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Vanadium dioxide is one of the most studied strongly correlated materials. Nonetheless, the intertwining
between electronic correlation and lattice effects has precluded a comprehensive description of the rutile metal
to monoclinic insulator transition, in turn triggering a longstanding “the chicken or the egg” debate about which
comes first, the Mott localization or the Peierls distortion. Here, we suggest that this problem is in fact ill posed:
The electronic correlations and the lattice vibrations conspire to stabilize the monoclinic insulator, and so they
must be both considered to not miss relevant pieces of the VO2 physics. Specifically, we design a minimal
model for VO2 that includes all the important physical ingredients: the electronic correlations, the multiorbital
character, and the two components of the antiferrodistortive mode that condense in the monoclinic insulator.
We solve this model by dynamical mean-field theory within the adiabatic Born-Oppenheimer approximation.
Consistently with the first-order character of the metal-insulator transition, the Born-Oppenheimer potential
has a rich landscape, with minima corresponding to the undistorted phase and to the four equivalent distorted
ones, and which translates into an equally rich thermodynamics that we uncover by the Monte Carlo method.
Remarkably, we find that a distorted metal phase intrudes between the low-temperature distorted insulator and
high-temperature undistorted metal, which sheds new light on the debated experimental evidence of a monoclinic
metallic phase.
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I. INTRODUCTION

Vanadium dioxide (VO2) is a transition-metal compound
with tremendous potential for technological applications, es-
sentially because of its nearly room-temperature metal-to-
insulator transition [1–10]. Over the years, VO2 has been
subject to an intense investigation, which dates back to the
first decades of the past century [11–20], but that is ongoing
[21–23] and, to some extent, debated [24–30]. At the critical
temperature Tc ∼ 340 K and ambient pressure, VO2 undergoes
a first-order transition from a metal (T > Tc) to an insulator
(T < Tc) [31,32], both phases being paramagnetic [33–35]. In
concomitance with the metal-insulator transition, a structural
distortion occurs from a high-temperature rutile (R) structure
to a low temperature monoclinic (M1) one.

The crystal structure of rutile VO2 is formed by equally
spaced vanadium atoms sitting at the center of edge-sharing
oxygen octahedra that form linear chains along the R c axis,
which we shall denote as cR; see Fig. 1. The tetragonal crystal
field splits the 3d manifold into two higher eg and three
lower t2g levels. In the oxidation state V4+, the single valence
electron of vanadium can, therefore, occupy any of the three
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t2g orbitals, which are in turn distinguished into a singlet a1g

(or d||) and a doublet eπ
g (or dπ∗ ), having, respectively, bonding

and nonbonding character along the cR axis. The M1 phase
is instead characterized by an antiferroelectric displacement
of each vanadium away from the center of the octahedra, see
Fig. 1, so that the above-mentioned chains, from being straight
in the R phase, turn zigzag and dimerize [36,37].

A simple portrait of the transition in VO2 was proposed
in 1971 by Goodenough [38]. According to his proposal,
the basal-plane component of the antiferroelectric distortion
raises the energy of eπ

g with respect to the a1g [39]. In addition,
the cR component of the distortion, which drives the chain
dimerization, opens a hybridization gap between bonding
and antibonding combinations of the a1g. For a sufficiently
large crystal field splitting and hybridization gap, the bonding
combination of the a1g fills completely, while the antibonding
as well as the eπ

g get empty, and hence the insulating behavior.
The Goodenough’s mechanism for the metal-insulator tran-
sition in VO2 thus relies on a single-particle description: the
Peierls instability of the quasi-one-dimensional a1g band that
becomes half-filled after the growth of the crystal field drained
the eπ

g orbital.
However, Pouget et al. [40] and later Zylbersztejn and Mott

[41] soon after argued that the role of electronic correlation
cannot be neglected as in the Goodenough’s scenario. Indeed,
a tiny ≈0.2% substitution of V with Cr changes the low-
temperature insulator from the M1 crystal structure to a new
monoclinic phase, named M2, where dimerized and zigzag
chains alternate [34,42]. The M2 phase can be also stabilized
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FIG. 1. The rutile crystal structure, where the large (small)
spheres represent vanadium (oxygen) atoms. A cartoon of the X1

and X2 lattice distortions is also depicted, where the X1 component
acts as a dimerization along the cR axis and the X2 component acts
as a tilting in the perpendicular plane. The monoclinic M1 phase is
actually characterized by finite displacements both of X1 and X2.

under hydrostatic pressure or uniaxial stress [31,32,40,43–
45]. In addition, a triclinic (T) phase with intermediate struc-
tural properties [42] was shown to intrude between M1 and
M2. The zigzag undimerized chains in M2 are still insulating
and display magnetic properties akin those of a spin-1/2 anti-
ferromagnetic Heisenberg chain [40,42,46]. This likeness can
be rationalized only invoking sizable electronic correlations.
Given the low concentration of substitutional chromium or the
small value of uniaxial stress required to stabilize M2, it is
reasonable to conclude that M1 must be as correlated as M2
[47–50].

We believe that, even though electronic correlations are
likely necessary, they are nonetheless not sufficient to explain
the phase diagram of VO2. It is known that a strong enough
repulsion may drive a Mott transition in a three-band Hubbard
model at the density of one electron per site [51]. Therefore, it
is quite possible that the insulating phase of VO2 is driven by
correlations alone and that the structural distortion below Tc

is just the best way the Mott insulator can freeze the residual
spin and orbital degrees of freedom to get rid of their entropy.
However, should that be the case, VO2 would most likely
remain insulating even above Tc, which is not the case, all
the more so because kBTc is more than one order of magnitude
smaller than the optical gap in the M1 phase [52]. For the
same reason, we must exclude a transition merely driven by
the larger electronic entropy of the metal.

We are thus inclined to believe that the structural distortion
is also necessary to stabilize the insulating phase in VO2, but,
once again, not sufficient in view of the behavior of the M2
phase, and of the bad metal character of the R phase [53–55].
It is therefore quite likely that Goodenough’s scenario is after
all correct, though it requires an active contribution from
electronic correlations.

Indeed, different density functional theory (DFT)-based
calculations, which should properly account for the effects
of the lattice distortion on the electronic structure, though
within an independent-particle scheme, do not agree one

with another, and none explains at once all experiments.
For instance, straight local density approximation (LDA) or
generalized gradient approximation (GGA) methods do not
find any gap opening in M1 and M2 phases [56,57]. Such gap
is instead recovered by GW [58–60] or LDA + U [61–63],
in all its variants. However, GW does not give easy access
to the total energy, and therefore it does not explain why
low temperatures should favor the M1 distorted phase against
the rutile undistorted one. In turns, LDA + U or GGA + U
calculations, known to overemphasize the exchange splitting,
predict the existence of local moments even in the rutile phase
[61–63], not observed in experiments [64]. Relatively recent
calculations based on Heyd-Scuseria-Ernzerhof hybrid func-
tionals bring even worst results: both rutile and M1 phases
are predicted to be magnetically ordered insulators, with the
former lower in energy [65,66], even though earlier calcula-
tions were claimed to be more in accordance with experiments
[25]. In turn, modified Becke and Johnson (mBJ) exchange
potentials seem to predict the proper conducting behavior of
the R and M1 phases, as well as their lack of magnetism [67],
which is erroneously predicted to occur also in the M2 phase
[63]. This suggests that suppression of magnetic moments is
somehow the rule of mBJ functionals applied to VO2, which
only by chance is the correct result for R and M1 phases.
Finally, calculations based on the hybrid functional PBE0, that
mixes Perdew-Burke-Ernzerhof functional and Hartree-Fock
exchange, properly account for the magnetic and electronic
properties of M1 and M2 phases, but predict ferromagnetism
in the rutile structure, at odds with experiments [33], as well as
the existence of a never observed ferromagnetic and insulating
monoclinic phase, dubbed M0 [68], also predicted by Perdew-
Burke-Ernzerhof functionals designed for solids [69].

One might expect that combining ab initio techniques
with many-body tools, e.g., DFT with dynamical mean-field
theory (DMFT) [70], should work better and finally provide
uncontroversial results in accordance with experiments. Un-
fortunately, different calculations by state-of-the-art DFT +
DMFT methods do not even agree about an unanimous view
of the M1 monoclinic phase. Specifically, M1 has been re-
garded from time to time as a correlation-assisted Peierls
insulator [24,71], or, vice versa, as a Peierls-assisted Mott in-
sulator [72], or, finally, as a genuine Mott insulator [26,73,74].

In view of the above controversial results, we think it
is worth desisting from describing VO2 straight from first
principles and rather focusing on a minimal model, which can
include all the ingredients that are, by now, widely accepted to
be essential. As we mentioned, electron-electron correlations
must play an important role and thus need to be included and
handled in a truly many-body scheme. At the same time, the
coupling of the electrons to the lattice is equally important
and must be included as well. We earlier mentioned that
the monoclinic distortion in the M1 phase actually entails
two different antiferrodistortive components: the basal-plane
displacement of V from the octahedron center, resulting in
a zigzag shape of the formerly straight chains, and the out-
of-plane displacement that produces the chain dimerization.
The two phenomena may actually occur separately, as indeed
proposed by Goodenough [38], who argued that, generically,
the basal-plane distortion should appear at higher tempera-
tures than dimerization. Indeed, time-resolved spectroscopy

013298-2



UNRAVELING THE MOTT-PEIERLS INTRIGUE IN … PHYSICAL REVIEW RESEARCH 2, 013298 (2020)

measurements during a photoinduced monoclinic-to-rutile
transition have shown that dimerization melts on earlier
timescales than the basal-plane displacement [37,75,76],
which therefore must be distinct and actually more robust
than the former. We must mention, however, that this con-
clusion does not agree with other experiments [77–80]. More
convincing evidence is offered by the monoclinic metal that
intrudes, under equilibrium conditions, between rutile metal
and monoclinic insulator at ambient pressure [81–84], not
just above a critical pressure as originally believed [85]. This
phase might correspond to a crystal structure where dimer-
ization is almost melted unlike the zigzag distortion [69,83],
so that eπ

g are still above the a1g, though the dimerization is
too weak to stabilize at that temperature and hybridization
gap within the a1g band [27]. Even the disappearance prior
to the metal-insulator transition [86] of the so-called singlet
peak, which is associated to dimerization and observed in
optics, can be regarded as a consequence of the melting
of dimerization preceding the complete monoclinic-to-rutile
transformation. All the above experimental facts point to the
need to treat separately the basal-plane displacement and the
out-of-plane one. Finally, the importance of the basal plane
antiferrodistortive mode suggests the last ingredient to be con-
sidered: the multiorbital physics. This aspect was originally
emphasized by Goodenough [38] and successively confirmed
by many optical measurements [52,87,88].

To summarize, we shall consider a microscopic model
which includes the following relevant features:

(1) the electron-electron correlations and the coupling to
the lattice distortion [46,53,89–110];

(2) the existence of two different antiferrodistortive com-
ponents, each playing its own distinctive role [37,38,75]; and

(3) the multiorbital physics [38,52,87,88],
with the minimal requirement of capturing, at least at a

qualitative level, the following aspects of the VO2 physics:
A. the existence of an undistorted paramagnetic metal and

a monoclinic distorted insulator [43,111–114];
B. the first-order character of the transition between them

[18,115–125]; and
C. the possible existence of an intermediate monoclinic

metal [81–83,126–134].
Many models have been already put forth to describe

VO2. However, most of them focus either on the role of the
electron-electron correlations or on that of the electron-lattice
coupling [27,29,135–148], and thus do not allow access in a
single framework to the whole VO2 phase diagram, e.g., the
points A, B, and C above. Despite that, we must mention
that the purely electronic dimer Hubbard Model presented
in Ref. [27], which by construction is not able to capture
the monoclinic to rutile phase transition, is nevertheless able
to describe some of the observed features of the mono-
clinic metal, like the MIR peak in the optical conductivity
observed in Ref. [54]. There are actually some exceptions
where electron-electron and electron-lattice interactions have
been considered on equal footing [149–151]. In particular, the
model studied in Ref. [150] includes explicitly all ingredients
listed above. However, therein it is assumed a small bandwidth
of the a1g-derived band as compared to the eπ

g one, which
contradicts LDA calculations [56]. Moreover, Ref. [150] in-
cludes the two distinct effects of the monoclinic distortion, but

parametrized by a single displacement variable. In this way,
they preclude the possibility to describe the emergence of the
monoclinic metal that seems to be observed experimentally.
Furthermore, the mean-field treatment of the electron-electron
interaction, despite its strength being comparable to the con-
duction bandwidth, yields not surprisingly to the formation
of local moments in the rutile metal, not in accordance with
magnetic measurements [64]. This negative result, highlighted
by the same authors of Ref. [150], solicits for a more rigorous
treatment of the interaction.

This is actually the scope of the present work, which is
organized as follows. In Sec. II, we introduce a simple model
that includes the three ingredients previously outlined, which
we believe should capture the main physics of vanadium diox-
ide. In Sec. III, we discuss the dynamical mean-field theory
(DMFT) approach to the model Hamiltonian, and present in
Sec. III its ground-state phase diagram. In Sec. IV, we discuss
the insulator-metal transition that occurs in our model upon
raising the temperature. In Sec. IV A, we discuss the case
in which such transition is driven solely by the electronic
entropy, hence neglecting the lattice contribution to entropy,
whereas in Sec. IV B we show the opposite case. We will show
that the latter situation is rather suggestive, since it foresees
different transition temperatures of the two antiferrodistortive
components, as predicted by Goodenough [38]. In turn, this
result might explain the evidence supporting the existence
of a monoclinic metal phase. Finally, Sec. V is devoted to
concluding remarks.

II. THE MODEL

As we mentioned, the orbitals that are relevant to describe
the physics of VO2 are the vanadium 3d − t2g ones, com-
prising the a1g singlet and eπ

g doublet, which host a single
conduction electron. We believe that in this circumstance the
doublet nature of the eπ

g is not truly essential; what really
matters is the distinction between a1g and eπ

g based on their
bonding character with the ligands and response to atomic
displacement. Therefore, in order to simplify our modeling
without spoiling the important physics, we shall associate
the eπ

g doublet with just a single orbital [136,152], which,
together with the other orbital mimicking the a1g singlet,
give rise to two bands, band 1 ↔ a1g and band 2 ↔ eπ

g , which
accommodate one electron per site; i.e., they are quarter filled.

The other ingredient that is necessary to properly describe
VO2 is the electron-electron Coulomb interaction. However,
since the main role that Coulomb repulsion is believed to play
is to suppress charge fluctuations on V 4+, we shall ignore the
long-range tail and replace Coulomb repulsion with a short-
range interaction.

Finally, we need to include the coupling to the lattice.
For simplicity, we shall focus our attention only on the rutile
and monoclinic M1 phases, as such ignoring the M2 phase,
which is actually regarded by some as just a metastable
modification of the M1 structure [40,44,146]. Under this as-
sumption, we can model the lattice antiferrodistortion through
a two-component zone boundary mode at momentum Q,
with displacement X = (X1, X2) and classical potential energy
�(X1, X2). The X1 and X2 components model, respectively, the
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dimerizing out-of-plane displacement and the band-splitting
basal-plane one; see Fig. 1 [135,153].

The model Hamiltonian is thus written as the sum of three
terms:

H = Hel + �(X1, X2) + Hel−X. (1)

Hel is the purely electronic component reading

Hel =
2∑

a=1

∑
k

(εak − μ) nak + U

2

∑
i

ni(ni − 1) , (2)

where na,k is the occupation number at momentum k of the
band a = 1, 2, ni is the electron number operator at site i, μ

is the chemical potential used to enforce the quarter filling
condition and, finally, U is the on-site Hubbard repulsion.

With the aim to reduce the number of independent Hamil-
tonian parameters, we assume that the density-of-states (DOS)
D1(ε) and D2(ε), of bands 1 and 2, respectively, have the same
bandwidth and center of gravity, which we shall take as the
zero of energy. In addition, we consider both DOS symmetric
with respect to their center, and such that ε1k = −ε1k+Q,
where Q is the wave vector of the antiferrodistortive mode
X. This assumption actually overestimates the dimerization
strength, since it entails that any X1 �= 0 is able to open a
hybridization gap in the middle of band 1, which, we remark,
does not coincide with the chemical potential unless band 2
is pushed above it. This implies that a finite hybridization
gap within band 1 does not stabilize an insulator so long as
band 2 still crosses the Fermi energy. Therefore, our simplified
modeling does not spoil the important feature that a distorted
insulating phase may occur only above a critical threshold
of the Hamiltonian parameters, although it affects the value
of that threshold, whose precise determination is, however,
behind the scope of the present study.

In order to emphasize the bonding character of the a1g,
band 1, along the cR axis, as opposed to the more isotropic
eπ

g , band 2, we choose the following forms of the two corre-
sponding DOS’s:

D1(ε) = 1

N [aε2 − bε4 + D2(bD2 − a)],

D2(ε) = 2

πD

√
1 −

(
ε

D

)2

, (3)

with ε ∈ [−D, D] and N being a normalization factor. We
take b > a/D2 > 0 so that D1(ε) has a double-peak structure
evocative of a one-dimensional DOS [71,150,154]. Hereafter,
we take the half bandwidth D = 1 as our energy unit and fix
aD3 = 1.9 and bD5 = 2.1. The resulting DOS’s are shown
in Figs. 2(a) and 2(b). There we note the two-peak structure
of the band 1 DOS, mimicking the Van Hove singularities
of a quasi-one-dimensional band structure, in contrast to the
structureless band 2 DOS.

We highlight that the electron-electron interaction in
Eq. (2) only includes the monopole Slater integral U > 0
and not higher order multipoles responsible of Hund’s rules.
This approximation, which makes the analysis more trans-
parent, requires some justification. The Coulomb interaction
of a single vanadium projected onto the t2g manifold, which
effectively behaves as an l = 1 atomic shell, can be written in

FIG. 2. The density of states Da(ω), a = 1, 2 for the two orbitals
for U = 0, X1 = 0, and X2 = 0.

terms of two Slater integrals as

Ht2g = Ut2g − 3Jt2g

2
n2 − Jt2g

2
[4S(S + 1) + L(L + 1)], (4)

where n, S, and L are the total occupation, spin, and angular
momentum, respectively. Common values of the parameters
are Ut2g � 4 eV and Jt2g � 0.68 eV � Ut2g/6 [24]. Denoting as
E0(n) the lowest energy with n electrons in the t2g shell, the
effective Hubbard U for V4+ can be defined through

U = E0(0) + E0(2) − 2E0(1) = Ut2g − 3Jt2g � 1.96 eV, (5)

to be compared with the VO2 bandwidth of about 2.6 eV [56].
In units of the half-bandwidth, U � 1.5, the value we shall use
hereafter [155,156]. We observe that the Coulomb exchange
Jt2g has no effect on the configurations with n = 0, 1, while
it splits those with n = 2 in three multiplets, with (S, L) =
(0, 0), (1, 1), (0, 2), which are spread out over an energy �
Jt2g , about a quarter of the full bandwidth. Such small value is
not expected to qualitatively alter the physical behaviour (see,
e.g., Ref. [157]), which justifies our neglect of the exchange
splitting in the model Hamiltonian (2).

We model the potential energy �(X1, X2) using a Landau
functional for improper ferroelectrics [56,75,158] expanded
up to the sixth order in the lattice displacements:

�(X1, X2) = N

[
α

2

(
X 2

1 + X 2
2

) + β1

4
(2X1X2)2

+ β2

4

(
X 2

1 − X 2
2

)2 + γ

6

(
X 2

1 + X 2
2

)3
]
, (6)

where N is the number of sites and the couplings α to γ are all
positive. The terms proportional to α, i.e., the harmonic part
of the potential, and that proportional to γ have full rotational
symmetry in the X1-X2 plane. On the contrary, β1 favors
a lattice distortion only along one of the two components,
whereas β2 favors a distortion with |X1| = |X2|. In the specific
case of VO2, β2 > β1, and thus it is preferable to equally
displace both modes [75] rather than just one of them.
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Finally, we write the electron-lattice coupling as

Hel−X = Hel−X[X1, X2]

= − g

2
X1

∑
kσ

(c†
1kσ c1k+Qσ

+ H.c.)

− δ

2
X 2

2

∑
k

(n1k − n2k ), (7)

where c1kσ creates an electron at momentum k in orbital
1 with spin σ , and we recall that, by construction, ε1k =
−ε1k+Q. The dimerization induced by the out-of-plane dis-
placement X1 is controlled by the coupling constant g, while
δ parametrizes the strength of the crystal field splitting gen-
erated by the basal-plane displacement X2. By symmetry, the
coupling between the field X1 and the electron dimerization is
at leading order linear [135,151]. The quadratic coupling in X2

is intentional and has a physical explanation. Indeed, X2 corre-
sponds to the vanadium displacement parallel to the diagonal
of the rutile basal plane away from the center of the oxygen
octahedron. As a result, the hybridization between the eπ

g
and the oxygen ligands closer to the new vanadium position
increases, whereas the hybridization with the further oxygen
diminishes [150]. At linear order in the V-displacement X2, the
two opposite variations of the hybridization cancel each other,
but, at second order, they add up to a net rise in energy of
the eπ

g level; hence the expression in Eq. (7). The Hamiltonian
Eq. (1) is invariant under the transformations X1/2 → −X1/2,
reflecting a Z2 × Z2 (also known as K4 or “Vierergruppe”)
symmetry.

Despite the great simplification effort, the model Hamil-
tonian Eq. (1) has still several parameters to be fixed. We
emphasize that our main goal is to reproduce qualitatively the
physics of VO2, without any ambition of getting also a quan-
titative agreement. Nonetheless, just to be sure we do not to
explore a Hamiltonian parameter space completely detached
from the real VO2 compound, we choose parameters in line
with the existing literature. We already mentioned our choice
of U = 1.5, in units of the half-bandwidth, which is in line
with the value used in realistic calculations [24,48,150,159–
161]. The other parameters involve the phonon variables. We
shall choose g = 0.4, δ = 0.2, α = 0.155, β1 = 1.75 × 10−3,
β2 = 2β1, and γ = 6.722 × 10−4. Those values permit to
reproduce the interband character of the band gap experi-
mentally observed for the monoclinic insulator [87] and to
obtain a size of it close enough to the experimental findings;
see Sec. III for further details on the spectral properties of
the system. Moreover, we checked a posteriori that we can
reasonably reproduce the size of the electron-phonon interac-
tion [136,162,163] and the lattice energy change across the
rutile-to-monoclinic transition [163] as they were obtained in
previous experiments or theoretical analysis. As a concluding
remark, we point out that the direct experimental fits of the
coupling constants is satisfactorily in agreement with previous
estimations of the same [75,164], further corroborating our
choice of the parameter set.

III. DMFT SOLUTION

We solve the model Hamiltonian Eq. (1) by means of
DMFT [165] within the adiabatic Born-Oppenheimer ap-
proximation. This approach will allow us to treat correlation

effects nonperturbatively beyond an independent-particle de-
scription. Exploiting the Born-Oppenheimer approximation,
we solve the electronic problem at a fixed displacement X =
(X1, X2). To any choice of the displacement X it corresponds
to a different electronic problem through the electron-phonon
coupling discussed above. Within DMFT, such resulting in-
teracting lattice electrons problem is mapped onto a quantum
impurity model constrained by a self-consistency condition,
which aims to determine the bath so to describe the local
physics of the lattice model. The effective bath is described
by a frequency-dependent Weiss field G0,a(iωn), with a =
1, 2 the orbital index. The self-consistency condition relates
the Weiss fields to the local self-energy function �a(iωn),
obtained from the solution of the effective quantum impurity
model, and the local interacting Green’s function

Gloc,a(iωn) =
∫
R

dεDa(ε)
1

ζa − ε
,

where ζa = iωn + μ − �a(iωn). The self-consistency condi-
tions read

G−1
0,a(iωn) = G−1

loc,a(iωn) + �a(iωn) .

Once a Weiss field G0,a(iωn) is given, the solution to
the DMFT equations is obtained iteratively as follows. We
solve the effective quantum impurity problem associated to
the given Weiss field using exact diagonalization technique
[166,167]. To this end, we discretize the effective bath into
a number Nb of electronic levels [166–168]. The result-
ing Hamiltonian is diagonalized using Lanczos method and
the ground-state (at zero temperature) or low-lying states
in the spectrum (at finite temperature) are determined [168].
The impurity Green’s functions Ga(iωn) are then obtained
using the dynamical Lanczos technique [165,168]. The self-
energy is obtained by solving the Dyson equation for the
impurity problem �a(iωn) = G−1

0,a(iωn) − G−1
a (iωn). The self-

energy is used to evaluate the local interacting Green’s func-
tion and, finally, to update the Weiss fields by means of the
self-consistency condition. The procedure is iterated until the
overall error on the determination of the Weiss field falls
below a threshold, which in our calculations was set to 10−6.
In this work, we use Nb = 8 as the total number of bath sites,
corresponding to a finite system of N = 10 electronic levels or
Ns = 20 spins. Yet, we tested our results with respect to larger
values of Nb without finding significant differences.

Using the DMFT method, we computed the electronic
properties for several values of the displacement X =
(X1, X2). The part of Eq. (7) related to the tilting X2 enters
in the single-particle term of the impurity Hamiltonian as the
usual crystal field splitting, while the dimerization X1 acts
directly on the density of states of band 1 [see the expression
of D1(ε) appearing in Eq. (3)], and it opens a gap of size 2gX1

in correspondence to its center of gravity.
We calculate the total electronic energy, or the free

energy at finite temperature, which renormalizes the
Born-Oppenheimer adiabatic potential of the displacement
�(X1, X2) → �eff(X1, X2) through

�eff(X1, X2) = �(X1, X2) + 〈 Hel 〉 + 〈 Hel−X 〉 . (8)

We shall restrict our analysis to the paramagnetic sector
forcing spin SU (2) symmetry. However, we did check that
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magnetic solutions are higher in energy. We first present
results at zero temperature T = 0, and then move to those at
T > 0.

Ground-state phase diagram

In Fig. 3(a), we show the adiabatic potential �eff(X1, X2)
in (8) calculated by DMFT at U = 1.5. The energy landscape
shows five minima. A local minima is located at the origin
X1 = X2 = 0, and corresponds to an undistorted metal that
we identify with the R phase of vanadium dioxide. Four
degenerate global minima are instead located at X1 � ±1.5
and X2 � ±2.1, which are related to each other by the Z2 × Z2

symmetry and represent the four equivalent lattice distortions.
We find that these global minima describe an insulating phase,
and thus realize a two-band version of the Goodenough sce-
nario [38] for the M1 phase, in qualitative agreement with ab
initio calculations of VO2 [146,147]. A detailed discussion of
the electronic properties of all minima is postponed to Sec. III.

In Figs. 3(b) and 3(c), we instead show the evolution of the
adiabatic potential �eff(X1, X2) along some specific lines, as
indicated in Fig. 3(a). We note that along the horizontal and
vertical cuts, marked by a diamond and a circle in Fig. 3(a),
respectively, the energy landscape shows a saddle point, i.e.,
a minimum along the cut direction but maximum in the
perpendicular one. Within our model description, the effect
of a uniaxial tensile strain would be taken into account by
adding to the Hamiltonian Eq. (1) terms like −F1X 2

1 or −F2X 2
2

(F1, F2 > 0), depending on the direction of the applied stress
[169–171]. In the presence of such terms, the saddle points
observed in Fig. 3(a) along the lines X1 = 0 or X2 = 0 may
turn into additional minima of the energy landscape [148],
which can possibly describe the occurrence of the M2 phase
in the framework of the same model Hamiltonian.

In order to understand the role of the Hubbard interac-
tion U in stabilizing the insulating solution, we studied the
evolution of �eff(X1, X2) for several values of U , along the
line in the X1-X2 plane connecting the rutile local minimum
with one of the monoclinic global minima [the diagonal cut
in Fig. 3(a) marked by a diamond symbol]. Our results are
reported in Fig. 4. We note that already at U = 0 the energy
has two minima. One is at the origin and corresponds to
the undistorted metal. The other is located at finite X and
thus represents a distorted phase that must evidently be also
insulating in order to be a local energy minimum. There-
fore, at small U � 0.2, the stable phase is the undistorted
metal at X = 0 in Fig. 4, while the local minimum at X �=
0 (monoclinic insulator) is metastable. However, for larger
U � 0.2, the situation is reversed: The distorted insulator
becomes the global minimum, while the undistorted metal is a
local one, entailing the typical scenario of a first-order metal-
insulator transition driven by interaction. The above results
show that electron-electron interaction is crucial to stabilize
the distorted insulator, though the active contribution of the
lattice is equally essential. Indeed, the interaction strength,
U � 1.5, the half-bandwidth, is too small to drive on its own
the metal-insulator transition [157]. In other words, the picture
that emerges from Fig. 4, with the interaction and the coupling
to the lattice both necessary to stabilize the insulator, fully
confirm our expectation in Sec. I.

FIG. 3. (a) The zero-temperature color map of the internal energy
of the system as function of the amplitude of the crystal distortions
X1 and X2 for U = 1.5. The system displays five minima, one
at X1 = X2 = 0 corresponding to a metallic undistorted phase, the
others at X1 � ±1.5 and X2 � ±2.1 corresponding to four equivalent
insulating and distorted states. [(b), (c)] Evolution of the zero-
temperature internal energy along the paths shown in panel (a),
where the symbols close to them correspond to the ones used in
panels (b) or (c); the coordinate X = √

X 2
1 + X 2

2 is computed along
the lines as depicted in panel (a). Filled symbols correspond to a
two-band metallic solution, whereas empty symbols correspond to
an insulating solution everywhere except for the black curve with
the circles, where they correspond to a single-band metallic phase.
Particularly, in panel (b), the circles (diamonds) correspond to the
evolution of the internal energy along the line that involves just
the distortion X2 (X1) and the squares correspond to the line that
connects the undistorted metal and the distorted insulator found in
the X1, X2 > 0 sector. In panel (c), the upward-pointing triangles
(downward-pointing triangles) correspond to the line that connects
the minimum observed in panel (b) along the line with the circles
(diamonds) that involves just the distortion X1 (X2) to the global
insulating minimum at (X1, X2) = (1.5, 2.1).

Spectral functions

Further insights into the properties of the metal-insulator
transition can be gained by looking at the spectral
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FIG. 4. The zero-temperature internal energy of the system (in
arbitrary units) as function of the amplitude of the crystal distortion
X = √

X 2
1 + X 2

2 (coordinate taken along the line that connects the
rutile solution and one of the monoclinic minima) for several values
of the Hubbard interaction U . Filled (open) symbols correspond to
a metallic (insulating) solution. The continuous (dashed) horizontal
lines indicate the values of the metallic (insulating) minimum at each
value of U . Arrows indicate the position of the absolute minimum for
each value of the interaction.

functions:

Aa(ω) = − 1

π
ImGloc,aa(ω), (9)

where a = 1, 2 and Gloc,aa is the local interacting Green’s
function obtained within the DMFT solution of the model. In
Fig. 5, we show Aa(ω) at the different minima in Fig. 3(a),
with ω measured with respect to the chemical potential. We
note that already in the absence of interaction, U = 0, the
different shapes of the DOS’s (see Fig. 2) lead to a larger
occupation of band 1 than band 2. Such population unbalance
is increased by U > 0, which effectively enhances the crystal
field, leading to an even larger occupation of band 1 at

FIG. 5. The spectral functions Aa(ω), a = 1, 2 for the two min-
ima shown in Fig. 4 at U = 1.50. The metallic phase corresponds to
X = 0 [(a), (b)], and the insulator corresponds to X ∼ 2.58 [(c), (d)].

expenses of 2 [152,172,173]. This is evident in the spectral
function of the undistorted metal at U = 1.5, reported in
Figs. 5(a) and 5(b), where the occupied ω � 0 part of A1(ω)
overwhelms that of A2(ω) more than in the U = 0 case of
Fig. 2. We also note in Figs. 5(a) and 5(b) side peaks that
correspond to the precursors of the Hubbard bands.

The scenario is radically different in the insulating solu-
tion; see Figs. 5(c) and 5(d). Here we observe the formation
of a hybridization gap opening at the chemical potential inside
the band 1. Two coherent-like features flank the gap. Band
2 is instead pushed above the Fermi energy, and therefore is
empty. We still observe precursors of the Hubbard sidebands
in A1(ω), as well as signatures of the precursor of the upper
Hubbard band in A2(ω), though rather spiky because of the
bath discretization.

We note that in the insulating solution the lowest gap
corresponds to transferring one electron from band 1 to band
2, i.e., from a1g to eπ

g in the VO2 language, and has a
magnitude of about Egap ∼ 0.8 eV, for a realistic value of
the half-bandwidth of 1.3 eV [56]. This value of the gap
is not too far from the experimental one, E ex

gap ∼ 0.6–0.7 eV
[35,52,119]. Therefore, our simplified modeling yields results
that are not only qualitatively correct but, rather unexpectedly,
also quantitatively not far off the actual ones. The band 1 →
band 1 transition, i.e., a1g → a1g, though being slightly higher
in energy, has a much steeper absorption edge since it involves
the two coherent peaks in Fig. 5(c), already observed in pre-
vious works [24,26,27,160]. This result is in loose agreement
with x-ray absorption spectroscopy linear dichroism experi-
ments [86,174] that are able to distinguish the two absorption
processes.

In order to assess the degree of electronic correlations,
we calculate the quasiparticle residue of each band in the
undistorted metal phase, defined by

Za =
(

1 − ∂Re�aa(ω)

∂ω

)−1

|ω=0

, (10)

with a = 1, 2. We find that the two bands at X1 = X2 = 0
show almost the same value Z1/2 ∼ 0.67, not inconsistent with
more realistic calculations [24,72,160,175]. Such agreement,
a priori not guaranteed, gives further support to our simple
modeling.

IV. PHASE TRANSITION AT FINITE TEMPERATURE

Our main scope here, however, is to describe the first-order
phase transition upon heating from the low-temperature M1
monoclinic insulator to the high-temperature rutile metal. In
general, we can envisage a phase transition primarily driven
either by the electron entropy or by the lattice one.

Indeed, we note that the electron free energy of the metal
solution, which is metastable at T = 0, must drop faster upon
raising temperature than the insulator free energy since the
metal carries more electron entropy than the insulator. This
effect alone, that is, ignoring lattice entropy, would be able
to drive a first-order transition when insulator and metal free
energies cross. On the other hand, since the distorted ground
state breaks the Z2 × Z2 symmetry of the adiabatic lattice po-
tential �eff(X1, X2) in Fig. 3, we might expect such symmetry
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FIG. 6. Temperature evolution of the free energy at the two
inequivalent minima X1 = X2 = 0 (dots) and X1 = 1.5, X2 = 2.1
(squares) observed at zero temperature for U = 1.5. The first-order
transition occurs at Tel ∼ 0.021–320 K, of the same order of magni-
tude as the experimental value 340 K.

to be recovered by raising temperature only because of lattice
entropy effects, i.e., ignoring the electronic contribution to
entropy.

In reality, both effects should combine to drive the tran-
sition. However, dealing together with lattice and elec-
tron entropies within our computational scheme would im-
ply to calculate the adiabatic potential �eff(X1, X2) at any
temperature, which is a rather heavy task. For this reason, in
what follows we shall analyze separately electron and lattice
entropy effects and at the end argue what would happen
should they act together.

A. Electron-driven transition

Let us first neglect the lattice entropy and study the tem-
perature evolution of the free energies of the two inequivalent
minima that we found at zero temperature. For that, we need to
evaluate the electronic entropy, which can be obtained through

S(X1, X2, T ) =
∫ T

0
dT ′ 1

T ′
∂�eff(X1, X2, T ′)

∂T ′

=
∫ �eff (X1,X2,T )

�eff (X1,X2,0)

d�eff

T ′(�eff )
. (11)

The last equality corresponds to a change of integration vari-
able from the temperature T ′ to the adiabatic potential �eff,
which is also the internal energy.

From the entropy S we can estimate the free energy:

F (X1, X2, T ) = �eff(X1, X2, T ) − T S(X1, X2, T ) , (12)

which, we emphasize once more, does not include the lattice
contribution to entropy. We shall compare the free energy
of the undistorted metal solution at X = 0 with that of the
distorted insulator at X �= 0. In principle, the equilibrium
displacement in the insulator should change with temperature.
In practice, since the entropy of the insulator is negligible for
all temperatures under consideration, we shall fix X at the T =
0 value. The temperature evolution of the metal and insulator
free energies so obtained are shown in Fig. 6. As expected, the

larger entropy of the metal pushes its free energy below the
insulator one at relatively low temperature, Tel ∼ 0.021, sub-
stantially smaller than the insulating gap, and thus justifying
our assumption of frozen X. Tel identifies the insulator-metal
transition, which is evidently first order since the two free
energies cross with different slopes. Incidentally, Tel ∼ 0.021
in half-bandwidth units corresponds to ≈320 K for a realistic
bandwidth of 2.6 eV, which has the right order of magnitude
when compared with the true critical temperature of 340 K.
However, we should mention that a different choice of the
parameters appearing in Eq. (1), keeping them still in a regime
representative of the physics of vanadium dioxide, would have
produced a different value of Tel.

B. Lattice-driven transition

We now move to study the properties of the lattice-driven
transition. For that, we first need to model the lattice dynam-
ics. However, since the tetragonal R to monoclinic M1 tran-
sition is a complex structural transformation, with martensitic
features, especially in films [176–180], our modeling ought to
be oversimplified, and aimed just to get qualitatively reason-
able results, with no pretension of quantitative accuracy.

As a first step, we must relax our previous assumption
of a global antiferrodistortive mode, and instead introduce a
displacement field, i.e., a site-dependent displacement Xi =
(X1i, X2i ). We assume that Xi feels the local adiabatic potential
�eff(Xi ) of Fig. 3(a), temperature independent since we are
neglecting the electron entropy. In addition, we suppose that
the displacements of nearest-neighbor sites are coupled to
each other by an SO(2) ∼= U (1) invariant term that tends to
minimize the strain. With those assumptions, the classical
Hamiltonian reads

Hph(X) = J
∑
〈i j〉

(Xi − X j ) · (Xi − X j )

+
∑

i

�eff(Xi ), (13)

where X denotes a configuration of all the displacement
vectors. The model (13) is equivalent to a generalized XY
model, where Xi plays the role of two-component spin of
variable length, while J > 0 is the conventional spin stiffness.
�eff(Xi ) is the effective anisotropic potential obtained from
the solution of the electron problem. Both the length and
the direction of the local distortion Xi are controlled by the
effective potential �eff(Xi ), which is not invariant under U (1)
but under separate X1 → −X1 and X2 → −X2 transforma-
tions, i.e., Z2 × Z2. The phase diagram of an XY model in the
presence of an anisotropy term that lowers U (1) down to Zn is
already known [181–183]. In particular, the anisotropy Zn for
n � 4 is a dangerously irrelevant perturbation that does not
change the XY universality class of the transition [182,183].
Our specific case study, where U (1) → Z2 × Z2, has not been
considered yet, at least to our knowledge, but it should most
likely change the XY universality class, which is what we are
going to investigate in the following.

We study the classical model Eq. (13) at different temper-
atures using the standard Monte Carlo (MC) method [184].
We consider the model on a three-dimensional cubic lattice of
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side Nx. The average value of a given observable, i.e., 〈O〉 =
1
Z

∑
X O(X)e−βHph (X), where Z = ∑

X e−βHph (X), is therefore
estimated statistically using the MC algorithm to explore the
configuration space. New configurations are generated and
accepted or rejected using the METROPOLIS algorithm with
local updates. Each local update corresponds to a shift �Xi

of one of the two component i = 1, 2, chosen with equal
probability. Within our calculations, we use �Xi = 0.15, yet
we checked that smaller values do not change the accuracy
of the calculations. In addition, we include the possibility of
global moves of the type Xi → (−X1i, X2i ), (X1i,−X2i ), or
(−X1i,−X2i ) with a total probability Pglobal = 0.05 equally
distributed among the three cases, i.e., with probability
Pglobal/3 each. The local updates require the evaluation of the
effective potential �eff(Xi ) at the new value of Xi. To speed
up execution, we pre-evaluate all the interpolated values of
the effective potential at any possible point compatible with
the size of the shift using a bicubic spline method. A new
configuration of the system is obtained after a full sweep
of the lattice sites. The statistical error is thus controlled by
the number of sweeps Ns, to which it corresponds a number
NsN3

x of MC steps. In order to avoid self-correlation problems,
we measure the average of any observables every Nmeas �
100 sweeps and in any case after a warmup period of Nwp �
1000 sweeps. In all our calculations, the number of sweeps
is of the order of Ns = 4–6 × 105. We further minimize the
statistical error by executing the numerical computation in
parallel with Ncpu = 20 cpu. The resulting statistical error is
within the symbols in all our plots.

Before discussing the results, we have to mention that some
details might depend on the precise form of the coupling be-
tween different sites. In the model Hamiltonian, Eq. (13), we
have chosen the simplest possible one, i.e., a nearest neighbor
coupling, thus disregarding longer range interactions.

In Fig. 7(a), we plot the modulus of the average dis-
placement, |〈 X 〉|, as function of the temperature. For small
system size (e.g., Nx = 10) |〈 X 〉| shows a smooth crossover
in temperature. However, increasing Nx unveils the existence
of a continuous phase transition at a critical value Tc of the
temperature. The actual value of Tc depends by the size of the
coupling constant J that somehow acts as a unit of measure
for the energy. More involved calculations are necessary for
the evaluation of J in vanadium dioxide from first-principle
calculations and we postpone them for a future work. For that
reason, we have preferred to use Tc as the unit of temperature
in Fig. 7 and in those that follow. In order to better reveal
the second-order character of the transition, we also show in
Fig. 7(a) the fit with a mean-field square-root behavior. The
fit is rather good, although we known that close to the tran-
sition the actual critical behavior must deviate from the mean
field.

A closer look to the temperature dependence of the order
parameter uncovers a nontrivial two-step evolution, which
is more evident in Fig. 7(b), where we show the specific
heat Cv = ∂〈E〉/∂T vs T . Indeed, Cv clearly displays two
peaks that are suggestive of two distinct transitions. The first
transition at T = Tc, below which |〈 X 〉| acquires a finite
value, is followed by a second one at lower T = Td < Tc.

From the knowledge of the specific heat at constant vol-
ume Cv (T ), we can compute the change of the vibrational
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FIG. 7. (a) Modulus of the average displacement as function of
the reduced temperature t = T/Tc. (b) Specific heat for the same
model as in panel (a) as function of the reduced temperature. The data
are for Ns = 4 × 105 MC sweeps of the lattice and different linear
size Nx (solid lines and open symbols). The dashed line in the critical
region is a fit of the form A(1 − t )1/2, with A = 0.96. (c) Entropy loss
�S = S∞ − S(t ) as a function of reduced temperature and Nx as in
panel (a). S∞ is the value attained in the limit of infinite temperature.
The dashed lines are guides to the eye, emphasizing the different
linear behaviors of the entropy across the two phase transitions.

entropy in the region where the two transitions occur as
�S(t ) = ∫ ∞

t
CV (T )

T dT . This quantity is displayed in Fig. 7(c)
and it shows an almost linear behavior in the whole explored
temperature range. However, as shown by the dashed lines
there, the slopes of the line is different in the three regions
T < Td , Td < T < Tc, and T > Tc.

In order to understand the nature of both transitions, in
Fig. 8 we show at T > Tc, left panels, Td < T < Tc, middle
panels, and T < Td , right panels, the endpoint distribution
after Ns = 4 × 105 MC sweeps of the lattice of the N3

x dis-
placement vectors superimposed to the potential landscape
in the (X1, X2) space (top panels) and a real space snapshot
within a single layer of the cubic lattice (bottom panels).
At high temperature, T > Tc, the Xi’s cover homogeneously
the whole potential landscape; see Fig. 8 top-left panel; for
those without any appreciable spatial correlation, see Fig. 8
bottom-left panel. Lowering T slightly below Tc, we observe
a significant change in the displacement distribution; see
Fig. 8 middle panels. Specifically, the system seems to break
ergodicity first along X2; in the simulation corresponding to
the figure it localizes in the X2 > 0 half-plane, while it is
still uniform along X1. Consequently, clusters of parallel dis-
placement vectors form in real space. The alignment direction
has X2 > 0 for all clusters, while the X1 component changes
from cluster to cluster; see Fig. 8 bottom-middle panel. Only
below Td does the full ergodicity breakdown occur, with the
system trapped around just one of the four equivalent minima,
in the figure with X2 > 0 and X1 > 0. In other words, the
Z2 × Z2 symmetry of the model Eq. (13) gets broken in two
steps upon cooling: First, the Z2 symmetry X2 → −X2 spon-
taneously breaks, and next, the residual X1 → −X1 symmetry
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FIG. 8. Top panels: distribution of the displacements Xi at the end of the MC simulation, superimposed to the adiabatic potential �eff,
properly normalized so that �eff ∈ [−1, 0]. Data are for Nx = 50, Ns = 4 × 105 MC sweeps of the lattice, and reduced temperatures t = T/Tc:
t = 1.03 (left), 0.82 (center), and 0.71 (right). Each (black) dot represents one of the N3

x endpoints of the calculation. Bottom panels:
displacement field configuration within a single plane of the cubic lattice, with the same parameters of the top panels. If Xi = |Xi| (cos θi, sin θi ),
the color code represents θi ∈ [0, 2π ], and the arrow length |Xi|. At high temperature T > Tc (left panels) Xi have random length and
orientation, thus covering homogeneously the entire potential landscape. For Td < T < Tc (center panels), the displacement orientation shows
breaking of the Z2 symmetry X2 → −X2. At lower temperature T < Td < Tc, also the residual Z2 symmetry X1 → −X1 gets broken; most of
the Xi’s have length and direction corresponding to just one of the potential global minima.

breaks, leading to two consecutive Ising-like transitions. This
is summarized in Fig. 9, where we see that at Tc 〈X2〉 becomes
finite, and thus also |〈X〉|, while 〈X1〉 is still zero. Only below
Td does X1 acquire a finite average value. Accordingly, the
vibrational entropy loss �S, shown in Fig. 7(c), changes to a
quantity ∼ ln(2) between the two temperatures Td and Tc. This
is consistent with an increase of the available phase space for
the system of a factor of 2 by moving from one temperature to
the other.

Translated in the language of VO2, these results suggest
the existence of an intermediate monoclinic phase for Td <

T < Tc where the V atoms are displaced only within the
basal plane; i.e., the chains are tilted but not yet dimerized.
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FIG. 9. Magnetization m as a function of the reduced tempera-
ture t = T/Tc. Data are for Ns = 6 × 105 MC sweeps, Nx = 24. The
solid line (black with open square) is the modulus of the average
magnetization vector. The dashed lines (green and blue with open
triangles) indicate the behavior of the average of the magnetization
components. The solid (orange) vertical lines indicate the two critical
temperatures Td < Tc associated to the two-stage transition.

In our model Hamiltonian (1), such phase with 〈X1〉 = 0
describes a monoclinic metal, which, as discussed in Sec. I,
has been reported in several experiments [81–83,126–134].
Only below Td are both components of the antiferrodistortive
displacement finite, leading to the M1 insulating phase.

In conclusion, without including the electron entropy, we
find two transitions that look continuous and in the Ising
universality class: one at Td between a monoclinic insulator
and a monoclinic metal, and another at Tc > Td from the
monoclinic metal to a rutile one. In contrast, neglecting the
lattice entropy and just including the electronic one, we found
in Sec. IV A a single first-order transition at Tel, directly from
the monoclinic insulator to the rutile metal. We can try now
to argue what we could have obtained keeping both entropy
contributions still within the Born-Oppenheimer adiabatic
approximation.

In that case, we expect that the depth of the rutile minimum
in the Born-Oppenheimer potential of Fig. 3 becomes a grow-
ing functions of T , unlike the depth of the insulating minima,
since in the insulator the electronic entropy is negligible
with respect to that in the metal. For the same reason, we
expect that the height of the two equivalent saddle points
at X1 = 0 but X2 � ±2.5 (see the black and blue lines in
Figs. 3(b) and 3(c), respectively) lowers with increasing T ,
since these points with large crystal field splitting but without
dimerization just describe the monoclinic metal, eventually
turning these saddle points into local minima. This effect
might well turn the monoclinic-insulator to monoclinic-metal
transition at Td into a first order one, all the more if we better
modeled the martensitic features of the structural distortion.
However, even in that case we still expect a further transition
at Tc > Td into the rutile metal, unless the latter has such a
large entropy compared to the monoclinic metal to drive a
first-order transition from the insulator directly into the rutile
metal, as it would occur if Tel < Td , i.e., if the electronic
entropy gain far exceeds the lattice one.
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The experimental evidences supporting the existence of a
monoclinic metal phase intruding between the M1 insulator
and R metal [81–83,126–134] suggest that, should our mod-
eling be indeed representative of VO2, then the Hamiltonian
parameters should be such that Tel � Td . This also entails a
substantial release of lattice entropy across the transition, in
accordance with experiments [89,185] and theoretical [186]
proposals. We emphasize that Tel � Td does not mean that
correlations play a minor role, but rather the opposite, since it
would imply the insulator, whose internal energy is substan-
tially contributed by electronic correlations, would survive up
to much higher temperature if it were not for the lattice.

V. CONCLUSIONS

We have constructed a minimal model that we believe con-
tains all essential ingredients to correctly capture the physics
of the metal-insulator transition in vanadium dioxide.

The model comprises two orbitals per site, one mimicking
the a1g and the other the eπ

g , thus neglecting the twofold nature
of the latter, which broaden into two bands. The a1g band
has a double peak structure, reflecting its bonding character
along the rutile c axis, while the eπ

g one is structureless. Both
have the same bandwidth and center of gravity. The density
corresponds to one electron per site; i.e., the two bands are at
quarter filling. The electrons feel an on-site Hubbard repulsion
and are coupled to two zone-boundary lattice modes, corre-
sponding, respectively, to the basal plane component, i.e., the
tilting of the vanadium chains, and out-of-plane component,
responsible for the chain dimerization, of the antiferrodis-
tortive displacement that acquires a finite expectation value
below the transition from the high-temperature rutile structure
to the low-temperature monoclinic one (M1). Using realistic
Hamiltonian parameters and assuming the Born-Oppenheimer
adiabatic approximation, we find at low temperatures phase
coexistence between a stable distorted insulator, the mono-
clinic M1 insulator, and a metastable undistorted metal, the
rutile metal. Upon rising temperature, our model description
suggests a two-step transition. First, the dimerization com-
ponent of the antiferrodistortive displacement melts, leading
to a transition from the monoclinic insulator to a mono-
clinic metal. Second, the tilting component disappears, and
the monoclinic metal turns into the rutile one. Such a two-
transition scenario, not in disagreement with experiments, is
mostly driven by the lattice entropy, also in accordance with
experiments.

One of the messages of our model calculation is that
the electron-electron interaction has the role to effectively
enhance the coupling to the lattice, stabilizing a distorted
phase otherwise metastable in the absence of interaction.
This also implies that we could have obtained similar results
with weaker electronic correlations but stronger electron-

lattice coupling. This conclusion is actually supported by
the phenomenology of niobium dioxide NbO2, which,
mutatis mutandis, is akin to that of VO2. NbO2 also undergoes
a metal-insulator transition, though at substantially higher
temperature of TMIT ∼ 1080 K [187–190]. There is some
experimental evidence of separate structural and electronic
phase transitions occurring in this compound [189–192], with
a transition temperature for the structural change Ts ∼ 1123 K
[193], from a high-temperature rutile structure to a low-
temperature body-centered tetragonal (BCT) one that locally
resembles the M1 phase of VO2 [191,194–196]. It has been
proposed that the mismatch between TMIT and Ts can be
justified by invoking a melting of the dimerization component
of the structural distortion in the BCT insulator at smaller tem-
perature as compared to the melting of the tilting component
[190–192,197]. The metallic solution that appears in between
the two transition temperatures should be mostly metallic
along the cR axis, since the almost one-dimensional a1g band
gives the most relevant contribution to the spectral weight at
the Fermi level in this intermediate phase. This expectation is
not in disagreement with some experimental findings in which
they measure, above TMIT, a metallic conductivity along cR

while a semiconducting one in the orthogonal direction [198].
However, we should point out that not all the experiments con-
firm this scenario [199]. We believe that a similar anisotropy
in the conduction properties should be displayed also by the
monoclinic metallic phase of vanadium dioxide. The single
4d electron in Nb4+ is expected to be less correlated than
the 3d electron in V4+. This loss of correlations, testified
by the VO2 M2 phase having no counterpart in NbO2 [200]
and by the efficacy of ab initio methods to describe NbO2

[74,201–203], is actually overcompensated by the increase in
covalency due to the broader spatial distribution of the 4d
orbitals [204], which, in turn, yields a stronger coupling with
the zone-boundary lattice modes and thus a higher transition
temperature.
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