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Our goal is to present some relations be-
tween two important quantities that arise
in the study of elliptic equations. We al-
ways consider the Laplace operator —A with
Dirichlet boundary conditions; other elliptic
operator can be considered, while consider-
ing other boundary conditions (Neumann or
Robin) adds to the problem severe extra dif-
ficulties, essentially due to the fact that in
the Dirichlet case functions in H(£2) can
be easily extended to R% while this is not in
general true in the other cases.



To better understand the two quantities we
deal with, let us make the following two mea-
surements.

e Take in €2 an uniform heat source (f = 1),
fix an initial temperature ug(z), wait a long
time, and measure the average temperature
in 2.

e Consider in €2 no heat source (f = 0), fix
an initial temperature ug(x), and measure
the decay rate to zero of the temperature in
Q.



The first quantity is usually called torsional
rigidity and is defined as

T(S2) =/ u dx

Q
where u is the solution of

~—Au=1in Q, u € H3 ().

In the thermal diffusion model T(2)/|?| is
the average temperature of a conducting medium
€2 with uniformly distributed heat sources

(f=1).



The second quantity is the first eigenvalue
of the Dirichlet Laplacian

A(S2) = min {fﬁk'zvug'fljx Cwe H(%(Q)\{O}}

In the thermal diffusion model, by the Fourier
analysis,

u(t,z) = > e M ug, up)uy (@),
k>1

so A(£2) represents the decay rate in time of
the temperature when an initial temperature
IS given and no heat sources are present.
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If we want, under the measure constraint
2| = m, the highest average temperature,
or the slowest decay rate, the optimal €2 is
the same and is the ball of measure m. Also,
it seems consistent to expect a slow (resp.
fast) heat decay related to a high (resp. low)
temperature. We then want to study if

M) ~ T7H(),
or more generally
A(2) ~ T7Y(),
where by A(Q2) ~ B(£2) we mean
0<c1 <A(RQ)/B(R2) <co <400 for all Q.
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We further aim to study the so-called Blaschke-
Santald diagram for the quantities A\(€2) and
T(€2). This consists in identifying the set
E C R?

E={(z,y) : 2=T(Q), y= XN}

where 2 runs among the admissible sets. In
this way, minimizing a quantity like

F(T(2), M)
is reduced to the optimization problem in R?

min {F(:I:,y) : (:c,y)EE}.



The difficulty consists in the fact that char-
acterizing the set E is hard. Here we only
give some bounds by studying the inf and
sup of

XH(Q)TP ()

when |Q2| = m.

Since the two quantities scale as:

T(tQ) = t4T27(Q), AEQ) = t72A(N)

It IS not restrictive to reduce ourselves to
the case |2| = 1, which simplifies a lot the
presentation.
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For the relations between T'(£2) and A(Q2):
e Kohler-Jobin ZAMP 1978

e van den Berg, B., Velichkov in Birkhauser
2015

e van den Berg, Ferone, Nitsch, Trombetti
Integral Equations Operator Theory 2016

e | ucardesi, Zucco preprint
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The Blaschke-Santalo diagram has been stud-
ied for other pairs of quantities:

o for A1(£2) and \>(2) by D. Bucur, G.B.,
I. Figueiredo (SIAM J. Math. Anal. 1999);

o for A\1(£2) and Per(£2) by M. Dambrine,
I. Ftouhi, A. Henrot, J. Lamboley (paper
in preparation);

e for T(2) and cap(f2) by M. van den Berg,
G.B. (paper in preparation).
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For the inf/sup of
X (TP ()

the case 8 = 0 is well-known and reduces to
the Faber-Krahn result (B ball with |B| = 1)

min{A(Q) Q| = 1} = \(B),
while
sup{A(Q) L = 1} = 400

(take many small balls or a long thin rectan-
gle).
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Similarly, the case o« = 0 is also well-known
through a symmetrization argument (Saint-
Venant inequality):

max{T(Q) Q| = 1} = T(B),
while
inf{T(Q) : |Q=1}=0
(take many small balls or a long thin rectan-
gle).

The case when o« and S have a different sign
is also easy, since T'(L2) is increasing for the
set inclusion, while A(£2) is decreasing.
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So we can reduce the study to the case
A(Q)T(2)

with ¢ > 0. If we want to remove the con-
straint |€2| = 1 the corresponding scaling free
shape functional is
A(€2)T9(€2)
Fy(2) = _
€2|(dg+29-2)/d

that we consider on various classes of admis-
sible domains.
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We start by considering the class of all do-
mains (with |2 = 1). The known cases are:

e g =2/(d+ 2) in which the minimum of
AM2)T1(S2) is reached when £ is a ball
(Kohler-Jobin ZAMP 1978);

e ¢ =1 in which (Pdlya inequality)

0 < ANDT(Q) < 1.
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When 0 < ¢ <2/(d+ 2):

Min A(2)T9(2) = X\(B)T4(B)
sup A(2)T9(2) = +oo.

For the minimum

A(Q)TI(Q) = AMQ)T()%/(d+2)p(0)a—2/(d+2)
> M(B)T(B)?/(d+2p(p)a—2/(d+2)
= M(B)TY(B),

by Kohler-Jobin and Saint-VVenant inequali-
ties.

For the sup take €2 = N disjoint small balls.
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When 2/(d+2) < g < 1:
infA(2)T9(Q2) =0
sup A\(Q2)T1(2) = +oo.
For the sup take again €2 = N disjoint balls.

For the inf take as €2 the union of a fixed

ball B and of N disjoint balls of radius e.
We have

)\(Q)Tq(Q) = R_Q)\(Bl)TQ(Bl)(RCH‘Q_I_Ngd—I—Q)q

and choosing first e -+ 0 and then R — 0 we
have that A\(Q2)T7(<2) vanishes.
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When g = 1:

inf A(Q)T(Q) = 0, SUp AM()T(Q) = 1.

For the inf take as €2 the union of a fixed
ball Bp and of N disjoint balls of radius €, as
above.

The sup equality, taking €2 a finely perfo-
rated domain, was shown by van den Berg,
Ferone, Nitsch, Trombetti [Integral Equa-
tions Opera- tor Theory 2016]. A shorter
proof can be given using the theory of ca-
pacitary measures.
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The finely perforated domains:
e = distance between holes 1. :radigs of a hole
re ~v edd=2) if 4> 2, ro~e 1/ ifd=2.
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When q > 1:
infA\()T9(2) =0, supAX(Q)TYR) < +oo.

For the inf take as €2 the union of a fixed
ball Br and of N disjoint balls of radius €, as
above.

For the sup (using Pdlya and Saint-Venant):
MTYR) = MQDT(Q)TI Q)
<117 HQ) <11 Y(B)

It would be interesting to compute explicitly
sup Fy(€2) for ¢ > 1 (is it attained?).

Summarizing: for general domais we have
21



General domains €2

0<q<2/(d+2)

min F, () = F,(B)

sup Fy(€2) = +o00

2/(d+2) <qg<1|inf F,(2) =0 sup £, () = +o0
qg=1 inf F,(Q2) =0 sup F,(Q2) =1
q>1 inf F,(Q2) =0 sup Fy(€2) < +o0
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The Blaschke-Santald diagram with d = 2, for x =
A(B)/A(2) and y = T(2)/T(B) is contained in the
colored region.
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If we limit ourselves to consider only domains
(2 that are union of disjoint disks of radii r
we find

__ MaXg ?“I% Zk Tg
kTR

It is not difficult to show that in this case we
obtain the region

2
2 <y < 2?[1/a] + (1 - z[1/2])
where [s] is the integer part of s.
In this way in the Blaschke-Santalo diagram

we can reach the colored region in the pic-
ture below.

Y
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In the Blaschke-Santalo diagram with d = 2, the col-
ored region can be reached by domains {2 made by
union of disjoint disks.
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The case d =1

In the one-dimensional case every domain €2
is the union of disjoint intervals of half-length
r., SO that we have

.= manT]% ’ Zkrg’
(Sire)” (Sire)”

and we deduce that the full Blaschke-Santald
set is given by the region

232 <y < 23/~ 1/2] 4 (1 B xl/Q[m—1/2])3

where [s] is the integer part of s.
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The full Blaschke-Santald diagram in the case d = 1,

where z = 72 /A\(2) and y = 12T(£2).

0.8
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T he case {2 convex

If we consider only convex domains €2, the
Blaschke-Santald diagram is clearly smaller.
For the dimension d = 2 the conjecture is

2 2

T < AT (2) < 7

24 — 12| — 12
where the left side corresponds to €2 a thin

triangle and the right side to €2 a thin rect-
angle.

for all €2
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If the Conjecture for convex domains is true, the
Blaschke-Santald diagram is contained in the colored
region.
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At present the only available inequalities are
the ones of [BFNT2016]: for every Q C R?
convex

2 ANDT(R
0.2056 ~ —— < (€)T(€2) < 0.9999
48 12|
instead of the bounds provided by the con-

jecture, which are

72/24 ~ 0.4112 from below
72/12 =~ 0.8225 from above.
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In dimensions d > 3 the conjecture is
72 S MDT(Q) _ 2
2(d+1)(d+2) — 2] — 12
e the right side asymptotically reached by a
thin slab

ng{(:c’,t) : O<t<6}

with =’ € A., being A: a d — 1 dimensional
ball of measure 1/e

e the left side asymptotically reached by a thin
cone based on A: above and with height de.
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T he convexity assumption on the admissible
domains provides a strong extra compact-
ness that allows to prove the existence of
optimal domains in the cases:

max {)\(Q)Tq(fz) . Q convex, Q2] = 1} ifg>1
min {A(Q)TQ(Q) . Q2 convex, |2 = 1} if ¢ < 1.
This is obtained by showing that maximizing

(resp. minimizing) sequences <2, are not too
thin, in the sense that

inradius($2,)

diameter(Q2,) —
where Cd,q > O depends only on d and gq.

Cd,q >

32



Summarizing: for convex domais we have

Convex domains €2

q <1 |minF,(Q) >0 sup Fy(€) = o0
¢g=1|inf H(Q)=C; >0|supF(Q)=C; <1
qg>1|inf F () =0 max Fy,(€2) < +o00
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T hin domains

We say that Q. ¢ R? is a thin domain if

Qe ={(s,t) : s€]0,1[, eh_(s) <t <ehy(s)}

where ¢ is a small positive parameter and
h_,hy are two given (smooth) functions. We
denote by h(s) the local thickness

h(s) =hy(s) —h_(s)
and we assume that h(s) > 0.

The following asymptotics hold (as € — 0):
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=22

1712
63
T(20:) = E/h3(s) ds

Q| = s/h(s) ds.
Hence, for a thin domain €2 we have

AT () w2 [h3(s)ds
Q| 12||h)|3 [ hds

AMe) = [Borisov-Freitas 2010]

We are able to prove the conjecture above
in the class of thin domains. More precisely:
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e fOr every h we have
[h3(s)ds
|B][Zoo [ hds ~
e fOr every h concave we have
[h3(s)ds
|hl|Zc0 [ 2 ds

1
> —
-2
Hence
2 2
U im A(2:)T(€2) < Q
24 — -0 |2 | — 12

where the right inequality holds for all thin
domains, while the left inequality holds for
convex thin domains.
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Open questions

e characterize sup A(2)T9(2) when g > 1;
Q=1

e prove (or disprove) the conjecture for con-
vex sets;

e Simply connected domains or star-shaped
domains? The bounds may change;

e full Blaschke-Santalo diagram;
e p-Laplacian instead of Laplacian?

e cfficient experiments (random domains?).
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