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Topological phase transitions and universality in the Haldane-Hubbard model
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We study the Haldane-Hubbard model by exact renormalization group techniques. We analytically construct
the topological phase diagram, for weak interactions. We predict that many-body interactions induce a shift of
the transition line: in particular, repulsive interactions enlarge the topologically nontrivial region. The presence
of new intermediate phases, absent in the noninteracting case, is rigorously excluded at weak coupling. Despite
the nontrivial renormalization of the wave function and of the Fermi velocity, the conductivity is universal: at the
renormalized critical line, both the discontinuity of the transverse conductivity and the longitudinal conductivity
are independent of the interaction, thanks to remarkable cancellations due to lattice Ward identities. In contrast
to the quantization of the transverse conductivity, the universality of the longitudinal conductivity cannot be
explained via topological arguments.
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I. INTRODUCTION

The current understanding of topological matter [1–3] is
mostly based on a single-particle description. A paradigmatic
example is the integer quantum Hall effect: in the absence
of interactions, the Hall conductivity has a deep topological
interpretation [4,5], which explains its quantization and stabil-
ity. A more recent example is provided by the classification
of time-reversal invariant insulators [6–13], which, again,
relies on the properties of the noninteracting Bloch functions.
Understanding the effect of interactions on topological matter
has become a very active area of research [14].

A natural model in which to explore such issues is
the Haldane-Hubbard model. The Haldane-Hubbard model
describes spin-1/2 electrons on the honeycomb lattice, in-
teracting via a local Hubbard interaction of strength U . The
electrons hop between nearest neighbor sites with hopping
strength t1, and between next-to-nearest neighbor sites with
alternating hopping parameters t2e

±iφ : the phases ±φ describe
a transverse magnetic field, with zero net flux through the
honeycomb plaquette. Finally, the system is also exposed to
a staggered chemical potential, with strength ±W on the two
triangular sublattices. In the absence of interactions [15] this
model shows, depending on the value of its parameters, a
trivial insulating phase with vanishing transverse conductivity
σ12 = 0, or a quantum Hall phase with σ12 = ±2 e2

h
. These

topological phases are separated by two critical curves in the
(φ,W ) plane, intersecting at the crossing points (0,0) and
(π,0). Along the critical curves, the energy bands touch at
a conical intersection; at the crossing points, there are two
such conical intersections, as in standard graphene. Indeed if
t2 = W = 0 the system describes graphene with short-range
interaction.

From a theoretical viewpoint, the Haldane topological
phases have been argued to emerge in pure graphene sheets
by spontaneous mass generation, due to the strong, unscreened
Coulomb repulsion [16–23]. From an experimental viewpoint,
the Haldane model has been realized in Ref. [24], and the
topological phase transition has been observed. The inclusion
of a tunable Hubbard interaction seems to be accessible by

the present technology. Therefore, studying its effects on the
transport coefficients is of fundamental importance for the next
generation of cold atom experiments. So far, the properties of
the Haldane-Hubbard model have been investigated mostly via
mean-field, variational, and numerical analyses [25–39].

Concerning the transverse conductivity, topological argu-
ments for interacting systems [40,41] ensure that, away from
the critical curves, σ12 can only take integer values, in units of
e2/h (here σij are the elements of the conductivity matrix, in
the limit of zero frequency and zero temperature). However,
its specific value at a given point in the phase diagram can
be different from the corresponding noninteracting value,
in particular in the vicinity of the critical curves (at weak
coupling, far from the critical lines, the conductivity is known
to be independent of the interaction [42,43]). The relevant
question here is to distinguish between two scenarios: the first,
in which small interactions are not able to generate new phases
and their main effect is a shift of the critical curves, as found
in certain 3D topological insulators [44–46]; and a second
one, characterized by the emergence of a novel, interaction-
induced, topological phase, like the one corresponding to
σ12 = ± e2

h
, predicted for the Haldane-Hubbard model in

Refs. [25–28,38,39]. Regarding the longitudinal conductivity,
in the absence of interactions it is equal to e2

h
π
4 , for all the

values of (φ,W ) on the critical lines, with the exception of
the crossing points (φ,W ) = (0,0),(π,0), where it is equal
to e2

h
π
2 (of course, away from the critical lines σii = 0).

There are no topological arguments ensuring that the critical
longitudinal conductivity should remain quantized when the
interaction is switched on: therefore, the relevant question here
is whether the interaction introduces corrections breaking this
exact quantization or not. This question is related to a similar
one discussed in the context of graphene, in which recent
experiments [47] showed that the optical longitudinal con-
ductivity is essentially universal, and in excellent agreement
with the value computed for the noninteracting model [48];
on the contrary, the interaction produces dramatic effects on
other physical quantities, such as the Fermi velocity [49].
On the theoretical side, the universal behavior in graphene
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is still not completely understood [50–59], see, in particular,
Ref. [57] for a recent review. A rigorous result for short-range
interaction [60] showed that, in order to get exact universality
of graphene’s longitudinal conductivity, one needs to fully take
into account the nonlinear correction to the bands, even if such
terms are irrelevant in the renormalization group (RG) sense.

In this paper we compute the conductivity matrix of the
Haldane-Hubbard model via exact RG methods, close to and at
the critical lines, for weak interactions. We take lattice effects
into account, and we exploit lattice symmetries in order to
reduce the number of independent running couplings, in a
way similar to Refs. [60–63] for graphene. The use of exact
RG methods is motivated by the fact that the computation
of conductivity is extremely sensitive to the choice of the
regularization scheme [59]. Even though they are irrelevant
in the RG sense, lattice and interaction effects produce, in
general, finite corrections to the physical observables, and
they must be taken into account in order to prove or disprove
the emergence of new interaction-induced topological phases,
as well as to address the issue of universality of the critical
longitudinal conductivity.

By choosing the chemical potential μ ≡ μ(U ) so to fix the
Fermi energy halfway between the valence and conduction
bands, the band gap can only close at the two Fermi points
�p ω
F = ( 2π

3 ,ω 2π

3
√

3
), where ω = ± is the valley index. We prove

that, close to criticality, the interacting Euclidean two-point
function is

Ŝ2(k0, �p ω
F + �k′)

= −
(

ik0Z1,R − mR vR(−ik′
1 + ωk′

2)

vR(ik′
1 + ωk′

2) ik0Z2,R + mR

)−1

[1 + R(k0,�k′)],

where the error term R(k0,�k′) is subleading in the effec-
tive mass mR , in the Matsubara frequency k0, and in the
quasimomentum �k′. The parameters Z1,R,Z2,R,vR,mR depend
nontrivially on the valley index ω and on the interaction. In
particular, the renormalized mass mR ≡ mR,ω reads

mR,± = W ± 3
√

3 t2 sin φ − F±(U,W,φ), (1)

where ± is the valley index, and F± is expressed in the form
of a convergent renormalized series, whose first nontrivial
order is given by Eq. (B4) below. The dressed critical
lines, defined by the condition that the renormalized mass
vanishes, are also modified by the interaction, see Fig. 1.
Similarly, the Fermi velocity vR and the wave function renor-
malizations Z1,R,Z2,R have nontrivial interaction corrections
and, remarkably, Z1,R and Z2,R are different, as shown in
Fig. 2. All these nonuniversal renormalizations are absent in
effective relativistic descriptions: by neglecting the (irrelevant)
nonlinear corrections to the energy bands, one would obtain
a Nambu-Jona Lasinio model, in which Lorentz and chiral
symmetry would imply the invariance of vR , the invariance
of the critical lines, and Z1,R = Z2,R . However, these extra
symmetries are broken by the lattice, and the renormalization
of the effective parameters is a physical signature of many-
body interaction that should be visible in real systems, e.g.,
in cold atom experiments. These nonuniversal parameters also
enter the computation of the conductivity: remarkably, they are
related by exact lattice Ward identities, which induce nontrivial

−3
√

3t2

0

3
√

3t2

−π −π/2 π/2 π

ν = −2 ν = +2
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ν = 0

W
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U = −0.5

U = 0

U = 0.5

FIG. 1. Interacting phase diagram of the Haldane-Hubbard model
for t1 = 1, t2 = 0.1, and different values of U . σ12 = (e2/h)ν, where
the values of ν are reported in the figure. For ν = ±2 the system is
a topological insulator (TI), while for ν = 0 the system is a trivial,
normal, insulator (NI).

cancellations and imply subtle universality properties, as stated
in the following theorem. We recall that σij are the elements
of the Kubo conductivity matrix, in the limit of zero frequency
and zero temperature. We also denote by σ cr

ij their values on
the renormalized critical curves.

Theorem. There exists U0 > 0 such that for −U0 < U <

U0, the system is massless if and only if the right side of
Eq. (1) vanishes. This condition defines two renormalized
critical curves intersecting at (φ,W ) = (0,0),(π,0), separating

−5 × 10−5

−2.5 × 10−5

0

π/10 3π/10 π/2

ΔZ

φ

FIG. 2. The difference of the wave function renormalizations
�Z = Z1,R − Z2,R on the critical line, as a function of φ, for different
values of U . This difference would be zero for the effective relativistic
theory.
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two nontrivial topological phases, characterized by transverse
conductivity σ12 = ±2(e2/h), from two standard insulating
phases, see Fig. 1. On the renormalized critical curves, the
critical longitudinal conductivity σ cr

ii , i = 1,2, is quantized: if
φ �= 0,π ,

σ cr
ii = e2

h

π

4
, (2)

while σ cr
ii = e2

h
π
2 at (φ,W ) = (0,0),(π,0).

Thus, the critical lines acquire nonuniversal, interaction-
dependent corrections, but they still separate topological
regions labeled by ν = ±2 from the trivial ones, labeled by
ν = 0, see Fig. 1. New intermediate phases characterized
by the quantum number ν = ±1 are rigorously excluded
at weak coupling: the universality class of the topological
transition remains unchanged. The effect of the repulsive
interaction is to enlarge the topologically nontrivial region, see
Fig. 1. This enhancement agrees with the numerical findings
of Refs. [38,39] and is presumably a sign that repulsive
interactions in graphenelike systems can favor the spontaneous
generation of the topological insulating phase [16–23].

Even if not protected by any topological argument, the
critical longitudinal conductivity σ cr

11 is exactly universal and
equal to half the one of graphene, on the whole critical line,
with the exception of the special crossing points (0,0) and
(π,0), at which the value of σ cr

11 is the same obtained for
interacting graphene [60], namely (e2/h)(π/2): each Dirac
cone contributes with a universal quantity (e2/h)(π/4) to the
critical longitudinal conductivity. Of course, away from the
critical curves, the longitudinal conductivity is exactly zero.

Our results are in agreement with a low energy description
in terms of an effective action that includes a nontrivial
Chern-Simons term, whose coefficient (the Hall conductivity)
is proportional to the difference of the signs of the renormalized
masses, sgn(mR,−) − sgn(mR,+), rather than the bare ones, as
one would get in the relativisitic approximation [64].

The theory that we develop is nonperturbative, in the sense
that it allows us to express all the correlations and transport
coefficients in terms of convergent series. As it will appear
from the analysis, our nonperturbative bounds on the corre-
lation functions, once combined with Ward identities, allow
us to conclude the universality of the conductivity, without
exploiting explicit cancellations at all orders. We have not
tried to optimize the estimate for the radius of the convergence
domain, which, therefore, is expected to be far from the values
of U where interaction-induced phase transitions might take
place. However, we believe that the range of validity of our
convergent expansions could be improved by combining our
analysis with numerical techniques, as it is done, for instance,
for the stability of KAM tori in classical mechanics. Finally,
we stress that our analysis only requires the interaction to be
short ranged; we considered the Hubbard interaction just for
the sake of definiteness.

The paper is organized as follows. In Sec. II we define
the Haldane-Hubbard model, and derive the exact lattice Ward
identities for its correlation functions. In Sec. III we perform an
exact renormalization group analysis for the correlations, we
classify the allowed running coupling constants by the exact
lattice symmetries of the system, and we compute the decay of

BA

�δ1

�δ2

�δ3

�x

�γ1

�γ2

�γ3

FIG. 3. The honeycomb lattice of the Haldane-Hubbard model.

the correlations at large distances, as well as the renormalized
critical line. In Sec. IV we prove the quantization of the Hall
conductivity across the critical line, and the universality of the
critical longitudinal conductivity.

II. THE HALDANE-HUBBARD MODEL

The Haldane-Hubbard model describes interacting
fermions on the honeycomb lattice �, which can be understood
as the superposition of two triangular sublattices �A and �B ;
see Fig. 3. The triangular sublattice �A is generated by the
basis vectors

�	1 = 1
2 (3, −

√
3), �	2 = 1

2 (3,
√

3). (3)

With each sublattice, we introduce fermionic creation and
annihilation operators a±

�x,σ
, b±

�y,σ
, where σ is the spin degree of

freedom, σ = ↑,↓. The Hamiltonian is

H = H0 + UV − μN, (4)

where H0 is the noninteracting Hamiltonian, UV is the
Hubbard interaction, and −μN fixes the chemical potential.
The noninteracting Hamiltonian is [15]

H0 = −
∑
σ=↑↓

∑
〈�x,�y〉

t1[a+
�x,σ

b−
�y,σ

+ b+
�y,σ

a−
�x,σ

]

−
∑
σ=↑↓

∑
〈〈�x,�y〉〉

[t2(�x,�y)a+
�x,σ

a−
�y,σ

+ t2(�x,�y)∗b+
�x,σ

b−
�y,σ

]

+W
∑
σ=↑↓

⎡⎣∑
�x∈�A

a+
�x,σ

a−
�x,σ

−
∑
�y∈�B

b+
�y,σ

b−
�y,σ

⎤⎦, (5)

the first sum is over nearest neighbors on �, while the second
is over next-to-nearest neighbors. Each site on �A is connected
to its three nearest neighbors on �B by the vectors

�δ1 = (1,0), �δ2 = 1
2 (−1,

√
3), �δ3 = 1

2 (−1, −
√

3). (6)

The next-to-nearest neighbor hopping parameter t2(�x,�y) is
defined as

t2(�x,�x + �γi) = eiφt2, t2(�x,�x − �γi) = e−iφt2, (7)
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for i = 1,2,3. Explicitly (see Fig. 3):

�γ1 = �	1 − �	2, �γ2 = �	2, �γ3 = −�	1. (8)

The Hubbard interaction term is, as usual,

V =
∑

�x

[
n�x,↑ − 1

2

][
n�x,↓ − 1

2

]
, (9)

where the sum ranges over the full honeycomb lattice; the
density operator n�x,σ is

n�x,σ =
{

a+
�x,σ

a−
�x,σ

for �x ∈ �A,

b+
�x,σ

b−
�x,σ

for �x ∈ �B,
(10)

in terms of which we also have N = ∑
�x,σ n�x,σ . The factors

−1/2 in Eq. (9) amount to a redefinition of μ, and simplify the
functional integral representation of the model (see Sec. III A).

We denote the finite volume version of H by HL, with
periodic boundary conditions. The finite volume and finite
temperature Gibbs state is

〈·〉β,L = Tr{e−βHL ·}/Tr{e−βHL}, (11)

and we let

〈·〉β = lim
L→∞

〈·〉β,L, 〈·〉 = lim
β→∞

〈·〉β,L. (12)

Correlations, current, and conductivity: It is convenient to
define

+
�x,σ

= (
a+

�x,σ
, b+

�x+�δ1,σ

)
, −

�x,σ
= (+

�x,σ
)†; (13)

also, for any inverse temperature β, we let ±
�x,σ

(x0) =
eHx0±

�x,σ
e−Hx0 be their evolution at “imaginary time” x0 ∈

[0,β). For general x0 ∈ R, we extend ±
�x,σ

(x0) antiperiodically
(of antiperiod β) beyond the basic interval [0,β). The Fourier
transform of the fields is defined as ±

�x,σ
= ∫

B
d�k
|B|e

±i�k·�x̂±
�k,σ

,
where B is the Brillouin zone [65]. The two-point function is

S2(x,y) = 〈T −
�x,σ

(x0)+
�y,σ

(y0)〉

=
∫
R×B

dk
2π |B|e

−ik(x−y)Ŝ2(k),

where x = (x0,�x), y = (y0,�y), T is the fermionic time-ordering
operator (which orders imaginary times in decreasing or-
der [66]), and k = (k0,�k), where k0 is the Matsubara frequency.
Note that S2 is a 2 × 2 matrix (with indices in the “sublattice”
space) and its definition is independent of the choice of
σ = ↑,↓.

The current is defined via the Peierls’ substitution (see
Appendix A), and is equal to

�J �p(x0) =
∑
σ=↑↓

∫
B

d�k
|B| ̂

+
�k+ �p,σ

(x0) �M(�k, �p)̂−
�k,σ

(x0). (14)

The two components Mi(�k, �p), i = 1,2, of �M(�k, �p) are the
bare vertex functions, which are 2 × 2 matrices, with elements
labeled by the spinor indices. For the explicit expression of the
bare vertex functions, see Appendix A.

The current-current and the vertex correlations are defined,
respectively, as

K̂μν(p) =
∫
R

dx0e
−ip0x0〈〈T J �p,μ(x0); J− �p,ν(0)〉〉∞,

Ĝμ(k,p) =
∫
R

dx0

∫
R

dy0 e−ip0x0+i(k0+p0)y0

×〈〈T J �p,μ(x0); ̂−
�k+ �p,σ

(y0)̂+
�k,σ

〉〉
∞

, (15)

where μ,ν ∈ {0,1,2},

J �p,0(x0) =
∑
�x∈�A

∑
σ=↑↓

e−i �p·�x+
�x,σ

(x0)M0( �p)−
�x,σ

(x0),

with

M0( �p) =
(

1 0
0 e−i �p1

)
; (16)

the labels μ = 1,2 refer to the components of the
current defined in Eq. (14). Moreover, 〈〈·〉〉∞ =
limβ→∞ limL→∞ L−2〈·〉β,L is the trace per unit volume,
and the semicolon indicates that the expectation is truncated.

For later reference, we also introduce the vertex function:

�̂μ(k,p) = Ŝ−1
2 (k + p)Ĝμ(k,p)Ŝ−1

2 (k), (17)

where Ŝ−1
2 (k) is the inverse of the two-point function, thought

of as a 2 × 2 matrix.
Finally, the dc Kubo conductivity is defined in terms of the

current-current correlation, in units such that e2 = � = 1, as

σij = − lim
p0→0+

1

Ap0
[K̂ij (p0,0) − K̂ij (0)], (18)

where i,j = 1,2 and A = |�	1 × �	2| = 3
√

3/2 is the area of the
fundamental cell.

Ward identities: The continuity equation for the lattice
current Eq. (14), when averaged against an arbitrary number
of field operators, implies exact identities among correlation
functions (Ward identities), valid for any value of the inter-
action U . In particular, the one relating the two-point and
the vertex functions, which will play an important role in the
following, reads as follows:

2∑
μ=0

(i)δμ,0pμĜμ(k,p) = Ŝ2(k + p)M0( �p) − M0( �p)Ŝ2(k).

(19)
If we derive this equation with respect to p, compute the result
at p = 0, and recall the definition (17) of the vertex function,
we find

�̂μ(k,0) = (−i)δμ,0∂μŜ−1
2 (k) + [∂μM0(�0),Ŝ−1

2 (k)
]
. (20)

In the following, �̂μ(k,0) will be denoted simply by �̂μ(k).
The noninteracting case: If U = 0, the band structure and

the phase diagram can be computed explicitly: the Bloch
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Hamiltonian is [15]

Ĥ0(�k)

=
(

−2t2 cos φ α1(�k) + m(�k) −t1�
∗(�k)

−t1�(�k) −2t2 cos φ α1(�k) − m(�k)

)
,

(21)

where �(�k) = 1 + e−i�k·�	1 + e−i�k·�	2 and

α1(�k) =
3∑

i=1

cos(�k · �γi), α2(�k) =
3∑

i=1

sin(�k · �γi),

m(�k) = W − 2t2 sin φ α2(�k). (22)

The corresponding energy bands are

ε±(�k) = −2t2 cos φ α1(�k) ±
√

m(�k)2 + t2
1 |�(�k)|2.

To make sure that the energy bands do not overlap, we assume
that t2/t1 < 1/3. The two bands can only touch at the Fermi
points �p±

F = ( 2π
3 , ± 2π

3
√

3
), which are the two zeros of �(�k),

around which �( �p±
F + �k′) � 3

2 (ik′
1 ± k′

2). The condition that
the two bands touch at �pω

F , with ω = +,−, is that mω = 0,
with

mω ≡ m( �pω
F ) = W + ω3

√
3 t2 sin φ.

Therefore, the unperturbed critical curves are given by the
values of (φ,W ) such that

W = ±3
√

3 t2 sin φ, (23)

which correspond to the solid curves in Fig. 1. Fixing the
chemical potential in such a way that the Fermi energy lies in
between the two bands,

μ = −2t2 cos φ α1( �p±
F ) = −3t2 cos φ, (24)

the system passes from a semimetallic behavior, when (φ,W )
is on the critical line, to an insulating behavior, character-
ized by the exponential decay of correlations, when W �=
±3

√
3t2 sin φ.

The insulating phase consists of four disconnected regions
in the (φ,W ) plane, two of which are “topologically trivial”,
while the other two have nonzero Hall conductivity, see Fig. 1:
more precisely, if W �= ±3

√
3t2 sin φ,

σ12 = ν

2π
, ν = sgn(m−) − sgn(m+).

III. RENORMALIZATION GROUP ANALYSIS

We now construct the interacting correlations and phase
diagram, by using a convergent renormalized expansion, in
the spirit of Refs. [43,60,61]. In this section we introduce the
functional integral formulation of the model, discuss the exact
lattice symmetries of the fermionic action, and describe the
infrared integration, including the study of the flow of the
running coupling constants. One of the main results of this
section is the equation for the interacting critical line.

A. Functional integral formulation

We are interested in the semimetallic and insulating regimes
of the interacting system. We, therefore, set the chemical
potential accordingly (its value will be different, in general,
from the unperturbed one):

μ = −2t2 cos φ α1( �p±
F ) − ξ,

where ξ (the shift of the chemical potential) must be chosen
as a function of U,W,φ, so that the renormalized propagator
either has a linear, “conical”, infrared singularity (along the
interacting critical line), or is gapped (in the insulating phase).

The generating function W(f,A) for correlations, in which
f is the external field conjugated to the fermionic fields, and
A is the external field conjugated to the current, can be written
as the following Grassmann integral:

eW(f,A) =
∫

P (dψ)e−V (ψ)+(ψ,f )+(j,A)∫
P (dψ)e−V (ψ)

, (25)

where ψ±
x,σ , with x = (x0,�x) ∈ R × �A and σ ∈ {↑,↓}, is

a two-component Grassmann spinor [it is the Grassmann
counterpart of ±

�x,σ
(x0)], whose components will be denoted

by ψ±
x,σ,ρ , with ρ = 1,2; P (dψ) is the fermionic Gaussian

integration with propagator

g(x,y) =
∫
R×B

dk
2π |B|e

−ik(x−y)ĝ(k), (26)

where, letting R(�k) = −2t2 cos φ[α1(�k) − α1( �p±
F )],

ĝ(k) =
(

−ik0 + R(�k) + m(�k) −t1�
∗(�k)

−t1�(�k) −ik0 + R(�k) − m(�k)

)−1

and, at contact, g(x,x) should be interpreted as limε→0+ [g(x +
(ε,�0),x) + g(x − (ε,�0),x)]:

V (ψ) =
∫
R

dx0

∑
�x∈�A

∑
ρ=1,2

⎛⎝Un
ρ

x,↑n
ρ

x,↓ + ξ
∑

σ=↑,↓
nρ

x,σ

⎞⎠,

where n
ρ
x,σ = ψ+

x,σ,ρψ−
x,σ,ρ ; and, finally,

(ψ,f ) =
∫
R

dx0

∑
�x∈�A

∑
σ=↑↓

(ψ+
x,σ f −

x,σ + f +
x,σ ψ−

x,σ ),

(j,A) =
∫
R3

dp
(2π )3

Âp,μĵp,μ,

where ĵp,μ = ∑
σ=↑↓

∫
R×B

dk
2π |B| ψ̂

+
k+p,σ�μ(�k, �p)ψ̂−

k,σ , in

which �μ(�k, �p) are the bare vertex functions, namely
�0(�k, �p) = M( �p), and, if i = 1,2, �i(�k, �p), are the two
components of the (matrix-valued) vector �M(�k, �p) defined
in (14) and the following lines. In terms of these definitions,
the correlations can be reexpressed as

S2(x,y) = ∂2W
∂f +

x,σ ∂f −
y,σ

(0,0),

(27)

Kμν(x,y) = ∂2W
∂jx,μ∂jy,ν

(0,0),
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and of suitable linear combinations of

G2,1;μ(x,y,z) = ∂3W
∂Ax,μ∂f +

y,σ ∂f −
z,σ

(0,0). (28)

We now compute the generating function Eq. (25) via a
renormalized expansion, which is convergent uniformly close
to (and even on) the critical line. Note that, on this line,
the Grassmann integral has an infrared problem. In order
to resolve and re-sum the corresponding singularities, we
proceed in a multiscale fashion. First of all, we distinguish
the ultraviolet modes, corresponding to large values of the
Matsubara frequency, from the infrared ones, by introducing
two compactly supported cut-off functions χ±(k), supported in
the vicinity of the Fermi points [more precisely, we let χ±(k) =
χ0(k − p±

F ), where χ0 is a smoothed out characteristic function
of the ball of radius a0, with a0 equal to, say, 1/3, and
p±

F = (0, �p±
F )] and by letting χuv(k) = 1 −∑ω=± χω(k). We

correspondingly split the propagator in its ultraviolet and
infrared components:

g(x,y) = g(1)(x,y) +
∑
ω=±

e−i �pω
F (�x−�y)g(�0)

ω (x,y), (29)

where g(1)(x,y) and g(�0)
ω (x,y) are defined in a similar way as

Eq. (26), with ĝ(k) replaced by χuv(k)ĝ(k) and by χ0(k)ĝ(k +
pω

F ), respectively. We then split the Grassmann field as a sum
of two independent fields, with propagators g(1) and g(�0):

ψ±
x,σ = ψ±(1)

x,σ +
∑
ω=±

e±i �pω
F �xψ±(�0)

x,σ,ω

and we rewrite the Grassmann Gaussian integration as
the product of two independent Gaussians: P (dψ) =
P (dψ (�0))P (ψ (1)). By construction, the integration of the
“ultraviolet” field ψ (1) does not have any infrared singularity
and, therefore, can be performed in a straightforward manner,
thus allowing us to rewrite the generating function W(f,A) as
the logarithm of

eW
(0)(f,A)

N0

∫
P (dψ (�0))e−V (0)(ψ (�0))+B(0)(ψ (�0),f,A), (30)

where V (0) and B(0) are, respectively, the effective potential and
the effective source (which depend explicitly on, respectively,
ψ (�0) and ψ (�0),f,A), W (0) is independent of ψ (�0) (and de-
pends explicitly on f,A), and N0 = ∫

P (dψ (�0))e−V (0)(ψ (�0)).
Both V (0) and B(0) are expressed as series of monomials in the
ψ,f,A fields, whose kernels (given by the sum of all possible
Feynman diagrams with fixed number and fixed location of the
external legs) are analytic functions of the interaction strength,
for U sufficiently small. The proof of their analyticity is based
on a determinant expansion and on a systematic use of the
Gram-Hadamard bounds, see Refs. [43,61].

B. Symmetries

Before tackling the multiscale integration of the infrared
modes, we make a digression about the symmetry structure
of the effective potential, and in particular of its local parts:
the purpose is to classify the possible relevant and marginal
coupling constants. In the case t2 = W = μ = 0 (standard
graphene model) the lattice symmetries severely constrain

the form of the quadratic terms in the effective potential:
in particular, the interaction does not shift the chemical
potential, nor does it generate a mass [60–63]. In the general
case (W,t2,φ �= 0) the model is invariant under the following
symmetry transformations (since they do not mix the spin
indices, for notational convenience we temporarily drop the
spin labels from the formulas).

We discuss the symmetries in the absence of external fields,
since we will use them only to infer the structure of the
relevant and marginal contributions to the effective potential
V (0). Once the structure of these terms is known, the structure
of the marginal contributions to the effective source B(0) can
be computed by using the Ward identity (20).

(1) Discrete rotations:

ψ̂−
k → ei�k(�δ3−�δ1)n−ψ̂−

T k, ψ̂+
k → ψ̂+

T ke
−i�k(�δ3−�δ1)n− , (31)

where, denoting the Pauli matrices by σ1,σ2,σ3, we defined

n− = (1 − σ3)/2, T k = (
k0,e

−i 2π
3 σ2 �k); (32)

that is, T is the spatial rotation by 2π/3 in the counterclockwise
direction.

(2) Complex conjugation:

ψ̂±
k → ψ̂±

−k, (33)

combined with

c → c∗, φ → −φ, (34)

where c is a generic constant appearing in P (dψ) or in V (ψ).
(3) Horizontal reflections:

ψ̂−
k → σ1ψ̂

−
Rhk, ψ̂+

k → ψ̂+
Rhkσ1, (35)

with

Rhk = (k0, − k1,k2), (W,φ) → (−W, − φ). (36)

(4) Vertical reflections:

ψ̂±
k → ψ̂±

Rvk, (37)

with

Rvk = (k0,k1, − k2), φ → −φ. (38)

(5) Particle-hole:

ψ̂−
k → iψ̂

+,T
P k , ψ̂+

k → iψ̂
−,T
P k , (39)

with

P k = (k0, − k1, − k2), φ → −φ. (40)

Note that, at fixed W,φ, the theory is invariant under
the transformations (1), (2)+(4), and (2)+(5). In particular,
these transformations leave the quadratic part Q(0)(ψ) =∑

σ

∫
dk

(2π |B|) ψ̂
+
k,σ Ŵ2(k)ψ̂−

k,σ of the effective potential V (0)(ψ)
invariant. This means that

Ŵ2(k) = e−i�k(�δ1−�δ2)n−Ŵ2(T −1k)ei�k(�δ1−�δ2)n−

= Ŵ ∗
2 (−k0, − k1,k2)

= Ŵ
†
2 (−k0,k1,k2). (41)

As we will see in the next section, the values of Ŵ2(k) and of
its derivatives at the Fermi points define the effective coupling
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constants. By (41), we find, for ω = ±,

Ŵ2
(
pω

F

) = e−i 2π
3 ωn−Ŵ2

(
pω

F

)
ei 2π

3 ωn−

= Ŵ ∗
2

(
pω

F

) = Ŵ
†
2

(
pω

F

)
,

which implies that

Ŵ2
(
pω

F

) = ξω + δωσ3, (42)

for two real constants ξω and δω.
If we derive (41) with respect to k and compute the result

at pω
F , we find

∂kŴ2
(
pω

F

) = e−i 2π
3 ωn−T ∂kŴ2

(
pω

F

)
ei 2π

3 ωn−

= (−Rv)∂kŴ
∗
2

(
pω

F

)
= (−P )∂kŴ

†
2

(
pω

F

)
, (43)

where Rv (P ) is the diagonal matrix with diagonal elements
(1,1,−1) [(1,−1,−1)]. By using (43), it is straightforward to
check that

k′∂kŴ
(
pω

F

) =
( −iz1,ωk0 −uω(−ik′

1 + ωk′
2)

−uω(ik′
1 + ωk′

2) −iz2,ωk0

)
,

(44)
where k′ = k − pω

F = (k0, �k′), and uω,z1,ω,z2,ω are real con-
stants. In conclusion, for general values of W,φ, the lineariza-
tion of Ŵ2(k) at pω

F is parametrized by five real constants,
namely ξω,δω,uω,z1,ω, and z2,ω, the first two are relevant
coupling constants, and the other three are marginal. Note
that, in general, the values of these constants depend on ω

(therefore, there are five of them at p+
F and five more at

p−
F ). Note also that, in general, z1,ω �= z2,ω, i.e., the wave

function renormalization depends explicitly on the spinor
index, an effect that can be checked explicitly at second order
in perturbation theory (see below), and cannot be explained
purely in terms of the relativistic approximation of the model
around the Fermi points.

Note that there are special points in the (W,φ) plane, for
which the model has more symmetries, and where the number
of independent couplings is smaller than in the general case.
For instance, if W = φ = 0, the model is invariant under all
five symmetry transformations listed above, in which case it
is straightforward to see that

ξω = ξ−ω, δω = 0, uω = u−ω,

z1,ω = z2,ω = z1,−ω = z2,−ω. (45)

A similar discussion applies to the case W = 0, φ = π .
Finally, if φ = π/2, the model is invariant under the follow-

ing additional symmetry transformation (see also Ref. [67]):

ψ̂−
k,σ → −iσ1σ3ψ̂

−
−Rvk,σ , ψ̂+

k,σ → −iψ̂+
−Rvk,σ σ3σ1, (46)

which implies that

Ŵ2(k) = −σ3σ1Ŵ2(−k0, − k1,k2)σ1σ3,

so that, in particular,

ξω = 0, z1,ω = z2,ω. (47)

A similar discussion applies to φ = −π/2.

C. Infrared integration

Let us now describe the integration of the infrared fields.
We shall focus on the semimetallic behavior of the system at,
or very close to, a generic point of the critical line. Moreover,
since we are interested in the behavior of the current-current
correlations around p = 0, we shall assume that the external
field Âp,μ is supported in the vicinity of the origin (in particular,
we assume that it vanishes in the vicinity of pω

F − p−ω
F , ω = ±).

By dimensional considerations, the quadratic terms in the
effective action are relevant, and the ones corresponding to
the renormalization of the mass are of particular importance.
The flow of the effective mass tends to diverge linearly under
the RG iterations, which signals that, in general, the location
of the critical lines is changed by the interaction. In order to
construct a convergent expansion, we need to dress the mass,
after which we determine the location of the renormalized
critical lines, which is given by the condition that the dressed
mass vanishes.

More in detail, we proceed as follows. We perform the
integration of the infrared modes in (30) iteratively, by
decomposing the fermionic fields as ψ

±(�0)
x,σ,ω as ψ

±(�0)
x,σ,ω =∑

h�0 ψ
±(h)
x,σ,ω, where ψ

±(h)
x,σ,ω is a Grassmann field whose propa-

gator is supported on the momenta k such that |k − pω
F | ∼ 2h,

and by integrating the fields ψ (0),ψ (−1), . . . step by step. After
the integration of the modes on scales 0,−1, . . . ,h + 1, we
rewrite the generating function W(f,A) as the logarithm of

eW
(h)(f,A)

Nh

∫
P (dψ (�h))e−V (h)(ψ (�h))+B(h)(ψ (�h),f,A), (48)

where V (h) and B(h) are, respectively, the effective potential
and source terms, to be defined inductively in the following.
Moreover, P (dψ (�h)) is the Grassmann Gaussian integration
with propagator (diagonal with respect to the σ and ω indices)

g(�h)
ω (x,y) =

∫
P (dψ (�h))ψ−(�h)

x,σ,ω ψ+(�h)
y,σ,ω

=
∫

dk′

2π |B|e
−ik′(x−y)ĝ(�h)

ω (k′),

where k′ = (k0,�k′) and, letting rω(�k′) = R(�k′ + �pω
F ), sω(�k′) =

−t1[�(�k′ + �p ω
F ) − 3

2 (ik′
1 + ωk′

2)], and χh(k′) = χ0(2−hk′)
[here χ0 is the cutoff function defined a few lines before (29)],

ĝ(�h)
ω (k) = χh(k′)

(
a1,ω,h(k′) b∗

ω,h(k′)

bω,h(k′) a2,ω,h(k′)

)−1

, (49)

with

aρ,ω,h(k) = −ik0Zρ,ω,h + rω(�k′) + (−1)ρ−1mω,h(�k′),
(50)

bω,h(k′) = −vω,h(ik′
1 + ωk′

2) + sω(�k′),

in which Zj,ω,h, mω,h(�k′) and vω,h are, respectively, the wave
function renormalizations, the effective mass, and effective
velocities, to be defined inductively in the following. Their
initial values are

Zj,ω,0 = 1, mω,0(�k′) = m
(�k′ + �p ω

F

)
, vω,0 = 3

2 t1. (51)

In order to clarify the inductive definition of the effective
potential, source, etc., we now describe the integration step
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at scale h. We start from (48), where V (h)(ψ) is a sum of
even monomials in the ψ fields, whose kernels of order n

are denoted by W (h)
n (for notational simplicity, we temporarily

drop the space-time, spin, spinor, and valley indices of the
fermionic fields). Similarly, we denote the kernels of B(h)

of order n in ψ , m in f and q in A, by Wn,m,q . The
scaling dimension of the kernels Wn and Wn,m,q is (see
Refs. [43,60,61])

D = 3 − n − m − q, (52)

with the convention that D > 0 corresponds to relevant, D = 0
to marginal, and D < 0 to irrelevant operators. Note that the
only relevant terms are those with n + m = 2, and the only
marginal terms are those with n + m = 2 and q = 1 (note that,
by construction, n + m is positive and even). In particular, the
effective electron-electron interaction, corresponding to the
case n = 4 and m = q = 0, is irrelevant.

In order to define a convergent renormalized expansion,
we need to re-sum the relevant and marginal terms. For this
purpose, we split V (h) and B(h) into their local and irrelevant
parts (here, for simplicity, we spell out the definitions only
in the f = 0 case, the general case is treatable analogously,
along the lines of, e.g., Sec. 12 of Ref. [68], or Ref. [60]):
V (h) = LV (h) + RV (h) and B(h) = LB(h) + RB(h), where,

denoting the quadratic part of V (h) by∑
ω,σ

∫
dk′

2π |B| ψ̂
+
k′,σ,ωŴ

(h)
2;ω(k′)ψ̂−

k′,σ,ω,

and the part of B(h) of order (2,0,1) in (ψ,f,A) by∑
ω,σ

∫
dp

(2π )3

∫
dk′

2π |B| Â−p,μψ̂+
k′+p,σ,ωŴ

(h)
2,1;μ,ω(k′,p)ψ̂−

k′,σ,ω,

we let

LV (h)(ψ) =
∑
ω=±

∑
σ=↑↓

∫
dk′

2π |B|

×ψ̂+
k′,σ,ω

[
Ŵ

(h)
2;ω(0) + k′∂k′Ŵ

(h)
2;ω(0)

]
ψ̂−

k′,σ,ω

and

LB(h)(ψ,0,A) =
∑
ω=±

∑
σ=↑↓

2∑
μ=0

∫
dp

(2π )3

∫
dk′

2π |B|

× Âp,μψ̂+
k′+p,σ,ωŴ

(h)
2,1;μ,ω(0,0)ψ̂−

k′,σ,ω.

By the symmetries discussed in the previous section [see,
in particular, (42) and (44)]

LV (h)(ψ) =
∑
ω=±

∫
dk′

2π |B|

[
2hξω,hψ̂

+
k′,σ,ωψ̂−

k′,σ,ω + ψ̂+
k′,σ,ω

(
−iz1,ω,hk0 + δω,h −uω,h(−ik′

1 + ωk′
2)

−uω,h(ik′
1 + ωk′

2) −iz2,ω,hk0 − δω,h

)
ψ̂−

k′,σ,ω

]
, (53)

where ξω,h,δω,h,zj,ω,h,uω,h are real constants. Moreover, by
using the Ward identity (20), we find that

LB(h)(ψ,0,A) =
∑
ω=±

∑
σ=↑↓

2∑
μ=0

∫
dp

(2π )3

∫
dk′

2π |B|

×Âp,μψ̂+
k′+p,σ,ωγμ,ω,hψ̂

−
k′,σ,ω, (54)

where

γ0,ω,h = −
2∑

ρ=1

(Zρ,ω,h + zρ,ω,h)nρ,

γ1,ω,h = −(vω,h + uω,h)σ2, (55)

γ2,ω,h = −ω(vω,h + uω,h)σ1,

in which nρ = [1 + (−1)ρ−1σ3]/2 and σi are the standard Pauli
matrices.

Once the effective potential and source have been split into
local and irrelevant parts, we combine the part of LV (h) in the
second line of (53) with the Gaussian integration P (dψ (�h)),
thus defining a dressed measure P̃ (dψ (�h)) whose propagator
g̃(�h)

ω (x,y) is analogous to g(�h)
ω (x,y), with the only difference

that the functions aρ,ω,h, bω,h in (49) and (50) are replaced by

ãρ,ω,h−1(k) = −ik0Z̃ρ,ω,h−1(k′) + rω(�k′)

+(−1)ρ−1m̃ω,h−1(k′),

b̃ω,h−1(k′) = −ṽω,h−1(k′)(ik′
1 + ωk′

2) + sω(�k′),

with

Z̃ρ,ω,h−1(k′) = Zρ,ω,h + zρ,ω,h χh(k′),

m̃ω,h−1(k′) = mω,h(�k′) + δω,h χh(k′),

ṽω,h−1(k′) = vω,h + uω,h χh(k′).

Now, by rewriting the support function χh(k′) in the definition
of g̃(�h)

ω (x,y) as χh(k′) = fh(k′) + χh−1(k′), we correspond-
ingly rewrite g̃(�h)

ω (x,y) = g̃(h)
ω (x,y) + g(�h−1)

ω (x,y), where
g(�h−1)

ω (x,y) is defined exactly as in (49) and (50), with h

replaced by h − 1, and Zρ,ω,h−1,mω,h−1,vω,h−1 defined by the
flow equations:

Zρ,ω,h−1 = Zρ,ω,h + zρ,ω,h,

mω,h−1(�k′) = mω,h(�k′) + δω,h, (56)

vω,h−1 = vω,h + uω,h.

At this point, we integrate the fields on scale h, and define

e−V (h−1)(ψ)+B(h−1)(ψ,f,A)+w(h)(f,A)

= Ch

∫
P̃ (dψ (h))e−F

(h)
ξ (ψ (h)+ψ)+RV (h)(ψ (h)+ψ)+B(h)(ψ (h)+ψ,f,A),

where P̃ (dψ (h)) is the Gaussian integration with propagator
g̃(h)

ω , F
(h)
ξ (ψ) = ∑

ω 2hξω,h

∫
dk′

2π |B| ψ̂
+
k′,σ,ωψ̂−

k′,σ,ω, and C−1
h =∫

P̃ (dψ (h))e−F
(h)
ξ (ψ (h))+RV (h)(ψ (h)). Finally, letting W (h−1) =

W (h) + w(h), we obtain the same expression as (48), with h

replaced by h − 1. This concludes the proof of the inductive
step, corresponding to the integration of the fields on scale h.
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The integration procedure goes on like this, as long as the
two effective masses m±,h are small, as compared to 2h. If
we are not exactly at the “graphene point” W = φ = 0, i.e.,
if we are close to, or at, any other point on the critical line
but the origin, then after a while we reach a scale h1 at which
maxω |mω,h1 | ≡ |mω1,h1 | � 2h1 (possibly, h1 = 0, in the case
that maxω |mω| is of order 1, i.e., if W,φ are far enough from
the graphene point). Note that, once we reach scale h1, the
field ψ

(�h1)
k′,σ,ω1

is massive “on the right scale” 2h1 . At that point,

we integrate out the field ψ
(�h1)
k′,σ,ω1

in a single step, and we are
left with a (chiral) theory, whose only dynamical degree of
freedom is ψ

(�h1)
k′,σ,ω2

, with ω2 = −ω1.

From that scale on, we integrate ψ
(�h1)
k′,σ,ω2

= ∑
h�h1

ψ
(h)
k′,σ,ω2

in a multiscale fashion, analogous to the one discussed above,
with the important difference that only the running coupling
constants corresponding to the valley index ω = ω2 continue to
flow. The multiscale integration goes on until we reach a scale
h2 such that |mω2,h2 | � 2h2 , at which point we can integrate
out the remaining degrees of freedom in a single step. The
criticality condition, i.e., the condition that the system is on
the (renormalized) critical line, corresponds to the condition
that h2 = −∞.

D. The flow of the running coupling constants

The multiscale integration described in the previous section
defines a flow for the effective chemical potential νω,h, the
effective mass mω,h = mω,h(�0), the effective wave function
renormalization Zρ,ω,h, and the effective Fermi velocity vω,h.
The flow of mω,h,Zρ,ω,h, and vω,h is driven by Eqs. (56), while

ξω,h−1 = 2ξω,h + β
ξ

ω,h,

where βh
ξ is the (ξ component of the) beta function, which

is defined in terms of the sum of all the local quadratic
contributions in renormalized perturbation theory, and should
be thought of as a function of U and of the sequence of the
effective coupling constants. Remember that the flow drives
the effective couplings with both ω = + and ω = −, up to
the scale h1; then the flow of the couplings with ω = ω1 is
stopped, and only the couplings with ω = ω2 continue to flow
until scale h2 (possibly h2 = −∞).

The multiscale procedure is well defined, and the effective
potentials are, step by step, given by convergent expansions,
provided: (i) U is small enough, (ii) ξω,h remain small for all
scales, and (iii) Zρ,ω,h,vω,h remain close to their initial (bare)
values, for all scales. Note that, in order for condition (ii) to
be valid, we need to properly fix the initial condition on the
chemical potential, as discussed in the following. In addition,
note that, once that the flows of Zρ,ω,h and vω,h are controlled,
then the marginal contributions to the effective source term
LB(h)(ψ,0,A) are automatically under control, thanks to (54)
and the following lines.

The key fact, which allows us to control the flow of
the effective couplings, is that, since the electron-electron
interaction is irrelevant, with scaling dimension D = −1
[cf. with (52)], then the scaling dimensions of all diagrams
with at least one interaction vertex can be effectively improved
by one, see Ref. [61]. In particular, |βξ

ω,h| � cε|U |2(1−ε)h, for
any ε > 0 and a suitable constant cε > 0, and similarly for the

beta functions of Zρ,ω,h and vω,h. (The reason why we lose,
in general, an ε in the decay exponent as h → −∞, is that we
need to use a little bit of decay 2εh in order to sum over all
diagrams and scales, see Ref. [61] for details.)

In order to guarantee that the flow of the chemical potential
remains bounded, we fix the initial data (via a fixed point
theorem, such as the contraction mapping theorem) so that
limh→−∞ ξω2,h = 0, in the limit as h2 → −∞. Thanks to
the dimensional gain of 2(1−ε)h, due to the irrelevance of
the interaction, we actually find that ξω2,h tends to zero, as
h → −∞, exponentially fast: |ξω1,h| � (const.)|U |2(1−ε)h.
Once we imposed that ξω2,h remains bounded for all scales
h � 0, we can a posteriori check that ξω1,h is also bounded for
all scales h1 � h � 0: in fact, the beta function β

ξ

ω1,h
, for h �

h1, can be rewritten as β
ξ

ω2,h
+ [βξ

ω1,h
− β

ξ

ω2,h
], where the dif-

ference in square brackets can be straightforwardly shown to be
proportional to mω1 [if all the masses mω,h were zero, then the
model would be symmetric under the exchange of ω in −ω, as
in Ref. [61], see also Sec. III B above; therefore, the difference
β

ξ

ω1,h
− β

ξ

ω2,h
between the contributions with different valley

indices must be proportional to a mass term |mω,h|, which is
smaller than (const.)|mω1 |]. Therefore, the flow of ξω1,h, for
h � h1, remains close to the one of ξω2,h (which is uniformly
bounded for all scales), up to terms that are proportional to
mω1 and, therefore, are bounded by (const.)|U ||mω1 |2−h2(1−ε)h

(here 2−h is the dimensional amplification factor arising from
the scaling dimension D = +1 of the chemical potential
terms, while 2(1−ε)h is the dimensional gain coming from the
irrelevance of the interaction). Recalling that 2h1 � |mω1 |, we
find that |ξω1,h| � (const.)|U |2(1−ε)h, for all scales h � h1.

Finally, once the chemical potential is fixed so that |ξω,h| �
(const.)|U |2(1−ε)h, we immediately infer that the beta functions
of Zρ,ω,h and vω,h are bounded by (const.)|U |2(1−ε)h, as well:
therefore, their flows converge exponentially fast, and the
dressed values of Zρ,ω,h and vω,h are analytic functions of
U , analytically close to their bare values.

E. Lowest order computations

The discussion in the previous section guarantees that, once
the chemical potential is properly fixed, then the flows of
the chemical potential, wave function renormalizations, and
Fermi velocity converge exponentially fast. The values of the
chemical potential, as well as of the dressed wave functional
renormalizations, dressed Fermi velocity, and dressed critical
lines are expressed in terms of convergent expansions (they
are analytic functions of U ), which are dominated by the
first nontrivial order in perturbation theory, provided U is
not too large (note that the condition of convergence of the
renormalized expansion is uniform in the gap, and is valid, in
particular, on the critical line). The explicit lowest order contri-
butions to the chemical potential ξ , to the renormalized Fermi
velocity vR ≡ vω2,−∞ and the wave function renormalizations
Zρ,R ≡ Zρ,ω2,−∞ on the renormalized critical line h2 = −∞
are the following:

(1) Chemical potential:

ξ = −U 2

2

2∑
ρ=1

∫
dkdq

(2π |B|)2
ĝρρ

(
k + pω2

F

)
ĝρρ(q)ĝρρ(k + q);
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(2) Fermi velocity:

vR = 3

2
t1 − iU 2

∫
dkdq

(2π |B|)2
∂k1 ĝ12

(
k+pω2

F

)
ĝ12(q

)
ĝ21(k+q);

(57)
(3) Wave function renormalizations:

Zρ,R = 1+iU 2
∫

dkdq
(2π |B|)2

∂k0 ĝρρ

(
k+pω2

F

)
ĝρρ(q)ĝρρ(k+q).

(58)
Moreover, the equation for the critical line h2 = −∞ reads

mω2 = U

2

∫
d�k
|B|

m(�k)√
m2(�k) + t2

1 |�(�k)|2
,

where mω, m(�k), and �(�k) were defined after (21). This is a
fixed point equation for mω2 , whose solution leads to the plot
in Fig. 1.

Note that, as discussed in Sec. III B, there is no symmetry
reason why Z1,R should be equal to Z2,R . Actually, an explicit
computation shows that Z1,R − Z2,R is different from zero
along the critical line, unless we are at one of the highly
symmetric points φ = 0 or φ = π/2, see Fig. 2, where we
plot the value of Z1,R − Z2,R on the critical line at second
order in U , for two different values of U .

IV. QUANTIZATION OF THE CONDUCTIVITY

In this section we compute the jump discontinuity of the
Hall conductivity across the critical line, as well as the value
of the longitudinal conductivity on the same line, and prove
a universality result for both of them, i.e., we prove that their
values are quantized and exactly independent of the interaction
strength U . Note that this fact is highly nontrivial, due to the
unusual renormalization of the Fermi velocity and of the wave
function renormalizations, which depends explicitly on the
spinor index and break the asymptotic relativistic invariance
of the propagator: the cancellations behind universality need to
take lattice (and, therefore, RG-irrelevant) effects into account,
and do not follow from asymptotic relativistic computations.

We stress that our result is exact at all orders of the
(convergent, renormalized) expansion for the conductivity.
One key ingredient used in the proof is the lattice Ward
identity (19), which is rigorously valid (without any subleading
correction), thanks to the exact lattice symmetries and the fact
that the correlations appearing at both sides can be computed in
terms of convergent expansions, following from the multiscale
construction described above.

A. Quantization of the Hall conductivity across the critical line

Here we compute the universal jump discontinuity of the
Hall conductivity across the renormalized critical line. For the
moment, we assume not to be at the graphene points W ,φ = 0
and W = 0, φ = π ; we shall discuss later the (straightforward)
adaptation to these special cases. Therefore, the goal is to
compute

� = lim
mR→0+

σ12 − lim
mR→0−

σ12,

where mR ≡ mω2,h2 is the mass gap of the dressed propagator.
The condition that we are not at a graphene point means

that mω1,h1 should be kept finite as mR → 0. Using the
definition (18), as well as the fact that K̂ij (p) is differentiable
in p outside the critical line, we can rewrite

� = − 1

A

[
lim

mR→0+
∂p0K̂12(0) − lim

mR→0−
∂p0K̂12(0)

]
.

The interacting current-current correlation can be computed
via the multiscale renormalized expansion discussed in
Sec. III C: in particular, proceeding as in Ref. [60], among
the contributions to K̂ij we can distinguish the dominant
contribution, coming from the “dressed bubble”, from the
subdominant one, which is the sum over all the renormalized
diagrams with at least one interaction term. Thanks to the
irrelevance of the interaction, these subdominant diagrams
have a dimensional gain (of order 2h on scale h), which
makes the corresponding contribution to K̂ij (p) differentiable
at p = 0, in the limit mR → 0. In particular, they give zero
contribution to �.

The dominant contribution to K̂ij (p) (i.e., the dressed
bubble) is

K̂dom
ij (p) = −2

∫
dk

2π |B|Tr{Ŝ2(k)�̂i(k,p)

× Ŝ2(k + p)�̂j (k + p, − p)},
where �̂j is the vertex function defined in (17), and the
factor 2 in front of the integral takes into account the spin
degrees of freedom. Both Ŝ2(k) and �̂i(k,p) are given by
convergent renormalized series, which depend on the details
of the microscopic model.

The finite contribution to the jump discontinuity of
∂p0K̂12(0) across mR = 0 comes from the integration over k
in the vicinity of pω2

F , since the rest is continuous as mR → 0.
For the same reason, for the purpose of computing �, we
can replace �̂i(k,p) by �̂i(p

ω2
F ) = �̂i(p

ω2
F ,0), and Ŝ2(k) by its

linearization S̄(k′) at pω2
F ,

S̄(k′) =
(−ik0Z1,R + mR −vR(−ik′

1 + ω2k
′
2)

−vR(ik′
1 + ω2k

′
2) −ik0Z2,R − mR

)−1

,

(59)
where Zρ,R and vR are analytic functions of U , for U small,
whose expansions at second order in U are given explicitly
by (57) and (58). Recall that, a priori, �̂i(p

ω2
F ) are complicated

infinite series in U . Thus, a direct computation of the jump
discontinuity, starting from the expression of the dressed
bubble and from the Feynman rules for the generic term in
the renormalized expansions for Zρ,R , vR and �̂(pω

F ), would
be hopeless.

The key fact is that, thanks to the Ward identity (20),

�̂i

(
pω2

F

) = ∂k′
i
S̄−1(0), (60)

that is,

�̂1
(
pω2

F

) = −vRσ2, �̂2
(
pω2

F

) = −ω2vRσ1. (61)

Therefore,

� =
(

lim
mR→0+

− lim
mR→0−

) ∫
|�k′|�ε

d�k′

2π2

∫
R

dk0

2π

×Tr{S̄(k′)∂1S̄
−1(0)∂0S̄(k′)∂2S̄

−1(0)}, (62)
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where we used that A|B| = 4π2, and we denoted by ε a small,
arbitrary, positive constant. Using the identity

∂0S̄(k′)S̄−1(k′) = −S̄(k′)∂0S̄
−1(k′), (63)

and replacing S̄(k′)∂0S̄
−1(k′) by S̄(k′)∂0S̄

−1(0) (which is
allowed, for the purpose of computing �, simply because the
difference is continuous at mR = 0), we can further rewrite �

as

� = −
(

lim
mR→0+

− lim
mR→0−

) ∫
|�k′|�ε

d�k′

2π2

∫
R

dk0

2π

×Tr
{
S̄(k′)∂1S̄

−1(0)S̄(k′)∂0S̄
−1(0)S̄(k′)∂2S̄

−1(0)
}
.

The integral over k0 can be evaluated explicitly and, after a
straightforward computation, we get

� = ω2v
2
R

4π2

Z1,R + Z2,R

(Z1,RZ2,R)2
lim

mR→0+
mR

×
∫

|�k′|�ε

d�k′
[

m2
R

4

(
1

Z1,R

+ 1

Z2,R

)2

+ v2
R|�k′|2

Z1,RZ2,R

]−3/2

.

Thus, introducing

ṽR = vR√
Z1,RZ2,R

, m̃R = mR

Z1,R + Z2,R

Z1,RZ2,R

, (64)

we see that � can be rewritten as, performing the change of
variables ṽR

�k′ → �k′:

� = ω2

4π2
lim

m̃R→0+
m̃R

∫
|�k′|�εṽR

d�k′
[
m̃2

R

4
+ |�k′|2

]−3/2

= ω2

4π2
lim

m̃R→0+

∫
|�k′|�εṽR/m̃R

d�k′
[

1

4
+ |�k′|2

]−3/2

= ω2

π
, (65)

where we recall that the result is expressed in units such
that e2 = � = 1. Therefore, the cancellation between the
parameters vR , Z1,R , Z2,R gives a universal result. Finally,
at the graphene points, the analogous computation gives twice
the same value, because of an extra factor 2 coming from the
valley degeneracy.

B. Quantization of the longitudinal conductivity
on the critical line

A similar discussion as the one in the previous subsection
can be repeated for the longitudinal conductivity on the
renormalized critical line. The point here, as compared to the
computation of � in the previous subsection, is to take first
the limit mR → 0, and then p0 → 0+ [recall the definition of
conductivity, Eq. (18)]. Once again, we assume for definiteness
not to be exactly at the graphene point (a similar discussion
applies there, too).

Note that, by the very definition of current-current correla-
tions, K̂ii(p0,�0) is even in p0. Therefore, all the contributions to
K̂ii(p0,�0) that are differentiable in p0 give zero contribution to
the longitudinal conductivity on the critical line. By repeating a
strategy analogous to the one that led us to (62), for the purpose
of computing the longitudinal conductivity on the critical line,

we can: (i) replace the full current-current correlation by its
dominant contribution (from the dressed bubble); (ii) restrict
the integration over the loop momenta in the vicinity of pω2

F ;
(iii) linearize the propagators and vertex functions around pω2

F ;
and (iv) use the Ward identity Eq. (60) to replace the vertex
functions by the derivatives of the inverse two-point function.

After these replacements, we get (denoting the value of the
longitudinal conductivity on the critical line by σ cr

ii )

σ cr
ii = 2

A
lim

p0→0+

1

p0

∫
|�k′|�ε

d�k′

|B|
∫
R

dk0

2π

[
F (k′,p0) − F (k′,0)

]
,

with

F (k′,p0) = Tr
{
S̄0(k′)∂i S̄

−1
0 (0)S̄0(k0 + p0,�k′)∂i S̄

−1
0 (0)

}
= v2

RTr{S̄0(k′)σiS̄0(k0 + p0,�k′)σi}, (66)

where S̄0(k′) is the linearized propagator (59), computed at
mR = 0, and the last step follows from (60) and (61). By
evaluating the integral over k0 explicitly, and setting ṽR =
vR/

√
Z1,RZ2,R as in Eq. (64), the computation of σ cr

ii reduces
to the contribution of just one Dirac cone to the longitudinal
conductivity of noninteracting graphene [48,60], with Fermi
velocity ṽR . Thus, proceeding as in Ref. [60], we get, in units
such that e2 = � = 1:

σ cr
ii = 1

2π
lim

p0→0+

∫ ṽRε

0

p0

p2
0 + 4x2

dx = 1

8
. (67)

Notice that, as for graphene, the Fermi velocity (in general
a nontrivial function of the Hubbard interaction strength U )
disappears, thus yielding a universal result. The analogous
computation performed at the graphene points gives twice the
same value, in agreement with the result of Ref. [60].

V. CONCLUSIONS

We studied the Haldane-Hubbard model by rigorous renor-
malization group techniques. Our analysis predicts that the
critical lines separating the distinct topological phases are
modified nontrivially by the Hubbard interaction, in particular
that the nontrivial topological phase, characterized by the
topological quantum number ν = ±2, is enlarged by weak
repulsive interactions. Moreover, our results rule out the
presence of new interaction-induced topological phases in
the vicinity of the phase boundaries. Such predictions may
be verified experimentally in optical lattice realizations of the
system [24], where the on-site interaction can be produced and
tuned by means of Feshbach resonances. Concerning numeri-
cal simulations, our results agree with those of Refs. [38,39].

The interaction affects the relativistic structure of the
two-point function by nonuniversal renormalizatized coef-
ficients, which differ from those obtained by approximate
treatments of the system based on the effective Dirac theory.
In particular, we find that there are two different wave function
renormalizations, one for each pseudospin index. Despite the
nonuniversal renormalization of the two-point function and
of the vertex functions, lattice Ward identities guarantee the
quantization and the universality of the conductivity matrix at
the critical line. Concerning the transverse conductivity σ12,
its quantization follows from topological arguments; however,
these arguments do not provide any information regarding
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which values σ12 might take. For instance, numerical and
mean-field analyses predict that, at intermediate coupling
strengths, new topological phases might appear, corresponding
to the values σ12 = ±e2/h, which are not present in the
noninteracting theory. Our exact analysis rules out such new
phases at small coupling.

The second part of our result focuses on the critical
longitudinal conductivity σ cr

11 (away from criticality σ11 is
trivially zero). In contrast to σ12, this quantity is not protected
by any topological argument. Nevertheless, we show that it
is universal: all interaction and lattice corrections disappear.
Each Dirac cone contributes with a universal quantum of
conductivity (e2/h)(π/4); in particular, at the doubly critical
points where the two critical curves cross (see Fig. 1), the
critical longitudinal conductivity is (e2/h)(π/2), which is the
same value measured in graphene [47].

Our results require the interaction to be weak and short
range; instead, different features are expected in the presence
of long-range interactions. For instance, it is known that, at the
graphene point, long-range interactions have dramatic effects
on several physical properties [23,69], and their role on the
renormalization of the optical conductivity is still actively
debated [50–59]. We expect such effects to have profound
implications for the Haldane-Hubbard model, especially in
the proximity of the critical lines separating the different
topological phases. We plan to investigate this issue in future
work.
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APPENDIX A: PEIERLS’ SUBSTITUTION AND
THE BARE VERTEX FUNCTIONS

In order to define the current, we couple the electron
gas to an external vector potential �A, by multiplying the
hopping strength from �y to �x by an extra phase factor
ei(�y−�x)

∫ 1
0

�A((1−s)�x+s �y)ds (Peierls’ substitution). We denote by
H ( �A) the modified Hamiltonian, and let the (paramagnetic)
current be J �p,i = δH ( �A)/δÂ �p,i | �A=�0, where i = 1,2 label the
two (orthogonal) coordinate directions ê1 = (1,0) and ê2 =
(0,1). An explicit computation leads to (14), with �M(�k, �p) =
(

�M11(�k, �p) �M12(�k, �p)
�M21(�k, �p) �M22(�k, �p)

) and, defining ηx = (e−ix − 1)/(−ix),

�M11(�k, �p) = −it2

3∑
j=1

∑
α=±

α �γjηα �p· �γj
eiα(φ−�k· �γj ),

�M12(�k, �p) = −it1

3∑
j=1

�δjη �p·�δj
e−i�k(�δj −�δ1),

�M21(�k, �p) = − �M12(−�k − �p, �p) and �M22(�k, �p) = −e−i �p·�δ1

�M11(−�k, − �p).

APPENDIX B: DETAILS OF THE NUMERICAL
COMPUTATIONS

In this Appendix we discuss some of the details of the
numerical computations from which Figs. 1 and 2 were
produced. The program used to carry them out is available
online [70], has been named hhtop, and is released under an
Apache license. The source code includes a documentation
file, in which the computations are described in greater detail.

1. Integration scheme

The numerical computations carried out in this work involve
numerical evaluations of integrals. The algorithm that was used
to carry these out is based on Gauss-Legendre quadratures, by
which, given an integer N > 1, an integral is approximated by
a discrete sum with N terms:∫ 1

−1
dx f (x) =

N∑
i=1

wif (xi) + RN, (B1)

where x1 < · · · < xN are the roots of the N th Legendre
polynomial PN , and

wi := 2(
1 − x2

i

)
P ′

N (xi)
. (B2)

If f is an analytic function, then one can show that the
remainder RN decays exponentially in N . However, in order to
compute the difference of the wave-function renormalizations,
we need to compute the integral of an integrand that, instead of
being analytic, is a class-2 Gevrey function [a class-s Gevrey
function is a C∞ function whose nth derivative is bounded by
(const.)n(n!)s , so that analytic functions are class-1 Gevrey
functions]. The remainder RN can be shown to be bounded,
if f is a class-s Gevrey function with s � 1 and N is large
enough (independently of f and s), by

|RN | ≤ c0c
s−1
1 (2N )1− 1

s e−b(2N)
1
s
s! (B3)

for some c0,c1,b > 0, that only depend on f . For a proof
of this statement, see Lemma A3.1 in the documentation of
hhtop [70]. In short, this estimate is obtained by expanding
f in Chebyshev polynomials, and using a theorem of Curtis
and Rabinowitz [71] that shows that, if f is the j th Chebyshev
polynomial, then RN is bounded uniformly in j . The decay of
the coefficients of the Chebyshev expansion of class-s Gevrey
polynomials allows us to conclude.

2. First-order renormalization of the critical line

At first order in U , the correction F±,R(U,W,φ) appearing
in (1) is

F± = U

2

∫
B

d�k
|B|

m(�k)√
m2(�k) + t2

1 |�(�k)|2
. (B4)

There is a single, minor, pitfall in the numerical evaluation
of F±: we wish to use Gauss-Legendre quadratures (see
Appendix B 1) to carry out the computation, but the integrand
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in (B4) is not smooth: indeed, if W = ±3
√

3t2 sin φ, then its
second derivative diverges at �p±

F due to the divergence of the
derivative of

√·. However, by switching to polar coordinates
�k = p±

F + ρ(cos θ, sin θ ), this singularity is regularized, that
is, the integrand becomes a smooth function of ρ and θ . At this
point, there is yet another danger to avoid: while the integrand
is smooth, the upper bound of the integral over ρ is a function
of θ , which is, due to the rhombic shape of B, only smooth by
parts. The integral over θ must, therefore, be split into parts in
which the bounds of the integral over ρ are smooth. This can be
done very easily using the 2π

3 rotation symmetry. Once both of
these traps have been thwarted, Gauss-Legendre quadratures
yield very accurate results.

In order to compute the correction to the critical line, we
solve

W ± 3
√

3t2 sin φ − F±(φ,W ) = 0 (B5)

for W and φ. For the sake of clarity, we have made the (φ,W )
dependence of F± explicit. To solve (B5), we fix φ, and use a
Newton algorithm to compute the critical value of W : we set
W0 = ∓3

√
3t2 sin φ, and compute

Wn+1 = Wn − Wn ± 3
√

3t2 sin φ − F±(φ,Wn)

1 − ∂WF±(φ,Wn)
. (B6)

Provided W0 is not too far from the solution of (B5), Wn

converges quadratically [i.e., |Wn+1 − Wn| � (const.)|Wn −
Wn−1|2, in which the constant depends on the supremum of
∂2
WF±, which is bounded] to the solution of (B5).

3. Second-order wave function renormalization

At second order in U , Z1,R − Z2,R is

U 2(z1 − z2) = U 2i(∂k0s1|k0=0 − ∂k0s2|k0=0), (B7)

where

si :=
∫
B

d �pd �q
|B|2

∫ ∞

−∞

dp0dq0

(2π )2
ĝi,i(p)ĝi,i(q)ĝi,i

(
p + q − kω

F

)
.

(B8)
The computation is carried out on the critical line, that is,
when W = −ω3

√
3t2 sin φ. The integrals over p0 and q0 can

be carried out explicitly:

z1 − z2 =
∫
B

d �pd �q
|B|2

·
(

(ξp + ξq + ξF )
(mp

ξp
+ mq

ξq
− mF

ξF
− mpmqmF

ξpξqξF

)
Z

[Z2 − (ξp + ξq + ξF )2]2

)
,

(B9)

where, using the definitions of m(�k), R(�k), and �(�k) af-
ter (21) and after (26), mp ≡ m( �p), mq ≡ m(�q), mF ≡
m( �p + �q − �pω

F ), ξ (�k) :=
√

m(�k) + t2
1 |�(�k)|2, Z := R( �p) +

R(�q) − R( �p + �q − �pω
F ), and ξp ≡ ξ ( �p), ξq ≡ ξ (�q), ξF ≡

ξ ( �p + �q − �pω
F ).

The numerical evaluation of the integral in (B9) involves a
similar difficulty to that in (B4): the integrand has divergent
derivatives if any of the following conditions hold: �p =
�pω
F , �q = �pω

F , or �p + �q = 2 �pω
F . These singularities cannot

be regularized by changing �p and �q to polar coordinates,
since ξF is a singular function of the polar coordinates of
�p and �q (due to the fact that it behaves, asymptotically, as
�p − �q approaches 2 �pω

F , as | �p + �q − 2 �pω
F |, which has divergent

second derivatives). However, there are coordinates, which
we call sunrise coordinates (since si is the value of the
so-called sunrise Feynman diagram), which regularize these
singularities. Their expression is rather long, and will not
be expounded here; the interested reader is invited to consult
the documentation file bundled with the source code of hhtop
[70]. Once written in terms of the sunrise coordinates, the
integral in (B9) can be computed using Gauss-Legendre
quadratures very accurately.
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