Poincaré-Korn and Korn inequalities for functions with small jump set

(Some results on Dal Maso's GSBD functions).

Antonin Chambolle

CMAP, Ecole Polytechnique, CNRS
with S. Conti (Bonn), G. Francfort (Paris-Nord), V. Crismale (CMAP), F. Cagnetti (Sussex), L. Scardia (HW)

Calculus of Variations and Applications: una conferenza per i 65 anni di Gianni Dal Maso (27 Jan.-1 Feb 2020)

Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets

Antonin Chambolle and Francesco Doveri

SISSA, Trieste, Italy

January 27, 1996

Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets

Antonin Chambolle and Francesco Doveri

SISSA, Trieste, Italy

January 27, 1996

Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets

Antonin Chambolle and Francesco Doveri

SISSA, Trieste, Italy

January 27, 1996

Outline

- Displacements with fractures and Gianni's GSBD space
- Poincaré and Korn inequalities:
- Known results
- A new result
- Ideas of proof

Displacements with discontinuities

Let $\Omega \subset \mathbb{R}^{d}$, connected, Lipschitz, $d \geq 2$. Let $K \subset \Omega$ a closed set with with $\mathcal{H}^{d-1}(K)<+\infty$, and $u: \Omega \rightarrow \mathbb{R}^{d}$ measurable such that

$$
e(u):=\frac{D u+(D u)^{T}}{2} \in L^{p}(\Omega \backslash K)
$$

for some $p \in] 1,+\infty[$.

- Such functions (for $p=2$) are in the "energy space" of the "Griffith Energy"

$$
\mathcal{E}(u, K)=\int_{\Omega \backslash K} \mathbb{C} e(u): e(u) d x+\gamma \mathcal{H}^{d-1}(K)
$$

introduced by Francfort and Marigo (1998) in a variational model for fracture growth in the context of linearized elasticity.

- K is the fracture, $e(u)$ the infinitesimal strain, $\mathbb{C}=$ "Hooke's law" which expresses the stress in term of the strain, $\gamma>0$ a parameter called "toughness".
- Natural question: what control does one have on u ? on ∇u ?

Korn, Poincaré-Korn

If $\mathcal{H}^{d-1}(K)=0$ and Ω is Lipschitz, one has the well known Korn inequality: $u \in W^{1, p}\left(\Omega ; \mathbb{R}^{d}\right)$ and $(p>1)$

$$
\begin{equation*}
\|\nabla u\|_{p} \leq c\left(\|e(u)\|_{p}+\|u\|_{p}\right) \tag{K}
\end{equation*}
$$

as well as (if Ω connected)

$$
\|\nabla u-A\|_{p} \leq c\|e(u)\|_{p}
$$

for some skew-symmetric A.
(As a consequence,) one also has (if $p<d$)

$$
\begin{equation*}
\|u-a\|_{p^{*}} \leq c\|e(u)\|_{p} \tag{PK}
\end{equation*}
$$

for a an "infinitesimal rigid motion", that is, affine with $a(x)=A x+b, A+A^{T}=0$, and $p^{*}=p d /(d-p)$.

Korn, Poincaré-Korn

When $\mathcal{H}^{d-1}(K)>0$ one has therefore $u \in W_{\text {loc }}^{1, p}(\Omega \backslash K)$, but what control can we hope? In particular if $\mathcal{H}^{d-1}(K) \ll 1$?
More general situation: (Dal Maso, 2011) $u \in G S B D^{p}(\Omega)$:

- J_{u}, the intrinsic jump set, is just a countably
($d-1$)-rectifiable set with $\mathcal{H}^{d-1}\left(J_{u}\right)<+\infty$,
- and $e(u) \in L^{p}$ an "approximate symmetrized gradient".

This space was introduce by Gianni in 2011 as the right energy space for Griffith's Energy, extending " $\operatorname{SBD}^{p}(\Omega)$ " towards functions with possibly unbounded jumps \rightarrow existence.
Defined by requiring some control on 1D slices.
In such a space it is not even clear that ∇u exists, so what would "Korn's inequality" mean?...

Known results for $B D / S B D / G(S) B D$

Older results: study of $B D, S B D$ (Suquet 78, Matthies et al 79):

- Kohn's PhD thesis (79) (jumps and singularities)
- Bellettini-Coscia (93) (slicing)
- Bellettini-Coscia-Dal Maso (98) (compactness in SBD)
- Ambrosio-Coscia-Dal Maso (97), Hajłasz (96) (fine properties)
- Weak L^{1} estimate on ∇u

Recent results on Korn / Poincaré-Korn by

- C.-Conti-Francfort (2014/16)
- Friedrich (2015, 16-18, several results)
- Conti-Focardi-Iurlano (2015)

Known results

[A.C., S. Conti, G. Francfort (IUMJ 2016)]: there exists $\omega \subset \Omega$ with $|\omega| \leq c \mathcal{H}^{d-1}\left(J_{u}\right)^{d /(d-1)}$ and a infinitesimal rigid motion with

$$
\int_{\Omega \backslash \omega}|u-a|^{p d /(d-1)} d x \leq c \int_{\Omega}|e(u)|^{p} d x
$$

- No estimate on $\partial \omega$;
- No estimate on ∇u;
- Exponent $<p^{*}$.

Known results

Series of results by M. Friedrich (2015-18):

- Case $p=2, d=2$: control of the perimeter $\mathcal{H}^{1}\left(\partial^{*} \omega\right) \leq c \mathcal{H}^{1}\left(J_{u}\right)$, and of $\nabla u-A$ in $\Omega \backslash \omega$, at the expense of losing a bit in the exponents $\left(<2\right.$ and $\left.<2^{*}=\infty\right)$ (preprint 2015);
- $p=d=2$, "Piecewise Korn" with a control of $\nabla u-\sum_{i} A_{i} \chi_{P_{i}}$ (preprint 2016-2018);
- $d \geq 2, p=2$: control of the perimeter with $\sqrt{\mathcal{H}^{d-1}\left(J_{u}\right)}$, control of $\|\nabla u\|_{L^{1}}$ out of ω (same preprint);
- $S B D^{2} \cap L^{\infty} \subset S B V$: control of $\|\nabla u\|_{1}$ if $e(u) \in L^{2}, u \in L^{\infty}$; $G S B D^{2} \subset G B V$ (same).

Applications: with F. Solombrino, existence of quasistatic fracture evolutions in 2D.

Known results

Conti-Focardi-lurlano (2015), show, for any $p \in(1, \infty)$ and in dimension $d=2$, given $u \in G S B D^{p}(\Omega)$,

- that $u=v \in W^{1, p}\left(\Omega ; \mathbb{R}^{d}\right)$ except on an exceptional set ω;
- with $\operatorname{Per}(\omega) \leq c \mathcal{H}^{1}\left(J_{u}\right)$ and $\|e(v)\|_{p} \leq c\|e(u)\|_{p}$;
- hence Korn $\left(K^{\prime}\right)$ and Poincaré-Korn ((PK), with $\left.p^{*}\right)$ hold in $\Omega \backslash \omega$.

Application: integral representation of some energies (2015); density estimates for weak minimizers (hence strong) of Griffith's energy (2016).

Extension to higher dimension

With F. Cagnetti (Sussex, Brighton), L. Scardia (HW, Edinburgh)

Theorem. Let $u \in G S B D^{p}(\Omega)$: there exists ω (small) with $\operatorname{Per}(\omega) \leq c \mathcal{H}^{d-1}\left(J_{u}\right)$ and $v \in W^{1, p}\left(\Omega ; \mathbb{R}^{d}\right)$ with $u=v$ in $\Omega \backslash \omega$ and $\|e(v)\|_{p} \leq c\|e(u)\|_{p}$. In particular (as (K^{\prime}) and (PK) hold for v):

$$
\begin{aligned}
& \|\nabla u-A\|_{L^{p}(\Omega \backslash \omega)} \leq c\|e(u)\|_{L^{p}(\Omega)} \\
& \|u-a\|_{L^{p^{*}}(\Omega \backslash \omega)} \leq c\|e(u)\|_{L^{p}(\Omega)} .
\end{aligned}
$$

Here " ∇u " is the approximate gradient of u which coincides with ∇v a.e. out of ω. (The result is for $p<d$, if $p>d$ we get that u coincides with a Hölder function out of ω.)

Applications?

- Up to now mostly a few remarks:
- An approximation result for GSBD ${ }^{p}$ functions (a variant of a recent result with V . Crismale, where now the jump is mostly untouched and $u_{n}=u$ in most of the domain);
- The observation that ∇u (the approximate gradient) exists a.e. (as for $B D$ functions).

Idea of proof

- Relies on [CCF 16], a "cleaning lemma" in [CCI 17], and the construction in [Conti, Focardi, Iurlano 15] who have first shown this in 2D.

A technical detail of [CCF 16]

Theorem [A.C., S. Conti, G. Francfort (IUMJ 2016)]: Let $\delta>0$ $\theta>0, Q=(-\delta, \delta)^{d}, Q^{\prime}=(1+\theta) Q, Q^{\prime \prime}=(1+2 \theta) Q, p \in(1, \infty)$, $u \in G S B D_{p}\left(Q^{\prime \prime}\right)$. There exists $c(\theta, p, d)>0$ such that

1. There exists $\omega \subset Q^{\prime}$ and an affine function $a: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ with $e(a)=0\left(a=A x+b, A+A^{T}=0\right)$ such that:

$$
\begin{aligned}
& |\omega| \leq c \delta \mathcal{H}^{d-1}\left(J_{u}\right) \\
& \|u-a\|_{L^{d p /(d-1)}\left(Q^{\prime} \backslash \omega\right)} \leq c \delta^{1-1 / d}\|e(u)\|_{L^{p}\left(Q^{\prime \prime}\right)} .
\end{aligned}
$$

A technical detail of [CCF 16]

Theorem [A.C., S. Conti, G. Francfort (IUMJ 2016)]: Let $\delta>0$ $\theta>0, Q=(-\delta, \delta)^{d}, Q^{\prime}=(1+\theta) Q, Q^{\prime \prime}=(1+2 \theta) Q, p \in(1, \infty)$, $u \in G S B D_{p}\left(Q^{\prime \prime}\right)$. There exists $c(\theta, p, d)>0$ such that

1. There exists $\omega \subset Q^{\prime}$ and an affine function $a: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ with $e(a)=0\left(a=A x+b, A+A^{T}=0\right)$ such that:

$$
\begin{aligned}
& |\omega| \leq c \delta \mathcal{H}^{d-1}\left(J_{u}\right) \\
& \|u-a\|_{L^{d p /(d-1)}\left(Q^{\prime} \backslash \omega\right)} \leq c \delta^{1-1 / d}\|e(u)\|_{L^{p}\left(Q^{\prime \prime}\right)} .
\end{aligned}
$$

2. Letting $v=u \chi_{Q^{\prime} \backslash \omega}+a \chi_{\omega}$, and for ϕ a smooth symmetric mollifier with support in $B(0, \theta / 2)$,

$$
\int_{Q}\left|e\left(v * \phi_{\delta}\right)-e(u) * \phi_{\delta}\right|^{p} d x \leq c\left(\frac{\mathcal{H}^{d-1}\left(J_{u}\right)}{\delta^{d-1}}\right)^{s} \int_{Q^{\prime \prime}}|e(u)|^{p} d x
$$

for some exponent $s=s(p, d)>0$.

Detail of [CCF16]

- The proof relies heavily on slicing;
- For $G S B D^{p}$ functions we use that for a.e. $x, y \in \Omega$, if $[x, y] \cap J_{u}=\emptyset$, then (if u is smooth out of J_{u})

$$
(u(y)-u(x))
$$

$$
=\int_{0}^{1} \nabla u(x+s(y-x))(y-x)
$$

Detail of [CCF16]

- The proof relies heavily on slicing;
- For $G S B D^{p}$ functions we use that for a.e. $x, y \in \Omega$, if $[x, y] \cap J_{u}=\emptyset$, then (if u is smooth out of J_{u})

$$
\begin{aligned}
&(u(y)-u(x)) \cdot(y-x) \\
&=\int_{0}^{1} \nabla u(x+s(y-x))(y-x) \cdot(y-x) d s
\end{aligned}
$$

Detail of [CCF16]

- The proof relies heavily on slicing;
- For $G S B D^{p}$ functions we use that for a.e. $x, y \in \Omega$, if $[x, y] \cap J_{u}=\emptyset$, then

$$
\begin{aligned}
(u(y)-u(x)) \cdot & (y-x) \\
& =\int_{0}^{1} e(u)(x+s(y-x))(y-x) \cdot(y-x) d s
\end{aligned}
$$

Detail of [CCF 16]

Detail of [CCF 16]

Detail of [CCF 16]

Detail of [CCF16]

- Many applications, such as:
- A 「-convergence result for a phase-field approximation of Griffith's energy with a constraint of non-interpenetration in 2D (C-Conti-Francfort)
- weak minimizers of Griffith are strong in any dimension (C-Conti-lurlano);
- compactness and lower semicontinuity in GSBD (C-Crismale);
- existence of strong minimizers for Griffith's Dirichlet problem (C-Crismale)

A first consequence: cleaning lemma

The following is derived from the previous Theorem (cf [C-Conti-lurlano, 17])

Lemma There exists $\bar{\delta}>0(d, p)$ such that For every $u \in G S B D^{p}\left(B_{1}\right)$ with $\delta:=\mathcal{H}^{d-1}\left(J_{u}\right)^{1 / d} \leq \bar{\delta}$, there is $1-\sqrt{\delta}<R<1$ and $\tilde{u} \in \operatorname{GSBD}^{P}\left(B_{1}\right)$ with

- $\tilde{u} \in C^{\infty}\left(B_{1-\sqrt{\delta}}\right), \tilde{u}=u$ in $B_{1} \backslash B_{R} ;$
- $\mathcal{H}^{d-1}\left(J_{\tilde{u}} \backslash J_{u}\right) \leq c \sqrt{\delta} \mathcal{H}^{d-1}\left(J_{u} \cap B_{1} \backslash B_{1-\sqrt{\delta}}\right) ;$
$-\int_{B_{1}}|e(\tilde{u})|^{p} d x \leq\left(1+c \delta^{s}\right) \int_{B_{1}}|e(u)|^{p} d x$.
(For some $s>0$, and $c>0$.)

Cleaning lemma: proof

- Pick $R \in(1-\sqrt{\delta}, 1)$ such that there is not too much jump in $B_{R} \backslash B_{R-2 \delta} ;$
- Cover most of $B_{R-\delta}$ with cubes of size δ, then build a Whitney covering of B_{R} by cubes of size $\delta 2^{-k}$ at distance of same order from ∂B_{R};
- In "good cubes" with little jump, apply the previous theorem to find ω, a and smooth $u \chi_{Q^{\prime} \backslash \omega}+a \chi_{\omega}$. In "bad cubes" with too much jump, do nothing;
- Glue the smoothed functions from neighbouring cubes;
- By construction, all the cubes in $B_{R-2 \delta}$ are good: hence one builds a smooth function in most of the ball.
- Some jump (=boundaries of bad cubes) is added only near "big pieces" of jump (at least not infinitesimal).

Cleaning lemma: proof

Cleaning lemma: proof

Main result: wiping out the jump

Consider $\eta>0, \eta \leq \bar{\delta}^{d}$ (from the previous lemma), and $s>0$ a small parameter. Assume $w \in \operatorname{GSBD}^{p}\left(B_{\rho}\right)$ with $\mathcal{H}^{d-1}\left(J_{w}\right) \leq \eta(s \rho)^{d-1}$.
For each x point of rectifiability in $J_{w} \cap B_{(1-s) \rho}$ one defines $r_{x} \in[0, s \rho]$ such that

$$
\left\{\begin{array}{l}
\mathcal{H}^{d-1}\left(J_{w} \cap B_{r_{x}}(x)\right)=\eta r_{x}^{d-1} \\
\mathcal{H}^{d-1}\left(J_{w} \cap B_{r}(x)\right) \geq \eta r^{d-1} \quad \text { for } r \leq r_{x}
\end{array}\right.
$$

Main result: wiping out the jump

Using Besicovitch's theorem, one finds $\mathcal{N}(d)$ families of disjoint balls $B_{r_{x}}(x)$ which cover $J_{w} \cap B_{(1-s) \rho}$.
Hence, choosing the family $\left(B_{i}\right)_{i}$ which covers the most, one can ensure that $\sum_{i} \mathcal{H}^{d-1}\left(J_{w} \cap B_{i}\right) \geq \mathcal{H}^{d-1}\left(J_{w} \cap B_{(1-s) \rho}\right) / \mathcal{N}(d)$.
In the next step we apply the previous cleaning Lemma to wipe of most of the jump in each B_{i} : we replace w with \tilde{w} in B_{i} such that \tilde{w} is smooth in a large part of B_{i}, and has little additional jump. In particular the choice of r_{x} ensures that a certain proportion of the jump is erased.

This can be done iteratively in such a way that starting from a $u \in G S B D^{p}(B)$ we can find a $w \in G S B D^{p}(B)$ with less jump, no jump at all in a smaller ball, and which differs from u only in a union of small balls with controlled perimeters.

Thank you for your attention

