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E(f.0) =@ [[(f-g)dxdy+ [[ IvfI*dxdy +wT],

where |I'| stands for the total length of the arcs making up I'. The smaller F is,
the better ( f, I') segments g:

(i) the first term asks that f approximates g,
(ii) the second term asks that f — and hence g — does not vary very much
on each R,
(11) the third term asks that the boundaries I' that accomplish this be as short
as possible,

Dropping any of these three items, inf £ = 0: without the first, take f =0,
I' = &; without the second, take f= g, I' = @ ; without the third, take I to be
a fine grid of N horizontal and vertical lines, R, = N2 small squares, f = average
of g on each R, The presence of all three terms makes E interesting.

We do not know if the problem of minimizing E is well posed, but we

conjecture this to be true. For instance we conjecture that for all continuous
functions g, £ has a minimum in the set of all pairs (f, I'), f differentiable on
each R, T a finite set of singular points joined by a finite set of C!-arcs.



The second functional E; is simply the restriction of E to piecewise constant
functions f: i.e., f= constant a; on each open set R,  Then multiplying E by
p~% we have

pE(T) = Z [ [ (s a) dxdy + wil)

where v, = »/pL. It is immediate that this is minimized in the variables a; by
setting

a,= meang (g) = ff gdxdy/arca(Ri-),
i R.-
SO we are minimizing

EfT) = L [ [ (s~ meany, )" dxdy + v, - [T,



The third functional E_ depends only on I' and is given by

E_(T) = frl"“ _ (—gﬁ-)z]ds,

where v is a constant, ds is arc length along I' and d/dn is a unit normal to T
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Using
these bounds, and assuming that the singular points are given by a finite number
of C%-arcs with a common endpoint, it is easy to show, by elementary compar-
isons of E( f, I') with E on modified I'’s, that if £( fr, I') attains a minimum at

some I', then the only possible singularities of I' are:

(i) “triple points” P where three CZ-arcs meet with 120°-angles,
(ii) “crack-tips” P where a single C%-arc ends and no other arc meets P.

Moreover, on the boundary of the domain R, another possibility is:

(iii) “boundary points” P where a single C2-arc of I' meets perpendicularly
a smooth point of dR.



LEMENANT, Antoine. A selective review on Mumford—Shah minimizers. Bollettino
dell'lUnione Matematica Italiana, 2016, vol. 9, no 1, p. 69-113.

The closer result to the Mumford-Shah conjecture is probably the following one
obtained by Bonnet |[Bon96|. The key ingredient is a monotonicity formula for the
Dirichlet integral which permitted him to classify the blow-up limits. This work is
purely 2-dimensional.

Theorem 3.1. |Bon96| Let (u. K') be a reduced minimizer. Then the Mumford-Shah
conjecture 1s true for every isolated connected component of IX. Precisely. if G 1s an
isolated connected component of K. then it is the union of a finite set of C* ares,
CtY aqway from crack-tips and that can only merge through triple junctions.



Theorem 3.3 (Classification of connected global minimizers in R?). Let (u. K) be
a global minimizer in R? such that K is connected. Then it belongs to the following
l1st.

1. K =0 and u is constant.
2. (Line) KX 1s a line and u is constant on each side.

3. (Propeller) K is the union of three half-lines meeting at their tip by angles of
120 degree.

4. (Cracktip) Up to translation, rotation, or additional constant, K is a half line
and u s equal to the cracktip function defined in (2.6).



poF] A variational method in image segmentation: existence and approximation
results

G Dal Maso, JM Morel .. - Acta Mathematica, 1992 - archive ymsc tsinghua. edu.cn

The main input in computer vision is the image of a scene, given by the grey level of each
point of the screen. This determines a real valued measurable function g on a plane domain
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3.2.2 K has the uniform concentration property.

The uniform concentration property is a very important case of lower semisontinuity
introduced by Dal Masp, Morel and Solimini [DMMS92| which allows to take limits
of minimizers and prove that the limit is still a minimizer. Indeed. it is very classical
that &X' — HY"}(K) may not be lower semicoutinuous with respect to Hausdorff
convergence in general. A very famous special case in dimension 2 is the so called
(Golab Theorem which says that 1t holds true along a sequence of compact connected
sets. The uniform concentration property provides a sort of generalization which
works in any dimension, and says that K +— H"V7}(K) is lower semicontinuous for a
uniform sequence of uniformly concentrated sets, which actually holds for a sequence

of Mumford-Shah minimizers.



Definition 0.9. Let B be a Borel subset of Q. We say that B satisfies the concentra-
tion property in Q if for every e>0 there exists a=a(e)>0 such that, if Dg=D(xy, R) is
any disc contained in Q with x,€B and 0<R<I, then there exists a disc D=D(x, r)
contained in Dy such that

diam(D) = adiam(Dyg),
X' (DN B) = (1—¢)diam(D).

Roughly speaking, this property says that any disc centered on B contains a
subdisc, with comparable diameter, where B is concentrated.

To obtain our inequality (0.8) we use the following lower semicontinuity result.

Lemma 0.10 (Lower Semicontinuity Lemma). Let (K;) be a sequence of closed
subsets of Q which converges in the Hausdorff metric to a closed subset K of Q.
Assume that the sets K; satisfy the concentration property in Q (Definition 0.4)
uniformly with respect to k (i.e. with a(e) independent of k). Then

0.11) H'(KnQ)<liminf %'(K,NQ).

k— =



LEMENANT, Antoine. A selective review on Mumford—Shah minimizers. Bollettino
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TueoreM 0.5 (Convergence Theorem). For every kEN let (uk;yi,.”,yf) be a

minimum point for (0.3). Assume that the sets
koo
K, = }.J]?i([ﬂ.ll)

have no isolated points. Then there exists a subsequence of (u, K;) which converges to
a minimum point (u, K} of (0.1) in the following sense:

(a) Ky—K in the Hausdorff metric,

(b) u—>u strongly in LY(Q),

(©) J(ug; Vis -or YE)= T, K).
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What was done to tackle (define, solve) the “real” image segmentation
problem?

The three ways to segment an image according
to Mumford-Shah: some algorithms



The functional works pretty well in practice. A numerical method can be obtained
using the phase-field approximation of Ambrosio-Tortorelli [AT92, Bou99, BC94] or
even by a direct finite elements method [CDM99, BCO00].

Segmentation of a Cagou by use of the Mumford-Shah functional.

Antoine Lemenant. A selective review on Mumford-Shah minimizers. Bollettino del Unione Matematica
Italiana, Springer Verlag, 2016, 9, pp.69 - 113.



VON GIOlI, Rafael

Grompone et RANDALL,
Gregory. A Sub-Pixel
Edge Detector: an

Implementation of the

Canny/Devernay

Algorithm. IPOL Journal,
q 2017,vol.7,p.347-372.
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Edge Detector: an Implementation of the Canny/Devernay
Algorithm. IPOL Journal, 2017, vol. 7, p. 347-372.
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Von Gioi, R. G., Jakubowicz, J., M J. M., & Randall, G. (2012):
LSD: a line segment detector. Image Processing On Line, 2, 35-55
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Al h.5 ' 15 | S
X’/:; E,({R;}) = (ff(g mean g) dxdy + 1v,|0R, I) g a

\/

PleceW|se Affine Image Segmentation Based on Mumford-Shah Functional (4 regions) G. Facciolo
Algorithm: Koepfler, G., Lopez, C., & Morel, J. M. (1994). A multiscale algorithm for image segmentation by variational
method. SIAM journal on numerical analysis, 31(1), 282-299.




E,({R,}) = Z( [f (8~ meang g)* dxdy + 1n|oR,)).

Piecewise Affine Image Segmentation Based on Mumford-Shah Functional (4 regions)
G. Facciolo

Algorithm: Koepfler, G., Lopez, C., & Morel, J. M. (1994). A multiscale algorithm for image segmentation by
variational method. SIAM journal on numerical analysis, 31(1), 282-299.



E,({R.)) = Z( ff (g — meang g)* dxady + in|R,)).

Piecewise Affine Image Segmentation Based on Mumford-Shah Functional (4 regions)
G. Facciolo

Algorithm: Koepfler, G., Lopez, C., & Morel, J. M. (1994). A multiscale algorithm for image segmentation by
variational method. SIAM journal on numerical analysis, 31(1), 282-299.



A jump in time: A real segmentation problem in
2020: Cardbox detection

(joint work with Sébastien Drouyer)



Cardbox detection

Due to labor shortage, warehouses in Japan need to automate their
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Cardbox detection

Due to labor shortage, warehouses in Japan need to automate their
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Cardbox detection

Due to labor shortage, warehouses in Japan need to automate their

Not pre-arranged or
ordered and can be
inclined

mechanical arm conveyor



Cardbox detection

Input 3D + 2D (so far)

I
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Cardbox tection




Cardbox detection




Cardbox detection

Most times packages can easily be separated using the 3D map.




Cardbox detection

But not always.




Cardbox detection

But not always.




Cardbox detection

But not always.




Cardbox detection

But not always.




Cardbox detection

— Deep learning

Main idea:

o Use a first segmentation obtained by 3D
o Refine this segmentation using semantic segmentation algorithm on 2D



Cardbox detection

Image



Cardbox detection

3D




Cardbox detection

Label of 3D




Cardbox detection

Label of 3D




Cardbox detection

One « semantic
boundary » is
missing




Cardbox detection

First approach:
Border detection

U-Net




Cardbox detection: using a “U-net”
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« All » functionals are by now approximable by a neural network, provided
enough examples are given. The only left variational problem is the minimization
of the loss functional of the neural network. This loss has two terms: the fidelity
term and a regularizing term (typically L2 norm of the coefficients)

Theorem 1 (Universal Approximation Theorem for Width-Bounded ReLU Networks). For any
Lebesgue-integrable function f: R" — R and any € > 0, there exists a fully-connected ReLU
network o/ with width d,, < n + 4, such that the function F.; represented by this network satisfies

/ 1f(x) — Fo(z)|de <. (3)

Lu, Z., Pu, H., Wang, F., Hu, Z., & Wang, L. (2017). The expressive power of neural networks:

A view from the width.
Advances in neural information processing systems (pp. 6231-6239).



Cardbox detection

First approach:
Border detectio

U-Net




Cardbox detection




Cardbox detection




Cardbox detection
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Cardbox detection




Cardbox detection

— Detection algorithm should be as robust as possible to changes in scale,
rotation, contrast, illumination, shadows...

Making the learning data:

e Acquiring and labeling as many images as possible:
o~ 2000 images
o Limitations: diversity!
e Choosing adequate data augmentation.
o Choosing adequate loss function / neural network structure.

o Adding simulation images for increasing diversity.



Cardbox detection

Unity3D

Texture of cardboxes taken from our existing dataset (+ add changes in the
future).

Random texture in background.

Random orientation, illumination...



Cardbox detection

Unity3D




Cardbox detection

Unity3D




Cardbox detection

Unity3D




Cardbox detection

Unity3D




Cardbox detection

Results on new
environment.




Cardbox detection

Results on new
environment.




Cardbox detection

Results on new
environment.




Crack Detection

(Sébastien Drouyer)



An "all terrain” crack detector obtained by deep learning on available databases
Sébastien Drouyer Image Processing on Line, 2020, www.ipol.im

(b) DeepCrack [17]

(f) Codebrim |20] (g) AigleRN [4] (h) CrackForest |29|

Figure 1: Crops of different crack datasets. CCIC: Concrete Crack Images for Classification.



An "all terrain” crack detector obtained by deep learning on available databases
Sébastien Drouyer Image Processing on Line, 2020, www.ipol.im
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(a) Easy example (b) Sobel applied on (a) (¢) Hard example (d) Sobel applied on (c¢)

Figure 2: Results of the Sobel operator on easy and hard examples.

P 2
Em(r)=fr[pm- £ | ds



An "all terrain” crack detector obtained by deep learning on available databases

Seébastien Drogyeer‘fl Irgfge Processing on Line, 2020, www.ipol.im 128 64 64 1
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Figure 3: Architecture of our model. In: the input image. Out: the output semantic segmentation.



An "all terrain” crack detector obtained by deep learning on available databases
Sébastien Drouyer Image Processing on Line, 2020, www.ipol.im

Method Precision | Recall | F1 || #-Precision | #-Recall | #-F1
CrackIT 59% 2% | 36% 68% 43% 52%
DeepCrack 50% 80% | 61% 74 % 88% 80%
FCNS8 76 % 52% | 61% 88% 76 % 82%
FCN32 73% 20% | 31% 88% 31% 46%
PSPNet 65% 21% | 32% 84 % 35% 49%
SegNet 72% 47% | 5% 88% 63% 74%
Our method 7% 65% | T0% 88% 86% 87%

Table 7: Performance metrics for the binary segmentation map for several methods. € = 5.



An "all terrain” crack detector obtained by deep learning on available databases
Sébastien Drouyer Image Processing on Line, 2020, www.ipol.im

;Tv‘;‘-k & e '1‘5;“3.\{"?#. ¢ ] A i - = & X o | B \ .“\: % :‘

%
- .
P o PR, -lh : ) » S <
. | 5 .
- 4 ' L ¢ : .' \ ;
~ i .._\: b .';". I'“. } .: % . !
(a) Crack>00 (¢) CrackForest (d) DeepCrack

(e) Prediction on (a) (f) Prediction on (b) (g) Prediction on (c¢) (h) Prediction on (d)

[Figure 7: Examples of predictions of the model trained on the merged dataset.



An "all terrain” crack detector obtained by deep learning on available databases
Sebastien Drouyer _Image Processing on Line, 2020, www.ipol.im
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An "all terrain” crack detector obtained by deep learning on available databases




An "all terrain” crack detector obtained by deep learning on available databases
Sébastien Drouyer Image Processing on Line, 2020, www.ipol.im

(a) Image of a spider (b) Detection when trained on (¢) Detection when trained on
original dataset augmented dataset

Figure 10: Example of problematic image: an image of a spider on a wall is detected as a crack when
using U-net trained on the original merged dataset. However, when using the augmented dataset,
our detector correctly classify the spider as non crack.



S. Drouyer An 'All Terrain' Crack Detector Obtained by Deep Learning on Available
Databases IPOL 2019 http://www.ipol.im/pub/pre/282/
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S. Drouyer An 'All Terrain' Crack Detector Obtained by Deep Learning on Available
Databases IPOL 2019 http://www.ipol.im/pub/pre/282/
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Discussion: Bayesian
framework? Calculus of

Variations?
Data:
(73, Yi)icr
Functional:
y=F(#,z)
Minimization:

argmin 3 [[y: — F(0,20)|12 + 10|
1

(Data fit + regularity term that actually fixes the regularity of the functional
itself).



A standard feed-forward network architecture is used to implement FFDNet, as shown in Figure 1.
The network is composed of D convolutional layers, which share the same structure. Each of these
has W outputs, and the spatial size of their kernels is K x K.

] [_Dowmpled_] [— Nonlinear mapping _] r_Dovmued_] [

images and noise ) autput

Conv + ReLU
[
Conv + BN + ReLU
Y
Conv + BN + RelLU
Y

Figure 1: Architecture of FFDNet.
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Discussion
The « general » functional generally also has a Bayesian interpretation

Bayesian patch-based methods

8.1 The principle

Given u the noiseless ideal image and i the noisy image corrupted with Gaussian
noise of standard deviation o so that

it =u+mn, (8.1)
the conditional distribution P(a | u) is

1 . w—i||2 P
e m? (8.2)
(2mo2) T ”

P(ii | u) =

where M is the total number of pixels in the image.



Discussion
The « general » functional often has a Bayesian interpretation
Example: denoising

Global image denoising

. 1 _1P—P)2 )
P(P| P)= — 22T (8.11)
(2wo2) T

Bayesian minimum squared error (MMSE) is by Bayes’ formula
P=E[P|P]= f P(P | P)PdP = f MP(P]P&P (8.12)

Using a huge set of M natural patches (with a distribution supposedly approximating
the real natural patch dL*r}sitj,f], we can approximate the terms in (8.12) by P(P)dP ~
ﬁ and P(P) ~ ler > i P(P | F;), which in view of (8.11) yields

b MLPP| PP



The Levin and Nadler optimal « global denoising algorithm » uses « all patches of the world »

fd

@ Input: Noisy image 0, its patches P

o Input: Very large set of M = 2% patches P; extracted from a large
set of noiseless natural images (20000)

@ Output: Denoised image il.

o for all patches P extracted from i: Compute the MMSE
denoised estimate of P

r 1
Y (x) = ———go

SV PP | P)P; (270)%
S PP P)

p o

where P(P | P;) is known from the Gaussian noise distribution.

o (Aggregation) : for each pixel j of u, compute the denoised version
{; as the average of all values P(j) for all patches

A. Levin, B. Nadler. CVPR 2011. Natural image denoising: Optimality and inherent bounds

Zoran, D., & Weiss, Y. ICCV 2011. From learning models of natural image patches to whole
image restoration.

4-The Bayesian denoising paradigm from « non-local » to « global »

79



An Analysis and Implementation of the FFDNet Image Denoising Method
Matias Tassano, Julie Delon, Thomas Veit

(c) DnCNN, PSNR 28.82dB (d) BM3D, PSNR 28.21dB (g) FFDNet, PSNR 29.08dB




An Analysis and Implementation of the FFDNet Image Denoising Method
Matias Tassano, Julie Delon, Thomas Veit

(a) Clean image (b) Noisy image, 0,0ise = 55 (¢) FFDNet, PSNR 28.52dB



An Analysis and Implementation of the FFDNet Image Denoising Method
Matias Tassano, Julie Delon, Thomas Veit

—~ T
The training dataset is composed of pairs of input-output patches {((Ij_, M;), Ij)} which are
j=0

generated by adding AWG of o € [0, 75] to the clean patches I; and building the corresponding noise
map M; (which is in this case constant with all its elements equal to o). A total of m = 128 x 8000
patches are extracted from the Waterloo Exploration Database [14], where the mini-batch size is
128. The patch size is 64 x 64 and 50 x 50 for grayscale and color images, respectively. Patches are
randomly cropped from randomly sampled images of the training dataset. Data is augmented five
times by introducing rescaling by different scale factors and random flips?. In the cases in which
residual learning is used. the network outputs an estimation of the input noise

— .

F(I)=N. (4)
Then, the denoised image is computed by subtracting the output noise to the noisy input
I=1-F(I). (5)

In this case, the loss function is the following

where 6 is the collection of all learnable parameters.




A standard feed-forward network architecture is used to implement FFDNet, as shown in Figure 1.
The network is composed of D convolutional layers, which share the same structure. Each of these
has W outputs, and the spatial size of their kernels is K x K.

] [_Dowmpled_] [— Nonlinear mapping _] r_Dovmued_] [

images and noise ) autput

Conv + ReLU
[
Conv + BN + ReLU
Y
Conv + BN + RelLU
Y

Figure 1: Architecture of FFDNet.
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(d) DnCNN, PSNR 28.32dB  (e) BM3D, PSNR 27.31dB (f) NLB, PSNR 27.79dB (z) NLDD, PSNR 27.92dB

Comparison of color denoising results



