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This talk will be about problems in Q.M. that belong mathemati-

cally to Functional Analysis (extensions of symmetric operators).

It is dedicated to Gianni dal Maso on the occasion of his 65th

birthday.

Gianni is a very good scientist and a very good friend.

He is also a very good teacher and mentor, judging from the af-

fection of all his Ph.D. students I know.

The Math sector in Sissa owes much to the time and efforts Gianni

puts in promoting the standards of excellence.
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One more reason to praise Gianni is that in his book on Gamma

convergence it is clearly pointed out that Gamma convergence im-

plies resolvent convergence (but not quadratic form convergence).

This in turn implies convergence of spectra of self-adjoint opera-

tors and of Wave Operators (Scattering matrices), a daily bread

in Functional Analysis and Mathematical Physics.

!!!HAPPY BIRTHDAY GIANNI !!!
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This talk will be about problems in Q.M. that belong mathemat-

ically to Functional Analysis (extensions of symmetric operators)

and make essential use of Gamma convergence.

We shall describe contact interactions, as representatives of inter-

actions of extremely short range. We work in R3.

The mathematical tools we use, a part from Gamma convergence,

are rather elementary, the standard tools used in the mathematics

of Quantum Mechanics.

Recall that in Quantum Mechanics the the interaction is described

by a Schrödinger equation and the hamiltonian is the sum of a

kinetic part H0 (the free hamiltonian, usually a second order par-

tial differential operator,) and a potential part, usually a negative

function with various regularity properties.

4



We introduce two different types of ”zero range” (contact) interac-

tions, weak and strong, through the use of of boundary conditions

(to be defined soon). Formally they correspond to placing on the

boundaries xi − xj = distributions of different orders.

They can also be defined, with some care, as distributional limit

of suitable sequences of regular potentials.

In this case this ”interaction” must be properly defined; we shall

see the role in this of Gamma convergence.

Weak contact requires the presence of a zero energy resonance (

a solution of the two-body problem (H0 + V )φ = 0 which has the

asymptotic behavior 1
|x| (and therefore it is not in L2(R3)).
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Making use of Gamma convergence we prove that a system if three

identical particles in interaction through weak contact is described

by the Gross-Pitayeswii equation ( a cubic focusing p.d.e)

We will prove that this system has infinitely many bound states

with energies that scale as − c√
n
, c > 0

We will also remark, without giving full details, that the system of

three bodies which mutually interact through a weak contact has

as semiclassical limit a three-body newtonian system; the scaling

of energies matches.
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We will briefly compare our analysis with that of a Bose-Einstein

condensate as presented e.g. in [B,O,S] since the Gross-Pitayeskii

equation appears in both formulations.

In the latter case one considers the limit as N →∞ of a system of

N particles interacting through a potential of range N .

A normalization factor 1
N is added to have a single particle (aver-

age) result.

One looks at ”marginals” (reduced density matrices).

Setting ε = 1
N this interaction in the limit N →∞ would represents

”weak contact” (to be defined soon) it there were a zero energy

resonance.
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Since in experiments the presence of a zero energy resonance is

essential (and obtained through a Feshbach effect by coupling the

system to a suitably tuned e.m. field) one expects that in the

proof the presence of a zero energy resonance plays a major role.

We shall call ”weak contact” the zero range interaction that re-

quires the presence of a zero-energy resonance.

We will see that joint weak contact between three particles pro-

duces an infinite number of bound states.

In our proof we make essential use of Gamma convergence, a

variational approach introduced 60 years ago by E. de Giorgi in

the context of homogenization.
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We mention that Gamma convergence has also a role in the de-

scription of the structure of the Fermi sea in Solid State Physics,

leading to a discrete spectrum (an infinite number of bound states

for ”conduction electrons in a crystal).

And also in finding the ground state in the Nelson model of the

Polaron (interaction of a quantum particle with quantized zero

mass field).

We will not discuss these topics here.

The common feature is that Gamma convergence allows to ”make

sense” of interactions formally described by delta functions.
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Contact interactions in R3 are often defined by imposing that the

wave function in the domain of the hamiltonian satisfies at the

coincidence manyfold Γ

Γ ≡ ∪i,jΓi,j Γi,j ≡ {xi = xj}, i 6= j xi ∈ R3. (1)

the boundary conditions φ(X) = { Ci,j
|xi−xj|

+Di,j i 6= j }

These conditions were used already in 1935 by H.Bethe and R.Peierls

[B,P] (and before them by Fermi) in the description of the in-

teraction between proton and neutron. They were later used by

Skorniakov and Ter-Martirosian [T,S] in the analysis of three body

scattering within the Faddaev formalism.
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We call strong contact the case Ci,j 6= 0, Di,j = 0 and weak

contact the case Ci,j = 0, Di,j 6= 0.

These two types of interactions give complementary and indepen-

dent results .

Both are independent and complementary to those due potential

of Rollnick class.

Notice that the above definition is formal.
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Functions that satisfy strong boundary conditions are not in the

Hilbert space L2(R3) (and therefore not in the domain of the free

Schrödinger hamiltonian H0).

Integration by parts produces a potential term proportional to

δ(xi − xj). The corresponding quadratic form is not weakly con-

tinuous.

Therefore the first task is to describe the hamiltonian as self-

adjoint operator.

We are looking for extensions of Ĥ0, the symmetric (but not self-

adjoint) operator defined as the free Hamiltonian restricted to func-

tions that vanish in a neighborhood of Γ.
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In Theoretical Physics the interest in the subject was renewed
by recent advances in low energy physics and by the flourishing of
research on ultra-cold atoms interacting through potentials of very
short range.

In what follows we analyze first the case of three particles one of
which is in strong contact with the other two and after the case
of joint weak contact among three particles.

If the interaction is sufficiently strong both lead to the Efimov
effect [E] i.e. the presence of an infinite number of bound states
with eigenvalues that converge to zero as −C√

n
.

This effect is also present in dimension one for particles (elec-
trons) which satisfy the Pauli equation and move on a lattice with
Y -shaped vertices where the interaction takes place, a model sug-
gested by images taken with electron microscopes. This Efimov
effect originates the Fermi sea.
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We will prove

Theorem

In the three-body case weak mutual contact of three identical

(quantum) particles is described by a self-adjoint operator with an

infinite number of negative eigenvalues which scale as − c√
n
c > 0.

The system satsfies the (cubic, focusing) Gross-Pitaievskii equa-

tion i∂φ∂t (t.x) = −∆φ(t, x)− C|φ(t, x)|2φ(t, x).

Each partial two-body system has a zero-energy resonance and the

two-body potential is the limit when ε→ 0 of potentials that scale

as V ε(|x1 − xj) = 1
ε2
V (
|xi−xj|

ε )

.............................
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To make connection with physics we will prove that strong contact

interactions are limits in strong resolvent sense when ε → 0 of

interactions through two-body potentials of class C1∩L1(R3) which

scale according to Vε(|y|) = ε−3V (|yε ).

For weak contact the scaling is and Vε(|y|) = ε−2V (|y|ε ) and there

must be a zero energy resonance.

We will see that this last condition is of topological origin (com-

pactness)

Strong contact interaction is not defined in R3 for a two-particle

system.
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Weak contact of two pairs of particles has a bound state (in the

center of mass and in momentum space the resolvent at the origin

is the inverse of a two-by-two matrix with zeroes on the diagonal).

If one of the masses of the particles ”is infinite” the interaction of

the remaining particle is called point interaction [A]. .

The study of resolvent in the case of point interaction is difficult

because in momentum space the zero energy resonances ”inter-

feres” with the singularity of the free resolvent.

This difficulty is overcome by the procedure that we shall introduce.
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We now describe the hamiltonian of our system in the case of

strong contact.

The quadratic form of the free hamiltonian is a strictly positive

form with domain the space of absolutely continuous functions.

The delta distribution defines a bounded negative bilinear form in

this space.

Therefore if the sum defines a self-adjoint operator, this operator

is bounded below.

It remains to be proven that this self-adjoint operator exists.
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Consider a system of three particles in which one is in strong
contact separately with the other two (for simplicity all particles are
identical). We choose the reference system in which the barycenter
is at rest.

We can take advantage of the regularity of the wave function of
the non interacting particle and integrate by parts with respect to
its coordinates.

The concrete formulation of this operation is realized through the
introduction of an invertible map, which we call the Krein map
K , to a space of more singular functions, called Minlos space M
(the idea of introducing this space came from reading [M1])

This space is obtained from L2(R9) acting with (H0)−
1
2 (this action

is on the domain of this operator; since we going to invert the map,
we can assume that on the complement it acts as identity).
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The map acts differently on operators and on quadratic forms.

On the potential part (which is only defied as quadratic form) it

acts as δ(xi − xj)→ (H0)−
1
2δ(xi − xj)(H0)−

1
2.

Regarded as bilinear forms H0 and the delta commute; they both

are singular elements of an abelian algebra A.

Therefore this map can be written δ → δ(H0)−1.

Our approach is therefore in the path followed by Birman, Krein

and Visik [B][K] for the study of self-adjoint extensions of positive

operators. The main difference is that we work with quadratic

forms [A,S] [K,S]
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On the free Hamiltonian (an operator) the Krein map acts as

H0 → (H0)
1
2 .

This map can be written H0 → (H0)−
1
4H0(H0)−

1
4.

Therefore both the operators and the ”generators” of the maps

belong to the algebra A.

In M the ”potential” has in position space the form − C
|x|+B where

B is a positive bounded operator with kernel that vanishes on the

diagonal.

Therefore in M the potential term is a bona-fide operator.
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In M the kinetic energy is a pseudo-differential operator of order

one

The singularities at the origin (in position space) of the kinetic and

the potential terms are homogeneous .

Therefore [D,R][l,O,R] there are values C1 and C2 of the positive

constant C ( that depend on the masses and on the coupling

constant) such that for C < C1 their sum is a positive weakly closed

quadratic form (and represents therefore [Ka] a positive self-adjoint

operator), for C1 ≤ C < C2 it decomposes into a continuous family

of self-adjoint operators HC,α with one negative eigenvalue λ(C,α).

For C ≥ C2 it decomposes into a continuous family (parametrized

by α of self–adjoint operators with a sequence λn(C,α) of negative

eigenvalues with the asymptotic λn(C,α) ' −b(C.α)n
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These results are derived [D,R][l,O,R] using the Mellin transform

and properties of the Bessel functions.

The Mellin transform ”diagonalizes” the sum of the kinetic and

potential terms.

This can be proved by explicit computations but can be seen also

as a consequence of the fact that both forms belong to the algebra

A and the Mellin transform corresponds to a change of coordinates.

Results of this type in M are also obtained in [M1], [M2] and in

[C] in another context. .
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We must now come back to the original physical space.

This is done inverting the Krein map.

Notice that in M both the kinetic term and the potential term are

self-adjoint operators.

Due to the change in metric topology, after inversion their sum

defines is in ”physical space” a one parameter family of weakly

closed quadratic forms Q(C,α) which are well ordered and uni-

formly bounded below.

Since the interaction potential is rotational invariant, only the s

wave is affected so that all forms are strictly convex.
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The Krein map K is fractioning (the target space is a space of less
regular functions) and mixing (the square root is not diagonal in
the channels).

This suggests the use of Gamma convergence [Dal] , a variational
method pintroduced sixty years ago by E. de Giorgi and originally
used for the study of ”homogenization” of finely structured mate-
rials.

Gamma convergence selects the infimum of an ordered sequence
of strictly convex quadratic forms bounded below in a compact do-
main of a topological space Y . The Gamma limit is the quadratic
form characterized by the following relations

∀y ∈ Y, yn → y, F (y) = liminfF (yn) , ∀x ∈ Yn∀{xn} : F (x) ≤ limsupnFn(xn)
(2)

,
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The first condition implies that F is a common lower bound for

the Fn , the second implies that the bound is optimal.

The condition for existence of the Gamma limit is that the se-

quence be contained in a compact set for the topology of Y (so

that a Palais-Smale converging sequence exists).

In our case the topology is the Frechet topology defined by the

Sobolev seminorms and compactness is assured by the absence of

zero energy resonances.

Therefore in our case the Gamma limit exists.

By a theorem of Kato [K] the limit form admits strong closure and

this defines a self-adjoint hamiltonian.
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If C1 ≤ C < C2 this Hamitonian has a bound state, if C ≥ C2 it has

an Efimov sequence of bound states with eigenvalues that scale as

−a
√
n..

It is possible to prove [D,R] that the moduli of the eigenfunctions

have the form 1
|xi−xj|log(n|xi−xj|)

. The orthogonality is due the fact

that the phases increase linearly with n.

The generalized eigenvectors can also be given and therefore the

model is in this sense completely solvable

One may wonder what happens to the quadratic forms that do not

correspond to a minimum and therefore are not strongly closable.

They correspond to different boundary conditions at contact.
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This alters the order of the quadratic forms and the Gamma limit

is different.

Remark that we have used the free Schrödinger Hamiltonian to

construct the Krein map; we could instead use the magnetic Schrödinger

Hamiltonian and we would reach other extensions.

REMARK

The procedure we have followed is such that at the end of the pro-

cess the kinetic energy is not changed while the potential term is

regularized; it is therefore a sort of renormalization of the interac-

tion but notice that the method is variational and non perturbative.
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We shall now prove that the strong contact hamiltonian is limit in
strong resolvent sense of Hamiltonians of three body systems in
which one particle interacts with the other two through potentials
of class L1(R3) which scale as V ε(xi − xj) = C

ε3
V (
|xi−xj|

ε ).

Such Hamiltonians do not have zero energy resonances; therefore
the quadratic forms belong to a compact set in the topology given
by Sobolev semi-norms.

The sequence is strictly decreasing as a function of ε and is bounded
below by the quadratic form of the strong contact interaction.

Every strictly decreasing sequence in a compact space has a unique
limit if it is uniformly bounded below. The limit is contained in
the image under the inverse of the Krein map of the limit set;
the sequence has therefore the same Gamma limit. Therefore
the quadratic forms of the ε-hamiltonians Gamma converge to the
quadratic form of the hamiltonian of contact interaction.
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Gamma convergence implies strong resolvent convergence; there-

fore the hamiltonians H0 + V ε(x0 − x1) + V ε(x0 − x2) converge in

the strong resolvent sense to the Hamiltonian of separate strong

contact of a particle with two particles.

Notice that strong resolvent convergence implies convergence of

spectra and of Wave Operators but does not imply convergence

of quadratic forms: it only implies convergence for sequences that

remain uniformly bounded [Dal]..

Therefore the result cannot be obtained in perturbation theory.

Remark also the method we follow is variational and therefore

no estimates are given of the convergence as a function of the

parameter ε.
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Gamma convergence is stable under the addition of regular po-

tentials; the proof makes use of a formalism due to Kato and

improved by Konno e Kuroda [K,K] If C is large enough this leads

to an Efimov sequence of bound states.

For a three-particle system with strong contact the ground state

is unique and its wave function can be take real.

The other bound states have complex-valued wave functions.

They cannot be found by a traditional Morse analysis and requires

the use of Bott’s index theory [Ek].
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We have seen that in order to have a self-adjoint operator describ-

ing the strong contact of two particles, a third non interacting

particle is needed.

This is the case for a system of two species of particle (e,g, protons

and neutrons) in which members of each specie don’t interact

among themselves and interact through strong contact (a delta

function) pairwise with members of the other specie.

If the members of each specie are identical particles, a three-body

problem is sufficient to describe the system.
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In the case of Bose-Einstein condensate the ”bosons” are not el-
ementary particles; they are composites that are described effec-
tively by wave functions that are symmetric under permutation of
two variables; in this sense they represent ”bosons”

We describe the condensate as originated by mutual weak contact
of three particle systems.

Two-body weak contact has a zero energy resonance. The pres-
ence of a zero energy resonance spoils compactness.

To recover compactness we must require that also the approximat-
ing two-body potentials lead to a Hamiltonian with a zero energy
resonance, so that this resonance ”can be subtracted away” before
taking the limit ε→ 0.

To produce a Bose-Einstein condensate one needs potentials which
in two body systems lead a zero energy resonance.
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This is a major difficulty in producing a Bose-Einstrein condensate;
in actual experiments the zero energy resonance is obtained intro-
ducing a suitable external e.m. field that generate a zero energy
resonance through a Feshbach effect.

The other difficulty is in ”stabilizing” the system and making it
dense. This requires the introduction of a confining potential and
it is essential that this confinement does not spoil the effect of
weak contact.

It is therefore important a result of Konno-Kuroda [K,K] according
to which potentials of Rollnik class and weak contact ”potentials”
lead to independent and complemantary effect.

Any description of the condensate that does not introduce a zero
energy two-body resonance does not catch the physics of the prob-
lem
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Mathematically we can proceed as in the case of strong separate

contact and introduce in the same way the auxiliary space M.

To see the mathematical role of the zero energy resonance recall

that, in the case of strong separate contact, in the space M the

potential term contains a positive term that we have called B.

We will prove that in the case of mutual weak contact this term

is not present.

Therefore the kinetic energy term and the potential energy term

have the same behavior under scaling.

Not surprisingly since the two particle Hamiltonian of weak contact

is covariant under scaling.
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We will use the Birman-Schwinger formula for the difference of

the resolvent of the hamiltonian for simultaneous weak contact of

three particles and the resolvent of the strong separate case.

The B-S formula is

1

H2 − z
−

1

H1 − z
=

1

H2 − z
K1,2

1

H1 − z
,K = U

1
2

1

H1 − z
U

1
2 U = −(H2−H1)

(3)

where H2, H1 are self-adjoint operators, and z is chosen out of

the spectrum of both operators and K is the Birman-Schwinger

kernel.
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We can take for H2 the Hamiltonian of joint weak contact and for

H1 the hamiltonian of strong separate contact.

We already proved strong resolvent convergence as ε → 0 for H2

and H1.

Take ε finite and consider the contribution to 1
H−z coming from

those terms in the perturbative in which all three potentials con-

tribute.

In these terms we can ”take away” the factor ε−2 from one of the

potentials and attribute a factor ε−1 to each of the other two.

Together with the kinetic energy the limit ε→ 0 provides in physical

space the resolvent of H1 .
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The remaining terms are negative and in M in the limit ε → 0

cancel in the quadratic form the term B that was present in the

case of separate strong contact.

Therefore In M in the weak joint contact case the kinetic and

potential energies scale in the same way under dilation

This is not a surprise since the hamiltonian of weak contact is scale

covariant.

We can now invert the Krein map and take the limit ε→ 0 in the

strong resolvent sense.
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Since B is positive, the minimum of the energy functional is pro-

vided by the simultaneous weak contact of three particles AND

NOT BY STRONG CONTACT.

As before Gamma convergence gives a unique self-adjoint operator

bounded below with an Efimov sequence of bound states that scale

as −c 1√
n

.

Each of the infinitely many bound states in the case of joint weak

contact is lower that the corresponding state of separate strong

contact.

The lowest energy state of the system is the ground state for weak

simultaneous contact interactions.
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In the case of simultaneous weak contact of three particles the
hamiltonian is the limit in strong resolvent sense of the sum of
the free Hamiltonian and the product of three attractive two-body
potential that scale as V ε(xi − xj) = 1

ε2
V (

xi−xj
ε ) and have a zero

energy resonance.

There is an Efimov sequence of bound states with energies that
scale as −C 1√

n
.

The three-body system satisfies !he Gross-Pitaiewsii equation i ∂∂tφ =
−∆φ(x)− g|φ(x)|2φ(x)

To see the origin of the cubic term notice that now there are three
weak contacts and this is ”equivalent” to δ(xi − xj)δ(xj − xk): In
fact the three potentials scale with a factor ε−2 and in the center
of mass frame when acting on continuous functions one can write
(ε2)3 = (ε3)2 take advantage of the fact that the distribution δ
”commutes” with H0.
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The energy functional

E(φ) =
∫
|∇φ(x)|2 − C

∫
|φ(x)|4dx (4)

is obtained by taking the scalar product with a wave function and

integrating by parts the kinetic term.

It has infinitely many critical points; only the lowest corresponds to

a wave function that is real. The functions that describe the other

bound states are complex-valued and therefore the other critical

points of the functional and can be only obtained by a general-

ization of morse Theory [E] i.e introducing an index or through

mountain-pass techniques..
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Since the particles are identical one obtains an energy form which

is the sum of a free part and the integral over the product of the

two densities.

The bound states of the three particle system are critical points

of this Gross-Pitaieskii functional.

Notice that only the ground state is obtained by standard Morse

theory;
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We have so far described the bound states of a three particle

system.

If one neglects the interaction between triples, the ground state

of system of 3N identical particles any three of which are in joint

weak contact is approximately ⊗Nk=1Ωk
s where k is the index of

distinct triplets in joint weak contact and Ωs is the ground state

of a three particle system.

Since the particles are identical bosons the totally symmetric prod-

uct is understood.

Remember that the wave functions of the bound states are ex-

tended therefore in order to find the ground state of the system

one must take into account the contribution of the tails
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The presence of a strong confining potential (usually provided by

the electric potential of strong laser beams) has the effect of ”com-

pressing ” the system.

This effect is independent and complementary to that of the

internal interactions.

This permits to have condensate of different forms, even disk-like

or cigar-like (but never two-dimensional)

The analysis can now be done using perturbation theory.

This operation changes slightly the wave function of the ground

state and may ”destroy” part of the point spectrum.
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The regime we have described may be called high density regime
because the three particles are bound together by three mutual
weak contacts and we have seen that interaction is stronger that
strong separate of one particle with the other two and therefore
the ground state of this system has a very small support

If the confining potential is strong the gas is dense.

There is another regime of Bose-Einstein condensateIt may be
called low density regime

Any triple of particles has now only two weak contacts; if the
particles are identical there is only one bound state.

The bound state has now a much larger support and even in pres-
ence of strong constraining potential this results in a lower density
of the gas. .
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If the constraining potential is sufficiently strong there can be now

chains of arbitrary number N ≥ 3 of identical bosons in which each

particle is in separate weak contact with two other particles and

there is no three-particles joint weak contact.

If the triples are well separated one has a unique bound state of

the separate three body systems and the triple does not satisfy the

Gross-Pitaiewskii equation but rather an equation in which the non

linear part is
∫
φ∗(x1)Ξ(x1 − x2)φ(x2)Ξ(x1 − x)|φ(x)|dx1dx2 where

Ξ(y) a (not tempered) distribution limit of which defines weak

contact.

For any N this system is obtained as strong resolvent limit as ε→ 0

of a system of N triples of particles interacting through two-body

potentials that scale as V ε(|xi−xj|) = ε−2V (|xi−xj
ε ) and have a zero

energy resonance.
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REMARK

We have seen that weak contact requires the presence of a zero

energy resonance and this is necessary for having a Bose-Einstein

condensate. This explains why there are no two-dimensional con-

densates.

In two dimension there is only one type of contact (the delta func-

tion and the laplacian are homogeneous at short distances);

This contact does not lead to a resonance but rather to a bound

state.

The absence of the zero energy resonance implies the impossibility

to have a condensate.

46



XXX

47



THE UNITARY GAS

Since it belongs to the same class of problems, we mention hare

briefly the Unitary Gas.

This is a gas of spin 1
2 (massive) non relativistic fermions that

interact through weak contact.

Since particles ”with the same spin orientation” cannot have weak

contact (due to the antisymmetry of the wave function) the system

can be equivalently described as a collection of systems consisting

of couples of spinors with different spin orientation in weak contact.

This is commonly described in Solid State Physics as the formation

of Cooper pairs and the mechanism for their formation has been

described by Bardeen-Cooper-Schrieffer.
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We recall that weak contact requires the presence of a zero energy

resonance and this in turn requires a Feshbach adjustment of the

e.m. field.

Cooper pairs have the statistics of bosons and therefore one can

consider weak contact of three Cooper pairs.

The presence of a Feshbach mechanism is important also in this

step.

In Solid State Physics this is often called B.C.S to Bose-Einstein

transition.
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Since the systems with potentials V ε provide resolvent convergence

when ε→ 0 we can use this ε-approximation to find the spectrum

of the hamiltonian of the system.

In the ε approximation due to antisymmetry of the wave function

(the particles are fermions) all terms in the perturbative expan-

sion that give a negative contribution to the energy cancel with

corresponding terms with a positive contribution.

Therefore in the ε approximation the Hamiltonian (energy) is non

negative and by strong resolvent convergence the Hamiltonian of

the limit system is positive.

Therefore the Unitary Gas has a non negative hamiltonian; in the

Physics Literature this result is known as ”Stability of the Unitary

Gas”.
50



XXX

51



SEMICLASSICAL LIMIT

One verifies easily that weak contact provides Coulomb interac-
tion between the barycenters of coherent states. In this sense
the Newtonian three body system can be regarded as semiclassical
limit of the quantum three body problem with a simultaneous weak
contact.

This system has an Efimov sequence of bound states that are
the counterpart of the orbits of the classical three-body problem.
Both systems have an infinite number of periodic solution (bound
states) ad the discrete spectra correspond (bound states on one
side, energy of periodic orbits on the other side)

Therefore this ”weak form” of the semiclassical limit is satisfied
and mutual weak contact among three particles should be com-
pared with the three-body problem in Newton mechanics.
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For a WKB analysis of the cubic defocusing cubic equation see [C]

[ C,W] [ G]

For the focusing cubic equation (related to weak contact of three

bodies) there are no zero energy resonances and the analysis in [C]

holds (the WKB semiclassical limit can be taken for initial data in

H1).

For the discrete part of the spectrum the weak contact among

three particles is in some sense ”completely solvable” : it allows

a complete description of the eigenvalues and of the (generalized)

eigenfunctions.

53



A more direct W,K,B approach to the semi-classical limit is the
following.

Without changing the dynamics we can use the Hamiltonian H0 +
λ, λ ∈ R

For λ→∞ the Krein map can now be related to the semiclassical
limit. The space Mλ for λ ' ~−1 can be regarded as semiclassical
space. Setting 1√

λ
= ~, a part from an irrelevant constant one

has in Mλ to first order in 1
λ the hamiltonian of the three-body

newtonian system.

Notice that in the semiclassical limit the free hamiltonian is scaled
by a factor to ~−2 and the Coulomb potential is scaled by a factor
~−1 If we identify the radius of the potential (the parameter ε )
with ~ (both have the dimension of a length) the limit ~ = ε → 0
gives contact interaction at a quantum scale, Coulomb interaction
at a semiclassical scale.

54



XXXXXXXXXX

55



EFIMOV EFFECT IN QUANTUM MECHANICS

The analysis of the case of strong separate contact of a particle
with two identical particles can be used to give one more proof of
the Efimov effect in Quantum Mechanics [S]: a system of three
quantum (Schrödinger) particles that has two zero energy reso-
nances has an infinite number of bound states (we could add :
with energies that scale as C√

n
)

Indeed a special conformal transformation leaves the free hamilto-
nian invariant and turns zero energy resonances into function that
have a C

|xi−xj
behavior at contact

Both are in the weak closure of the domains of the corresponding
operators.

Since unitary maps leave the spectrum invariant the result follows
for our analysis of strong contact.
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STRONG AND WEAK INTERACTION HAVE COMPLEMEN-
TARY EFFECTS.

Theorem 1

In three dimensions for N ≥ 3 contact interactions and weak-
contact interactions contribute separately and independently to
the spectral properties and to the boundary conditions at the con-
tact manyfold.

Contact interaction contribute to the Efimov part of the spec-
trum and to the T-M boundary condition

ci,j
|xj−xi|

at the boundary

Γ ≡ ∪i,jΓi,j. Weak-contact interactions contribute to the constant
terms at the boundary and may contribute to the (finite) negative
part spectrum.

♦
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For an unified presentation (which includes also the proof that

the addition of a regular potential does not change the picture)

it is convenient to use a symmetric presentation due to Kato and

Konno-Kuroda [KK] (who generalize previous work by Krein and

Birman) for hamiltonians that can be written in the form

H = H0 +Hint Hint = B∗A (5)

where B, A are densely defined closed operators with D(A) ∩
D(B) ⊂ D(H0) and such that, for every z in the resolvent set

of H0, the operator A 1
H0+zB

∗ has a bounded extension, denoted

by Q(z).

We give details in the case N = 3.
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Since we consider the case of attractive forces, and therefore neg-

ative potentials it is convenient to denote by −Vk(|y|) the two body

potentials. The particle’s coordinates are xk ∈ R3, k = 1,2,3. We

take the interaction potential to be of class C1 and set

V ε(X) =
∑
i 6=j

[V ε1(|xi − xj|) + V ε2(|xi − xj|) + V ε3(|xi − xj|)] (6)

where V1 and V2 are negative and V3(|y) is a regular potential.

For each pair of indices i, j we define V ε1(|y|)) = 1
ε3
V1(|y|ε ) and

V ε2(|y|) = 1
ε2
V2(|y|ε ).We leave V3 unscaled.
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We define Bε = Aε =
√
−V ε. For ε > 0 using Krein resolvent

formula one can give explicitly the operator Bε as convergent power
series of products of the free resolvent R0(z), Rez > 0 and the
square roots of the sum of potentials V εk k = 1,2,3.

One has then for the resolvent R(z) ≡ 1
H+z the following form

[K,K]

R(z)−R0(z) = [R0(z)Bε][1−Qε(z)]−1[BεR0(z)] z > 0 (7)

with

R0(z) =
1

H0 + z
Qε(z) = Bε

1

H0 + z
Bε (8)
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Proof of Theorem 1

We approximate the zero range hamiltonian with the one param-
eter family of hamiltonians

Hε = H0 + +
∑
m,n

V ε(|xn − xm|) n 6= m,xm ∈ R3 (9)

The potential is the sum of three terms

V ε(|y|) =
3∑
i=1

V εi , V ε1(|y|) =
1

ε3
V1(
|y|
ε

), V ε2(|y|) =
1

ε2
V2(
|y|
ε

) (10)

(we omit the index m,n) . All potentials are of class C1. The
potential V3 is unscaled.
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Define

Uε(|y|) = V ε2 + V3 (11)

If ε > 0 the Born series converges and the resolvent can be cast in
the Konno-Kuroda form, [K,K] where the operator B is given as
(convergent) power series of convolutions of the potential Uε and
V ε1 with the resolvent of H0. In general

√
V ε1(|y|) + Uε(|y|) 6=

√
V ε1(|y|) +

√
Uε(|y|) (12)

and in the Konno-Kuroda formula for the resolvent of the operator
Hε one loses separation between the two potentials V ε1 and Uε.
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Notice however that, if V ε1 and Uε are of class C1 , the L1 norm

of Uε vanishes as ε → 0 uniformly on the support of V ε1. By the

Cauchy inequality one has

limε→0‖
√
V ε1(y).

√
Uε(y)‖1 = 0 (13)

Therefore if the limit exists the strong and weak contact interac-

tions act independently.

♥
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Weak-contact case: separation of the regular part

Consider now separate weak-contact interaction of a particle with

a pair of indentical particles.

We allow for the presence of a ”regular part” represented by a

smooth two body L1 potential of finite range and call singular part

the quasi contact interaction and the resonance.

Following the same steps that led to the proof of Theorem 1 on

proves that for a weak-contact interaction of a particle with two

identical particles the singular term (pure weak-contact ) and the

regular term in the two-body part of the interaction contribute

separately to the spectral structure of the hamiltonian.
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BOUNDARY CHARGES

An important aspect of contact interactions is that they are ex-
tension of H0 that are entirely due to ”charges at the boundary”.
In the present case the boundary are internal i.e. they are the
contact manifolds.

Compare with electrostatics: in that case the boundary has co-
dimension one and the Krein map can be identified with the Weyl
map from potentials to charges. It is therefore natural to refer to
Minlos space as the space of charges [D,F,T].

Also in the strong contact case the distribution of ”charges at the
boundary” determine uniquely the self-adjoint extension and each
function in the domain can be written as the sum of a part in the
domain of the Krein map and a ”regular part in the domain of H0.

We sketch here the proof.
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Let H be the self-adjoint extension that represent the contact

interaction.

Choose λ in such a way that H +λI is invertible and define (as for

smooth potentials) the Krein kernel Wλ by

1

H + λ
=

1

H0 + λ
+

1

H0 + λ
Wλ

1

H0 + λ
(14)

We want to prove that the elements in the domain of the contact

hamiltonian H are of the form ψ = φ + ζ where φ ∈ D(H0) and ζ

is in Krein space.
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The action of H on elements in its domain is

(H + λ)ψ = (H0 + λ)φ ψ = φ+Kλψ (15)

so that the action of H+λ is completely determined by the action

of H0 +λ on a regular part φ and by a singular part in Minlos space

by obtained acting on ψ by Kλ.

Notice the analogy with electrostatics; the singular part is deter-

mined by the charges. The Weyl map takes the role of the Krein

map.

68



The formal proof (modulo control of the domains) is as follows

((H + λ)ψ,
1

H0 + λ
(H + λ)ψ) = ((H0 + λ)φ,

1

H + λ
(H0 + λ)φ)

= (φ, (H0 + λ)φ) + (Kλψ,WλKλψ) (16)

Gamma convergence substantiates this formal argumentt. There-

fore only ”the space of charges” enters in the description of the

domain.
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It is worth stressing the connection with the theory of boundary
triples [B,M,N].

This a generalization of the Weyl map in electrostatics from po-
tential in a bounded set Ω in R3 with regular boundaries to charges
at the boundary ∂Ω.

In this context the Krein map may be regarded as a Weyl map
between ”potentials” and ”charges” (the charges belong to a space
of more singular functions).

But in the present setting the ”boundary charges” are placed on
a boundary of co-dimension three (the contact manyfold) and not
on an external boundary of co-dimension one as in electrostatics
(and in most of the papers on boundary triples).

For contact interactions the boundary is internal[L,S]
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