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Introduction
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Usual approach to nonlinear elasticity in the calcuus of variations:

The deformation u : Ω→ Rn minimizes the effective energy

E [u] =

ˆ
Ω
W (Du) + g(x , u)dx

(+ boundary data).

Where does W come from?

Experimental data,
Microscopic simulation data,
Symmetry requirements,
Physical intuition,
Fitting.
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Mechanics in phase space
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Key idea: compatibility and equilibrium are central,

material laws come later.

Usual approach: uj makes
´

Ω[W (Duj)− f · uj ]dx small:

Duj is an exact gradient (compatibility)

The stress σj is given by σj = DW (Duj) (material law)

Equilibrium divσj + f = 0 is fulfilled only asymptotically

Idea: Duj ∈ L2(Ω;Rn×n) is an exact gradient (compatibility)

σj ∈ L2(Ω;Rn×n) obeys divσj + f = 0 (equilibrium)

Asymptotically, the pair (Duj(x), σj(x)) approaches the
“material set” Dloc ⊂ Rn×n × Rn×n for almost all x ∈ Ω.
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Plan
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1 Elementary example: bar and spring.

2 Finite elasticity in phase space
Classical solutions, strong solutions, generalized solutions
div-curl convergence, coercivity, closedness

[SC, SM, MO, arXiv:1912.02978]

3 Linearized elasticity in phase space
Transversality
Relaxation

[SC, SM, MO, ARMA 2018]

4 Related: Relaxation in stress space
sym-div-quasiconvexity

[SC, SM, MO, ARMA 2019]
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Elementary example: bar and spring
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A

L

k u0

Phase space of bar X = {(ε, σ)} = R2

Compatibility + equilibrium: σA = k(u0 − εL)

Constraint set E := {(ε, σ) : σA = k(u0 − εL)} ⊂ X
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Elementary example: bar and spring
5

A

L

k u0

Phase space of bar X = {(ε, σ)} = R2

Compatibility + equilibrium: σA = k(u0 − εL)

Constraint set E := {(ε, σ) : σA = k(u0 − εL)} ⊂ X

Material data set D ⊂ X , e.g., D = {(ε, ε1/3) : ε ∈ R}

Classical solution set: D ∩ E .

Data-driven solution: min{dist(z ,D) : z ∈ E}.

ε

σ

E D



Introduction

The general data-driven problem
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minimize dist2(z , y) over y ∈ D, z ∈ E

D = {material data}
E = {compatibility and equilibrium}

Aim: find the compatible strain field and the equilibrated
stress field closest to the material data set

No material modeling, no data fitting (ideally)

Raw material data is used (ideally, unprocessed) in
calculations (’the facts, nothing but the facts . . . ’)

T. Kirchdoerfer and M. Ortiz CMAME (2016, 2017).
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Finite elasticity in phase space
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Ω ⊂ Rn Lipschitz, bounded, ∂Ω = ΓD ∪ ΓN , Hn−1(ΓD) > 0

Phase space:
Xp,q(Ω) := {(F ,P) : F ∈ Lp(Ω;Rn×n), P ∈ Lq(Ω;Rn×n)}
1/p+1/q=1

Constraint set E ⊂ Xp,q:
pairs (F ,P) which satisfy
i) Compatibility F = ∇u, u = g on ΓD

ii) Equilibrium divP = f , Pν = h on ΓN

iii) Moment equilibrium FPT = PFT

Material data set
D = {(F ,P) ∈ Xp,q : (F (x),P(x)) ∈ Dloc a.e.}

ΓD

ΓN
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Ω ⊂ Rn

u(Ω) ⊂ Rn

u
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Minimizers of the data-driven problem
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Minimize

I ((F ,P), (F ′,P ′)) :=


ˆ

Ω

(
|F (x)− F ′(x)|p + |P(x)− P ′(x)|q

)
dx

if (F ,P) ∈ E , (F ′,P ′) ∈ D,
∞, otherwise.

Questions:

Existence?

Coercivity, lower semicontinuity?

Relaxation?

Approximation?

Discretization?
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Many concepts of solution
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u ∈W 1,p(Ω;Rn) is a classical solution if (Du,T (Du)) ∈ E ,

with Dloc = {(F ′,P ′) : P ′ = T (F ′),F ′ ∈ Rn×n}.

(F ,P) ∈ Xp,q(Ω) is a strong solution if (F ,P) ∈ E ∩ D.

((F ,P), (F ′,P ′)) ∈ E × D ⊂ Xp,q(Ω)× Xp,q(Ω) is a generalized
solution if it is a minimizer of I .

((F ,P), (F ′,P ′)) ∈ E × D ⊂ Xp,q(Ω)× Xp,q(Ω) is a relaxed
solution if it is accumulation point of a minizing sequence of I .

Remark: “Strong solution” is the same as
“generalized solution and inf I = 0”.
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Coercivity
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Lemma: If (F ,P) ∈ E , then
´

Ω F · P ≤ c‖(F ,P)‖Xp,q + c , with c
depending on the boundary data.

Proof: If F = ∇u and divP + f = 0 in Ω, then´
Ω F · P =

´
Ω∇u · P =

´
∂Ω u · Pν +

´
Ω uf .

By the boundary data,
´
∂Ω u · Pν has linear growth.

Definition: We say that Dloc is (p, q)-coercive if

1

c
|F |p +

1

c
|P|q − c ≤ F · P for all (F ,P) ∈ Dloc .

Theorem: If Dloc is coercive, and inf I <∞, then minimizing
sequences have a weak limit (in Xp,q). The constraint set E is
weakly closed.
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Example in 2d
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Let W2(ξ) := 1
2 |ξ|2 + 1

4a|ξ|4 + g(det ξ),

with g ∈ C 1(R) convex, |g ′|(t) ≤ b + d |t|, n = 2, 0 ≤ d < 2a.

Then DW2 generates a (4, 4/3)-coercive data set.

Choosing g(t) = 1
2β(t − 1− 1+2a

β )2, W2 is minimized by SO(2).
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Example in 3d
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Let W3(ξ) := 1
2 |ξ|2 + 1

4a|ξ|4 + 1
6e|ξ|6 + g(det ξ).

with g ∈ C 1(R) convex, |g ′|(t) ≤ b + d |t|, n = 3, 0 ≤ d < 3e.

Then DW3 generates a (6, 6/5)-coercive data set.

Choosing g(t) = 1
2β(t− 1− 1+3a+9e

β )2, W3 is minimized by SO(3).
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div-curl convergence
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(Fk ,Pk) ∈ Xp,q(Ω) is div-curl convergent to (F ,P) if

Fk ⇀ F in Lp, Pk ⇀ P in Lq,
curlFk → curlF in W−1,p, divPk → divP in W−1,q.

Div-curl Lemma [Murat-Tartar]:

If (Fk ,Pk)
div−curl→ (F ,P) then FkP

T
k ⇀ FPT .

Lemma: If (Fk ,Pk) ∈ D, (F ′k ,P
′
k) ∈ E ,

and I ((Fk ,Pk), (F ′k ,P
′
k))→ 0,

then both sequences are div-curl convergent
and they have the same limit (F ,P).
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div-curl closed data sets
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D ⊂ Xp,q(Ω) is div-curl closed if it is closed with respect to
div-curl convergence.

Dloc ⊂ Rn×n × Rn×n is locally div-curl closed if

(Fk ,Pk) ∈ Dloc a.e. and (Fk ,Pk)
div−curl→ (F∗,P∗) ∈ Rn×n × Rn×n

implies (F∗,P∗) ∈ Dloc .

Theorem: D is div-curl closed iff it is locally div-curl closed.

Proof: localization by blow-up, Hodge decomposition for
truncation, ...
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Polymonotonicity and quasimonotonicity
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T : Rn×n → Rn×n is strictly polymonotone if there are
A : Rn×n → Rτ(n), B ∈ C 0(Rn×n × Rn×n; [0,∞)) such that

(T (F + G )− T (F )) · G ≥ A(F ) ·M(G ) + B(F ,G ),

for all F ,G ∈ Rn×n, with B(F ,G ) > 0 for all G 6= 0.
Here M : Rn×n → Rτ(n) is the vector of minors.

T : Rn×n → Rn×n (Borel, loc. bd.) is strictly quasimonotone if

ˆ
ω

(T (F + Dϕ)− T (F )) · Dϕ dx ≥
ˆ
ω
B(F ,Dϕ)dx

for all F ∈ Rn×n, ϕ ∈ C∞c (ω;Rn). [cp. Zhang 1988]

Theorem: both imply that D is div-curl-closed.
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Example in 2d
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Let W2(ξ) := 1
2 |ξ|2 + 1

4a|ξ|4 + g(det ξ),

with g ∈ C 1(R) convex, |g ′|(t) ≤ b + d |t|, b ≤ 2, 0 ≤ d < 2a.

Then DW2 generates a (4, 4/3)-coercive, div-curl closed data set.

Choosing g(t) = 1
2β(t − 1− 1+2a

β )2, W2 is minimized by SO(2).
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Example in 3d
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Let W3(ξ) := 1
2 |ξ|2 + 1

4a|ξ|4 + 1
6e|ξ|6 + g(det ξ).

with g ∈ C 1(R) convex, |g ′(t)− g ′(s)| ≤ d(|t|+ |s|), 0 ≤d< c∗e.

Then DW3 generates a (6, 6/5)-coercive, div-curl closed data set.

Choosing g(t) = 1
2β(t− 1− 1+3a+9e

β )2, W3 is minimized by SO(3).
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Open problems
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Approximation of D: What happens if we have a sequence
Dh → D, do solutions converge to solutions? What topology is
relevant?

Approximation of E : How do we discretize E , for example, for
numerics? How to deal with the condition FPT = PFT ?

Relaxation: What if we have coercivity but no lower
semicontinuity, what is the appropriate concept of relaxation?

How should we deal with the inf I > 0 case?
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Ω ⊂ Rn Lipschitz, bounded, ∂Ω = ΓD ∪ ΓN , Hn−1(ΓD) > 0

Phase space:
XLin := {(ε, σ) : ε ∈ L2(Ω;Rn×n

sym ), σ ∈ L2(Ω;Rn×n
sym )}

Constraint set: E ⊂ XLin consists of pairs (ε, σ) which satisfy:
i) Compatibility ε = 1

2 (∇u + (∇u)T ), u = g on ΓD

ii) Equilibrium divσ = f , σν = h on ΓN .

Material data set:
D = {(ε, σ) ∈ XLin : (ε(x), σ(x)) ∈ Dloc a.e.}

Simplest example:
Hooke’s law, Dloc = {(ε, σ) ∈ (Rn×n

sym)2 : σ = Cε}, C > 0
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Compatibility with the classical theory
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Proposition: Assume f ∈ L2(Ω;Rn), g ∈ H1/2(∂Ω;Rn),
h ∈ H−1/2(∂Ω;Rn),

D = {(ε, σ) : σ(x) = Cε(x) a.e.}

Then, the data-driven problem

min{d(z ,D), z ∈ E}

has a unique solution. Moreover, the data-driven solution satisfies

σ = Cε
divσ + f = 0

ε =
1

2
(∇u +∇uT ), u ∈W 1,2(Ω;Rn)

σν = h on ΓN (in H−1/2)

u = g on ΓD (in H1/2)
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Coercivity
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Coercivity follows from transversality: ∃c > 0, b ≥ 0

‖y − z‖ ≥ c(‖y‖+ ‖z‖)− b ∀y ∈ D ∀z ∈ E .

If this holds, and I (yh, zh) < C , then, up to a subsequence,
(yh, zh) ⇀ (y , z) in L2(Ω;Rn×n×n×n × Rn×n×n×n).

If I (yh, zh)→ 0 then yh − zh → 0.

If D is linear at infinity,
then transversality holds.

ε

σ

DE
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Abstract data convergence
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Def.: A sequence (yh, zh) in XLin × XLin is said to converge to

(y , z) ∈ XLin × XLin in the data topology, (yh, zh)
∆→ (y , z), if

yh ⇀ y , zh ⇀ z and yh − zh → y − z .

Corresponding notion of
Γ(∆)-convergence for functionals F : XLin × XLin → [0,∞]
Kuratowski K (∆)-convergence for subsets of XLin × XLin.

Concept of relaxation! (Γ-limit of constant sequence)
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Sampled local material data sets
25

Ε

Σ

Ε

Σ



Geometrically linear elasticity in phase space

Convergence of sampled data sets
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th uniform approximation
ρh fine approximation
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Relaxation and approximation
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Theorem: Let E ⊂ XLin be weakly sequentially closed,
D = {z : z(x) ∈ Dloc a.e.}, D̄ ⊂ XLin. Suppose:

i) (Relaxation) D̄ × E = K (∆)− lim
h→∞

(D × E).

ii) (Fine approximation)
∃ ρh ↓ 0 d(ξ,Dloc,h) ≤ ρh ∀ξ ∈ Dloc ;

iii) (Uniform approximation)
∃ th ↓ 0 d(ξ,Dloc) ≤ th ∀ξ ∈ Dloc,h.

iv) (Transversality) ∃c > 0, b ≥ 0

‖y − z‖ ≥ c(‖y‖+ ‖z‖)− b ∀y ∈ D ∀z ∈ E .

Then, D̄ × E = K (∆)− lim
h→∞

(Dh × E).



∆-Relaxation of the two-well problem

Relaxation: The two-well problem in 1d
28

σ

ε

σ0

−σ0 Dloc

Dloc = {(ε,Cε+ σ0), ε ≤ 0} ∪ {(ε,Cε− σ0), ε ≥ 0},
= {(C−1σ− ε0, σ) : σ ≤ σ0} ∪ {C−1σ + ε0, σ) : σ ≥ −σ0},

(C > 0, σ0 ≥ 0,ε0 := C−1σ0).
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Relaxation: The two-well problem in 1d
28

σ

ε

σ0

−σ0 Dloc Dloc

σ

ε

Dloc = {(ε,Cε+ σ0), ε ≤ 0} ∪ {(ε,Cε− σ0), ε ≥ 0},
= {(C−1σ− ε0, σ) : σ ≤ σ0} ∪ {C−1σ + ε0, σ) : σ ≥ −σ0},

D̄loc =Dloc ∪ {(C−1σ + µε0, σ), |µ| ≤ 1, |σ| ≤ σ0}

(C > 0, σ0 ≥ 0,ε0 := C−1σ0).

Then, D̄ × E = K (∆)− limh→∞D × E .



∆-Relaxation of the two-well problem

Data relaxation vs. relaxation of the energy
29
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2Cmin

(
(ε+ ε0)2, (ε− ε0)2

)
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W (ε) = 1
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(ε+ ε0)2, (ε− ε0)2

)
Relaxed energy: convexification W ∗∗
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Data relaxation vs. relaxation of the energy
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Relaxed energy: convexification W ∗∗
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∆-Relaxation of the two-well problem

Data relaxation and hysteresis
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σ

ε

graph W ∗∗′

σ

ε

Dloc



∆-Relaxation of the two-well problem

The general two well problem with equal moduli
31

Fix C > 0 and b ∈ Rn×n
sym . Let Dloc := D+

loc ∪ D−loc ,

D+
loc := {(C−1σ+ b, σ) : σ ∈ Rn×n

sym , σ · b ≥ −Cb · b},
D−loc := {(C−1σ− b, σ) : σ ∈ Rn×n

sym , σ · b ≤ Cb · b}.

..... then there is a (somewhat long) formula for D̄loc , and

D̄ × E = K (∆)− lim
h→∞

D × E .



Summary

Phase-space formulation
of continuum mechanics

Possible application:
Data-driven simulation (no model!)

Existence for finite elasticity
via div-curl-convergence and quasimonotonicity

Approximation and Relaxation
for infinitesimal elasticity

Example: geometrically linear
two-well problem

σ

ε

Dloc
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