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An asymptotic model in quantum chemistry, (P. Gori-Giorgi)

In the framework of Strongly Correlated Electrons Density
Functional Theory (SCE-DFT), a very challenging issue is the
asymptotic behavior as ¢ — 0 of the infimum problem

inf{eT(p) + C(p) = U(p) : peP} (1)

where the parameter ¢ stands for the Planck constant and
@ p € P is a probability over RY associated with the random
distribution of N-electrons (given by |¢|?, v € L2((RY)N))
e T(p) is the kinetic energy

T()= [ IV o

e C(p) describes the electron-electron repulsive interaction;
@ U(p) is the potential term (created by M nuclei)

uw=@wwm
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ThecaseNzl,V(x)zﬁandd:\%

Then C(p) = 0 and setting ¢ = \/p, (1.) becomes:

inf{/<5|vw|2—2ﬁ}<2|) : /¢2:1}

The negative minimum above is reached for 1. solving

Z

x|

—eAY" — —¢F = AT¢° in R

Then the solution to (1.) reads p. = e 3p1(x/c) where:

zZ3 Z2
p(x) = 8—7Texp*Z|X| (Lieb) , A= = min(1c).
Therefore
x Z2
pe — 0x=0 , € min(l;)— e
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The case C(p) = 0 and V associated with M-nuclei

Let X1, Xo, ..., Xy the position of M nuclei in R3 with charges
21,25, ...,2Zp. The Coulomb potential reads:

Z |X—Xk|

By [bbcd18], the I'— limit of quadratic energies is local and:

M
% . 1
p° = 51 adx, , € min(ly) ~ ~2 Ek akZ,f
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The case C(p) = 0 and V associated with M-nuclei

Let X1, Xo, ..., Xy the position of M nuclei in R3 with charges
21,25, ...,2Zp. The Coulomb potential reads:

Z |X—Xk|

By [bbcd18], the I'— limit of quadratic energies is local and:
M
p° = Zak5Xk , emin(ly) ~—= Zaka
1

Consequence: Minimizing with respect to the ay's subject to

> ay =1, we see that p. concentrates on the nuclei with maximal
mass (not physically reasonable )

[bbcd18] Dissociating limit in Density Functional Theory with

Coulomb optimal transport cost in arXiv:1811.12085
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N -electrons (repulsive) interaction
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It can be interpreted as a multi-marginal transport cost:

o= Cup) =inf { [ e ..om)ap = Penip)}

Nd

when

1
c(x1 ..., xn) = Z o — x|
i

1<i<j<N

and MM(p) is the family of transport plans
N(p) = {PEP(RN") ; 77,#P:pfor all i = 1,...,N}

being 7; the projections from RN on the i-th factor R and 7r,.#
the push-forward operator

7 P(E) = P(r;X(E))  for all Borel sets £ C RY.

1



Basic facts about C(p)

C : p € P(RY) —]0, +o0] is convex weakly* |.s.c.
But pn = p , sup, C(pn) < +00 # p € P

o C(p) < +oo whenever p € LP(RY) for some p > 1, in
particular if T(p) < +oo (since \/p € Wh? = p € [?))

o C(p) = +oo if it exists xp such that p({xo}) > %

o If x1,x0,...xn are distincts, then (P = d,, @ 0y, - -+ @ dy,)

1
C(N(éxl + I, +...5XN)> =c(x1,...,xn)

o For every x, there exists p, — % and C(pn) — 0.
(apply above with x; = x and ||x;|| = oo for 2 < < N)

° #CN(,O) — Cx(p) = f(Rd)z % as N — oo (Choquet 1958)
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Asymptotic in the interacting case

@ The asymptotic in (1.) in presence of the N-interactions term
C(p)(= Cn(p)) is known for N = 2. In [ bbcd18], the —
limit of energies is derived:

M
psiZakdxk , & min( Zakgak,zk)
1

where g is a suitable convex-concave function (not explicit !)
@ The case N > 2 is open (needs to relax C(p))

@ The situation gets much simpler if one assume that
V e G(RY).

Then inf(1.) remains finite and by ' —convergence, we get:
inf(1.) — inf{C(p) - / Vdp : pe 77}
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Main issues for: inf {C(p) — [V dp : pe€ P}

Remark: we do not assume that V is confining (that is

limy |00 V(x) = —00)

e Existence of an optimal probability p ? (non existence means
“ionization”, [J.P. Solovej,Ann. of Math (2003)

@ How to characterize the weak* limit of minimizing sequences
in case of non existence ?

@ Are they limit points p with fractional mass ||p|| = %

(k electrons among N remain at finite distance)
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Outline

A non existence result.
Relaxed cost on P~ (sub-probabilities)
Dual formulation and Kantorovich potential

Mass quantization of optimal measures

ok =

Open problems and perspectives

T. Champion, G. Buttazzo, L. De Pascale, GB: Relaxed multi-marginal
costs and quantization effects
(https://hal-univ-tin.archives-ouvertes.fr/hal-02352469)
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I- A case of non existence
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For every V € Go(RY), we denote:

aN(V)Zinf{CN(p)/Vdp : ,067’}

Existence of an optimal probability is standard if V is a confining
potential ( lim| oo V(x) = —00 ). The situation changes
drastically when V is bounded from below.

Note that if V € (, it is not restrictive to assume that V > 0.

Lemma 1 an(V) = an(VFH) < —F%supV*. In particular
an(V) < 0 for any non zero V > 0.

Proof: The first equality is deduced by duality techniques. For the
second inequality, choose xg s.t. VT(x9) = max V* and
Pn — %5,(0 s.t. C(pn) — 0.



Case where V' has compact support

Proposition 2 Let V € Go(RY;R*) with spt V C Br. Then the
infimum apy(V) is not attained on P whenever

N(N —1)

2R
Proof: In a first step we show that if p € P is optimal, then
spt p C Bgr. As a consequence the optimal transport plan
associated with p is supported in (Bg)"N where c(x) > N(N O
Thus, if max V < (N 1)

max V <

, we find a contradiction with Lemma 1:

aN(V):C(p)—/VdpzN(IZR_l)—maxVEO

Consequence: existence of a loss of mass at infinity !
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2- Relaxed cost on P~
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For every p € P~ (with mass ||p|| in [0,1]), we need to characterize
C(p) = inf {Iimninf Clpn) : pn—p, pn € 73}
We already know that C(p) = C(p) if p € P. A first guess would

be that C(p) = Cn(p) for every p € P~, being Cy(p) the
1-homogneous extension:

i) = Il C (II H):inf{/RNdc(xl...,xN)dP : Pel‘l(u)}

Indeed C(p) < Cn(p) but no converse inequality since:

Cp)=0 <= loll < 7 - J




Stratification formula for C(p)

Set Cx(p) == Hp||Ck(”—‘:)| to denote the homogeneous version of the
k-points interaction and C; = 0.

Theorem 3 For every p € P~ it holds

N N N
_ _ k
=mf{§ Ck(pk) = pk€P™, ) NPk =P > ”Pk||§1}-
k=1 k=1 k=1

o Infimum achieved if 0 < C(p) < 400 and 31, [lpkl| = 1.
@ Case of fractional masses: a useful inequality (by taking
pk:%pand pr=0if | # k)

x| =

loll = = C(o) < 2 ul)

o If £ < |p|| < %2, it seems numerically that only k and k + 1
are mvolved in an optimal decomposition 77 (may be untrue !)
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Sketch of the proof

@ In a first step, we associate to p € P~ a probalility 5 on
X = R9 U {w} the the Alexandrov's compactification of R
defined by = p+ (1 — ||p||)dw- Then, if & denotes the natural
|.s.c. extension of the Coulomb cost to XV,

C(p) = €(p) := min {/ edp . Pep(xN), Pc I'I(ﬁ)}.
XN
o Let P ¢ P(XN) be an optimal symmetric plan for C(5) and

set )
fig = Wfé (PI_ (de X {w}N_k))

Then the stratification formula holds with pj given by
N
pr = (k)ﬁkLRd
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3- Dual formulation and Kantorovich potential

Duality: Let p € P=(RY) and p = p+ (1 — ||p]|)d € P(X). Itis
natural to use the duality between M(X) and Go(R9) @ R the set
of continuous potentials u with a constant value v, at infinity:

<u,ﬁ>:/udﬁ:/ udp+(1—|p|)too -
X RY

Theorem 4 Let A be the class of admissible functions defined by
1N
A= {u €eGoR —Zu(x;) < c(xq,...,xn) Vxi € (Rd)N}.

N 4
i=1

Then C(p):sup{/udp—k(l—||pH)uoo : uEA} :
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For practical computations
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In Theorem 4, the class A of admissible u can be relaxed to

N
1
BZZ{UES Zux, ) < c(x XN) ﬁNxa.e.XEXN}
I:l

being S(X) the I.s.c. functions X — R U {+o0}.

Thus, in case of a discrete measure p, we are reduced to a finite
number of constraints. For instance if p = Z?zl a6, where

lai —aj| =1 for i # j and ||p|]| = >_ o < 1, then we have to solve
an elementary LP problem

—= (1-) « ooatyetys <3
o] S-S megen

yk+2y4<0 ke{l ,3}, LRIERE < k<

where y; = u(a;) for i € {1,2,3} and ya = u(w).



Existence of a Kantorovich potential
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In the case ||p|| = 1, existence of a Lipschitz dual potential
appeared in [bcd16] under a non concentration assumption. For
every p € P~, we define

K(p) = sup {p({x}) : x e R7}.

After a technical and long proof, we extend [bcd16] as follows:

Theorem 5 Let p € P~ such that K(p) < 7. Then C(p) is finite
and there exists an optimal Lipchitz potential u € Co(RY) @ R.
Any other optimal potential i satisfies i = u j - a.e.

Remark If (p,) is a sequence in P~ such that sup, K(pn) < #,
then the Lipschitz constant of the associated potentials uj, is
uniformly bounded. This happens in particular if

T(on) = [ IV /ol < C.



4- Mass quantization of optimal measures
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Let V be a given potential in Co(R9) and N > 2. We focus on the
relaxed problem associated with

aN(V):inf{C(p)—/Vdp ; peP}

_ min{C(p)—/Vdp : pEP_}

As P~ is compact for the weak* convergence, solutions to latter
problem always exist. As they might be non unique, we consider
the minimal mass among them

Z(v) = min{ ]l : To)~ [ Vo= an(v)} J

(Zn(v) = 1 means that all minimizers are probabilities solving the
non relaxed problem)



Quantization statement

Theorem 5. Let V € Co(RY; R™) be such that sup V > 0. Then

IN(V)G{;\‘I : 1§k§N}.

The proof relies on primal-dual optimality conditions. Let us
introduce, for 1 < k < N:

k
M (V) = sup {}(ZV(x,-)—ck(xl,XQ,...,xk)}

xe(RIN i=1

The definition of Mi(V) extends to unbounded potentials. In

particular if V(x) — —oo as |x| — oo, the supremum is attained on
(RY)
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Systems of points with Coulomb interactions.

If V' is confining , My(V) is related to a hudge litterature about
the systems of points interactions theory (see for instance Choquet
1958 and the recent papers by Serfaty-Leblé, Serfaty-Petrache and
references therein, M. Lewin).

~ Mp(—N2V) = inf {HN(Xl,x2, XN X € Rd}

where Hpy is of the form

N
Hn(xa e, o) = Y Ulxi—x) +NY V(x).

1<<i<j i=1

such a setting, the asymptotic limit as N — oo is one of the main
point of interest of the mathematical physics community.
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Useful properties of functionals My : Gy — R*

1) The functional M(V) is convex, 1-Lipschitz on Cy and

M, (tV
lim k(tt )

t——+o00

=M (V)=supV.

i) For every V € Gy and N € N*, we have:

Ml(%) << Mk(%) < Mk+1((k+Nl)V) <<

iii) For every p € P~, we have

C(p) = sup {/ Vdp - MN(V)}

Ve

In particular an(V) = —My(V) < —F sup V and OMy(V) is
the set of minimizers.
iv) For every k € N*, p € P~ and V € (, it holds

M(V) = M(V2) . Culp) = sup { [ van— i)}

Ve
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Optimality conditions

Theorem 6. Let p € P~ and V € Go(RY;R*) be s.t. supV > 0.
Let {pk} be an admissible decomposition of p i.e.:

N, N
P:ZNW o el < 1.
k=1 k=1

Then {px} is optimal for C(p) and V is an optimal potential for p
iff the following conditions hold:

N
> llowll =1,
k=1

kV
i) Forall k, Ck(pk)— / —dpkx = —M(— )
iii) I\/Ik(TV) Mpn (V) holds whenever ||pk|| > 0.
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Additional comments

o As noticed in Sec 1, we have apy(V) < —&sup V < 0. Thus
an optimal p satisfies ol > %
(otherwise C(p) — [ Vdp = — f Vdp > — 1 sup V)

@ By the monoton|c1ty property of the My's, the equality in iii)
holds whenever it exists | < k such that ||p/|| > 0.

o Let k denote the integer part of N||p||. Then

Nlpll = Sh_1 kllokll and SN [|pk]| = 1 imply the existence
of two integers /- < k < [ such that ||p,, || > 0. Accordingly
by iii):

kV
Mi(=5) = Mu(V) for all k > N]p]| - 1.
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A quantitative criterium for existence in P

Corollary 7. Assume that the potential V satisfies the condition

My(V) > MN_I(NI; 1v). (+)

Then the supremum defining My(V) is achieved in (RY)N and all
optimal p satisfy ||p|| = 1.

Remarks:
@ Recall that My(V) > My_1 (% V) is always true.
e If supV > 0, condition (*) is satisfied for large V (i.e. by tV
for t >>1).

e If p is optimal and equality holds in (*), we do not know if
o]l < 1 except if OMy(V) = {p}
(OMp(V) = the set of optimal p associated with V)
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Proof and consequence of Corollary 7
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If an optimal p satisfies ||p|| < 1, then k the integer part of N||p| is
not larger than N — 1. This implies that My (V) = MN_l(% V)
in contradiction with (*). For the first statement we consider a

maximal N-uplet x € XV (X = RU {w}). If the supremum is not
reached on (R9)", this means that x; = w for at most one index i

and in this case we would have again My(V) = My_1 (%) V.
L]
Corollary 8 Let V be a potential V € C; such that:
B = limsup |x|V(x) > 0.

[x| =400

Then all optimal p are in P provided g > N(N — 1).




Proof of Theorem 5 (quantization)
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We introduce
k= max{k€{1,2,...,N} : I\/Ik<% v) >/v/k_1(k,;1 v)}

With the convention Mo = 0 and since My () = & supV >0, k is
well defined. As Mz (f5V) > My_4 (_1%1 V), we apply Corollary 7
considering instead of C = Cy the k-multimarginal energy Cj and
choosing kV/ /N as a potential. We infer the existence of an
optimal proba pz such that

Crlpr) — / Vdpg = —/V’E(l;,\\,/)

Then p := %p; has a mass % and satisfies
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Let us prove now the opposite inequality. Let p optimal and let
{pk} be an optimal decomposition for p according to rhe
stratification formula
N
p=3
N
k=1

By using the monotonicity property of the M, 's and the definition
of k, we infer that I\/Ik(ﬁ V) < Mp(V) for every k < k — 1, thus
by the optimality condition iii) of Theorem 6, it holds px = 0 for

k<k-—1.

Recalling that Y, ||p«|| = 1 (by optimality condition i)), we have

N

k k
= — >
o]l E NHPkH_ /v

|| p[(| >
N’
k=k

M=

hence Zy(V) > k/N. O



5- Perspectives and open issues
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Back to the Strongly Correlated Electrons Density Functional
Theory (SCE-DFT) with

inf{eT(p) + C(p) = U(p) : peP} (1)

Setting p = u? and using dual representation of C, we are led (after
relaxation) to

min  sup /(5|Vu|2 + (¢ — V)u?) — Mn(¢p)

JuP<lpec



Dual problem for Kantorovich potentials

By compactness (with respect to u € L?), we may switch inf and
sup to obtain a dual problem:

sup inf /(5 |Vul® + (¢ — V)u2) — Mn(9)

peCy [u?<l

Computing the minimum with respect to u, we deduce the dual
problem in term of

Ai(p — V) = ground state energy level of —eA + (¢ — V)

sup {—(A\i(¢— V)™ — Mn(p)} .
peCo
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Saddle points formulation

By the existence of a Kantorovich potential for p = v/ 12, we deduce
the existence of a saddle point for the convex-concave problem

min max /(5\Vu|2 + (p = V)u?) — Mn(¢p) l
here:

uelU pek

- U={ue 2R : [|ufdx<1}.
- K is an equi-Lipschiz subset of Co(RY).
Seems to be worth for motivating numerical studies.
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Saddle points formulation
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By the existence of a Kantorovich potential for p = v/ 12, we deduce
the existence of a saddle point for the convex-concave problem

min max /(5\Vu|2 + (p = V)u?) — Mn(¢p) l
here:

uelU pek

- U={ue 2R : [|ufdx<1}.
- K is an equi-Lipschiz subset of Co(RY).
Seems to be worth for motivating numerical studies.

Remark v = 0 cannot be optimal (since inf(1.) < 0). Thus
potentials ¢ such that A\j(¢ — V) > 0 are ruled out. Moreover an
optimal u such that [ u? <1 (ionization) is possible only if

AN(p—V))=0 ( bottom of essential spectrum) J




Open problems

o Let C be the N-multimarginal cost and p a probability with
finite support such that C(p) < +o00. Then the function

p:te[0,1] — C(tp)

is convex continous and vanishes on [0, 4]. It seems that in
addition ¢ is piecewise affine and that the jump set of the

k
slope is contained in {N c1<k<N-1

o If |p|| = X, do we have C(p) = Cx(%p) ? It seems that
counterexamples exist , M.Lewin -S Di Marino-L. Nenna in
progress

@ Given potential V € (p, does the semi-classical procedure
(¢ — 0) selects a particular minimizer 7 Same question in case
of a Coulomb’s type potential.

32/33



Thanks and . ..

Happy Birthday Gianni !
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