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My first image of Gianni

“. . . il più veloce ostacolista d’Italia, meglio di Ottoz. . . ” (De Giorgi circa 1982)

“. . . the fastest hurdler in Italy, better than Ottoz. . . ”

(Eddy Ottoz)

G. Dal Maso and P. Longo. Γ-limits of obstacle problems
hurdle = ostacolo in Italian



My first International Workshop, organized by Gianni in 1985



The great Workshops and School on Homogenization in 1990 and
1993 (organized by Gianni and Gianfausto). By this time Gianni had
already a considerable group of students.



Between 1988 and 1995 Gianni hosted me within his group, but for
some reason we never ended up writing a paper together.

In 1995 I moved to SISSA, and we had the occasion to write two
papers.

A. Braides and G. Dal Maso. Non-local approximation of the
Mumford-Shah functional. Calc. Var. PDE 5 (1997), 293–322.
A. Braides, G. Dal Maso and A. Garroni. Variational formulation of
softening phenomena in Fracture Mechanics: the one-dimensional
case. Arch. Rational Mech. Anal. 146 (1999), 23–58.

These papers initiated an interest both towards discrete-to-continuum
problems and towards applications to Materials Science.

This brings us to the subject of this talk. . .



Surface lattice energies (Ising systems)
in the plane

We start with an easy model lattice system
(cf. Caffarelli-De la Llave, Alicandro-B-Cicalese. Earlier work by
Chambolle, etc.)

1) Regular lattice: Z2

Parameter: (scalar) spin function i 7→ ui ∈ {0, 1}
Ferromagnetic energy: E(u) =

∑
|i−j|=1

|ui − uj |

Piecewise-constant interpolation and identification with a set:
u ∼ {u = 1} =: A(u)

Energy as a perimeter functional E(u) = Per(A(u)) in a 1-periodic
environment (the perimeter is the same as the number of edges in
∂A(u))



Discrete-to-continuum analysis

In this context we may scale E and compute its homogenization
within energies on sets of finite perimeter:

Define: Eε(u) =
∑
|i−j|=1

ε|uεi − uεj | for u : εZ2 → {0, 1}

If Aε(u)(= εA(uεI)) is the union of the ε-cubes such that uεi = 1) still
Eε(u) = Per(Aε(u)) in a ε-periodic environment

Convergence: uε → A if Aε(uε) tends to A locally in R2

Γ-limit: F (A) =

∫
∂∗A

(|ν1|+ |ν2|)dH1 for A set of finite perimeter



2) Randomly distributed weak inclusions in a regular lattice
(“dilute spins”) (cf. B-Piatnitski)

We randomly “remove bonds” (Bernoulli bond percolation):

E(u) =
∑
|i−j|=1

aωij |ui − uj | with aωij ∈ {0, 1},

aωij = 1 with probability p < 1/2 (the case p ≥ 1/2 being trivial)
according to an i.i.d. random variable
(ω = realization of the random variable)

Analogy with the stochastic Γ-convergence of Dal Maso and Modica (with “random
perforated domains”) (but large perforations are almost surely very very ‘far away’)

Fundamental issue: to understand the geometry of the graph of the ‘active’ bonds



Discrete-to-continuum analysis

We may scale E = Eω and compute its homogenization:

Define: Eωε (u) =
∑
|i−j|=1

ε aωij |uεi − uεj | for u : εZ2 → {0, 1}

Percolation techniques allow to prove that functions may be extended
‘inside’ the perforated domain so that Eε(u) ∼ Per(Aε(Tu)), where
T is the extension operator

Convergence: uε → A if Aε(Tuε) tends to A locally in R2

Γ-limit: Almost surely F (A) =

∫
∂∗A

ϕp(ν) dH1 for A set of finite

perimeter

ϕp a.s. given by a “first-passage percolation formula” (asymptotic
metric on the connected graph of active bonds)



3) Stochastic lattice:
(cf. Blanc-Le Bris-Lions, Alicandro-Cicalese-Gloria, Ruf)

The set L is a “perturbation of a regular lattice”; the location of points
is random but the arrangement is regular:
• the distance between any two points in L is at least α > 0
• any ball of diameter 1/α contains at least a point of L

Nearest neighbors are defined via Voronoi cells
Ci = {x ∈ R2 : |x− i| ≤ |x− j| for all j ∈ L} with a common edge

Notation: 〈i, j〉 means “i and j are nearest neighbors”; bonds
between nearest neighbors give the related Delaunay triangulation



Parameter: (scalar) spin function L 3 i 7→ ui ∈ {0, 1}
Ferromagnetic energy: E(u) =

∑
〈i,j〉

|ui − uj |

Piecewise-constant interpolation on Voronoi cells, and identification
with a set: u ∼ {u = 1} =: V (u) (union of the Voronoi cells where
ui = 1; if L = Z2 then V (u) = A(u)).

Note: E(u) = number of edges of V (u), but still E(u) ∼ Per(V (u))
(more precisely, αPer(V (u)) ≤ E(u) ≤ 1

αPer(V (u)))



Discrete-to-continuum analysis

Define: Eε(u) =
∑
〈i,j〉

ε|uεi − uεj | for u : εL → {0, 1}

Convergence: uε → A if Vε(uε) tends to A locally in R2

(Vε(u) is the union of the ε-Voronoi cells with uεi = 1)

Under hypotheses of stationarity and ergodicity we have almost sure
Γ-convergence

Γ-limit: F (A) =

∫
∂∗A

ϕ(ν) dH1 for A set of finite perimeter

using subadditive theorems to prove the existence of a deterministic ϕ

(cf. also B-Cicalese-Ruf, Cagnetti-Dal Maso-Scardia-Zeppieri)

Note: ϕ is isotropic only for very special choices of L (cf. Ruf)



Homogenization on Poisson random sets

A Poisson random set L with intensity λ defined on a probability
space (Ω,F ,P) is characterized by
• for any bounded Borel set B ⊂ R2 the number of points in B ∩ L
has a Poisson law with parameter λ|B|

P({#(B ∩ L) = n}) = e−λ|B|
(λ|B|)n

n!
;

• for any collection of bounded disjoint Borel subsets in R2 the
random variables defined as the number of points of L in these
subsets are independent.

Technical detail: The probability space is equipped with a dynamical system
Tx : Ω 7→ Ω, x ∈ R2, Such that for any bounded Borel set B and any x ∈ R2 we have
#
(
(B + x) ∩ L

)
(ω) = #

(
B ∩ L

)
(Txω). We suppose that Tx is a group of measurable

measure preserving transformations in Ω and is ergodic.



Note: contrary to a stochastic lattice
• L is not regular: we have pairs of points of L arbitrarily close, and
balls of arbitrary size not containing points of L
• L is isotropic since the properties of Poisson random sets are
invariant under (translations and) rotations

In the same way as for the stochastic lattice, we define the energy in
terms of nearest neighbors for the Delaunay triangulation:

Ferromagnetic energy: E(u) =
∑
〈i,j〉

|ui − uj | for u : L → {0, 1}

and define V (u) as the union of the Voronoi cells Ci where ui = 1

Issue: we cannot estimate PerV (u) in terms of E(u).
(Even for a single Voronoi cell, we have large Ci with few edges or
small Ci with many edges).

However, we may estimate sets V (u) containing ‘many’ cells thanks
to a Percolation lemma.



Pimentel’s “polyomino” lemma

Π denotes the set of finite connected unions of Voronoi cells. If P ∈ Π
we set

A(P ) = {z ∈ Z2 : (z + (0, 1)2) ∩ P 6= ∅}.

Lemma
Let R > 0 and γ > 0. Then there exists a deterministic constant C
such that for almost all ω there exists ε0 = ε0(ω) > 0 such that if
P ∈ Π and ε < ε0 satisfy

P ∩ R
ε

(0, 1)2 6= ∅, max
{

#{i : Ci ⊂ P},#A(P )
}
≥ ε−γ

then we have

1

C
#{i : Ci ⊂ P} ≤ #A(P ) ≤ C #{i : Ci ⊂ P}.



Compactness of Voronoi sets
We still use the notation Eε(u) =

∑
〈i,j〉

ε|uiε − ujε| for u : εL → {0, 1}

Vε(u) as the union of the ε-Voronoi cells εCi such that uεi = 1

Lemma
Let uε be such that supεEε(u

ε) < +∞. Then we can write

Vε(u
ε) = (Aε ∪B′ε) \B′′ε ,

where |B′ε|+ |B′′ε | → 0, the family χAε is precompact in L1
loc(R2) and

each its limit point is the characteristic function of a set of finite
perimeter A, so that the same holds for χVε(uε).

Proof. Subdivide the boundary Voronoi cells of Vε(uε) into connected components P ε
k :

• large components (such that 1
ε
P ε
k satisfies Pimentel’s lemma with e.g. γ = 1/4).

The ε-cubes covering P ε
k are asymptotically negligible, and Pimentel’s lemma ensures

that the ‘interior’ of such components union such cubes has equibounded perimeter
• small components.
Using the isoperimetric inequality we show that the interior (giving B′′

ε ) or exterior
(giving B′

ε) of these components is asymptotically negligible,



Vε(u
ε) = (Aε ∪B′ε) \B′′ε ,



We consider boundary Voronoi cells
(for the components of the boundary with many edges)



We use Pimentel’s Lemma to prove that unions of ‘boundary cubes’
have finite perimeter



We prove the pre-compactness of sets with boundary with many
edges (plus boundary squares, which are asymptotically negligible)



Geometry of regular Voronoi cells

Given α > 0 we define the set of α-regular points of L as{
i ∈ L : Ci contains a ball of radius α, diamCi ≤ 1

α ,#edges ≤ 1
α

}
If α is small enough, there exists L > 0 such that the event that
k, k′ ∈ Z2 with |k − k′| = 1 are such that the segment [Lk,Lk′]
intersects only α-regular sets has probability p > 1/2.

We can then apply Bernoulli bond-percolation theory to the bonds
[k, k′] of nearest neighbors in Z2



Consequence: the subset of the Delaunay triangulation of L with
α-regular endpoints contains an infinite connected component Dα
whose complement is composed of isolated bounded sets.

Furthermore Dα is ‘regular’, in the sense that there exists τα such
that each two points x, y ∈ Dα are connected by a path with length
not more than τα|x− y|.

As a consequence, we immediately have the finiteness of the
Γ-limsup on sets of finite perimeter; more precisely,

Γ-lim sup
ε→0

Eε(A) ≤ ταH1(∂∗A)

Another consequence (with more refined properties of ‘uniform
regularity’ of Dα): we may use paths in Dα in “discrete
area-formula-type arguments” (in particular to match boundary
conditions).



The possibility to match boundary conditions, and the invariance by
rotations, gives a candidate formula for the surface tension
τ =

lim
t→+∞

1

t
min

{
#
(
segments of paths in D‘almost’ joining (0, 0) and (t, 0)

)}
A subadditive argument allows to show that this limit exists a.s. and is
deterministic.

This formula allows to construct a matching upper bound. Finally,
after a scaling argument which shows that τ = τ0

√
λ (λ the intensity

of the Poisson random set) we have

Theorem (B-Piatnitski 2020)
Almost surely the functionals Eε Γ-converge to τ0

√
λH1(∂∗A) with

respect to the L1-loc convergence of Vε(uε) to A.



Some final remarks

1. Poisson random sets are a relatively simple environment to obtain
isotropic surface energies. Their treatment is based on the analysis
of geometric properties of clusters of Voronoi cells.
2. The result can be extended to the original energies of
Blake-Zisserman type (truncated quadratic potentials) considered by
Chambolle obtaining isotropic Mumford-Shah functionals (work in
progress with Marco Caroccia)
3. The extension to higher dimension seems feasible but requires
(a) finer properties of α-regular clusters; (b) different formulas for τ0
(work in progress with A. Piatnitski). Note that Pimentel’s Lemma and
compactness hold in any dimension.



Happy birthday, Gianni!


