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Nonlinear elliptic systems

Let n � 2, m � 1, let 
 be an open set of Rn and let u : 
 � Rn ! Rm be
a weak solution of a nonlinear elliptic system of PDE�s of the form

divA (Du) =
nX
i=1

@

@xi
a�i (Du) = 0; � = 1; 2 : : :m;

where Du : 
 � Rn ! Rm�n denotes the gradient of the map u, by com-
ponents x = (xi)i=1;2;:::;n, u = (u�)�=1;2;:::;m and Du = (@u�=@xi) =

(u�xi)
�=1;2;:::;m
i=1;2;:::;n .

Then A (�) = (a�i (�))
�=1;2;:::;m
i=1;2;:::;n is a given vector �eld A : Rm�n ! Rm�n

of class C1, satisfying the ellipticity condition
nX

i;j=1

mX
�;�=1

@a�i (�)

@�
�
j

��i �
�
j > 0; 8 �; � 2 Rm�n : � 6= 0:



Nonlinear elliptic systems and Calculus of Variations

In the context of Calculus of Variations we assume the variational condition
that the vector �eld A (�) is the gradient of a function f (�); i.e., that there
exists a function f : Rm�n ! R of class C2

�
Rm�n

�
such that

A (�) = D�f (�)

and in terms of components

a�i =
@f

@��i
= f��i

; 8 � = 1; 2; : : : ;m; 8 i = 1; 2; : : : ; n:

Under this variational condition, the previous ellipticity condition can be equiv-
alently written in the form

X
i;j;�;�

@2f (�)

@��i @�
�
j

��i �
�
j > 0; 8 �; � 2 Rm�n : � 6= 0:



Thus the ellipticity condition of the system is equivalent to the positivity on
Rm�n of the quadratic form D2�f (�) for every � 2 R

m�n

�
D2�f (�)�; �

�
> 0; 8 �; � 2 Rm�n : � 6= 0

which implies the (strict) convexity of the function f .

In this case any weak solution (in a class of maps u to be de�ned) to the
di¤erential elliptic system is a minimizer (also here, we need to de�ne that
class of maps which compete with u in the minimization process) of the energy
functional

F (u) =
Z


f(Du) dx

(and, in general, the vice-versa does not hold).



The regularity approach to nonlinear elliptic systems

In the general vectorial setting of maps u : 
 � Rn ! Rm which are weak
solution of nonlinear elliptic system of PDE�s of the previous form, it is well
known that, in general, we can look for the so called partial regularity , since
the pioneering work of Morrey and De Giorgi.

If some additional structure conditions are assumed, then some studies can be
found in the mathematical literature on the subject for everywhere regularity .

For instance, the celebrated everywhere regularity results, about minimizers of
the p�Laplace energy-integral, obtained by Uhlenbeck in 1977, with
f(�) = j�jp and p � 2; that is

F (u) =
Z


jDu (x)jp dx :



The regularity problem for the previous elliptic system consists in asking if the
solution u = u (x) = (u� (x))�=1;2;:::;m, a-priori only measurable map in
a given Sobolev class, in fact is continuos or more regular; i.e. if u is of
class either C0;�, C1, C1;�, or Ck for some k, or even C1, under suitable
assumption of smoothness of the data.

With the aim to explain the situation, we split the regularity process into two
main parts (other points of view of smoothness are possible too), both relevant
steps by themselves:

1st� from either a minimizer, or a weak solution, u 2W 1;p (
;Rm) (either
in W 1;p or in some other Sobolev or Orlicz classes) to W 1;1

loc (
;Rm);

2nd� from a weak solution u 2W 1;p (
;Rm)\W 1;1
loc (
;Rm), under some

smoothness of the data, to more regularity of the type C1;�, or Ck, or C1.



The second regularity step (2nd)

Let us start to brie�y discussing the second regularity step:

from u 2W 1;1
loc (
;Rm) to C1;� (
;Rm) and to C1 (
;Rm)

I.e., we consider the case when the weak solution u 2 W 1;p (
;Rm) also
belong to W 1;1

loc (
;Rm).

First: equations; i.e. the scalar case m = 1

Let us �rst discuss that scalar case m = 1, that is the case when the nonlinear
system reduces to a nonlinear elliptic equation.



Under (so called "natural") ellipticity and p�growth conditions (p � 2) on
the function f 2 C2

�
Rm�n

�
, of the type8>><>>:

�
D2�f (�)�; �

�
� m

�
1 + j�j2

�p�2
2 j�j2���D2�f (�)��� �M �

1 + j�j2
�p�2

2

; 8 �; � 2 Rn ;

it is possible to see that u admits second derivatives in weak form, i.e., u 2
W
2;2
loc (
). Then, �xed k 2 f1; 2; : : : ; ng, we can take the k�derivative in

both sides to the equation

nX
i=1

@

@xi
ai (Du) = 0 ;

and we obtain

nX
i=1

@

@xi

0@ nX
j=1

@ai (Du (x))

@�j

�
uxj

�
xk

1A = nX
i;j=1

@

@xi

 
@ai (Du (x))

@�j

�
uxk

�
xj

!
= 0 :



Therefore the partial derivative uxk satis�es an elliptic di¤erential equation

nX
i;j=1

@

@xi

 
@ai (Du (x))

@�j

�
uxk

�
xj

!
= 0 :

Recall that the map u is given (u is �xed); then we can "forget" the explicit
dependence of @ai=@�j on Du (x). We de�ne the element aij of an n � n
matrix

aij (x) =
@ai (Du (x))

@�j
= f�i�j (Du (x)) ; i; j = 1; 2; : : : ; n:

Recalling that

m
�
1 + jDuj2

�p�2
2 j�j2 �

�
D2�f (Du)�; �

�
�M

�
1 + jDuj2

�p�2
2

and since the gradient Du is locally bounded in 
, then the n�n square matrix�
aij (x)

�
n�n is uniformly elliptic, withmeasurable locally bounded coe¢ cients.



Thus - as well known - we can apply the celebrated

De Giorgi�s Hölder continuity result, 1957,

for the linear elliptic equation

nX
i;j=1

@

@xi

 
aij (x)

@uxk
@xj

!
= 0

with measurable coe¢ cients:

for every k 2 f1; 2; : : : ; ng the partial derivative uxk is Hölder continuous for
some exponent � 2 (0; 1).

Thus u 2 C1;� (
;Rm).



The vector-valued case m � 1

In the vector-valued case m � 1 we need to assume a structure condition, of
the type

f (�) = g (j�j) ; 8 � 2 Rm�n:

Then, again it is possible to show (in some cases) that

u 2W 1;1
loc (
;Rm) ; A 2 C1;
 for some 
 2 (0; 1)

+

u 2 C1;� for some 
 2 (0; 1) :

See for instance the p�Laplace energy-integral, studied by Uhlenbeck in 1977,
with f(�) = j�jp and p � 2.



Moreover more regularity applies; in fact, if the function f is smooth, say
f 2 C2;


�
Rm�n

�
, similarly to the scalar case, u admits second derivatives in

weak form and, �xed k 2 f1; 2; : : : ; ng, we can take the k�derivative in the
system

nX
i=1

@

@xi
a�i (Du) = 0; � = 1; 2 : : :m:

Thus the partial derivative uxk =
�
u
�
xk

��=1;2;:::;m
satis�es

(uxk is a vector-valued map, a vector-valued partial derivative)

nX
i=1

@

@xi

0B@ nX
j=1

mX
�=1

@a�i (Du (x))

@�
�
j

�
u�xj

�
xk

1CA

=
X
i;j;�

@

@xi

0B@@a�i (Du (x))
@�
�
j

�
u�xk

�
xj

1CA = 0 ; � = 1; 2 : : :m:



That is, for every k 2 f1; 2; : : : ; ng, the (vector-valued) map uxk =
�
u
�
xk

��=1;2;:::;m
is a weak solution to the elliptic di¤erential system

X
i;j;�

@

@xi

0@a��ij (x) @u�xk@xj

1A = 0 ; � = 1; 2 : : :m:

where a��ij (x) :
def
= @a�i =@�

�
j (Du (x)) = f��i �

�
j

(Du (x))

are now Hölder continuous coe¢ cients, since u 2 C1;�.

Thus we can apply the classical regularity results in the literature for
linear elliptic systems with smooth coe¢ cients (see for instance Section 3 of
Chapter 3 of the book by Giaquinta, 1983) to infer

u 2 C1;�; A 2 A 2 Ck;
 =) u 2 Ck;�; 8 k = 2; 3; : : :

In particular, if A 2 C1 (or equivalently f 2 C1) then u 2 C1 (
;Rm).



The �rst regularity step (1st)

from u 2W 1;p (
;Rm) to u 2W 1;1
loc (
;Rm)

Therefore the problem which remains to be considered is: under which condi-
tions on the vector �eld A : Rm�n ! Rm�n, A (�) = (a�i (�))

�=1;2;:::;m
i=1;2;:::;n

the gradient Du is in fact locally bounded? I.e.: we look for su¢ cient condi-
tions for u 2W 1;1

loc (
;Rm).

Why the local boundedness of the gradient Du is a so relevant condition for
regularity? Because the di¤erential system heavily depends onDu in a nonlinear
way, in particular trough a�i (Du) and, if Du (x) is bounded, then a

�
i (Du (x))

(here "p � 2") is bounded too and far away from zero. Thus the behavior of
A (�) =

�
a�i (�)

�
for j�j ! +1 becomes irrelevant.



On the contrary, the local boundedness of the gradient is a property related to
the behavior of A (�) as j�j ! +1.

For W 1;1
loc estimates, growth conditions play a relevant role.

We summarize with a scheme:

1st� from u 2W 1;p (
;Rm) to W 1;1
loc (
;Rm); growth conditions, either

of the vector �eld A (�) = (a�i (�)) or of the integrand f (�), play a central
role;

2nd� from u 2 W 1;1
loc (
;Rm) to C1;� or C1; essentially growth condi-

tions are not considered (however, of course, some uniform ellipticity must be
considered, in this step too).



VECTOR-VALUED MAPS - some former results

First, let us mention again the celebrated example by De Giorgi 1968, who
considered an integral of the type

F (u) =
Z


f (x;Du (x)) dx

and he proved that his techniques valid for the scalar case m = 1 cannot be
extended to the vector-valued case m > 2 with systems. Later (but published
in the same year) Giusti and M. Miranda 1968 proposed a similar example for
a minimizer of the energy-integral

F (u) =
Z


f (u;Du (x)) dx :

The �rst example of a singular minimizer of an energy-integral without x and
u explicit dependence is due to Neµcas 1977, for

F (u) =
Z


f (Du (x)) dx ;



The minimizer found by Neµcas 1977 is a map u : Rn ! Rn2 with n large.

Later �verák & Yan 2000 found an example of a singular minimizer in 3 dimen-
sions; precisely for a map u : R3 ! R5.

More recently Connor Mooney & Ovidiu Savin, ARMA 2016, constructed a
singular minimizing map u : R3 ! R2 of a smooth uniformly convex energy-
integral.

There exists a study by Mooney alone, on Arxiv March 2019, for a singular
minimizer map u de�ned in 
 � R4.

As already said, for regularity in the vector-valued case m > 1 we need to
assume a structure condition. Usually the condition is

f (�) = g (j�j) ; 8 � 2 Rm�n:



If this additional structure condition is assumed, then several results can be
found in the mathematical literature for everywhere regularity . As already
said, a main reference is the p�Laplace energy-integral, studied by Uhlenbeck
in 1977, with f(�) = j�jp and p � 2. The energy-integral has the form

F (u) =
Z


jDu (x)jp dx

and the p�Laplace operator - as well known - either in the scalar context
m = 1 for equations, or for vector-valued maps and systems m > 1, is

divA (Du) = div jDujp�2Du

=
nX
i=1

@

@xi

�
jDujp�2 u�xi

�
; � = 1; 2 : : :m:



We can also consider the non-degenerate p�Laplace energy-integral
and the corresponding p�Laplace operator with exponent p > 1, respectively
given by

F (u) =
Z



�
1 + jDu (x)j2

�p
2 dx ;

divA (Du) = div
�
1 + jDu (x)j2

�p�2
2 Du :

We have a natural generalization of these examples with the integrand of the
form f(�) = g(j�j), where g : [0;+1) ! [0;+1) is an increasing convex
function. The energy-integral F takes the form

F (u) =
Z


g (jDuj) dx :

A relevant di¤erence with the p�Laplacian relies on the growth assumptions
that we assume on g = g (t); precisely, on the behavior of g (t) as t! +1.



For instance, the local Lipschitz regularity result by Marcellini (1996) can be
applied to the exponential growth, and also to any �nite composition of expo-
nential, such as (with pi � 1; 8i = 1; 2 : : : k)

g (j�j) = (exp(: : : (exp(exp j�j2)p1)p2) : : : )pk:

However, some other restrictions ware imposed, such as, for instance, the fact
that t 2 (0;+1) ! g0(t)

t is assumed to be an increasing function. To exem-
plify, the model case g(t) = tp gives the restriction p � 2.

Also p; q�growth can be considered, with the energy-integrand f (�) = g (j�j)
which do not behave like a power when j�j ! 1. For instance, for j�j large
(i.e., j�j � e), the integrand could be of the type

f (�) = g (j�j) = j�ja+b sin log logj�j ; g (t) = ta+b sin log log t :

In fact a computation shows that such an integrand is a convex function for
j�j � e (t � e).



Therefore the function

g (j�j) = j�ja+b sin log logj�j

a-priori de�ned for j�j � e, can be extended to all � 2 Rm�n as a convex
function on Rm�n if a; b are positive real numbers such that a > 1+b

p
2. In

this case our integrand satis�es the p; q�growth conditions, with p < q, where
p = a� b and q = a+ b,

j�jp � f(�) � 1 + j�jq ; 8 � 2 Rm�n:

A remark: the "�2-condition" (which can be found in the literature) is consid-
ered to be the "generalized uniformly elliptic case". The function f(�) above
satis�es the�2-condition. While we can construct (details by Bögelein-Duzaar-
Marcellini-Scheven, 2018) some convex functions f (�) = g (j�j), satisfying
p; q�growth conditions, with q > p and q arbitrarily close to p, which do
not satisfy the �2-condition and which enter in the regularity theory presented
here.



Some other references:

Fuchs-Mingione (2000) concentrate on the case of nearly-linear growth. Typical
examples are the logarithmic case

f(�) = j�j log(1 + j�j)
and its iterated version, for k 2 arbitrary,(

fk(�) = j�jLk(j�j);
Ls+1(t) = log(1 + Ls(t)); L1(t) = log(1 + t)

:

Leonetti-Mascolo-Siepe (2003) consider the case of subquadratic p; q�growth,
i.e. they assume 1 < p < q < 2;

their result includes energy densities f of the type (here p < 2)

f(�) = j�jp log�(1 + j�j) :



Also Bildhauer (2003) considers nearly-linear growth; he gives conditions that
can keep "
-elliptic linear growth" with 
 < 1 + 2

n.

Examples of 
-elliptic linear integrands are given by

g
(t) =
Z t
0

Z s
0
(1 + z2)�



2dzds; 8t � 0:

For 
 = 1, g
(t) behaves like t log(1 + t)

and in the (not included) limit case 
 = 3, g
(t) becomes (1 + t2)1=2.

Note that the minimal surface integrand g (t) =
p
1 + t2 does not enter in

the assumptions of these quoted regularity results.



Marcellini and Gloria Papi (2006) gave conditions which include di¤erent kind of
growths: more general conditions on the function g embracing growths moving
between linear and exponential functions.

The conditions are the following (we consider explicitly the case n � 3, while
if n = 2 then the exponent n�2n can be replaced by any real number):

Let t0; H > 0 and let � 2
�
1
n;
2
n

�
. For every � 2

�
1; n
n�1

i
there exist

K = K (�) such that, for all t � t0 ,

Ht�2�

264 g0(t)
t

!n�2
n

+
g0(t)
t

375 � g00(t) � K
"
g0(t)
t
+

 
g0(t)
t

!�#
:

The exponent � in the right hand side is a parameter to be used to test more
functions g. The condition in the left-hand side allows us to achieve functions
- for instance - with second derivative going to zero as a power t�
, with 

small, i.e. 
 < 1 + 2

n:



In the paper by Marcellini and Papi in 2006 the following two results are proved,
the �rst one valid under general growth conditions, the second one speci�c for
the linear case.

Theorem A (General growth). Let g : [0;+1) ! [0;+1) be a convex
function of class W 2;1

loc with g(0) = g0(0) = 0, satisfying the general growth

conditions stated above. Let u 2W 1;1
loc (
;R

m) be a minimizer. Then

u 2W 1;1
loc (
;R

m) :

Moreover, for every � > 0 and R > � > 0 there exists a constant C =

C(�; n; �;R) such that

kDuk2��n
L1(B�;Rm�n) � C

(Z
BR
(1 + g(jDuj)) dx

) 1
1��+�

:



Theorem B (Linear growth). Let g : [0;+1) ! [0;+1) be a convex
function of class W 2;1

loc with g(0) = g0(0) = 0. If g has the linear behavior
at in�nity

lim
t!+1

g(t)

t
= l 2 (0;+1) please note: linear behavior as t! +1

and if its second derivative satis�es the inequalities

H
1

t

� g00(t) � K1

t
; 8t � t0 ;

for some positive constants H;K; t0 and for some 
 2
�
1; 1 + 2

n

�
, then

u 2 W
1;1
loc (
;R

m) and, for every R > � > 0, there exists a constant
C = C(n; �;R; l;H;K) such that

kDuk
2�n(
�1)

2
L1(B�;Rm�n) � C

Z
BR
(1 + g(jDuj)) dx :



Mascolo-Migliorini (2003) studied some cases of integrands f (x; �) = g (x; j�j)
with general growth conditions, which however ruled out the slow growth and
power growth with exponents p 2 (1; 2).

Recently Beck-Mingione (2018) introduced in the integrand some x�dependence
in lower order terms, of the form

F (u) =
Z


fg (jDuj) + h (x) � ug dx :

They obtained the local boundedness of the gradient Du of the local minimizer
under some general growth assumptions on the principal part g (j�j), which is
assumed to be independent of x. They considered some sharp assumptions on
the function h (x), of the type h 2 L (n; 1) (
;Rm) in dimension n > 2:Z +1

0
meas fx 2 
 : jh (x)j > �g1=n d� < +1 :

For the Lorentz space L (n; 1) note that Ln+" � L (n; 1) � Ln; otherwise
h 2 L2 (logL)� (
;Rm) for some � > 2 when n = 2.



VECTOR-VALUED MAPS - x�dependence

This is a recent joint research - submitted, under referee - joint with
Tommaso Di Marco , from the University of Firenze.

We are concerned with the regularity of local minimizers of energy-integrals of
the calculus of variations explicitly depending on x, with energy-integrals and
di¤erential systems respectively of the form

F (u) =
Z


f (x;Du) dx =

Z


g (x; jDuj) dx ;

nX
i=1

@

@xi

 
gt (x; jDuj)
jDuj

u�xi

!
= 0; � = 1; 2; : : : ;m;

where g = g (x; t) and t = jDuj is the gradient variable.



We consider a general integrand of the form g = g (x; t), with g : 
 �
[0;1) ! [0;1) Carathéodory function, convex and increasing with respect
to t 2 [0;1). Our assumptions allow us to consider both fast and slow growth
on the integrand g (x; jDuj). Model energy-integrals that we have in mind are,
for instance, exponential growth with local Lipschitz continuous coe¢ cients a; b
(a (x) ; b (x) � c > 0)Z



ea(x)jDuj

2
dx or

Z


b (x) exp

�
: : : exp

�
a (x) jDuj2

��
dx ;

variable exponents (a; p 2W 1;1
loc (
), a (x) � c > 0 and p (x) � p > 1)Z



a (x) jDujp(x) dx or

Z


a (x)

�
1 + jDuj2

�p(x)=2
dx ;

of course the classical p�Laplacian energy-integral, with a constant p strictly
greater than 1 and integrand f (x;Du) = a (x) jDujp, can be allowed: the
theory considered here applies to the p�Laplacian.



Also Orlicz-type energy-integrals (see the recent papers by Chlebicka et al.
2018-2019), again with local Lipschitz continuous exponent p (x) � p > 1, of
the type Z



a (x) jDujp(x) log(1 + jDuj) dx :

Note that we can also consider some cases with slow growth, for instance when
p (x) is identically equal to 1. Again, here the x�dependence makes delicate
the case p (x) � 1.

The p; q�growth case with x�dependence, of the typeZ


� (x) jDuja(x)+b(x) sin log logjDuj dx :



Also some g (x; j�j) with slow growth, precisely linear growth as
t = jDuj ! +1. Let us consider in low dimension n = 2; 3

g (x; j�j) = j�j � a (x)
q
j�j ; 8 x 2 
; 8 � 2 Rm�n; j�j � 1 ;

i.e. we consider

t! g (x; t) = t� a (x)
p
t

for t � 1 and we extend it to [0;+1) as a smooth convex increasing function
in [0;+1), with derivative equal to zero at t = 0. With abuse of notation,
we will continue to denote by g (x; t) = t � a (x)

p
t this extended function.

The regularity result that we will state below applies also to this energy-integral
(which we will continue to denote with the same expression)Z



�
jDuj � a (x)

q
jDuj

�
dx ; please note: linear behavior as t! +1

with a 2W 1;1
loc (
), a (x) � c > 0.



We emphasize that a (x) � c > 0.

We cannot consider g (x; j�j) = j�j alone, with a (x) = c = 0.

Moreover, it is relevant to notice that our proof does not allow to us to consider
the x�dependence in the leading term jDuj.

More precisely, we are not able to establish the local Lipschitz continuity of
local minimizers to the energy-integralZ




�
m (x) jDuj � a (x)

q
jDuj

�
dx ;

unless m (x) is a positive constant. This seems strongly due to the exponent
p = 1 in the leading term jDujp. On the contrary, when p > 1 the gradient
bound applies to this case too.



With respect to the previous references, related to these researches, we mention
the double phase problems recently intensively studied by Colombo-Mingione
2015 and Baroni-Colombo-Mingione 2016-2018; the double phase with vari-
able exponents by Eleuteri-Marcellini-Mascolo 2016-2018. See also Esposito-
Leonetti-Mingione 2004, Rµadulescu-Zhang 2018, Cencelja-R¼adulescu-Repov�
2018 and De Filippis 2018. For related recent references we quote Bousquet-
Brasco 2019, Carozza-Giannetti-Leonetti-Passarelli 2018, Cupini-Giannetti-Giova-
Passarelli 2018, Cupini-Marcellini-Mascolo 2009-2012-2018, De Filippis-Mingione
2019, Harjulehto-Hästö-Toivanen 2017, Hästö-Ok 2019, Mingione-Palatucci
2019.

Without loss of generality, by changing g (x; t) with g (x; t)�g (x; 0) if neces-
sary, we can reduce ourselves to the case g(x; 0) = 0 for almost every x 2 
.
We assume that the partial derivatives gt, gtt, gtxk exist (for every k =

1; 2; : : : n) and that they are Carathéodory functions too, with gt (x; 0) = 0.



The following assumptions cover the previous model examples. Precisely, we
require that the growth conditions hold:

Let t0 > 0 be �xed; for every open subset 
0 compactly contained in 
, there
exist # � 1 and positive constants m and M# such that8>><>>:

mh0 (t) � gt (x; t) �M#
�
h0 (t)

�# t1�#
mh00 (t) � gtt (x; t) �M#

�
h00 (t)

�#���gtxk (x; t)��� �M#min fgt(x; t); t gtt (x; t)g#

for every t � t0 and for x 2 
0, where h : [0;+1) ! [0;+1) is an
increasing convex function as in Marcellini-Papi 2006.

The role of the parameter # can be easily understood if apply these growth
conditions with the above model examples. For instance:

g (x;Du) = jDujp(x) ; i.e. g (x; t) = tp(x) with t � 0;



then

gt (x; t) = p (x) t
p(x)�1; t gtt (x; t) = p (x) (p (x)� 1) tp(x)�1

and

gtxk (x; t) = pxk (x) t
p(x)�1 + p (x)

@

@xk

h
e(p(x)�1) log t

i

= pxk (x) t
p(x)�1 [1 + p (x) log t] :

We cannot compare (we cannot estimate)
���gtxk (x; t)��� in terms neither of

gt (x; t) nor of tgtt (x; t).

On the contrary, if we denote by L the Lipschitz constant of p (x) on a �xed
open subset 
0 whose closure is contained in 
, then���gtxk(x; t)���

(t gtt (x; t))
#
� L 1 + p (x) log t

p# (x) (p (x)� 1)# t(#�1)(p(x)�1)



and thus the quotient is bounded for t 2 [1;+1) and x 2 
0 if p (x) > 1
is locally Lipschitz continuous in 
 (i.e., also being p (x) � c > 1 for some
constant c = c

�

0
�
) and # > 1.

The role of the parameter #, strictly greater than 1, is relevant.

The special case # = 1 corresponds to the so called natural growth conditions.

As already said, here we follow a similar condition by Marcellini-Papi 2006 on
the function h : [0;+1) ! [0;+1), which is a convex increasing function
of class W 2;1

loc satisfying the following property: for some � > 1
n such that

(2#� 1)# < (1� �) 2�2 , and for every � such that 1 < � �
n
n�1, there exist

constants m� and M� such that, for every t � t0 ,

m�

t2�

264 h0 (t)
t

!n�2
n

+
h0 (t)
t

375 � h00 (t) �M�

" 
h0 (t)
t

!�
+
h0 (t)
t

#



The following a-priori gradient estimate holds.

Theorem (joint work with Tommaso Di Marco, University of Firenze)
Submitted - under referee.

Under the previous assumptions (satis�ed by the given examples) the gradient
of any smooth local minimizer is uniformly locally bounded in 
.

Precisely, there exist an exponent ! > 1 and, for every �;R, 0 < � < R, there
exist a positive constant C such that

kDukL1(B�;Rm�n) � C
(Z
BR
(1 + g (x; jDuj)) dx

)!
:

The exponent ! depends on #; �; n, while the constant C depends on
�;R; n; �; �; #; t0 and sup

�
h00(t) : t 2 [0; t0]

	
.
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