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Theory of chiral edge state lasing in a two-dimensional topological system
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We theoretically study topological laser operation in a bosonic Harper-Hofstadter model featuring a saturable
optical gain. Crucial consequences of the chirality of the lasing edge modes are highlighted, such as a sharp
dependence of the lasing threshold on the geometrical shape of the amplifying region and the possibility of
ultraslow relaxation times and of convectively unstable regimes. The different unstable regimes are characterized
in terms of spatiotemporal structures sustained by noise and a strong amplification of a propagating probe beam is
anticipated to occur in between the convective and the absolute (lasing) thresholds. The robustness of topological
laser operation against static disorder is assessed.
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I. INTRODUCTION

Starting with the pioneering observation of topologically
protected chiral edge modes around a time-reversal-breaking
two-dimensional photonic crystal [1,2], the last decade has
witnessed the explosion of the field of topological photonics.
Taking inspiration from condensed matter physics concepts
such as topological insulators and quantum Hall effects, new
exciting optical effects were found, which are paving the way
to technological applications [3,4].

So far, experiments have mostly addressed single-particle
topological features, which are observable via the linear op-
tical properties of the system: besides direct evidences of the
topological order such as chiral edge states in different ge-
ometries, platforms, and spectral regions [2,5–9], remarkable
results were the measurement of the band Berry curvature
[10], the observation of magnetic Landau levels [11], of
topological pumping [12], of anomalous Floquet edge states
[13,14], of synthetic dimensions [15–18]. Beyond linear op-
tics, a great attention is nowadays devoted to the rich interplay
between optical nonlinearities and topology: nonlinearity-
driven topological phase transitions [19] and self-localized
states [20] were anticipated for classical light, while the
strongly correlated quantum Hall states of light predicted for
ultrastrong nonlinearities [5,21,22] are being actively investi-
gated in circuit-QED systems [23] and in atomic gases in a
Rydberg-EIT configuration [24].

One of the most promising applications of topological
photonics concerns laser operation in topological systems
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displaying optical gain, the so-called topological lasing. As
a first step, lasing into the zero-dimensional edge states of
a one-dimensional Su-Schrieffer-Heeger (SSH) chain was
proposed [25,26] and experimentally demonstrated [27–29].
Soon afterwards, lasing into the one-dimensional chiral edge
states of a two-dimensional topological lattice was experi-
mentally realized in suitably designed semiconductor laser
devices [30,31]. Such topological lasers appear promising to
solve a long-standing technological problem in optoelectron-
ics, namely, the realization of large-area devices offering high-
power coherent emission [32]: a pioneering theoretical work
[33] has in fact pointed out that the topological protection
against fabrication defects should make laser operation into
topological edge states to remain single mode and to have
a high slope efficiency even well above the laser threshold.
This optimistic view was somehow questioned in Ref. [34]
for the specific case of semiconductor-based devices: using a
standard model of laser operation in these systems, dynamical
instabilities stemming from the combination of nonlinear
frequency shifts and of the slow carrier relaxation time were
predicted.

The purpose of this paper is to build a generic theory
of topological laser operation. Going beyond the pioneering
works [33–35], we identify a number of peculiar effects that
directly stem from the chirality of the lasing mode and thus
differentiate topological lasers from standard lasers. Keeping
the complexity of the model at a minimum level, our attention
will be focused on those general effects that play a central
role in different realizations of topological laser devices. Such
an analysis will provide a powerful conceptual framework in
view of future studies of the complex nonlinear physics of
specific realizations of topological laser devices and, on the
longer run, will be a useful starting point to understand the
fundamental quantum limits of topological laser operation.

The structure of the paper is the following. In Sec. II,
we review the basics of the Harper-Hofstadter model and
we introduce our theoretical description of gain and losses.
In Sec. III, we briefly review the chaotic behavior in the
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presence of a spatially uniform gain. In Sec. IV, we discuss
how restricting gain to the edge of the lattice allows to obtain
a single-mode laser emission that is robust against disorder.
The peculiar features that stem from the chiral nature of the
lasing mode are highlighted, as well as the limitations they
are expected to impose on the laser performance. In Sec. V,
we investigate the effect of restricting gain to a finite strip
of sites along one edge. For this geometry, the finite group
velocity of the chiral edge mode turns out to be responsible
for a marked distinction between convective and absolute in-
stabilities, which is characterized in terms of noise-sustained
structures and traveling wave amplification. Conclusions are
finally drawn in Sec. VI.

II. THE MODEL

Since we are interested in the generic topological features,
we will concentrate on an archetypal topological model,
namely, the bosonic Harper-Hofstadter (HH) model [3]. Mod-
ulo the extra pseudospin degree of freedom associated to
the propagation direction around the ring cavities [5,36], this
model underlies the topological laser operation of Ref. [31].
In the Landau gauge, the HH Hamiltonian reads [37]

H =
∑
m,n

{
ω0a†

m,nam,n − J
(
a†

m,nam+1,n

+ e−i2πϑma†
m,nam,n+1 + H.c.

)}
, (1)

where the sum runs over all lattice sites, ω0 is the natural
frequency of the microrings, and am,n is the photon field
amplitude at the site (m, n). In the chosen gauge, the hopping
amplitude along the x direction is real and constant and equal
to J , while hopping along y involves an x-dependent phase.
The strength of the synthetic magnetic field is quantified
by the flux ϑ per plaquette in units of the magnetic flux
quantum. For rational ϑ = p/q, the bulk eigenstates distribute
in q bands characterized by nonvanishing topological Chern
numbers. As a result, spatially finite lattices display chiral
edge states unidirectionally propagating around the system
and localized in the energy gaps between the bands. In what
follows we will focus on the simple ϑ = 1/4 case, whose
dispersion of band and edge states in a cylindrical geometry is
sketched in Fig. 1(a). Since the lowest and highest bands have
a nonvanishing Chern number |C| = 1, for each of the main
energy gaps a single edge state is present on each edge of the
system.

Within the semiclassical theory of lasing for a broad-
band gain medium [38], losses and gain can be included as
additional terms in the time evolution of the classical field
amplitudes am,n [33,40],

ȧm,n(t ) = −i[am,n, H] +
(

Pm,n

1 + β|am,n|2 − γ

)
am,n, (2)

where the first term on the right-hand side gives the usual
equations of the motion of the conservative HH model. Here
γ accounts for the intrinsic resonator losses, Pm,n determines
the spatial profile of the gain, and β sets the gain saturation
level. In our calculations, we start from an initial state with a
small Gaussian noise and numerically simulate the evolution
(2) until its steady state.

FIG. 1. Energy bands of the conservative Harper-Hofstadter
Hamiltonian (1) with flux ϑ = 1/4 in a lattice of Nx = 399 sites
along x and periodic boundary conditions along y. Blue vs red color
scale quantifies localization on the left or right edges. The horizontal
black and orange lines indicate the WEG and PEG lasing frequencies
shown in Fig. 3(c).

III. WHOLE SYSTEM GAIN (WSG)

We start our discussion by reviewing the case of a spatially
uniform Pm,n = P gain. Figure 2(a) shows how the lasing
threshold remains very close to the single-resonator (SR)
value P0 � γ analytically extracted from (2), the slope effi-
ciency dIT /dP is only slightly lower than the single-resonator
value, and the laser emission is spread throughout the whole
system. However, due to complex mode-competition effects,
the intensity distribution is very inhomogeneous in space
[Fig. 2(b)] and no monochromatically oscillating steady state
is ever reached. This strong spatiotemporal modulation per-
sists indefinitely (see video 1 in Ref. [39]) and is due to
the simultaneous lasing into many modes that interfere and
interact with each other via the intrinsic nonlinearity of the
model. Such chaotic behaviours are very common in laser
arrays unless some specific stabilization scheme is introduced
[32,41–43]. As one can see in video 1 in Ref. [39], while
the chaotic dynamics of the bulk does not appear to display
any specific signature of the nontrivial topology, the intensity
distribution on the edge keeps circulating around the system.

FIG. 2. Topological lasing in a 25 × 25 HH lattice with a flux
ϑ = 1/4 per plaquette. (Left) Total intensity IT = ∑

m,n |am,n|2 nor-
malized to the number of amplifying sites vs gain strength for
different configurations: single resonator (SR), whole system gain
(WSG), and whole edge gain (WEG). (Right) Snapshot of the typical
intensity distribution at an arbitrarily chosen time t = 1000γ −1 in
a WSG configuration. If not differently specified, we have taken
β = 1.
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FIG. 3. Topological lasing in a 25 × 25 HH lattice with ϑ =
1/4 in a one-site-thick WEG configuration. (a) Snapshot of
the steady-state intensity distribution. The green rectangle indi-
cates the amplifying sites. (b) Cuts of the intensity distribu-
tion along the x = 1 line at times (from top to bottom) γ t =
43.85, 51.65, 59.45, 67.20, 75.00. (c) Normalized realization-
averaged power spectral density (PSD). The dashed lines indicate the
center of mass of the distribution. For comparison, the orange arrows
indicate the lasing frequency for a 1 × 15 PEG. The gray shading
indicates the density of states of the bands in Fig. 1(a).

IV. WHOLE EDGE GAIN (WEG)

A natural strategy to favor laser emission in the topological
edge states is to restrict the gain to the sites on the geomet-
rical border of the system, as experimentally implemented
in Ref. [31].1 Figure 3(a) recovers the predictions of earlier
theoretical work [33] and displays a stable monochromatic
single mode oscillation in a topological edge mode of the
system.2 The slope efficiency [i.e., the slope of the blue curve
in Fig. 2(a) right above the threshold] is very close to the
single-site one and the slightly increased threshold P̃0 � P0

is due to the weak but finite penetration of the edge mode into
the nonamplifying bulk sites. Given the broadband gain used
in the calculations, the oscillation frequency occurs with the
same probability in either gap of the band structure [Fig. 3(c)]:
as expected from the band structure shown in Fig. 1, the lasing

1Note that topological lasing in Ref. [30] was operated under a
WSG. The physical reason why bulk mode lasing was suppressed
in this experiment is presently under investigation.

2Note that the dynamical instabilities anticipated in Ref. [34] were
due to specific features of semiconductor lasers, in particular to
the presence of a slow carrier reservoir that induces site-dependent
nonlinear frequency shifts. They are absent in our simple model of
lasing. A theoretical study of the stability of edge state lasing will be
the subject of a future work.

mode will have opposite chirality depending on which edge
mode is selected.

A. Consequences of the chirality of the lasing mode

This general picture of topological lasing [32,33] is the
starting point to investigate the subtle physical consequences
of the chirality of the lasing modes that are the core subject of
this paper.

As a first result, Fig. 3(c) shows that the lasing frequency is
randomly chosen among a number of available modes located
around the gap centers. Since the penetration of the edge
mode in the bulk is minimum at the center of the energy
gap, lasing will preferentially occur in this frequency region
that maximises the overlap with the amplifying sites and
thus the effective gain. As it happens in ring lasers, edge
modes are discretized according to a round-trip quantization
condition around the perimeter of the system. This gives a
frequency spacing �ω � 2π vg/L, where vg is the edge mode
group velocity and L is the perimeter. The approximately
equal spacing of the modes is due to the weak curvature of
the edge mode band that is visible in Fig. 1. Even though
the mode spacing can be very small in large lattices, once
a lasing mode has been selected, the single-mode emission
remains stable for indefinite times in the absence of noise.
The overall width of the distribution is determined by the
k-dependent spatial overlap of edge modes with the gain re-
gion, which introduces an effective frequency dependence of
the gain.

As an even more remarkable feature, Fig. 3(b) displays a
series of longitudinal cuts of the intensity profile along the
x = 1 left edge for different times separated by an (approx-
imate) round-trip time Trt = L/vg. The intensity modulation
due to the initially noisy state relaxes away on a much
slower timescale than all other microscopic scales, includ-
ing Trt . As an illustrative example, video 2 [39] shows an
intensity bump traveling in the clockwise direction around
the system and slowly fading away. This ultraslow relax-
ation rate is a consequence of the Goldstone theorem which
imposes (at least) a k2 behavior for the imaginary part of
the complex frequency of the long-wavelength collective
modes corresponding to spatially slow fluctuations of the laser
emission [44,45].

B. Robustness to disorder

To complete the picture, it is important to briefly investi-
gate the robustness of these features against static disorder.
Some first remarks on the effect of disorder were reported in
Ref. [33].

The most straightforward way of including disorder in
our model is to introduce a random frequency shift of the
natural frequencies of the cavities. In Fig. 4, we take the
on-site disorder U to have a Gaussian distribution with
standard deviation σ (U ). A specific realization of disorder
is displayed in panel (g) for the σ (U )/J = 0.1 case. The
disorder used in the cases σ (U )/J = 0.4 and 1.2 is obtained
by simply rescaling this distribution. In addition to this “non-
magnetic” disorder that is common to all systems, note that
microring-based implementations like the one in Ref. [31]
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FIG. 4. [(a)–(c)] Normalized spatially integrated power spectral density (PSD) in the WEG configuration without disorder (a) and with a
disorder strength equal to σ (U )/J = 0.4 (b) and to σ (U )/J = 1.2 (c). The PSD for a single random realization of lasing is displayed in green,
while the average over multiple realizations [5000 in (a) and 2500 in (b) and (c)] is shown in blue. The shaded areas indicate the density of
states of the bands in the absence of disorder and the central band region has been cut out for visualization convenience. [(d)–(f)] Snapshots
of the typical intensity distribution at an arbitrarily chosen late time t = 500γ −1 for the same values of disorder as in (a)–(c). (g) Realization
of the disorder used (upon rescaling) for all other simulations in the figure. Colors indicate the frequency shift of the different sites for a
disorder strength σ (U )/J = 0.1. (h) normalized emitted intensity as a function of gain strength for a single resonator (blue dashed line), for
the nondisordered case (solid red line) and for a few disordered cases with σ (U )/J = 0.4 (solid yellow line) and σ (U )/J = 0.4 (violet line).

can also host another source of disorder, called “magnetic”
disorder since it couples the two pseudospin states [33,36].
A study of this latter disorder goes beyond the scope of
our work.

Thanks to the topological protection of the edge mode and
its ability to circumnavigate impurities and defects, the inten-
sity distribution for a WEG configuration remains spatially lo-
calized on the edge up to large values of the disorder strength
comparable to the bandgap [panels (d)–(f)]. As one can see by
comparing the different curves in panel (h), moderate values
of disorder only slightly increase the lasing threshold, while
the slope efficiency is almost unaffected. The unidirectional
chiral motion of the lasing edge mode guarantees an efficient
phase locking of the emission at different points along the
edge and the laser operation remains firmly single mode
[green lines in panels (a) and (b)].

Only when the disorder gets comparable to the energy
band gap, the laser emission breaks into several indepen-
dently lasing regions and the emission acquires a multi-
mode and multifrequency character, as shown in the intensity
distribution in panel (f) and in the spectrum in panel (c).
Correspondingly, one can see in panel (h) that the sharp
threshold transforms into a smooth, progressive switch-on.
As compared to the WSG case, the spatial separation of the
different lasing modes makes the temporal fluctuations of the
intensity profile less apparent than in Fig. 2 and movie 1 in
Ref. [39].

The blue lines in panels (a)–(c) show a statistical analysis
of the emission frequency over many realization of laser

operation with the same realization of the Gaussian disorder.3

As long as the disorder is moderate and the lasing mode keeps
extending around the whole system, the discretization of the
modes is preserved [blue lines in panels (a) and (b)]. For
stronger disorder, when many modes are simultaneously and
independently lasing, the emission spectrum for a single real-
ization matches the averaged one, so the distinction between
the green and the blue curve is no longer visible in panel (c).

V. PARTIAL EDGE GAIN (PEG)

Since the ultraslow relaxation of long-wavelength fluctua-
tions discussed in the previous Section is likely to compromise
the coherence of the emission against quantum noise [46], it is
interesting to explore a configuration where gain is restricted
to a 1 × N finite strip of sites along an edge. A related
geometry was experimentally considered in Ref. [31].

In this case, a dramatically faster relaxation can be an-
ticipated since any perturbation is rapidly expelled by the
chiral motion into the surrounding nonamplified edge region.
Furthermore, while in the WEG configuration the round-
trip quantization around the system perimeter gives a topo-
logically protected winding number [47] characterizing the

3The study of a single disordered realization is physically more
meaningful, in this case, than averaging over multiple disorder real-
izations; it models a specific sample that has a single and immutable
disordered configuration.
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FIG. 5. (a) Steady-state intensity distribution for a 1 × 15 PEG in
a large 11 × 51 lattice. The green rectangle indicates the amplifying
sites. (b) Lasing threshold for 1 × N PEG with different J/γ =
20, 10 (solid lines). Lasing threshold for a one-site-thick WEG case
(dashed line). [(c)–(e)] Cuts of the intensity distribution along the
x = 1 line for different PEG geometries (see legends). The shaded
area indicates the amplifying sites. The different curves in (c) and
(d) refer to the steady state for different gain strengths P/P0 = 4
(solid blue) and P/P0 = 2 (dotted, light blue; to facilitate reading,
these curves have been rescaled to have the same maximum as the
solid blue ones); the different curves in (e) refer to different times
separated by 0.05γ −1.

lasing mode as in standard ring lasers, in the present PEG
configuration the lasing region is an open segment, for which
no topologically protected winding number exists; as a result,
the spatial profile of the lasing mode is able to continuously
relax towards its optimal shape.

A. Spatial structure of the lasing mode

This expected behavior is confirmed in Fig. 5. A steady
state with a stable monochromatic oscillation is indeed
quickly reached on a microscopic timescale. For moderate
values of N [panels (c) and (d)], all the emission is efficiently
funneled into one of the two modes with opposite chiralities,
randomly chosen at each realization. Given their relatively
large frequency separation of order J , one can anticipate

that in practice one of them will be privileged by the small
frequency-dependence of the gain.4

The selected chirality reflects in the spatial asymmetry
of the intensity profile within the amplifying region. This
asymmetry is clearly visible on the dotted light-blue lines in
panels (c) and (d) as a growing intensity along the positive-y
chiral propagation direction. This asymmetry is still visible
but less marked on the solid blue lines calculated for a higher
gain far above the threshold, for which the light intensity
displays within the amplifying region a faster growth towards
the saturated value. Irrespectively of the gain strength, the
chirality of the lasing edge mode is also apparent in the
significant amount of light emission from the nonamplifying
edge sites located just downstream of the amplifying region,
while the ones located in upstream direction remain dark.
In Figs. 5(c) and 5(d), this corresponds to a much more
pronounced tail of the intensity distribution on the right-hand
side of the amplifying region marked in yellow.

The situation is very different for large values of N . In this
case, mode competition is not able to isolate a single mode
and lasing simultaneously occurs in modes of both chiralities,
[panel (e)]. Nonetheless, local gain saturation effects are still
able to keep the two chiralities almost spatially separated with
a net outward flow (red arrows). The fringes that are visible
in the central region arise from interference of the two lasing
modes and oscillate at their frequency separation of the order
of J .

B. Convective versus absolute instability

Additional intriguing features of the PEG case are found
in the dependence of the lasing threshold on the strip length
N plotted in Fig. 5(b). As expected the threshold decreases
for growing N , but a numerical fit of the form aN−b + c
(solid lines) clearly shows that the large-N limit remains
significantly higher than the WEG threshold (dashed line).

An explanation for this remarkable finding is offered by
the distinction between convective and absolute instabilities, a
well-known phenomenon in the theory of nonlinear dynamical
systems and in hydrodynamics [48,49]. The absolute insta-
bility (AI) corresponds to the standard dynamical instability
of the zero-field state above a threshold Pabs. The convective
instability (CI) is instead a weaker form of instability that is
found whenever the exponential growth of a perturbation for
P > P̃0 is overcompensated by its quick motion at vg: in this
CI regime, even though the peak amplitude of the moving
perturbation grows in time, its local value at any given spatial
location quickly decreases back to zero. When the amplifying
region is spatially finite as in our PEG case, any perturbation
immediately disappears upon entering the external lossy re-
gion. This distinction between CI and AI explains why the
laser instability is only observed above the higher AI threshold
Pabs > P̃0 � P0. This phenomenon cannot occur in the WEG

4Note that the pseudospin degree of freedom in Ref. [31] allows for
more complex field configurations where modes of both chiralities
are excited even in a monochromatic steady state. As discussed there,
more complex ring resonators are then required to select a specific
chirality.
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FIG. 6. Spatiotemporal intensity patterns on the left border of a 11 × 51 lattice with a 1 × 21 amplified strip located at the center of the
left side and indicated in all panels by the dashed white lines. In the first row, there is a noisy seed only at t = 0, while on the third one there
is noise at all times. In the second row, there is no noise, but there is a Gaussian pulse at frequency ω/J = 1.9 localized on the central site
and centered in time at t = 15, with standard deviation σt = 0.3. All the times are measured in units of γ −1. For homogeneity, in the AI case,
we restricted to realization of lasing into the clockwise propagating topological mode localized on the left edge. In this figure, β = 0.01 was
taken.

case where the closed shape of the amplifying region does not
allow the perturbation to escape from it.5

Further evidences of the role of the convective instability
in the PEG configuration are offered by the dependence of the
lasing operation on the group velocity vg. As we have seen
in the previous section, a lasing frequency next to the gap
centers [Fig. 3(c)] is chosen in the WEG case so to maximize
the spatial overlap with gain. In the PEG case, instead, the lo-
cation of the absolute threshold Pabs is dominantly controlled
by vg, so the AI is first reached by edge modes located next
to the outer edge of the gaps (orange arrows) for which vg

is lower. A more subtle feature is visible in Fig. 5(b). On
one hand, the WEG threshold (dashed line) stays constant at
P̃0 � P0 when J/γ (and thus vg) is increased. On the other
hand, the PEG threshold at Pabs monotonically grows when J
and consequently vg are increased (squares versus circles).

C. Noise-sustained structures

A typical way to characterize the convective versus ab-
solute nature of a dynamical instability in generic nonlinear
dynamical systems is to study the intensity distribution in the

5The transition between WEG to PEG occurs when the length of
the nonpumped interval largely exceeds the absorption length along
a (nonpumped) edge.

presence of some external noise and look for the so-called
noise-sustained structures (NSS) [48,49,51,52].

Generic quantum optical systems are unavoidably subject
to quantum noise due to the discreteness of the light quanta.
An easy way to include the effects of the quantum noise
is to switch to the Wigner representation [53–56] and write
stochastic differential equations for the classical complex
variables am,n corresponding to the quantum field amplitudes
âm,n. In the absence of extra noise sources, noise can be
approximated by its expression in the linear gain regime,
where it amounts to an additional stochastic term in (2):

ȧm,n(t ) = . . . −
√

γ

(
1 + Pm,n

P

)
ξm,n(t ). (3)

Here the dots . . . summarize the RHS of (2) and ξm,n(t ) are
independent, zero-mean normally distributed complex white
noises of variance 1.

Examples of simulations of noise-sustained structures in
the topological laser PEG configuration are shown in Fig. 6.
We go through the different instability regimes by varying the
pump power P, namely, P/P0 = 0.9 for the absolutely stable
(AS) regime, P/P0 = 1.5 for the CI regime and P/P0 = 1.8
for the AI regime. As shown in Fig. 5(b) for the considered
J/γ = 10 and N = 21 case, the thresholds are at P/P0 = 1.13
for the AS to CI transition and at P/P0 = 1.56 for the CI to AI
transition.
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The spatiotemporal patterns in Fig. 6 are calculated in three
different cases, namely with a weak initial noisy seed (top
row); with a coherent pulse incident on the system at a given
time (central row); with a continuous white noise active during
the whole evolution according to Eq. (3) (bottom row).

In the CI regime without noise [panel (b)], the initial
noisy seed gets quickly amplified in the amplifying region
but is simultaneously advected away with group velocity vg.
Locally, the system then quickly returns to the equilibrium
zero-field state. In the presence of continuous noise [panel
(h)], the spatiotemporal pattern clearly shows so-called noise-
sustained structures (NSS) [48,49]. These consist of high
intensity stripes that keep appearing at random times and get
amplified while being advected away at ±vg (depending on
which topological gap they are spectrally located in). As a
result, the intensity is continuously fluctuating at all points,
but its average and variance are strongest on the edge of
the amplifying region. Of course the field shows no long-
time phase coherence. A short coherent pump pulse whose
spectrum overlaps one of the two topological edge modes (the
upwards propagating one in the figure) injects a wave packet
that gets quickly amplified while it propagates along the edge
at vg with a minor spatial broadening [panel (e)]. Once the
wave packet reaches the edge of the amplified region, it starts
decaying.

These are the typical features of systems located in a
convective instability regime and accurately match the ones
displayed by other optical systems in the same regime [51,52].
For the sake of completeness, it is interesting to compare these
behaviours to the ones in the absolute stability and in the
absolute instability regimes.

In absence of noise [panels (a)–(c)], the initial perturbation
gets quickly damped in the AS regime, while it is exponen-
tially amplified into a self-supporting lasing mode in the AI
regime. In this latter case, the chirality of the lasing mode
is randomly selected depending on the initial condition. In
the shown case, the system starts lasing in both chiralities,
but eventually one of them (the upwards propagating one in
the figure) dominates and ends up completely suppressing the
other one.

We now replace the initial noisy perturbation with a short
Gaussian pulse spectrally overlapping with the upwards prop-
agating chiral edge mode. In the AS regime, we observe
that the pulse propagates at vg but is quickly damped during
propagation [panel (d)]. In the AI regime, instead, the injected
pulse has the time to expand across the whole amplified
region before being advected away, so that it can eventually
transform into a self-supporting lasing mode [panel (f)]. In
this case, the chirality of the lasing mode is fixed from the
beginning by the one of the incident pulse.

In the presence of noise at all times, the stripe-shaped
intensity fluctuations that are visible in the amplifying region
have different properties in the AS regime [panel (g)] as com-
pared to the one discussed above for the CI regime [panel (h)].
Since decay now dominates over amplification, the intensity is
now roughly uniform across the whole amplified region and
is no longer peaked on the edges. Still, both chiralities are
randomly selected during the evolution.

In the AI regime, the behavior in the presence of a contin-
uous noise [panel (i)] is very similar to the other two cases

[panels (c) and (f)]. As in (c), the chirality of the lasing mode
is randomly selected. The main difference with (c) and (f)
is that the noise accelerates the onset of lasing; furthermore,
weak intensity fluctuations are visible on top of the lasing
mode at all times and propagate in the same direction.

D. Robustness to disorder

In order to assess the robustness of lasing to disorder, we
now consider a PEG configuration with a 1 × 15 strip of
amplifying sites on the left border of a 11 × 51 lattice and
we add the typical Gaussian disorder configuration shown
in Fig. 7(g). Snapshots of the spatial intensity distribution
of the emission at a late time t = 500γ −1 are shown in
panels (d)–(f) for different values of the overall disorder
strength. These plots suggest that the disorder strength which
is needed to spoil the single mode nature of the topological
laser emission is roughly 1/3 of what was needed in the WEG
configuration discussed above. This relative fragility is due
to proximity (visible in Fig. 1) of the lasing frequency to the
bulk bands: a weaker disorder is sufficient to mix the edge
mode with the bulk bands and thus break the edge state into
independently lasing regions as shown in panel (f). Further
light on this physics can be obtained from the power spectral
densities shown in panels (a)–(c). In contrast to the WEG
case, no visible difference is found between the spectra for
single realizations of lasing and the averaged ones. As already
mentioned for the disorder-free case, this is due to the open
boundaries of the amplifying region, which allow for a smooth
adjustment of the lasing mode to the optimal gain. As long
as the disorder remains moderate, we have a monochromatic
and single mode emission. For the strong disorder strength
case considered in panel (c), the spatial breaking into several
independent lasing mode visible in panel (f) reflects in the
multimode character of the emission, which also involves
frequencies located within the bands.

E. Amplification of a propagating probe

As a final characterization of the CI regime, Fig. 8 il-
lustrates the possibility of an efficient traveling-wave ampli-
fication [50]. We consider a system of 11 × 25 sites with
amplification restricted to a 1 × 7 vertical strip in the middle
of the left border (sites 10 to 16). The chiral transmission of a
coherent probe through the gain region is studied using a pair
of input and output waveguides coupled to the neighboring
sites 8 and 18 on the same border. The transmission is calcu-
lated by solving the temporal evolution until the steady state
is reached. As usual in input-output theory [57], new terms
must be added to the time evolution equations for the input
and output sites,

ȧin(t ) = . . . − γin

2
ain − √

γinE0e−iωt , (4)

ȧout (t ) = . . . − γout

2
aout, (5)

where the dots . . . summarize the RHS of (2), the incident
field has amplitude E0 and frequency ω, and γin,out account
for the extra radiative losses into the waveguides. The trans-
mittivity (Fig. 3) is obtained from the transmitted field Eout =√

γoutaout as T = |Eout/E0|2: below the lasing threshold
Pabs, the full numerical calculations (triangles) are perfectly
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FIG. 7. [(a)–(c)] Normalized spatially integrated power spectral densities for different values of the disorder strength σ (U )/J = 0 (a), 0.2
(b), and 0.5 (c); the shaded areas indicate the density of states of the bands in the absence of disorder. [(d)–(f)] Snapshots of the intensity
distribution at a late time t = 500γ −1 for the same configurations of (a)–(c). (g) Frequency shift of the different sites for a disorder strength
σ (U )/J = 0.1; upon a suitable rescaling, this realization of the disorder is used in all panels. Same geometry with a 1 × 15 amplifying strip in
a 11 × 51 lattice as in Fig. 5(a).

recovered by a simpler linearized calculation based on the
Green’s function approach for a weak probe (red lines) dis-
cussed in the SM of Ref. [36] and extended to the quantum
level in Ref. [50]. Above the threshold, nonlinear effects dom-
inate and the linearized calculations are no longer reliable.

Panel (a) shows the transmission spectrum for gain values
in the CI region P̃0 < P < Pabs. For P < P0, gain is not able to
overcome losses: the net absorption of all sites combined with
the impedance mismatch at the input and output waveguides
conspire to give a very low transmission. As P grows above
P̃0, net amplification sets in, giving a broad transmission peak.
As P further grows towards Pabs, the transmittivity grows far
above 1 in a narrow frequency range and eventually diverges
at the lasing frequency as the absolute threshold is approached
(P → P−

abs). Panel (b) shows the peak transmittivity as a

FIG. 8. (a) Incident-frequency-dependent transmission spectrum
for a 1 × 7 PEG and different gain strengths (from bottom to top)
P/P0 = 2.04, 2.05, 2.06, 2.07, 2.08, 2.085, 2.09 approaching the
lasing threshold. (b) Peak transmittivity as a function of gain strength
for incident amplitude E0/

√
J = 10−7 (upwards triangles) or 10−8

(downwards triangles). Red lines indicate the result of the linearized
calculation based on the input-output formalism of [36,50].

function of gain strength for two values of the probe intensity.
Well below the laser threshold, the two curves coincide as the
system behaves in a linear way. Around and above threshold,
instead, nonlinear gain saturation sets in, limiting the effective
amplification and thus distinguishing the two curves. Well
above the laser threshold, the field intensity is fixed by the
self-oscillation process independently of the probe, so the
transmittivity is inversely proportional to |E0|2.

VI. CONCLUSIONS

In this paper, we have reported a theoretical study of a
topological laser device based on a bosonic Harper-Hofstadter
lattice model with optical gain. Striking consequences of the
chirality of the lasing mode have been highlighted: when gain
is distributed around the whole edge, lasing can occur in a
number of closely spaced modes and relaxation towards the
steady-state occurs on a very slow timescale; when gain is
restricted to a finite strip, relaxation is fast but the distinc-
tion between convective and absolute instabilities causes an
increase of the threshold and introduces new amplification
regimes. To complete the picture, we have quantitatively
assessed the impact of disorder on topological lasing and
highlighted the stronger robustness of the WEG configuration.
Finally, in analogy to other convectively unstable systems,
we have illustrated the qualitative shape of the structures that
appear in the presence of noise.

Future steps include the extension of our theory to specific
models of the amplifying medium displaying a nontrivial
carrier dynamics and a frequency-dependent gain, the devel-
opment of a general theory of the collective excitations on
top of a topological laser emission, and the construction of
a quantum theory of topological lasing including quantum
fluctuations. These will be crucial steps towards a complete
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understanding of the ultimate limits to the performance of
topological laser devices.
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