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The effective average action is a form of effective action which depends on a cutoff scale suppressing the
contribution of low momentum modes in the functional integral. It reduces to the ordinary effective action
when the cutoff scale goes to zero. We derive the modifications of the scale Ward identity due to this cutoff
and show how the resulting identity then intimately relates the trace anomaly to the Wilsonian realization of
the renormalization group.
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I. INTRODUCTION

A theory that is scale invariant at the classical level is in
general no longer scale invariant at the quantum level. The
breaking of scale invariance is known as the trace anomaly.
It has two causes. On the one hand, a nonflat external
metric leads to contributions proportional to integrals of
curvatures of the metric [1,2]. On the other hand, there is a
part proportional to the beta functions of the theory [3–6].
The first type of contribution occurs even for a free field
theory, while the second type of contribution appears even
in flat space. In this paper we will be concerned almost
exclusively with this last situation.
A scale transformation is a change of all lengths by a

constant factor. One can interpret this either as a rescaling
of the coordinates, or as a rescaling of the metric (see the
Appendix). Even though we will not deal with gravity in
this paper, we choose the latter interpretation. For simplic-
ity we will deal mostly with a single scalar field ϕ. The
infinitesimal transformation of the fields is then

δϵgμν ¼ 2ϵgμν

δϵϕ ¼ ϵdϕϕ; ð1:1Þ

where dϕ ¼ − d−2
2

is the canonical length dimension of ϕ in
d spacetime dimensions. We work in Euclidean signature
where the energy-momentum tensor is defined by

Tμν ¼ −
2ffiffiffi
g

p δS
δgμν

: ð1:2Þ

In concordance with the quantum action principle [7],
under a scale transformation the operator −δϵS is inserted
into correlation functions, where S is the bare action. If
couplings in the theory are dimensionful, already at the
classical level there will be a breaking of scale invariance
through this contribution. We are interested in the case that
the theory is scale invariant at the classical level, so we will
have dimensionless couplings only. For the theory of a
single scalar field in d ¼ 4 spacetime dimensions, that
means the interaction potential will just be

VðϕÞ ¼ λ

4!
ϕ4; ð1:3Þ

where λ is the dimensionless coupling. When everything is
written in renormalized terms, the result is then the
insertion of the renormalized operator

ϵ

Z
x
Tμ

μ ¼ ϵβ

Z
x

1

4!
ϕ4; ð1:4Þ

where β ¼ μ∂μλðμÞ is the renormalization group (RG) beta
function and we denote

R
x ¼

R
ddx

ffiffiffi
g

p
the integration over

spacetime. In particular, for the Legendre effective action
(EA) (“0-point function”)

δϵΓ ¼ −AðϵÞ; ð1:5Þ

whereAðϵÞ is the expectation value of (1.4) in the presence
of sources, and is called the “trace anomaly.”1 Equation (1.4)
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1This anomaly is present also in curved space, as demonstrated
for a spherical background in [8] and (using the background field
method) on an arbitrary background in [9,10].
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then shows that the anomaly vanishes, and scale invariance
is realized also in the quantum theory, at a fixed point.
Evidently (1.4) follows only if the breaking of scale

invariance is solely due to the running at the quantum level
of the dimensionless coupling λ, rather than any other mass
scale introduced into the theory. It therefore depends upon
details of the regularization and renormalization procedure.
For example in dimensional regularization, scale invariance
is broken by the fact that the bare coupling λ0 is dimen-
sionful outside four dimensions, where it is rewritten as
μd−4 times a series in the renormalized coupling λ and
1=ðd − 4Þ. This results only in the term (1.4). With a
momentum cutoff or other physical (dimensionful) regu-
lator, one encounters a quadratic divergence and the
renormalized mass (defined as the second derivative of
the potential at zero field) then becomes an arbitrary
parameter. This would give rise to additional terms propor-
tional to

R
x ϕ

2 in the rhs of (1.4), with a scheme-dependent
coefficient.2 Among all these renormalized theories one can
look for the one with the least breaking of scale invariance:
this is the “critical” theory where the renormalized mass is
exactly zero. Still, as we shall discuss in Sec. II, scale
invariance is broken by exactly the same anomaly (1.4) as
in dimensional regularization. This is a physical effect that
cannot be removed by renormalization or improvements to
the bare action. Scale invariance is present at the classical
level, but at the quantum level it is broken by an irreducible
amount. We may say that the critical theory “almost”
realizes scale invariance at the quantum level.
To see what (1.4) implies in the critical theory, we note

that inserting 1
4!

R
x ϕ

4 is achieved by differentiating with
respect to λ. Recalling the extra sign in e−Γ, we should
therefore expect in general,

AðϵÞ ¼ ϵβðλÞ∂λΓ: ð1:6Þ

The signs in (1.5) and (1.6) can be understood when we
recall that scale transformations (1.1) increase length scales
for positive ϵ, and thus decrease mass scales, i.e., associate
−ϵ with unit positive mass dimension, as we see from (1.1).
In other words, we can think of δϵ as generating a flow
towards the infrared.
It is an old idea that mass scales in nature may be of

quantum mechanical origin, as is indeed true to a large
extent in QCD. For a scalar theory this is related to the
Coleman-Weinberg potential [11]. This idea has seen a
revival in recent years [12–15], see also [16–20] for similar
ideas in a cosmological and gravitational context. In this
paper we will explore the implications of classical scale

invariance in the context of the effective average action
(EAA) Γk, which is a version of the EA supplied with an
infrared cutoff k, and reducing to the EA when k → 0
[21,22]. Our main result is the following: when the classical
action is scale invariant, in addition to the RG flow for the
EAA, there is a Ward identity (WI) for scale transforma-
tions which takes the form

δϵΓk ¼ −AðϵÞ þ ϵ∂tΓk; ð1:7Þ

where the second term represents the RG flow due to k
(t ¼ log k). In the rest of the paper we demonstrate in detail,
using momentum cutoffs, how this anomaly arises and how
it reduces to (1.5) in the limit k → 0. There is partial
overlap with the earlier work of [23], who also considered
the effect of the Wilsonian cutoff on scale transformations,
but did not take into account the UV contributions to the
anomaly, because they were not relevant to their problem.
The paper is organized as follows. In Sec. II we discuss

the trace anomaly in the context of theories with momen-
tum cutoffs: either UV, or IR or both. In Sec. III we derive
the WI (1.7) and recall how in some circumstances it can be
applied to gain information on the EA. Section IV deals
with the form of the anomaly and the EAA in approximate
treatment. We consider the one-loop approximation and
other popular approximations such as the derivative expan-
sion or the vertex expansion. Section V is devoted specifi-
cally to the derivation of (1.5) from (1.7) in the limit k → 0.
In Sec. VI we briefly discuss the realization of quantum
scale invariance at fixed points and in Sec. VII we make
some connections to other ideas in the literature and point
to some possible developments.

II. UV CUTOFF AND THE TRACE ANOMALY

In order to develop some intuition for the workings of the
anomaly when using momentum cutoff as regularization, it
will be helpful to start from a perturbative treatment based
on standard diagrammatic methods. We will consider the
effect of both UVand IR cutoffs. If we work to one loop we
can write the bare action as

S½ϕ� ¼
Z
x

�
1

2
ð∂μϕÞ2 þ VðϕÞ

�
; ð2:1Þ

for some potential VðϕÞ. Expanding the one-loop EA, we
can write

Γ½ϕ� ¼ S½ϕ� þ
X∞
n¼1

Vn½ϕ�; ð2:2Þ

where ϕ denotes here, by a slight abuse of language, the
classical vacuum expectation value (VEV) of the corre-
sponding quantum field,

2We call this an anomaly because the classical action is
invariant whereas the quantum action is not. In the literature it
is more standard to call anomaly only the breaking of a symmetry
that cannot be fixed by a local counterterm, as is the case for the
term (1.4).

TIM R. MORRIS and ROBERTO PERCACCI PHYS. REV. D 99, 105007 (2019)

105007-2



Vn½ϕ� ¼ −
1

2

ð−1Þn
n

Tr

�
1

−∂2
V 00

�
n
; ð2:3Þ

and we have thrown away the field independent part. This is
a sum over the Feynman diagrams as indicated in Fig. 1.
One finds

Vn½ϕ� ¼ −
ð−1Þn
2n

Z
pi;…;pn

V 00ðp1Þ � � �V 00ðpnÞð2πÞd

× δðp1 þ � � � þ pnÞAðp1;…; pnÞ: ð2:4Þ

The unconstrained momentum integral for each diagram
takes the form

Aðp1;…;pnÞ¼
Z
q

1

q2ðqþP1Þ2ðqþP2Þ2 � � � ðqþPn−1Þ2
;

ð2:5Þ

where Pj ¼
Pj

i¼1 pj (Pn ¼ 0 being enforced by the
momentum conserving δ-function) are partial sums of
the external momenta injected into the diagram by

V 00ðpiÞ ¼
Z
x
V 00ðϕðxÞÞeipi·x; ð2:6Þ

and in the integrals over momenta we include the usual
factor of ð2πÞ−d. The integrals (2.5) are infrared finite
provided we choose nonexceptional external momenta, i.e.,
provided that

P
k
i¼jpi≠0 for all 1≤ j< k≤ n.3 Furthermore

for n > 2, these Feynman diagrams are ultraviolet finite.
For a field ϕðpÞ with some suitable smooth behavior in
momentum space, we can therefore define these n > 2
contributions rigorously. Thus provided that the limiting
behavior of Aðp1;…; pnÞ as momenta become exceptional,
is still integrable when the complete vertex is considered,
the Vn>2½ϕ� are well defined.

Working in four dimensions, the insertions (2.6) have
mass dimension −2. Taking into account all the other parts
in (2.4), it is straightforward to verify that the Vn½ϕ� are
dimensionless, as they must be to be part of Γ. If further we
use the potential (1.3), then no dimensionful coupling is
included. Since the n > 2 contributions do not need
regularization, it follows that they are scale invariant,
i.e., vanish under the operation δϵ.
It will be helpful to show this in detail however, since we

will then need to break the invariance with a cutoff. Recall
that the scale variation is actually being carried by the fields
and the metric, as in Eq. (1.1). Our metric is currently flat:
gμν ¼ δμν, but its inverse is present in ∂2 ¼ gμν∂μ∂ν, which
means that its eigenvalues transform as

δϵq2 ¼ −2ϵq2: ð2:7Þ

Since we should thus regard momentum as having a
lower index, p · x does not contain the metric, and therefore
the Fourier transform (2.6) transforms as δϵV 00ðpiÞ ¼
2ϵV 00ðpiÞ, thanks to the implicit

ffiffiffi
g

p
included in the integral

over x and the two fields included when we use the
ϕ4 vertex (1.3). Note that the same

ffiffiffi
g

p
implies that

δðp1þ���þpnÞ transforms with a factor of 4ϵ. Therefore
we see that integrals over momentum must transform as

δϵ

Z
q
¼ −4ϵ

Z
q
; ð2:8Þ

to be consistent with δðqÞ. Putting all this together we
see that Aðp1;…; pnÞ transforms with a ð2n − 4Þϵ factor,
and thus the well-defined vertices Vn½ϕ� transform with
a ð−4nþ 2nþ 4þ 2n − 4Þ ¼ 0 factor [where the contri-
butions from (2.4) are listed in order], i.e., are indeed
invariant.
This is not true however of the n ≤ 2 contributions.

We do not consider the case of V0, which only yields a
field-independent contribution. For the vertex V1½ϕ�, the
Feynman integral is quadratically divergent:

A ¼
Z
q

1

q2
: ð2:9Þ

If we use a scale-free regularization such as dimensional
regularization, then by dimensions the only possible answer
is A ¼ 0. For a physical regulator such as a UV momentum
cutoff q ≤ Λ, the result is a Λ2 divergence that we have to
remove by a local counterterm. It may seem that by putting
such a mass counterterm in the bare action we are actually
defeating our purpose of starting with a scale-invariant
classical theory. However, one must recall that the counter-
term, like the loop correction, is of order ℏ, so that in the
classical limit the bare action is indeed scale invariant.
Since the counterterm is arbitrary, the renormalized mass is
also arbitrary. As discussed in the Introduction, there is a

FIG. 1. Feynman diagrams contributing to the effective action.

3In the case that this is violated we have in the denominator (at
least) one ðqþ PjÞ4 term which is (at least) logarithmically IR
divergent.
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special theory that preserves scale invariance as much as
possible. This corresponds to choosing the counterterm to
be equal and opposite to the integral (2.9), so that scale
invariance is restored for V1½ϕ�, in this case by setting it
to zero.
Let us now come to the case n ¼ 2. The integral over q,

Aðp1;−p1Þ ¼
Z
q

1

q2ðqþ p1Þ2
; ð2:10Þ

is ultraviolet divergent and thus not well defined.
As above, we will simply cut off the integral at jqj ¼ Λ

for large Λ. Now the action of δϵ on (2.10) picks up the
boundary contribution

ðþϵΛÞ 2Λ3

ð4πÞ2
1

Λ4
: ð2:11Þ

To see this, note first that formally the ϵ contributions cancel,
in the sameway that they did rigorously for the n > 2 cases.
The sole contribution thus comes from the boundary. Write
the q integral as an integral over angles and over the radial
direction jqj. By (2.7) we are instructed to replace jqj with
ð1 − ϵÞjqj wherever we see it. But that implies that the
ultraviolet boundary to the integral is now at ð1 − ϵÞjqj ¼ Λ,
or what is the same: jqj ¼ Λð1þ ϵÞ. The first factor in (2.11)
is this extra contribution from the boundary, and the other
factors are from the integrand as a function of jqj, in
particular the second factor is the volume of the 3-sphere
at jqj ¼ Λ divided by ð2πÞ4, and the final factor is the
contribution from the integrand at the boundary (where since
jp1j ≪ Λ we can neglect p1). Together with the λ2=4 from
the two insertions (2.6), and the −1=4 from (2.4), this gives

δϵΓ ¼ −ϵ
Z
x

λ2

128π2
ϕ4; ð2:12Þ

which agrees with (1.5) and (1.6), once we recall that to one
loop, the β function is

β ¼ 3λ2

16π2
: ð2:13Þ

Just as with V1, since (2.10) is UV divergent, we need to
modify the bare action. Adding to it the counterterm

þ
Z
x

λ2

128π2
log

�
Λ
μ

�
ϕ4; ð2:14Þ

where μ is the usual arbitrary finite reference scale, ensures
that overall the result is finite. Note however that under the
global scale transformation (1.1), the counterterm is invari-
ant. Thus the renormalized contribution still breaks scale
invariance with the same result, namely (2.12).
On the other hand, now that the total contribution to the

EA is finite, the breaking can be understood in a different
way. The scale Λ has disappeared, but scale invariance is
still broken, because of the appearance of the scale μ. To see
that (1.4) emerges again, we note that by dimensions the

amplitude (2.10) is proportional to logðp2
1=μÞ. In fact, the

finite part of V2 is

þ
Z
x

λ2

256π2
ϕ2 log

�
−∂2

μ2

�
ϕ2; ð2:15Þ

up to a local, scale invariant ϕ4 term which can be absorbed
by the renormalization scheme. By (2.7), δϵ clearly gives
again minus the β-function times the ϕ4 operator. In
contrast to the quadratic mass term, this cannot be removed
by a local counterterm.
Note that the β-function is arising in a different way from

the RG treatment. In the RG treatment, we associate the β-
function as arising not directly from the integral (2.10) but
from the counterterm (2.14) required to make it finite.
Indeed the β-function for the renormalized coupling λðμÞ
arises from the requirement that the bare coupling λðΛÞ is
independent of μ, where the bare coupling is the coupling
in SðϕÞ, and from (2.14) is now given by4

λðΛÞ ¼ λðμÞ þ 3λ2ðμÞ
ð4πÞ2 log

�
Λ
μ

�
: ð2:16Þ

We see in (2.15) that V2½ϕ� is nonlocal. Note that the
Vn>2½ϕ� are also nonlocal, as they must be by dimensions.
For λϕ4 theory, the n > 2 terms contain 2n fields and thus
the vertex is a negative dimension function of the momenta
pi and clearly therefore must be nonlocal.5 We will see in
Sec. IV B why these observations are important for the
trace anomaly.
Finally note that according to (1.6), the Vn>2½ϕ� vertices

should also contribute to the anomaly, since they are
proportional to λn. This is true, however, since β already
contains ℏ (starts at one loop), this is a higher loop effect

FIG. 2. How higher-point vertices contribute to the trace
anomaly beyond one loop.

4Strictly speaking the notation λðμÞ cannot be correct: a
dimensionless variable cannot depend on a dimensionful variable
only. It must also depend on a second dimensionful variable and
then through a dimensionless combination of the two. Thus
λðμ=ΛdynÞ (where Λdyn is some dynamical scale) would be a
better notation. We stick here to the notation that is common in
quantum field theory.

5Alternatively we can see this by noting that for all the n ≥ 2
vertices, there is no Taylor expansion in the external momenta.
The integrals from (2.5) that would give the coefficients of such a
Taylor expansion are all infrared divergent and thus do not exist.
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that is thus neglected in this one-loop computation
[whereas (2.12) is a one-loop effect on top of the classical
contribution (1.3)]. Indeed these contributions begin to
show up once we include the diagrams shown in Fig. 2.

III. THE WI OF GLOBAL SCALE
TRANSFORMATIONS

A. Derivation

We now come to the effective average action (EAA),
which is defined as follows. Let

Wkðj;gμνÞ¼ log
Z

ðdϕÞexp
�
−S−Skþ

Z
ddxj ·ϕ

�
ð3:1Þ

be the generating functional obtained from the action
Sþ Sk, where

Skðϕ; gμνÞ ¼
1

2

Z
x
ϕRkðΔÞϕ ð3:2Þ

and RkðΔÞ≡ k2rðyÞ, with y ¼ Δ=k2 and Δ ¼ −∂2, is a
kernel suppressing the contribution of modes with
momenta lower than k. It is quadratic in the fields and
only affects the propagator.
The EAA is defined as a modified Legendre

transform

Γkðϕ; gμνÞ ¼ −Wkðj; gμνÞ þ
Z
x
jϕ − Skðϕ; gμνÞ ð3:3Þ

where ϕ denotes here, by a slight abuse of language, the
classical VEV of the corresponding quantum field; the
sources have to be interpreted as functionals of these
classical fields and the last term subtracts the cutoff that
had been inserted in the beginning in the bare action.
The main virtue of this functional is that it satisfies a

simple functional renormalization group equation (FRGE)
[21,22,24],

k
∂Γk

∂k ¼ 1

2
TrðΓð2Þ

k þ RkÞ−1k
∂Rk

∂k ; ð3:4Þ

where Γð2Þ
k is the second variation of the EAAwith respect

to the field. We note that this equation knows nothing about
the action that entered in the functional integral.6 In
particular, if we assume that S is scale invariant, as we
shall henceforth do, (3.4) remains exactly the same.
We can now calculate the transformation of the cutoff

term under rescaling. The Laplacian contains an inverse
metric and therefore transforms under (1.1) by

δϵΔ ¼ −2ϵΔ: ð3:5Þ

Since k does not change, we find δϵRk ¼ −2ϵk2yr0. On the
other hand ∂tRk ¼ 2k2r − 2k2yr0, so

δϵRk ¼ ϵð−2Rk þ ∂tRkÞ: ð3:6Þ

When we apply the variation to the cutoff action, all terms
cancel except for the last term in (3.6), giving

δϵSk ¼
ϵ

2

Z
x
ϕ∂tRkϕ: ð3:7Þ

We now have all the ingredients that are needed to derive
the WI. We subject Wk to a background scale trans-
formation, with fixed sources and fixed k. Since the action
S is assumed invariant, the only variations come from the
measure, the cutoff and source terms:

δϵWk ¼ AðϵÞ þ hδϵSki þ
Z
x
jhδϵϕi

¼ AðϵÞ þ ϵ

�
−
1

2

Z
x

δWk

δj
∂tRk

δWk

δj

þ 1

2
Tr∂tRk

δ2Wk

δjδj
þ
Z
x
jdϕ

δWk

δj

�
: ð3:8Þ

Here the first term comes from the variation of the measure
and coincides with the trace anomaly that one always
finds in the EA. It can be calculated for example by
Fujikawa’s method.7 The second term comes from the
variations of the cutoff and the last comes from the variation
of the source terms. The variation of the EAA can be
computed from (3.3):

δϵΓk ¼ −δϵWk þ
Z
x
jδϵhϕi − δϵSkðhϕiÞ: ð3:9Þ

Using (3.8), the source terms cancel out (since the variation
is linear in the field we have hδϵϕi ¼ δϵhϕi) and the first
term in bracket in the rhs of (3.8) cancels out with the last
term in (3.9). The middle term in the same bracket can be
rewritten in terms of Γk yielding

δϵΓk ¼ −AðϵÞ þ ϵ
1

2
Tr

�
δ2Γk

δϕδϕ
þ Rk

�−1
∂tRk: ð3:10Þ

Apart from the factor ϵ, the second term is exactly the
FRGE. We can thus write as in (1.7):

6In principle the bare action could be reconstructed from the
limit of a given solution Γk for k → ∞ [22,25,26].

7This is a somewhat abstract interpretation that stands for
whatever UV regularization one is using. For example, it can be
calculated by using an UV momentum cutoff, as we saw in
Sec. II.
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δϵΓk ¼ −AðϵÞ þ ϵ∂tΓk:

This is our main result. We see that in addition to the
standard trace anomaly, which originates from the UV
regularization, there is another source of variation due to
the IR cutoff k, that is exactly proportional to the FRGE.

B. Applications

Let us recall how the WI (1.5) and (1.6) is often used in
practice. If βðλÞ is known and if there is a sole reason for the
breaking of scale invariance, e.g., through a vacuum
expectation value hϕi, or through constant background
scalar curvature R, or through summarizing external
momentum dependence by −∂2, then (1.5) and (1.6) can
be integrated to give the exact answer for the physical EA Γ
in terms of these quantities, provided its dependence on λ is
also already known.8

To see this, let χ be the sole reason for breaking of scale
invariance. Without loss of generality, we can set
δϵχ ¼ −ϵχ. Thus in the above examples we have chosen
χ to be hϕi (in d ¼ 4 dimensions), or

ffiffiffiffiffi
R

p
, or

ffiffiffiffiffiffiffiffi
−∂2

p
respectively. Then

δϵΓ ¼ −ϵχ∂χΓ: ð3:11Þ

Combining this equation with (1.5) and (1.6) tells us that

Γ ¼ ΓðλðχÞÞ; ð3:12Þ

i.e., depends on χ only through its dependence on λ, where
we suppress the dependence of Γ on the other quantities. In
general λðχÞ is given by the implicit solution of the RG
equation:

Z
λðχÞ

λðμÞ

dλ
βðλÞ ¼ logðχ=μÞ: ð3:13Þ

In a one-loop approximation this can be solved explicitly:

λðχÞ ¼ λðμÞ þ 3λ2ðμÞ
ð4πÞ2 log

�
χ

μ

�
: ð3:14Þ

Evidently (3.12) guarantees the standard form for the trace
anomaly, since operating with (3.11) takes us back to (1.6).
As a concrete example, Eqs. (3.12) and (3.14) imply that

by setting χ ¼ hϕi in the tree-level term (1.3), one obtains
the Coleman-Weinberg potential:

VðhϕiÞ ¼ hϕi4
4!

�
λðμÞ þ 3λ2ðμÞ

ð4πÞ2 logðhϕi=μÞ
�
: ð3:15Þ

Similarly by setting χ2 ¼ R one gets the interacting part of
the conformal anomaly on a spherical background [8].
Let us now come to the EAA. If we again assume that

there is just one source of breaking of scale invariance, we
have also in this case

δϵΓk ¼ −ϵχ∂χΓk: ð3:16Þ

Then combining this with the WI (1.7) and with (1.6),
which we will show at the end of Sec. IV B to hold also
when k > 0, we have

½βðλÞ∂λ − χ∂χ − ∂t�Γk ¼ 0: ð3:17Þ

This equation can be solved, e.g., by the method of
characteristics. The solution implies that Γk also has a
restricted functional form, which can for example be
written as

Γk ¼ Γ̂ðχ=k; λðχak1−aÞÞ; ð3:18Þ

for any number a. We shall see in Sec. V how this reduces,
in the limit k → 0, to (3.12).
Notice that the anomalous WI (1.7) does not give us any

information on the dependence of Γ̂ on its arguments, nor
on the dependence of λ on k. This information has to be
obtained by other means, e.g., by solving the FRG in some
approximation.

IV. APPROXIMATIONS

A. One-loop EAA

We shall now see how the WI looks like at one loop and
how the anomaly is recovered in this approximation. In the
spirit of the FRGE, we could compute first ∂tΓk and then
integrate from some UV scale Λ down to k to obtain Γk. In
practice, in the one-loop approximation, this is equivalent
to just repeating the calculation of Sec. II with the IR
regulator in the bare action.
The two-point function is independent of the external

momentum and is a simple mass term. The quantum
correction depends on the form of the regulator but is
generally of the form BΛ2, where B is a scheme-dependent
coefficient, plus other (possibly logarithmically divergent)
terms depending also on k. For example, if we use the
optimized cutoff RkðzÞ ¼ ðk2 − zÞθðk2 − zÞ we have

m2ðkÞ ¼ m2ðΛÞ þ λ

32π2

�
Λ2 −

1

2
k2
�
: ð4:1Þ

The initial value for the mass at the UV scale now plays the
role of the counterterm. One can choose it so that the
renormalized mass m2

R ¼m2ðk¼ 0Þ has any value. In par-
ticular we can fine-tune it so that the renormalized mass is
exactly zero. This defines the critical trajectory. It is important

8To be clear, for the R-dependence we are again considering
only the interacting part of the anomaly [8].
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to note that even though this choice eliminates this source of
scale symmetry breaking at k ¼ 0, for k ≠ 0 we have

m2ðkÞ ¼ −
λ

64π2
k2: ð4:2Þ

This is then the main source of scale symmetry breaking for
k ≠ 0, being of order λ, while the anomaly (1.4) is of order λ2,
as is seen from (2.13).
Let us now come to the four point function, which

contains operators of the form ϕ2ð−∂2Þnϕ2. At one loop
these all arise from inserting the IR regularization into
(2.10) to give

Akðp;−pÞ¼
Z
q

1

½q2þRkðqÞ�½ðqþpÞ2þRkðqþpÞ� : ð4:3Þ

In general this integral is quite complicated, but since it is
only logarithmically divergent we can get away with
choosing the simple momentum independent Rk ¼ k2,
i.e., a k-dependent mass term. This IR cutoff is not strong
enough to work with more severe cases, but by inspecting
this example we will be able easily to see what the general
Rk will give. Using the Feynman trick the integral is

Akðp;−pÞ ¼
Z

1

0

dα
Z
q

1

½ð1 − αÞq2 þ αðqþ pÞ2 þ k2�2 :

ð4:4Þ

Completing the square and shifting internal momentum
we get

Akðp;−pÞ ¼
Z

1

0

dα
Z
q

1

½q2 þ k2 þ ð1 − αÞαp2�2 : ð4:5Þ

This integral is now subject to the UV boundary condition
that jq − αpj ≤ Λ, but replacing it with jqj ≤ Λ only
introduces an error of order p2=Λ2 which vanishes as
we take the UV limit. Performing the q integral we thus
find that the EAA contains

Z
x

1

8π2

�
log

�
Λ2

k2

�
−1−

Z
1

0

dα log ½1þð1−αÞαp2=k2�
�
;

ð4:6Þ

where again we discard terms that vanish as Λ → ∞.
Recalling from above (2.12), the factor of −λ2=16, we
see that the same counterterm (2.14) will render this finite.
Indeed including the ϕ4 contribution, (2.16), from the bare
action S½ϕ�, we have altogether:

Z
x

��
λðμÞ þ 3λ2ðμÞ

32π2

�
1þ log

�
k2

μ2

���
ϕ4

4!

þ λ2ðμÞ
256π2

ϕ2

Z
1

0

dα log½1 − ð1 − αÞα∂2=k2�ϕ2

�
; ð4:7Þ

however for the FRG, it is more natural to choose as
renormalization condition that the coefficient of ϕ4=4! is
the renormalized coupling λðkÞ. In this way it is clear what
it means to pick a solution that breaks scale invariance the
least: we should pick the solution that breaks the invariance
only through the running of this coupling [27]. It implies
that the bare coupling λðΛÞ is now set equal to

λðΛÞ ¼ λðkÞ þ 3λ2ðkÞ
32π2

�
log

�
Λ2

k2

�
− 1

�
: ð4:8Þ

In this way we avoid introducing an explicit extra scale μ,
whilst (4.8) and the β-function (2.13), now tells us that λðΛÞ
is independent of k up to terms of higher order, as it should
be. Then (4.7) just reads

Z
x

�
λðkÞ
4!

ϕ4þ λ2ðkÞ
256π2

ϕ2

Z
1

0

dα log ½1− ð1−αÞα∂2=k2�ϕ2

�
;

ð4:9Þ

after using λ2ðμÞ ¼ λ2ðkÞ þOðλ3Þ. Finally, Taylor expand-
ing the last term gives us the derivative expansion we were
aiming for:

Z
x

�
λðkÞ
4!

ϕ4 þ λ2ðkÞ
256π2

X∞
n¼1

anϕ2

�
−∂2

k2

�
n

ϕ2

�
; ð4:10Þ

where we learn that with Rk ¼ k2, the an are given by

an ¼ ð−1Þnþ1
n!ðn − 1Þ!
ð2nþ 1Þ! : ð4:11Þ

Let us rewrite (1.7) in the form

AðϵÞ ¼ ϵ∂tΓk − δϵΓk: ð4:12Þ

Acting with ϵ∂t − δϵ on the second term in (4.10) gives
zero. Acting on the first term, δϵ gives zero and ϵ∂t
reproduces exactly (1.4). We thus see how the one-loop
EAA (4.10) computed with a simple masslike cutoff
reproduces the anomaly. For other forms of the cutoff
function Rk the coefficients an would have a different form,
but the calculation would proceed exactly in the same way,
leading always to the same final form (1.4) for the anomaly.
The one-loop EAA also has 2n-point vertices Vk;n½ϕ�

where n ≠ 2. Their expansion in local operators gives
powers of derivatives and the field balanced by powers of k
according to dimensions. (For n ¼ 1 the tadpole integral
yields exclusively a mass term proportional to k2.) As at the
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end of Sec. II, at one loop the λn factor does not run, being
already proportional to ℏ. Therefore, as we will see
confirmed also in the next section, the application of the
right-hand side of (4.12) just gives zero. From the (deriva-
tive expansion of the) whole of the one-loop EAA, we are
therefore left just with the one contribution coming from
(1.4), which here is reproduced entirely from the RG
running of the λðkÞϕ4 term.

B. Local expansions

In practical applications of the EAA, one often assumes
that it has the form

Γk ¼
X
i

λiðkÞOi; ð4:13Þ

where the Oi are integrals of local operators constructed
with the fields, the metric and derivatives. For the purpose
of counting, notice that the integral contains

ffiffiffi
g

p
and

therefore carries d=2 powers of the metric. Generically
such approximations are called “truncations.” Systematic
expansions are the derivative expansion and the vertex
expansion, in which cases the sum in (4.13) is infinite and
contains arbitrary powers of the field or of the derivative,
respectively [28].
Differently from the previous section, we are here

treating each operator as having its own separate coupling
λi, and absorbing all powers of k into these couplings. Later
on, we will specialize to the case where the continuum limit
is controlled by just one marginal coupling.
For the WI (1.7), it is enough to consider one monomial

at the time. Let Oi involve nϕ powers of ϕ and, in total, ng
powers of the metric. The scaling dimension of Oi under
(1.1) is

Δ ¼ −2ng þ
d − 2

2
nϕ ð4:14Þ

and the scaling dimension of λi under (1.1) (which is minus
its mass dimension) is −Δ. We can also write

λiOi ¼ λ̃iÕi

where

λ̃i ¼ kΔλi; Õi ¼ k−ΔOi; ð4:15Þ

which thus implies that λ̃i is dimensionless. The lhs of the
WI is

δϵðλiOiÞ ¼ ϵλi

�
2ng −

d − 2

2
nϕ

�
Oi ¼ −ϵΔλiOi: ð4:16Þ

On the other hand, one has

∂tðλiOiÞ ¼ ∂tλiOi; ð4:17Þ

since the dimensionful operator in itself has no dependence
on k. Thus the WI gives

−ϵλiΔOi ¼ −AðϵÞ þ ϵ∂tλiOi: ð4:18Þ

Bringing the lhs to the rhs it reconstructs the derivative of
λ̃i, times k−Δ, which can be rewritten as

AðϵÞ ¼ ϵ∂tλ̃iÕi: ð4:19Þ

Thus for an action of the form (4.13) the WI implies

AðϵÞ ¼ ϵ
X
i

β̃iÕi: ð4:20Þ

We see from this expression that the anomaly receives
contributions from all the operators. Let us also note here
that if the effective action has an (infinite) expansion of the
form (4.13), and if one keeps all the terms, this formula is
not an approximation anymore.
Now let us consider what form (4.20) must take when the

continuum limit is controlled by a single marginal coupling
λ, as in the one-loop calculations in the previous sections.
In the expansion over the local operators Oi we have
identified couplings λiðkÞ as the parameters conjugate to
these local operators. One of these λi is the coupling λ itself.
In the critical continuum limit the other couplings are not
independent but are functions of λ and k. The scaled
couplings λ̃i ¼ λ̃iðλÞ are dimensionless and thus have no
explicit k dependence. They gain their k dependence only
through their dependence on λ. (Note that, being marginal,
λ̃ ¼ λ.) Therefore

β̃i ¼ ∂tλ̃i ¼ ∂tλ∂λλ̃i ¼ βðλÞ∂λλ̃i: ð4:21Þ

Notice that (4.21) also holds for the coupling λi that is λ
itself since in this case it simply says β̃i ¼ βi ¼ β. Then
(4.20) can be rewritten as

AðϵÞ ¼ ϵβðλÞ∂λ

X
i

λ̃iÕi; ð4:22Þ

or simply

AðϵÞ ¼ ϵβðλÞ∂λΓk: ð4:23Þ

We see that this is (1.6) that applies to the EA, and
moreover it holds also at finite k, i.e., for the EAA.
What does not hold at finite k, is (1.5), namely the
statement that δϵ induces the anomaly AðϵÞ and only this
anomaly.
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V. RECOVERING THE STANDARD FORM
OF THE TRACE ANOMALY

To recover (1.5), we need to study the limit k → 0,
keeping all other quantities fixed. In this limit Γk → Γ, and
the breaking due the IR cutoff Rk should disappear.
Comparing (1.7) and (1.5), we see that this is true provided
that ∂tΓk → 0, which indeed must also hold in this limit as
we show below. Note that the derivative expansion, or any
approximation of Γk in terms of local operators, implies a
Taylor expansion of the vertices in pi=k, the dimensionless
momenta. Since we hold pi fixed and let k → 0, such
approximations are not valid in the regime we now need
to study.
We will get insight by first inspecting the one-loop case.

At one loop, the term that contains the trace anomaly in the
small k limit is in fact the nonlocal term (2.15), which
indeed is missing from any local approximation to the
EAA, in particular from the derivative expansion consid-
ered in the last section. Together we therefore have

Γk ∋
1

4!

Z
x

�
λðkÞϕ4 þ 3λ2ðkÞ

32π2
ϕ2 log

�
−∂2

k2

�
ϕ2

�
; ð5:1Þ

where the explicit k2 is supplied by the counterterm in (4.8),
in preference to the μ2 supplied by (2.16). Now note that
with the nonlocal term included, the ϕ4 coefficient is
actually independent of k (to the one-loop order in which
we are working), the β-function contribution canceling
against the explicit k dependence in (5.1). We see that the
nonlocal term is just what is needed in order to ensure that
Γk has a sensible limit. Indeed we could have found the
nonlocal term by insisting that Γk becomes independent of
k as k → 0, holding everything else finite. This implies a
practical method for recovering such nonlocal terms from
the flow of the couplings, as we will see shortly. By adding
the missing nonlocal term as in (5.1), we now have a four-
point vertex that satisfies

∂tΓ
ð4Þ
k ¼ 0; ð5:2Þ

but also gives the standard form of the trace anomaly. In
this way we have reproduced (1.5).
Let us now set ourselves in the situation when there is a

single source of scale symmetry breaking χ, as in Sec. III B.
To get an explicit answer for the four-point vertex in the
limit as k → 0, we can for example solve for λðkÞ in terms
of some λðμÞ. The solution is just (3.14) with χ replaced by
k. Plugging this back in (5.1) we get the same expression as
(5.1), but with −∂2 replaced by χ2 and k replaced by μ, a
consequence of the fact that the physical EA is actually an
RG invariant, and thus independent of k or μ.
Now, if we want to go beyond the one-loop approxi-

mation, in general we will have to solve Eq. (3.13).
However in perturbation theory, by iteration, we can

explicitly find this form of the solution. For example to
two loops, writing

β ¼ β1λ
2 þ β2λ

3; ð5:3Þ

where β1 is the coefficient in (2.13), we must have

λðχÞ ¼ λðkÞ þ β1λ
2ðkÞ logðχ=kÞ þ λ3ðkÞαðχ=kÞ; ð5:4Þ

for some function α to be determined, where we recognize
that (5.1) and (2.13) already fix the β1 term. Differentiating
the above with respect to t, using (5.3), and requiring that
overall the result vanishes, we confirm again the λ2 piece,
and determine that

∂tαðχ=kÞ ¼ −β2 − 2β21 logðχ=kÞ: ð5:5Þ

Integrating we thus have

αðχ=kÞ ¼ β2 logðχ=kÞ þ β21 log
2ðχ=kÞ: ð5:6Þ

Note that the integration constant vanishes since by (5.4),
we must have αð1Þ ¼ 0. Clearly our EA, (3.12), then does
satisfy the anomalous WI, provided we recall that in (1.6)
we have λ ¼ λðχÞ. In particular this means that the trace
anomaly appears at this order as (1.6) where however

β ¼ β1λ
2ðχÞ þ β2λ

3ðχÞ
¼ β1λ

2ðkÞ þ λ3ðkÞfβ2 þ 2β21 logðχ=kÞg: ð5:7Þ

By design, and despite appearances, λðχÞ and Γ are
independent of k. Indeed, from (5.4) and (5.6), we know
that substituting

λðkÞ ¼ λðμÞ þ β1λ
2ðμÞ logðk=μÞ þ β2λ

3ðμÞ logðk=μÞ
þ β21λ

3ðμÞlog2ðk=μÞ ð5:8Þ

into (5.4) and (5.7), will eliminate k and λðkÞ, in favor of μ
and λðμÞ, making explicit the fact that these formulas are
actually independent of k.
Finally, we add a note to clarify the role of μ. Recall that

the running of couplings with respect to the scale μ is
fundamentally different from the running of k in the
Wilsonian RG. Whereas k > 0 parametrizes an infrared
cutoff, meaning that there are still low energy modes to be
integrated out, μ is a dimensional parameter that remains
even when the functional integral is completed. Then the
RG is realized through μ, however only in the Callan-
Symanzik sense: physical quantities must actually be
independent of μ. To the extent that the EA is a physical
quantity, the EA must therefore also be independent of μ. In
this sense, dependence on μ is fake. It, and λ, can be
eliminated in favor of a fixed dynamical scale (completing
the so-called dimensional transmutation, cf. footnote 4). In
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the limit that k → 0, we can only be left with this fake
dependence on k, thus (only) in this limit k and μ appear on
the same footing, as is exemplified explicitly in (5.8).

VI. FIXED POINTS

There is no connection between scale invariance of the
classical action and scale invariance at the quantum level.
One can have the former without the latter, as we have seen,
but also vice versa. Quantum scale invariance is related to
the existence of fixed points. At a fixed point, (1.5)
vanishes. The scale invariance of the EA is then explicitly
realized as invariance under the transformation δϵ. Since
(1.6) also implies βðλÞ ¼ 0, λ can no longer depend on μ
and becomes a fixed number, as indeed is verified by (5.8)
since now all the βn vanish. For the same reason, all the
explicit μ dependence also disappears from the EA, as
obviously it must in order for the EA to be overall
independent of μ. [Again this is verified by (5.4) and (5.6).]
The connection to scale invariance is less direct for the

EAA. In the presence of (generally) dimensionful cou-
plings λi, a fixed point is defined by the vanishing of the
beta functions of their dimensionless cousins λ̃i, as in
(4.15), i.e.,

β̃iðλ̃jÞ ¼ 0:

One immediate consequence of (4.20) is then that the
anomaly vanishes at a fixed point. This however does not
lead to the statement that the EAA is scale invariant at a
fixed point, according to the definition of scale trans-
formations that we used so far. Indeed, if we look at
Eq. (4.16) we see that the variation of the EAA under an
infinitesimal scale transformation δϵ is not zero in general.
It is only zero in the case when Δ ¼ 0, i.e., when all the
couplings λi are themselves dimensionless.
Consider, however, a different realization of scale

invariance, namely one where we also transform the cutoff
scale by [29–32],

δ̂ϵk ¼ −ϵk; ð6:1Þ

the action of δ̂ϵ being the same as the action of δϵ on all
other quantities. Then, instead of (4.16) we have

δ̂ϵΓk ¼ δϵΓk − ϵ
X
i

k∂kλiOi

¼ −ϵ
X
i

ðΔiλ̃i þ βikΔiÞÕi ¼ −ϵ
X
i

β̃iÕi: ð6:2Þ

This implies that at a fixed point one has invariance under
the scale transformations generated by δ̂ϵ.
From this Wilsonian point of view, the relevant notion of

scale transformation is one where the cutoff is also acted
upon, and a fixed point is not a point where only

dimensionless couplings are present, but rather one where
all dimensionful couplings in the fixed point action appear
as (nonuniversal) numbers times the appropriate power of
k. It is this fact that ensures that the fixed point action does
not vary with k, when all variables are written in dimen-
sionless terms (using the appropriate scaling dimensions).
Indeed we also recall that when written in these terms, the
eigenoperators, which are integrated operators of definite
scaling dimension dO, correspond to linearized perturba-
tions about the fixed point action whose associated cou-
plings carry power law k-dependence, namely kd−dO. Thus
the behavior of these linearized couplings under change of
scale is entirely given by (6.1).
We can further clarify the relation to the Wilsonian RG

by the following argument. The partial derivative ∂t gives
zero when acting on O, because all the k-dependence is
assumed to be in the coupling, and therefore ∂tÕ ¼ −ΔÕ.
Let us make this explicit by writing, for a monomial λO in
the EAA,

∂tðλOÞjO ¼ ðβ̃ − Δλ̃ÞÕ:

If instead we take the derivative keeping Õ fixed,
we get

∂tðλOÞjÕ ¼ β̃ Õ :

This implies that for the EAA, which is a sum of terms of
this type, the flow for scaled fields is

ϵ∂tΓkjÕ ¼ ϵ∂tΓkjO − δϵΓk; ð6:3Þ

where (4.16) has been used. This equation is just the
definition of an infinitesimal Wilsonian RG transformation
in the way it was originally formulated [33]. Thus on the
right-hand side, the first term is an infinitesimal change of
the coarse graining scale (“Kadanoff blocking”), while the
second term is the infinitesimal rescaling back to the
original scale (hence the minus sign).
Now recall that in the WI (1.7), the t-derivative is taken

at fixed O:

A ¼ ϵ∂tΓkjO − δϵΓk: ð6:4Þ

Comparing to (6.3), it is immediate to see that the anomaly,
A, and the Wilsonian RG transformation, ϵ∂tΓkjÕ, are
effectively the same thing. Indeed this is just Eq. (4.20)
derived in a different way.

VII. CONCLUDING REMARKS

One generally speaks of an anomaly when a symmetry
of the classical action cannot be maintained in the
corresponding quantum theory. It is implicit that it is
desirable to maintain the symmetry as much as possible
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and a violation of the symmetry can only be accepted
when it is unavoidable. Thus, violations of a symmetry
due to a “bad” choice of regulator are not usually
characterized as anomalies. Likewise when the anomaly
can be removed by adding a local counterterm to the
action. In this strict sense, the quadratic renormalization of
the mass does not give rise to an anomaly. In renormaliz-
able field theories in four dimensions, the anomaly is due
only to the logarithmic renormalization of a marginal
coupling constant.
From the point of view of Wilsonian renormalization, a

theory can be defined as a RG trajectory in the “theory
space” of all possible effective actions. Perturbative renor-
malizability and the symmetries of the bare action are not
important. The only question that is physically relevant is
whether a theory has a symmetry in the quantum sense. We
have shown that the assumption of classical scale invari-
ance gives rise, in addition to the RG equation, to the WI
(1.7) that quantifies the amount of scale symmetry
breaking.
Given that the RG flow equation is exactly the same

whether or not the classical action is scale invariant, one
may wonder what additional information the WI may have.
To understand this, it is useful to present the WI in the form
(6.4), showing that the anomaly can be identified with the
Wilsonian definition of RG. When the theory is classically
scale invariant, there is an independent definition of A and
(6.4) is an identity that can be tested in actual calculations.
When nothing is assumed on the classical action, one can
still assume that (6.4) holds, and in this case it becomes the
definition of the anomalyA. It is in some sense the broadest
generalization of the standard perturbative statement (1.4),
since it applies to any theory, independently of its UV
properties, and it preserves the essential feature that the
anomaly vanishes at a fixed point.9

One can then distinguish three classes of trajectories.
The mass parameter runs quadratically and generically ends
up with a nonzero value in the extreme infrared. In these
“gapped” theories scale invariance is badly broken. Then
there is a subclass of critical trajectories for which the
renormalized mass in the extreme infrared ends up being
zero. These trajectories almost realize scale symmetry, but
have an anomaly in the strict sense discussed above. As we
have discussed in Sec. III B, the WI is really only useful
when one restricts oneself to such trajectories. Finally there
are trajectories that remain exactly at a fixed point for all
scales. These trajectories fully realize quantum scale
invariance. In the scalar theory in four dimensions that
we have considered here as an example, the only such fixed
point is the free theory, but there exist nontrivial fixed
points in less than four dimensions and there are other

examples of four-dimensional field theories with nontrivial
fixed points [35].
There are relations of this work to several other strands of

research and various natural extensions. One extension is to
consider the WI of special conformal transformations. This
has been discussed in [23,36,37] and, more specifically in
relation to the trace anomaly, in [38]. Another generaliza-
tion is to make the scale transformations position depen-
dent. This can be used as a technical device in flat space
physics [39] but is most natural in a gravitational con-
text [40,41].
Another point to be kept in mind is that interpreting the

renormalization scale as a VEVof a dynamical field leads to
a (typically nonrenormalizable) theory where scale sym-
metry is not broken. This has been discussed recently in
[42]. Related observations have been made for local Weyl
transformations in the presence of a dilaton in [43–45] and
for the EAA in [46,47].
In a gravitational context, the result (1.7) bears some

resemblance to our earlier results for the WI of split Weyl
transformations [29–32]. The physical meaning is very
different, though: the split transformation is the freedom of
shifting the background and the quantum field by equal and
opposite amounts and is always an invariance of the
classical action. The cutoff, however, introduces separate
dependences on these two variables and breaks the split
transformations. For transformations of the background
metric of the form (1.1), with constant ϵ, the anomalous WI
contains the term ϵ∂tΓk in the rhs. The difference with the
physical scale transformations considered in this paper is
highlighted by the invariance of the measure under split
scale transformations, which results in the absence of the
term −A.
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APPENDIX: RESCALING THE COORDINATES
VS RESCALING THE METRIC

A scale transformation is a change of all lengths by a
common factor. Since physical lengths are defined by
integrating the line element ds2 ¼ gμνdxμdxν, a scale
transformation can be interpreted either as a scaling of
the metric or as a scaling of the coordinates. In the main
text we have followed the former convention, which is
more natural from the point of view of general relativity.
In flat space it is customary to define the scale trans-
formations as rescalings of the coordinates: δϵxμ ¼ ϵxμ.

9For a recent discussion of the scale anomaly for theories that
are not classically scale invariant see [34].
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Then the infinitesimal transformation of the fields is
δϵϕ ¼ ϵð−xμ∂μ þ dϕÞϕ. The canonical dimension of a
field, dϕ, which is determined by requiring scale invari-
ance of the kinetic term, is the same in both cases. The
canonical energy-momentum tensor comes from the
Noether current associated to translation invariance. In
general it does not coincide with the one defined in (1.2),
but there are well-known “improvement” procedures that
make them equal.

Equations (2.7), (2.8), and (3.5)) hold also when one
rescales the coordinates, and so the derivation of the scale
WI in Sec. III A goes through in the same way. The mass
dimension of an operator O, containing nϕ fields and n∂
derivatives is Δ ¼ −dþ n∂ þ d−2

2
nϕ, where −d comes

from ddx. This is equal to the expression given in
(4.14), because ng is d=2, coming from

ffiffiffi
g

p
, minus the

number of inverse metrics, which must be equal to half the
number of derivatives.
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