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Chapter 1

Introduction

1.1 Background

1.1.1 General statement and examples

Let I be a functional defined on a suitable class of sets A. We are exploring the
stability properties of the following minimization problem:

min {/(Q): Q € A}. (1.1.1)

More precisely, we are interested in the following question. Let Q* € A be a stable
critical point for I. Is it true that 2* is a strict local minimum? Can it be quantified?
A critical point is said to be strongly stable if for any X € C>°(RY,RY) we have

2
SO =0, S T@Q)]img > 0,
where ®, := Id + tX. This implies that 2* is a local minimum for a certain class
of deformations. This class of deformations is however very limited, and we would
like to enlarge it. So we are wondering if we can upgrade infinitesimal stability to
the following:

I(Q2) — I(Q") > ¢ w(dist(2, Q7)) (1.1.2)

where €2 is in a small neighborhood of ©2*, ’'dist’ denotes some suitable notion of
distance, and w is some modulus of continuity. And if so, does (1.1.2) hold for every
2, thus making Q* a global minimum? Moreover, we would like w in the inequality
(1.1.2) to be sharp, that is, we wish to have a sequence (2. such that

Q) = I(Q) ase—0,  I(Q) — I(Q) ~ w(dist(Qs, Q7)) .

These questions were asked for various geometric inequalities and different types
of sets. Not only such results have their own merit, but they have also been used
recently for several probabilistic results. Such inequalities can be helpful in large
deviation theory. See for example these works on the limits of certain discrete
models: Berestycki and Cerf in [BC18| use quantitative Faber-Krahn inequality for
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a penalized random walk, and Cicalese and Leonardi in [CL19| apply quantitative
Wulff inequality for fluctuations on certain lattices.

Probably the first result of this flavor goes back to the work of Bonnesen in
[Bon24|, where he proves (1.1.2) with I = perimeter and A = {convex sets in R?}
(Q* in this case is a ball). Since then, inequalities of type (1.1.2) were proven for sev-
eral functional such as: perimeter, the first eigenvalue of Laplace operator, Cheeger
constant, etc., see [FMP08|, [BDPV15|, [FMP09|, [FFM*15]. There were developed
several approaches to this problem, including symmetrization, mass transportation,
and second variation techniques (for the overview of these techniques for the isoperi-
metric inequality see |[Fus15]). We will be focusing on the latter.

The question of choosing the topology in (1.1.2) is an important one. Local min-
imality is insured only in the topology which allows us to take derivatives. Consider
the functional F(u) := [ u(z)? — u(z)*dz. Tn L™ topology the second derivative of
F at ug = 0 is positive and uy is indeed a local minimum among L*° functions. How-
ever, it is not a local minimum among L* functions, as F(z~/®) < 0. This example
might seem artificial but we will see that problems of this sort arise also in real life
when we present Lord Rayliegh’s charged liquid drops model in Section 1.1.2. For
a more thorough discussion on the topology see, for example, [GH04, Chapter 4].

1.1.2 Main results

Let us first state the main results of the thesis. All the original results of this thesis
are contained in the following papers:

e The sharp quantitative isocapacitary inequality, 2019, joint with G. De Philip-
pis, M.Marini, [DPMM19];

e The sharp quantitative isocapacitary inequality (the case of p-capacity), 2020,
[Muk20];

o Minimality of the ball for a model of charged liquid droplets, 2019, joint with
G. Vescovo, [MV19].

Quantitative isocapacitary inequality

Let  C RN, N > 3 be an open set. We define the absolute capacity of Q as

cap(Q?) = inf {/ |Vul*dz :u>1on Q} : (1.1.3)
RN

ueC (RN)

Moreover, for 2 CC Bg (Bgr denotes the ball of radius R centered at the origin) we
denote by capy(2) the relative capacity of Q with respect to By defined as

capr(2) =  inf {/B |Vul*dz :u>1on Q} . (1.1.4)
R

u€Ce° (BR)
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It is easy to see that for problem (1.1.3) (resp. (1.1.4)) there exists a unique
function' v € DY2(RN) (resp. ur € Wy ?(Bg)) called capacitary potential of Q such
that

/ Vol = cap(@)  (resp. / [Vurl? = capp(2) ).
RN Br

Moreover, they satisfy the Euler-Lagrange equations:

Au=01in Q° Augr =0in Bg \ Q
u =1 on 0N) ur = 1 on 0N
u(x) — 0 as |z] - o0 ur = 0 on OBg.

The well-known isocapacitary inequality (resp. relative isocapacitary inequality)
asserts that, among all sets with given volume, balls (resp. ball centered at the
origin) have the smallest possible capacity, namely

cap(Q2) — cap(B,) >0 (resp. capr(f2) — capr(B,) > 0). (1.1.5)

Here r is such that |B,| = ||, where | - | denotes the Lebesgue measure.
So, we can ask if (1.1.2) holds for I = cap and Q* = B,. The answer is positive,
and a good choice of distance is the so-called Fraenkel asymmetry.

Definition 1.1.1. Let Q be an open set. The Fraenkel asymmetry of 2, A(Q), is
defined as:

QAB
A(Q) = inf { | B] | : B is a ball with the same volume as Q} :

To the best of our knowledge, the first results in this direction appeared in
[HHWO1| where they considered the case of planar sets * and of convex sets in
general dimension. In the same paper the authors conjectured the validity of the
following inequality:

Conjecture 1.1.2 ( [HHWO1]). Let N > 3. There ezists a constant ¢ = ¢(N) such
that for any open set Q such that |Q| = |B,| the following inequality holds:

cap(Q) —cap(B) 4o

rN—2 -

Note that by testing the inequality on ellipsoids with eccentricity € one easily sees
that the exponent 2 can not be replaced by any smaller number. Indeed, consider
the family {€.} of ellipsoids defined as

Q.= {(2,2n) ERY 1 |22 + (1 + )2 < 1}

'Here and in the sequel, D%2(RY) denotes the completion of C>*(R™) with respect to the
homogeneous Sobolev norm:
[ellyirz = [IVull 22,
see [EG15, Section 4.7] and [LL97, Chapter 8]
2Note that for N = 2 the infimum (1.1.3) is 0 and one has to use the notion of logarithmic
capacity.



Then || = |B,.| with r. =1 — 3¢ + O(e?). One can easily show that A(Q.) ~ e.
N-—-2

To see that cap(Q.) < 1+ sxe + O(e) we use u = (|2/|* + (1 +e)zk) 2 as a
competitor in the definition of capacity. Thus we get

cap(§2) — cap(B:.)

reN_2

< Ce® < CA(L).

A positive answer to the above conjecture in dimension 2 has been given by
Hansen and Nadirashvili in [HN92, Corollary 1]. For general dimension, the best
known result is due to Fusco, Maggi, and Pratelli in [FMP09] where they prove the
following:

Theorem 1.1.3 ( [FMP09, Theorem 1.2|). There ezists a constant ¢ = ¢(N) such
that for any open set Q) such that || = |B,| the following inequality holds

Cap(Q) _ Cap(BT) > C.A(Q)4

rN—2 -

Remark 1.1.4. This theorem is more general, we will state the full version later.

With G. De Philippis and M. Marini in [DPMM19] we provide a positive answer
to Conjecture 1.1.2 in every dimension.

Theorem 1.1.5 ( [DPMM19, Theorem 1.4]). Let 2 be an open set such that || =
|B1|. Then

(A) if Q is compactly contained in Bg, there exists a constant ¢; = ¢1(N, R) such
that the following inequality holds:

capgr(Q) — capr(B;) > c1(N, R)|QAB; |

(B) there exists a constant co = co(N) such that the following inequality holds:

cap(Q) — cap(B1) > c2(N).A(Q)%.

Remark 1.1.6. By the scaling cap(AQ) = AV "2 cap(f2), we can also get the analo-
gous result for 2 with arbitrary volume.

Note that in the above theorem, in the case of the absolute capacity one bounds
the distance of 2 from the set of balls, while in the case of the relative capacity
one bounds the distance from the ball centered at the origin but the constant is R
dependent. Indeed in the former case all balls have the same capacity (due to the
translation invariance of the problem) and thus in order to obtain a quantitative
improvement, one has to measure the distance from the set of all minimizers. On
the contrary, for the relative capacity, the ball centered at the origin is the only
minimizer. Since

Lim capp(€2) = cap(€2),



it is clear that the constant in (A) above needs to depend on R. Indeed, if we
consider © = By (x) with x # 0, in the limit we have 0 on the left-hand side but the
right-hand side is strictly positive. The dependence on R can also be inferred by
the study of the linearized problem, see Section 4.1.2 below. We also remark that,
as it will be clear from the proof, in the case of the relative capacity one can replace
|QAB;|? with the larger quantity az(Q2) defined in Section 5.1 below.

Quantitative isocapacitary inequality - the case of general p

The second main result is a generalization of the part (B) of Theorem 1.1.5 to the
case of p-capacity. First we introduce the following definition. Let  C R, be an
open set. We define the p-capacity of (2 as

cap,(2) = inf {/ |Vul|Pdz : v > 1 on Q} (1.1.6)

UECCOO([RN) R

for 1 < p < N. Similar to the case p = 2, it is easy to see that for problem (1.1.6)
there exists a unique function® u € DYP(RY) called capacitary potential of € such
that

/[RN |VulP = cap,(2).

Moreover, it satisfies the Euler-Lagrange equation:

div(|Vu[P2Vu) = 0 in Q°,
u =1 on 0f),
u(z) — 0 as |z| — oo.
In the same way as for standard capacity of the previous section, Polya-Szego

principle yields the isocapacitary inequality, saying that, among all sets with given
volume, balls have the smallest possible p-capacity, namely

cap,(§2) — cap,(B,) > 0 (1.1.7)
with 7 such that |B,.| = |Q|. Inequality (1.1.7) is rigid, that is, equality is attained
only when () coincides with a ball, up to a set of zero p-capacity.

It is natural to wonder whether these inequalities are stable as it was in the case
p = 2. That is indeed true and the first result to our knowledge is contained in the
already mentioned paper by Fusco, Maggi, and Pratelli.

Theorem 1.1.7 ( [FMP09, Theorem 1.2|). There exists a constant ¢ = ¢(N,p) such
that for any open set ) such that |Q] = |B,| we have

cap,,(€2) — cap,(B;)
rN-p

> cA(Q)*P.

3Here D'? denotes the completion of C>°(RY) with respect to the homogeneous Sobolev norm,

[ullpre = [[VullLe@n)



In [Muk20] we prove the sharp version of Thorem 1.1.7.

Theorem 1.1.8. Let Q be an open set such that |)| = |By1|. Then there exists a
constant ¢ = ¢(N, p) such that the following inequality holds:

cap,(Q) — cap,(B1) > c A(Q)*.

By the scaling cap,(\Q2) = AV=Pcap(Q), we can get the analogous result for
with arbitrary volume.

Charged liquid droplets

Here we will be considering a certain electrostatic energy in place of I, the exact
definition requires some background.

In experiments one observes the following phenomenon: the shape of the liquid
droplet is spherical in a small charge regime. Then, as soon as the value of the
total charge increases, the droplet gradually deforms into an ellipsoid, it develops
conical singularities, the so-called Taylor cones, [Tay64|, and finally, the liquid starts
emitting a thin jet ( [DMV64], [DAM™103], [RPH89|, [WT25]). The first experiments
were conducted by Zeleny in 1914, [Zell7], but in a slightly different context.

Typically this behavior is modelled by defining a free energy composed by an
attractive term, coming from surface tension forces, and a repulsive one, due to
the electric forces generated by the interaction between charged particles. One may
expect that for small values of the total charge the attractive part is predominant,
forcing in this way the spherical shape of the minimizer.

The free energy in the classical model due to Lord Rayleigh is defined as follows:

Here, E C R3 corresponds to the volume occupied by the droplet, P(E) is its
perimeter, () is the total charge, and

L 1 dp(z)du(y) | B
m~—1Hf{g//w-SptMCEaM(E)—l}

takes into account the repulsive forces between charged particles. Note that 4 can be
thought as a (normalized) density of charges and that C(F) is the classical Newtonian
capacity * of the set £. One assumes that the optimal shapes are given by the
following variational problem:

%?i“v{P(E” cCiZ;}'

4C(E) coincides with the capacity cap(E) defined above up to a constant, see [LL97, Section
11.15].




A difficulty is that contrary to the numerical and experimental observations this
model is mathematically ill-posed, see [GNR15|. For a more exhaustive discussion
we refer the reader to [MN16]. From a mathematical point of view, the issue with
it is in line with the problem we mentioned above concerning the right topology
in (1.1.2). For small values of the charge the ball is a minimizer but only if one
restricts themselves to C'hl-regular sets, while for wider classes of sets like sets with
C'! boundary or open sets the infimum is not attained.

As for the physical perspective, the main issue with the Rayleigh model comes
from the tendency of charges to concentrate at the interface of the liquid. To restore
the well-posedness one should consider a physical regularizing mechanism in the
functional. With this purpose in mind, Muratov and Novaga in [MN16] integrate the
entropic effects associated with the presence of free ions in the liquid. The advantage
of this model is that the charges are now distributed inside of the droplet. They
suggest to consider the following Debye-Hiickel-type free energy

Fskq(E,u,p) = P(E)+ QQ{ / ag|Vul® dz + K/ 0’ dx}. (1.1.8)
RN E
Here N > 3, E C RY represents the droplet, P(E) is the De Giorgi perimeter,
[Mag12, Chapter 12|, the constant @) > 0 is the total charge enclosed in E, and
CLE(J?) =1gc + [lg,

where 1 is the characteristic function of a set F' and g > 1 is the permittivity of
the liquid.
The normalized density of charge p € L?(RY) satisfies

plge =0 and /,0 =1 (1.1.9)
and the electrostatic potential u € DV2(RY) is such that
—div (ag Vu) =p  in D'(RY). (1.1.10)
For a fixed set E we define the set of admissible pairs of functions u and p:
A(E) = {(u,p) € D"*(RY) x L*(R"): u and p satisfy (1.1.10) and (1.1.9)}.

The variational problem proposed in [MN16] is the following:

min { Fs x.o(E,u,p) : |E| =V, E C Bg, (u,p) € A(E)}. (1.1.11)

By scaling (see the introduction of [DPHV19]), we can reduce the problem to the
case |E| = |By| and so we will work with the following problem:

min {fﬁjg@(E) : ’E’ = |Bll, E C BR} (Pﬂ,K,Q,R)

In [MV19] with G.Vescovo we obtain the following result.
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Theorem 1.1.9. Fiz K > 0, § > 1. Then there exists Qo = Qo(8, K) > 0 such
that for all Q@ < Qo and any suitable R the only minimizers of (Psr.o.r) are the
balls of radius 1.

The condition E C Bg in the minimizing problem (Ps x ¢ ) is required to have
existence of minimizers. However, thanks to Theorem 1.1.9 it can be dropped for
small enough charges.

Corollary 1.1.10. Fiz K > 0, § > 1. Then there exists Qy = Qo(S, K) > 0 such
that for all QQ < Qo the infimum in the problem

inf {Fpxq(E) : |E| = |Bil} (Ps.x.Q)
18 attained. Moreover, the only minimizers are the balls of radius 1.

To prove Theorem 1.1.9 we show that minimizers are close to the ball and regular
if ) is small enough. We then use second variation techniques to prove stability of
the ball with respect to smooth perturbations in the case of small charge.

The first step is to obtain C%"-regularity of minimizers. We improve the results
of [DPHV19], where partial C''U-regularity is proven. In fact, we are able to prove
C*>-regularity of minimizers, a result that is interesting in itself.

Theorem 1.1.11 (C*°-regularity). Given N > 3, A > 0 and 9 € (0,1/2), there
exists €xeg = Ereg(IN, A, V) > 0 such that if E is a minimizer of (1.1.11) with Q+ 8+
K+ <A,

zo € OF and v+ egp(xg,r) + Q* Dg(x,7) < Ereg

then ENC(xg,7/2) coincides with the epi-graph of a C®-function f. In particular,
we have that OF N C(xg,7/2) is a C* (N — 1)-dimensional manifold. Moreover °,

[flewo Dy r2) < C(N, Ak, ) (1.1.12)
for every k € N with k > 2.

We refer the reader to Notation 2.0.1 for the definition of eg(x¢,r), Dr(zo, )
and C(xzg,7/2).

’Let 2 C R™ be an open and bounded set, f € C(Q2). Then

@) = Fw)|

Hleoo@ = sw _=p—0p5

w#y,z,yeQ

Moreover, if f € C*(Q) then

floro@ = D IDflleg + D ID*floos @)-

lal<k lal=k

11



1.2 Possible approaches

As was mentioned earlier, there are several approaches to proving inequalities of
the type (1.1.2). We will go briefly through them and mostly focus on the second
variation technique.

1.2.1 Symmetrization

Often minimizers of the problem (1.1.1) enjoy some symmetries. For example, balls
are minimizers for a variety of problems of this sort - consider properly scaled perime-
ter, first eigenvalue of Laplacian, capacity, etc. One usually can prove that only
balls are minimizers via appropriate symmetrization techniques and that proof can
be quantified.

Let us illustrate the above idea by looking more closely at the isocapacitary
inequality (1.1.7). Its proof is an easy combination of Schwarz symmetrization with
Polya-Szeqi principle. Indeed, let 2 be an open set and let u be its capacitary
potential. Schwarz symmetrization provides us with a radially symmetric function
u* such that, for every t € R,

Hz:u(z) >t} = [{z:u"(x) > t}]. (1.2.1)

We use u* as a test function for the set {x : u*(x) = 1} = B, and we note that
(1.2.1) yields that |B,| = |©2]. Hence

cap,(B,) < /N |Vu*|Pde < /[RN |VulPdr = cap,(£2) 1| = |B,|,

R

where the second inequality follows by Poélya-Szego principle, which in turn follows
from isoperimetric inequality (for details see [Tal76, Section 1]).

Since the isocapacitary inequality is a consequence of the isoperimetric inequality,
a reasonable strategy to obtain a quantitative improvement would be to rely on a
quantitative isoperimetric inequality. This was indeed the strategy used in [FMP09]
where they rely on the quantitative isoperimetric inequality established in [FMPO08|.
However, although the inequality proved in [FMPO08| is sharp, in order to combine
it with the Schwarz symmetrization procedure, it seems unavoidable to lose some
exponent and to obtain a result as the one in [FMP09| (recall Theorem 1.1.7).

1.2.2 Mass transportation

Sometimes the minimizers are not symmetric. For example, that is the case for
anisotropic perimeter, defined as follows. Suppose we have K - an open, bounded,
convex set in R containing the origin. We define a weight function on directions as

V||« :=sup{z-v:ze K}

12



for v € RY such that |v| = 1. Now for Q - a sufficiently smooth set in RY - we define
its anisotropic perimeter as

Pre(Q) = /8 (o)l a7

Unlike the standard perimeter, Pk is not necessarily invariant under rotation and
its unique minimizer (modulo translations) under a volume constraint is K itself,

properly scaled. In other words, the following anisotropic isoperimetric inequality
holds

with equality only for Q = MK + x for some A > 0 and x € RY. In [FMP10| Figalli,
Maggi, and Pratelli show a quantitative version of this inequality. More precisely,
they prove that

P (8 1N Ax())?
it = VK (1+ ( C(N)> ) (1.2.2)

where Ak () is asymmetry with respect to K defined as

OA(z + 1K
Ag(Q) = inf{% Lz eRY, VK| = |Q|}.

~—

Moreover, they show that one can take
181NT
3/2
(2-2"") /

C(N) =

on the right hand side.
To explain the idea behind their proof we need to recall the following theorem.

Theorem 1.2.1 (Brenier’s map, [Bre91l, McC95]). Let u and v be two probability
measures in RY. Suppose that p is absolutely continuous with respect to Lebesque
measure. Then there exists a convex function ¢ : RV — R such that the map
T := Vo transports j onto v, i.e. for every Borel function h the following holds

L rw vt = [ 1) duto)

[RN

An elegant proof of isoperimetric inequality due to Gromov in [MS86] goes as
follows. Suppose T is a Brenier transport map (in the original proof instead of a
Brenier map a less rigid Knothe one is used) between p = ﬁxg dr and v = ﬁx;{ dy.

Note that by change of variable det VT'(z) = |K|/|€| for a.e. € Q. Then

(@) = / lva(@)]l, a1V > / 1Tl vo(@)]. dHY " > / T - vol(w) MV
o0 o0 o0

:/didexz/N(detVT)l/Nd:c:N]K]VN\Q|NN1_
Q Q

13



In [FMP10] Figalli, Maggi, and Pratelli quantify this proof to get (1.2.2).
Unfortunately, for this proof the functional needs to have a particular structure
which is not the case for problems we are concerned with in this thesis.

1.2.3 Second variation technique

The method, called Selection Principle, was introduced by Cicalese and Leonardi
in [CL12| to give a new proof of the sharp quantitative isoperimetric inequality.
It turned out to be an effective tool for such questions. See, for example, proofs
of sharp quantitative Faber-Krahn inequality in [BDPV15] and sharp quantitative
isoperimetric inequality for non-local perimeters in [FFM™15|. The idea is to get
a sequence contradicting the inequality (1.1.2), then improve it to be a sequence
of smooth sets. In the spirit of Ekeland’s variational principle, the new sequence
is selected as minimizers of penalized minimization problems. We also note that
Acerbi, Fusco, and Morini in [AFM13] use a different penalization approach to prove
stability of certain configurations for nonlocal isoperimetric problem.

To tackle the problem for smooth sets, we write an analog of Taylor expansion
for the functional I. That is, we want to have a formula of the type

1
I(2) = I(Q) + [first order term]+ 5]”(9*)dist(§2, Q*)? + [remainder term]. (1.2.3)

The first order term vanishes for a critical point. We would like to show that
the second derivative I”(Q*) is positive and to get an appropriate bound on the
remainder term. Such a computation for the perimeter was done first by Fuglede in
[Fug89].

Thus, we have the following steps:

e Get a contradicting sequence.

We argue by contradiction and for any ¢ > 0 we get a sequence of sets €,
such that
I(Q,) — I1(Y) < cdist(Q, Q)2

and €, converges to Q* in some (typically weak) topology.

e Improve a contradicting sequence.

Now we want to have convergence in a stronger topology. As was mentioned,
this is done by perturbing a sequence {{2,} to be a sequence of minimizers of
some functionals. Then we will need to use regularity results.

e Prove (1.1.2) for smooth sets.

To write the equality (1.2.3) we employ shape derivatives. The exact form of
the distance and the remainder term may vary for different functionals. The
bounds require certain regularity, which tells us the topology we should aim
for in the previous step.
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To use this approach we a priori don’t need neither symmetry of the minimizer nor
some specific structure of the functional. Note however that arguing by contradiction
leaves us no chance to bound the constant ¢ on the right hand side of (1.1.2).

1.3 Organization of the thesis

The rest of the thesis is organized as follows.
In Chapter 2 we collect the notions and conventions used throughout the thesis.

In Chapter 3 we define shape and material derivatives, introduce Hadamard’s for-
mula, and explain how to differentiate solutions of elliptic problems with respect to
the domain.

Chapter 4 contains computations for the so-called spherical sets. We start by defin-
ing these sets and proving a technical lemma that allows us to deform the unit ball
to an arbitrary nearly-spherical set in a smooth way. We then deal separately with
2-capacity, p-capacity and charged drops. In Section 4.1 we compute the first two
derivatives of capacity near the ball and prove Theorem 1.1.5 for nearly-spherical
sets. We make similar computations for p-capacity in Section 4.2 and prove Theorem
1.1.8 for nearly-spherical sets. Note that the computations become more technical
as the equation for capacitary potential is degenerate in this case. Finally, in Section
4.3 in an analogous fashion we write Taylor expansion for the free energy defined by
(1.1.8). Since this free energy contains perimeter we can be crude and only provide
a bound for the second derivative of the repulsive term near the unit ball. We prove
stability of the unit ball for the free energy F in the family of nearly-spherical sets,
getting as a corollary Theorem 1.1.9 for nearly-spherical sets. For the sake of com-
pleteness we also provide the sharp bound of the second derivative of the repulsive
term at the unit ball.

Chapter 5 (Chapter 6) concerns the proof of Selection Principle for 2-capacity (p-
capacity). In both cases we first deal with bounded sets. In Section 5.1 we introduce
a different notion of asymmetry that we will use in both chapters. We argue by
contradiction and state Selection Principle in Section 5.2 (Section 6.1). We perturb
the contradicting sequence, making it a sequence of minimizers of a certain functional
in Section 5.3 (Section 6.2). We then prove that the new minimizing sequence
consists of uniformly regular domains: we first get Lipschitz regularity and then
use [AC81] ( [DPO05]) to get higher regularity. This is the content of Section 5.4
(Section 6.3). Finally, in Section 5.5 and Section 5.6 (Section 6.4 and Section 6.5) we
reduce to the case of bounded sets and finish the proof of Theorem 1.1.5 (Theorem
1.1.8). The biggest differences of these two chapters lies in the part concerning
regularity of the perturbed sequence, most of the other proofs can be repeated
almost verbatim and we will omit some of them for the case of p-capacity.

In Chapter 7 we finish the proof of Theorem 1.1.9. As we proved it already for the
case of nearly-spherical sets, it is enough to show that the minimizers are nearly-
spherical for small enough charge. We start by collecting the regularity results
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of [DPHV19| that we will use in Section 7.1. In Section 7.2 we prove that minimizers
are close to the unit ball in L. We improve C*?-regularity of [DPHV19| to C*?
in Section 7.3 by looking at the minimizing pair (u, p) and utilizing Euler-Lagrange
equation. We prove smooth regularity of minimizers in Section 7.4 via bootstrap
procedure. Finally, we finish the proof of Theorem 1.1.9 and prove Corollary 1.1.10
in Section 7.5.
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Chapter 2

Notation

Here we collect the notation and conventions we are going to use throughout this
thesis.

Barycenter and direction.

For an open set (), xo denotes the barycenter of {2, namely

il
T = — [ zdz.
0l

0 :=z/|z|.

For x € R™ we denote

Jacobians.
We denote by Jg,(x) the jacobian of ®; at x:

Jo,(x) = det VO, ()
and by J&%(z) the tangential jacobian of ®, at z € 9

J&(x) = det V7@, ()
(see [Magl2, Section 11.1]).

Perimeter.

We are going to deal with sets of finite perimeter, for the definition and basic proper-
ties see [Magl2, Chapter 12|. For E - a set of finite perimeter we denote its perimeter
by P(E).

Harmonic extension and H'/? norm on the boundary.
Given a function ¢ : 9B; — R we define
(A) Hgp(p) € Wy*(Bg) as the solution to
AHpL(gO) =0 in BR\Bl

Hg(p) = ¢ on 0B,
HR(QO) =0 on 8BR

17



(B) H(yp) € D¥*(RY) as the solution to

AH(p) =01in Bf
H(p) = on 0B
H(p)(z) — 0 as || — o0

We are going to use the following norm:

2 2 39/ N—1 2
= dH + / VH dx
Il = [, ¢ [ IvH)
in the case of absolute capacity;
6y = [ P [ V() s
HZ2(9B1) 0By Br\B1

in the case of relative capacity.
Note that this norm is equivalent to the standard one, where the second integral
is replaced by Gagliardo seminorm (see for example [Gri85, (1,3,3,3)]).

Normal vector and mean curvature.

When dealing with capacity we will denote by vq the inward normal to 2. We will
denote by .7q the mean curvature of 02 with respect to the inward normal to €,
that is J%q = div vg.

Note that when dealing with liquid drops we will denote by rq the outward
normal to 2.

Dealing with relative and absolute capacity simultaneously.

Since most of the argument will be similar for the relative and for the absolute
capacity, we are going to use the following notational convention. Whenever possible,
we will write a,,cap,, etc. instead of a/ag, cap/capyp or other notions that will
come along. The convention is that x denotes the same thing (R or the absence of
it) throughout the equation or the computation where it appears.

Charged liquid drops model

Notation 2.0.1. Let £ C RY be a set of finite perimeter, z € RY, v € S¥~! and
r > 0.

- We call p¥(x) := x— (z-v) v and ¢”(z) := (z-v) v, respectively, the orthogonal
projection onto the plane v+ and the projection on v. For simplicity we write
p(z) == p™(z) and q(z) := g*¥ (z) = zn.

- We define the cylinder with center at xy € RY and radius r > 0 with respect
to the direction v € SV~! as

C(zo,r,v) :={z € RY : |p“(z — z)| <r,|q"(z — z0)| <1},

and write C, := C(0,r,ey), C := Cy.
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- We denote the (N — 1)-dimensional disk centered at yo € R¥~! and of radius
r by
D(yo,7) :={y € RN=!: ly — ol < r.
We let D, := D(0,r) and D := D(0, 1).

- We define

1 _ 12
ep(z,r) = inf / lvely) = v dHY 1 (y).
0% ENB(x) 2

vesN-1 pN-1

We call eg(x,r) the spherical excess. Note that from from the definition it
follows that

1
eE(I7 )\T’) < WeECC’T)
for any A € (0,1).

- Let (u, p) € A(F) be the minimizer of

g E)= inf {/ a Vu2+K/ 2}.
)=t § vk [

We define the normalized Dirichlet energy at x as

1
Dg(x,r) = N /B ( )\Vu|2 dx.

Notation 2.0.2. Let £ C RY be such that 9E N C(xy,r) is described by the graph
of a regular function f.

o If z € RY, we write x = (2/, zy), where 2’ € RV ! and 2y € R.

e We denote by vg the outer-unit normal to 0F. Moreover, we extend vg at
every point in the following way

ve(, zy) =ve(@, f(2') Vo= (2 zy) € C(xg,r).
e Let u be a solution of
—div(agVu) = pg  in D' (B.(x)),

where
pp € L™ (B,(x9)) and ag =Pl + 1g..

We denote by
Tgu = (%u, (1+ (8 —1)1p)0yu),

where

8,,$u =Vu— (Vu-vg)vg and O,,u:=(Vu-vg)vg.
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e We denote by

1
(9 : gdx

- |B7“| B, (x)

the mean value of g € L'(B,(x)). We simply write [g], := [g]o.-

e We denote the restrictions of a function v to E and E° by v* and v~ respec-

tively:

vii=0vlp, v i=vlge.
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Chapter 3

Shape derivative

3.1 Hadamard’s formula

If the sets in the minimizing problem (1.1.1) are sufficiently smooth, one can try to
deal with the problem in a classical way, i.e. look at the first and second variations.
For a detailed overview of this approach see, for example |[HP05, Chapter 5. We
are going to present briefly the tools we need.

Imagine you have a family of sufficiently smooth (for our needs C*? boundary
will be enough) sets Q;, t € [0,1]. We want to learn how to take a derivative of
1(€);) with respect to t. Suppose that

Qt = (I)t(Qo),

where ®;(z) = Id + tX + o(t) with X : RN — RY a smooth vector field. Then the
following lemma holds.

Lemma 3.1.1 (Hadamard’s formula). If I has the form I(Q;) = [, fi(x)dx for
f(t,z) € C([0,1] X E) with E D 4 for any t € [0,1], then

d d
I = 210 = [ Gh@ds+ [ RO
dt Qt dt aQt
Proof. We first use change of variables formula to move everything to the initial set:
() = [ fu(®u(x))Jo, (z)dr.
Qo

Now the domain of integration is fixed and we have

() = / G @u()) iy ()

= %f(t, (7))o, (v)d +/ Vfi(®(2)) - X Jg,(x)dx + ft(q)t(x))%ert (z)dx
Q % o
d .
— /Q Eﬁ(m)d:ﬁ/@ﬁ Vfi(z) X dr + 5 folz) div X da

d ) d
= | s [ avr@xyde= [ Saeies [ fxva
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3.2 Derivatives of solutions of PDEs on changing
domain

The problem is that even when the functionals we are interested in can be represented
as in the statement of Hadamard’s formula, usually the dependence of the function
f on tis not direct. We are going to deal with solutions of Euler-Lagrange equation,
which would be PDEs with the domain changing in time.

When talking about functions with changing domains, one can take derivatives
in different ways. We are going to use mostly the shape derivative, defined as follows.

Definition 3.2.1. Suppose we have a family of functions f, : €, — R. We define
the shape derivative as

: d

ft([ﬁ) = Eft(x) for x € Qt.
Note that the shape derivative is a function defined on €.
Another notion we are going to need is that of material derivative.

Definition 3.2.2. Suppose we have a family of functions f; : £, — R and ; =
,(€2). We define the material derivative as

%ft(x o d,) for x € Q.

Note that the material derivative is a function defined on {).

3.2.1 Dirichlet Laplacian

We state the following theorem for Dirichlet Laplacian with changing domain.
Proposition 3.2.3 ( [SZ92, Proposition 3.1]). Let 2 be a C* domain in RN, k > 2.
Suppose uy is the solution in H'(Qy) of
Aut = ht mn Qt;
U = 2z on O
for some hy € L?(Y), 2z € H1/2(0f2t). Assume further that hy and z; have shape
derivatives in L?(Q;) and HY?(0Q;) respectively. Then there exists a shape deriva-
tive of hy in H'(Qy) and it is the solution of
Aut = ht m Qta
U =2 — (X -v)Vuy - v on 0.
Remark 3.2.4. An analogous result holds if there is a uniformly elliptic oper-
ator instead of Laplacian. In particular, we are going to use it for an operator
u +— div <(/£2 + \Vu]2)(p_2)/2 Vu> with £ > 0. The proof is similar to the one for
Laplacian. For the scheme of the proof see Proposition 3.2.7.
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3.2.2 Transmission problem

Let ¢, : R* — R be a solution in D'?(R"™) of

—BAY; = —%W - f(t) in €},
Atpy = 0 in Qf,

Y =1, on 9%,

BVYE v = Vi, - v on OQ,

(3.2.1)

or, in distributional form,
1
/ aq, VUV dr + — | Vipde + </ \I/da:) f(t)=0
RN K Ja, o8

for any ¥ € DV2(RM).
First we notice that ¢ is regular since it is a solution to a transmission problem.
Indeed, v, € C>V'(B) N C>Y'(B¢) by the following theorem.

Theorem 3.2.5 ( [LU68, Theorem 16.2|). Let Q be a bounded set in RY. Denote
by B, the co-normal derivative and suppose u is a solution in W12(Q) of

it o (@0 (2)ua,) + 3000 bil@)us, + a(z)u = f(x) in Q,
u =0 on 0L,

[u] =0 on OF,

[p(z)B,u] =0 on OF,

where the coefficients satisfy the following conditions:

N
VIEP <Y a6 < plél?, v>0, 0<po <pla) <p

ij=1
and

8&1'7]' Gp

Q.55 Oz, b, a_xk’

Then u € C*V'(E) N C>Y'(E¢) for some ¥ > 0.

bi, a, feCY(E)nC’(E°), OEecC*.

Remark 3.2.6. Note that in our case the equation is in the whole space RY rather
than in a bounded domain. However, the same proof applies.

Now we are ready to prove differentiability of ¢, with respect to t.

Proposition 3.2.7. Suppose [ is bounded and Lipshitz with respect to t. Then the
function t — 1, is differentiable in t and its derivative v, satisfies

—BAG = —getb = f(2) in

Ay =0 in QF,

U =y == (Vo = V) - v(X - v) on 09,

BV v — Vi v = — ((BV[VYF] = VIVYr]) - X) - v on 00,

(3.2.2)
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Proof. The proof is standard, see [HP05, Chapter 5| for the general strategy and
[ADKO07, Theorem 3.1] for a different kind of a transmission problem. We were
unable to find a result covering our particular case in the literature, so we provide
a proof here.

We first deal with material derivative of the function v, i.e. we shall look at the
function t > ¢, := ¢ (®(z)). The advantage is that its derivative in time is in H'
as we will see. Note that the shape derivative of v, is not in H' as it has a jump on
0€Y;.

Step 1: moving everything to a fixed domain.

We introduce the following notation:

Ay(x) = D&, (z) (DB 1) (2)Ja, (2).

Note that A; is symmetric and positive definite and for ¢ small enough it is elliptic
with a constant independent of ¢.

Now let us write the equation for v; in distributional form and perform a change
of variables to get the equation for

- 1 -
/ \AY% <aBAtth) dx + —/ Uiby Jo, (x)dx + / Vs, (z)dx | f(t) =0 (3.2.3)
RN K Jp B
for any U € DV2(RY).
Step 2: convergence of the material derivative.

We write the difference of equations (3.2.3) for ¢, and 1, and divide it by h
to get

At+hvl/~ft+h - Atvlzt 1 szt-i-h - 1/;1:
/RN VA (aB - > dz + §/B\II (T) Jo, (v)dx
1 n Jq’t+h - ‘]‘I’t f(t + h) - f(t)
K /B B (/B o (x)dx) h

+ ( /B \If‘]‘l’“h(x)h_ Jo.2) dac) flt+h)=0

for any U € DV2(RY).
— 'Lz;t-kh

Now, introducing g, (z) : T_wt for convenience, we get

1 A, — A -
/ VVU (agAtnVgn) doe + — / Vg, Jo, (x)dx + / VU (ap= 24, ) da
RN K B RN h

1 = Jo, — Jo, ft+h)— f(t)
+ ?\/qudjt-khT dx + (/B ‘I’J@(l")dx) 3

+ (/qu‘]q’w(x) — Jo.(2) dx) flt+h) =0

h
(3.2.4)

for any U € DM2(RY).
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Now we want to get a uniform bound on g, in DY?(RY). We use g;, as a test
function in (3.2.4) and get

Apin — Ay -
apVgp - (LV%) dz

1
/ agVagn - (AnVr) de + — / giJo, (z)dx + /
[RN K B [RN h

~J —J. h) —
+ %/th@bt+h—q)t+h % da + (/B gnJo, (x)dx) flt+h) = /(t)

h h
J. x)— Jg,(x
—l—(/ Jn 2. (7) L1 )dx> f(t+h)=0.
B h
Since w is bounded in L*> and A; is uniformly elliptic we know that there

exist some positive constant ¢ independent of h such that

Apan — Ay -
apVgn - (qu/]t) dz

/ agVan - (An V) do + / 3
[RN

RN

Zc/ |Vgh|2dx—0/ (V| da.
RN RN

Thus, recalling the properties of ®; and the fact that f is bounded and Lipschitz,
we have

2 1 9 1
c/[RN |V gn| d:z:—i—?/Bg,%Jq%(a:)dng/RNth\ dx+?/B
fE+h) = f(?) Jo,,0 (@) = Jo, (2)
([t ol ) [HE=LOL 4 (
<

h
C/ |V1/1t‘2d96+0/ ‘gh?/;tJrh‘dx‘f‘C/ |gn| dz.
RN B B

Jq>t+h - J<I>t

9nesn N dx

dx) |f(t+h)

Recalling that 1), is in DY? and L, we further get

1
c/ |Vgh|2dl'+—/g}QLJQt([L’)dI'SO—’—C/ \gn| dx.
RN K Jg B

Now, using Young’s inequality and the fact that jacobian of ®, is close to 1 we finally
get

1
/ Vgn|? dz + —/ g Je,(r)dx < C.
RN K B

So, gp, is uniformly bounded in D?(RY) and thus, up to a subsequence, there exists
a weak limit gg as h goes to zero. Note that gy satisfies

d ~ 1
VU (agAiVygo) dx + / VU (ap— AV | de + — / UgoJo,(x)dx
RN dt K B

RN

1 - d , d B
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for any ¥ € DV2(RY), i.e. it is the solution of

e

—Bdiv(A; Vo) = —%gojcbt(l’) — %&t%JCDt — Jo, () f'(t)
— 4 Jo, F(£) + B div (%Atqut) in By,
div(A;Vgy) = —div (%Atvl/;t> n By,
90 = go on 9B,
BANV g -v=ANgt-von dB.

\

So, the whole sequence g, converges weakly to gy as h tends to 0.

To get the strong convergence of the material derivative, we observe that using
gr as a test function in its Euler-Lagrange equation, we get the convergence of the
norm in H! to the norm of go. That, together with weak convergence, gives us
strong convergence of gj,.

Step 3: existence of the shape derivative.

We want to show that

o d -
l/ft:%@/ft_X‘v%
in DV2(€Q,) N DY2(Q5). Indeed, since 1 (x) = ¢ (®; (x)), we have

ran(@) — en(z) Ven (DY () — (D, () N (Pl () — (P (2)
h h

(3.2.5)
The first term on the right-hand side converges strongly to £ (®; ' (z)) as h goes
to 0 by Step 2 and continuity of ®;. As for the second term, by the regularity of 1,
and the definition of ®, it converges to —V;(®; '(x)) - X strongly in L2.

Step 4: the equation for the shape derivative.

Now that we know that t — 1, is differentiable, we can differentiate the Euler-
Lagrange equation for ¢, given by (3.2.1) and we get

_@A¢t = — Lo — f'(t) in O,

Aty = 0 in Qf,

U =y == (Ve — Vi) - X on 0,

BV v = Vi v =~ ((BVIVE] = VIVY[]) - X) - v on 0Q;.

Now we can use the boundary conditions in (3.2.1) to get rid of the tangential
part in the right-hand side of the jump of ¥; on the boundary. Indeed,

— (Vo) =V ) - X = — (VT =V, ) - X7 — (Vo) — V) - v(X )

and V71;" = V7, by differentiating the equality ;" = v, on the boundary of ;.
O
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Chapter 4

Fuglede’s computation

In this chapter we are going to prove (1.1.2) int the cases I = cap, /cap, /G for
sufficiently smooth sets €2, that is, for nearly-spherical sets defined as follows.

Definition 4.0.1. An open bounded set Q C RY is called nearly-spherical of class
C?? parametrized by ¢, if there exists ¢ € C*¥ with ||¢||~ < 3 such that

0N ={(1+4p(z))x:x € 0B}

The results we are going to get are analogues of the following theorem which we
will need for liquid drops model.

Theorem 4.0.2 ( [Fug89, Theorem 1.2|). There ezists a constant ¢ = ¢(N) such
that for any Q — nearly-spherical set parametrized by ¢ with || = |By|, xq = 0,
the following inequality holds

P(Q) — P(B) > CHSOHJ%II(aBl)-

We want to write a Taylor expansion for the energies we are dealing with. To
that end we need to have a family of sets transforming B to ). We will use the
following lemma.

Lemma 4.0.3. Given ¥ € (0, 1] there exists § = §(N,0) > 0, a modulus of continu-
ity w, and a constant C' > 0 such that for every nearly-spherical set ) parametrized
by @ with |||l c2v @) < 0 and [Q| = |B:|, we can find an autonomous vector field
X, for which the following holds true:

(1) div X, =0 in a §-neighborhood of OB ;
(ii) X, =0 outside a 2§-neighborhood of 0B ;
(iii) if ®, := O(t,x) is the flow of X,, i.e.

875@75 = X@<(I)t)7 @0([[‘) =,
then ®1(0B;) = 0Q and |P(B1)| = |B1]| for all t € [0,1];
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(iv) denote Q; := ®y(By), then

|y — Id||c20 < w(|[@llc20(0m,)) for every t € [0,1], (4.0.1)
|Jo| < C in a neighborhood of By, (4.0.2)

le = (Xy - vyl 22081) < wllllze@mn)llellr2@8)), (4.0.3)

oo = (Xm0l 5 gy < N0 13 (1.0.0
X - VHHl(E)Qt) <cC “90HH1(831)> (4.0.5)

(X -z)o®, — X -vp, = (X -vp)fi, x € 0By, (4.0.6)

where || fillc200m,) < wll@llc2oom,)), and for the tangential part of X, defined
as X = X — (X -v)v, there holds

X7 < wllellezo@ny) 1X - v| on . (4.0.7)

Proof. Let us construct a vector field satisfying all the properties except (ii) and then
multiply it by a cut-off. Such a vector field can be constructed for any smooth set, see
for example [Dam02|. However, for the ball one can write an explicit expression in a
neighborhood of 9B;y. The proof for the case of the ball can be found in [BDPV15,
Lemma A.1]. For the convenience of the reader we provide the expression here, as

well as a brief explanation of how to get the needed bounds. In polar coordinates,
p =|z|, 0 = x/|z| the field looks like this:

Xolp.t) = L=

u(p,0) = (¥ + 1 ((1+0(0)" ~1)) V0

for |p — 1] < 1. Then we extend this vector field globally in order to satisfy (4.0.1).
Notice that (4.0.2) is a direct consequence of (4.0.1).

By direct computation we get (4.0.6). Now we can get the bound (4.0.5). Indeed,
(4.0.6) together with (4.0.2) gives us

| X - VHHl(GQt) < |Js| (1 +w (H%OHCw(aBl))) | X - VHHl(aBl)
<g (H@”cw(aBl)) X VHHl(aBl)-
From the definition of X, on 0B; we have

N
1 NY .
S Xov=— i
' v Nz(l)gp’

2
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yielding the inequalities (4.0.4) and (4.0.3).
To see (4.0.7) we use that by definition X is parallel to 6 near 0B;. Thus,
[XT0®| =[((X-0)0) 0P — (X -v)v)od
| (X - vam,) (L+w ([@lle2o@y))) vos (1+w ([ellc2o@m,)))

— (X -vom,) (L +w (lellczo@my))) vos (1+w ([l¢llc2oom)))
=w (HSOHOM(BBI)) (X ) oDy

In what follows we will sometimes omit the subscript ¢ for brevity.

4.1 Capacity: the case of p = 2

4.1.1 Second variation

We now compute the second order expansion of the capacity of a nearly-spherical
set.

Lemma 4.1.1. Given ¥ € (0,1], there exists 6 = §(N,9) > 0 and a modulus
of continuity w such that for every nearly-spherical set ) parametrized by ¢ with
l¢llc2oop) < 6 and | = |By|, we have

cap,(Q) > cap,(B;) + 8 cap,(B1)[e, ¢ _W(HQOHCQﬁ)H%DHi{? (@B1)’

where
(A)

(N —2)? :
Tl ), V)P

— (N — 1)/ QOQCH‘[N_1>;
2B,

H? capr(B1)|p, @] =2

(B)
0" cap(B1)[p, ¢ = 2N — 2 ( [ wnpa- - [ sOQdHN-l) .

Proof. Now set €, := ®,(By) with ®; from Lemma 4.0.3 and let u; be the capacitary
potential of €2;. We define

¢, (t) := cap, () = fBR\Qt |Vug|?dz in the case of relative capacity;
« * Jae [V [2dz in the case of full capacity.

By Proposition 3.2.3 t — u;, is differentiable and its derivative u, satisfies
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(A'Lit =01in BR\Qt7
U:t = —Vut : XSD on aQt,
{4y =0 on O0Bg;

(Ady, = 0 in QF,
U't = —Vut : ti on aﬂt,
Lt¢(z) — 0 as |z] — oo.

Using Hadamard formula, we compute:

1 1
—C/R(t) = / Vut . VUtdx + _/ ’VUtPX@ . VQthNil,
2 Br\Q 2 Jaq,
where vq, is the inward normal to 0€;. Now we recall that u; is harmonic in B\,
and we use the boundary conditions for ,; to get

1 1
§C’R(t) = / div (u'tVut)da:—i—§ / |Vue* X, - vo,dHN
BRr\Q: O

1
= / utVut . I/QthN_l + 5/ ‘vut|2X¢ . I/QthN_l
o

o

1
= / (=Vu - X))V - vo,dHN 1 + —/ |Vut|2X@ v, dHN L.
o 2 Joo,
We know that wu; is identically 1 on 0€); and smaller than 1 outside, hence (recall
that vq, denotes the inner normal)

Vu, = |Vug|vag, on 0€). (4.1.1)

Therefore,

1 1
5¢r() =/ _’vutPX@’VQtd,HNl-i-é/ Vg X, - vo, dHN !
6915 8Qt

1 1
= __/ |Vu|* X, - vo,dH ™ = ——/ div (|Vu > X, )dz.
2 O 2 Br\$u
We proceed now with the second derivative, using again Hadamard’s formula and

recalling that X is autonomous and divergence-free in a neighborhood of 9B; (hence,
on aQt)

1 /1 1/ . a 2 1/ : 2 N—-1
—cp(t) = —= div( = X, )dr — = d X)Xy - d
30 = =5 [ (G VulXo)do =3 | div (Vi X)X, - vo)H

1

! / (VT X,)(X, - v )dHN
0

_ / (Vg - Vi) X,y - v, dHN " —
Py 2

= / U:tvut . I/QthN_l - / (Xgo . Vgt)(vzut[Vut] . X@)dHN_l
o 0

= /B . | Vi, |2dx — /8 ) (X, - va,) (V2u [ V] - X )dHN !
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Note that in the second to last equality we have used (4.1.1) and the boundary
condition for ;. Now since u; is constant on 0€2;, we get

0 = Auy = |Vuy| g, + V3[va,] - g, on 0.

Taking this into account and denoting X = X, — (X,, - vq,)vq, on 0€, we get

1
50/}%@) = / Vi, |*d
Br\t

‘/ (Xp - vo) (V2u [V, ] - (X - vo, v + X7)dHN !
o (4.1.2)
:/ |Vut|2dx+/ (X, - v, )?| V| o, dHN !
Br\Q: Sl

_ / (X, - v ) (V2 [Vaug] - X7)dHN
0

Now we wish to calculate ¢;(0). We use that
® %Bl — —(N - 1),
e X" =0on 0By;

|~ (N=2)_Rp—-(N-2) ,
® Uy = UB, = i 1—R—(N-2) m BR\BD

® ’do = HR(_XLp : VU())

1
50’1%(0) = /B . |VHR(—X,, - Vug)|[*dx — (N — 1)/ (X, - vg, )| Ve PdH N
R 1

9By

(N —2)?
T 1R -2 /BR\BI IVHR(X, - vp,)|*dz — (N — 1)/

(ch . VBl)QdHN_I) .
0B

As for the case of full capacity, the same computations apply with minor changes,

obtaining

1
By oB1

which formally corresponds to sending R — oo in the formula for ¢;. Since balls
minimize the capacity we also have that ¢,(0) = 0. Writing

cwﬁﬁ:@ﬂ%ﬂmm+%ﬂm+é(L%Wﬂw—dﬂwh

one can now exploit Lemma 4.0.3 and perform the very same computations as in
[BDPV15, Lemma A.2] to conclude. We put the computations here for the sake of
completeness. We need to show the following bound:

1(t) = LO)] < wlllgllonn)I X vl
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for some modulus of continuity w. Let us prove it for the relative capacity, the
absolute capacity can be dealt with in a similar fashion. We recall (4.1.2) and pull
it back on the unit ball:

1
s = [ Vi o bidadnt [ (v IVl o) 0 BTN
BR\Bl 0B

— /6 i (X - v0,) (V2w [Vu] - X7)) 0 @, JgP aHN !
1
= L(t) + L(t) + I3(%).
By (4.0.1), we have
|50, © ®r — HdpllL=@m) + [ Tar — Ulr=@s) + 1 Ja, — U= < w (lellezo) -
In addition, by Lemma 4.0.3, X is parallel to # in a neighborhood of 0B, so we have
[(X - va) 0@ — X -vp| Sw([l¢llcan) |X - val,

as well as
| X7 0@ S w ([[pllco) [ X - val.

Considering the equation satisfied by u; o ®; on By, by Schauder estimates we get
[l =y 0 Pyl| 2o 57y < w ([0l 020)
Thus, noticing that I3(0) = 0, we get
|12(t) = L(0)| + I5(t) — I3(0)] < w ([l@llo=o) 1X - vaIZ20m)-
It remains to show that
I6(6) = BO) < w(l@lon)IX - YBrsgany (1.13)

We define w; := w; o ®,. Notice that Vw, = (V@t)tvut o @, so by (4.0.1) to get
(4.1.3) it is enough to prove that

Vuy* = [Vig|* dz| < w(ll@llozo)IX - vilze o)
B\, (9B)

We now move the equation for 7; onto the unit ball B and see that w; satisfies
div (Mtth) =01in BR \ Bl,
Wy = — (Vut : X) o) (I)t on 831,
w; = 0 on OBg,
where M, = Jg, ((vq>t)‘1)t(v<1>t)‘1. Classical elliptic estimates together with
(4.0.1) then give
[Vw — Vo || 12(\B1)
< O(N) (I(M; = 1d)Vwil| 2\, + (Ve - X) 0 @ = Vg - X g12(08,))
< w(||80||02ﬂ9)||th||L2(BR\Bl) + C(N)[[(Vug - X) o @y — Vg - X||H1/2(8B1)‘
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Recalling that Vug = —|Vug|@ on 0B; and that X = (X - 0)0 near 0By, we obtain
[(Vug - X) 0 @ — Vg - X||H1/2(8B1)
< [[((Vug - 0) 0 @y — Vug - 0) (X - 0) 0 Pt g1 /29p,)
+ [[[Vuo| (X - 0) 0 @0 = X - 0)[ 1120,
< (Vg 0 @¢ — V(g 0 @r)) (60 Pr)) (X - 0) 0 ol a2 o,
+ [[(V(ug 0 @) (00 @) — (Vug - 0)) (X - 0) 0 @il yry2 9,
+ [[[Vuo| (X - 0) 0 @ = X - 0)| 1120,
< w(llelle2o)l[Vuo - X gr2om,)-
Hence,
| Vw, — V%HL?(BR\Bl) < w(llellc2) (vatHLQ(BR\Bl) + [V - XHH1/2(881))

<w(llelle2o) (IVwe = tioll L2r\sy) + Vol 2B\81) + 1VUo - Xl 1r208,))
< w(ll@llc2o) (IVwr = toll L2 (p\y) + 20 Vo - Xl gire@s,)) »

where in the last inequality we have used the equation for 7. We choose 6 small
enough so that w(||¢]|c29) < 1/2 and get

IVwe = Vol 251y < w(l[@llc20)IVuo - X[ gr2omy),

Finally, we have

/ ‘th‘Z — IVUQP dx S vat — Vuo"LQ(BR\BI)"th + vuOHLZ(BR\Bﬂ
Br\B1

< 2| Vo || 2 (B\B) I Ve — Vol L2se\s1) + [Vwr = Vil 725, 5y
< w([[ellez0) [Vuo - XHill/2(aB1)’

yielding (4.1.3) and hence finishing the proof. O

4.1.2 Inequality for nearly-spherical sets

We now establish a quantitative inequality for nearly-spherical sets in the spirit of
those established by Fuglede in [Fug89], compare with [BDPV15, Section 3].

Theorem 4.1.2. There exists 6 = 6(N),c = ¢(N,R) (¢ = ¢(N) for the capacity
in RY ) such that if Q is a nearly-spherical set of class C*? parametrized by ¢ with
l¢llczo < 6,9 = |By| (and xq = 0 for the case of the capacity in RY ), then

Cap*(Q) — Cap*(Bl) Z CHSO”?—[%(@Bl)’

where

2 2 N-1 2
= dHN L+ | |VH.(p)Pdz,
el o, /831 ¥ » IVH.(¢)|"dx

where the second integral is intended on Bg \ By if x = R.
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Proof. We essentially repeat the proof of the Theorem 3.3 in [BDPV15|. First, we
show that f831 @ is small. Indeed, we know that

N
0B, N
N

- N SO(x)Z N-1
=|B —|—/ a:d’HNl—ir/ <>—d7—[ )
| B4 | 6Bls0( ) 531; )N

Hence,

N .
- N\ e(z)" v
deNl:/ () dHN !
/831 90( ) aBlzz:; 1 N

< C(N) /a el < OBl

Moreover, for the case of the absolute capacity, also f@Bl x;p is small. Indeed,
using that the barycenter of ) is at the origin, we get

</ L]Ti‘ N | ley dHN=1 < C(N)S|]| 1.
~ Jo, £ J/)IN+1 N
1 j=2

/ wip(x)dHN
0B,

Let us define
(A)

ME = {¢ € H2(0B)) : < 01€ ]l gase s

/ §d7'[N_1
0B,
(B)

M; = {5 € H3(9B)) : +

/ EdHN ! / z&dHN ! §5||§||H1/2},
831 aBl

and note that, since ||£]|z2 < ||€|| 12, we have just proved that ¢ belongs to M.
By Lemma 4.1.1 for 6 small enough we have

Lo 2
cap, (@) —cap.(B1) 2 50" cap,(By)lp, o] = w(llgllc=o)liely - (414)

So, it is enough to check that
2 2 *
0 cap (B, = €l o Tor every € € M;

for small 9.
Step 1: linearized problem. First, we show that

9% cap, (B1)[€, €] > c||€]? .

1 (08, for every £ € M.

Note that
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(A) ME={¢€ H3(0By) : [, CdHN~1 =0}

(B) Mo_{gem (0B1) : [y, EAHNY = [ w,6dHN = i:1,2,...,N}.
We recall that

(A)
(N —2)

o ([, IVHR)P

SV ey [
0B,

0 capp(B1)[e, @] =2

(B)
0 cap(By)lp, ] = 2(N — 27 ( [ wn@pe- -1 [ &le) .

We consider first the case of relative capacity. We need to estimate the quotient

fBR\Bl |VHR(§)|2d:E
faBl §2deN—1

from below for £ € My\{0}. We note that it is the Rayleigh quotient for the
operator £ — VHg(¢) - v. Thus, we need to calculate its eigenvalues. We use
spherical functions as a basis of L2((9Bl) £ = Zmn A Ymn- We now show that
H(Y,.n) can be written as Ry, ,(r)Y:, »(w) for a suitable function R, ,(r). Indeed,
by the equation defining H(Y,,,,) we have check that

A(Bn(r)Ymn(w)) =0 in Bp\B,
Rosn(1)Yin = Yo
Ryp(R) Yo =0

Since AYm,n = —m(m-+ N —2)Y,,,, where A is the Laplace-Beltrami operator, one
easily checks that

1

1 m
17’ + (1 + R2m+N—2 -1

- - —(N+m—2)
Rmv”@) T R2mEN-2 _ >T

provides a solution. Hence, the first eigenvalue is zero and Corresponds to constants,
whereas the first non-zero one is —R{ (1) = (N — 1) + zx—N.
For the case of the absolute capacity we estimate the quotient
fo VH(E)|*dx
faBl fzdeN—l

in an analogous way. The functions R,,, in this case is

R (r) = =02,
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The first eigenvalue is zero and corresponds to constants, the second one is N — 1
and corresponds to the coordinate functions, the next one is V.

Step 2: reducing to Mj. We are going to apply Step 1 to the projection & of £
on M} and show that the difference |02 cap,(B)[€, £] — 02 cap,(B1)[&o, &) is small.
Let £ be in Mj. Define
(A)

G =&~ cam

N|Bi| Jon,
(B)

1
fo =6 — ——— EdHN L — T / yEdHN L.
’ N|Bi| Jap, |Bl| Z a8,

It is immediate from the definition that &, belongs to M{. We denote ¢ := £ — &.
Since £ belongs to M5, we have

[Iq/j

HZ2(9B1) — C”CHB(aBl) < Co|jgl?, (4.1.5)

where we have used that since ¢ belongs to an N + 1 dimensional space, the H'/2
and the L? are equivalent.
We now compare the norms of £ and &:

ol 5 o= MENE s =GPy > (1= Ca)EN

H? (0B1) H7 (0B1) H?(GB - H? (0B ) (416)

Now we apply Step 1 to & to get
0% cap,(B1)[€, €] = 0% cap,(B1) &, &o] + 207 cap, (B1)[€, ¢] — 9” cap,(B1)[(. (]
> 6ol s = € (2060t o 1€ b oy + 1123 )

and thus , by (4.1.6) and (4.1.5),

0 cap,(B1)[€, €] = ||l

HZ(0B))

C
— Collel’” = €l

H2(0B1)

provided ¢ is chosen sufficiently small.

4.2 Capacity: the case of general p

In this section we are going to prove Theorem 1.1.8 for nearly-spherical sets. Some
technical problems arise comparing to the case of standard capacity of the previous
section. We are going to deal with them in a way similar to the one devised by Fusco
and Zhang for proving analogous result for p-Faber-Krahn inequality in [FZ16] (note
that we will be citing the preprint rather than the published version [FZ17| as it has
more details).

First, we consider perturbed functionals to make the equation non-degenerate.
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Definition 4.2.1. We define perturbed p-capacity as follows:

ueWLP(RN)

cap, () = inf {/ ((/@2 + |Vu|2)g — /{p> dr:u=1on Q} .

Remark 4.2.2. Note that the infimum is achieved by the unique solution of the
following equation

div((k2 + |Vul?) "= Vu) = 0 in Q°,
u =1 on 0f),
u(z) — 0 as || — oo.

We will denote the minimizer by u, q.

Let ®; be the flow from Lemma 4.0.3 and define 2, = ®4(B). For brevity we
denote uy ¢ = Up,.

Remark 4.2.3. The function u, satisfies the following equation
div((52 + |Vues|?) "2 Vue,) = 0 in QF,

Ukt = 1on aQt7 (421)
ugt(z) = 0 as |z] — oo.

We also note that Vu,; = |Vu,|van, on 0L since it is constant on the boundary
and less than 1 outside of the set by maximum principle (here vyq, denotes inner
normal).

We want to differentiate the perturbed p-capacity of €2; in t. We introduce the
following notation
Ck(t) ::/
Q

Since for any x > 0 equation (4.2.1) is elliptic, the following differentiability result
holds (remember Remark 3.2.4).

<(/<;2 + |V ?)? — K}”) dzx.

c
t

Lemma 4.2.4 (Shape derivative of w, ). For any k > 0 the derivative of u,; int
exists and it solves the following equation
div ((k* + ]Vu,{,t|2)%vu,{,t
+(p — 2) (K2 + | Vtted[) T (Vs - Vi) Vi) = 0 in O, (4.2.2)
Uy = —Vug - X on 0.

We want to see what happens near the ball for the initial functional. To that
end, we compute ug := ugo and its gradient in B

_ - N _
wo = |7, Vg = L a5
p—1

—1p.
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Theorem 4.2.5 (convergence of u,:). Let k € [0,1], p > 1, ¥ € (0,1), R > 1.
There exist U € (0,9) and a modulus of continuity w = w(p,¥,n) such that if
is a C*Y nearly-spherical set parametrized by ¢ and ||¢||c200p) < 6, then for all
t €10,1] and k € [0, 1] we have

[t — e © ‘I’t||cl,é(BR\Bl) < w(llellczoom) + )

Moreover, there exist 0 > 0, 0 < ¥ < 9 and a modulus of continuity w' =
W'(p,¥,n,¢e), such that if ||o||c20@m) + K < ', then for all t € [0,1]

[0 — tep © Pill oo (g 5y < W (l@llc2w@m) + k).

Proof. The proof goes in the same way as the one of |[FZ16, Theorem 2.2]. We
reproduce it here for the reader’s convenience.
First, we notice that regularity for degenerate elliptic equations (see [Lie88, The-

orem 1|) gives us
||u’€7tHCl’1§,(BR\Qt) S C = C(p,’l?, n, 5) (423)

for some ¥' € (0,9), and every x € [0,1], t € [0,1]. Fix J € (0,9). To prove the
first inequality we argue by contradiction. Suppose there exist sequences {¢,}, {x;},
{t;} such that ||¢;|lc20@48) + K — 0,

lim sup [[ug — g, ¢; © CID{J_ lorsspa > 0, (4.2.4)

j—o00

where ®7 is the flow associated with ;. Using (4.2.3), we extract a (non-relabelled)
subsequence such that @; := w,,;, o <I>§j converges to a function v in C*”. Each
function u; satisfies

( p—2
2 2

div /i? +

ija]‘ =0in BC,

((W{j)_l)tvaj

”(NLj =1on OB,
L j(z) = 0 as |z[ — oo,

: N -1\ ¢ -
where M; = detV®; <V<I>ij) ((V@gj,) ) . Thus, u, as a limit of @; in C7,
satisfies

div (|Vul'? Vu) = 0 in B,
u=1on 0B,
u(z) — 0 as |z| — oo,
meaning that u coincides with ug, which contradicts (4.2.4).
To get convergence in C*”', we notice that 0 < ¢ < [Vug| < C in Bg\By. The
O converges gives us that the same is true for Vu,, if l¢llc2o@m) + K is small
enough. From here equation for u,; and Shauder estimates give us

[t tll o oy < € = Cp,U,n,0).

. . 9/
We now can argue in the same way as we did for C*?" convergence. 0
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4.2.1 First derivative

Proposition 4.2.6. For k > 0, t € [0, 1] the perturbed p-capacity is differentiable
i t and the following formula holds

(1) = —p / Vit 2052 + [Vua]2) 52 (X - ) a1
o0

+/ ((/4:2 + |Vu,{7t|2)% — /{p> (X -v)dH !
o

s (4.2.5)

= —p/ div (]Vum]2(/f2 + |Vu,4,t|2)TX>

QF
+/ div (((/{2 + |V, ) — np> X) dx.
Qg
Moreover, for every t € [0, 1] we also have
ot)=—(p- 1)/ (Vg [P(X - v)dHN L. (4.2.6)
o

Proof. By Hadamard’s formula,

. (t) = / PVt Vit (52 + [Vt o[) 7 da + / (<m2+|Vuﬁ,t|2>§—fep) (X - v)dH™ !
Qs d

Qy

B / (_vun,t : X) p(’%Q + |vun,t|2)%vun,t : VdHN_l
o0

" / (5 + IVuwal?)® = 7) (X - v)am™ ",
o

where for the second equality we used the equations (4.2.1) and (4.2.2). Tt remains to
notice that Vu,; = |Vu,|v on 09Q; as noted in Remark 4.2.3. This gives us the first
equality of (4.2.5), whereas the second equality of (4.2.5) follows from divergence
theorem.

The convergence established in Theorem 4.2.5 gives us (4.2.6). 0

4.2.2 Second derivative

To state the results for the second derivative we need to introduce the following
weighted Sobolev space:

DYA(B, ) i {u e (B [ [VuPdu< oo} |

BC

where du = ‘ﬂ(%_l)@—?)dw.
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Proposition 4.2.7. We define X, .= X — (X -v)v. Then for k > 0,t € [0,1] the
perturbed p-capacity is twice differentiable and the following formula holds:

—Cg(t) = / (KQ + |Vuﬁ’t|2)p772(vuﬁ,t . V)’L.Lﬁ’thN_l

p o0,

+p—2) / (12 4+ (Vs [2) 7 (Vi s - Vit ) (Vi - )it o dHY
o

_ / (2 4 [Vta )7 (V2 [Vt )] - X, )(X - ) dH Y~

00

— (p — 2) / (52 —+ ‘VU,{ytP)%‘Vuﬁ’t‘Q(vzumt[vu&t] . XT)(X . I/)dHNil

o0

+/ Vet a P - )22 + [Vt ?) 7 A dHN
00

(4.2.7)
Moreover,

(p_1>p—2 10//<O>__(N_1)/ u2dHN71
N-—p p 0 dB 0

s [ el G (il + (o~ 2)(0- Vi),

where 1, solves

p—N

div (|a;|<p-2><’§%7>vuo +(p— 2)J2| P50 vuo)e) — 0 in B,
o = Y=g . X on OB
p—1

in WL2(Be, du).

Proof. Computation. First we use Hadamard’s formula to differentiate the equal-
ity (4.2.5). We get

c(t) = /89 D (52 + ‘Vumlz)(p%)m (Vi - Vi) (X - v) dHN !

+ /(‘m div (((li2 + |V“n,t|2>% _ HP) X) (X - v)dHY

— p/aQ ((p—2)r*+ \Vum|2)(p—4>/2 IVttt (Vi - Vi) (X - v) dHN !
—2p /{m 2 (/<a2 + |vun7t|2)(p—2)/2 (Vg - Vitgy) (X - v) dHN1

_ 10/8Q div ((52 + ]Vumﬁ)(?’—?)/? ‘Vun,t‘2X> (X - 0) dHN .
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Using (4.2.2), and the fact that X is divergence-free, we obtain
(t) = p / (52 4 [Vd?)* 2ty (Vi - v) dHN
09
= / P (/4;2 + |Vu,{7t|2)(p_2)/2 (V2u,@t[Vu,,ht] -X) (X -v) dHN 1
o

+p / (0= 2) (5 4 [V )™ [Vt v (Vi - )
0

—plp— 2)/ (K* + \Vun,t\2)(p_4)/2 Vi t|* (V[ Vi) - X) (X - v) dHY
o0
(4.2.8)

We now use Remark 4.2.3 to get the following equality on the boundary

0 = div ((/{2 + |Vu,i,t|2)%Vum>
= (K + |vun,t’2)%2|vun,t|%g + (K? + |Vu,€7t|2)p%2v2u,@t[l/] v (4.2.9)
+(p— 2)(K + |Vt |2) T |Vt o *V:upi[v] - v
Now we plug (4.2.9) into (4.2.8) and get (4.2.7).
Convergence. Iix R > 1. By Schauder estimates functions u,; o ®, are equi-
bounded in C?*Y(Bg\B) and |Vu,,| € (c(R),C(R)) for k, t small. Thus, from
(4.2.2), using classical elliptic estimates we get that 1, ; are equibounded in C*?(Bg\ B)

and up to a subsequence converge to a function w € C'(B¢) uniformly on compacts.
Using 1, as a test function in (4.2.2) and applying divergence theorem, we get

/Qg

= / (/{/2 -+ \Vu,@tﬁ)%u,ﬁtvu,ﬁt iz
o0g

(12 + [V [2) 7 Vi, [Pz + (p— 2) / (K2 + [Vt s[2) 7 (Vi - Vi)

QF

+ / (p—2)(K* + |vuﬁ,t|2)%(vuﬁ,t Ve )t Vg - v < C.
a0s

That means that w € DY?(Q¢, ). Passing to the limit in (4.2.2) as (k,t) — (0,0),
we get

Vi -V + (p—2)(0 - Vi) (0 - Vo)dp = 0 (4.2.10)

BC

for any v € W2(Bg\B) with compact support in Bz\B.

Lemma 4.2.8. There exists a modulus of continuity w such that
lc(t) = cn(0)] < w(llgllozo + RIX - V3200
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Proof. By divergence theorem and (4.2.2), using change of variables we can rewrite
the second derivative of the energy in the following way:

%c;;(t) = 1,(1) + La(t) + I5(0),

where

nw= | ((/12 + |Vuﬁ,t\2)L52]ViL,{,t|2> o By Jo,dr

+(p—2) /B C ((,-@2 Vs |?) T (Vi - vuﬁ,tf) o &, Jp,du,

L(t) == — /a N <(I€2 Vs ?) T (V2 [Vtte] - X ) (X - y)) o ®, JOBP,dHN !

= 0=2) [ (8 Td?) [V BT Tl - X)X 1) 00 TP
I3(t) == /83 <|Vu,.;7t|2(X V) (K + |vum12)¥%g> o ®, JOPDaH N

By Lemma 4.0.3, we have
|- Ho0, © @ — Hopll=on) + |77 @ — 1 1=(0m) < w (l¢]lc20) -
In addition, by Lemma 4.0.3, X is parallel to 6 in a neighborhood of 0B, so we have
[(X - vg,) 0@ — X -vp| Sw([l@llcen) |X - val,

as well as
| X7 0@ Sw ([[pllco) | X - val.

Thus, using Theorem 4.2.5 and noticing that I5(0) = 0, we get
|Io(t) — L2(0)] + | I5(t) — I3(0)] < w([l¢llczo + &) | X - vall720m)-
It remains to show that
1(6) = H(0)] < w(lpllens + )X - 12 a0 (12.11)

We are going to sketch the proof of (4.2.11), for more details see the proof of [FZ16,
Lemma 2.7]. We first move the equation for 4, onto the unit ball B. To that end,

we denote wy; = Uy © Py, Uy = wyy 0 Py, and Ny = (VCIDt)_l ((tht)_l)t. Then
W, satisfies

div (12 + | (V®) ™)' Vi) "2 det Vo, N, Vo,
(0= 2)(K2 + | (V) ™) Vit |?) "2 det VO, (N, Vit - Vi )N, V) = 0 in B,
Wkt = — (VU&t . X) o) CIDt on 0B
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and

[1(t) = / (52 + | ((v(pt)il)t Vﬂ,ﬁ7t]2)¥Ntim : vwmt detVCI)tdm
B
+(p—2) / (1 1| (VB) ™) Vit o)) 7 (N, Vit - Vaty)* det Vb,de.
B
For convenience we define a bilinear form L, as

Lytp(u,v) = / (K + | ((V(I)W)_l)t Vﬂ,{,t74p|2)%Nt’chu - VodetVd,dx
B

+(p—2) / (52 4+ | (V1) ™) Vi o) (N Vil - V) (N, Vi - Vo) det Vb, da,
B

so that proving (4.2.11) amounts to showing that
Lo (Wit ) = Lo (Wro0miip )| < wllipllczo + 5)[ X VH§{1/2(33)-

We argue by contradiction. Assume there exist sequences x; — 0, t; — t € [0,1],
¢; — 0in C*?(9B) such that

1; Lnj,tj,goj (wnj,t]-,éoﬂ w“j 7tj"Pj) # lim L”jvo"pj (wnj,O,cpjv wnj,O,goj') . (4212)
= X vl on s X sl on)

Note that we can assume that both limits are finite. We define

~ Wit Wk;,0,p,
wyj -

) Wo,j =

a 1X; - VB||H1/2(aB) B X - VBHHl/Q(aB)'

One can easily show that w; — @y ; — 0 strongly in H*/2(dB). A bit more work is
required to show that w; — wy; — 0 strongly in W'?(Bg \ B) for every r € (0,1).
To do that, one can prove first that both w; and w ; converge weakly to the unique
solution in DY?(B¢, p) of

p—N

{div (122D Vw + (p = 2[00 - Vwyg) = 0'in B,

w = f on 0B,

where f is the weak limit in H'/2(0B) of the restriction of 1; on B (remember that
the limit of restriction of Wy ; is the same). To show the strong convergence consider
z; - the harmonic extension of w; — W, ; from 0B to B¢. Note that z; converges
strongly to zero in D'?(B¢). Denote by ¢ € C5°(Bgr) a cut-off function such that
(=1on Bg\ B, 0<( <1. By divergence theorem we get

Licj ;05 (W5 — o5, (W5 — Wo,1)C) = Lig, 1,0, (W5, 2C)
- (Lﬁj,t]’,g@j - Lnj,0,¢j)(w0,j7 (UNJJ - wO,j)C) - LH]-,O,Apj (wO,j7 ZjC) — 07

which yields strong convergence of w; — W ; to zero in WH?*(Bg \ B). Finally, one
can now show that
Jim (L 0 (053 05) = Ligy 0,6, (10,55 Wo5)) = 0,

contradicting (4.2.12). O
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Lemma 4.2.9. Given ¥ € (0,1), there exists 6 = §(N,p,9) > 0 and a modulus
of continuity w such that for every nearly-spherical set ) parametrized by ¢ with
l¢llczoom) < 6 and | = |By|, we have

1
cap,(€2) > cap,(B1) + 502 cap,(B1)[e, o] — w(llellc20)lle]l? Y

H2(0B;)’
where
p—1\""1 _ N—p \* v
(5=) seran @i = -0y -1 [ (T=Le) an
+ | TG (VAP + 0= 2) 0 VS (0)) de

with f(p) satisfying

p—

{div (1212509 £ () + (p = 2)|2| "G (0- 9 f())0) =0 in B,
fle) = %cp on 0B.

Proof. We write Taylor expansion for c:

cx(1) = ¢x(0) + ¢(0) + %CZ(O) + /0 (1 =) (ce(t) — c(0)) dt.

From isocapacitary inequality we know that ¢j(0) = 0. So, we get the desired
inequality using Lemma 4.2.8 and passing to the limit as k — 0. U

4.2.3 Inequality for nearly-spherical sets

We now establish a quantitative inequality for nearly-spherical sets, compare with
[FZ16, Theorem 2.8].

Theorem 4.2.10. There exists § = §(N,p),c = ¢(N,p) such that if Q is a nearly-
spherical set of class C*? parametrized by @ with ||p||c2e < 6, |Q] = |By| and zq = 0,
then

2 1
HZ(9B1)

cap,(2) — cap,(B1) = c[#||

Proof. We introduce the following notation:
p—N
p—1

iy = — a, U =0-X.

Then @ solves

div (|x|<p—2><‘%7—”va 4 (p— 2)[2| PG . va)e) — 0 in B,
=WV on 0B
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and

p—l pl// / ~2 N-1
—(0)=—(N -1 W dH
(p_N) S0 =-(v-) [

+ [ a2 (VR + (p— 2)(0 - Va)?)da.

Bec

We introduce the following notation:
QY] = —(N — 1)/ W dHN !
OB
+ [ 22D (VP + (p— 2)(0 - Vid)?)da.

BC

We write U in the basis of spherical harmonics, i.e.

oo M(k,N)
U= Z Z i Y i,
k=0 =1
where Y, ; fori=1,..., M(k, N) are harmonic polynomials of degree k, normalized

so that HYk,iHLQ(aB) = 1. By (4.0.4) we have that H\IJHH1/2(831) 2 CHQDHHl/Q(c’)Bl) if &
is small enough. Thus, to prove the theorem, by Lemma 4.2.9 it is enough to show
that Q[¥] > CH\I/H?{l/Q(aBl), or, equivalently, that

0 M(k,N) 0 M(k,N)
Z Z EQYid = ¢> Y (k+1)ag,. (4.2.13)
1= k=0 =1

We first note faB VU = 0 as ®; conserves volume, and thus ag = 0. We then bound
> iy~ ai ;. We recall that zg = 0, hence

/ (T4 —1)dH " =0
oB

and consequently, for any € > 0 if 0 is small enough we get

[ oar| < clelizom
OB
By (4.0.3) this in turn yields
/ W dHN T < 2] V]| 120
OB
if 9 is small enough. So we get
0o M(k,N)
LI D) SEIT)
i=1N =
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for § small enough and to prove (4.2.13) it remains to show that

oo M(k,N) oo M(k,N)

Z Z kQ[Yis] > CZ Z (k+1)a,,. (4.2.14)

We denote by uy; the functlon U Correspondlng to Y3, on the boundary. Then a
straightforward computation tells us that

U, = |o|** Y4,
where oy < 0 is the only negative solution of the following quadratic equation:
(p—1Dai +(N—p)ay —k(k+ N —2)=0. (4.2.15)
Recalling that

/ VialPdH ™t =1, / IV Yis2dHN " = k(k + N —2),
0B 0B

we get that
e Q-1 +kk+N-2
OlYid) = =N =1) = = 2) (X 1) + 2 — 1) + N
o (@k(k+N-2)— (N —pa) (p—1)
=-(N-1)- (p— 120, + N —p ’

where we used (4.2.15). Now, since by (4.2.15) we have
N —p++/(N—=p)2+4(p— 1Dk(k+ N —2)

o = — )

2(p—1)
we get after straightforward computations

N —p++/(N—=p2+4(p—1k(k+ N —2)
5 .

Qi) =—-(N—-1)+
Notice that
QY1 =0, Q[Yri] = ck for k > 2

for some ¢ = ¢(N,p) > 0. This gives us (4.2.14) and hence (4.2.13) and so we
conclude the proof of the theorem. O

4.3 Liquid drops

In this section we establish stability near the ball for the energy F defined in (1.1.8).
For convenience we introduce the following notation:

Gsr(E):= inf {/ a Vu2+K/ 2}. 4.3.1
sw(E)i= inf o] aslVef 4 K[ p (43.1)

For E C RN we set
Fsxq(E) = P(E)+ Q°Gsx(E).

We are going to deal with G separately since the appropriate computation for
the perimeter was done already by Fuglede in [Fug89).
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4.3.1 Changing minimization problem

We first replace our problem with an equivalent one and write Euler-Lagrange equa-
tions for it. We do it to facilitate the computations of the first and second variation.
For a fixed domain E we are solving the following minimization problem.

1
G(E)= inf {—/ (ap|Vu|* + Kp®) dz : —div(agVu) = p,/ pdx = 1} :
ueH'(RN) | 2 Jgn RN
plEc=0

We want to get rid of the constraints and make it a minimization problem over
single functions rather than over pairs. More precisely, we prove the following lemma.

Lemma 4.3.1.
K 1 1
B)=s0— il (s Vi [2d —/d
G(E) NE[  wvem®y 2/RN“E| ¥l g E¢ v

2
—2|};|K (/E@Z)dx) +%/E¢2d:p>.

Proof. We use an “infinite dimension Lagrange multiplier":

(4.3.2)

1 1
G(E)= inf {—/ aE|Vu|2dx+—/Kp2dx
ueH'(RN) L2 Jgn 2 /g

plE(;ZO

+ sup [/ (apVu- Vi — plp)d:c] : / pdx = 1}
yeH (RV) /RN E

1
= inf sup {—/ ap(|Vul® + 2Vu - Vi)dz
uefl(ﬂ?gf)weHl([RN) 2 RN
PLlEe=

—I—%/E(sz—pr)dx:/Epdle}.

The convexity of the problem allows us to use Sion minimax theorem ( [Si058,
Corollary 3.3|) and interchange the infimum and the supremum:

1
G(E)= sup inf ){5/ ap(|Vul? +2Vu - Vip)dx
RN

wem([RN)uE{Il([RN
]‘ 2
v [ (PP —2p)dr: | pda = 1}
2 FE FE

plpe=0
. 1 2
= sup { inf — NaE(|Vu| +2Vu - Vi)dx
R

YeHL(RN) ue HL(RN) 2

+ inf 1/E(pQ—ngD)dx}.

plECIO 2
S pdz=1
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We denote the infimums inside by I and II, that is

[:= inf {%/ ap(|Vul® + 2Vu - Vw)da:} ;
RN

u€HL(RN)

1
11 ::inf{—/(Kp2—2pw)da::/pdle}.
r 2 J)E E

We want to compute both I and IT in terms of .
For I the computation is immediate. Since ag is positive we get that

1
I= inf {—/ aE(|Vu|2+2Vu.V¢)dx}
2 RN

ueH(RN)

= inf {%/[RN ap (|Vu+ Vi[> — |V ]?) dx}

ueHL(RN)
1
:——/ ap|Vi|*de.
2 RN

We note that the corresponding minimizing u equals to —1.
To compute II, note that

II:ir;f{%/(KpQ—quﬂ)da::/Epdle}
H;f{ /(\/_p—\/—f>2dx:/pdx:1}—% Edea:
:@n};f{/}ﬂ(f-(% E)) d : /fdx—()} wzd:v

Then the minimizing function f* is the projection in L?(E) of a function (% — ﬁ)

onto the linear space {f : fE fdx = O}. Thus, f* = <% — ‘—é') — ¢, where c is the
w_ 1
constant such that [, f* =0, i.e. ¢ = M The corresponding minimizing p

|E]
_1 .
equals to 1p+ (w + (IK{+W)K)

Bringing it all together,

K 1
E)= - VolPde — — [ wd
G(B) 2|E|+¢€Z?%N)( 2/RN‘1E‘ Ylds |E|/1/”’“"

“aie (fvee) = 5 [ )

(4.3.3)
K 1 |
— — _ inf (=
2| ¢e£ﬁ(m(2/ﬂ3 ap|Vylide + 7 ), v
1 2
_ d — [ ¢2dz).
ANEK ([Ew x) +2K/Ew )
0
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4.3.2 Euler-Lagrange equation

We now consider the following minimization problem:

) 1
J(E)= inf )<§/RN ap|Vi|Pdr + |E|/1/1da:

YEeH (RN
- / vdr )+ — / ¢2dx)
2EIK \ s oK | '

Remark 4.3.2. Note that J(£) < 0. By Lemma 4.3.1

(4.3.4)

G(E) = % ~ J(B).

By the inequality (2.1) in [DPHV19|, G(E) < C(N, K, 8, |E|). This implies that
|T(E)| < C(N, K, 8, |E]). (4.3.5)

A minimizer for this problem exists, and it is unique by convexity. Note that the
minimizers in the definitions of J and G coincide since the set is fixed. We denote
the minimizer by v¥g. We would also need the interior and exterior restrictions of
the function ¢ g, i.e.

Vi = vele, ¥g:=vslp
Proposition 4.3.3. The following identities hold for 1{g:

(i) (Euler-Lagrange equation, integral form) for any ¥ € D%2(RY)

/RN apVibg - VUdr + — /¢Eq/dx+ |;| (/ \Ifdzp) <1—%/E¢de)

_ / v (13?15 _ div(aEw;E)) dx +/ (BVYS; — Vi) - v W dHN !
RN lo]

E

g ([ vae) (1 5 [ vmr) =0

(4.3.6)
(1i) (Euler-Lagrange equation)
=0 4a)
Vi =y on OE,
BVYL v =Ny - v on OF.
(iii)
1
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(iv) There exists a constant C = C(N, K, 8, |E|) such that
/ ap|Vig|’dr < C. (4.3.9)
RN

Proof. To prove (4.3.8) we use 1g as a test function in (4.3.6).
To see (4.3.9), we use ¥p as a test function in (4.3.6) and Cauchy-Schwarz

inequality to get
1
RN Bl \JE

Now we apply (4.3.8) and (4.3.5) to obtain

/ ap|Vig|’dr < —2J(E) < 2C(N, K, 3, |E|).
RN

Proposition 4.3.4. Let 1y be the minimizer for J(By). Then 1 is radial.

Proof. Let W : RY — RY be any rotation. Since W(B;) = By, 1y o W is also a
minimizer for J(B;). But the minimizer is unique, so we got that 1y o W = 1) for
any rotation W. This implies that v is radial.

[

4.3.3 Inequality for nearly-spherical sets

First we show the following lemma that will allow us to prove Theorem 1.1.9 for
nearly-spherical sets.

Lemma 4.3.5. Given v € (0,1], there exist § = 6(N,9) > 0 and a constant C > 0
such that for every nearly-spherical set E parametrized by © with ||o||c20pp,) < 6
and |E| = |B1|, we have

J(E) < J(B1) + Cllelinos,)-

First derivative

We want to compute 4.7 (€2).
Let ¢; be the minimizer in the minimization problem (4.3.4) for ;. Recall that
by (4.3.7) it means that v, satisfies

—BAY = — b+ 2T () — 57 in Q,
Ay =0 in Qf,

U =y on O,

BVYG, v = Vb, - v on 0.

(4.3.10)

First we notice that v, is regular since it is a solution to a transmission problem.
More precisely, by Lemma 7.4.2, the following holds.
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Proposition 4.3.6. There exists 6 > 0 such that if ||o||c208,) < 0, then
[Yell c2em) < C for every t € [0, 1]
for some constant C = C(N, ).

Since we are going to use Hadamard’s formula to compute the derivative of
J(€), we need the following proposition.

Proposition 4.3.7. The function t — 1y s differentiable in t and its derivative 1/)15
satisfies

—BAGy = —Lab + 2T() in Q,

Adpy = 0 in Q,

P — oy = - (Voo = Vi) - v(X - v) on 9%,

BYY v — Vit v = — ((BVIVeH] = VIVY]) - X) - v on 09,

(4.3.11)

Proof. Apply Proposition 3.2.7 to ¢, with f(t) = =27 () + ﬁ. Note that f is

Lipschitz due to [DPHV19, Lemma 3.2]. O

The following observation, which is a consequence of equation (4.3.11), will be
useful for us.

Lemma 4.3.8. There exists f € H%?(Q,) N H32(Q¢) such that
fE=VYE - X on 0, ||l lgse < CIVYE - X m1(a0,)- (4.3.12)
Consider a function v := % + f, Then v satisfies the equation
—BAv = —Lo+ 2T () — BAf + L f in Q,
Av = Af in Qf,

vt —v” =0 on 08y,

BV v — Vo v = (= (BVIVE] = VIV 1) - X + BV~ V) v on 0%,

v =1UF + V- X on 0Q,. (4.3.13)

Moreover, the following bounds hold:
[vllwr2,) + l[v]pragg < C (lj(QtN + X V||H1(aszt)> ; (4.3.14)
lull ey < € (1@ +1X - vl ony ) - (43.15)

Proof. The function f exists since Viy; - X € H'(0€;). The equation for v follows
from the equation for ), and the definition of f. Using divergence theorem, we get

Ly 2 / 2 / 2 1
— _ 270 — BAF + —
/Qt s dx + Qtﬁ\Vu\ dr + . |Vul|*dx 5 Kj( i) — BAS + Kf udx

= Afuder/aQ ((= (BVIVE] = VIVET]) - X + BV = V) - v) ude,

&
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which by Young, Cauchy-Schwarz, and trace inequalities, recalling (4.3.12), implies
that

lullwr o) + lullpr o < € (1701 + 1V Xllmony )

which in turn implies by Proposition 4.3.6 and (4.0.7)
o, + lullpraon < € (17(Q01+ 1X - vlmn,)

Moreover, we also can bound the L?" norm of v. Indeed, since v doesn’t have a jump
on the boundary of €, we know by (4.3.14) that it belongs to the space D%?(RY).
Thus, employing Gagliardo-Nirenberg-Sobolev inequality we get (4.3.15).

0

Proposition 4.3.9. For any t € [0,1],

. 1 1
Q)=(1-= dr | — X ) dHN !
900 = (1= [, vts) gy [ v

5 [ OV = 90 (a5 [ v
o

2 TR Joo,

_ /aﬂ (V@Dt_ . V) ((V@D;r —V¢;) -1/) (X - )aHN !

1 1 1
= <1 - = wtdx) — [ div(¢ X)dx + —/ div(ag, |V |* X)dz
K Jo, €] Jo, 2 Jrw

2K dlv(wt Ydx — /[RN div (aq, (Vi - v)? X)dx.

In particular,

J(By) = 0.
Proof. We note that by (4.3.8)
Ly =t [ e B(X - ) AN
at” VT 2] Jo, 219t| o0, '

Now we use the definition of J to get

(@) = [ a0V Vi + 5 /6 (mvwﬂ?—ww) (X p)au

Qy

) 2 )
+27() = 2T ()T ( K/ b+ . VA(X - v)da.
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Using (4.3.11), we obtain

T () = —ﬁ </Q @&tdx) (1 — %/ wtdx> + 27 (%) (1 — %/Q ¢tdx)

5 [ OV P = 19U P) (e GX e
0

2 2K o,

[ (80t v =iV ) an

1 1

=(1-— dr | —— (X ) dHN !
( K Qt¢t )|Qt| 89t¢9( )

1

5 [ VP =190 R) ()i o [ g
2 Joo

2K 29,
N /{m (V¢; ' V) (<v¢t+ - V@Dt_) . 1/) (X - v)dHN

1 1 1
=(1——= dr | — div de+—/ div(aq,| Vi[> X)dz
(1= [, vete) g f, v 5 [ aivtan )
1 d1V(1pt )dx — / div (ag, (Vi - v)? X)dz.
"Ik .

Note that from the second to last expression it is easy to see that j(Bl) = 0asyis
radial by Proposition 4.3.4 and the volume of €2, is constant (hence [, 5 (X v)d dHN L =
0).

O

Second derivative

Now we differentiate again to get

F(@) = —Ej(Qt) /Q div(: X )dz

= _Ejj( : </Q div (1, X) dz + /89 div( X)(X ”>d7”‘N_1)

4 / BV - Vo — Vi - Vi )(X - )Y
o0

. / V [BIVEF = [V F] - X(X - v)dH !
2 0

1 .
— X ) dHN T+ —
+ o Vb (X - v)dHN T+ K oo,

- 2/aﬂ <5 (Wt+ v VY ”) (Voo -v) - (Wt‘ v+ VY- 1'/> (Ve - V)) (X - v)dHN !

UV, - X(X - v)dHN

— /aQ \Y [ﬁ(ij V) — (V) - 1/)2] CX(X - v)dH
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Using that the vector field X is divergence-free in the neighborhood of 0B; we get
for ¢t small enough

j(Qt) = —%j(Qt> wt(X . V)dHNil
o0
L= 21T () (
o0

+
2|

Uy (X - v)dHN ! + /

(Ve X)X u)d’HN-I)
0

4 / BV - Vo — Vi - Vi )(X - )Y
o0

+1 / V [V 2 — |V ] - X(X - v)dHd
2 0

1 . 1
- V(X - ) dHY T+ — UV X (X - v)dHN !
K Jaq, K Jaq,

- 2/6Q <B (W’t+ VA VY ”) (Vo -v) - (WJE v+ VY] 1'/> (Ve - y)) (X - v)dHN !

— V [B(VY)F - v)? = (VY -v)?] - X(X - v)dHY

o

Now to prove Lemma 4.3.5 we only need the following bound on the second deriva-
tive.

Lemma 4.3.10. There exist constants 6 > 0 and C' = C(N, ) such that if ||¢||cen <
0, then

F()

<CJX - V”12L11(8Bl)'
We will need the following proposition.

Proposition 4.3.11.

16110 + 17 N oy < € (11X -l omy + T ()

To prove the proposition we will use the following theorem concerning Sobolev
bounds.

Theorem 4.3.12 ( [McL02, Theorem 4.20]). Let G and G be bounded open subsets
of RN such that Gy @ Gy and G intersects an (N —1)-dimensional manifold T', and
put

Qf:GjﬂQi andI'; = G;NT for j =1,2.

Suppose, for an integer v > 0, that 'y is C"T5 and consider two equations
+ + +
Pu™ = f~ on Q5

where P is strongly elliptic on Gy with coefficients in C’“(Q_SE). If u € L*(Gy)
satisfies , )
ut € HY(QF), [ulp € H2(Iy), [Boulr € H2(Iy),

54



and if f¥ € H'(QF), then ut € H2(QF) and

e larsaay + 16 lazmsagary < € (1ot gy + e lasga) )
+ € (Iulrall ot gy + NBle ey )
+'C7<Hf+ﬂ;pxgg>+'Hf‘Whpr;))-
We need an analogue of the above theorem for r = —%. To get it, we are going

to interpolate between r = 0 and r = —1. We first prove the following lemma.

Lemma 4.3.13. Let E be a set with the boundary in CY and let R > 0 be such
that Bgr D E. Consider the equation

(BAut = f+ in B,

Au~ = f_ mn BR\E,

ut =u" on OF, (4.3.16)
Bo,ut — O, u” =g on OF,
u~ =0 on 0Bg,

\

where f+ € HY(E),f~ € HY(Bg\E), and g € H '/?(OF) are given. Then there
exists u - the solution of (4.3.16) in Wy*(Bg) and it satisfies

2 —
sy < C (1 Wmscy + 1 sy + Mol i) (43.17)

with C = C(N,R) > 0. Moreover, if f+ € H™Y*(E),f~ € H Y*(BR\E), and
g € L*(OF), then

2 _
HUHH3/2(BR) <C (”erH?{—W(E) + 17 H?{—W(BR\E) + HQH%%aE)) (4.3.18)
with C = C(N, R) > 0.

Proof. First we observe that the solution in H' exists since it is a minimizer of the
following convex functional:

/Qt (B vt | - f1u+> +/Qf (ﬁ\vu—f - f2u—> +/mt ot — ),

Note that if we test the equation with the solution itself, we get

/ 5‘VU+}2dﬂf+/ }Vu_]2d:v:—/ f1u+dﬂf—/ fgu_das—l—/ urg dHN L
o Qs o Q o0

By Poincaré, Cauchy-Schwarz, Young, and the trace inequality we obtain (4.3.17).
Now we consider an operator that takes the functions of the right-hand side
and returns the solution of the corresponding transmission problem, i.e. we define
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T(f1, fa,9) for f1 € H" (), fo € H™ (), g € H’"*é(ﬁQt) as the only H* solution of
(4.3.16).

By (4.3.17), T : H"x H" x H"*2 — H™+2 for r = —1. Moreover, (4.3.17) together
with Theorem 4.3.12 vields T : H" x H" x H™t2 — H™2 for r > 0 - integer. Thus,
interpolating between r = 0 and r = —1 we get that T: H 2 x H™2 x L2 — H3,
so (4.3.18) holds for appropriately regular right-hand side. O

Proof. (Proposition 4.3.11) Since we are interested only in the value of Uy on 9K,
we multiply it by a cut-off function 7. The function n € C>°(RY) is such that

0<n<1, n=1lin By, n=0outside of By, |Vn| <2, |An| <4.

We would also like to eliminate the jump on the boundary in order to use Lemma
4.3.13, so we consider a function u := vn, where v is as in Lemma 4.3.8 (we recall
that v = ¢, + f, where f is a H3? continuation of Vi, - X from 9, inside and
outside). For § small enough, all sets € lie inside of By, so

u =, + Vi, - X on 9. (4.3.19)
Note that u satisfies
(—BAu=—Lv+ 2T() + Af in Q,
Au=Vv-Vi+ <¢}t+f> A7 in QF,
ut —u” =0 on 08y,

BVut-v—Vu -v= (— (BV[V’(/):_] — V[VQ/){]) X+ BVt — Vf’) v on O,
L u =0 on 0Bs.

By Lemma 4.3.13,

(BVIVE - X]) v ooy + 1(TIV05 - XD) v o)
(H (BVIVYS]- X) - ’/HL2(F2) +|(VIVYe ] X) - VHL2(F2)>

L IIAfIIHg(Qt))
H™3(9)

+C (190 Vall, g gy + 108714 )

+ || =T
H 3 () HK (€)

Now we employ Proposition 4.3.6, inequality (4.0.7), and the definition of f to get

)

+ [lvAn]

i

[ +llull g

<C (IX - Vllmny + [F ()
+C (Ive- v

o3 () HE(Q5) =

H™2(Q5) H % QC)> :
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Remembering (4.3.19), using trace inequality and properties of 7, we have

1 W (992) + 1565 oy < C (I1X - Vllmson + [T ()
+C (190 90l ey + 10200 )
< O (IX - Vllmonn + [F()|) + € (IV0 - Vall gy + 027 20
< O (IX - vlmnn + |7©@0)]) + € (190 2y + 10 2 ) -

Now it remains to recall the bounds (4.3.14) and (4.3.15) and notice that

I Nz2Bs\By) < Cll - M2 (Bs\Bo)-

O

Proof of Lemma 4.5.10. Let us first show that the lemma is implied by the following
claim.

. pid 2 .
Claim: ’j(Qt) <C (HX : V||H1(331) + T () |1 X - V”H1(8B1)) :
Indeed, suppose we proved the claim. Denote [J(£2;) by f(f). Then we know the
following:

{|f’(t)\ < C (I1X Yl om) + FO1X - Vlimom,))
f(0) =0,
Let us show that

O NX Vo, (4.3.20)

then the lemma will follow immediately. Suppose that there exists a time ¢ € (0, 1]
such that the inequality (4.3.20) fails. We denote by ¢* the first time when it happens,
ie.
t*:= inf {t:(4.3.20) fails}.
{1 ) fails}
Since inequality (4.3.20) is true for ¢ = 0, the following holds:

)N =X vligom,y, [FOI<IX-vigiop,) fortel0,].

Now, as f(0) = 0, we can write

f(t) = / F(t)dt

and thus
t*
1X - lgsomy = ()] < / F(0)ldt
0
t*
< /0 C (HX : V”?ﬂ(aBl) + f() | X - V”H1(831)>dt <20[X- VH?{l(aBl) :
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However, that cannot hold for || X -v||1(9p,) small enough. That means that (4.3.20)
holds for all times t.
Proof of the claim.

T Q) = —%j(Qt) . V(X - v)dHN !

1
+5 [ VIBIVE P = Ve P X (X p)dH
o

1= 2(BJT(0) | 1 RO
; /( e +Kwt><wt X)(X - )M

L= 2IBUTO\ 1\ e v
+/a<< B, )*K“)WX v)aH

GO R S S T
o
We start with 1.

K 7 N—-1 __ 1 1 N—-1 ?
~5h0 =700 [ wx e - (1—? Qtwtdx)@( [ wx vy )
w5 [ BV = 9 P) [ (X

2 Jaq, 09

1
+— [ XX -v)dHN ! V(X - v)dHN L
2K Jaq, o0,

To bound I, and I5 we use Proposition 4.3.11 and Proposition 4.3.6. Let us show
the inequality for I5, I, can be treated in a similar way.

/ (BV¢j.V¢j—v¢t—.v¢;> (X ) dHN
o
= /(,m (‘Wwﬁvqu

g<( / 2)§+( / )) 1X Ul (43.21)
< gl onan) (( N ) +(/ X )) 1 vl 2o

< g1l (1€ - Ylmony + [T (€0)]) 1X - Vilzzgon,

+ |V - iy

) X - v]dHY

BYYS - Vi Vi - Vi

Vit Vi

Now we are ready to prove Lemma 4.3.5.
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Proof of Lemma /.3.5. By Taylor expansion for g(t) = J(E;) at t = 0 we have

J(E)=J(B1)+J(B) + /1 (1—35)T(Es)ds.

By Proposition 4.3.9 we know that J(B;) = 0. Now use Lemma 4.3.10 to bound
the integral. ([l

Theorem 1.1.9 for nearly-spherical sets

Finally, we can prove stability of the ball for F with small enough charge in the
family of nearly-spherical sets.

Theorem 4.3.14. Given ¢ € (0,1], there exist § = §(N,9) > 0 and Qy > 0
such that for every nearly-spherical set E parametrized by o with ||¢||c20@0p,) < 9,
xg =0, and |E| = |B1], if Q < Qo we have

F(E)—F(By) > CHSDH?ql(aBl)'

Proof. The proof is a combination of Lemma 4.3.5 and Theorem 4.0.2. Let ¢ be the
one of Lemma 4.3.5. If ) is small enough, we have

F(E) = P(E)+ Q*0(B) 2 P(B:) + cllelipon, + @ (557~ T(E))

K
> P(B) + ellliony + @ (s~ T80~ lielinom

K c c
> P(B)+ @ (g = T ) + 5 el = F(B) + 5 leliron,

yielding the desired result. O

4.3.4 Second derivative on the ball

We want to show that the second derivative of the energy which we know is bounded
by |l¢l|%: is actually bounded by a stronger H'/? norm on the ball. We don’t need
this for out main results but it is a sharp bound so we prove it for the sake of
completeness. We have

PGB ¢ = &r /

0B,

PR+ / o H () + e3(VH ()™ - v)pdHN ™!

0B1

with ¢, ¢ and ¢ are constants depending only on 8, K and dimension n and H(y)
is the unique solution of

BAu = %u in By,
Au =0 in BY,

+

ut —u' = c1p on 0By,

BVut v —Vul - v = cyp on OBy,
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where ¢, = —(u_(1) — u(1), ¢ = —(Bu” (1) — ug(1)).

We are going to show

PGB, el = —cllely

Consider ¢ in the basis of spherical harmonics,

oonn

Y = Zzamzmz

First, we would like to bound 9?G(B1)[Yom.i, Yin.il-
One can easily see that H(Y,,;) = R(r)Y,,;, where R(r) is the only solution of
the following system:

Ri(r) + X2 Ri(r) + (— 5 + 25 Ra(r) = 0 for r < 1,
R,Q/(T)+Nr_lR/2(7‘)+/\ LRy(r) =0 for r > 1,
R1<1) - R2<1) = (1,
BR (1) — Ry(1) = ca,
where \,,; = —m(m +n — 2).

A straightforward computation gives us that Ry(r) = Ar~(m+"=2) for some con-
stant A.

Let us search for Ry in the form Ry(r) = > 7 axr®. The equation for R; then
will take the following form:

k k m,n k _
zﬂww%+m%+nr+—7—gﬂ%HMwDT+(—EF+ ﬂ:>é;%r—0ﬂnr§1

If m > 2, it means that
1
ag = 0, sz,aﬁMN+k—@—m%N+m—2D:EE%Qﬂwk>2

The recurrent condition can be rewritten as

ar(k —m)(k+n+m—2) = —ap_o for k > 2.
Hence,

Am = Ca

m+2i = ﬁKaerQ(ifl)m for i > 1,

ap = 0 for all other k,
(BEK)*
(k)2
is absolutely converging. Note that ap = Cby, where {by} is the following fixed
sequence:

where C' is a constant. So, the coefficients a; decrease as and the series

by = 1,
1 .
bm+2i - (BK) J 1W for ¢ > 1,

b, = 0 for all other k.
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Our system for R then becomes

Ri(r) = C Y02 bygair™ 2 for r < 1,

Ry(r) = Ap=(m+N=2) for > 1,

CYZobmiai — A=c,

BC Y20 (m A+ 20)byyai + Alm + N = 2) = ¢,

with A and C unknowns. We are interested in the value of |R)(1)]:
[R5(1)] = [A(N +m —2)|
a(m+ N —2)+c =

Do bmaai + 8D o (m + 21)bm+%6 ;(m 0)bpr2i — C2| ~ M

Thus,
10°G(B)) [Yomi, Yimill = |61 + 62A + AN +m — 2)| ~ m. (4.3.22)

Now recall that ¢ is such that || = |B;| and zg = 0. It means that

N
0By

N
(L+ @)™ o v
O=wa= | y—— Tl aH
o /{)Bly N+1
Hence,
N .
_ N\ (@) 5 N
xd’HNl:/ () an !
LBl 90( ) 831; ] N
<C) [ plapant =t < Vel
0B
and

dHY ™ < C(N)dll e

[y mome]< [, 3 ()55

Thus, for ¢ sufficiently small we have

oo N(m,n)

a0+zalz<22 Z amw

m=2 i=1

which in turn implies

9°G(B1)[p, ¢] > _C”Sﬁuip oBy)’

thanks to (4.3.22).
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Chapter 5

Quantitative isocapacitary inequality

Now, as we have already the result for nearly-spherical sets, we can apply Selection
Principle to the isocapacity inequality.

5.1 Another notion of asymmetry

As in [BDPV15], one of the key technical tools is to replace the Fraenkel asymmetry
with a smoother (and stronger) version inspired by the distance among sets first
used by Almgren, Taylor, and Wang in [ATW93| which resembles an L? type norm.
Roughly speaking, while A(Q) represents an L' norm, «/(2) represents an L? norm,
see (iii) in Lemma 5.1.2 below and the discussion in [BDPV15, Introduction]|.

Definition 5.1.1. Let Q be an open set in RY. Then we define the asymmetry «
in the following way:

(A)

on(@ = [ 1= ol

a(Q):/ |1 — |z — zql|da.
QAB(zq)

The next Lemma collects the main properties of «, its simple proof is identical
to the one of [BDPV15, Lemma 4.2] but we put it here for the reader’s convenience.

(B)

Lemma 5.1.2. Let Q C RY, then
(1) There exists a constant ¢ = ¢(N) such that

(A)
ar(Q) > c|QAB; 2

for any open set Q) C Bpg;

(B)
a(Q) > c|QAB, (zq)|?

for any open set 2.
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(ii) There exists a constant C' = C(R) such that
| (1) — a(€2)| < Cl21AQD,]

for any Q1,Qy C Bg. In particular, if 1o, — lg in L'(Bg) then a.(Qx) —
().

(iii) There exist constants C' = C(N), § = §(N) such that for every nearly-spherical
set (see Definition 4.0.1 below) Q with ||¢]|l < 9 (and zq = 0 in the case of )

() < Clll720m,)-

Proof. First, we prove (i). We will prove the inequality for ag. For « one can
assume that xq = 0 and then proceed in the same way.
To that end, we use a simple rearranging argument. We notice that

aR(Q):/Q\B (|x\—1)dx+/B\Q(1—|:z:|)dx. (5.1.1)

Here in both summands we integrate monotone function of the modulus.
We introduce two annular regions T, and T, of the volumes |2\ B;| and | B;\Q2:

m\Bn)i

Y

Tout = {(E 1 S ‘l’| < Rout}aRout = (1 +

B
il (5.1.2)
BI\QI\ ¥

Tin =4z : Ry, <|z| <1}, Ry, = (1_ |B1\ \)
| B1]

Now, by monotonicity,
agr(Q) > / (|lz| — 1)dx—|—/ (1— |z|)dz
" RN+ _q RJ?”_ 1 RN+t1_q1 RN _q (5,1.3)
= Wy out . out + in . in Z C’QAB“Q,
N+1 N N +1 N

Now we turn to the proof of (ii). Let us first prove the inequality for ag. We

observe that
aR(Q):/B (1—\x!)d:€—|—/ﬁ(\x!—1)dx. (5.1.4)

/Q1 (|z] — 1)dz — /Q2 (|z| — 1)dz| < /QIAQ2 }1 _ |x||dx

(5.1.5)
Since both 2, and €2, lie inside Bpg,

Thus,

lap(Q1) — ar(Q)| =

/ 11— |2]|dz < [ AR, (5.1.6)
Q1AQ0
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As for a, notice that

om):/B (1—|x])dx+/9(|x—x9]—1)d:v. (5.1.7)

Then
an(@) - an(@)| = | [ (a0 = Dz~ [ (o~ 20, - 1o
Ql QQ
< |v — xq, |dx — |z — xq,|dx| + |21 AQs)|
Q1 QQ

< / |zq, —:EQ2|dx+/ |m—m91|dm—|—/ | — xq,|dx + [Q1AQ,|
Q1N 91\92 QQ\Ql

(5.1.8)
Finally, we prove (iii). We prove the inequality for ap as we have ar = «a by
assumption.

aR<Q) _ />0 (1 + gp(x)>N+1 — 1dHN71 . />O (1 + QO(ZE))N — 1dHN71

N +1 N (5.1.9)
L+ -1 A+e@)V =1 vy -
+ dH" " — dH” .
p<0 N +1 <0 N
But for |¢| < 1 there exists a constant C' = C(N) such that
1+ )Nt —1 , (1+6)V -1 1,
< —_ > — 1.
N1 <t+Ct, N _t—I—Ct
This finishes the proof.
O

5.2 Stability for bounded sets with small asymme-
try

We first want to prove the following theorem.

Theorem 5.2.1. There exist constants ¢ = ¢(N,R), g = €o(N, R) such that for
any open set 2 C Br with |Q] = |B1| and a.(2) < &g the following inequality holds:

cap,(Q) — cap,(B1) > ca.(Q).

We want to reduce our problem to nearly-spherical sets. To do that we argue by
contradiction. Assume that there exists a sequence of domains €2; such that

|Q]| = |Bl|, Oé*(Qj) =&; — 0, cap*(ﬁj) — cap*(Bl) < O'4€j (521)

for some o small enough to be chosen later. We then prove the existence of a new
contradicting sequence made of smooth sets via a selection principle.
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Theorem 5.2.2 (Selection Principle). There erists ¢ = 6(N, R) such that if one
has a contradicting sequence §); as the one described above in (5.2.1) with o < &,
then there exists a sequence of smooth open sets U; such that

(1) [U;] = [Bil,

(ii) OU; — OBy in C* for every k,

)
ST cap, (Uj)—cap, (B1) —
(iii) limsup,_,, (] < Co for some C = C(N, R) constant,
* J
)

(iv) for the case of the capacity in RN the barycenter of every Q; is in the origin.

Proof of Theorem 5.2.1 assuming Selection Principle. Suppose Theorem 5.2.1 does
not hold. Then for any o > 0 we can find a contradicting sequence §); as in (5.2.1).
We apply Selection Principle to Qj to get a smooth contradicting sequence Uj.

By the properties of (2;, we have that for j big enough U; is a nearly-spherical
set. Thus, we can use Theorem 4.1.2 and get

cap, (U]) — cap, (Bl)

¢(N, R) < limsup < C(N,R)o.
j—00 a, ()
But this cannot happen for o small enough depending only on N and R U

The proof of Theorem 5.2.2 is based on constructing the new sequence of sets by
solving a variational problem. The existence of this new sequence is established in
the next section while its regularity properties are studied in Section 5.4.

5.3 Proof of Theorem 5.2.2: Existence and first prop-
erties

5.3.1 Getting rid of the volume constraint

The first step consists in getting rid of the volume constraint in the isocapacitary
inequality. Note that this has to be done locally since, by scaling, globally there
exists no Lagrange multiplier. Furthermore, to apply the regularity theory for free
boundary problems, it is crucial to introduce a monotone dependence on the volume.
To this end, let us set

fols) = {‘5“ Ten) o s<an

—n(s —wn), s> Wy
and let us consider the new functional

%, (Q) = cap,. () + f(|€2]).

n

We now show that the above functional is uniquely minimized by balls. Note also
that f, satisfies

(t—>s)
1

n(t—s) < fu(s) = f(t) < forall 0 < s <t. (5.3.1)
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Lemma 5.3.1 (Relative capacity). There exists an 7 = 7(R) > 0 such that the only
minimizer of ‘KﬁR in the class of sets contained in By is By, the unit ball centered at
the origin.

Moreover, there exists ¢ = ¢(R) > 0 such that for any ball B, with 0 < r < R,
one has

Cr(B,) — €1 (B1) > clr — 1]. (5.3.2)

n

Lemma 5.3.2 (Absolute capacity). There ezists an 1 = n(R) > 0 such that the
only minimizer of €y in the class of sets contained in B is a translate of the unit
unit ball B;.

Moreover, there ezists ¢ = ¢(R) > 0 such that for any ball B, with 0 < r < R,
one has

©,(B,) — €;(B1) > c|r — 1]. (5.3.3)

Proof of Lemma 5.5.1. First of all, using symmetrization we get that any minimizer
of %”nR is a ball centered at zero. Thus, it is enough to show that for some n > 0

attains its only minimum at = 1 on the interval (0, R). We recall that the (relative)
capacitary potential of B, in Bpg is given by

—(N-2) _ R—(N—2)
T

r_(N_Q) — R_(N_Q)

and thus
B (N —2)
CapR(BT) T p—(N-2) _ Rp—(N-2)°
hence
RN-2 1

g(r) = capp(B,) + fy(wnr™) = (EpN2_] capp(Bi) + fy(wnr™).

r

For convenience let us denote

RN—2 -1 N—2
gp(r) = CapR<BT) = Cl(R>WT 5

and note that

RN72 -1 RN -1 3 N
o' (r) =ci(R)(N —2) <—RN—2 — TN—QTN S+ e TN—2)2TN 3N 2) .

Now we consider separately the two cases 0 <r <land 1 <r < R.
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e 0<r<i1

g'(r) = ca(R) (RNT —

1
N—-3, N-2 N-1
ro T 0r ——wyNr .
rN=2 (RN-2 — pN-2)2 )

Ui
For r € (1/2,1)

(r) < e(R) — %WNN (%)N_l |

If we take n < n(R) < 1, then ¢/(r) < —c3(R) for r € (3,1) and thus g(r)
attains its minimum at r = 1 on that interval.
Moreover for r € (0,1/2)

RN—2_1 1 N 1 1 N
g(T):WCapR(Bl)‘FE(wN(l—T ))ZE<MN (1_(5) ))

Since g(1) = capgz(B1) = ¢
R to ensure that g(r) > ¢(

o 1<r<R

(R) we can take 7 small enough depending only on
1) for all r € [0,1/2).

/ RN™2—1 4 RN72 -1 N—3 N-2 N-1
g (r) =c(R) TNz N2 TN_QT + e TN—Q)QT r — nwyNr

> ¢(R) — nwyNRM L.

Taking n < 1 depending only on r we get ¢'(r) > c4(R) for r € (1, R) and thus
g(r) attains its minimum at r = 1 also on this interval.

To prove the last claim just note that

lim ¢'(r) < —c3 lim ¢'(r) > c4.

r—1- r—1+ -

U

Proof of Lemma 5.3.2. The proof works exactly as the one in the previous lemma,
just using the equality
cap(B,) = cap(By)r™ 2.

5.3.2 A penalized minimum problem

The sequence in Theorem 5.2.2 is obtained by solving the following minimum prob-
lem.

min {6, ;(2) : Q C Bg}, (5.3.4)
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where

G5(Q) = G () 422+ 02(0(Q) — 2))? = cap, (D F()+/2 + 02 (au(@) — =)

We start proving the existence of minimizers. Asin [BDPV15], in order to ensure
the continuity of the asymmetry term, one needs to construct a minimizing sequence
with equibounded perimeter. Recall also that a set is said to be quasi open if it is
the zero level set of a W2 function.

Lemma 5.3.3. There exists o9 = 0o(N,R) > 0 such that for every o < oy the
minimum in (5.3.4) is attained by a quasi-open set Q. Moreover, perimeters of 2}
are bounded independently on j.

Proof. We will focus on the capacity with respect to the ball. For the case of capacity
in RY one simply replaces W,*(Bg) by D“?(RY).

Step 1: finding minimizing sequence with bounded perimters. We consider
{Vi}rew — a minimizing sequence for €%, satisfying
1

We denote by v, the capacitary potentials 0~f Vi, s0 Vi, = {x € Bg: v, = 1}. We
take as a variation the slightly enlarged set Vj:

Vi={x€Bp:v,>1—t}

where t;, = \/ig

Note that the function 0 = %ﬁ:tk) is in W(}’Q(BR) and v, = 1 on Vi, so we

can bound the capacity of Vj by fBR |Voy|?dx. Since Vi is almost minimizing, we
write '

/{ o VorlPdz + fi(I{vr = 1}) + /eF + o2(a({ve = 1}) — ¢;)?

2
U,
<[ () ez - n)
{op<i—ty} o
2 4 52 2, L
+ \/gj +o2a({ue = 1= t}) =) + 1.
We use (5.3.1) and the fact that the function ¢t — \/532 + 02(t —€;)? is 1 Lipschitz
to get

/ ]Vvk|2dx+f]\{1—tk<vk< 1}’
{1 te<vp<l}

1 2
+/ < ) — 1| |[Vup|?dx
for<t—t,} \ \1 — 1tk

< ORI~ te <o <Y+ 7 + ((1 ! tk) 1) cap (Vi)

| =

<o(la({vr = 1=t} — a({vs =1})|) +

1
<O(R)o{l —tp <wvp < 1}H + zt ¢(N, R)ty,
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where in the second inequality we used Lemma 5.1.2, (ii). Taking o <
obtain

7
2C0(R)> Ve

1
/ |Vop|*dz + = (|{1 —tr < v < 1}) < =+ (N, R)ty.
{1—tp<vp <1} k

We estimate the left-hand side from below, using the arithmetic-geometric mean
inequality, the Cauchy-Schwarz inequality, and the co-area formula.

/ |Vvk| dr + = (|{1—tk<vk<1}|)
{1—tp<vp<1}

1—tp<vip<1

> /270 |Vuglde = /2 / P(v, > s)

1—t<vp <1

where P(E) denotes the De Giorgi perimeter of a set E. Hence, there exists a level
1 -t <sp <1 such that for Vi = {’Uk > Sk}

PTh) < %/Hk P({vx > s})ds fk + (N, R) = \/21777 +¢(N, R).

where in the last equality we have used that ¢, = \/LE These Vj, will give us the

desired "good" minimizing sequence, indeed
< €5 (Vi) + fy(l{on > si})) = fa({ve = 1}) + Col{1 — sp <vp < 1} < €5(Va),

where in the first inequality we have used that Vi, C Vi and in the second that,
thanks to our choice of o,

fa({ve > si})=fa({ow = 1})+Col[{1=s < v, < 1} < (Co—n)[{1—sp < vp < 1} <0.

Step 2: Existence of a minimizer. Since {Vk}k is a sequence with equibounded
perimeter,s there exists a Borel set V, such that up to a (not relabelled) subsequence

ly, — ly_ in Ly(Bg) and a.e. in Bp,  P(Vy) < C(N,R).

We want to show that V, is a minimizer for C,;. We set 0, = %}fs") and we

note that they are the capacitary potentials of Vi.. Moreover the sequence {0}y is
bounded in W,*(Bg). Thus, there exists a function © € Wy >(Bg) such that up to
a (not relabelled) subsequence

O — 0 strongly in L*(Bg) and a.e. in Bp.
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Let us define V = {z : 0 =1}, we want to show that V is a minimizer. First, note
that
ly(z) > limsup 1y, (z) = 1y,_(z) for a.e. x € Bp,

hence Vi \ V| = 0. Moreover, by the lower semicontinuity of Dirichlet integral, the
monotonicity of f; and the continuity of o with respect to the L' convergence, we
have

inf %" :hin/]V@kP—kfﬁ(]Vk\)—i— 2 4 o2(alVh) — ¢, )

> capp(V) + f1(IVeol) + 1/€2 + 0%(a(Vao) —5)2. = capg(V) + f3(IV])
(5.3.5)
Hence

capr(V) + fil|Veol) + /€2 + 02(a(Vie) — €)% < inf €4(Q)

< capg(V) + fo(IV]) + /22 + o2(a(V) - &,)°.

Using Lemma 5.1.2 (ii) we get
FillVeel) = fo(IV]) < Co|VAV| = Co|V\ Vg .

Since |V| > |Vao!, (5.3.1) and our choice of o yield
T ~ ~ S N
VAVl < fillVas]) = fi(IV]) = ColVAVi] < SIVAV],

from which we conclude that |V AV,| = 0 and thus, by (5.3.5) that V is the desired
minimizer. U

5.3.3 First properties of the minimizers

Let us conclude by establishing some properties of the minimizers of (5.3.4).
Lemma 5.3.4. Let {Q;} be a sequence of minimizers for (5.3.4). Then the following
properties hold:

(1) lax(€) — &5] < 3oey;

(i) 191 — |Bil| < Co'e;;

(ii) (A) for the capacity in RN up to translations Q; — By in L,

(B) for the relative capacity Q; — By in L';
(IV) 0 S %;(QJ) - %;(Bl) S 0'4€j.

Proof. Recall that the sequence {€2;} was obtained by a sequence {Q]} satisying
L. ’Q]| = |Bl|>

2. Oé*(Qj> = &y,
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3. cap,(Q;) — cap,(By) < oe;.

We now use {Q;} as comparison domains for the functionals ¢ to get

%;(QJ) + gj S (gf;j(Qj> S (gf;j(gj> = (gg(gj) + €j S (gf;k(Bl) + <€j(1 + 0'4), (536)
implying that
Cﬁ*(Qj) — %;(Bl) S 5]0'4,

n

which proves (iv). Note that we defined f; in such a way that €(Q;) > € (B).
Thus, using (5.3.6) we also deduce that

V22 02au() — 57 < 55(1+ %),

which gives (i). To estimate the volume of ;, we use the classical isocapacitary
inequality and properties of f; and (5.3.2), (5.3.3). Indeed, let B7 be the ball
centered in the origin such that |B?| = |Q;].Then

)

ole; > C;(Qy) — € (B) 2 €;(B)) — €;(B1) > c(R)||] — | B

where in the last inequality we have used (5.3.2), (5.3.3). This proves (ii). To prove
(ii) we recall that the sets €; have equibounded perimeter. Hence, the sequence
{Q;}; is precompact in L'(Bg). Since the asymmetry is continuous with respect to
L' convergence any limit set has zero asymmetry. The only set with zero asymmetry

is the unit ball (or a translated unit ball in the case of the absolute), proving (iii).
U

5.4 Proof of Theorem 5.2.2: Regularity

In this section, we show that the sequence of minimizers of (5.3.4) converges smoothly
to the unit ball. This will be done by relying on the regularity theory for free bound-
ary problems established in [AC81].

5.4.1 Linear growth away from the free boundary

Let u; be the capacitary potential for ;, a minimizer of (5.3.4). Let us set v; :=
1 — u;, so that ; = {v; = 0}, v; = 1 on JBg, following [AC81| we are going to
show that

vj(x) ~ dist(x, ;).

where the implicit constant depends only on R. The above estimate is obtained by
suitable comparison estimates. In order to be able to perform them with constants
which depend only on R, we need to know that {u; = 1} is uniformly far from 0Bj.
This will be achieved by first establishing (uniform in j) Holder continuity of w;.
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Hoélder continuity

The proof of Holder continuity is quite standard and it is based on establishing
a decay estimate for the integral oscillation of u;. Since, thanks to the minimizing
property, u; is close to the harmonic function in B, (z¢) N Bg with the same boundary
value, we start by recalling the decay of the harmonic functions both in the interior
and at the boundary. The following is well known, see for instance [GM12, Propo-
sition 5.8].

Lemma 5.4.1. Suppose w € W'2(Q) is harmonic, zo € Q. Then there exists a
constant ¢ = ¢(N) such that for any balls By, (o) C By,(x9) €

2 2 2
][ (w - ][ w> <c <E> ][ (w — ][ w) . (5.4.1)
By, (w0) By, (z0) 2 By, (z0) By, (z0)

Next lemma studies the decay at the boundary, the result is well known. Since
we have not been able to find a precise reference for this statement, we report its
simple proof.

Lemma 5.4.2. Let Q be an open set such that 0 € 9Q and let w € W2(B,) be
harmonic in QN B, w =0 on B, \ Q. Assume that there exists 6 > 0 such that for
pT

Then there exist a constant ¢ = c¢(9) and an exponent v = v(6) > 0 such that for
any 0 <1y <ry <r we have

™ v
][ w? <c <—> ][ w?.
B'rl T2 BTQ

Remark 5.4.3. Note that as w is harmonic in Q N B, and 0 on B, \ Q, w? is
subharmonic in B,, thus its means over balls increase with the radius. In particular,

B

sup w? < c(N)][ w?. (5.4.2)
Bsr.

Proof of Lemma 5.4.2. For convenience, we assume that r > 1 (we can reduce to
this case by scaling). First, we note that it is enough to show the result for radii
with the ratio equal to a positive power of }l. Indeed, take k € Z, such that

4k1+1 < :—; < 4%. Then
-
r
w? < C47 (—1) ][ w?.
T2 B

][ w? < C’4_7k][ w? < 04_7’“][
B B . B o

1 r14 T2
We work with powers of i. We start by showing

supw < (1 —¢)supw. (5.4.3)
B, B
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For any € > 0 there exists some x( € Bi such that supp, w < w(x) + €, so we can
1

write
’QQBQ(JI()”
supw—egw(xo)g][ w< ————supw
B, Bs (x0) Bz (wo)| B
1 1
‘QcﬂBg(l’o)’ |QCQB%’
=|l1l-———|suwpw < |1 - —— | supw
Byl ) n Bl )%

< 1—518%’ sup w
B | B | .

which proves (5.4.3) since ¢ is arbitrary. Using induction and scaling we can extend
this result to all powers of 1. Indeed w(z) = w(x/4) satisfies the hypothesis of the
theorem. Hence,

supw =supw < (1 —¢)supw = (1 —¢)supw < (1 — ¢)? sup w,

B B B B By
16 1 1

and thus

In the same way

sup w < (1 — ¢)*supw
By, B
4

Now

S (1 . C)Q(k—l) ][ w2 S (1 o C)2(k—1) (C,][ w2) ’
B3 (z0) B1

where we have used (5.4.2). We get from powers of }l to other radii again by scaling.
This concludes the proof with v = —log,(1 — ¢). O

3
4

Corollary 5.4.4. Let w be as in the statement of Lemma 5.4.2, then

Lo fo) <e@ f (o4 )

for any 0 <1y <1y <r with C a constant depending only on 9.

Proof. The proof follows from Lemma 5.4.2 and the simple observation that for a
function w vanishing on a fixed fraction of B,, the L? norm and the variance are
comparable. Namely there exists a constant ¢ = ¢(J) such that

L <o 1)
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Indeed, the first inequality is true for every w with ¢ = 1. For the second one note

U ) L)

2

Hence we need to estimate (fB w) in terms of [, w?. Since w is non-zero only
P 13

inside (2, using Hdélder inequality, we obtain

(épw>2§ (%)ﬁ w2§(1—5)]{3 w?,

p p

L) =of

concluding the proof. O

hence

To prove Hoélder continuity of u; we will use several times the following compar-
ison estimates.

Lemma 5.4.5. Let u; be the capacitary potential of a minimizer for (5.3.4). Let
A C By be an open set with Lipschitz boundary and let w € W12(RY) coincide with

u; on the boundary of A in the sense of traces.
Then

1
/ Y, P — / Vwldr < (7 + C’a> AN (fu=1ALw=1}) .
A A n
Moreover, if u; <w <1 in A, then
/ |V, 2dz + g|Am {u=1A{w=1})| < / \Vw|*dz,
A A
provided o < o(R).

Proof. We prove the result for the relative capacity. The case of the capacity in RY
can be treated in the same way. Since u; is fixed we drop the subscript j. Consider
@ defined as {

Take 2 = {G = 1} as a comparison domain. Since 2 is minimizing, we can write

=g
I

w in A
U

else.

N
I

/ [Vuldz + £1(2) + /23 + 02(ar(Q) — £)2 = €F(2)
Bgr

€L (Q Vil|’d (Q 2 1 g2(a(Q) —g;)2.
<G )S/BR' iz + () + /22 + 02(a(@) — <)
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Hence, by Lemma 5.1.2, (ii) and (5.3.1).
3 3 1 3
/ Vuldz / Vulds < 1£(2) = £5(0)] + Col0A0 < (= + Ca)2A0.
A A

To prove the second inequality we observe that v < w <1 implies {fu=1} c{u=
1}, i.e. Q C Q. Hence, by (5.3.1):

/ \Vu|*dz — / IVw|?de < —f3(Q) + £2(Q) + Co|QAQ| < —7|Q\ Q| + Ca|Q\ Q|
A A
from which the inequality follows choosing ¢ small enough. O

Remark 5.4.6. Note that if w is harmonic in A, then

/|Vu]2dx—/ ]Vw|2dx:/ IV (u — w)|2dz,
A A A

meaning that the first inequality from the lemma becomes

/A IV (u —w)Pdr < (% + CO’) ’A N{u=1}A{w = 1}| (5.4.4)

Let us also recall the following technical result

Lemma 5.4.7 ( [Lemma 5.13 in [GM12]). Let ¢ : RT — R be a non-decreasing
function satisfying

o) < A[(£) +¢]o(R) + B,

for some A,a, B > 0, with o > [ and for all 0 < p < R < Ry, where Ry > 0 s
given. Then there exist constants g = eo(A, o, 8) and ¢ = c(A, «, B) such that if
e < &g, we have

¢(R)

A &)
d)(p)éc[ 7 +B}p
for all0 < p < R < Ryp.

Lemma 5.4.8. There exists a € (0,1/2) such that every minimizer of (5.3.4) stais-
fies u; € C¥*(Bg). Moreover, the Hilder norm is bounded by a constant independent
on j.

Proof. Let us extend u; by 0 outside of Br. As usual, we drop the subscript j. By
Camapanato’s criterion it is enough to show that

2
o(r) ::/ <u —][ u) < Cr*™
By (zo) By (zo)

for all r small enough (say less that 1/2).
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Step 1: estimates on the boundary. Let zqp € 0Bg. Let w be the harmonic
extension of w in B,/(x¢) N B . By Corollary 5.4.4 we know that

N+~ ?
/ (w — ][ w) <C ( ) / w — ][ w
B (o) B (z0) r! B,/ (z0) B,/ (x0)

for some v > 0. Let g := u — w. Then

2 2 2
VA CE A0 ISy AR CIERS A0 IR AU (o )
Br(z0) Br(z0) Br(z0) B (z0) By (z0) Br(z0)
Nty 2
< 26’( ) / (w —][ w) + 2/ q*
r Br(z0) B,/ (o)
N+’y 2
< C( p (u u) —|—C/ g>.
r /(xo By (o) B,/(x0)

To estimate fB 20) g2 we recall that g € W,*(B, (o)) and vanishes outside B, (z0)N
Bpr, hence by Pomcare s inequality and (5.4.4)

/ P < Wy / Vl? < Oy,
B,(z0) B,/(x0)NBr

Combining the last two inequalities, we get

6(r) < c (Q)Nﬂ 6(r') + ()N,

r

Using Lemma 5.4.7 we obtain

o = ((5)" o)+ 0rv)

7n/

for any r <1’ < 1. In particular,

6(r) < ¢ (Ilullfzgem) +C) r*.

Step 2: estimates at the interior. Assume that zq € Bg, r < 1’ < dist(zo, 0Bg),
so that B,(z9) C B, (z9) C Bg. Then one can proceed in the same way as in the
previous step using Lemma 5.4.1 instead of Corollary 5.4.4. Hence

o(r) < C ( ()" ot + OTNH)

r

for r <1’ < dist(zg,0Bg) and, in particular,

1 N+~
0 (gmam)  Wibon €] 49

Step 3: global estimates. We now combine the previous steps, distinguishing
several cases:
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e dist(xg,0Br) > 1/2. By Step 2
6(r) < C (Iullfaqem) +C) .

o r < p:=dist(zg,0Bgr) < 1/2. Let yo = Rﬁ_& be the radial projection of zy on
OBpg. Then, using Step 2 and Step 1, we have

o(r) < C (E)N o) + orN+v>

o\ N 2
=C (—> / u—][ ul| +CrNt
P By (w0) By (x0)

o\ N 2
<C (—) / <u — ][ u> + OVt
P B2y (yo) B2, (yo)
r N+ 2
<C <—) (2/))N+”/ <u —][ u> +(JrN+V)
P B1(yo) Bi(yo)

< O ([[ullfaqem) + C) PV,

o p = dist(xg,0Bg) < r < 1/2. Again we set yo to be the radial projection of
xo onto OBRr. We use Step 1 and get

2 2
gzﬁ(r):/ <u—][ u) S/ <u—][ u)
By (z0) By (z0) Bar(y0) Bar(y0)
2
<(C TNH/ (u—][ u) + OrNtY
Bi(yo) Bi1(yo)

< O (lullfar) +€) .

In conclusion,

6(r) < C ([[ull ) + C) 77,

which by Campanato criterion implies that u € Cz. Note furthermore that the
dependence on j is realized only by the L? norm of u; which is uniformly bounded

by \/|Bxl. 0

Lipschitz continuity and density estimates on the boundary

We now prove two lemmas similar to those in Section 3 of [AC81]. These are
obtained by adding or removing a small ball from an optimizer of (5.3.4). Since
our competitors are constrained to lie in Bg removing a ball is not a problem. On
the other hand adding might lead to a non admissible competitor. For the case of
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the relative capacity, we use the Holder estimate of the previous section. Indeed it
implies that there exists pg = po(R) > 0 such that

Qj C BR—po- (546)

Lemma 5.4.9. For k < 1 there is a constant ¢ = ¢(N, k, R) such that if u; is a
capacitary potential for a minimizer of (5.3.4) and v; =1 — u; satisfies

][ v; <cr (5.4.7)
OBy (x0)

for some xy € Bg, then v; = 0 in B,.(x). In the case of the relative capacity we
assume T < py where py is as in (5.4.6).

Proof. We drop the subscript j for simplicity. We first check that By, (z¢) C Bg.
By our restriction on r this is clear in the case of the relative capacity. Let us show
that this is the case also for the absolute capacity provided we choose ¢ small enough
(depending only on R and N, k). To prove this we use that v cannot be too small
outside of Br. More precisely, by comparison principle we know that

RN—Q
’U(.I') > UBR(x) =1- |‘I'|N72’
where vp, is the corresponding function for Bg. Suppose that B, (z¢)\Br # 0.
Then the part of 9B, (z0)\Br with the distance at least 15%r from the boundary of
the ball By has measure at least c(k)r™ 1. Then

RN72
][ v>elk)[1- 3 | = ¢V, K, R)r,
OB, (z0) (R+ =)

in contradiction with (5.4.7) if ¢ is small enough depending on , N, R.

Now we turn to the proof of the lemma for both cases. Since z( is fixed we
simply write B, for B,(xy). The idea is to take as a variation a domain, defined
by a function coinciding with v everywhere outside B s, and being zero inside B,
More precisely, define w in B/, as the solution of

Aw = 0in B s\ By,
w=01n B,, )

w =7 on dB s,

where 7 = supg _ v. Note that since v is subharmonic, 7 < ¢(N, k) f v. More-
VKT 8B,.
over, one easily estimates

—| < C(N, m)g on 0B,,. (5.4.8)



Using the second inequality in Lemma 5.4.5 with A = B s, and max(u,1 —w) =
1 — min(v, w) in the place of w, we get

/ |Vv]2dx+g\B\/g,,ﬂ{v >0,w =0} < / |V min(v, w)|*da.
B\/Er B\/Er
Using that |a|* + |b]* > 2a - b, we obtain

/ (|VU|2 + gl{v>0}> dr < / (|V min(v, w)|* — |[Vv|?) dz
KT B\/ET\BK,T

< 2/ ([Vw|]* = Vo - Vw) do = —2/ V max(v — w, 0)Vwdx
(B\/ET\BNT)Q{U>U]} B\/ET\BK,T‘

v

= 2/ U(()—wd”;'—[N*1 < ¢(N, fi)—/ vdHN L
OBr OBgr

14 T

where we have used (5.4.8). We will now bound [, wvdH""" from above by a

constant times the left-hand side. Since g can be made as small as we wish, this

will conclude the proof. In order to do that we use first the trace inequality, then
AM-GM to get

1
/ vdHN " < (N, k) (—/ vdw+/ ]Vv\da:)
aBK,’I‘ ,r. KT KT

v2 q 1
< ¢(N, k) (;5/ gl{v>0}d37 + 5/ (IVU? + 1s0y) dﬂf)

KT

< ¢(N, &, R)/ <]Vv\2 + gl{v>0}>dx.

U
Lemma 5.4.10. There exists M = M(N, R) such that if u; is a minimizer for
(5.3.4) and v; =1 — u; satisfies

][ vjdHN_l > Mr,
9By (x0)

then v; > 0 in B,(xo).

Proof. Let us drop the subscript j as usual. As a comparison domain here we
consider 2\ B,.(z), note that it is a subset of Bg.More precisely, we define w as the
solution of

w=von RN\ B,(x).

We use Lemma 5.4.5 and Remark 5.4.6 with A = B,, 1 — w as w to deduce

/BT(%) V(0 —w)Pde < (% + C’a) [{v =0} N B, (x0)]. (5.4.9)

We now estimate [{v = 0} N B,| by the left-hand side. This can be done by arguing
as in [ACS81, Lemma 3.2]. Here we present a slightly different proof '. First we

{Aw = 01in B, (x0)

'We warmly thank Jonas Hirsch for suggesting this proof.
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change coordinates so that o = 0. Then by the representation formula

r— ||

w(x) > ¢(N) v>c(N)(r—|z|)M. (5.4.10)

r 9B,
If we now apply Hardy inequality,
[ otomsem [ gewis,),
B, (r—lz)? B,
to the function g = v —w and we take into account (5.4.10) and (5.4.9), we get
: w? (w = v
c(N)M?[{v =0} N B,| < /{UZO}HBT o S /B S

<e(V) [ [V w)f <CV. R =0} N B,

which is impossible if M is large enough depending in N, R unless v > 0 almost
everywhere in B,. 0

As in Section 3 of [AC81] these two lemmas imply Lipschitz continuity of min-
imizers and density estimates on the boundary of minimizing domains. Note that
we use here Lemma 5.4.8 as we need to apply the lemmas for the balls of all radii
less or equal to some py, see (5.4.6).

Lemma 5.4.11. Let v; be as above, ; = {v; = 0}. Then Q; is open and there
exist constants C = C(N, R), po = po(N, R) > 0 such that

(i) for every x € By

1
Edist(:z:,Qj) <w; < Cdist(z,Q;);

(ii) v; are equi-Lipschitz;

(iii) for every x € 9, and r < pg

1 _ |90 B () 1
¢ B S(l 0)'

Applying |[AC81, Theorem 4.5] to v; = (1 — u;) we also have the following

Lemma 5.4.12. Let u; be as above, then there exists a Borel function q,; such that
Au; = q,, VL9 Q. (5.4.11)
Moreover, 0 < ¢ < —q,, < C, ¢ =c¢(N,R), C = C(N,R) and HN~1(02,\0*Q;) = 0

Since Q; converge to By in L' by Lemma 5.3.4, the density estimates also give
us the following convergence of boundaries.
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Lemma 5.4.13. Let §; be minimizers of (5.3.4). Then:
(A) For the capacity with respect to the ball Bg

0Q; — OB,

Jj—0o0
in the Kuratowski sense.

(B) For the capacity in RN every limit point of Q; with respect to L' convergence is
the unit ball centered at some xo, € Br. Moreover, the convergence holds also
in the Kuratowski sense.

Corollary 5.4.14. In the setting of Lemma 5.4.13, for every 6 > 0 there exists js
such that for 7 > js

(A) Bi_s CQ; C Bi4s in the case of the relative capacity;

(B) Bi_s(z;) C Q; C Biys(x;) for some x; € By in the case of the capacity in RY .

5.4.2 Higher regularity of the free boundary

In order to address the higher regularity of 0€2;, we need to prove that g, is smooth.
This will be done by using the Euler-Lagrange equations for our minimizing problem.
We defined €2; in such a way that the following minimizing property holds

(A)

[ IVuifde + fi1us = 1) + 2+ oan(u = 1) = <)

(5.4.12)
< [ [ude s 0= 10+ 2 ot =1) -
for any u € W,*(Bg) such that 0 < u < 1.
®)
[ IVusde + fylu; = 13D + /2 + o2(al{u; = 1) =<
(5.4.13)

< [ IVulde + fill{u = 1)+ /3 + o2(altu = 1) =&,

for any u € W12(RY) such that 0 <u <1, {u =1} C Bg.

To write Euler-Lagrange equations for u;, we need to have (5.4.12) or (5.4.13))respectively
for u;jo® where ® is a diffeomorphism of RY close to the identity. Note that to make
sure that {u; o ® = 1} is contained in Bp one needs to know that dist(u;, 0B,) > 0.
This follows from Corollary 5.4.14, up translate {2; in the case of the absolute capac-

ity (note that in this case the problem is invariant by translation). More precisely

we will get the following optimality condition
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|z = Ay;

Ty —
8+ an(y) — <)

2(a(Qy) — ¢ — Tq,
qzj— o (aSy) — <)) <|x—argj|—<][ RS dy)-x):/\j
\/5J2‘+02(0f(9j) — &) 2, |y = o,
for some constant A; > 0. These equations are an immediate consequence of the
following lemma whose proof is almost the same as [BDPV15, Lemma 4.15] (which

in turn is based on [AACS86]). For this reason we only highlight the most relevant
changes, referring the reader to [BDPV15, Lemma 4.15] for more details.

Lemma 5.4.15. There exists jo such that for any 7 > jo and any two points r1 and
X in the reduced boundary of € the following equality holds:

(A)
qij(l,l)_ 02(QR(QJ) _gj)
\/5? + 0*(ar($Y) — ;)

(B)
2 () o2(a(;) — ¢) o — g | — Ry ) .;m)
@, (71) \/8? +0%(a(9)) — &) (’ ! (]{2 y=ro, "

_ 2 o) — 02(a<Qj)_5j) Ty — Tq.| — wd ) '.TQ).
i \/€§+02(a(Qj)—€j)2 <‘ . (J{ZJ |y — zq,] ’

Proof. We argue by contradiction. Assume there exist z1,z, € 0*{u; = 1} such
that

(A)

o*(ar(Y) —¢;)

2 + 02 (ar(Qy) —€5)?

|$2|;

1] = qz]-(l?)—
v

o*(ar(®) —¢;)
\/5§ + 0*(ar($Y) — ;)

o*(ar(Y) — &)
Ve + o2 ar(@) — &)

|z1] < qzj(@)—

) ) — 0'2(a(Qj) —5]’) T — z0.| — md ) -:L‘1>
el \/5]2'4-02(&(9]')—6]')2 <| ! (J‘[)J [y = 2] ’

) ) 02(a<Qj) —€j) Ty — Tq.| — md ) -1‘2) .
< gy, (22) \/Ef o a(Q) — o <| n (]{2] [y — xq,| Yy
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Using this inequalities, we are going to construct a variation contradicting (5.4.12).
We take a smooth radial symmetric function ¢(x) = ¢(|z|) supported in B; and
define the following diffeomorphism for small 7 and p:

z+7pd(| =R u(ar), @ € Bylay),
¥2(a) = { & — 7p0l|=22 ) (ws), 7 € B,(xz),
x, otherwise.

We define the function
uf =wuo (®°)7!
and we define a competitor domain 2? as the domain with u? for capacitary poten-

tial, i.e.
O° = {uf =1}.

Now we are going to show that for 7 and p small enough €3 (Q27) < €5 (02). To
do that, we first compute the variation of all the terms involved in ‘5; .

Volume. By arguing as in [BDPV15, Lemma 4.15] one gets

2] - 0] = 7p¥ ( / o - | ¢<|yr>) o)™ + s (o)
{y-v(z1)=0}NB1 {y-v(xz2)=0}NBy
— o(r)p" + 0r(pY),

where o, (p™)p™ goes to zero as p — 0 and o(7) is independent on p.

Barycenter.(for the case of the capacity in RY). Assume that that zq = 0, as
in [BDPV15, Lemma 4.15] one gets,

r1 —x
rop == T ([ ) + o)+ on ().
2] {y1=0}NB;

Asymmetry. Again by the very same computations as in [BDPV15, Lemma 4.15]
one gets

ar(Q) — ar(Q) = —p"r </ ¢(|y|)) (Jz1] = |z2]) + o(7)p" + 0, (p™).
{y1=0}NB1
In the case of asymmetry a(2) we get an additional term:

@) o) =" ([ o) (1l =kl + (f, o) - 1= 20)

+o(1)p™ + o (p™).

Dirichlet energy. Again one can argue as in [BDPV15, Lemma 4.15] to get

cap, (Q7) —cap, (Q) < 7p" (lg(21)]* — la(z2)]?) / $(|yl)dy+o(r)p" +o.(p").

Bin{y1=0}

Combining the above estimates one gets
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(A)

LR (Qr) - CR(Q
([ oluhay) D
Bin{y1=0} P

o*(ar(®)) — &)

(lea] = fa2l) | + o(7) + 0r(1);
Vet ot an(@) - ¢,)?

=T |CI($1)‘2 - |q(x2)|2 -

(B)

</Blﬁ{y1:0} ¢(|yl)dy> G (%) — ()

= T<|Q(w1)|2 — Jq(x2)[?

(ot (] ) o)

+o(7) + 0o-(1).

According to (5.4.14) and (5.4.15) the quantity in parentheses is strictly negative.
Thus, we get a contradiction with the minimality of Q2 for p and 7 small enough. [

Lemma 5.4.16 (Smoothness of q,). There exist constants 6 = 6(N, R) > 0, jo =
Jo(N, R), 00 = 0o(N, R) > 0 such that for every j > jo, 0 < og the functions qy,
belong to C=(N5(99;)).

Moreover, for every k there exists a constant C' = C(k, N, R) such that

Gu; [lor (g 00,) < C
for every j > 70.

Proof. We would like to write an explicit formula for ¢,; using Euler-Lagrange equa-
tions, namely

(A)

2 ) — e
Qu; = — 7 lonl®h) - &) [z + Ay | (5.4.16)

Ve + o ar(@) — &)’

0 e B (R O B WA TR
" \/532 + 02(a(Q;) — €5)? <| & (J{% [y — zq,] dy) > e
(5.4.17)
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To do that, we need to show that the quantity in the parenthesis is bounded away
from zero. Indeed, ¢, is bounded from above and below independently of j and

(A)

’ ) =) |z|| < C(N, R)o; (5.4.18)
\/5 +02 (ar(£2;) —€;)?

<) —zq.| — Y= T . ”
\/‘9 +‘72 —%)2(‘96 & (J[ |y—xsz|dy> )SC(N’R)'

(5.4.19)

Then it follows from the Euler-Lagrange equations that also A; is bounded from
above and below independently of j. Thus, for ¢ small enough we can write the
above-mentioned explicit formula for g,; and get the conclusion of the lemma. [

(B)

Now we are ready to apply the results of [AC81]. Indeed thanks to Lemma
5.4.15, v; = (1 —u;) is a weak solution of the free boundary problem First, we need
to recall the definition of flatness for the free boundary, see [AC81, Definition 7.1]
(here it is applied to u = (1 —v)).

Definition 5.4.17. Let p_, uy € (0,1]. A weak solution w of (5.4.11) is said to be
of class F'(p—, jiy,00) in B,(z0) in a direction v € SN~ if 2y € 9{u = 1} and

{() 1 for (x—xo)-yg—lu_p,
1—u(@) 2 qu(wo)((z — zo) - v — pyp)  for (x —mo) - v = puyp,

We are going to use that flat free boundaries are smooth (again we apply [ACS81,
Theorem 8.1] to v = (1 — u))

Theorem 5.4.18 (Theorem 8.1 in [AC81]). Let u be a weak solution of (5.4.11))
and assume that q, 1s Lipschitz continuous. There are constants 7, pg, k, C' such that
if u is of class F(u,1,00) in By,(o) in some direction v € SN=1 with p < py and
p < ku?, then there exists a CY7 function f: RN=' — R with || f||cir < Cu such
that

OH{u =1} N B,y(xy) = (zo + graph, f) N B,(xo), (5.4.20)
where graph, f = {x € RN : 2 -v = f(x — 2 - v)v)}. Moreover if g, € C*7 in some
neighborhood of {u; = 1}, then f € C*™7 and || f||cr+10 < C(N, R, ||qullcrn).

We are now ready to prove Theorem 5.2.2, cp. [BDPV15, Proposition 4.4].

Proof of Theorem 5.2.2. We define ; as minimizers of (5.3.4). The desired se-
quence of Selection Principle will be properly rescaled {€2;}. We need to show that
{€Q;} converges smoothly to the ball B;. Indeed one then define

Uj = Ni(§Y — @),
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1/n
where \; = (%) , 7, = 0 in the case of the relative capacity and z, = rq, in the
J

case of the absolute capacity. Lemma 5.3.4 then implies all the desired properties
of U;, compare with [BDPV15, Proof of Proposition 4.4].

Let po, x be as in Theorem 5.4.18 and p < pg to be fixed later. Let T be some
point on the boundary of B;. As 0B is smooth, it lies inside a narrow strip in the
neighborhood of 7. More precisely, there exists pg = po(p) < ku? such that for every
p < po and every T € 0B

0B1 N Bs,(7) C{x: |(x —7) - vz| < pp}.

We know that 0f); are converging to dB; in the sense of Kuratowski. Thus,
there exists a point zy € 0€; N By, (T) such that

99 N Bayo (o) C { : |(2 — 20) - v < 4p1p0}.

So, u; is of class F(u,1,00) in By, (zo) with respect to the direction vz and by
Theorem 5.4.18, 0€2; N B, (x) is the graph of a smooth function with respect to vz.
More precisely, for pu small enough there exists a family of smooth functions g7 with
uniformly bounded C* norms such that

00 N B,y (T) = {x + gj (x)x : © € IB1} N By, ().

By a covering argument this gives a family of smooth functions g; with uniformly
bounded C* norms such that

0Q; ={z+g;(x)r:z € 0B }.

By Ascoli-Arzela and convergence to 0B in the sense of Kuratowski, we get that
g; — 0 in C*1(9By), hence the smooth convergence of 99;. O

5.5 Reduction to bounded sets

To complete the proof of Theorem 1.1.5 one needs to show that in the case of the
full capacity one can just consider sets with uniformly bounded diameter. To this
end let us introduce the following

Definition 5.5.1. Let  be an open set in RY with |Q2] = |B;|. Then we define the
deficit of (2 as the difference between its capacity and the capacity of the unit ball:

D(§2) = cap(§2) — cap(B).
Here is the key lemma for reducing Theorem 1.1.5 to Theorem 5.2.1.

Lemma 5.5.2. There exist constants C = C(N), 0 = 6(N) > 0 and d = d(N) such
that for any Q C RY open with |Q| = |By| and D(Q) < 6, we can find a new set
enjoying the following properties
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1. diam(Q) < d,

2. ’Q’ = |Bil,

3. D(Q) < CD(),

4. AQ) > A(Q) — CD(Q).

We are going to define Q as a suitable dilation of QN Bg for some large S. Hence,
we first show the following estimates on the capacity of {2 N Bs.

Lemma 5.5.3. Let S > S. Then there exists a constant ¢ = c¢(S’) such that for
any open set Q C RN with || = |By| the following inequalities hold:

& 2
cap(By) (1 — %) < cap(2N Bg) < cap(2) — ¢ (1 — g) |2\ BS/|¥.
1

Proof. The first inequality is a direct consequence of the classical isocapacitary in-
equality. To prove the second one we are going to use the estimates for the capacitary
potential of Bg for which the exact formula can be written. Denote by ug and ug
the capacitary potentials of €2 and 2 N Bg respectively. We first compute

cap(£2 N Bg) = cap(f?) +/ Vus|* — |Vugl|?
[RN
= cap(Q) —/ |V(uQ—uS)|2+2/ Vugs - V(us — ug)
(QNBg)e (QNBs)©
—en@ - [ [V —ugP =2 [ (Bus)us o)
(QNBg)© (QNBg)©
+ 2/ (US - UQ)V’US . I/drHNi1
8(2NBs)
—cap(@)~ [ [Vl - us)P
(2NBs)©

since us = uq = 1 on 9(QN Bs). We would like to show that [ 5 . [V (uo —us)[?
cannot be too small. To this end let us set v = 1 — ug and similarly for vg. By
Sobolev’s embedding we get

/ IV (ug — ug)P = / V(v — vs)P
(QNBg)e (QnBs)e©
2

2
2% 2
ZC(N)(/ ’UQ—US|2) ZC(/ |US2> ;
(@NBg)e Q\Bs

where 2% is the Sobolev exponent and in the last inequality we used that vg = 0 on
Q2. Let us also set
SN72
zs=|1— ——
S || V-2
+
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By the maximum principle, vg > zg, hence

/ fugl?* > / 125
O\ Bg Q\Bs

2%

Hence

N-2

cap(£2N Bg) < cap(£2) — ¢(N) (1 — (%) i ) |Q\ Bsy| ™

concluding the proof. O

We can now prove Lemma 5.5.2.

Proof of Lemma 5.5.2. Let us assume without loss of generality that the ball achiev-
ing the asymmetry of Q is B;. As was already mentioned, we are going to show that
there exists an Q of the form A(QN By) for suitable S and \ satisfying all the desired
properties. Let us set

Note that by Theorem 1.1.7 we can assume that b; < 2.A(Q) is as small as we wish
(independently on  up to choose ¢ sufficiently small). Lemma 5.5.3 gives

9—(k+1) N-2 N2
cap(Q)) — ¢ (m) by > cap(B1)(1 —by) & > cap(Bi) — cap(Bi)bs,

which implies
bt < (472 (D(Q) + Cy) V2. (5.5.1)

We now claim that there exists k such that
b < D(9).
Indeed, otherwise by (5.5.1) we would get
bt < C (4N N=2)5 (D(Q) 1 Oy 2 < (ANN-2)F 0T < kY
for all £ € N, where M = M(N). Tterating the last inequality, we obtain

brp1 < M7 R(Mby)F2)" —— 0

k—o00

if b, < min(1, M~?), which by Theorem 1.1.7 we can assume up to choosing § =
I(N) <« 1.
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We define Q as a properly rescaled intersection of Q with a ball. Let & be such
that by < D(Q)

2|-

Q= (%) (N Bg) = (1 — b)) ~(Q2N Bs),

where S := 2 — 2% < 2. Note that |Q| = |By|. We now check all the remaining
properties:

- Bound on the diameter:
diam(Q) < 2-2(1 — D(Q))"~ <4(1—6)"~ < 4.

up to choose § = §(N) < 1.
- Bound on the deficit:

N

cap(Q N Bs)(1 —bg)” & — cap(By)

M)

since by, < D(§2) < 1 and, in particular, cap(2) < 2cap(B).

- Bound on the asymmetry: Let r == (1—b;)~" € (1,2), that is r is such that Q =
rV(QN Bg) with S =2—27% < 2. Let 20 be such that B;(zo) is a minimizing
ball for A(€2). Then, recalling that by = |B;|7'|Q\ Bs| < C(N)D(9Q),

BIAQ) < [QAB (22) | <12\ Bs| + (@2 Bs)AB: (22|

< OD(Q) + ‘QHBS JAB: (7)‘

Hlm ()2 ()
<op) + Bla@ <>+|Bl|<1—riN)

)+
< OD(Q) + [BiA(Q) + C(N)by
< CD(Q) + |Bi]AQ).

5.6 Proof of Theorem 1.1.5

In order to reduce it to Theorem 5.2.1, we need to start with a set which is already
close to a ball. In the case of the absolute capacity, thanks to Theorem 1.1.7, this
can be achieved by assuming the deficit sufficiently small (the quantitative inequality
being trivial in the other regime). The next lemma contains the same “qualitative”
result in the case of the relative capacity.
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Lemma 5.6.1. For all € > 0 there exists 6 = (g, R) > 0 such that if Q C Bg is an
open set with |Q] =1 and

capp(Q2) < capg(By) + 90

then
OéR(Q) S g.

Proof. We argue by contradiction. Suppose there exists an ¢y > 0 and a sequence
of open sets Q; C Br with [Q;| = |B;| such that ar(£2;) > ¢ but

capr(B1) < capp(Q);) < capr(B1) + 1/7.

We denote by u; € I/VO1 ’Q(BR) the capacitary potential of €2;. The above inequality
grants that

/ |Vu;|*dz — capg(By).
Br

Thus, up to a not-relabelled subsequence, there exists a function u in WOM(BR) such
that u; — wu in Wy *(Bg), u; — u in L?*(Bg) and almost everywhere in Bg. We
define 2 as {u = 1}. From the lower semi-continuity of Dirichlet integral we have
that

capp(@) < |

Bgr

|Vul?dz < liminf/ |Vu;|*dz = capg(By).
Br

On the other hand, we have 1o > limsup lg,, meaning that [Q; \ Q] — 0 and

2] > || = |Bi]. The isocapacitary inequality then implies that Q = B;. In

particular, |2;| = || for all j and

2\ Q] = 192;\ Q2] =0,

and thus 1o, — 1g = 1p, in L'(Bg). Hence by Lemma 5.1.2, (i), az(€;) = 0, a
contradiction. O]

We have now all the ingredients to prove Theorem 1.1.5.

Proof of Theorem 1.1.5. We will consider separately the cases of the absolute and
relative capacity.

Absolute capacity. First note that if D(€) > dy then, since A(2) > 2,

D(Q) > 4@ > @A(Q)Q.
4 4
Hence we can assume that D(Q)) is as small as we wish as long as the smallness
depends only on N. We now ¢y smaller than the constant ¢ in Lemma 5.5.2 and,
assuming that D(Q) < &y, we use Lemma 5.5.2 to find a set Q with diam(Q) < d =
d(N) and satisfying all the properties there. In particular, up to a translation we
can assume that Q C By. Up to choosing 8y smaller we can apply Theorem 1.1.7
and Lemma 5.1.2 (ii) to ensure that a(Q) < gy where gy = £o(N, d) = £¢(N) is the
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constant appearing in the statement of Theorem 5.2.1. This, together with Lemma
5.1.2, (i), grants that

D(Q) > ¢(N)a(Q) > ¢(N)AQ)?.

Hence, by Lemma 5.5.2 and assuming that A(Q2) > C'D(Q) (since otherwise there
is nothing to prove),

D(Q) > ¢eD(Q) > cA(Q)? > cA(Q)? > cA(Q)? — CD(Q)?

from which the conclusion easily follows since D(Q2) < 0y < 1.

Relative capacity. Since ar(2) < C(R, N) by arguing as in the previous case, we
can assume that capp(Q2) — capgp(B;) < 6;(N,R) < 1. By Lemma 5.6.1 we can
assume that ar(Q2) < gy where g9 = £¢(V, R) is the constant in Theorem 5.2.1.
Hence

capr(Q) — capr(B1) > ¢(N, R)ar() > c¢(N, R)|QAB; .
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Chapter 6

Quantitative isocapacitary
inequality: case of the general p

The first steps in the proof of quantitative isocapacitary inequality in the case of
general p repeat those for the case p = 2. We go through them briefly indicating
the differences.

6.1 Stability for bounded sets with small asymme-
try

Our aim is to prove the following theorem, and then reduce to the general case. Note
that also here instead of Fraenkel asymmetry we are using another notion defined
in Section 5.1.

Theorem 6.1.1. There ezist constants ¢ = ¢(N,p, R), 9 = eo(N,p, R) such that
for any open set Q C Br with |Q| = |B;| and «(Q2) < gy the following inequality
holds:

cap,(§2) — cap,(B1) > ca(Q).

To prove Theorem 6.1.1 we are going to argue by contradiction. Suppose that
the theorem doesn’t hold. Then there exists a sequence of open sets €}; C Bg such
that

cap,(§}) —cap,(B1) _

1 =1Bil, o) =¢; =0, - <o (6.1.1)
J

for some small o to be chosen later. We then perturb the sequence Qj so that it
converges to B in a smooth way. More precisely, we are going to show the following.

Theorem 6.1.2 (Selection Principle). There exists ¢ = (N, p, R) such that if one
has a contradicting sequence §); as the one described above in (6.1.1) with o < &,
then there exists a sequence of smooth open sets U; such that

(1) |U;] = |Bil,
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(ii) OU; — OBy in C* for every k,

(iii) limsup; ., Cap”(U‘;)(;;_?p”(Bl) < Co for some C = C(N,p, R) constant,
J

(iv) the barycenter of every Q; is in the origin.

6.2 Proof of Theorem 6.1.2: Existence and first prop-
erties

6.2.1 Getting rid of the volume constraint

The first step consists in getting rid of the volume constraint in the isocapacitary
inequality. We again use the following function

fn(S) = {_%(S_WN)’ sSwn

—n(s —wn), 5> wy
and consider the new functional
%W(Q) = Capp(Q) + fn(|Q|)

Remember that f, satisfies

n(t—s) < fu(s) = f(t) < (t;S) for all 0 < s <t.

Analogously to Lemma 5.3.2, we have the following.

Lemma 6.2.1. There exists an 11 = 7(N,p, R) > 0 such that the only minimizer of
5 in the class of sets contained in Bg s a translate of the unit unit ball B, .
Moreover, there exists c = ¢(N,p, R) > 0 such that for any ball B, with 0 <r <

R, one has
cgﬁ(Br) - cgﬁ(Bl) 2 C|7’ - 1|

Proof. The proof is similar to the proofs of Lemma 5.3.1 and Lemma 5.3.2. The
computation can be repeated almost verbatim, the only difference being scaling of
capacity:

cap,(By) = 1" cap(B,).

6.2.2 A penalized minimum problem

The sequence in Theorem 6.1.2 is obtained by solving the following minimum prob-

lem.
min {6} () : Q C Br}, (6.2.1)
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where
G = G2+ [+ 02(a(Q) — )2 = cap, (£ +/2 + 02(a(Q) — )2

As in the case p = 2, we construct a minimizing sequence with equibounded
perimeter. Recall also that a set is said to be p-quasi-open if it is the zero level set
of a WP function.

Lemma 6.2.2. There ezists 0y = oo(N,p, R) > 0 such that for every o < og the
minimum in (6.2.1) is attained by a p-quasi-open set ;. Moreover, perimeters of
}; are bounded independently on j.

Proof. The proof is identical to the proof of Lemma 5.3.3 in case of absolute capacity
up to changing 2 to p. O

6.2.3 First properties of the minimizers
We finish the section by stating some properties of minimizers.
Lemma 6.2.3. Let {Q;} be a sequence of minimizers for (6.2.1). Then the following
properties hold:
(1) [a(Q)) = &5] < 3oey;
(i) [1] = [Bil] < Co'ey;
(iii) up to translations Q; — By in L',
(iv) 0 < 6(Q) — €x(B1) < o'e;.
Proof. The lemma follows easily from Lemma 6.2.1. To prove (iii) we need to recall

that the sets (2; have bounded perimeter. For more details see the proof of Lemma
5.3.4. ]

6.3 Proof of Theorem 6.1.2: Regularity

In this section, we show that the sequence of minimizers of (6.2.1) converges smoothly
to the unit ball. This will be done by relying on the regularity theory for free bound-
ary problems established in [DP05].

6.3.1 Linear growth away from the free boundary

Let u; be the capacitary potential for ;, a minimizer of (6.2.1). Let us also intro-
duce v; := 1 — uy, so that Q; = {v; = 0}. Following |DP05| we are going to show
that

vj(x) ~ dist(x, Q;).
where the implicit constant depends only on R. The above estimate is obtained by
suitable comparison estimates. We will need to have some compactness properties,
so we first prove Holder continuity, also with the constant depending only on R.
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Hoélder continuity

The proof is based on establishing a decay estimate for the integral oscillation of u;
and it is almost identical to the case of 2-capacity.

We are going to use the following growth result for p-harmonic functions. The
proof can be found, for example, in [Giu03, Theorem 7.7].

Lemma 6.3.1. Suppose w € WH2(Q) is p-harmonic, xo € Q. Then there exists a
constant ¢ = ¢(N,p), 5 > 0 such that for any balls B,,(x¢) C By,(zo) € 2

B_
f o ovurse (ﬁ> ][ V.
B'rl (xo) T2 BT2 (IO)

Remark 6.3.2. In [Giu03]| the result is proven for the functions in De Giorgi class.
One can prove that in the case of p-harmonic functions the inequality holds for
£ =1, but we are not going to need that.

To prove Hoélder continuity of u; we will use several times the following compar-
ison estimates.

Lemma 6.3.3. Let u; be the capacitary potential of a minimizer for (6.2.1). Let
A C By be an open set with Lipschitz boundary and let w € WYP(RYN) coincide with

u; on the boundary of A in the sense of traces.
Then

1
/ |V, |[Pdx —/ |Vw|Pdr < (7 + CO’) AN ({u=1}A{w=1})]|.
A A n
Moreover, if u; <w <1 in A, then
/ |Vu,[Pdx + g|Aﬂ fu=1A{w=1})| < / \Vw|Pdz,
A A

provided o < o(R).

Proof. The proof is the same as the proof of Lemma 5.4.5, modulo changing expo-
nents from 2 to p. The idea is to consider @ defined as

U =w in A
u=u else
and take Q = {& = 1} as a comparison domain. O

Remark 6.3.4. Note that if w is p-harmonic in A, then by Lemma B.0.2
e if p > 2, we have

/|Vu|pdx—/|Vw]pd1:2c/]V(u—w)]pdx;
A A A
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o if 1 <p<2 then

p—2
/ |\VulPdz — / |\Vw|Pdz > c/ IV(u—w)]? ([Vw|* + [V(u—w)|]?) * du.
Hence the first inequality from the lemma becomes
o for p > 2
1
/ |V (u—w)Pdz < C(p) (5 + C’a) AN({u=1}A{w=1})]; (6.3.1)
A
o for 1 <p<?2
/ V(u—w)* (|Vw|* + |V (u— )|2)p%dm
(6.3.2)

< C(p) (5 + CO‘) AN ({u=1}A{w=1})].

Lemma 6.3.5. There exists a € (0,1/2) such that every minimizer of (6.2.1) satis-
fiesu; € C%(Bg). Moreover, the Holder norm is bounded by a constant independent
on j.

Proof. The proof is similar to the proof of Lemma 5.4.8. As usual, we drop the
subscript j. By Campanato’s criterion it is enough to show that

Lot
Br(z0) Br(z0)

for all  small enough (say less that 1/2). We are going to show instead that

p
S CTN+20£

P(r) = / |Vulp < OrNt2e-p
Br(mo)

which yields the previous inequality by Poincaré.
Let zo € Bgr. Let w be the p-harmonic extension of u in B,.(z). By Lemma 6.3.1

we know that Netns
T po—p
/ Vwl < C (T—) / IVwl?.
By (o) B,/(x0)

Let g := u — w. Then

/ VulPdz < c/ |Vw\pdx+0/ Vgl
BT(:EO) Br(xo) Br(mo)

N+pB—p
<C (1) / VwlPdz + 0/ Vgl
r B,/ (z0) B,/ (z0)

We want to show the following bound:
/ Vg|” < C.(r)Y + Ce/ V|’ (6.3.3)
B (370) B (.’170)
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for e < g9 = go(N,p). By (6.3.1) it is immediate for p > 2 (even without the second
summand on the right hand side). For 1 < p < 2 we use Young inequality to get

Lowerscn [ el (el 9e) e [ (9l 9l
B/J?() /.Z‘() 1\ T0

gCg(r’)NnLCa/ (Vwl’ + [Vgl?),
/(xo0)

yielding (6.3.3) for € small enough. Note that in the last inequality we used (6.3.2).
So we have

N+pB—
/ VulPdr < C (( ) o +e) / Vw|Pdz + C.(r')N
By (x0) rf B,/(z0)
N+pB—
<C << ) " p+6) / \VulPdx + C.(r')Y
T’ B,/ (x0)
N+pB—
+C ((4) " p—{—f—:) / |Vg|'dx

r B,(x0)

N+pB—
<C (f) T e / \Vu|Pdz + C.(r')N
r B,/ (@0)

which gives us

o(r) < ((3)%” + e) o) + Culr").

,r./

Using Lemma A.0.2 we obtain

ot <c((5)"" o+ o)

T/

for any r <7’ < 1. In particular,

6(r) < ¢ (J[ull gy + C) V47577,

Lipschitz continuity and density estimates on the boundary

The following lemma is an analogue of [DP05, Lemma 3.2| and it will give us uniform
Lipschitz continuity.

Lemma 6.3.6. There exists M = M(N,p, R) such that if u; is a minimizer for
(6.2.1) and v; = 1 — u; satisfies vj(xy) = 0, then

sup v; < Mr.

By 4(z0)
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Proof. Step 1. We argue by contradiction and get a sequence v;,, By, (yx) C Bgr
such that vj, (y) = 0, SUPE, (k) Ui > krp. We now consider blow-ups around yy,
that is, we define
v; %
O (z) = M
Tk

Note that v, minimizes

[ 19elde i o o = 01+ 25+ el @ule = 0b) — 2,

among functions such that ®,({v = 0}) C Bg, where ®;(z) = yx+rrz. Additionally,
we have
0r(0) = 0, sup vy > k.
By

We define a function
di(x) := dist (z,{vx, = 0})

and a set

Vi == {xGB:dk(x)g 1—3|x|}‘
The following properties hold for Vj:
® By/s C Vi. This is due to the fact that 0,(0) = 0 and thus di(z) < |z|.
o my, :=sup,ey, (1 — |z|)0k(x) > 2. This follows from the previous property.
Since ¥y is continuous and (1 — |z|)0k(xz) = 0 on OB, my, is obtained at some point
xr € Vi. We notice that the following holds for x:

_ > > —: 0p:=d < )
1_|$k|_mk_ 1 O k() < 3

We now take projections of z; onto {9, = 0}, that is, we consider a sequence z
such that z, € {0, = 0} N B, |zx — xx| = 0. Note that Bys (zx) C B. Moreover,
Bs, /2(2) C Vj since for any x € Bs, j2(2) we have

1— ’fﬂk’

3
1—|x|21—|xk|—|xk—x|21—|xk|—§5k2 5

Now let us show that supg, P O ~ Ug(xg). Indeed, for the upper bound it is enough
k
to notice that

sup U < Up(zr)(1 — |zg|) sup
Bs, /2(2k) Bs,, y2(2k)

On the other hand, since Bs, (zx) C {0 > 0}, ¥ is p-harmonic in By, (z) and thus,
by Harnack inequality (see, for example, |Lin06, Theorem 2.20]), we get

- . ~ ~ Co .~
sup U, > inf 0, >c¢g sup U —C > —ka(ack),
Bs, ja(zk) Busy,5(wr) Bus, /5(xk) 2
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where the last inequality holds for k£ big enough.
Step 2. We now consider blow-ups around z,. We define

Up(x) = ————=—
Uk(l’k)

We note that
sup v < 2, supvg > co/2, U(0)=0
B

By /2

and 7 is a minimizer of
/[RN [VolPdx + (8/2)"" Ox(x) Pry" fa((0/2) i {v = 0})+

(6.3.4)
(01/2)" " Trlwn) 1" Je3, + o2 (a(Wn({v = 0})) — 5,)?

among functions such that U, ({v = 0}) C Bg, where Vy(z) = yp + rp2x + ’"’“‘ST’“’”.
We introduce wy, - a p-harmonic continuation of 9, in Bsy:

{div(\wk\p_QVwk) = 0in By,

W = ’&k in B§/4

By maximum principle (see, for example, [Lin06, Corollary 2.21]|) wy > 0 in Bs,
and thus

So now, remembering that 0y is a minimizer for (6.3.4) and using wy as a comparison
function we obtain

B3y B3y kP

From this we can infer the convergence of vy — wy to zero. In order to do that, we
define
v = 0 + (1 — s)w.

Now, we write

"1
¢ > / \VOR|P doe — / |Vwg|P de = p/ - ds/ |Vui[P2Vus - V(v — wy) do
k» By Bsa 0o S Bss

|
—p [ s [ (Ve Ve V) - V(g - ) d,
0 B34

We want to show that the convergence of v, — wy is strong. We use Lemma B.0.1
for that. We need to consider two cases. For p > 2 by the inequality (B.0.1) we get

/ |V, — Vwgl? de < g,
B34 kp
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yielding the strong convergence of oy — wy to zero in WP(Bs4) as k — oo. To deal
with the case 1 < p < 2, we observe that ¢, is bounded in D'?(Bj,,). We infer
that wy, is bounded in D'? too and hence, by the inequality (B.0.2) we also have
the strong convergence of 9 — wy, to zero in W*(Bsy) as k — oco.

We recall now that ¢ is equibounded in C%*(Bj/4) and hence, up to a non-
relabelled subsequence we have that v, converges to some continuous function v,
locally uniformly and weakly in W'?. This means that also wj converges to va
weakly in WP, Elliptic regularity for wy, tell us that wj, is locally bounded in
C'?(Bs/4) and so up to a subsequence wy, converges to vs strongly in W'?. But
then v, > 0 is p-harmonic with v, (0) = 0, SUpp, ,, Voo = ¢o/2. This contradicts the
maximum principle. U

The following lemma is an analogue of [DP05, Lemma 4.2 and the proof is almost
identical.

Lemma 6.3.7 (non-degeneracy). For k < 1, v > p — 1 there exists a constant
Crna = Cnd(N,K,7, R) such that if u; is a minimizer for (6.2.1) and v; = 1 — u;

satisfies
1
<][ U?) T < cr, (6.3.5)
OBr(x0)

Proof. We will omit the subscript j for convenience and write v instead of v;. None
of the bounds will depend on j.

First, we want to show that if ¢ is small enough (depending only on N, k.7, and
R), then the inequality(6.3.5) yields B, C Bg. The idea is that v is sufficiently big
outside of Bg. Indeed, by maximum principle

then v; =0 in By, (xo).

=y
v(z) >1—ug,(z)=1- RN_p.
1

(6.3.6)

| 7=
If B.r(x0) \ Br # 0, then |B,(xg) \ BR+1-TKT| > ¢(k)|B,| and, using (6.3.6), we get

N—p

1
¥ p—1
< ][ U;) > o(k) (1 R N_p) > ¢(k, N, R)r,
1—Kk .| =—
8B (z0) |R+ Str|e

contradicting (6.3.5) for ¢,4 small enough.
Now we define

1 1 ¥
g:=——supv < C- ][ v’ < Cepg,
\/Er B\/;,,. r 8BT(I0)

where we used Harnack inequality for p-subharmonic functions (see [Tru67, Theorem
1.3]). We set ¢(x) = ¢(]z]) to be the solution of

Apyp =0 in B s, \ By,
=20 on 0B,,,
=1 on 0B /.,
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defined as 0 in B,,. Now we define
v = ev/kre.
Note that v' > v on OB . Finally, we define
w :=min(v,v") in Bz, w:i=vin By,

and we use w as a comparison function in (6.2.1). We notice that {w = 0} D {v = 0}
and so from minimality of v we conclude

[ v D=0 w=oy< [

B e,
Now we use the definition of w, positivity of v" in B/, \ Bx,, and convexity of t — ¢?
to get

|\Vw|P de = / |[Vw|P dx.
VET B\/Er,- BKZT

/ |Vv|de+Q|Bwﬂ{v>0}| S/ (IVw|? — |Vul?) dx
BFL’V‘ 2 B\/ET\BNT

< p/ Vw|P~2Vw - V(w —v) dr = p/ |V [P 20V - b
B\/ET\BRT aBnr

From the definition of v' we have

evhr < Ce.

/<C—
Vvl < K1 — /KT

So we have .
Vo de+ 2 |By 0 {0 > 0}] < C’e”_l/ .

BKT aBK’V‘
On the other hand, by trace inequality and Young inequality, and remembering the

definition of ¢, we can get

1
/ USC(—/ vd:p+/ |Vv|dx)
OBgr r KT KT

1 —1
<c (ﬁewm A {o >0} *5/ VoPd+ 2B, 0 {0 > 0}|)

<C(l+¢) (/ |VoulPdx + | B N {v > O}|) :

Bringing it all together, we get

/ |Vol? dx+g |Ber N {v > 0} < CeP(1+4¢) (/ |VoulPdx + | B N {v > O}]) :
KT BK/’"
It remains to choose ¢ from the statement of the lemma small enough for CeP~(1+¢)
to be smaller that min{3, 7}
O
As in Section 4 of [DP05] these two lemmas imply Lipschitz continuity of mini-

mizers and density estimates on the boundary of minimizing domains.
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Lemma 6.3.8. Let v; be as above, Q; = {v; = 0}. Then §; is open and there exist
constants C = C(N,p, R), po = po(N,p, R) > 0 such that

(i) for every x € By
1
- dist(z, ;) <wv; < Cdist(x, Q;);

(i) v; are equi-Lipschitz;
(iii) for every x € 0SY; and r < pg

1 _nB@) _ [, 1
C = IB) S(l c)'

Applying [DP05, Theorem 5.1] to v; (for more details on the proof see [ACS8I,
Theorem 4.5]) we also have the following

Lemma 6.3.9. Lel v; be as above, then there exisls a Borel function q,; such that
div(|Vu;[P*Vu;) = g, K L 9" Q. (6.3.7)

Moreover, 0 < ¢ < —q,, < C, ¢ = ¢(N,p,R), C = C(N,p, R) and HN~1(9Q,;\0*Q;) =
0.

Since €, converge to By in L' by Lemma 6.2.3, the density estimates also give
us the following convergence of boundaries.

Lemma 6.3.10. Let Q; be minimizers of (6.2.1). Then every limit point of Q; with
respect to L' convergence is the unit ball centered at some xo € Br. Moreover, the
convergence holds also in the Kuratowski sense.

Corollary 6.3.11. In the setting of Lemma 6.5.10, for every d > 0 there exists js
such that for j > js
Bi_s(z;) € C Biys(a;)

for some x; € Bp.

6.3.2 Higher regularity of the free boundary

In order to address the higher regularity of 9€2;, we need to prove that ¢,, is smooth.
This will be done by using the Euler-Lagrange equations for our minimizing problem.
We defined €2; in such a way that the following minimizing property holds

[ 19eda + £y = 0} + /2 + o2(al{n; = 0p) =)

(6.3.8)
< [ IVolde + fy(1{o = 03 + /5 + o2(al{o =0 — <)

for any v € W12(RY) such that 0 <v < 1, {v =0} C Bgp.

102



To write Euler-Lagrange equations for v;, we need to have (6.3.8) for v; o ®
where ® is a diffeomorphism of RY close to the identity. Note that to make sure
that {v;0® = 0} is contained in Bp one needs to know that dist({v; = 0}, 0Bg) > 0.
This follows from Corollary 6.3.11, up to translating §2;. More precisely we will get
the following optimality condition

(o) — €5) y— T
—1)g? — T —Tq,| — Ty || = A
(p )QUJ \/53 + 02(a(Q) — ¢;)? <‘ 1 (]{zj ly — zq,] y) )

for some constant A; > 0. As in the case p = 2, these equations are an immediate
consequence of the following lemma which is analogous to Lemma 5.4.15.

Lemma 6.3.12. There exists jo such that for any 7 > jo and any two points r1 and
xo in the reduced boundary of € the following equality holds:

o* (o)) — &) A
—1)¢? (x1) — T1 — ZTa,;| — o W T
(p = 1)qp, (x1) \/52 T o) — o (I o (]é ly — @0, ] y) )

o (a(€y) — &) y — o
=(p—1)¢ (x3) — Ty — To,| — —dy | -xo | .
e \/5? + o (a(€Y) — &) (l | (]{% [y =z, y) >

Proof. The proof repeats the proof of Lemma 5.4.15. The only computation which
is different is the perturbation of p-capacity. One can argue as in the proof of [FZ16,
Lemma 3.19] to get

cap,(Q7) — cap,(2) < 7p™ (p — 1) (la(21)[” — |q(22)[") /B - ¢(lyl)dy
+o(T)p™ + o (p"),

where )2 is defined as in the proof of Lemma 5.4.15. O

Lemma 6.3.13 (Smoothness of q,). There exist constants 6 = 6(N,p,R) > 0,
Jjo = Jjo(N,p,R), 0o = 0o(N,p,R) > 0 such that for every j > jo, 0 < oq the
Junctions q,; belong to C*°(N5(09;)).

Moreover, for every k there exists a constant C' = C(k, N, p, R) such that

90, | cx v 00,)) < C

for every 7 > jo.

Proof. The proof is identical to the proof of Lemma 5.4.16 since we have a similar
Euler-Lagrange equation for q. O
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Now we want to apply the results of [DP05]. We can’t apply them directly, since
the equation there is slightly different. More precisely, in [DP05] the authors are
considering solutions of the equation

div (|Vu["~*Vu) = HV 'L 0{u > 0},
whereas v; satisfies
div (|Vu;[P>Vv;) = ¢, HY "L 9{v; > 0}.

However, since g¢,, is smooth, the proof works in exactly the same way (see also
Appendix of |[FZ16| for the same result for a slightly different equation, the proof
becomes more involved in that case). The idea is that flatness improves in smaller
balls if the free boundary is sufficiently flat in some ball.

First, we need to recall the definition of flatness for the free boundary, see |[ACS81,
Definition 7.1] (here it is applied to v).

Definition 6.3.14. Let u_, puy € (0,1]. A weak solution u of (6.3.7) is said to be
of class F'(u_, jiy,00) in B,(z0) in a direction v € SN~1 if 2y € 9{v = 0} and

v(z) =0 for (x —xg) - v < —p_p,
0(®) > qu(w0)((z — w0) - v — jiep)  for (- 20) v > prip.
We are going to use that flat free boundaries are smooth. The following theorem

is a slight generalization of [DP05, Theorem 9.1] and we omit the proof since it is
almost identical.

Theorem 6.3.15. Let u be a weak solution of (6.3.7) and assume that q, is Lipschitz
continuous. There are constants 7, jio, k, C' such that if v is of class F(u,1,00) in
By,(x0) in some direction v € SNV with 1 < po and p < ku?, then there exists a
CY function f: RN=Y — R with ||f]|c1» < Cu such that

0{v =0} N B,(x) = (x¢ + graph,, f) N B,(xo), (6.3.9)
where graph, f ={z € RN 1z -v = f(x —x-v)v)}.
Moreover if g, € C* in some neighborhood of {u; = 1}, then f € C*™7 and
[fllerrs < C(N, R, [|qullora)-

Proof of Theorem 6.1.2. The proof goes exactly as the proof of Theorem 5.2.2 using
Lemma 6.2.3 and Theorem 6.3.15. 0

6.4 Reduction to bounded sets

To complete the proof of Theorem 1.1.8 one needs to show that one can consider only
sets with uniformly bounded diameter. To this end let us introduce the following.
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Definition 6.4.1. Let Q be an open set in RY with || = |B;|. Then we define the
deficit of 2 as the difference between its p-capacity and the p-capacity of the unit
ball:

D(Q) = cap, () — cap, (By).
Here is the key lemma for reducing Theorem 1.1.8 to Theorem 6.1.1.

Lemma 6.4.2. There ezist constants C = C(N,p), = §(N,p) > 0 and d = d(N,p)
such that for any Q C RN open with |Q| = |By| and D(Q) < 4, we can find a new
set Q enjoying the following properties

1. diam(Q) < d,

2. 10 = |B],

3. D(Q) < CD(Q),

4. AQ) > AQ) — CD(Q).

We are going to define 2 as a suitable dilation of QN By for some large S. Hence,
we first show the following estimates on the p-capacity of 2 N Bg.

Lemma 6.4.3. Let S' > S. Then there exists a constant ¢ = ¢(S’, N,p) such that
for any open set Q@ C RN with |Q| = | By the following inequalities hold:

N—p

|Q\B5| S N-—p

N p
cap,(B1) (1 BTN ) < cap, (2N Bs) < cap(Q2) —¢ (1 — @) |2\ Bg/| ¥ .

Proof. The first inequality is a direct consequence of the classical isocapacitary in-
equality. To prove the second one we are going to use the estimates for the capacitary
potential of Bg for which the exact formula can be written. Denote by ug and ug
the capacitary potentials of €2 and 2 N Bg respectively. We first write

cap,(2NBs) = capp(Q)—l—/ |Vug|P — |[Vugl? = Capp(Q)—/ (|IVuql? — |Vus|?).
RN (2NBg)e

Let us show that

| 9wl = VusP zet) [ (sl
(QQBS)C Q\BS

To that end we need to consider two cases. For both we will be using an inequality
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of Lemma B.0.2. For p > 2 we have

/ Vugl? — [Vusl? > c(p) / V(0 — ug)|?
(QNBg)e (@NBs)©

—i—p/ |VUs‘p72VUS . V(UQ — uS)
(2NBg)©
= c(p)/ |V (ug — ug)|? — p/ div(]Vug\p_2VuS)(uQ — ug)

(QNBg)° (QNBg)°

+p/ (uq — ug)Vug - vdHY !
a(QﬁBs)

—cp) [ V)P ze) [ [Vun - u)l

(@nBg)©

O\Bs
— o(p) / Vaug]?
O\Bg

As for the case 1 < p < 2, we have

/ |Vugl? — |Vug|P > c(p)/ (|VuQ|2 + |Vus|2)
(@nBg)©

(2NBg)©

p—2
*

V(ug — us)|?
+p/ ‘VUSVFQVUS . V(UQ — us)
(NBs)©
_ c(p)/ (IVugl? + |VusP) = [V (ug — us)?
(Q2NBs)©

p—2
2

> C(p)/ (IVual? + [VusP) = [V (ug — us)?
O\ Bs

— o(p) / Vs,
Q\Bs

where in the last equality we used that ug = 1 in 2. We would like to show that
Jo s | Vus|? cannot be too small. To this end let us set vs =1 — ug. By Sobolev’s
embedding we get

P

[owuse= [ \ws|pzc<zv>(/ rvsp*)p,
Q\BS Q\BS Q\BS

where p* is the Sobolev exponent. Let us denote by zg the capacitary potential of

BSZ N
St
zZg = 1-— N_p .
|x| Pt +

By the maximum principle, vg > zg, hence

/ ol > / 125
O\Bg O\Bg
Z/ |zs
Q\Bg/

p*

N—p\ P
p* Z (1 — (%) . ) |Q\BS/’




Hence

p— 1

cap, (2N Bg) < cap,(2) — c¢(N) < ) |2\ Bg| s

< can, @~ (1- 5 ) 10\ Bl ¥,
concluding the proof. 0

We can now prove Lemma 6.4.2.

Proof of Lemma 6.4.2. The proof is almost identical to the proof of Lemma 5.5.2,
using Lemma 6.4.3 in the place of Lemma 5.5.3. U

6.5 Proof of Theorem 1.1.8

In order to reduce it to Theorem 6.1.1, we need to start with a set which is already

close to a ball. Thanks to Theorem 1.1.7, this can be achieved by assuming the deficit

sufficiently small (the quantitative inequality being trivial in the other regime).
We have now all the ingredients to prove Theorem 1.1.8.

Proof of Theorem 1.1.8. The proof is identical to the proof of Theorem 1.1.9 using
Lemma 6.4.2 and Theorem 6.1.1 in place of Lemma 5.5.2 and Theorem 5.2.1. 0
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Chapter 7
Liquid drops

In this chapter we apply Selection Principle to prove Theorem 1.1.9.

7.1 Preliminary results

In this section we collect some results obtained in [DPHV19| which will be useful in
the proof of regularity.

Convention 7.1.1 (Universal constants). Let A > 0 be a positive constant. We
say that

e the parameters 5, K, Q) with § > 1 are controlled by A if

1
K+ — < A;
B+ +K+Q_ ;

e a constant is universal if it depends only on the dimension N and on A.

Note that in particular universal constants do not depend on the size of the
container where the minimization problem is set.

In the following theorem we collect some properties of minimizers. For the proofs
we refer the reader to [DPHV19].

Theorem 7.1.2. Let E C RN be a set of finite measure. Then

(i) there exists a unique pair (up, pg) € A(E) minimizing Gg x(E). Moreover,
ug + Kpp = Gsx(E) in I,

and
0<up <Gsr(FE), 0< Kpp <Gsr(E)lg.

In particular, pp € LP for all p € [1, 00| with
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(ii) (Euler-Lagrange equation) If E is a minimizer of (Psx.o.r), then
/ divgndHY ! + Q? / aE<|VuE|2divn — 2Vug - VnVug) dx
O°E RN
—Q? K/ prdivy dz = 0
RN

for all n € CX(Bg; RY) with [, divndx = 0.
(iii) (Compactness) Let K, Qn € R, 5, > 1 and R, > 1 be such that

Kh_>K>0a ﬁh_>B217 Rh%Rzla Qh_)ona

when h — oco. For every h € N let Ej, be a minimizer of (Ps, k,.0u.Ry)-

Then, up to a non relabelled subsequence, there exists a set of finite perimeter
E such that
h—o00

Moreover, E is a minimizer of (Psx.o.r) and
f@]g@(E) = lim fﬂh,KmQh (Eh), lim P(Eh) = P(E)
h—o00 h—o0

Let A > 0. For the following properties we require that 5, K and @) are controlled

by A.

(iv) (Boundedness of the normalized Dirichlet) There exists a universal constant
C. > 0 such that, if E is a minimizer of (Psx.o.r), then for all x € Bp,

2
Q*Dp(z,r) = 16;7271 / Vul? dz < C..
r Br(z)

(v) (Density estimates) There exist universal constants Cy, Cy > 0 and 7 > 0 such
that, if E is a minimizer of (Psx.q.r), then'

1
SV < P(EB,(n) < Cor™ Jor allx € OF and 1 € (0.7),

i
and

1 _ |B,(z)NE]| F
— <=2 —<(C, forallz € E andr e (0,7).
i | B, ()|

(vi) (Excess improvement) There exists a universal constant Cae. > 0 such that for
all X € (0,1/4) there exists gec = Edec(IN, A, N) > 0 satisfying the following: if
E is a minimizer of (Psr.o.r) and

v €0FE, r+Q*Dp(x,r) +ep(x,7) < Edec,

!Here and in the sequel we will always work with the representative of E such that

[ 1B@\E |B@nE
aE‘{‘ @ |B@)

>0 forall r > 0},
see [Magl2, Proposition 12.19].
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then

QQDE(iU; )\T) + 8E<x, >‘7a) < Cdec)\(eE(x>T) + QQDE<'T7 T) + T)'

(vii) (Decay of the Dirichlet energy) There exists a universal constant Cgi > 0 such
that for all X € (0,1/2) there exists eqi = caw(N, A, \) satisfying the following:
if Eis a minimizer of (Psronr), © € OFE and

r+eg(z,ren) < €air,

then
Dg(z,Ar) < Cdir/\(DE(x>T) + 7’)'

Proof. The proofs of (i), (ii), (iii), (iv), (v), (vi) and (vii) can be found respectively
in [DPHV19, Proposition 2.1, Corollary 3.3, Proposition 5.1, Lemma 6.5, Proposition
6.4, Proposition 6.6, Theorem 7.1, Proposition 7.6]. O

We state now the e-regularity theorem.

Theorem 7.1.3 ( [DPHV19, Theorem 1.2]). Given N >3, A >0 and v € (0,1/2),
there exists ereg = reg(IN, A, V) > 0 such that if E is minimizer of (Ps x.q.r) with
Q+B+K+%§A,meaE and

r+ep(r,r)+ Q* Dg(z,r) < Ereg)

then E N C(z,7/2) coincides with the epi-graph of a CYY function. In particular,
OE N C(x,r/2) is a CYY (N — 1)-dimensional manifold.

7.2 Closeness to the ball

In this section we deduce the L>-closeness of minimizers to the unitary ball in the
small charge regime. Let us start with the following proposition.

Proposition 7.2.1 (L'-closeness to the ball). Let {Qp, }nen be a sequence in R such
that Qn > 0 and Qn, — 0 when h — oo. Let {Ep}nhen be a sequence of minimizers
of (Ps.x.g,.r)- Then, up to translations, E, — By in L' and P(E,) — P(B;) when
h — oo.

Proof. By the quantitative isoperimetric inequality, [FMPO08, Theorem 1.1|, for every
h € N there exists a point z;, € RY such that

|ExAB; (23)|> < C(P(Ey) — P(By))

for some constant C' = C'(N) > 0 which depends only on n. By translating each set
E), we can assume without loss of generality that the following inequality holds:

\E,AB\|? < C (P(E,) — P(By)). (7.2.1)
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By the minimality of E} we have

Fo,x,0mk (En) = P(Ep) + Qi Ga.x(En)
< P(B1) + Q3 Go.x(B1) = Fakur(Bi), YheN.

Hence, (7.2.1) yields
|EyAB > < C(P(Ey) — P(B) < CQ; Gsx(B1) YheN,
for some constant C' = C'(N) > 0 which depends only on the dimension n.

Then Q;, — 0 implies Ej, — B; in L' and P(E},) — P(B;) when h — oo. O

Thanks to the density estimates (see Theorem 7.1.2 (v)), we can improve the
convergence of Proposition 7.2.1.

Proposition 7.2.2 (L°-closeness to the ball). Let {Qn}nen be a sequence such that
Qn > 0 and Qp — 0 when h — oo. Let {Ei}heiN be a sequence of minimizers of
(Ps.k,Qu.r)- Then, up to translations, E), — By and OE, — 0By in the Kuratowski
sense.

7.3 Higher regularity

In this section we improve Theorem 7.1.3. To be more precise, we deduce the partial
C?? regularity of minimizers. The first step is to obtain better regularity for a couple
(u, p) € A(E), where E C RY is a minimizer of the problem (Ps ¢ r): we prove
that u is C1-regular up to the boundary of E.

Lemma 7.3.1. Given a minimizer E of (Psrxonr), let (u,p) € A(E) be the min-
imizing pair of Gs x(E). Assume that OFE N C(zg,7) is a CYY-manifold. Then for
every v € (0,1) there exist 0 < 7 < r and C > 0 such that the following inequality
holds true

Q? / |Vul? dz < CiN=
Br(z0)

for every © < 7.

Proof. Fix v € (0,1). Choose X € (0,1/4) such that
(1 + Cdec) A< )\1_7,
where Cyec is as in Theorem 7.1.2 (vi). Let s = s(\) < £ be such that

5dec(/\)
2 )

Cdir(C’e + 1) S()\) S (731)

where €4e. , Cqir and C, are as in Theorem 7.1.3 and Theorem 7.1.2 (vii), (iv). Define

£(\) := min {sN—lgde;W , 5dir(>\)} .
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Since 0ENC(xg, ) is regular, we can take a radius 0 < 7 < min (r, 1, é) such that

T+ er(ro,7) < e(N).

Then, thanks to the definition of £(\), Theorem 7.1.2 (vii), (iv), and (7.3.1) we have

ec )\
Q2 DE(Z'(), 877) S Odirs (Q2 DE<£L'0, 77) + QQF) S C’dir(Ce + 1)8 S = 2( ) (732)
Furthermore, notice that
_ _ _ 1 _ Edec (A
st + eg(zo, s7) < 7+ WGE(%J) < 2( ) (7.3.3)

Combining (7.3.2) and (7.3.3), we have
s+ Q? Dg(x0, 57) + ep(x0, 57) < Edec(N).
The hypothesis of Theorem 7.1.2 (vi) is satisfied, hence (recall that As7 < £4ec(N))

Q* Dg(wo, AsT) + ep(zo, AsT) + AsT < A7 (ep(xo, sT) + Q* Dp(xo, sT) + sT)
S Alivsdec()o S 5dec<)\)'

Exploiting again Theorem 7.1.2, we obtain

Q? Dp(x0, \2s7) + eg (20, \2s7) + A2s7 < A1V (er(zo, AsT) + Q* Dp(xo, AST) + AsT)
< \20=9) (eE(xo, s7) + Q* Dg(xo, 57) + sf)
S )\2(17’Y)5dec()\) S €dec(>\>-

Iterating this argument k times, we conclude that
Q2 Dp(x0, \¥s7) + ep(z0, \¥s7) + Aesi < MU=y (N),  VE € N.
In particular, the inequality above yields
Q2 Dp(z, \¥s7) < M0Veq (N), Vk €N

Therefore,
Q? / \Vul?de < C (\esi) V=7 Yk e N
B)\ksf(mo)

for some constant C' > 0. Now if we take any 7 < As7, there exists an integer k£ > 0
such that \*1s7 < 7 < A\*s7, hence

FIN=)

QQ/ [Vul? dz < QQ/ Vul? de < C (\Wsr) N < ——
Bi(zo) Bk, (w0) A
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Proposition 7.3.2. Let E be a minimizer of (Psx.o.nr), let (u,p) € A(E) be the
minimizing pair of Gs x(E), xo € OF, and f € CH?(D(x},r)). Suppose that Q < 1
and

ENC(zg,r)={x=(2",zn) € D(xp,r) xR : 25 < f(z')} N C(xg, ),

for some 0 < r < min{r, 1}, where 7 is as in Lemma 7.5.1. Then there erist
a = a() € (0,1) and a constant C = C(N, 3,9, ]|plle) > 0 such that

Q? / (Tt — [Tty 2 d < C Q2AN+20 / Tou— [Tl o dz+C 1+,
B (z0) B (zo)
(7.3.4)

Proof. Without loss of generality assume 0 € OF, 2o = 0. Let A € (0,1/2) be given
and let v be the solution of

—div(agVv) =p in B, /s
v=u on 0B,/

where H is the half-space {z = (2/,zx) : xxy < 0}. In particular, w = v —u €
Wy?(B,/2) and
—div(agVw) = —div ((ag — ag)Vu). (7.3.5)

Since [Trg], minimizes the functional m +— [, [Tpg — m|* dz, we have

/ T — [Ty, 2 da g/ T — [Tyl | da
B, By

<2 (/ Ty — [Thula|* de +/ | Tgpu — Trul? d;z:) .
B)\r B/\r
(7.3.6)

We want now to estimate the first term in the right hand side of (7.3.6). Notice
that, since u = v — w, by linearity of Ty we have

|THU — [THU])\T|2 S 2 (|THU - [THU}AT|2 + |THw - [THUJ])\le) .

Hence, integrating the above inequality on B), we obtain

/ Tyu — [Tru) s |* doe < 2 (/ | Tyv — [T |? do +/ | Tpw — [THw]AT|2dx>
B B By

< 2 (/ |TH’U — [TH’U])\TPdJI —|—/ ’THw|2d$)
B, Br
<C (/ \Vw]de—i-/ \THU—[THU],\TIde).
B)\r B)\'r

To estimate the second term in the right hand side of (7.3.6), recall the Notation
2.0.2

(7.3.7)

Oppu=Vu—(Vu-vg)rvp and 9du=Vu—(Vu-ey).
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Hence,

|Tpu — Tyu| = |(Vu-vg)vg — (Vu-ey) ey| < 2|Vu||vg — enl.
Therefore,
/ Tou — Tyul? da < 4/ Vul? [y — en|? da. (7.3.8)
B, By

Combining (7.3.6), (7.3.7) and (7.3.8) we obtain

/ T — [Tpuln 2 dz < C / Tov — [Tolu? do
B)\r

B)\'r

+C / IVw|? dz + C |Vul? |vg — en|* da.
Br/2

B/\r
By Lemma A.0.3 we have
/ Tyv — [Tavly |2 de < C AN+ / oo — [Tyt) o> de + Cr¥ . (7.3.9)
B Br/2
By arguing as above one can easily see that

/ | Tpv — [THU]T/2\2 de < C / | Tpu — [TEu],./2|2 dx
B, /2

BT‘/2

—l—C/ \Vw]Zd:U—i-C/ \Vul? |vg — en|* da.
BT/Q Br/2
Hence,

/ |Tpu — [Tpu)r|? dz < C’)\N+27/ Teu — [Trul, 2| dx
B}\r

B7‘/2
+C / \Vul? |vg — en|?dz +C / |Vw|? d.
BT‘/Q BT‘/Q
(7.3.10)

We need to estimate the last two terms in the right hand side of the above inequality.
Since E is parametrised by f € C*?(D,) in the cylinder C(zg,r), there exists a

constant C > 0 such that
(EAH)N B,

|Br|
By testing (7.3.5) with w we deduce

<Cr. (7.3.11)

/ ]Vw\2 dr < / ag \Vwﬁ dr = / (ag —ag)Vu - Vwdz. (7.3.12)
Br/2 BT‘/Q Br/2
By applying Holder inequality in (7.3.12) we obtain

/ Vwl|? dz < / (ag —ag)? |Vul* dz < C(B) / IVl da. (7.3.13)
B2 B2 (EAH)NB,. /3
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By the higher integrability [DPHV19, Lemma 6.1], there exists p > 1 such that

1
1 P 1

(!B ol s V| d:c) < CW/B (Vul2dz + C V2 | o2 (7.3.14)
r r/2 r .

Hence by exploiting Holder inequality, (7.3.11), and (7.3.14) we have

/ \Vul® dv < [(EAH) N Brﬂ\l‘% / \Vul* dx
(EAH)NB, 5 B2

<C|B|<\(EAH)HBT\)1” L/ Vul de ’
B ' ’Br’ ’Br/2‘ B, /o

<o’ (3) {/ \Vul? dz 4 rV+? ||p\|io} :

P

(7.3.15)
Therefore, (7.3.13) together with (7.3.15) (recall r < 1) yield

/ Vuw|* dz < C {rﬁ(l_;)/ |Vul? +7~N+2\|p||§o} : (7.3.16)
B'r/2 BT

On the other hand, by Lemma 7.3.1 we have

Q° |Vul?de < CsV™7 Vs <T. (7.3.17)
Bs
Hence, combining (7.3.16) and (7.3.17), we obtain
Q* [ [Vul de < € {0 ez
B
Finally, we estimate the second term in (7.3.10). Notice that
/ |Vu\2|VE—eN|2da::/ |Vu(z', 25 ve(a, on) — en| da
B;.j2

B'r'/2

— [ VuP el )~ enf?de
Br/Z

Since v/1+1t < 1+ % for every ¢t > 0,

ve(a', f(a) —en|” = 2—

2 V1I+ | V)2 -1 o
\mewé?( TN T@)P ><V(f ( )')'
7.3.18

Thanks to (7.3.17) and (7.3.18), and using that V f is ¥-Hélder, we deduce

Q? / \Vul? lvg — en|* de < CrVT2077, (7.3.19)
BT‘/Q
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Let

a:=min{y,d (1 -1/p) = 7,20 —~}.
Therefore, by multiplying (7.3.10) and (7.3.16) with Q2 and by recalling that Q < 1
we have that (7.3.19) implies (7.3.4). O

We are now ready to prove that u is regular up to the boundary. Recall that
ut =ulgand u= = ulge.

Theorem 7.3.3. Let E be a minimizer of (Psx.onr), let (u,p) € A(E) be the
minimizing pair of Gs.x(E) and f € CY?(D(zp,7)). Suppose Q < 1 and
ENC(zo,r)={x=(2,zy) € D(xp,r) xR : 2y < f(z')} N C(xg, )

for some 0 < r < min{7, 1}, where 7 is as in Lemma 7.3.1. Then there ezists
n = n() € (0,1) such that u* € CY(ENC, j5(x0)) and u= € CY"(E°NC, ja(0)).
Furthermore, let A > 0 and let 5, K,Q be controlled by A and R > 1. Then there
exists a universal constant C' = C(N,A) > 0 such that

1Qu™ llcra@nc, p@y < C and [Qu”lloun@nc, p@0) < C- (7.3.20)

Proof. Let ug := Qu. By Proposition 7.3.2 there exists C' = C(N, 5,7, ||pllo) > 0
such that

/ | Trug — [Trug|ear|* dv < CANT2 / I Tpug — [Tpuglegr | dv+C Ve,
Bxr(z0)

Br(z0)
(7.3.21)
where a € (0,1) is as in Proposition 7.3.2. Therefore, Lemma A.0.2 implies that
there exists a universal constant C' = C'(N, A) > 0 such that

1

7\ 2
| B"' | B, (:Co)

m
|TEUQ — [TEUQ]z,rP dy <C (R) , \V/BT(ZL’()) C Bg. (7322)

for some n = n(J) € (0,1). Hence, by Lemma A.0.1, recalling the definition of TF,
we get ugly € CY(ENC, (o)) and uglge € CY1(E°NC,j9(x0)) and (7.3.20). O

In the next proposition we rewrite the Euler-Lagrange equation (see Theorem 7.1.2
(ii)) in a more convenient form by exploiting the regularity of OF.

Proposition 7.3.4 (Euler-Lagrange equation). Let E be a minimizer for (Ps x.o.r)
and (u, p) € A(E). Assume that f € CY(D(z},r)) and

ENC(zg,r)={z=(2,zn) € D(xp,r) xR : 2y < f(2')} N C(xg, 7).
Then there exists a constant C' > 0 such that

. ( V()
LV @)P

) = Q* (BIVu'] = |[Vu |P = K p*) («/, f(2))

+ Q% (Bovut Vut — dyu” Vu™) (2, f(2)) - (=Vf(2),1)+C
(7.3.23)

for almost every point x’' € D(xy,r).
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Proof. Let E C RY be a minimizer of (Ps k.o r) and let (u,p) € A(E).
Notice that £ N C(xy,r) is an open set of RY. Moreover, by an approximation
argument, we can integrate over E N C(xg,r) the following identity,

|Vut|? divy = div(|Vu'|*n) — V|Vu'|? - g
= div(|Vu't*n) + 2 div(VutVu' - ) — 2Au™ Vu' - n+2Vu® - VnpVu™

for every n € C°(C(zq,7), RY). Therefore,

/ (|Vut? divy —2Vu® - VnpVu') do = / div(|Vu™|*n) dx
ENC(zo,r) ENC(zo,r)

—|—/ 2 div(VutVut - n)dr — / 2Aut Vut - ndz.
ENC(zo,r) ENC(zo,r)

(7.3.24)
On the other hand, since (u, p) € A(E), we have
—BAut =p in D'(ENC(zg,r)).
Moreover, by Theorem 7.1.2 (ii) we deduce
Vut=—-KVp in ENC(xg,r).
Then, by multiplying equation (7.3.24) by 3, we have
/ B(IVut]? divy — 2Vu’ - VnVu') do = / Bdiv(|Vu™|*n) dz
ENC(zo,r) ENC(xo,r)
+/ 23 div(Vu"Vut -n)de — K 2pVp - ndz.
ENC(zo,r) ENC(zo,r)
(7.3.25)

Integrating by parts the first and the second term in the right hand side of (7.3.25),
we can write

/ B(IVut?> divy —2Vu® - VpVu') do = / BIVuT|*n - vg dHN
ENC(zo,r) OENC(zo,r)
+/ 28 (Vut -n)(Vu© -vg)dHY ' — K 2pVp-ndx.
OENC(zo,r) ENC(zo,r)
(7.3.26)

By arguing similarly as above, one can also prove
/ (|Vu™ > divg —2Vu™ - VnVu~) dz = / div(|Vu~ |*n) dv
E<NC(z0,r) E<NC(z0,r)

- / 2 div(Vu~Vu™ - n)dz.
E°NC(zo,r)
(7.3.27)
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Integrating by parts the right hand side of (7.3.27), we can write
/ (|Vu~ > divy — 2Vu™ - VnVu~) do = —/ IVu |’y - v dHN
E<NC(z,r) OENC(zo,r)

+/ 2(Vu™ -n) (Vu™ -vg)dHN L.
OENC(zo,r)
(7.3.28)

Therefore, combining (7.3.26) and (7.3.28), we get

/ ag (divy |Vul|* — 2Vu - VnVu) dz = / (BIVut)? = [Vu ) - vpdH !

R OF

- / 2(8 (Vu® - )(Vu' - vg) = (Vu™ 1) (Vu~ - vg)) dHY
OENC(zo,r)

- K 2pVp-ndx.
ENC(zo,r)
(7.3.29)
Notice that the following identity holds true
K p*divny = K div(p*n)dz — K 2p0Vp -ndx
RN ENC(zo,r) ENC(zo,r)
=K o’ vpdHYN P — K 2pVp -ndx.
OENC(zo,r) ENC(zo,r)
(7.3.30)

Combining the Euler-Lagrange equation of Theorem 7.1.2 (ii), (7.3.29) and (7.3.30),
we find

/ divpndHN ! = Q? (BIVut)? = |[Vu > = K p*) n-vgdH" !
OE OF

+ Q%2 B Vut) (Vut - vg) — (n-Vu™) (Vu™ -vg)dHY !
- (7.3.31)

for every n € CY(B,(x),RY) with [, divydz = 0.
Now we are ready to prove (7.3.23). The tangential divergence of n on OF is

N
divgn := divy — Z(VE)l (vg); 0;m; on OF, (7.3.32)

ij=1
where vg : OF — SV~ is the normal vector to OF:

1
Co Ve Y
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Let n:=(0,...,0,my), then by (7.3.32) we have
N
divi = Oniy + ——=—— 03 O 0,1 — 0 on OB, (7.3.33)
EN - NTIN 1+‘Vf|2 — 1IN Oy NTIN . 0.

Choose nn(z) := ¢(pr) s(zx), where p € CH(D(zo,7)) and s : (—1,1) — RV is
such that s(t) = 1 for every |t| < ||f]|co- Since now 1y does not depend on the
n-component on 0F, we have

n-vg = _elpr) on O0E N C(x,7), (7.3.34)

V1I+IV?

and the above equation (7.3.33) reads as

divgn = Vo -Vf ondENC(xg,r). (7.3.35)

1
L+ VP

Moreover,

/ divndx = / (n-vg)dHN ™' = / ny(ve - ey) dHN !
E OF OENC(zo,r)

- /8EmC( ) p(pr)s(f(2)) (ve - en) dHY

9ENC(zo,r) V1 + |V f(pz)] p(8ENC(z0,r))

This implies that 7 is admissible in (7.3.31). Hence by using 1 as a test function in
(7.3.31), by combining (7.3.34) and (7.3.35), the claim of the proposition follows. [J

Corollary 7.3.5. Let E be a minimizer for (Psxor) and (u,p) € A(E). Assume
that f € CY(D(xf,r)) and

ENC(zg,r)={zx=(2,zy) € D(xp,r) xR : zy < f(2')} N C(xg, 7).

Then there exists a function M such that the matriz VM (V f) is uniformly elliptic
and a Hélder continuous function G such that

—div(VM(Vf)VO,f) =0,G a.e. on OEN C(zg,7/2)
for everyi=1,...,n.

Proof. Exploiting Proposition 7.3.4, we have

Vf(&?’) - / / rae o o
V( 1+\Vf(x’)\2>_G(x’f(””)) for a.e. " € D(wp,7/2),  (7.3.36)
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where

G(a', f(a")) = Q* (BIVu™|* — |[Vu™|* = K p?) (2, f(2'))
+ @ (Boyut Vut — oyu” Vu™) (2, f(2)) - (=Vf(2'),1) + C

for 2’ € D(xy,r/2). Hence, (7.3.36) is equivalent to
—div(M(Vf)) =G ae. on 0ENC(xg,7/2), (7.3.37)

where

M(&) = & Ve e RY.

iR

By |[Magl2, Theorem 27.1] we can take the derivatives of (7.3.37). Then,
—div(VM(Vf)Vo,f) = 0,G a.e. on 0EN C(xg,7/2)

for every ¢ = 1,...,n. Notice that

_ 1 el N
VM(f)_m(Id 1+|€|2) Ve e RY,

meaning that the matrix VM (V f) is uniformly elliptic, more precisely

nl* > VM(V )00 = (L4 [V flle) 72 0" ¥y e RY.
It follows from Theorem 7.3.3 that G is Holder continuous. By the definition of M
and by the regularity of f we also have that VM (V f) is Holder continuous. O

We prove now the partial C?Y-regularity of minimizers.

Theorem 7.3.6 (C??-regularity). Given N > 3, A > 0 and ¥ € (0,1/2), there
exists reg = Ereg(IN, A, V) > 0 such that if E is minimizer of (Psxor), @+ 5+
K+%§A, xo € OF, and

r+ep(zo,r) + Q° Dp(zo,1) < Ereg)

then E N C(xg,7/2) coincides with the epi-graph of a C*°-function f.
In particular, we have that OENC (z¢,7/2) is a C*? (N—1)-dimensional manifold
and

[flezo@yr2) < C (N, A, 0). (7.3.38)

Proof. Choose &g as in Theorem 7.1.3. Then there exists f € CVY(D(zf,r/2)) such
that
ENC(xg,r/2) ={z=(2",xn) € D(xg,7/2) xR : xx < f(2)}.

By Corollary 7.3.5 we have
—div(VM(Vf)VO,f) = 0,G a.e. on 0E N C(xg,7/2)
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for every i = 1,...,n, with VM (V f) uniformly elliptic and G - Hélder continuous.
We also have that VM (V f) is Holder continuous. Hence the following Schauder
estimates hold in this case

[VOiflcos@yrszy < C{0ifl2m@yrs2) + [Gleonm@yrzn} Vi=1,...,n,
for some constant C' depending on r. In particular, f is C*Y and

[flozo a2y < CUIV Fll2mgr/2) + [Gleon e }-

By the definition of G, recalling (7.3.20) and Theorem 7.1.2 (i), using Poincaré in-
equality and since f is Lipschitz, one can easily see that there exists C = C'(N, A,9,r) > 0
such that

[G]Coﬂ(c(:po,rﬂ)) S C(N, A, 19, 7“).

By the Lipschitz approximation theorem it follows that

1
N_1 / |Vf|2d2 S CLeE((L'(),’I“) S CLEreg, (7339)
r D(zg.r/2)
which implies (7.3.38). O

Remark 7.3.7. A minimizer Eg of the problem (Pj i ¢ r) satisfies the hypothesis
of Theorems 7.3.6 and 7.4.3 whenever () > 0 is small enough. Indeed, assume
xg € 0B;. Then, by the regularity of 0By, there exists a radius » = r(N) > 0 such
that

r+ ep, (20,2r) < (7.3.40)

where €., is as in Theorem 7.4.3. On the other hand, by Proposition 7.2.2 we have
that Eg converges to By in the Kuratowski sense when ) — 0. Hence, by properties
of the excess function, eg, (zo,2r) — ep, (7o, 2r) when @ — 0. By Theorem 7.1.2
(iii) we also have Q® Dg, (2o, 2r) — 0 when @ — 0. Therefore,

T+ eEQ ($0a QT) + Q2 DEQ (an QT) S 5reg; (7341)

when ) > 0 is small enough.

7.4 Smooth regularity

In this section, by a bootstrap argument, we obtain the smooth partial regularity
of minimizers. Since this result is not necessary for the proof of the main theorem,
the reader may skip it unless interested.

Improving the regularity from C%" to C* is easier then from C17 to C*", because
we can straighten the boundary in a nice way once it is C2. More precisely, we have
the following lemma.

121



Lemma 7.4.1. Let k € N, k > 2 and f is C*?(D). There exists ¢ > 0 such that if
[ fllc2om) <€ and  f(0) =0,
then there exists a diffeomorphism ® € C*1Y, & : C,_. — C,_., such that
P(IT;NCi.)={zx= (2" zny) €Dy xR : zy =0},
where I'y is the graph of f. Moreover,

(V@ (2)) (VE(@(@))7) =0 ¥j £

7.4.1
(VO(2™(2)) (VO(O™(2))") y #O- (4
Proof. Define
V(' xy) = (2, f(2") + 2N (;Z{ész)(’;))P Vo = (2! 2y) € Cy_,
then ® := U~! is the desired diffeomorphism. O

Lemma 7.4.2. Let k be a positive integer and let f be a C**W-Hélder continuous
function defined on D(zg,7) such that || f||cr+10 < € for some e >0 and

ENC(zg,r)={zx=(2,zny) € D(xp,r) xR : zy < f(2')} N C(xg, 7).
Suppose v is a solution of
— diV(CLE VU) =h in DI (BT<.Z'0)) s ap ‘= 1EC + ﬁ 1E'7

with h* and h~ C*1-Hélder continuous respectively on ENC(zg,7) and E°NC(xg,7),

where h™ = hlp, h~ = hlge. Thenv™, v~ are CHFIn_Hlder continuous respectively
on ENC(zg,r) and E¢N C(xg,r).
Moreover,
[o1llertrn@nc@or) < € and ||vgllcrsin@nc@or) < C (7.4.2)

for some constant C' > 0 which depends on the C*"- Hélder norms of h* and h™
and on the C**17 norm of f.

Proof. Assume zo = 0. Let H := {3: ERY s ay=x-ey < 0} be the half space in
RY. By Lemma 7.4.1, we can assume that

I'yNnC,=0HNC,,
where I'y N C, 5 := {(a/, f(2')) : 2’ € D,}, f(0) = 0 and that v solves the following
equation

—div(agAVv) = h, (7.4.3)
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where by (7.4.1), A is a C*'Y_continuous elliptic matrix such that A;y = 0 for
every j # N, Ayn # 0.

We continue the proof by induction on k. For clarity, we do the detailed com-
putations for the case £ = 1 and we explain how the formulas look like for bigger
k.

Case k = 1. By taking the derivatives with respect to the tangential coordinates
j # nof (7.4.3) we deduce

—div(ag AVO;v) = 9;h + div(9;(ag A) Vo)

— div(he; + dy(anA) Vo) in D'(RY). (7.4.4)

Notice that ay is constant along tangential directions and that (ay A)*, (ayg A)~
have coefficients respectively in C?(H° N C,) and C%"(H N C,.). Furthermore,

(hej + 0;(agA) Vo)t € CO¥"H NC,) and (he; + 9;(agA) Vo)~ € C*'(HNC,).
Hence, exploiting Lemma A.0.4 we deduce

opt e CYM(HNC,) and v~ € CY"(H NC,) Vj#n. (7.4.5)
Furthermore, by (7.4.3) we have

N
— > {an Ao + 0i(ay Aij)dv} = h.
ij=1

Thanks to the form of the matrix A we obtain

—ag ANNaNN’U = Z {CLH Al-jal-jv + @(aH A”> ij} + h. (746)
INEI

Since the right hand side of the previous equation is Holder continuous, we have
ovyvt € C¥I(H N C,) and Oyyv~ € CON(HNC,).
Moreover, (7.4.5) implies
InjuT € CO"H NC,) and dyu- € CO"(HNC,)
for every j # n. Therefore,
vF e CP(H NC,) and v~ € C*"(H NGC,).
By Lemma A.0.4 we deduce also that
VoS llern@ne,)  and VU lloungrne,)

are bounded by a constant which depends on the Holder norms of VAT, Vh™, the
coefficients of (agyA)* and (agA)~.
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General k. As in the case k = 1, we start by taking the derivatives of (7.4.3)
with respect to the tangential coordinates j # n. We get an equation similar to
(7.4.4):

_le (GHA V@ihb 77777 ik’U) = le <87,2 77777 ikh 61'1 + Z 8]-1735 _____ g1 (CLHA)V (8{i17i2 77777 i I\ {1,425 jl}v)>

81-1,1-2 ,,,, ikU+ S Ol’n(ﬁﬂ C,«) and 8,-1,1-2 ,,,, WU € OI’W(FQ Cr> (747)
for all iy #n, is #n, ..., i #n.
By (7.4.7)

8i1’i2,...’ik7n?)+ c Co’n(ﬁ N Cr) and 811,2‘2,,“7%”'1}7 € C’OJI(W N CT)

forall iy # n, ia #n, ..., iy # n, and thus, taking derivatives of (7.4.6) in tangential
directions, we get

OiriginymnVT € CVMHNC,) and 0y 4y, ir_smnv € CO¥"(HeN C,).
Induction on the number of normal directions yields
vi e CHYI(H NC,) and v e CHYI(H N C,).
O

Theorem 7.4.3 (C*°-regularity). Given N > 3 and A > 0, there exists ey =
Ereg(IN, A) > 0 such that if E is minimizer of (Ps r.o.r) with Q + 8+ K + & < A,
xo € OF, and

r+ eg(wo, 1) + Q° DE(x0,7) < Ereg,

then ENC(xg,7/2) coincides with the epi-graph of a C*®-function f. In particular,
we have that OE N C(xg,7/2) is a C* (N — 1)-dimensional manifold. Moreover, for
every 9 € (0, %) there exists a constant C(N, A, k,r,9) > 0 such that

[f]Ckﬁﬂ(D(a:f),T/Q)) < O(N7 Ak, 19) (748)
for every k € N.

Proof. If we choose eyeq as in Theorem 7.3.6, then there exists f € C??(D(x(,r/2))
such that

ENC(zg,r/2) ={z=(2",xn) € D(xg,7/2) xR : xnx < f(2)}.
By Corollary 7.3.5 we have
—div(VM(Vf)VO,f) = 0;,G a.e. on OE N C(xg,7/2) (7.4.9)

for every i = 1,...,n, with VM (V f) uniformly elliptic and Holder continuous and
G - Holder continuous.
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Now we argue by induction on k. The induction step is divided into two parts:
Claim 1:

f is C*-Holder continuous = u™, u~ are C*-Hélder continuous respectively on
ENC(xg,7/2) and E°N C(xg,7/2).
Moreover, there exists a universal constant C' = C(N,A) > 0 and ¢ € (0, 3) such
that

|Q u+HCkﬂ9(EﬁC(xo,r/2)) <C and [|@ U_||ckn9(ﬁm0(xo,r/z)) <C. (7.4.10)
Claim 2:
f is C*-Hélder continuous = f is C**'-Holder continuous.

To proof Claim 1, we apply Lemma (7.4.2) to v = Qu and h = Qp. By (7.3.20)
the norms

||Q vu+||00,ﬁ(ﬁmcr/2) a‘nd ||Q vu—”C’Uvﬂ(ﬁﬂcr/g)

and bounded by a universal constant. That gives us (7.4.10).

As for Claim 2, notice that by the definition of M, since f is C*-Hélder contin-
uous, we have that VM(V f) in (7.4.9) is C*~'-Hélder continuous. By Claim 1 we
deduce that G is C*~'-Hélder continuous with its norm uniformly bounded. Then,

using Schauder estimates for (7.4.9), we get that f is C*T1-Hélder continuous.
O

7.5 Proof of Theorem 1.1.9

Finally, we are ready to prove that the only minimizers of F are balls if the charge
@ is small enough.

Proof of Theorem 1.1.9. Argue by contradiction. Suppose there exists a sequence
of minimizers Ej, corresponding to ), — 0 such that Ej, are not balls. Translate the
sets E), if needed so that their barycenters are at the origin. Arguing in a similar
way to the proof of Theorem 5.2.2 (using Proposition 7.2.2 instead of Lemma 5.3.4
and Theorem 7.3.6 instead of Theorem 5.4.18) we have that starting from a certain
h the sets are nearly-spherical parametrized by , with ||4||c209p,) < 0, where §
is the one of Theorem 4.3.14.

Now we apply Theorem 4.3.14 to see that F(E,) > F(B) for h big enough,
contradicting the minimality of E},. O

We can now prove Corollary 1.1.10, which follows from Theorem 1.1.9 and prop-
erties of minimizers established in [DPHV19].

Proof of Corollary 1.1.10. Let )y be the one of Theorem 1.1.9. Let E be an open
set such that |E| = |By|. Let us show that F(F) > F(By). If E is bounded, then
F(Ey) > F(B;) by Theorem 1.1.9. Assume now that £ is unbounded.
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We can assume that E is of finite perimeter, since otherwise F(E) = co. Then,
by [Mag12, Remark 13.12], there exists a sequence Ry, — oo such that ENBg, — E
in L', P(EN Bg,) — P(E). Rescale the sets so that their volumes are the same as
the one of the ball, i.e.

IB)| 1/N
Q= ENB ith ap, = | —=——=— .
o 808 o = ()
Note that since |E| = |Byl, ap — 1, so also for €, we have |Q,AE| — 0, P(Q,) —
P(E). Now, by the continuity of the functional G in L! (see [DPHV19, Proposition
2.6]), we get

F() = P(Q) + G(Q) — P(E) + G(E) = F(E). (7.5.1)
On the other hand, €2, C oy, Bpg,, so it is bounded and hence, by Theorem 1.1.9,
F(Q,) > F(By) for every h.

Combining the last inequality with (7.5.1), we get F(E) > F(By). Thus, the
infimum in the problem (P x ) is achieved on balls.

Let us show that the only minimizers are the balls. Let E be a minimizer for
(Ps.x.). If E is bounded, then by Theorem 1.1.9 it should be a ball of radius 1.
We now explain why E cannot be unbounded. Indeed, suppose the contrary holds.
Then there we can find a sequence of points zj, such that =), € E, |z — ;| > 1 for
k # j (for example, we can define ), := E\ Buax{|z1|,zo,....Jex_1|}+1)- NOW, by density
estimates for minimizers (Theorem 7.1.2 (v)), we have

77777

B, E 1
% > c for x € E, r € (0,7). (7.5.2)

Note that even though Theorem 7.1.2 (v) deals with minimizers of (P3¢ r), the
constants C' and 7 do not depend on R, so it applies in our case. It remains to use
(7.5.2) for x = x;, and r = min(1/27,1/2) to see that

oo (o] |BT|
E>§ B, (x ﬂEzg = 00,
| |—k_1’ (k) | < C

which contradicts the fact that |E| = |By|. Thus, E is bounded and it is a ball of
radius 1. O
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Appendix A

Some regularity results

Here we collect some of the results we are using in Chapters 5, 6, and 7.

Lemma A.0.1 (Campanato’s lemma, [AFP00, Theorem 7.51]). Let p > 1 and
g € LP(Bag(zo)). Assume that there exist o € (0,1) and A > 0 such that for every
x € Br(xg)

1
|BT’| Byr(x)

Then there exists a constant C = C(N,p,0) such that g is o-Holder continuous in

Br(o) with a constant CZ and

9) — lglarPdy < 47 ()7, ¥B,(2) € Ba(w).  (A0.1)

max |g(z)| < CA+ |[g]eg.rl -
xGBR(IQ)

Lemma A.0.2 ( [AFP00, Lemma 7.54|). Let 0 < ¢ < p, s > 0. Suppose that
h:(0,a) — [0,400) is an increasing function such that

h(r) < <%>p (h(R)+ R*) +c2 R for every 0 <r <R,

where ¢1 and ¢y are positive constants. Then there exists ¢ = c(p,q,s,¢1,¢3) > 0
such that g
h(r) <c {<E> h(R) + rq} for every 0 <r < R.

Lemma A.0.3 ( [AFP00, Theorem 7.53|). Let v be a solution of
—div(agVv) = py in D' (Bi(z0)),
where py € L™ (By(x)) and
H:={yecRY : (y—x¢)-exn <0}, ag=pB1yg+ 1.

Then there exist v € (0,1) and a constant Coy = Co(N, S, ||prlls) > 0 such that

/ |TH’U — [THU]xo,)\r|2 dx S Co)\N—i_z’y/ |THU — [THU]IO,AQ dz + CQ TN+1,
By (z0) By (x0)
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for all A € (0,1) small enough. Note that

THU = (611}, ce ,aN_l’U, (1 + (B - 1)1H)8NU>

By arguing similarly to the proof of Theorem 7.53 in [AFP00|, we can show the
following lemma.

Lemma A.0.4. Let H C RN be the half space. Let v € WY2(By) be a solution of
—div(AVv) =divG  in D' (By), (A.0.2)

where

Gt =G1y € C*(H), G :=G1ly € C"*(H"),

A is an elliptic matriz and A*_: Aly, A= = Alye have coefficients respectively in
CY*(B,.N H) and C**(By N H¢). Then

U+ = 1H - Cl’a(Bl/g ﬂﬁ), v o= ].H(: & Cl’a(Bl/Q HF)
Moreover, there exists a constant C = C (||GF||co.e, ||A%||co.a) > 0 such that
[VU—F]CQ,Q(ﬁQBI/Q) < C and [V’U_]Co,a(ﬁmBl/Q) < C. (A03>

Proof. Fix xy € Bys, and let r be such that B,(x¢) C By. We denote by a™ and
a~ the averages of A in B,.(z9) N H and B,(x¢) N H® respectively. In an analogous
way we define ¢g* and ¢~ as the averages of G in B,(z9) N H and B,(zo) N H¢. For
x € B,(z9) we set

T._ a*?fo>0 and G o g*?fo>0
a ifzy <0 g ifzy <0
By the assumptions of the lemma,
|A(x) — A(x)| < er®  and  |G(z) — G(x)| < r®. (A.0.4)

Let w be the solution of

{— div(AVw) = divG in B,,

w = v on IB,(x).
Note that the last equation can be rewritten as

(— div(a*Vwt) =0in HN By (z),
—div(a=Vw™) =0in H° N B,(xy),
wt =w~ on O0H N B,(zo), (A.0.5)

atVuwt ey —a " Vw™ ey =g ey — g -exy on 0H N B,.(z9),

| w = v on B, (x),
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where w' (= w 11AB, (w0), W™ = W 1genB, (2y)- For a function u set

zNV u —|— G EN, (AOG)

|
HMZ

ZAZ NV u —|— G- EN. (AO7>

The reason for such a definition is that D,v and D.w have no jumps on the boundary
thanks to the transmission condition in (A.0.5). We are going to estimate the decay
of D,w and D,w, which will lead to Holder continuity of D,v and D.v, yielding the
desired estimate on V.

Step 1: tangential derivatives of w. Since both A and G are constant along
the tangential directions, the classical difference quotient method (see, for example,
[GM12, Section 4.3]) gives us that D,w € W,2%(B, (1)) and div(AV(D;w)) = 0 in
B,.(xy). Hence, Caccioppoli’s inequality holds:

/ IV (Dow)|2dy < Cp2 / Dyt — (Dytw)sny|*dy (A.0.8)
Bp(f) B2p( )

for all balls By,(z) C B, (o) and by De Giorgi’s regularity theorem, D, w is Holder-
continuous and, thus, if By (z) C B,(xo),

N+2v
/ |D,w — (Dyw),,[*dy < ¢ (4) / |Drw — (Drw)ep*dy  (A.0.9)
B,(z) p /(2)

for any p € (0, p'/2) and

By 5(z)

c
max | Dowl’ < W/B |-y (A.0.10)

_ Step 2: regularity of D.w. First let us show that the distributional gradient of
D.w is given by the gradient of D, on the upper half ball plus the one on the lower,
i.e. that there is no contribution on the hyperplane. For that, we need to check that

/ Dowdivpds = / VD.w - pdr + / VD - pdx
Br(xo) Br((xo)+ B7v($0)7

for any ¢ € C°(B,(x0); RY). Indeed, if we perform integration by parts on the left
hand side, we get

/ D.wdivpdr = / Vﬁcw-godx+/ VD - ¢dx
r(z0) Br(z0) Br(zo)~
N N

+f (Z @t V(@) + 9" ex = > ap, Vaw(s) — g eN> (- e) dHY!
aHﬁBr(xo)

i=1 i=1
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for any ¢ € C°(B,(x0); RY) and the last term vanishes thanks to the transmission
condition in (A.0.5). Thus, the distributional gradient of D.w coincides with the
point-wise one.

Since D,(D.w) = D.(D;w) — G - ey, the tangential derivatives of D,w are in
L3 .. As for the normal derivative, by the definition (A.0.6)

‘ 0D .w

5 (m)‘ < C|VD,w| + 2||G|| .

It implies o o
[VDow(x)| < C(IVDrw| + [|G]|1) -

and thus D w is in I/Vlic2 Now, using Poincaré’s inequality and (A.0.8), we have

/ |ﬁcw — (Ecw)x,pfdy < C’pQ/
By() B

SCf/ |WDWW@+CMHSC/‘ |Drw — (Drw)y o, |*dy + CpN*2
BP(I)

Bap(2)

for any Bs,(x) C B,(z9). Remembering (A.0.9), we obtain

_ _ N+2v
/ [Dew — (Dew),,,dy < € (£) / |Drw — (D)o dy + CpN 2
r
By (z) BT/Q(x)

| ‘V(Ecw)}Qdy

p(l’

N+2~
<C <£> / | D w|*dy + CpN+?
By (zo)

r

(A.0.11)

for any « € B, 4(x0), p < r/4. Hence, by Lemma A.0.1, D.w is Holder-continuous
and o

max) ‘Ecwf < —/ |Ecw|2dy +C. (A.0.12)
r(zo)

Br/4 (wo TN

Step 3: compairing v and w. Subtracting the equation for w from the equation
for v we get

— ov  Ow\ Op / — dv Oy
A, ;i — —dy = Aii(y) — Ay ——d
[ st (5= gt = [ st - At GoE

(A.0.13)

for any p € W, (B, (z0)). We test (A.0.13) with ¢ = v — w to get

/ Vo — Vw|’dy < CTZO‘/ Vol dy + CrV+2e,
Br(a:o)

Br(z0)

which in turn gives us

/ Vol dy < 2/ \Vw|*dy + 2/ Vo — Vw|?dy
By (o) By (z0) By (z0)

< 2wnp™ sup  |Vwl|® + CTQO‘/ \Vol*dy + CrV+2e
Br/4($0) Br(xo)
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for p < r/4. Recalling (A.0.10) and (A.0.12), we obtain
2 PN 2 N 20 2 N+2a
|[Vol“dy < C (= \Vw|“dy + Cp™ + Cr |Vol“dy + Cr
Bp(zo) r Br(zo)

Br(z0)
N
<C (5’) /
T Br(

Now we can apply Lemma A.0.2 and get there exists 1o > 0 such that for p < r/4 <

To
N—«
/ IVo|*dy < C (B> / (Vo> dy + CpN .
By(x0) " B (x0)

In particular, for p < rq we have

\Vv|2dy+0r2a/ \Vl*dy + Cr.

CE()) By (1’0)

/ IVo|dy < CpN—e, (A.0.14)
By(z0)

where C' = C (||G"||co.a, [|G™||cow, |AT]|cowe, [|A7||coe ). Note that the L? norm of
Vv in By is bounded by some constant depending only on L® norms of A and G,
as can be seen by testing the equation (A.0.2) with v.

Step 4: Holder-continuity of Vu. We show local Hélder continuity of D.v and
D;v, Hélder-continuity of Vv in By N H and in By N He follows immediately.

Take p < 1y, where g is from the previous step. Let d be any real number. Using
the definitions (A.0.6) and (A.0.7), inequalities (A.0.4), and inequality (A.0.14), we
get

/ |D.v — d|*dy < 2/ |D.v — d|*dy + CTQO‘/ (Vo|?dy
Bp(xo) Bp(xo)

Bp(wo)

< 4/ |Dow — d*dy + Cr™N e
Bp(l’O)
and hence, using (A.0.11) we have for p < r/4, r < rg

/ Dot — (Do) oy < / Dot — (Do) |2y
By (o)

Bﬂ(l’o)
_ _ N+2
<4 / Dew — (D) Py + OV < 0 (2)7 / |Dywltdy + Criv+e.
By (z0) r By (z0)
(A.0.15)

Similarly, using (A.0.9) instead of (A.0.11), we get
N+2v
/ D = (Drv)agpf2dy < C (2) / |Dywldy + Cre. (A.0.16)
Bp(zo) r Br(wo)

Applying Lemma A.0.2 to (A.0.15) and (A.0.16), we deduce that D.v and D,v are
Holder by Lemma A.0.1.
0
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Appendix B

Inequalities for powers

Lemma B.0.1 ( [FZ16, Lemma 2.3]). Let p > 1. There exists c(p) > 0 such that if
k>0 and £, € RN then

p—

((2+1€P)T €= (2 +1nP)'T n) (€ —m) > e (2 + 1P+ [n2) 7 Je —nf*

Moreover, there exists another constant C(p) > 0 such that if @ C RY is an open
set and for u, v € W'P(Q) and 0 < s < 1, we set u®(z) = su(z) + (1 — s)v(z), then
the following two inequalities hold:

o forp=>2

"1
/ |[Vu — Vol|P < C’/ gds/ (VP> Vu® — [Vo|P2Vo) - V(u® — v);
Q 0 Q
(B.0.1)
o forl<p<?2

[MiS]

/Q\Vu —VolP <C (/01 éds/Q (V' P=?Vu® — [Vo]P?Vo) - V(u® — v)>
([ avu+ rw)p)l_g .
(B.0.2)

Lemma B.0.2. Let z,y € RY, p € (1,00). Then the following inequalities hold:

e if p>2, then
ylP > |2 + plafP2e - (y — 2) + cly — xf?

for some ¢ = ¢(p) > 0;
o if 1 <p<2, then

p=2
[y[? > [al” + plaf" e - (y — 2) + cly — 2 (|2]* + |y — =)
for some ¢ = ¢(p) > 0.
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Proof. Consider a function f : RY — R defined as f(z) = |z|P. Writing Taylor
expansion for f we get

1
lyl” = Jof” + plaf "z - (y — o) + / (1=t D*f(z+t(y —2)(y —2) - (y — 2) dt.
0
If p = 2, we thus have
2 2 1 2
[yI* = [2” + 22 - (y — ) + Sly — 2%,

which gives us a desired inequality. We shall consider p # 2 from now on.
For p # 2 the Hessian D?f(x) looks as follows:

D?f(x) = pla|P71d + p(p — 2)|2["~* A,
where A; ; = z;x;. We notice that
0 < AE- € < |z*|€]? for any vector € € RY,

yielding
D?f(z)¢ - € > c|z|P2|¢|* for any vector & € RY,

where c=¢(p) >0 (c=pforp>2, c=plp—1)forl <p<2).
So, we have

1
WP 2 Lol +plel 2 (g = 2) 4y ol [ (=0l 41ty - )P
0
Let us consider the cases of different p separately. First, we deal with 1 < p < 2.
In this case p — 2 < 0 and so
3/4

! 1
| a=tlesty—aparz g [ (ol tly = aly ez e (ol 4y - o)
0 1/4

p—2
2
Y

finishing the proof of lemma in this case.
To tackle the case p > 2, we further consider two cases. If |y — x| < 2|z|, then

1 1/4
/(1—ﬂm+dy—@ﬁzﬁzc/‘]ﬂp%#Zdy—ﬂp?
0 0

If instead |y — z| > 2|x|, then
6/7

1
/(1—Uu+ﬂy—@waﬁ20/)]y—ﬂ“%ﬁzdy—ﬂ%?
0 4/7
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