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Our goal is to present some relations be-

tween two important quantities that arise

in the study of elliptic equations. We al-

ways consider the Laplace operator −∆ with

Dirichlet boundary conditions; other elliptic

operator can be considered, while consider-

ing other boundary conditions (Neumann or

Robin) adds to the problem severe extra dif-

ficulties, essentially due to the fact that in

the Dirichlet case functions in H1
0(Ω) can

be easily extended to Rd while this is not in

general true in the other cases.
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To better understand the two quantities we

deal with, let us make the following two mea-

surements.

• Take in Ω an uniform heat source (f = 1),

fix an initial temperature u0(x), wait a long

time, and measure the average temperature

in Ω.

• Consider in Ω no heat source (f = 0), fix

an initial temperature u0(x), and measure

the decay rate to zero of the temperature in

Ω.
5



The first quantity is usually called torsional

rigidity and is defined as

T (Ω) =
∫

Ω
u dx

where u is the solution of

−∆u = 1 in Ω, u ∈ H1
0(Ω).

In the thermal diffusion model T (Ω)/|Ω| is

the average temperature of a conducting medium

Ω with uniformly distributed heat sources

(f = 1).
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The second quantity is the first eigenvalue

of the Dirichlet Laplacian

λ(Ω) = min

{∫
Ω |∇u|2 dx∫

Ω u2 dx
: u ∈ H1

0(Ω) \ {0}
}

In the thermal diffusion model, by the Fourier

analysis,

u(t, x) =
∑

k≥1

e−λkt〈u0, uk〉uk(x),

so λ(Ω) represents the decay rate in time of

the temperature when an initial temperature

is given and no heat sources are present.

7



If we want, under the measure constraint
|Ω| = m, the highest average temperature,
or the slowest decay rate, the optimal Ω is
the same and is the ball of measure m. Also,
it seems consistent to expect a slow (resp.
fast) heat decay related to a high (resp. low)
temperature. We then want to study if

λ(Ω) ∼ T−1(Ω),

or more generally

λ(Ω) ∼ T−q(Ω),

where by A(Ω) ∼ B(Ω) we mean

0 < c1 ≤ A(Ω)/B(Ω) ≤ c2 < +∞ for all Ω.
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We further aim to study the so-called Blaschke-

Santaló diagram for the quantities λ(Ω) and

T (Ω). This consists in identifying the set

E ⊂ R2

E =
{

(x, y) : x = T (Ω), y = λ(Ω)
}

where Ω runs among the admissible sets. In

this way, minimizing a quantity like

F
(
T (Ω), λ(Ω)

)

is reduced to the optimization problem in R2

min
{
F (x, y) : (x, y) ∈ E

}
.

9



The difficulty consists in the fact that char-
acterizing the set E is hard. Here we only
give some bounds by studying the inf and
sup of

λα(Ω)Tβ(Ω)

when |Ω| = m.

Since the two quantities scale as:

T (tΩ) = td+2T (Ω), λ(tΩ) = t−2λ(Ω)

it is not restrictive to reduce ourselves to
the case |Ω| = 1, which simplifies a lot the
presentation.
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For the relations between T (Ω) and λ(Ω):

• Kohler-Jobin ZAMP 1978

• van den Berg, B., Velichkov in Birkhäuser

2015

• van den Berg, Ferone, Nitsch, Trombetti

Integral Equations Operator Theory 2016

• Lucardesi, Zucco preprint
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The Blaschke-Santaló diagram has been stud-
ied for other pairs of quantities:

• for λ1(Ω) and λ2(Ω) by D. Bucur, G.B.,
I. Figueiredo (SIAM J. Math. Anal. 1999);

• for λ1(Ω) and Per(Ω) by M. Dambrine,
I. Ftouhi, A. Henrot, J. Lamboley (paper
in preparation);

• for T (Ω) and cap(Ω) by M. van den Berg,
G.B. (paper in preparation).
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For the inf/sup of

λα(Ω)Tβ(Ω)

the case β = 0 is well-known and reduces to

the Faber-Krahn result (B ball with |B| = 1)

min
{
λ(Ω) : |Ω| = 1

}
= λ(B),

while

sup
{
λ(Ω) : |Ω| = 1

}
= +∞

(take many small balls or a long thin rectan-

gle).

13



Similarly, the case α = 0 is also well-known

through a symmetrization argument (Saint-

Venant inequality):

max
{
T (Ω) : |Ω| = 1

}
= T (B),

while

inf
{
T (Ω) : |Ω| = 1

}
= 0

(take many small balls or a long thin rectan-

gle).

The case when α and β have a different sign

is also easy, since T (Ω) is increasing for the

set inclusion, while λ(Ω) is decreasing.
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So we can reduce the study to the case

λ(Ω)T q(Ω)

with q > 0. If we want to remove the con-

straint |Ω| = 1 the corresponding scaling free

shape functional is

Fq(Ω) =
λ(Ω)T q(Ω)

|Ω|(dq+2q−2)/d

that we consider on various classes of admis-

sible domains.

15



We start by considering the class of all do-

mains (with |Ω| = 1). The known cases are:

• q = 2/(d + 2) in which the minimum of

λ(Ω)T q(Ω) is reached when Ω is a ball

(Kohler-Jobin ZAMP 1978);

• q = 1 in which (Pólya inequality)

0 < λ(Ω)T (Ω) < 1.
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When 0 < q ≤ 2/(d+ 2):




minλ(Ω)T q(Ω) = λ(B)T q(B)

supλ(Ω)T q(Ω) = +∞.
For the minimum

λ(Ω)T q(Ω) = λ(Ω)T (Ω)2/(d+2)T (Ω)q−2/(d+2)

≥ λ(B)T (B)2/(d+2)T (B)q−2/(d+2)

= λ(B)T q(B),

by Kohler-Jobin and Saint-Venant inequali-

ties.

For the sup take Ω = N disjoint small balls.
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When 2/(d+ 2) < q < 1:




inf λ(Ω)T q(Ω) = 0

supλ(Ω)T q(Ω) = +∞.
For the sup take again Ω = N disjoint balls.

For the inf take as Ω the union of a fixed

ball BR and of N disjoint balls of radius ε.

We have

λ(Ω)T q(Ω) = R−2λ(B1)T q(B1)
(
Rd+2+Nεd+2

)q

and choosing first ε→ 0 and then R→ 0 we

have that λ(Ω)T q(Ω) vanishes.
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When q = 1:

inf λ(Ω)T (Ω) = 0, supλ(Ω)T (Ω) = 1.

For the inf take as Ω the union of a fixed

ball BR and of N disjoint balls of radius ε, as

above.

The sup equality, taking Ω a finely perfo-

rated domain, was shown by van den Berg,

Ferone, Nitsch, Trombetti [Integral Equa-

tions Opera- tor Theory 2016]. A shorter

proof can be given using the theory of ca-

pacitary measures.

19



The finely perforated domains:
ε = distance between holes rε =radius of a hole

rε ∼ εd/(d−2) if d > 2, rε ∼ e−1/ε2
if d = 2.
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When q > 1:

inf λ(Ω)T q(Ω) = 0, supλ(Ω)T q(Ω) < +∞.
For the inf take as Ω the union of a fixed
ball BR and of N disjoint balls of radius ε, as
above.

For the sup (using Pólya and Saint-Venant):

λ(Ω)T q(Ω) = λ(Ω)T (Ω)T q−1(Ω)

≤ T q−1(Ω) ≤ T q−1(B)

It would be interesting to compute explicitly
supFq(Ω) for q > 1 (is it attained?).

Summarizing: for general domais we have
21



8 G. BUTTAZZO

General domains ⌦

0 < q  2/(d + 2) min Fq(⌦) = Fq(B) sup Fq(⌦) = +1

2/(d + 2) < q < 1 inf Fq(⌦) = 0 sup Fq(⌦) = +1

q = 1 inf Fq(⌦) = 0 sup Fq(⌦) = 1

q > 1 inf Fq(⌦) = 0 sup Fq(⌦) < +1

Table 1. Bounds for Fq(⌦) when ⌦ varies among all domains.tableall

4. Convex domains
sconv

In the case of convex domains, some of the bounds seen in Section 3 remain:
taking as ⌦ a slab A⇥] � "/2, "/2[ we obtain

inf
n

Fq(⌦) : ⌦ convex
o

= 0 if q > 1,

sup
n

F1(⌦) : ⌦ convex
o

= +1 if q < 1.

The case q = 1 was studied in [2], where the following bounds have been obtained:
8
<
:

inf
n

F1(⌦) : ⌦ convex
o

= C� > 0,

sup
n

F1(⌦) : ⌦ convex
o

= C+ < 1.
(4.1) bounds

The explicit values for C� and C+ are not yet known and only conjectured, as below.

conje Conjecture 4.1. The values C� and C+ are given by

• C� = ⇡2/24 asymptotically reached by a thin “triangle”, obtained by A a
d � 1 rectangle and h(s1, . . . , sd�1) = s1;

• C+ = ⇡2/12 asymptotically reached by a thin “slab”, obtained by any A
and h(s1, . . . , sd�1) = 1.

The other cases follow easily from the bounds above.

Proposition 4.2. We have:

inf
n

Fq(⌦) : ⌦ convex
o
� C��d(d + 2)!

2/d
d

�1�q
if q < 1,

sup
n

Fq(⌦) : ⌦ convex
o
 C+

�
d(d + 2)!

2/d
d

�1�q
if q > 1.

Proof. Since

Fq(⌦) = F1(⌦)
⇣ T (⌦)

|⌦|1+2/d

⌘q�1
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The Blaschke-Santaló diagram with d = 2, for x =

λ(B)/λ(Ω) and y = T (Ω)/T (B) is contained in the

colored region.
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If we limit ourselves to consider only domains
Ω that are union of disjoint disks of radii rk
we find

x =
maxk r

2
k∑

k r
2
k

, y =

∑
k r

4
k(∑

k r
2
k

)2 .

It is not difficult to show that in this case we
obtain the region

x2 ≤ y ≤ x2[1/x] +
(
1− x[1/x]

)2

where [s] is the integer part of s.
In this way in the Blaschke-Santaló diagram
we can reach the colored region in the pic-
ture below.
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In the Blaschke-Santaló diagram with d = 2, the col-

ored region can be reached by domains Ω made by

union of disjoint disks.
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The case d = 1

In the one-dimensional case every domain Ω
is the union of disjoint intervals of half-length
rk, so that we have

x =
maxk r

2
k(∑

k rk
)2 , y =

∑
k r

3
k(∑

k rk
)3

and we deduce that the full Blaschke-Santaló
set is given by the region

x3/2 ≤ y ≤ x3/2[x−1/2] +
(
1− x1/2[x−1/2]

)3

where [s] is the integer part of s.
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The full Blaschke-Santaló diagram in the case d = 1,

where x = π2/λ(Ω) and y = 12T (Ω).
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The case Ω convex

If we consider only convex domains Ω, the

Blaschke-Santaló diagram is clearly smaller.

For the dimension d = 2 the conjecture is

π2

24
≤ λ(Ω)T (Ω)

|Ω| ≤ π2

12
for all Ω

where the left side corresponds to Ω a thin

triangle and the right side to Ω a thin rect-

angle.
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If the Conjecture for convex domains is true, the

Blaschke-Santaló diagram is contained in the colored

region.
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At present the only available inequalities are

the ones of [BFNT2016]: for every Ω ⊂ R2

convex

0.2056 ≈ π2

48
≤ λ(Ω)T (Ω)

|Ω| ≤ 0.9999

instead of the bounds provided by the con-

jecture, which are



π2/24 ≈ 0.4112 from below

π2/12 ≈ 0.8225 from above.
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In dimensions d ≥ 3 the conjecture is

π2

2(d+ 1)(d+ 2)
≤ λ(Ω)T (Ω)

|Ω| ≤ π2

12

• the right side asymptotically reached by a

thin slab

Ωε =
{

(x′, t) : 0 < t < ε
}

with x′ ∈ Aε, being Aε a d − 1 dimensional

ball of measure 1/ε

• the left side asymptotically reached by a thin

cone based on Aε above and with height dε.
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The convexity assumption on the admissible
domains provides a strong extra compact-
ness that allows to prove the existence of
optimal domains in the cases:





max
{
λ(Ω)T q(Ω) : Ω convex, |Ω| = 1

}
if q > 1

min
{
λ(Ω)T q(Ω) : Ω convex, |Ω| = 1

}
if q < 1.

This is obtained by showing that maximizing
(resp. minimizing) sequences Ωn are not too
thin, in the sense that

inradius(Ωn)

diameter(Ωn)
≥ cd,q ,

where cd,q > 0 depends only on d and q.
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Summarizing: for convex domais we have

ON THE RELATIONS BETWEEN PRINCIPAL EIGENVALUE AND TORSIONAL RIGIDITY 11

Since r(⌦) is fixed, (4.15) gives the required uniform upper bound for diam(⌦). A
straightforward computation shows that

Fq(B) =
�
j(d�2)/2

�2
(d(d + 2))�q!

2(1�q)/d
d , (4.16) e14

and (4.6) follows by (4.15) and (4.16). ⇤

Proof of Theorem 4.4. Let 0 < q < 1. We follow the same strategy as in the proof of
Theorem 4.3, and fix the inradius of the elements of a minimising sequence. To obtain
a uniform upper bound on the diameter we proceed as follows. For an open, bounded,
convex set in Rd we have by Theorem 1.1(i) in [14] in the special case p = q = 2 that

T (⌦)

|⌦|M(⌦)
� 2

d(d + 2)
, (4.17) e15

where M(⌦) is the maximum of the torsion function. On the other hand it is well
known that M(⌦) � �(⌦)�1, see for example [3] and the references therein. It follows
that

Fq(⌦) �
✓

2

d(d + 2)

◆q
�(⌦)1�q

|⌦|2(q�1)/d
. (4.18) e16

By (4.11),

Fq(⌦) � 23q�2⇡2(1�q)

�
d(d + 2)

�q

r(⌦)2(q�1)

|⌦|2(q�1)/d
. (4.19) e17

Furthermore, by the isodiametric inequality (see for instance [15]),

|⌦|  !d

2d
diam(⌦)d. (4.20) e18

For any element of a minimising sequence of (4.7) we have Fq(B) � Fq(⌦). This gives,
by (4.19)–(4.20),

r(⌦)

diam(⌦)
� ⇡2(5q�4)/(2(1�q))!

1/d
d (d(d + 2)q/(2(q�1))Fq(B)1/(2(q�1)). (4.21) e19

Since r(⌦) is fixed diam(⌦) is uniformly bounded from above. This completes the proof
of the existence of a minimiser. Finally (4.8) follows from (4.16) and (4.21). ⇤

We may then summarize the results about the case of convex domains in Table 2.

Convex domains ⌦

q < 1 min Fq(⌦) > 0 sup Fq(⌦) = +1

q = 1 inf F1(⌦) = C�
d > 0 sup F1(⌦) = C+

d < 1

q > 1 inf Fq(⌦) = 0 max Fq(⌦) < +1

Table 2. Bounds for Fq(⌦) when ⌦ varies among convex domains.tableconvex 33



Thin domains

We say that Ωε ⊂ R2 is a thin domain if

Ωε =
{

(s, t) : s ∈]0,1[, εh−(s) < t < εh+(s)
}

where ε is a small positive parameter and

h−, h+ are two given (smooth) functions. We

denote by h(s) the local thickness

h(s) = h+(s)− h−(s)

and we assume that h(s) ≥ 0.

The following asymptotics hold (as ε→ 0):
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λ(Ωε) ≈
ε−2π2

‖h‖2L∞
[Borisov-Freitas 2010]

T (Ωε) ≈
ε3

12

∫
h3(s) ds

|Ωε| ≈ ε
∫
h(s) ds.

Hence, for a thin domain Ωε we have

λ(Ωε)T (Ωε)

|Ωε|
≈ π2

12

∫
h3(s) ds

‖h‖2L∞
∫
h ds

.

We are able to prove the conjecture above
in the class of thin domains. More precisely:
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• for every h we have
∫
h3(s) ds

‖h‖2L∞
∫
h ds

≤ 1 ;

• for every h concave we have
∫
h3(s) ds

‖h‖2L∞
∫
h ds

≥ 1

2
.

Hence

π2

24
≤ lim
ε→0

λ(Ωε)T (Ωε)

|Ωε|
≤ π2

12

where the right inequality holds for all thin
domains, while the left inequality holds for
convex thin domains.
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Open questions

• characterize sup
|Ω|=1

λ(Ω)T q(Ω) when q > 1;

• prove (or disprove) the conjecture for con-

vex sets;

• simply connected domains or star-shaped

domains? The bounds may change;

• full Blaschke-Santaló diagram;

• p-Laplacian instead of Laplacian?

• efficient experiments (random domains?).
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