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We extend the derivation of the time-dependent Hartree-Fock equation recently
obtained by Benedikter et al. [“Mean-field evolution of fermionic systems,”
Commun. Math. Phys. (to be published)] to fermions with a relativistic dispersion
law. The main new ingredient is the propagation of semiclassical commutator bounds
along the pseudo-relativistic Hartree-Fock evolution. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4863349]

I. INTRODUCTION

We are interested in the dynamics of a system of N fermions moving in three spatial dimensions
with a relativistic dispersion law. In units with � = c = 1, the evolution is governed by the Schrödinger
equation

i∂tψN ,t =
⎡⎣ N∑

j=1

√
−�x j + m2 + λ

N∑
i< j

V (xi − x j )

⎤⎦ψN ,t (1.1)

for the wave function ψN ,t ∈ L2
a(R3N ). In accordance with Pauli’s principle L2

a(R3N ) denotes the
subspace of L2(R3N ) consisting of all functions which are antisymmetric with respect to any
permutation of the N particles. The function V : R3 → R describes the two-body interaction among
the particles.

We are interested, in particular, in the mean-field limit, characterized by N � 1 and weak
interaction |λ| � 1, so that λN2/3 = 1 is fixed. For technical reasons, we also consider large masses
m, keeping mN− 1/3 = m0 fixed in the limit. Introducing the semiclassical parameter ε = N− 1/3, we
can then rewrite (1.1) as

iε∂tψN ,t =
⎡⎣ N∑

j=1

√
−ε2�x j + m2

0 + 1

N

N∑
i< j

V (xi − x j )

⎤⎦ψN ,t . (1.2)

From the physical point of view, it is important to understand the dynamics of initial data which can
be easily prepared in labs. Hence, it makes sense to study the evolution of initial data close to the
ground state of a Hamiltonian of the form

H trapped
N =

N∑
j=1

[√
−ε2�x j + m2

0 + Vext(x j )

]
+ 1

N

N∑
i< j

V (xi − x j ), (1.3)

where Vext : R3 → R is an external potential, trapping the particles in a volume of order one.
It is expected that the ground state of (1.3) can be approximated by the Slater determinant with
one-particle reduced density ωN minimizing the (relativistic) Hartree-Fock energy functional

EHF(ωN ) = tr

[√
−ε2� + m2

0 + Vext

]
ωN

+ 1

2N

∫
dxdy V (x − y)

(
ωN (x, x)ωN (y, y) − |ωN (x, y)|2) (1.4)
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among all orthogonal projections ωN on L2(R3) with tr ωN = N (recall that the reduced density of
an N-particle Slater determinant is such an orthogonal projection).

In Ref. 2, we considered the evolution of N non-relativistic fermions, governed by the
Schrödinger equation

iε∂tψN ,t =
⎡⎣ N∑

j=1

−ε2�x j

2m0
+ 1

N

N∑
i< j

V (xi − x j )

⎤⎦ψN ,t . (1.5)

In particular, we were interested in the evolution of initial data close to Slater determinants minimiz-
ing a non-relativistic Hartree-Fock energy (similar to (1.4), but with a non-relativistic dispersion law).
To this end, we argued that minimizers of the Hartree-Fock energy satisfy semiclassical commutator
estimates of the form

tr |[x, ωN ]| ≤ C Nε and tr |[ε∇, ωN ]| ≤ C Nε, (1.6)

where x denotes the position operator. More precisely, instead of assuming tr |[x, ωN ]| ≤ C Nε,
in Ref. 2 we only imposed the weaker condition tr |[eip·x , ωN ]| ≤ C N (1 + |p|)ε, for all p ∈ R.
In the present paper, however, we find it more convenient to work with the commutator [x, ωN].
Motivated by this observation, we assumed initial data to be close to Slater determinants with
reduced one-particle density satisfying (1.6). For such initial data, we proved that for sufficiently
regular interaction potential V the many-body evolution can be approximated by the time-dependent
non-relativistic Hartree-Fock equation:

iε∂tωN ,t =
[
−ε2�

2m0
+ (V ∗ ρt ) − Xt , ωN ,t

]
. (1.7)

Here ρ t(x) = N− 1ωN, t(x, x) is the density of particles close to x ∈ R3 and Xt is the exchange
operator, having the integral kernel Xt (x, y) = N−1V (x − y)ωN ,t (x, y). We remark that, prior to
Ref. 2, the convergence towards (1.7) was proven in Ref. 3 for analytic interactions and for short times
(while convergence towards the Vlasov evolution for mean field dynamics of fermionic systems was
established in Refs. 9 and 10).

In this paper we proceed analogously but for fermions with relativistic dispersion. Similarly as
in the non-relativistic case, the arguments presented in Ref. 2 and based on semiclassical analysis
suggest that (approximate) minimizers of the Hartree-Fock energy (1.4) satisfy the commutator
bounds (1.6). For this reason, we will consider the evolution (1.2) for initial data close to Slater
determinants, with reduced density ωN satisfying (1.6). For such initial data, we will show in
Theorem 2.1 below that the solution of the Schrödinger equation (1.2) stays close to a Slater
determinant with one-particle reduced density evolving according to the relativistic Hartree-Fock
equation

iε∂tωN ,t =
[√

−ε2� + m2
0 + (V ∗ ρt ) − Xt , ωN ,t

]
, (1.8)

where, like in (1.7), ρ t(x) = N− 1ωN, t(x, x) and Xt (x, y) = N−1V (x − y)ωN ,t (x, y).
For initial data minimizing the Hartree-Fock energy (1.4), the typical momentum of the particles

is of order ε − 1, meaning that the expectation of ε|∇| is typically of order one. Hence, for m0 � 1,
we can expand the relativistic dispersion as√

−ε2� + m2
0 = m0

√
1 − ε2�

m2
0

	 m0

(
1 − ε2�

2m2
0

)
= m0 + −ε2�

2m0
.

Since the constant m0 only produces a harmless phase, this implies that in the limit of large m0, one
can approximate the solutions of the relativistic Schrödinger equation (1.2) and of the relativistic
Hartree-Fock equation (1.8) by the solutions of the corresponding non-relativistic equations (1.5)
and, respectively, (1.7). For fixed m0 of order one, however, the relativistic dynamics cannot be
compared with the non-relativistic one.



021901-3 Benedikter, Porta, and Schlein J. Math. Phys. 55, 021901 (2014)

If we start from (1.1) and consider the limit of large N � 1 and weak interaction λN2/3 = 1
without scaling the mass m, we obtain a Schrödinger equation like (1.2), but with m0 replaced by
εm (recall that ε = N− 1/3). In the limit N � 1, this evolution can be compared with the massless
relativistic Schrödinger equation

iε∂tψN ,t =
⎡⎣ N∑

j=1

ε|∇x j | + 1

N

N∑
i< j

V (xi − x j )

⎤⎦ψN ,t . (1.9)

In this case, we expect the dynamics of initial data close to Slater determinants satisfying the
commutator estimates (1.6) to be approximated by the Hartree-Fock equation

iε∂tωN ,t =
[
ε|∇| + (V ∗ ρt ) − Xt , ωN ,t

]
. (1.10)

For technical reasons, we do not consider this case in the present work. Proving the convergence of
(1.9) towards (1.10) remains an interesting open problem.

II. MAIN RESULT AND SKETCH OF PROOF

To state our main theorem, we switch to a Fock space representation. We denote by

F =
⊕
n∈N

L2
a(R3n, dx1 . . . dxn)

the fermionic Fock space over L2(R3). For f ∈ L2(R3), we define creation and annihilation operators
a*(f) and a(f) satisfying canonical anticommutation relations{

a( f ), a∗(g)
} = 〈 f, g〉, {a( f ), a(g)} = {

a∗( f ), a∗(g)
} = 0

for all f, g ∈ L2(R3). We also use operator valued distributions a∗
x , ax , x ∈ R3. In terms of these

distributions, we define the Hamilton operator

HN =
∫

dx a∗
x

√
−ε2�x + m2

0 ax + 1

2N

∫
dxdy V (x − y)a∗

x a∗
yayax . (2.1)

We notice that HN commutes with the number of particles operator

N =
∫

dx a∗
x ax .

When restricted to the N-particle sector, HN agrees with the Hamiltonian generating the
evolution (1.2).

Let ωN be an orthogonal projection on L2(R3), with tr ωN = N . Then there are orthonormal
functions f1, . . . , fN ∈ L2(R3) with ωN = ∑N

j=1 | f j 〉〈 f j |. We complete f1, . . . , fN to an orthonormal
basis ( f j ) j∈N of L2(R3). We define a unitary map RωN on F . To this end, we denote by 	 = (1, 0,
. . . ) the Fock vacuum and we set

RωN 	 = a∗( f1) · · · a∗( fN )	, (2.2)

a Slater determinant with reduced density ωN. Moreover, we require that

R∗
ωN

a( fi )RωN =
{

a( fi ) if i > N

a∗( fi ) if i ≤ N .
(2.3)

The operator R∗
ωN

implements a fermionic Bogoliubov transformation on F . We consider the time
evolution of initial data of the form RωN ξN , for a ξN ∈ F with 〈ξN ,N ξN 〉 ≤ C uniformly in N (i. e.,
RωN ξN is close to the N-particle Slater determinant RωN 	).
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We are now ready to state our main theorem.

Theorem 2.1 Let V ∈ L1(R3) with∫
|V̂ (p)|(1 + |p|)2dp < ∞. (2.4)

Let ωN be a sequence of orthogonal projections on L2(R3) with tr ωN = N , satisfying the semi-
classical commutator bounds (1.6). Let ξN be a sequence in F with 〈ξN ,N ξN 〉 ≤ C uniformly in
N. We consider the time evolution

ψN ,t = e−iHN t/ε RωN ξN (2.5)

generated by the Hamiltonian (2.1), with ε = N− 1/3 and with a fixed m0 > 0. Here RωN denotes
the unitary implementor of a Bogoliubov transformation defined in (2.3) and (2.2). Let γ

(1)
N ,t be the

one-particle reduced density associated with ψN, t. Then there exist constants c, C > 0 such that

tr
∣∣∣γ (1)

N ,t − ωN ,t

∣∣∣2
≤ C exp(c exp(c|t |)), (2.6)

where ωN, t is the solution of the time-dependent Hartree-Fock equation (1.8) with initial data
ωN,t = 0 = ωN.

Remarks:

(i) The bound (2.6) should be compared with tr (γ (1)
N ,t )

2 and tr(ωN ,t )2, which are both of order
N. The N-dependence in (2.6) is optimal, since one can easily find a sequence ξN ∈ F with〈
ξN ,N ξN

〉 ≤ C such that γ
(1)
N ,0 − ωN ,0 = O(1) (for example, just take ξN = a*(fN + 1)	).

(ii) As in Ref. 2, under the additional assumptions that d�(ωN )ξN = 0 and
〈
ξN ,N 2ξN

〉 ≤ C for
all N ∈ N, we find the trace norm estimate

tr |γ (1)
N ,t − ωN ,t | ≤ C N 1/6 exp(c exp(c|t |)). (2.7)

(iii) We can also control the convergence of higher order reduced densities. If γ
(k)
N ,t denotes the

k-particles reduced density associated with (2.5), and if ω
(k)
N ,t is the antisymmetric tensor

product of k copies of the solution ωN,t of the Hartree-Fock equation (1.8), we find, similarly
to Theorem 2.2 of Ref. 2,

tr
∣∣∣γ (k)

N ,t − ω
(k)
N ,t

∣∣∣2
≤ C N k−1 exp(c exp(c|t |)). (2.8)

This should be compared with tr (γ (k)
N ,t )

2 and tr(ω(k)
N ,t )

2, which are of order Nk.
(iv) Just like in the non-relativistic model (Appendix A of Ref. 2) the exchange term [Xt, ωN,t]

in the Hartree-Fock equation (1.8) is of smaller order and can be neglected. The bounds
(2.6)–(2.8) remain true if we replace ωN, t with the solution of the Hartree equation

iε∂t ω̃N ,t =
[√

−ε2� + m2
0 + (V ∗ ρ̃t ), ω̃N ,t

]
(2.9)

with the density ρ̃t (x) = N−1ω̃N ,t (x, x).
(v) The relativistic Hartree-Fock equation (1.8) and the relativistic Hartree equation (2.9) still

depend on N through the semiclassical parameter ε = N− 1/3. As N → ∞, the Hartree-Fock and
the Hartree dynamics can be approximated by the relativistic Vlasov evolution. If WN ,t (x, v)
denotes the Wigner transform of the solution ωN, t of (1.8) (or, analogously, of the solution
ω̃N ,t of (2.9)), we expect that in an appropriate sense WN ,t → W∞,t as N → ∞, where W∞,t

satisfies the relativistic Vlasov equation

∂t W∞,t + v√
v2 + m2

0

· ∇x W∞,t − ∇vW∞,t · ∇ (
V ∗ ρ∞,t

) = 0,

where ρ∞,t (x) = ∫
dv W∞,t (x, v). In fact, the convergence of the relativistic Hartree evolution

towards the relativistic Vlasov dynamics has been shown in Ref. 1 for particles interacting
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through a Coulomb potential. In this case, however, a rigorous mathematical understanding
of the relation with many-body quantum dynamics is still missing (because of the regularity
assumption (2.4), Theorem 2.1 does not cover the Coulomb interaction). In view of applica-
tions to the dynamics of gravitating fermionic stars (such as white dwarfs and neutron stars)
and the related phenomenon of gravitational collapse studied in Refs. 7 and 5, this is an
interesting and important open problem (at the level of the ground state energy, this problem
has been solved in Ref. 6). Notice that the corresponding questions for bosonic stars have
been addressed in Refs. 4 and 8.

Next, we explain the strategy of the proof of Theorem 2.1, which is based on the proof of
Theorem 2.1 in Ref. 2. In fact, the main body of the proof can be taken over from Ref. 2 with-
out significant changes. There is, however, one important ingredient of the analysis of Ref. 2
which requires non-trivial modifications, namely, the propagation of the commutator bounds (1.6)
along the solution of the Hartree-Fock equation (1.8). We will discuss this part of the proof of
Theorem 2.1 separately in Sec. III.

Sketch of the proof of Theorem 2.1. We introduce the vector ξN ,t ∈ F describing the fluctuations
around the Slater determinant with reduced density ωN,t given by the solution of the Hartree-Fock
equation (1.8) by requiring that

ψN ,t = e−iHN t/ε RωN ξN =: RωN ,t ξN ,t .

This gives ξN,t = UN(t; 0)ξN, with the fluctuation dynamics

UN (t ; s) = R∗
ωN ,t

e−iHN t/ε RωN ,s .

Notice that UN(t; s) is a two-parameter group of unitary transformations. The problem of proving
that ψN,t is close to the Slater determinant RωN ,t 	 reduces to showing that the expectation of the
number of particles in ξN,t stays of order one, i. e., small compared to the N particles in the Slater
determinant. In fact, it is easy to check (see Sec. IV of Ref. 2) the bound for the Hilbert-Schmidt
norm:

‖γ (1)
N ,t − ωN ,t‖HS ≤ C〈ξN ,t ,N ξN ,t 〉 = C〈ξN , U ∗

N (t ; 0)NUN (t ; 0)ξN 〉 . (2.10)

To bound the growth of the expectation of the number of particles with respect to the fluctuation
dynamics UN(t; s) we use Gronwall’s lemma. Differentiating the expectation on the rhs of (2.10)
with respect to time gives (see Proof of Proposition 3.3 of Ref. 2)

iε
d

dt
〈ξN , U ∗

N (t ; 0)NUN (t ; 0)ξN 〉

= 〈ξN , U ∗
N (t ; 0)R∗

ωN ,t

(
d�(iε∂tωN ,t ) − [HN , d�(ωN ,t )]

)
RωN ,t UN (t ; 0)ξN 〉,

where d�(J) is the second quantization of the one-particle operator J, its action on the n-particle
sector being given by d�(J )|L2

a (R3n ) = ∑n
i=1 J (i), where J(i) denotes the operator acting as J on the

ith particle and as the identity on the other (n − 1) particles. There are important cancellations
between the two terms in the parenthesis. In particular, since[∫

dx a∗
x

√
−ε2� + m2

0 ax , d�(ωN ,t )

]
=

[
d�

(√
−ε2� + m2

0

)
, d�(ωN ,t )

]
= d�

([√
−ε2� + m2

0 , ωN ,t

])
,
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the contribution of the kinetic energy cancels exactly. The remaining terms are then identical to those
found in the non-relativistic case. Hence, analogously to Proposition 3.3 of Ref. 2, we conclude that

iε
d

dt
〈ξN , U ∗

N (t ; 0)NUN (t ; 0)ξN 〉

= −4i

N
Im

∫
dxdy V (x − y)

{〈UN (t ; 0)ξN , a∗(ut,x )a(ut,x )a(vt,y)a(ut,y)UN (t ; 0)ξN 〉

+ 〈UN (t ; 0)ξN , a∗(vt,x )a(vt,x )a(vt,y)a(ut,y)UN (t ; 0)ξN 〉
+ 〈UN (t ; 0)ξN , a(vt,x )a(ut,x )a(vt,y)a(ut,y)UN (t ; 0)ξN 〉},

(2.11)

where the functions ut,x and vt,x are defined by

R∗
ωN ,t

ax RωN ,t = a(ut,x ) + a∗(vt,x ).

It is easy to express ut,x (which is actually a distribution) and vt,x (a L2-function) in terms of ωN,t;
see, for example, Eq. (2.27) of Ref. 2 (but notice that here we have replaced v with v). Notice that
in Proposition 3.3 of Ref. 2, we also considered the expectation of higher moments of N . This can
be done in the relativistic setting as well, and is needed to prove the trace-norm bound (2.7).

Proceeding as in the proof of Lemma 3.5 of Ref. 2, we can bound the terms on the r h s of (2.11)
to show that ∣∣∣iε d

dt
〈ξN , U ∗

N (t ; 0)(N + 1)UN (t ; 0)ξN 〉
∣∣∣

≤ C N−1 sup
p∈R3

tr |[eip·x , ωN ,t ]|
1 + |p| 〈ξN , U ∗

N (t ; 0)(N + 1)UN (t ; 0)ξN 〉. (2.12)

Using the integral representation

[eip·x , ωN ,t ] =
∫ 1

0
ds eisp·x [i p · x, ωN ,t ] ei(1−s)p·x ,

we conclude that

sup
p∈R3

tr |[eip·x , ωN ,t ]|
1 + |p| ≤ tr |[x, ωN ,t ]|. (2.13)

Hence, (2.12) implies the bound (2.6) in Theorem 2.1, if we can show that there exist constants C, c
> 0 with

tr |[x, ωN ,t ]| ≤ C Nε exp(c|t |) (2.14)

for all t ∈ R. We show (2.14) in Proposition 3.1 below. �
III. PROPAGATION OF THE SEMICLASSICAL STRUCTURE

The goal of this section is to show the estimate (2.14), which is needed in the proof of Theorem
2.1. To this end, we use the assumption (1.6) on the initial data, and we propagate the commutator
estimates along the Hartree-Fock evolution. This is the genuinely new part of the present paper,
where the ideas of Ref. 2 need to be adapted to the relativistic dispersion of the particles.

Proposition 3.1 Let V ∈ L1(R3) with∫
|V̂ (p)|(1 + |p|)2dp < ∞. (3.1)

Let ωN be a trace-class operator on L2(R3) with 0 ≤ ωN ≤ 1 and tr ωN = N , satisfying the
commutator estimates (1.6). Denote by ωN,t the solution of the Hartree-Fock equation (1.8) (with
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ε = N− 1/3) with initial data ωN,0 = ωN. Then there exist constants C, c > 0 such that

tr |[x, ωN ,t ]| ≤ C Nε exp(c|t |) and

tr |[ε∇, ωN ,t ]| ≤ C Nε exp(c|t |)
for all t ∈ R.

Proof. We define the Hartree-Fock Hamiltonian

h(t) :=
√

−ε2� + m2
0 + (V ∗ ρt ) − Xt ,

where ρ t(x) = N− 1ωN, t(x, x) and Xt is the exchange operator defined by the integral kernel Xt (x, y)
= N−1V (x − y)ωN ,t (x, y) (note that ρ t and Xt depend on the solution ωN, t of the Hartree-Fock
equation (1.8)). Then ωN, t satisfies the equation

iε∂tωN ,t = [h(t), ωN ,t ]. (3.2)

Using the Jacobi identity, we obtain

iε∂t [x, ωN ,t ] = [x, [h(t), ωN ,t ]]

= [h(t), [x, ωN ,t ]] +
[
ωN ,t ,

[√
−ε2� + m2

0 , x

]]
− [ωN ,t , [Xt , x]]. (3.3)

We can eliminate the first term on the rhs of the last equation by conjugating [x, ωN, t] with the
two-parameter group W (t ; s) generated by the self-adjoint operators h(t), satisfying

iε∂t W (t, s) = h(t)W (t, s) with W (s, s) = 1 for all s ∈ R. (3.4)

In fact, we have

iε∂t W ∗(t ; 0)[x, ωN ,t ]W (t ; 0)

= W ∗(t ; 0)
([

ωN ,t ,
[√

−ε2� + m2
0 , x

]]
− [ωN ,t , [Xt , x]]

)
W (t ; 0),

and therefore,

W ∗(t, 0)[x, ωN ,t ]W (t, 0)

= [x, ωN ,0] + 1

iε

∫ t

0

d

ds

(
W ∗(s, 0)[x, ωN ,s]W (s, 0)

)
ds

= [x, ωN ,0] + 1

iε

∫ t

0
W ∗(s, 0)

([
ωN ,t ,

[√
−ε2� + m2

0, x
]]

− [ωN ,t , [Xt , x]]
)

W (s, 0) ds.

This implies that

tr |[x, ωN ,t ]| ≤ tr |[x, ωN ,0]| + 1

ε

∫ t

0
ds tr

∣∣∣[ωN ,s,
[√

−ε2� + m2
0, x

]]∣∣∣ (3.5)

+ 1

ε

∫ t

0
ds tr |[ωN ,s, [Xs, x]]|. (3.6)

To control the term (3.6) we observe that

Xs = 1

N

∫
dq V̂ (q) eiq·xωN ,se−iq·x , (3.7)
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where x denotes the operator of multiplication by x. Since ‖ωN, s‖ ≤ 1 (because of the assumption 0
≤ ωN, s ≤ 1, in accordance with Pauli’s principle), we find

tr |[ωN ,s, [Xs, x]]| ≤ 1

N

∫
dq |V̂ (q)| tr |[ωN ,s, [eiq·xωN ,se−iq·x , x]]|

≤ 2

N

∫
dq |V̂ (q)| tr |[eiq·xωN ,se−iq·x , x]|

= 2

N

∫
dq |V̂ (q)| tr |eiq·x [ωN ,s, x]e−iq·x | ≤ 2‖V̂ ‖1

N
tr |[ωN ,s, x]|.

(3.8)

To control (3.5) we notice that[√
−ε2� + m2

0 , x
]

= −ε
ε∇√

−ε2� + m2
0

.

Hence,

[
ωN ,s,

[√
−ε2� + m2

0, x
]]

= −ε[ωN ,s, ε∇]
1√

−ε2� + m2
0

− ε2∇
⎡⎣ωN ,s,

1√
−ε2� + m2

0

⎤⎦ ,

and thus,

tr
∣∣∣[ωN ,s,

[√
−ε2� + m2

0, x
]]∣∣∣ ≤ εm−1

0 tr |[ε∇, ωN ,s]| + ε tr

∣∣∣∣∣∣ ε∇
⎡⎣ωN ,s,

1√
−ε2� + m2

0

⎤⎦∣∣∣∣∣∣ .
(3.9)

Here we used the estimate ‖(−ε2� + m2
0)−1/2‖ ≤ m−1

0 . To bound the second term on the rhs we will
use the integral representation

1√
A

= 1

π

∫ ∞

0

dλ√
λ

(A + λ)−1 (3.10)

and the identity

[(A + λ)−1, B] = (A + λ)−1[B, A](A + λ)−1

for A > 0, B self-adjoint operators. Now consider the jth component (j ∈ {1, 2, 3}) of the operator
whose trace norm we have to estimate:

tr
∣∣∣ ε∂ j

⎡⎣ωN ,s,
1√

−ε2� + m2
0

⎤⎦ ∣∣∣
≤ 1

π

∫ ∞

0

dλ√
λ

tr

∣∣∣∣ε∂ j
1

−ε2� + m2
0 + λ

[ωN ,s, ε
2�]

1

−ε2� + m2
0 + λ

∣∣∣∣
≤ 1

π

3∑
k=1

∫ ∞

0

dλ√
λ

∥∥∥∥ −ε2∂ j∂k

−ε2� + m2
0 + λ

∥∥∥∥ tr |[ωN ,s, ε∂k]|
∥∥∥∥ 1

−ε2� + m2
0 + λ

∥∥∥∥
+ 1

π

3∑
k=1

∫ ∞

0

dλ√
λ

∥∥∥∥ −iε∂ j

(−iε∇)2 + m2
0 + λ

∥∥∥∥ tr |[ωN ,s, ε∂k]|
∥∥∥∥ −iε∂k

(−iε∇)2 + m2
0 + λ

∥∥∥∥ .

Using the bounds ‖(−ε2� + m2
0 + λ)−1‖ ≤ (m2

0 + λ)−1,∥∥∥∥ −iε∂k

−ε2� + m2
0 + λ

∥∥∥∥ ≤ 1√
m2

0 + λ

and

∥∥∥∥ −ε2∂k∂ j

−ε2� + m2
0 + λ

∥∥∥∥ ≤ 1,
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all of which can be easily proved in Fourier space, we conclude that

tr

∣∣∣∣∣∣ ε∂ j

⎡⎣ωN ,s,
1√

−ε2� + m2
0

⎤⎦∣∣∣∣∣∣ ≤ C tr |[ε∇, ωN ,s]|
∫ ∞

0

dλ√
λ

1

λ + m2
0

≤ Cm−1
0 tr |[ε∇, ωN ,s]|.

Inserting this estimate in (3.9), we obtain

tr
∣∣∣[ωN ,s,

[√
−ε2� + m2

0, x
]]∣∣∣ ≤ Cεm−1

0 tr |[ε∇, ωN ,s]|.
Plugging this bound and (3.8) into (3.5) and (3.6), we arrive at

tr |[x, ωN ,t ]| ≤ tr |[x, ωN ,0]| + Cm−1
0

∫ t

0
ds tr |[ε∇, ωN ,s]| + C N−2/3

∫ t

0
ds tr |[x, ωN ,s]|. (3.11)

Next, we bound the growth of the commutator [ε∇, ωN,t]. Since the kinetic energy commutes
with the observable ε∇, we can proceed here as in the non-relativistic case considered in Ref. 2. For
completeness, we reproduce the short argument. Differentiating with respect to time and applying
Jacobi identity, we find

iε
d

dt
[ε∇, ωN ,t ] =[ε∇, [h(t), ωN ,t ]]

=[h(t), [ε∇, ωN ,t ]] + [ωN ,t , [h(t), �∇]]

=[h(t), [ε∇, ωN ,t ]] + [ωN ,t , [V ∗ ρt , ε∇]] − [ωN ,t , [Xt , ε∇]] .

As before, the first term on the rhs can be eliminated by conjugation with the unitary maps W (t ; 0)
defined in (3.4). Thus, we find

tr |[ε∇, ωN ,t ]| ≤ tr |[ε∇, ωN ,0]|

+1

ε

∫ t

0
ds tr |[ωN ,s, [V ∗ ρs, ε∇]]| + 1

ε

∫ t

0
ds tr |[ωN ,s, [Xs, ε∇]]|. (3.12)

The second term on the rhs of the last equation can be controlled by

tr |[ωN ,s, [V ∗ ρs, ε∇]]| = ε tr |[ωN ,s,∇(V ∗ ρs)]|

≤ ε

∫
dq |V̂ (q)||q||ρ̂s(q)| tr |[ωN ,s, eiq·x ]|

≤ ε

(∫
dq |V̂ (q)|(1 + |q|)2

)
sup

q

1

1 + |q| tr |[ωN ,s, eiq·x ]|

≤ Cε tr |[x, ωN ,s]|,
where we used the bound ‖ρ̂s‖∞ ≤ ‖ρs‖1 = 1, the estimate (2.13) and the assumption (3.1) on the
interaction potential. As for the last term on the rhs of (3.12), we note that, writing the exchange
operator as in (3.7),

tr
∣∣[ωN ,s, [Xs, ε∇]]

∣∣ ≤ 1

N

∫
dq |V̂ (q)| tr

∣∣[ωN ,s, [eiq·xωN ,se−iq·x , ε∇]]
∣∣

≤ 2

N

∫
dq |V̂ (q)| tr |[eiq·xωN ,se−iq·x , ε∇]|

≤ 2‖V̂ ‖1

N
tr |[ωN ,s, ε∇]|.

In the last inequality we used that

[eiq·xωN ,se−iq·x , ε∇] = eiq·x [ωN ,s, ε(∇ + iq)]e−iq·x = eiq·x [ωN ,s, ε∇]e−iq·x .
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From (3.12), we conclude that

tr |[ε∇, ωN ,t ]| ≤ tr |[ε∇, ωN ,0]| + C
∫ t

0
ds tr |[x, ωN ,s]| + C N−2/3

∫ t

0
ds tr |[ε∇, ωN ,s]|.

Summing up the last equation with (3.11), using the conditions (1.6) on the initial data and applying
Gronwall’s lemma, we find constants C, c > 0 such that

tr |[x, ωN ,t ]| ≤ C Nε exp(c|t |) and

tr |[ε∇, ωN ,t ] ≤ C Nε exp(c|t |).
�
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