should be significantly smaller, implying that
TBLG might not be more correlated than a single graphene
sheet [21]. In turn, this suggests that the insulating behavior
at ν ¼ �2 occupancy might instead be the result of a weak-
coupling Stoner or charge density wave band instability
driven by electron-electron and/or electron-phonon inter-
actions, rather than a Mott localization phenomenon.
As pointed out in Ref. [22], in order to open an insulating

gap the band instability must break the twofold degeneracy
at the K points imposed by the D6 space group symmetry
of the moiré superlattice, as well as the additional twofold
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degeneracy due to the so-called valley charge conservation.
This conserved quantity is associated with an emergent
dynamical U(1) symmetry that appears at small twist
angles, a symmetry which, unlike spatial symmetries, is
rather subtle and elusive. It is therefore essential to identify
a microscopic mechanism that could efficiently break this
emergent symmetry, hereafter referred to as Uvð1Þ. The
most natural candidate is the Coulomb repulsion [22–24],
whose Fourier transform decays more slowly than that of
electron hopping, possibly introducing a non-negligible
coupling among the two valleys even at small twist angles.
Indeed DFT-based calculations show a tiny valley splitting
[13,14], almost at the limits of accuracy of the method,
which is nevertheless too small to explain the insulating
states found in the FBs.
Here we uncover another Uvð1Þ-breaking mechanism

involving instead the lattice degrees of freedom (d.o.f.),
mostly ignored so far. It must be recalled that ab initioDFT-
based calculations fail to predict well-defined FBs sepa-
rated from other bands unless atomic positions are allowed
to relax [10,14,25–28], especially out of plane. That alone
already demonstrated that the effects of atomic motions
in the lattice are not at all negligible in TBLG, further
supported by the significant phonon contribution to trans-
port [18,29,30]. We calculate the phonon spectrum of the
fully relaxed bilayer at 1.08° twist angle, which shows the
presence, among the about 30 000 phonons, of a small set
of very special optical modes, with C-C stretching char-
acter, very narrow and uniquely coherent over the moiré
supercell Brillouin zone. Among them, we find a doubly
degenerate optical mode that couples to the Uvð1Þ sym-
metry much more efficiently than Coulomb repulsion
seems to do in DFT calculations. A subsequent frozen-
phonon tight-binding calculation shows that this mode is
able to fully lift the valley degeneracy even when its lattice
deformation amplitude is extremely small. Remarkably,
both electrons and phonons are twofold Uvð1Þ degenerate,
and the coupling of this mode with the electron bands
actually realizes an E ⊗ e Jahn-Teller (JT) effect [31]. This
effect is able to stabilize insulating states at integer
occupancies of the FBs, both even and odd. Moreover, a
surprising and important additional result will be that the
electron-phonon coupling magnitude controlling this proc-
ess is extremely large, and not small as one could generally
expect for a very narrow band. We conclude by studying
the superconducting state that might be mediated by the
Jahn-Teller coupling in a minimal tight-binding model of
the FBs that reproduces symmetries and topological proper-
ties of the realistic band structure calculations.
This work is organized as follows. In Sec. II, we specify

the geometry of the TBLG studied and define useful
quantities that are used throughout the article. In
Sec. III, we briefly discuss the band structure obtained
by a realistic tight-binding calculation of the TBLG with
fully relaxed atomic positions. The phonon spectrum and

its properties, especially focusing on special optical modes
strongly coupled with the valley Uvð1Þ symmetry, are
thoroughly discussed in Sec. IV. Section VII addresses the
properties of the superconducting state that might be
stabilized by the particular phonon mode identified in
the previous section, through a mean-field calculation
using a model tight-binding Hamiltonian of the FBs.
Finally, Sec. VIII is devoted to concluding remarks.

II. MOIRÉ SUPERLATTICE AND SYMMETRIES

In Fig. 1 we show the geometry of the TBLG that we use
hereafter. We start from an AA stacked bilayer and rotate in
opposite directions the two layers around the center of a
hexagon by an angle 1.08°=2, leading to a unit cell with
11 164 carbon atoms. The moiré superlattice, top left-
hand panel, with the reference frame defined in the top
right-hand panel, possesses a full D6 spatial symmetry.
Specifically, resolving the action of each symmetry oper-
ation in the indices that identify the two layers, 1 and 2, the

FIG. 1. Top: Moiré superlattice formed by two unrelaxed
graphene layers (in blue and red) twisted by an angle θ. We
indicate the different stacking regions: AA and the two different
Bernal regions AB and BA. The domain walls (DWs) separate AB
from BA regions and connect different AA regions. On the right,
an enlargement of the AA stacked region is shown: two over-
lapping hexagons in distinct graphene layers are rotated in
opposite directions around the perpendicular z axis by an angle
θ=2. Bottom: The folding procedure in TBLG. The original
single-layer Brillouin zones (in red and blue) are folded into
the mini Brillouin zone (MBZ). Two inequivalent K points in
different layers (K− and K0þ or K0

− and Kþ) are folded into the
same points, K1 or K2, of the MBZ. The path K1 → Γ → M →
K2 is also shown.
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two sublattices within each layer, A and B, and, finally, the
two sublattices AB and BA of the moiré superlattice (see
top panel of Fig. 1), we have that

(i) the rotation C3z by 120° around the z axis is diagonal
in all indices, 1 and 2, A and B, and AB and BA,

(ii) the C2x rotation by 180° around the x axis inter-
changes 1 with 2 and Awith B, but is diagonal in AB
and BA,

(iii) the C2y rotation by 180° around the y axis inter-
changes 1 with 2 and AB with BA, but is diagonal in
A and B,

(iv) finally, the action of a C2z rotation by 180° around
the z axis is a composite symmetry operation
obtained by noting that C2z ¼ C2x × C2y.

In Table I we list the irreducible representations (irreps) of
the D6 space group and the action on each of them of the
symmetry transformations C3z, C2x, and C2y.

A. Uvð1Þ valley symmetry

The mini Brillouin zone (MBZ) that corresponds to the
real space geometry of Fig. 1 and its relationship with the
original graphene Brillouin zones are shown in the bottom
panels of Fig. 1 (for better readability, at a larger angle than
the actual 1.08° which we use). Because of the chosen
geometry, the Dirac point Kþ (K0þ) of the top layer and
K0

− (K−) of the bottom one fold onto the same point,K1 or
K2, of the MBZ, so that a finite matrix element of the
Hamiltonian between them is allowed by symmetry.
Nevertheless, as pointed out by Ref. [11], the matrix
element of the one-body component of the Hamiltonian
is negligibly small at small twist angles, so that the two
Dirac points, hereafter named valleys, remain effectively
independent of each other. This implies that the operator,

ΔNv ¼ N1 − N2; ð1Þ

where N1 and N2 are the occupation numbers of each
valley, must commute with the noninteracting Hamiltonian
of the TBLG at small angles. That operator is in fact

the generator of the Uvð1Þ symmetry. As we see in the
following (see Sec. III A), the interplay between the valley
symmetry and C2y is responsible for the additional twofold
degeneracies beyond those of Table I in both electron band
structure and phonon spectra along all the points in the
MBZ invariant under that symmetry.

B. Wannier orbitals

We assume in the following Wannier orbitals (WOs) that
are centered at the Wyckoff positions 2c of the moiré
triangular superlattice, i.e., at the AB and BA region
centers, even though their probability distribution has a
very substantial component in other regions such as AA.
The large size of the unit cell has so far originated
an intense effort to find a minimal model faithfully
describing the FBs’ physics. While a variety of WOs
centered at different Wyckoff positions has been proposed
[13,22,27,32–37], our simple assumption is well suited for
our purposes. The site symmetry at the Wyckoff positions
2c is D3, and includes only C3z and C2x with irreps A1, A2,
and E. Inspired by the symmetries of the Bloch states at the
high-symmetry points [10], see Sec. III, we consider two A1

and A2 one-dimensional irreps (1D irreps), both invariant
under C3z and eigenstates of C2x with opposite eigenvalues
c2x ¼ �1. In addition, we consider one two-dimensional
irrep (2D irrep) E, which transforms under C3z and C2x as
the 2D irreps in Table I, hence comprises eigenstates ofC2x,
with opposite eigenvalues c2x ¼ �1, which are not invari-
ant under C3z. We define on sublattice α ¼ AB, BA the
spin-σ WO annihilation operators Ψα;Rσ and Φα;Rσ corre-
sponding to the two 1D irreps (Ψ) or the single 2D irrep
(Φ), respectively,

Ψα;Rσ ¼

0
BBB@

Ψα;1;s;Rσ

Ψα;2;s;Rσ

Ψα;1;p;Rσ

Ψα;2;p;Rσ

1
CCCA; Φα;Rσ ¼

0
BBB@

Φα;1;s;Rσ

Φα;2;s;Rσ

Φα;1;p;Rσ

Φα;2;p;Rσ

1
CCCA; ð2Þ

where the subscript s refers to c2x ¼ þ1 and p refers to
c2x ¼ −1, while the labels 1 and 2 refer to the two valleys.
It is implicit that each component is itself a spinor that
includes fermionic operators corresponding to different
WOs that transform like the same irrep. We shall combine
the operators of different sublattices into a single spinor:

ΨRσ ¼
�ΨAB;Rσ

ΨBA;Rσ

�
; ΦRσ ¼

�ΦAB;Rσ

ΦBA;Rσ

�
: ð3Þ

We further introduce three different Pauli matrices σa that
act in the moiré sublattice space (AB, BA), μa in the
c2x ¼ �1 space (s, p), and τa in the valley space (1, 2),
where a ¼ 0, 1, 2, 3, a ¼ 0 denoting the identity.
With these definitions, the generator (1) of the valley

Uvð1Þ symmetry becomes simply

TABLE I. Nontrivial irreducible representations of the space
group D6. Each representation has the degeneracy shown in
parentheses. We also list the action of the symmetry operations
for each representation, where ϕ ¼ 2π=3.

C3z C2x C2y

A1ð1Þ þ1 þ1 þ1
A2ð1Þ þ1 −1 −1
B1ð1Þ þ1 þ1 −1
B2ð1Þ þ1 −1 þ1

E1ð2Þ
�
cosϕ − sinϕ
sinϕ cosϕ

� �þ1 0

0 −1

� �
−1 0

0 þ1

�

E2ð2Þ
�
cosϕ − sinϕ
sinϕ cosϕ

� �
1 0

0 −1
� �

1 0

0 −1
�
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ΔNv ¼
X
Rσ

ðΨ†
Rσσ0τ3μ0ΨRσ þΦ†

Rσσ0τ3μ0ΦRσÞ: ð4Þ

It is now worth deriving the expression of the space
group symmetry operations in this notation and represen-
tation. By definition, the C2x transformation corresponds to
the simple operator

C2xðΨRσÞ ¼ σ0τ0μ3ΨC2xðRÞσ;

C2xðΦRσÞ ¼ σ0τ0μ3ΦC2xðRÞσ: ð5Þ

The 180° rotation around the z axis that connects sublattice
AB with BA of each layer (C2z) is not diagonal in the valley
indices and can be represented by [13,33]

C2zðΨRσÞ ¼ σ1τ1μ0ΨC2zðRÞσ;

C2zðΦRσÞ ¼ σ1τ1μ0ΦC2zðRÞσ: ð6Þ

Finally, since C2y ¼ C2z × C2x, then

C2yðΨRσÞ ¼ σ1τ1μ3ΨC2yðRÞσ;

C2yðΦRσÞ ¼ σ1τ1μ3ΦC2yðRÞσ: ð7Þ

III. LATTICE RELAXATION AND SYMMETRY
ANALYSIS OF THE BAND STRUCTURE

Since the TBLG must undergo, relative to the ideal
superposition of two rigid graphene layers, a substantial
lattice relaxation, whose effects have also been observed in
recent experiments [16,17,38,39], we performed lattice
relaxations via classical molecular dynamics techniques
using state-of-the-art force fields, allowing for both in-
plane and out-of-plane deformations. The details about
the relaxation procedure are in the Appendix A and are
essentially those in Ref. [10]. It is well known [10,14,25,
28,40–44] that, after full relaxation, the energetically less
favorable AA regions shrink while the Bernal-stacked ones,
AB and BA, expand in the ðx; yÞ plane. In addition, the
interlayer distance along z of the AA regions increases with
respect to that of the AB and BA zones, leading to
significant out-of-plane buckling deformations, genuine
“corrugations” of the graphene layers, which form protrud-
ing AA bubbles. The main effect of the layer corrugations is
to enhance the band gaps between the FBs and those above
and below [10,14,45], important even if partially hindered
by the hexagonal-boron-nitride- (h-BN) encapsulation of
the samples during the experiments [1]. Moreover, since
both the AB and BA triangular domains have expanded, the
initially broad crossover region between them sharpens into
narrow domain walls (DWs) that merge at the AA centers in
the moiré superlattice (see Fig. 1). The electronic structure
shown in Fig. 2 is obtained with standard tight-binding
calculations, see Appendix A for further details, with the

relaxed atomic positions, using hopping amplitudes tuned
to reproduce ab initio calculations [5]. The colored circles
and triangles at the Γ and K points, respectively, indicate
the irreps that transform like the corresponding Bloch
states. For instance, at Γ the FBs consist of two doublets,
the lower corresponding to the irreps A1 þ B1, and the
upper to A2 þ B2. Right above and below the FBs, we find
at Γ two quartets, each transforming like E1 þ E2. At K,
the FBs are degenerate and form a quartet Eþ E.
Consistently with the D3 little group containing C3z and
C2y, at K we find either quartets, like at the FBs, made of
degenerate pairs of doublets, each transforming like E, or
doublets transforming like A1 þ A2, where A1 and A2 differ
in the parity under C2y. This overall doubling of degen-
eracies beyond their expected D6 space group irreps
reflects the valley Uvð1Þ symmetry of FBs that will be
discussed below, and whose eventual breaking will be
addressed later in this paper. We end by remarking that
the so-called “fragile” topology [13,22,35,46], diagnosed
by the odd winding of the Wilson loop [13], is actually
robust against lattice corrugations [45] and relaxation, as
shown by Fig. 2(c).

A. SU(2) symmetry and accidental degeneracy
along C2y-invariant lines

We note that along all directions that are invariant under
C2y, which include the diagonals as well as all the edges of
the MBZ, the electronic bands show a twofold degeneracy
between Bloch states that transform differently under C2y.
These lines correspond to the domain walls in real space.
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FIG. 2. (a) Electronic band structure of twisted bilayer gra-
phene at the angle θ ¼ 1.08 after full atomic relaxation. The
charge neutrality point is the zero of energy. The irreps at the Γ
point are encoded by colored circles, where blue, red, and green
stand for the A1 þ B1, A2 þ B2, and E1 þ E2 irreps of the D6

space group, respectively. At the K2 point the E and A1 þ A2

irreps of the little group D3 are represented by green and violet
triangles, respectively. (b) Enlargement of the FBs region.
(c) Wilson loop of the four FBs as function of k ¼ G2=π.
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This “accidental” degeneracy is a consequence of the
interplay between Uvð1Þ and C2y symmetries. Indeed,
along Γ → K1;2 and M → K1;2 in the MBZ we have that

C2yðΨkσÞ ¼ σ1τ1μ3Ψkσ; ð8Þ

and similarly for Φkσ. It follows that the generator of
Uvð1Þ, i.e., the operator σ0τ3μ0, anticommutes with the
expression of C2y along the lines invariant under that same
symmetry, namely the operator σ1τ1μ3, and both commute
with the Hamiltonian. Then also their product, σ1τ2μ3,
commutes with the Hamiltonian and anticommutes with the
other two. The three operators,

2T3¼σ0τ3μ0; 2T1¼σ1τ1μ3; 2T2¼σ1τ2μ3; ð9Þ

thus realize an SU(2) algebra and all commute with the
Hamiltonian Ĥk in momentum space for any C2y-invariant
k point. This emergent SU(2) symmetry is therefore
responsible for the degeneracy of eigenstates with opposite
parity under C2y. We note that C2x instead commutes with
Uvð1Þ, so that there is no SU(2) symmetry protection
against valley splitting along C2x-invariant lines (Γ → M).

IV. PHONONS IN TWISTED BILAYER GRAPHENE

The Uvð1Þ valley symmetry is an emergent one since,
despite the fact that its generator (1) does not commute with
the Hamiltonian, the spectrum around charge neutrality is
nonetheless Uvð1Þ invariant. It is therefore not obvious to
envisage a mechanism that could efficiently break it.
However, since the lattice d.o.f. play an important role

at equilibrium, as discussed in Sec. III, it is possible that
they could offer the means to destroy the Uvð1Þ valley
symmetry. In this section, we show that they indeed provide
such a symmetry-breaking tool.

A. Valley splitting lattice modulation:
The key role of the domain walls

In Sec. II A, we mentioned that the valley symmetry
arises because, even though inequivalent Dirac nodes of
the two layers should be coupled to each other by the
Hamiltonian after being folded onto the same point of the
MBZ (see bottom panel in Fig. 1), at small angle these
matrix elements are vanishingly small and thus the valleys
are effectively decoupled. That is true if the carbon lattice,
although mechanically relaxed, is unperturbed by the
presence of the electrons. Once coupling with electrons
is considered, we cannot exclude that, for example, a lattice
distortion modulated with the wave vectors connecting the
inequivalent Dirac nodes of the two layers,Kþ withK0

− and
K0þ withK− in Fig. 1,might instead yield a significantmatrix
element among the valleys. To investigate that possibility we
build an ad hoc distortion into the bilayer carbon atom
positions. We define the vector qij ¼ Kþ;i −K0

−;j, where

i, j ¼ 1, 2, 3 run over the three equivalent Dirac points of the
BZ of each layer, and the D6 conserving displacement field,

ηðrÞ ¼
X
a

X3
i;j¼1

sinðqij · raÞua;ijδðr − raÞ; ð10Þ

where a runs over all atomic positions, and ua;ij corresponds
to a displacement of atom a in direction qij, whose (tunable)
magnitude is the same for all atoms. In proximity of the AA
regions the distortion is locally similar to the graphene
breathing mode, the in-plane transverse-optical phonon
at K [47] with A1 symmetry. Since by construction qij is a
multiple integer of the reciprocal lattice vectors, ηðrÞ has the
same periodicity of the unit cell; i.e., the distortion is actually
at the Γ point. Moreover, the distortion’s D6 invariance
implies no change of space group symmetries. Since the
most direct evidence of theUvð1Þ symmetry is the accidental
degeneracy in the band structure along allC2y-invariant lines,
corresponding just to the DWs’directions in real space, we
further assume the action of the displacement field ηðrÞ to
be restricted to a small region in proximity of the DWs,

(a) (b)

(c)

FIG. 3. (a) The displacement field ηðrÞ, Eq. (10), restricted on
the DWs: the direction of the atomic displacement is depicted by
a small arrow, while its magnitude in mÅ is expressed in colors.
(b) Displacement along the DW area highlighted by a black
dashed line in (a). The overall effect of the distortion is a
narrowing of the DW. (c) Low-energy band structure of TBLG at
θ ¼ 1.08 after the distortion in (a). The twofold degeneracies
protected by the valley symmetry are completely lifted.
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affecting only ≈1% of the atoms in the moiré supercell;
see top panels in Fig. 3. The modified FBs in the presence
of the displacement field ηðrÞ with jua;ijj ¼ 20 mÅ are
shown in the bottom panel of Fig. 3. Remarkably, despite
the minute distortion magnitude and the distortion involv-
ing only the minority of carbon atoms in the DWs, the
degeneracy alongΓ → K1 andM → K2 is lifted to such an
extent that the four bands split into two similar copies. This
is remarkable in two aspects. First, we repeat, because
there is no space symmetry breaking. The only symmetry
affected by the distortion is Uvð1Þ, since, by construction,
ηðrÞ preserve the full space group symmetries. Second, the
large splitting magnitude reflects an enormous strength
of the effective electron-phonon coupling, whose origin
is interesting. Generally speaking, in fact, broad bands
involve large hoppings and large absolute electron-
phonon couplings, while the opposite is expected for
narrow bands. The large electron-phonon couplings which
we find for the low-energy bands of TBLG suggest a
possible broadband origin of the FBs, as we discuss in
Sec. VII. A consequence of this e-ph coupling magnitude
is that all potential phenomena involving lattice distor-
tions, either static or dynamic, should be considered with a
much larger priority than done so far.

B. Phonon spectrum

We compute the phonon eigenmodes in the relaxed
bilayer structure by standard methods; see Appendix A
for details of the calculation. Figure 4 shows the phonon
density of states FðωÞ for TBLG at three different twist
angles in comparison with the Bernal AB-stacked bilayer.
As previously reported [28,48], FðωÞ is almost independent
of the twist angle, which only affects the interlayer
van der Waals forces, much weaker than the in-plane ones
arising from the stiff C–C bonds. As a consequence,
phonons in TBLG are basically those of the Bernal-stacked
bilayer. This is true except for a small set of special phonon

modes, clearly distinguishable in Fig. 5 that depicts the
phonon spectrum enlarged in a very narrow energy region
≈0.04 meV around the high-frequency graphene K-point
peak of the phonon density of states. Specifically, within
the large number of energy levels of all other highly
dispersive phonon bands, unresolved in the narrow energy
window, a set of 10 almost dispersionless modes emerges.
We note that these special modes show the same accidental
degeneracy doubling along the C2y-invariant lines as that of
the electronic bands around the charge neutrality point.
Similar to the electronic degeneracy, whose underlying

Uvð1Þ symmetry arises from vanishingly weak hopping
matrix elements between interlayer K-K0 points in the
Hamiltonian, the mechanically weak van der Waals inter-
layer coupling here leads to an effective Uvð1Þ symmetry
for this group of lattice vibrations. Their poor dispersion is
connected with a displacement which is nonuniform in the
supercell, and is strongly modulated on the moiré length
scale, a distinctive feature of these special modes that we
denote as “moiré phonons.” In particular, it is maximum in
the center of the AA zones, finite in the DWs, and negligible
in the large AB and BA Bernal regions. The overlap
between the displacement ηðrÞ in Eq. (10) and the
33 492 phonons of the θ ¼ 1.08 TBLG at the Γ point is
non-negligible only for those moiré phonons. In particular,
we find the highest overlap with the doubly degenerate
mode marked by a red arrow in Fig. 5, and which trans-
forms like A1 þ B1. In Fig. 6(a), we show the real space

0 50 100 150                200
ω (meV)

0

2

4

6

8

F
(ω

) 
(m

eV
-1

nm
-1

)

FIG. 4. Phonon density of states FðωÞ for Bernal-stacked
bilayer graphene at zero twist angle (red dashed line) and
fully relaxed TBLG at θ ¼ 1.20, 1.12, 1.08 (blue, green, and
black lines).
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FIG. 5. Enlargement of the optical region of the phonon
spectrum of the fully relaxed TBLG at θ ¼ 1.08. Among many
scattered energy levels of highly dispersive branches (not
resolved in this narrow energy window), a set of 10 narrow
continuous branches stands out (no line drawn through data
points, which just fall next to one another). The degeneracy of
these modes is twice that expected byD6 space symmetry, similar
in this to electronic bands. The twofold degenerate mode with the
highest overlap with the deformation ηðrÞ, drawn in Fig. 6, is
marked by a red arrow, while the mode at M used in Sec. VI is
marked by a green arrow. The avoided crossing which occurs
close to Γ is encircled by a blue dashed line.
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distortion corresponding to the A1 component of the
doublet, where the displacement direction is represented
by small arrows, while its intensity is encoded in colors.
This inspection of the eigenvectors of these modes at the
atomistic level reveals a definite underlying single-layer
graphene character, specifically that of the A1 symmetry
transverse-optical mode at K. Since the graphene K point
does not fold into the bilayer Γ point, their appearance
along the whole Γ → K line in the spectrum of the fully
relaxed bilayer must be merely a consequence of relaxation,
a relaxation that is particularly strong precisely in the AA
and DW regions.

V. INSULATING STATE AT
CHARGE NEUTRALITY

We next focus on the effect on the electronic band
structure of a carbon atom displacement corresponding to
the two degenerate phonon modes A1 and B1 at Γ, which
should affect the valley symmetry as the displacement in
Fig. 3. In order to verify that, we carried out a frozen

phonon calculation of the modified FB electronic structure
with increasing intensity of the deformation (see Video 1).
Remarkably, despite transforming as different irreps (A1

or B1), both frozen-phonon distortions are not only
degenerate, but have exactly the same effect on the bands.
As soon as the lattice is distorted, see Video 1(b), the
fourfold degeneracy at K1 and K2, and the twofold one
at Γ and M is lifted, and small avoided crossings appear
and start to move from K1ð2Þ towards the M points.
Once they cross M, they keep moving along M → Γ;
see Video 1(c). However, along these directions, the C2x
symmetry prevents the avoided crossings, and thus leads to
six elliptical Dirac cones. Finally, once they reach Γ at a
threshold value of the distortion, the six Dirac points
annihilate so that a gap opens at charge neutrality; see
Video 1(d). This gap-opening mechanism is very efficient,
with large splittings even for small values of the atomic
displacement amplitude shown in Video 1. For instance, an
average displacement as small as ≈0.5 mÅ per atom is
enough to completely separate the four FBs and to open a
gap at charge neutrality.
We emphasize that this occurs without breaking any

spatial symmetry of the TBLG, just Uvð1Þ. As a conse-
quence, the insulator state possesses a nontrivial topology,
as highlighted by the odd winding of the Wilson loop of the

(a)

(b) (c)

FIG. 6. (a) Atomic displacements on one of the two layers
corresponding to the A1 symmetry moiré mode of the phonon
doublet marked by a red arrow in Fig. 5. The direction of
displacement is represented by a small arrow centered at each
atomic position, while its modulus is encoded in colors. The
mean displacement per atom is 0.57 mÅ. (b) Enlargement of the
center of an AA region, shown for both layers. (c) Enlargement
along one of the domain walls. Note the similarity with the ad hoc
displacement in Fig. 3.
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VIDEO 1. Evolution of the FBs when the lattice is distorted
with increasing intensity along one of the two modes indicated by
a red arrow in Fig. 5. (a) Undistorted. (b) Mean displacement per
atom 0.07 mÅ. In the inset we show the avoided crossing along
M → K2. (c) Mean displacement 0.19 mÅ. Now the avoided
crossing appears as a genuine crossing protected by C2x sym-
metry along Γ → M, which actually leads to Dirac points.
(d) Mean displacement 0.57 mÅ, opening a gap between the
FBs. Inset: Wilson loop of the lowest two bands in (d).
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lowest two bands, shown in the inset of Video 1(d). In turn,
the nontrivial topology of the system implies the existence
of edge states within the gap separating the two lower
flatbands from the two upper ones. We thus recalculated
the band structure freezing the moiré phonon with A1

symmetry at Γ in a ribbon geometry, which is obtained by
cutting the TBLG along two parallel domain walls in the
y direction at a distance of 7 supercells. The ribbon has
therefore translational symmetry along y, but it is confined
in the x direction. In Fig. 7, we show the single-particle
energy levels as a function of the momentum ky along the
y direction. Edge states within the gap at charge neutrality
are clearly visible. In particular, we find for each edge two
counterpropagating modes.
As a matter of fact, recent experiments do report the

existence of a finite gap also at charge neutrality [4,49],
which is actually bigger than at other nonzero integer
fillings, and appears without a manifest breakdown of time-
reversal symmetry T [4] or C2z symmetry [49], and with
the FBs still well separated from other bands [49]. These
evidences seem not to support an interaction-driven gap,
which would entail either T or TC2z symmetry breakings
[4,50], or else the FBs touching other bands at the Γ point
[4]. Our phonon-driven insulator at charge neutrality breaks
instead Uvð1Þ and, eventually, C2y and C2z if the frozen
phonon has B1 character, which are symmetries experi-
mentally elusive. However, the edge states that we predict
could be detectable by STM or scanning tunneling

spectroscopy, thus providing support or disproving the
mechanism that we uncovered.
We end by mentioning that near charge neutrality there

is compelling evidence of a substantial breakdown of
C3z symmetry [16,17,49]. Although that is not expected
to stabilize on its own an insulating gap unless the latter
were in fact just a pseudogap [50], this symmetry breaking
needs a specific discussion, which we will give in
Sec. VI A.

A. E ⊗ e Jahn-Teller effect

The evidence that the two degenerate modes marked by a
red arrow in Fig. 5 produce the same band structure in a
frozen-phonon distortion is reminiscent of a E ⊗ e Jahn-
Teller effect, i.e., the coupling of a doubly degenerate
vibration with a doubly degenerate electronic state [31].
Let us consider the action of the two Γ-point A1 and B1

phonon modes, hereafter denoted as q1 and q2, along the
C2y-invariant lines. We note that the A1 mode, q1, although
invariant under the D6 group elements, is able to split the
degeneracy along those lines. Therefore, it must be coupled
to the electrons through a D6 invariant operator that does
not commute with the Uvð1Þ generator τ3. That in turn
cannot but coincide with C2y itself, which, along the
invariant lines, is the operator T1 ¼ σ1τ1μ3=2 in Eq. (9).
On the other hand, the B1 mode, q2, is odd under C2y, and
thus it must be associated with an operator that anticom-
mutes with C2y and does not commute with τ3. The only
possibility that still admits a U(1) valley symmetry is the
operator T2 ¼ σ1τ2μ3=2 in Eq. (9). Indeed, with such a
choice, the electron-phonon Hamiltonian is

He-ph ¼ −gðq1T1 þ q2T2Þ; ð11Þ

with g the coupling constant. This commutes with the
operator

J3 ¼ T3 þ L3 ¼
τ3
2
þ q ∧ p ð12Þ

[where p ¼ ðp1; p2Þ is the conjugate variable of the
displacement q ¼ ðq1; q2Þ], the generator of a generalized
Uvð1Þ symmetry that involves electron and phonon vari-
ables. As anticipated, the Hamiltonian (11) describes
precisely a E ⊗ e Jahn-Teller problem [31,51,52].
Since the phonon mode q is almost dispersionless, see

Fig. 5, we can think of it as the vibration of a moiré supercell,
as if the latter were a single, though very large, molecule,
and the TBLG a molecular conductor. In this language, the
band structures shown in Video 1 would correspond to a
static Jahn-Teller distortion. However, since the phonon
frequency is substantially larger than the width of the
flatbands, we cannot exclude the possibility of a dynamical
Jahn-Teller effect that could mediate superconductivity
[51,53], or even stabilize a Jahn-Teller Mott insulator [52]
in the presence of a strong enough interaction.
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FIG. 7. The band structure of twisted bilayer graphene at θ ≈
1.08° in a ribbon geometry with open boundary conditions. The
atomic structure inside the unit cell (replicated 7 times along
the x direction) has been deformed with the A1-symmetric
moiré phonon mode. With a mean deformation amplitude of
≈1.14 mÅ, that mode is so strongly coupled to open a large
electronic gap at charge neutrality point of ≈25 meV. The bulk
bands have been highlighted in blue to emphasize the presence
of edge states both within the phonon-driven FBs gap and the
gaps above and below them.
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The Jahn-Teller nature of the electron-phonon coupling
entails a very efficient mechanism to split the accidental
degeneracy, linear in the displacement within a frozen-
phonon calculation. However, this does not explain why an
in-plane displacement as small as 0.57 mÅ is able to split
the formerly degenerate states at Γ by an amount
as large as 15 meV, see Video 1(d), of the same order as
the original width of the flatbands. To clarify that, we note
that this displacement would yield a change in the graphene
nearest-neighbor hopping of around δt ≃ 3.6 meV, see
Eq. (A1), which in turn entails a splitting at Γ of
6δt ∼ 21 meV, close to what we observe. We believe that
such correspondence is not accidental, but indicates that
the actual energy scale underneath the flatbands is on the
order of the bare graphene bandwidth, rather than the flat
bandwidth itself. We return to this issue later in Sec. VII.

VI. INSULATING STATES AT OTHER
COMMENSURATE FILLINGS

The Γ-point distortion described above can lead to an
insulating state at charge neutrality, possibly connected
with the insulating state very recently reported [4,49]. The
same phonon branch might also stabilize insulating states at
other integer occupancies of the mini bands besides charge
neutrality. However, this necessarily requires freezing a
mode at a high-symmetry k point different from Γ in order
to get rid of the band touching at the Dirac points, K1 and
K2, protected by the C6z symmetry. We consider one of the
two degenerate phonon modes at the M point marked by a
green arrow in Fig. 5. This mode has similar features to the
Jahn-Teller one at Γ, even if it belongs to an upper branch
due to an avoided crossing along Γ → M (blue dashed line
in Fig. 5). In Fig. 8, we depict this mode, which still
transforms as the A1 of the graphene K point on the
microscopic graphene scale, but whose long-wavelength
modulation now forms a series of ellipses elongated along
some of the DWs, thus macroscopically breaking the C3z
symmetry of the moiré superlattice.
In Fig. 9, we show the DOS of the FBs obtained by a

frozen-phonon realistic tight-binding calculation. Besides
the band gaps at ν ¼ �4, which separate the FBs from the
other bands, now small gaps open at ν ¼ �2with an average
atomic displacement of 1.8 mÅ induced by the mode at M.
Finally, we also considered a more exotic multi-

component distortion induced by a combination of the
modes at the three inequivalent M points, which quadru-
ples the unit cell (see Fig. 10). The resulting DOS of the
FBs is shown in Fig. 11 and displays small gaps at the odd
integer occupancies ν ¼ 1 and ν ¼ �3.
The very qualitative conclusion of this exploration is that

frozen-phonon distortions with various k vectors can very
effectively yield Peierls-like insulating states at integer
hole or electron fillings. Of course, all distortions at k
points different from Γ also represent super-superlattices,
with an enlargement of the unit cell that should be verifiable

in such a Peierls state, even if the displacement is a tiny
fraction of the equilibrium C–C distance. We note here that
the zone boundary phonons are less effective in opening
gaps at nonzero integer fillings than the zone center
phonons are at the charge neutrality point. The reason is
that away from charge neutrality the Jahn-Teller effect
alone is no longer sufficient; one needs to invoke zone

FIG. 8. Atomic displacements on one of the two layers
corresponding to one of the moiré modes at M marked by a
green arrow in Fig. 5. The direction of displacement is repre-
sented by a small arrow centered at each atomic position, while its
modulus is encoded in colors. The mean deformation is 1.8 mÅ
and leads to the DOS in Fig. 9. The inset shows an enlargement of
the AA region close to the origin. The rectangular unit cell, now
containing twice the number of atoms, is highlighted by a black
dashed line.
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FIG. 9. Density of states in the flatbands region after the TBLG
has been distorted by one of the two degenerate modes at M
marked by a green arrow in Fig. 5. A mesh of 40 × 40 points in
the MBZ has been used. The DOS is expressed as function of
energy, the zero corresponding to the charge neutrality point,
and corresponding occupancy ν of the FBs. The band gaps at
ν ¼ �2;�4 are highlighted in violet. The mean displacement per
atom is 1.8 mÅ.
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boundary phonons that enlarge the unit cell, and thus
open gaps at the boundaries of the folded Brillouin zone.
The efficiency of such a gap-opening mechanism is
evidently lower than that of the Jahn-Teller Γ-point mode.

A. C3z symmetry breaking

We observe that the multicomponent distortion with the
phonons frozen at the inequivalent M points leads to a

width of the FBs 5 times larger than in the undistorted case,
see Fig. 11 as opposed to Video 1(a), which is not simply a
consequence of the tiny gaps that open at the boundary of
the reduced Brillouin zone. Such a substantial bandwidth
increase suggests that the TBLG may be intrinsically
unstable to C3z symmetry breaking, especially near charge
neutrality. Electron-electron interaction treated in the mean
field does a very similar job [17]. Essentially, both
interaction- and phonon-driven mechanisms act right in
the same manner: they move the two van Hove singularities
of the fully symmetric band structure away from each other,
and split them into two, with the net effect of increasing the
bandwidth. As such, those two mechanisms will cooperate
to drive the C3z symmetry breaking, or enhance it when
explicitly broken by strain, not in disagreement with
experiments [16,17,49]. The main difference is that the
moiré phonons also break Uvð1Þ, and thus are able to open
gaps at commensurate fillings that C3z symmetry breaking
alone would not do.

VII. PHONON-MEDIATED
SUPERCONDUCTIVITY

Here we indicate how the phenomena described above
can connect to a superconducting state mediated by
electron-phonon coupling. For that, we need to build a
minimal tight-binding model containing a limited set of
orbitals. For the sake of simplicity, we shall not require the
model Hamiltonian to reproduce precisely the shape of all
the bands around charge neutrality, especially those
above or below the FBs, but only the correct elementary
band representation, topology, and, obviously, the existence
of the four flatbands separated from all the others.
Considering, for instance, only the 32 states at Γ closest
to the charge neutrality point, and maintaining our
assumption of WOs centered at the Wyckoff positions
2c, those states (apart from avoided crossings allowed by
symmetry) would evolve from Γ to K1 in accordance with
the D6 space group as shown in Fig. 12. Once we allow
same-symmetry Bloch states to repel each other along
Γ → K1, the band representation can look similar to the
real one (Fig. 2), including the existence of the four FBs
that start at Γ as two doublets, A1 þ B1 and A2 þ B2, and
end atK1 as two degenerate doublets, each transforming as
the 2D irrep E; see the two solid black lines in Fig. 12.
While this picture looks compatible with the actual band
structure, we shall take a further simplification and just
consider the thicker red, blue, and green bands in Fig. 12,
which could still produce flatbands with the correct
symmetries. This oversimplification obviously implies
giving up the possibility to accurately reproduce the shape
of the FBs—but it makes the algebra much simpler.
Within this approximation the components of the spinor

operators in Eq. (2) are actually single fermionic operators,
so that we limit ourselves to just four WOs for each
sublattice, AB or BA, and valley, 1 and 2. Two of such WOs

FIG. 10. Atomic displacements on one of the two layers
corresponding to multicomponent deformation obtained combin-
ing moiré JT phonons at three inequivalent M points. The mean
deformation is 1.7 mÅ and leads to the DOS in Fig. 11. The
intensity of displacement is encoded in colors. The inset shows
an enlargement of one of the AA regions when both layers
are considered. The unit cell, denoted by a black dashed line,
is 4 times larger than the original one.
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FIG. 11. Electronic density of states with a multicomponent
lattice distortion obtained by freezing a combination of the
modes at the three inequivalent M points. Band gaps at ν ¼
þ1;�3;�4 are highlighted in violet. The mean displacement
per atom is 1.7 mÅ.
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transform like the 1D irreps, one even, A1, and the other
odd, A2, underC2x. The other two instead transform like the
2D irrep E. We build a minimal tight-binding model,

He ¼ −Δ
X
Rσ

Ψ†
Rσσ0τ0μ3ΨRσ þ Te; ð13Þ

where Δ splits the s from the p WOs of the 1D irreps, and
Te includes first- and second-neighbor hopping between
AB and BA regions in the moiré superlattice compatible
with all symmetries; see Appendix B for details. In Fig. 12,
we show the resulting FBs as well as their Wilson loop. We
emphasize that the FBs arise in this picture from a sequence
of avoided crossings between a large set of relatively broad
bands that strongly repel each other away from the high-
symmetry points, rather than from truly localized WOs.
This mechanism is also compatible with, and in fact behind,
the strong electron-phonon coupling strength, and the
consequently large effects on the FBs of the Jahn-Teller
phonons that, according to Eq. (11), simply modulate the
AB-BA hopping.

A. Mean-field superconducting state

Neglecting the extremely small dispersion of the moiré
Jahn-Teller phonons, we can write their Hamiltonian
simply as

Hph ¼
ω

2

X
R

ðpR · pR þ qR · qRÞ; ð14Þ

with ω ≃ 207 meV.
Rather than trying to model more faithfully the Jahn-

Teller coupling (11), we follow a simplified approach based
just on symmetry considerations.
In general, we could integrate out the phonons to obtain a

retarded electron-electron attraction that can mediate super-
conductivity. However, since here the phonon frequency
is much larger that the bandwidth of the FBs, where the
chemical potential lies, we can safely neglect retardation
effects making a BCS-type approximation virtually exact.
The attraction thus becomes instantaneous and can be
represented as in Fig. 13. The phonon couples electrons in
nearest-neighbor AB and BA regions, giving rise to an
intermoiré site spin-singlet pairing, a state which we expect
to be much less affected by Coulomb repulsion than an on-
site one. Therefore, neglecting Coulomb repulsions we
can concentrate on the pairing channel between nearest-
neighbor AB and BA regions. The scattering processes in
Fig. 13 imply that the pairing channels are only τ1μ0 and
τ1μ3, corresponding to intervalley pairing, as expected
because time reversal interchanges the two valleys.
Having assumed pairing between nearest-neighbor AB

and BA regions, we must identify pair functions in
momentum space that connect nearest-neighbor unit cells,
and transform properly under C3z. These functions are

γðkÞ ¼ eik·ðaþbÞ=3ð1þ e−ik·a þ e−ik·bÞ;
γþ1ðkÞ ¼ eik·ðaþbÞ=3ð1þ ωe−ik·a þ ω�e−ik·bÞ;
γ−1ðkÞ ¼ eik·ðaþbÞ=3ð1þ ω�e−ik·a þ ωe−ik·bÞ; ð15Þ

where ω ¼ ei2π=3. Specifically, γðkÞ ∼ A1 is invariant under
C3z, while

γ�1(C3zðkÞ) ¼ ω�1γ�1ðkÞ: ð16Þ

In other words, (γþ1ðkÞ; γ−1ðkÞ) form a representation of
the 2D irrep E ¼ ðEþ1; E−1Þ in which C3z is diagonal with
eigenvalues ω and ω�.

FIG. 13. Phonon-mediated attraction. The two scattering
channels corresponds to the two phonons and have the same
amplitude g2=2ω.
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FIG. 12. (a) Sketch of the elementary band representation along
Γ → K1 taking into account the 32 bands closest to the charge
neutrality point and without allowing avoided crossing between
same-symmetry Bloch states. Blue, red, and green lines refer to
Bloch states that at Γ transform like A1 þ B1, A2 þ B2, and
E1 þ E2, respectively. Should we allow for avoided crossings,
close to charge neutrality we would obtain the four flatbands
shown as black lines surrounding the shaded region. (b) The FBs
obtained by a model tight-binding Hamiltonian that includes only
the solid bands of (a). The details of this Hamiltonian are given
in Appendix B. (c) Wilson loop corresponding to the four bands
in (b) fully occupied.
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Here it is more convenient to transform the spinor Φkσ,

�Φþ1;kσ

Φ−1;kσ

�
¼ 1ffiffiffi

2
p

�
1 −i
1 þi

�� Φs;kσ

Φp;kσ

�
; ð17Þ

so that Φ�1;kσ is associated with a WO that transforms like
E�1. Under the assumption of pairing diagonal in the irreps,
we can construct the following spin-singlet Cooper pairs:

X
σ

σΦ†
þ1;AB;kστ1Φ

†
þ1;BA;−k−σ ∼ E−1;k; ð18Þ

X
σ

σΦ†
−1;AB;kστ1Φ

†
−1;BA;−k−σ ∼ Eþ1;k; ð19Þ

1ffiffiffi
2

p
X
σ

σðΦ†
þ1;AB;kστ1Φ

†
−1;BA;−k−σ ð20Þ

þð−ÞΦ†
−1;AB;kστ1Φ

†
þ1;BA;−k−σÞ ∼ A1ð2Þ;k; ð21Þ

1ffiffiffi
2

p
X
σ

σΨ†
AB;kστ1μ0ð3ÞΨ

†
BA;−k−σ ∼ A0

1ð2Þ;k; ð22Þ

which can be combined with the k-dependent functions in
Eq. (15) to give pair operators that transform like the irreps
of D3. For instance, multiplying Eq. (18) by γþ1ðkÞ,
Eq. (19) by γ−1ðkÞ, Eq. (21) with the plus sign by γðkÞ,
or Eq. (22) with μ0 by γðkÞ, we obtain pair operators that
all transform like A1. We shall denote their sum as A†

1k,
and, similarly, all other symmetry combinations as A†

2k

and E†
�1;k. Evidently, since in our modeling the FBs are

made of 1D and 2D irreps, the gap function will in general
involve a combination of γðkÞ and γ�1ðkÞ; namely, it will
be a superposition of s and d� id symmetry channels. The
dominant channel will depend on which is the prevailing
WO character of the Bloch states at the chemical potential,
as well as on the strength of the scattering amplitudes in the
different pairing channels, A†

1k, A
†
2k, and E†

�1;k.
In general, we may expect the totally symmetric A1

channel to have the largest amplitude; thus we assume the
following expression of the phonon-mediated attraction,

Hel−el ≃ −
λ

V

X
kp

A†
1kA1p; ð23Þ

that involves a single parameter λ ∼ g2=2ω. We treat the full
Hamiltonian (13) plus Eq. (23) in mean field, allowing for
a superconducting solution, which is always stabilized by
the attraction provided the density of states is finite at the
chemical potential. We find that superconductivity opens a
gap everywhere in the Brillouin zone. Since

hA†
1ki ¼ γþ1ðkÞhE−1;ki þ γ−1ðkÞhEþ1;ki þ γðkÞhA1;ki

þ γðkÞhA0
1;ki; ð24Þ

the order parameter may have finite components with
different symmetries, E�1 and A1. In the model calculation
all components acquire similar magnitude, implying a
mixture of s- and d� id-wave symmetries. In Fig. 14,
we show hA0

1;ki and hE−1;ki at the Fermi surface corre-
sponding to densities ν ≈ −1 and ν ≈ −2 with respect to
charge neutrality. We conclude by emphasizing that the
Cooper pair is made by one electron in AB and one in BA,
thus leading, in the spin-singlet channel, to extended s
and/or d� id symmetries. That is merely a consequence of
the phonon mode and electron-phonon properties; hence, it
does not depend on the above modeling of the FBs.
There are already in the literature several proposals

about the superconducting states in TBLG. Most of
them, however, invoke electron correlations as the
element responsible for or strongly affecting the pairing
[22,24,54–71]. There are few exceptions [29,72,73] that
instead propose, as we do, a purely phonon-mediated
attraction. In Refs. [72,73], the TBLG phonons are
assumed to coincide with the single-layer graphene ones,
as if the interlayer coupling were ineffective in the
phonon spectrum, which is not what we find for the
special modes discussed above. Moreover, they both
discuss the effects of such phonons only in a continuum
model for the FBs. In particular, the authors of Ref. [72]

(a)

(c) (d)

(b)

π π0–π/2 π/2

FIG. 14. Pair amplitudes ΔðkÞ† of the leading superconducting
channels: d − idwave (a),(b) and extended swave (c),(d). In each
panel we show the hexagonal MBZ and the phase amplitudes
restricted to a narrow region close to the Fermi surfaces
corresponding to the occupancies ν ∼ −2 (a),(c) and ν ∼ −1
(b),(d). The phase of the superconducting order parameter is
expressed in color. Note that the double lines are due to the fact
that two bands cross the chemical potential at different k points.
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consider a few selected graphene modes, among which is
the transverse-optical mode at K that has the largest
weight in the TBLG phonon that we consider. They
conclude that such graphene mode mediates d� id
pairing in the A2 channel, τ1μ3 in our language, leading
to an order parameter odd upon interchanging the two
layers. On the contrary, the authors of Ref. [73] focus just
on the acoustic phonons of graphene, and conclude they
stabilize an extended s-wave order parameter.

VIII. CONCLUSIONS

In this work, we uncovered a novel and strong electron-
phonon coupling mechanism and analyzed its potential role
in the low-temperature physics of magic angle twisted
bilayer graphene, with particular emphasis on the insulating
and superconducting states. By working out the phonon
modes of a fully relaxed TBLG, we found a special group
of a few of them modulated over the whole moiré supercell
and nearly dispersionless, thus showing that the moiré
pattern can induce flatbands also in the phonon spectrum.
In particular, two of these modes, which are degenerate at
any k point invariant under 180° rotation around the y axis
and its C3z equivalent directions, are found to couple
strongly to the valley Uvð1Þ symmetry, that is responsible
for the accidental degeneracy of the band structure at the
same k points where the two modes are degenerate. This
particular phonon doublet is strongly Jahn-Teller coupled
to the valley d.o.f., realizing a so-called E ⊗ e Jahn-Teller
model. This mechanism, if static, would generate a filling-
dependent broadening of the flatbands and eventually insu-
lating phases at all the commensurate fillings. Interestingly,
freezing the modes at Γ can stabilize a topologically
nontrivial insulator at charge neutrality that sustains edge
modes. We also investigate the symmetry properties of a
hypothetical superconducting state stabilized by this Jahn-
Teller mode. We find that the phonon-mediated coupling
occurs on the moiré scale, favoring spin-singlet pairing of
electrons in different Bernal (AB or BA) regions, which may
thus condense with an extended s- and/or d� id-wave order
parameter. In a mean-field calculation with a model tight-
binding Hamiltonian of the flatbands, we find that the
dominant symmetry depends on the orbital character that
prevails in the Bloch states at the Fermi energy, as well as on
the precise values of scattering amplitudes in the different
Cooper channels allowed by the C3z symmetry. We cannot
exclude that a nematic component might arise due to higher-
order terms not included in our mean-field calculation, as
discussed in Refs. [74,75]. These results herald a role of
phonons and of lattice distortions of much larger impact than
supposed so far in twisted graphene bilayers, which does not
exclude a joint action of electron-phonon and electron-
electron interaction. Further experimental and theoretical
developments will be called for in order to establish their
actual importance and role.
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APPENDIX A: DETAILS ON THE LATTICE
RELAXATION, BAND STRUCTURE, AND

PHONON CALCULATIONS

The lattice relaxation and band structure calculation
procedures are the same as those thoroughly described
in Ref. [10], with the exception that now the carbon-carbon
intralayer interactions are modeled via the Tersoff potential
[76]. The interlayer interactions are modeled via the
Kolmogorov-Crespi (KC) potential [77], using the recent
parametrization of Ref. [78]. Geometric optimizations are
performed using the FIRE algorithm [79]. The hopping
amplitudes of the tight-binding Hamiltonian are

tðdÞ¼VppσðdÞ
�
d ·ez
d

�
2

þVppπðdÞ
�
1−

�
d ·ez
d

�
2
�
; ðA1Þ

where d ¼ ri − rj is the distance between atom i and j,
d ¼ jdj, and ez is the unit vector in the direction
perpendicular to the graphene planes. The out-of-plane
(σ) and in-plane (π) transfer integrals are

VppσðxÞ ¼ V0
ppσe−ðx−d0Þ=r0 ; VppπðxÞ ¼ V0

ppπe−ðx−a0Þ=r0 ;

ðA2Þ

where V0
ppσ ¼ 0.48 eV and V0

ppπ ¼ −2.8 eV are values
chosen to reproduce ab initio dispersion curves in AA and
AB stacked bilayer graphene, d0 ¼ 3.344 Å is the starting
interlayer distance, a0 ¼ 1.3978 Å is the intralayer carbon-
carbon distance obtained with the Tersoff potential, and
r0 ¼ 0.3187a0 is the decay length [5,25].
We compute phonons in TBLG using the force constants

of the nonharmonic potentials U ¼ UTERSOFF þUKC that
we used to relax the structure:

Cαβðil; jsÞ ¼
∂2U

∂Rαil∂Rβjs
; ðA3Þ

where (i, j) label the atoms in the unit cell, (l, s) the moiré
lattice vectors, and α; β ¼ x, y, z. Then, we define the
dynamical matrix at phonon momentum q as
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DαβijðqÞ ¼
1

MC

X
l

Cαβðil; j0Þe−iqRl ; ðA4Þ

where MC is the carbon atom mass. Using the above
relation we determine the eigenvalue equation for the
normal modes of the system and the phonon spectrum:

X
jβ

DαβijðqÞϵjβðqÞ ¼ ω2
qϵiαðqÞ; ðA5Þ

where ωq denote the energy of the normal mode ϵðqÞ. The
phonon dispersion of Bernal-stacked bilayer graphene
obtained with this method is shown Fig. 15. As can be
seen, the transverse-optical (TO) modes at K are found at
ω ≈ 207 meV. As a consequence, the Jahn-Teller modes
discussed in the main text, which vibrate in the same way
on the graphene scale, have similar frequency. However,
the frequency of the TO modes in graphene is strongly
sensitive to the choice of the intralayer potential used
[80], so that these modes can be predicted to have
frequencies as low as ≈170 meV [81,82]. This implies
that also the JT modes may be observed at lower
frequency than ours.

APPENDIX B: HAMILTONIAN
IN MOMENTUM SPACE

In order to make the invariance under C3z more explicit,
we use the transformed spinors,

�Φþ1;kσ

Φ−1;kσ

�
¼ 1ffiffiffi

2
p

�
1 −i
1 þi

�� Φs;kσ

Φp;kσ

�
; ðB1Þ

for the 2D irreps, which correspond to WO eigenstates
of C3z. Moreover, it is convenient to also transform the
spinors Ψkσ of the 1D irreps in the same way, i.e.,

�Ψþ1;kσ

Ψ−1;kσ

�
¼ 1ffiffiffi

2
p

�
1 −i
1 þi

�� Ψs;kσ

Ψp;kσ

�
; ðB2Þ

which correspond to WOs still invariant under C3z but not
under C2x, whose representation both in Ψkσ and Φkσ
becomes the Pauli matrix μ1. In conclusion, the spinor
operators defined above satisfy

C3zðΦkσÞ ¼
�
ω 0

0 ω�

�
ΦC3zðkÞσ;

C3zðΨkσÞ ¼ ΨC3zðkÞσ;

C2xðΦkσÞ ¼ μ1ΦC3zðkÞσ;

C2xðΨkσÞ ¼ μ1ΨC3zðkÞσ: ðB3Þ

For simplicity, we consider only nearest- and next-nearest-
neighbor hopping between WOs centered at different AB
and BA regions, which correspond to the following
functions in momentum space:

γ1ðkÞ ¼ αkð1þ e−ik·a þ e−ik·bÞ;
γ1;þ1ðkÞ ¼ αkð1þ ωe−ik·a þ ω�e−ik·bÞ;
γ1;−1ðkÞ ¼ αkð1þ ω�e−ik·a þ ωe−ik·bÞ; ðB4Þ

for first neighbors, and

γ2ðkÞ ¼ αkðeik·ða−bÞ þ e−ik·ða−bÞ þ e−ik·ðaþbÞÞ;
γ2;þ1ðkÞ ¼ αkðωeik·ða−bÞ þ ω�e−ik·ða−bÞ þ e−ik·ðaþbÞÞ;
γ2;−1ðkÞ ¼ αkðω�eik·ða−bÞ þ ωe−ik·ða−bÞ þ e−ik·ðaþbÞÞ;

ðB5Þ

for second neighbors, where ω ¼ ei2π=3, αk ¼ eik·ðaþbÞ=3,
and the lattice constants a ¼ ð ffiffiffi

3
p

=2;−1=2Þ and b ¼
ð ffiffiffi

3
p

=2; 1=2Þ. Since

C3zðaÞ ¼ b − a; C3zðbÞ ¼ −a;

C2xðaÞ ¼ b; C2xðbÞ ¼ a; ðB6Þ

then, for n ¼ 1, 2,

γn(C3zðkÞ) ¼ γnðkÞ;
γn;�1(C3zðkÞ) ¼ ω�1γn;�1ðkÞ;

γn(C2xðkÞ) ¼ γnðkÞ;
γn;�1(C2xðkÞ) ¼ γn;∓1ðkÞ; ðB7Þ

which shows that γn;�1ðkÞ transform like the 2D irrep E.
We assume the following tight-binding Hamiltonian for

the 1D irreps:

 Γ M K  Γ
0

50

100
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200

 ω
 (
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)

FIG. 15. Phonon dispersion obtained with our choice of intra-
layer and interlayer potentials in Bernal-stacked bilayer graphene.
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H1D−1D¼
X
kσ

�
−ΔΨ†

kσσ0μ1τ0Ψkσ

−
X
n¼1;2

tðnÞ11 ðγnðkÞΨ†
kσσ

þμ0τ0ΨkσþH:c:Þ
�
; ðB8Þ

where tð1Þ11 and tð2Þ11 are the first- and second-neighbor
hopping amplitudes, respectively, which we assume to
be real.
The 2D irreps have instead the Hamiltonian

H2D−2D ¼ −
X
kσ

X2
n¼1

h
tðnÞ22 γnðkÞΦ†

kσσ
þμ0τ0Φkσ

þ gðnÞ22 Φ
†
kσσ

þγ̂nðkÞμ1τ0Φkσ þ H:c:
i
; ðB9Þ

with real hopping amplitudes, where

γ̂nðkÞ ¼
�
γn;þ1ðkÞ 0

0 γn;−1ðkÞ
�
: ðB10Þ

Finally, the coupling between 1D and 2D irreps is repre-
sented by the Hamiltonian

H1D−2D ¼ −
X
kσ

X2
n¼1

tðnÞ12 ½Φ†
kσσ

þμ1γ̂nðkÞμ1τ0Ψkσ

þ Ψ†
kσσ

þγ̂nðkÞτ0Φkσ þ iΦ†
kσσ

þμ1γ̂nðkÞτ3Ψkσ

þ iΨ†
kσσ

þμ1γ̂nðkÞτ3Φkσ þ H:c:�; ðB11Þ

with real tðnÞ12 .
The Hamiltonian thus reads

H ¼ H1D−1D þH2D−2D þH1D−2D; ðB12Þ

which, through Eqs. (B3) and (B7), can be readily shown
to be invariant under C3z and C2x, and is evidently also
invariant under the Uvð1Þ generator τ3. In addition, the
Hamiltonian must be also invariant under TC2z, where T is
the time-reversal operator. Noting that

TC2zðΦkσÞ ¼ σ1μ1Φk−σ;

TC2zðΨkσÞ ¼ σ1μ1Ψk−σ; ðB13Þ

one can show that H in Eq. (B12) is also invariant under
that symmetry.
The model Hamiltonian thus depends on eight param-

eters. The FBs shown in Fig. 12 have been obtained
choosing Δ ¼ 10, t111 ¼ 2, t122 ¼ 5, g122 ¼ 10, t222 ¼ g222 ¼
−t211 ¼ 1.2, t112 ¼ 2, and t212 ¼ 0.5.
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[14] P. Lucignano, D. Alfè, V. Cataudella, D. Ninno, and G.
Cantele, Crucial Role of Atomic Corrugation on the Flat
Bands and Energy Gaps of Twisted Bilayer Graphene at the
Magic Angle θ ∼ 1.08°, Phys. Rev. B 99, 195419 (2019).

[15] J. Kang and O. Vafek, Strong Coupling Phases of Partially
Filled Twisted Bilayer Graphene Narrow Bands, Phys. Rev.
Lett. 122, 246401 (2019).

[16] A. Kerelsky, L. McGilly, D. M. Kennes, L. Xian, M.
Yankowitz, S. Chen, K. Watanabe, T. Taniguchi, J. Hone,
C. Dean, A. Rubio, and A. N. Pasupathy, Magic Angle
Spectroscopy, Nature (London) 572, 95 (2019).

[17] Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora,
R. Polski, Y. Zhang, H. Ren, J. Alicea, G. Refael,

VALLEY JAHN-TELLER EFFECT IN TWISTED BILAYER … PHYS. REV. X 9, 041010 (2019)

041010-15

https://doi.org/10.1038/nature26154
https://doi.org/10.1038/nature26160
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1126/science.aav1910
https://arXiv.org/abs/1903.06513
https://doi.org/10.1021/nl902948m
https://doi.org/10.1103/PhysRevB.86.125413
https://doi.org/10.1103/PhysRevB.81.165105
https://doi.org/10.1103/PhysRevB.81.165105
https://doi.org/10.1103/PhysRevB.92.075402
https://doi.org/10.1103/PhysRevB.82.121407
https://doi.org/10.1103/PhysRevB.82.121407
https://doi.org/10.1103/PhysRevB.98.235137
https://doi.org/10.1103/PhysRevB.98.235137
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1103/PhysRevLett.122.106405
https://doi.org/10.1103/PhysRevLett.122.106405
https://doi.org/10.1103/PhysRevLett.123.036401
https://doi.org/10.1103/PhysRevLett.123.036401
https://doi.org/10.1103/PhysRevB.99.195419
https://doi.org/10.1103/PhysRevLett.122.246401
https://doi.org/10.1103/PhysRevLett.122.246401
https://doi.org/10.1038/s41586-019-1431-9


F. von Oppen, K. Watanabe, T. Taniguchi, and S. Nadj-
Perge, Imaging Electronic Correlations in Twisted Bilayer
Graphene Near the Magic Angle, arXiv:1901.02997.

[18] H. Polshyn, M. Yankowitz, S. Chen, Y. Zhang, K. Watanabe,
T. Taniguchi, C. R. Dean, and A. F. Young, Phonon Scatter-
ing Dominated Electron Transport in Twisted Bilayer
Graphene, arXiv:1902.00763.

[19] Y. Cao, D. Chowdhury, D. Rodan-Legrain, O. Rubies-
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