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1. Prologue

Happy birthday to Gianni . . .

. . . many happy and fruitful years to come

. . . and many thanks for your direct and
indirect contributions to CoV and
to the analysis of material models

First meeting: MFO July 7–13, 1996 CoV (Ambrosio, Hélein, Müller)

True encounter: Submission January 12, 2004 to ARMA (by Gilles)
Dal Maso, Francfort, Toader: Quasistatic crack growth in finite elasticity
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1. Prologue

Oberwolfach meeting (March 2007)
Analysis and Numerics of
Rate-Independent Processes

Interaction with Gianni and his school produced cross-fertilization

Gianni my research
BV and CoV parabolic systems

crack evolutions 1996 nonlinear elasticity
quasistatic evolution ≈ rate-independent processes

vanishing-viscosity approach ≈ Balanced-Viscosity solutions

Fundamental contributions to finite-strain elasticity:
Dal Maso, Negri, Percivale: Linearized elasticity as Γ-limit of finite elasticity 2002.
–”–, Francfort, Toader: Quasistatic crack growth in nonlinear elasticity, 2005.
–”–, Lazzaroni: Quasistatic crack growth in finite elasticity with non-interpenetration, 2010
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2. Finite-strain elasiticity and temperature

Describe the interaction between

viscoelastic deformation y(t, ·) : Ω→ Rd and

heat transport for θ(t, ·) : Ω→ ]0,∞[

I consider relatively slow processes =⇒ ignore inertial terms (quasistatic)
I fully nonlinear obeying frame indifference (static and dynamic)
I avoid non-selfinterpenetration (only locally via det∇y(t, x) > 0)
I use a second grade material involving

∫
Ω
H(∇2y) dx

I coupling of temperature and deformation via
• latent heat and • viscous heating

Free energy functional F(y, θ) =
∫

Ω

{
ψ(∇y, θ) + H(∇2y)

}
dx

Viscous dissipation potential R(y, θ, ẏ) =
∫

Ω
ζ(∇y, θ,∇ẏ) dx

Balance of linear momentum 0 = DẏR(y, θ, ẏ) + DyF(y, θ)
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2. Finite-strain elasiticity and temperature

Balance of linear momentum 0 = DẏR(y, θ, ẏ) + DyF(y, θ)

Heat equation with entropy s(t, x) = −∂θψ(∇y(t, x), θ(t, x))

θṡ+ div q = ξ with heat flux q = −K(∇y, θ)∇θ

and viscous heating ξ = ∂∇ẏζ(∇y, θ,∇ẏ):∇ẏ ≥ 0

Today we simplify notation by assuming

no external forces or heat sources

simple boundary conditions y|ΓDir
= yDir and q · ν = 0 (otherwise natural ones)

Total energy conservation holds with e(F, θ) = ψ(F, θ)− θ∂θψ(F, θ)

E(y, θ) =
∫

Ω

{
e(∇y, θ) + H(∇2y)

}
dx

For smooth solutions we have E(y(t), θ(t)) = E(y(0), θ(0)) (energy conserv.).
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2. Finite-strain elasiticity and temperature

Main assumption: splitting of free-energy density

ψ(F, θ) = ϕel(F ) + φcpl(F, θ)

ϕel contains main mech. behavior ϕel(F ) ≥ c/(detF )δ + c|F |p − C

φcpl is “relatively nice” with respect to F

Mechanical energy M(y) =
∫

Ω

{
ϕel(∇y) + H(∇2y)

}
dx

For smooth solutions one obtains the mechanical energy-dissipation balance

M(y(t)) +

∫ t

0

(
DẏR(y, θ, ẏ)[ẏ] +

∫
Ω

∂Fφcpl(∇y, θ):∇ẏ dx
)

ds = M(y(0))

Strategy: Gain good control on y without using any properties of θ:

M(y(t)) +

∫ t

0

(
cKorn‖ẏ‖2H1 − ‖∂Fφcpl‖L2‖∇ẏ‖L2

)
ds ≤ M(y(0))

Using |∂Fφcpl(F, θ)|2 ≤ Kϕel(F ) gives

M(y(t)) ≤ M(y(0)) +

∫ t

0

K

4cKorn
M(y(s)) ds.
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2. Finite-strain elasiticity and temperature

Message: We need some fundamental tools

We need a generalized Korn inequality (Neff 2002, Pompe 2003)

DẏR(y, θ, ẏ)[ẏ] =

∫
Ω

∂∇̇yζ(∇y, θ,∇ẏ):∇ẏ dy ≥ cKorn

∫
Ω

|∇ẏ|2 dx

for all relevant (y, θ) and ẏ ∈ H1
ΓDir

(Ω),
where “relevant” means M(y) ≤ CM and θ arbitrary.

From M(y) ≤ CM we derive invertibility (using Healey-Krömer 2009)

‖∇y‖Cα ≤ C and det∇y(x) ≥ cHeKr > 0.

To control the viscous heating we need to turn weak into strong
convergence. This will be done by a chain-rule argument via Λ-convexity of
M on sublevels: If M(y),M(ŷ) ≤ CM and ‖∇ŷ−∇y‖L∞ ≤ δ(CM ), then

M(ŷ) ≥M(y) + DM(y)[ŷ−y]− Λ(CM )‖∇ŷ−∇y‖2L2 .
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3. Three tools: I. Invertibility via second gradient

Ω ⊂ Rd bounded, Lipschitz domain and ΓDir ⊂ ∂Ω with H d−1(ΓDir) > 0

Y :=
{
y ∈ H1(Ω;Rd)

∣∣ y|ΓDir = yDir

}
set of admissible deformations

Theorem (Healey-Krömer 2009)∗ Assume ϕel(F ) =∞ for detF ≤ 0,

ϕel(F ) ≥ c/(detF )δ − C, H(A) ≥ c|A|r − C, and
1

r
+

1

δ
<

1

d
.

Then, for all CM > 0 there exists C∗, cHeKr > 0 such that for all y ∈ Y

with M(y) ≤ CM we have

‖y‖W2,r(Ω) ≤ C∗ and det∇y(x) ≥ cHeKr on Ω.

This gives uniform invertibility on sublevels, in particular

‖∇y‖Cα + ‖(∇y)−1‖Cα ≤ K with α = 1−r/d ∈ ]0, 1[.

∗ Healey, Krömer: Injective weak solutions in second-gradient nonlinear elasticity.
ESAIM COCV 15, 863–871, 2009
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3. Three tools: II. Generalized Korn inequality

Time-dependent frame-indifference asks for ζ(F, θ, Ḟ ) = ζ̂(C, θ, Ċ) with
C = F>F and Ċ = F>Ḟ + Ḟ>F (Antman 1998)

We assume linear viscoelasticity, i.e. ζ̂(C, θ, Ċ) = 1
2 Ċ:D(C, θ)Ċ and

assume upper and lower bounds 1
K |Ċ|

2 ≤ Ċ:D(C, θ)Ċ ≤ K|Ċ|2 for all C, θ, Ċ

Thus, viscoelastic dissipation only controls Ċ = F>Ḟ + Ḟ>F = ∇y>∇ẏ+∇ẏ>∇y

Theorem (Neff 2002, Pompe 2003∗) Let Ω ⊂ Rd be bdd, Lipschitz,
Hd−1(ΓDir) > 0, and F ∈ C0(Ω;Rd×d) with min{detF (x) |x ∈ Ω } 			 0.
Then, there exists cKorn(F ) > 0 such that

∀V ∈ H1
ΓDir

(Ω;Rd) :

∫
Ω

∣∣F>∇V +∇V >F
∣∣2 dx ≥ cKorn(F )‖V ‖2H1 .

Neff: On Korn’s first inequality with non-constant coefficients, Proc. Roy. Soc. Edinburgh Sect.
A 132, 221–243, 2002.

Pompe: Korn’s first inequality with variable coefficients and its generalization, Comment. Math.
Univ. Carolinae 44(1) 57-70, 2003.
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assume upper and lower bounds 1
K |Ċ|
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3. Three tools: II. Generalized Korn inequality

• The Neff-Pompe result is wrong for general F ∈ L∞(Ω),
even for F = ∇y with y ∈W1,∞(Ω)

• The mapping F 7→ cKorn(F ) is norm continuous on C0(Ω;Rd×d).

Combining this with the invertibility provides a uniform generalized Korn
inequality on sublevels of M

Proposition (Uniform generalized Korn inequality on sublevesl of M)
For each CM > 0 there exists c̃Korn(CM ) > 0 such that

∀ y ∈ Y with M(y) ≤ CM ∀ θ ∈ L1(Ω) ∀V ∈ H1
ΓDir

(Ω) :

K DvR(y, θ, V )[V ] ≥ ‖∇y>∇V+∇V >∇y‖2L2 ≥ c̃Korn(CM )‖V ‖2H1 .
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(Ω) :

K DvR(y, θ, V )[V ] ≥ ‖∇y>∇V+∇V >∇y‖2L2 ≥ c̃Korn(CM )‖V ‖2H1 .

Proof: Combine Neff-Pompe with compact embedding
W2,r(Ω) ⊂ C1,α(Ω) b C1(Ω),
the uniform Healey-Krömer invertibility, and Weierstraß’ extremum principle.
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K DvR(y, θ, V )[V ] ≥ ‖∇y>∇V+∇V >∇y‖2L2 ≥ c̃Korn(CM )‖V ‖2H1 .

Can this result be derived from rigidity estimates
as a kind of “infinitesimal rigidity” ?
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3. Three tools: III. Abstract chain rule

X reflexive Banach space

M : X → R∪{+∞} is weakly lower semicontinuous and Λ-convex for some
Λ ∈ R, i.e. for all y0, y1 ∈X and all θ ∈ ]0, 1[ we have

M((1−θ)y0 + θy1) ≤ (1−θ)M(y0) + θM(y1)− Λ

2
(1−θ)θ‖y1−y0‖2X .

Theorem (RS’06). Assume u ∈ W1,p([0, T ];X) and η ∈ Lp
∗
([0, T ];X∗)

such that sup[0,T ] M(u(t)) <∞ and η(t) ∈ ∂M(u(t)) a.e. in [0, T ], then

M(u(t)) = M(u(0)) +

∫ t

0

〈η(s), u̇(s)〉ds.

Brézis: Opérateurs maximaux monotones et semi-groupes dans espaces Hilbert. 1973 (convex!)
Rossi, Savaré: Gradient flows of non convex functionals in Hilbert spaces and applications,
ESAIM COCV 12, 564–614, 2006. (Λ-convex)

M., Rossi, Savaré: Nonsmooth analysis of doubly nonlinear evolution equations, Calc. Var. PDE 46,
253-310, 2013. (even more general)
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4. The existence result

We first collect the assumptions for

free-energy density ψ(F, θ) = ϕel(F ) + φcpl(F, θ) F = ∇y

Hyperstress density H(A) = H(∇2y)

dissipation potential ζ(F, θ, Ḟ ) = ζ̂(C, θ, Ċ)

ζ̂ quadratic in Ċ and bounded above on with D continuous

H convex, C1, and 1
K |A|

r −K ≤ H(A) ≤ K(1+|A|)r

(F, θ) 7→ K(F, θ) continuous, bounded and uniformly positive definite

initial conditions y0 ∈ Y and θ0 ∈ L1
≥0(Ω) with E(y0, θ0) <∞

ψ(F, θ) = ϕel(F ) + φcpl(F, θ) with φcpl(F, 0) = 0

and
• ϕel ∈ C2(GL+(Rd)) and ϕel(F ) =∞ for detF ≤ 0

• ϕel(F ) ≥ 1
K (detF )−δ with 1/δ + 1/r < 1/d

• |∂Fφcpl(F, θ)|2 ≤ Kϕel(F )

• 1
K ≤ −θ∂

2
θφcpl(F, θ) ≤ K and ∂2

Fφcpl(F, θ) ≤ K
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ζ̂ quadratic in Ċ and bounded above on with D continuous

H convex, C1, and 1
K |A|

r −K ≤ H(A) ≤ K(1+|A|)r

(F, θ) 7→ K(F, θ) continuous, bounded and uniformly positive definite

initial conditions y0 ∈ Y and θ0 ∈ L1
≥0(Ω) with E(y0, θ0) <∞

ψ(F, θ) = ϕel(F ) + φcpl(F, θ) with φcpl(F, 0) = 0 and
• ϕel ∈ C2(GL+(Rd)) and ϕel(F ) =∞ for detF ≤ 0

• ϕel(F ) ≥ 1
K (detF )−δ with 1/δ + 1/r < 1/d

• |∂Fφcpl(F, θ)|2 ≤ Kϕel(F )

• 1
K ≤ −θ∂
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θφcpl(F, θ) ≤ K and ∂2

Fφcpl(F, θ) ≤ K
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4. The existence result

Decomposition of free energy ψ(F, θ) = ϕel(F ) + φcpl(F, θ)

leads to a corresponding decomposition of internal energy
e(F, θ) = ψ(F, θ)−θ∂θψ(F, θ)

e(F, θ) = ϕel(F ) + w(F, θ) with w(F, θ) = φcpl(F, θ)−θ∂θφcpl(F, θ)

Assumptions give 0 = w(F, 0) ≤ w(F, θ) and ∂θw(F, θ) ∈
[

1
K ,K

]

Three possible formulations of the “heat equation”
(equivalent for smooth solutions)

θṡ+ div q = ξ = 2ζ e = ψ + θs

ė+ div q = ξ + ∂Fψ(∇y, θ)︸ ︷︷ ︸
sing. at det∇y=0

:∇ẏ full mechanical power

reduced heat equation for the “thermal energy” w = e− ϕel only

ẇ + div q = ξ + ∂Fφcpl(∇y, θ)︸ ︷︷ ︸
well-behaved

:∇ẏ only power of “coupling energy”
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4. The existence result

We use the simpler reduced heat equation for the “thermal energy” w

ẇ + div q = ξ + ∂Fφcpl(∇y, θ)︸ ︷︷ ︸
well-behaved

:∇ẏ only power of “coupling energy”

Together with the mechanical power balance

M(y(t)) +

∫ t

0

∫
Ω

(
ξ(· · · ) + ∂Fφcpl(∇y, θ):∇ẏ

)
dx
)

ds = M(y(0))

we obtain the conservation of the total energy

E(y(t), θ(t)) = M(y(t)) +

∫
Ω

w(∇y(t), θ(t)) dx = E(y0, θ0).
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:∇ẏ only power of “coupling energy”

Together with the mechanical power balance

M(y(t)) +

∫ t

0

∫
Ω

(
ξ(· · · ) + ∂Fφcpl(∇y, θ):∇ẏ
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4. The existence result

Theorem (Global existence) Under the above assumptions there
exists for all T > 0 a weak solution (y, θ) : [0, T ] → Y × L1(Ω) with
(y(0), θ(0)) = (y0, θ0) and

y ∈ C0
w([0, T ]; W2,r(Ω)) ∩H1([0, T ]; H1(Ω)) and

θ ∈ L1([0, T ]; W1,1(Ω)) ∩ Lq([0, T ]; W1,q(Ω)) for all q ∈ [1, d+2
d+1 [

Moreover, this solution satisfies energy balance E(y(t), θ(t)) = E(y0, θ0)

and the mechanical energy-dissipation balance.

A pair (y, θ) is called weak solution if∫ T

0

∫
Ω

((
∂Ḟ ζ(∇y, θ,∇ẏ)+∂Fψ(∇y, θ)

)
:∇z + ∂AH(∇2y)

.
:∇2z

)
dxdt = 0

for all z ∈ C0
(
[0, T ]; (W2,∞ ∩H1

ΓDir
)(Ω)

)
∫ T

0

∫
Ω

(
w(∇y, θ)v̇ −∇v·K(∇y, θ)∇θ +

(
2ζ(· · · )+∂Fφcpl(∇y, θ):∇ẏ

)
v
)

dxdt

=

∫
Ω
w(∇y0, θ0) dx for all v ∈ C1([0, T ]; W1,∞(Ω)) with v(T ) = 0.
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5. Sketch of proof

We first solve a regularized problem with ε > 0

(this destroys frame indifference and energy conservation, but estimates work even better)

div
(
∂Ḟ ζ(· · · ) + ε∇ẏε + ∂Fψ(∇yε, θε)− div ∂AH(∇2yε)

)
= 0

ẇε = div
(
K(∇yε, θε)∇θε

)
+

2ζ(· · · )
1 + 2εζ(· · · )

+ ∂Fφcpl(∇yε, θε):∇ẏε

• the additional dissipation provides a simple but ε-dependent a priori bound
that avoids Korn’s inequality

• the source term in the reduced heat equation lies in L∞ and
is bounded from above by the dissipation

Existence & a priori estimates by a staggered scheme with time step τ > 0

M(yετ (t)) +
∫ t

0

(
ε‖∇ẏετ‖2L2 − ‖∂Fφcpl(·)‖L2‖∇ẏετ‖L2

)
dt ≤M(y0)

Gronw
=⇒ M(yετ (t)) ≤ eKt/εM(y0) ≤ eKT/εM(y0) =⇒

∫ T
0
‖∇ẏετ‖2L2 dt ≤ Cε
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5. Sketch of proof

For fixed ε > 0 and τ → 0 we obtain (yετ , θετ )→ (yε, θε)

• a limit pair (yε, θε) : [0, T ]→ Y × L1
≥0(Ω) solving the ε-problem

• the time-continuous mechanical energy-dissipation inequality

M(yε(t))+

∫ t

0

∫
Ω

(1

2
ξ(· · · )+ε

2
|∇ẏε|2+∂Fφcpl(∇yε, θε):∇ẏε

)
dx
)

ds ≤M(y(0))

• the time-continuous energy control E(yε(t), θε(t)) ≤ E(y0, θ0)

For the last statement we note that in the time-discrete staggered scheme there is no
cancellation of the two different coupling terms

∂Fφcpl(∇yk, θk−1): 1
τ
∇(yk−yk−1) and ∂Fφcpl(∇yk, θk): 1

τ
∇(yk−yk−1)

In the time-continuous setting the cancellation works and gives “≤”. This provides new a
priori estimates that are independent of ε:

M(yε(t)) ≤ M(yε(t)) +
∫
Ω wε dx = E(yε(t), θε(t)) ≤ E(y0, θ0)
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5. Sketch of proof

The a priori bound M(yε(t)) ≤ E(y0, θ0) allows for the limit passage ε→ 0

uniform invertibility (Healey-Krömer) and Cα bounds
‖∇yε(t)‖Cα ≤ C and det∇yε(t, x) ≥ 1/C∗ on [0, T ]× Ω

With this Neff/Pompe provide a uniform Korn’s constant cKorn > 0.
Hence, yε is uniformly bounded in H1([0, T ]; H1(Ω))

we obtain subsequences with (∇yε, θε)→ (∇y, θ) in L1+δ([0, T ]× Ω)

and ∇ẏε ⇀ ∇ẏ in L2([0, T ]× Ω)

we obtain the momentum balance and an mech. energy-dissip. inequality

using the abstract chain rule† for the Λ(CE(y0,θ0))-convex functional M we
obtain the energy-dissipaton balance

M(y(t)) +

∫ t

0

∫
Ω

(
2ζ(∇y, θ,∇ẏ)+∂Fφcpl(∇y, θ):∇ẏ dx

)
ds = M(y(0))

† Rossi, Savaré: Gradient flows of non convex functionals in Hilbert spaces and applications,
ESAIM COCV 12, 564–614, 2006
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5. Sketch of proof

We have the mechanical energy-dissipation balance for ε > 0 and for ε = 0.

M(yε(T )) +

∫ T

0

∫
Ω

(
2ζ(· · ·ε) + ε|∇ẏε|2+∂Fφcpl(∇yε, θε):∇ẏε dx

)
ds = M(y0)

M(y(T )) +

∫ T

0

∫
Ω

(
2ζ(∇y, θ,∇ẏ) + 0 + ∂Fφcpl(∇y, θ):∇ẏ dx

)
ds = M(y0)

This implies convergence of the total dissipation∫ T

0

∫
Ω

(
2ζ(∇yε, θε,∇ẏε) + ε|∇ẏε|2

)
dxdt →

∫ T

0

∫
Ω

2ζ(∇y, θ,∇ẏ) dx dt

which implies strong convergence ∇ẏε → ∇ẏ in L2([0, T ]; L2(Ω))

(weak convergence plus convergence of norm =⇒ strong convergence)

limit the limit passage in the ε-regularized heat equation is possible because
2ζ(∇yε, θε,∇ẏε)

1+2εζ(∇yε, θε,∇ẏε)
→ 2ζ(∇y, θ,∇ẏ) in L1([0, T ]; L1(Ω))
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Conclusion

Second gradient materials allow us to cope with determinant constraints

Coupling to a heat equation is possible after suitably splitting the free or
internal energy

Generalized Korn inequalities (infinitesimal rigidity) are needed to treat
frame-indifferent dissipation

Chain rules and Λ-convexity allow to establish energy-dissipation
balances

Thank you for your attention
and

Happy Birthday to Gianni

A.M., Roubíček: Thermoviscoelasticity in Kelvin-Voigt rheology at large strains. WIAS preprint
2584, 2019. Archive Rat. Mech. Analysis, acc. Jan. 26, 2020.

A.M., Rossi, Savaré. Global existence results for viscoplasticity at finite strain. Arch. Rational
Mech. Anal. 227(1):423–475, 2018.

A. Mielke, Thermoviscoelasticity, Trieste 28.1.2020 20 (20)


	Prologue
	Finite-strain elasiticity and temperature
	Three tools
	The existence result
	Sketch of proof

