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El Rate-independent evolution and singular perturbation of gradient flows



Evolution by critical/stable points
» H:=R< (~ Hilbert space),
» &£:10,T] x H— Ris a C? time dependent energy with H-differential
DE: [0, T] x H — H.
Typical example: time dependent linear perturbation
E(t,x) :=E(x) — {f(t),x), DE&(t,x) =DE(x)—f(t).

> ug € H.
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» &£:10,T] x H— Ris a C? time dependent energy with H-differential
DE: [0, T] x H — H.
Typical example: time dependent linear perturbation

E(t,x) :=E(x) — {f(t),x), DE&(t,x) =DE(x)—f(t).
> uy € H.
» Critical points:

C= {(t,x) DE(t x) = o},

Ct):= {x: DE(t,x) = 0} = “section of C at time t”.
» p-critical points: fix some p > 0 IDE(t, x)]| < p
» Globally p-stable points:

E(t,x) <E(t,y)+pllu—x|| YyeH
Globally p-stable points are p-critical.
Aim:

Select “reasonable” evolution curves t — u(t) starting from ug such that u(t) is &
critical/stable for every time t € [0, T]. %%
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Time Incremental Minimization Scheme

In the case of global p-stable evolutions, the main tool to provide existence and to
approximate solutions is

The time Incremental Minimization scheme
Fix T:= T/N (for simplicity), t™ := nt, U% = u(0).

Recursively choose U among the minimizers of

U E(tF, W)+ pllU—Up™|

U, := the piecewise constant interpolant of the values U™.



Time Incremental Minimization Scheme

In the case of global p-stable evolutions, the main tool to provide existence and to
approximate solutions is

The time Incremental Minimization scheme
Fix T:= T/N (for simplicity), t™ := nt, U% = u(0).

Recursively choose U among the minimizers of

U E(tF, W)+ pllU—Up™|

U, := the piecewise constant interpolant of the values U™.

Theorem [Mainik-Mielke ’05]:
There exists a sequence k — t(k) | 0 and u: [0, T] — H such that and

U (t) = ult), &t U (t) — E(t,u(t) for every t € [0, T]

and u is called an Energetic solution to the Rate Independent Ssystem
(R.L.S.) (H, &, p).



Energetic solutions

Energetic solution: a curve u : [0, T| — H satisfying for every t € [0, T] the
p-stability condition

E(t,u(t)) < &(t,v) + pllu(t) —v|| foreveryv e H,

and the energy balance

t

&(t, u(t)) + p Var(u, [0, 1)) = £(0, u(0)) +J P(r, u(r)) dr
0

where 3
Pt,x) = a&(t, x).

[Mielke-Theil-Levitas '02, Mielke-Theil '04

Francfort-Marigo '93/'98, DalMaso-Toader '02, Francfort-Larsen '05,
DalMaso-Francfort-Toader 05

Mainik-Mielke '05, Francfort-Mielke '06

Mielke-Roubicek '15]



The “smooth” finite dimensional case
Energetic solutions provides a variational selection among trajectories satisfying

psign(it(t)) + DE(t, u(t)) 5 0 \ in particular || DE(t, u(t))]| < p,

and at every jump point t € J(u) the energetic jump conditions

(t, (u(t=)) — &t u(t+)) = pllu(t+) —u(t+)]



The “smooth” finite dimensional case
Energetic solutions provides a variational selection among trajectories satisfying

psign(it(t)) + DE(t, u(t)) 5 0 \ in particular || DE(t, u(t))]| < p,

and at every jump point t € J(u) the energetic jump conditions

(t, (u(t=)) — &t u(t+)) = pllu(t+) —u(t+)]

flt)—p
E'(u)
L IRN Energetic solution in the
/ Y u(t)  1_gimensional case for a
u(t—) (t+) strictly increasing f.
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A few technical points

» Compactness w.r.t. space: it follows by the compactness of the sublevels
of E and the estimate -
E(t, U.(t)) < C

» Compactness w.r.t. time: it follows by the uniform BV estimate (Helly’s
Theorem)

pVar(U, [0, T]) <C

» Stability: it follows by the stability of each minimizer and from the

closure of the p-stable set {(t, x):E(t,x) < E(t,y) + plly *x||}_



Viscous corrections of the Incremental Minimization Scheme
By introducing a small parameter ¢ = ¢(t) > 0, one may consider the following
modified incremental minimization scheme

minimize UHS(t;‘,UH—PHU—U?’lH—Q—zi_cHU—U“*lHQ

and its limit behaviour in three cases:
» Visco Energetic solutions: [Minotti-S.]

¢/T=un>0and p > 0 are fixed. (VE)
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Viscous corrections of the Incremental Minimization Scheme
By introducing a small parameter ¢ = ¢(t) > 0, one may consider the following
modified incremental minimization scheme

minimize | U (%, U) + pf|U— U™ + 2iT||u —un2

and its limit behaviour in three cases:
» Visco Energetic solutions: [Minotti-S.]

¢/T=un>0and p > 0 are fixed. (VE)

» Balanced Viscosity solutions: [Mielke-Rossi-S.] p > 0 is fixed and ¢
satisfies
el 0, g/T1T +o0, ast/)O0. (BV)

» Vanishing Viscosity solutions: p =0 and

el0, g/TT+4+oc0 astlO. (VV)

The last two methods correspond to the limit behaviour of

psign((t)) + eu(t) + DE(t,u(t)) 30 &
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Singular limit of gradient flows (p = 0)

Main problem

Study the asymptotic behaviour as ¢ | 0 of the solution u, : [0, T] — H of the
gradient flow

{ eug(t) = —DE(t, u.(t))

u.(0) = uy.
Formally, the limit u should be a suitable curve solving
DE(t,u(t)) =0

In order to avoid a transition layer at t = 0 we will assume DE(0, ug) = 0.
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Basic energy estimate
Set P(t,x) = 0:&(t, x). Chain rule: %E(t, x(t)) = (DE(t,x), x'(t)) + P(t, x(t)).

el (0] = ZIDE( uc ()] =~ St x() + Pt we (1),

Energy identity
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ET, uc T+ (Sl (0P + 5 IDE (ke (e)I7) de = £00, wa)+ | (e wele) e

If
lim &(t,x) =400, P(t,x) <A+B|E(L,x)]

[x|—=00

Basic estimates
[us ()| < C
Eltu () <C

;
J Il (9|2 dt < C/e,
0

.
DE(t, u.(t)]|?dt < Ce. =
|| et u o e
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Main difficulties

» Lack of compactness in time: hard to prove BV estimates ([Krejci '2005]:
regulated function, 1-D)

» Characterization of the limit.
Formally, we may expect that a limit curve u provides an
“evolution by critical points of £”

satisfying

DE(t,u(t)) =0, ie u(t)eC(t) tel0, Tl

When €& is uniformly convex C(t) contains only the minimizer of £(t, -) so that the
limit evolution is uniquely characterized.

When € is not convex, one may expect jumps and more complex bifurcation
behaviour when u(t) hits a degenerate critical point of

Cq:= {(t, x) € C(t) : D2, &(t,x) isnot invertible}.



The critical set (1D)




Jumps between curves
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Convergence can be proved by assuming suitably strong transversality
conditions on the set of degenerate critical points Cjy.

» C, isfinite;

» any candidate limit evolution can reach C4 only at points where
D2E(t,x) >0

Ker (D?E(t,x)) = spanv,
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Strong transversality [Zanini, *08]

Convergence can be proved by assuming suitably strong transversality
conditions on the set of degenerate critical points Cjy.

» C, isfinite;
» any candidate limit evolution can reach C4 only at points where
D2E(t,x) >0
Ker (D?E(t,x)) = spanv,
> if (t,x) € Cq then D3&(t, x)v,v,v] #0
0.DE(t, x) V] ;A
) =

In 1D the above conditions mean that G(t, x LE(t, x) satisfies

whenever G(t,x) =0, 3,G(t,x) =0 thend,G(t,x) #0, 02 G(t,x)#0.

Strong transversality implies that C(t) is discrete for every t € [0, T].
[Agostiniani-Rossi, Scilla-Solombrino].

It is a “generic” condition, in the following sense: if £ is C*, for a G5 dense set of
g € Hand Q € Z(H, H) the perturbed energy

Eg.qlt,x) = E&(t,x) — (g,x) — (Qx,x)

satisfies the strong transversality conditions. é’zﬁ



Transversality of the critical set




Simpler Generic conditions
We consider only linear perturbations

Eglt,x) ==&(t,x) —(g,x), DEg(t,x) =DE(t,x) —g.
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Simpler Generic conditions
We consider only linear perturbations

Eglt,x) ==&(t,x) —(g,x), DEg(t,x) =DE(t,x) —g.

A generic decomposition of C [Sard, Quinn, Hirsch, Simon; Saut-Temam]
The set ¢ of g € H such that the total differential

dDE&y(t,x) € Z(R x H;H) is surjective for every (t,x) € C
is open, dense, and its complement is £ 4-negligible.

If g € €, C can be decomposed as the disjoint union of at most countable C!
curves. In particular

C is countably (s#1, 1)-rectifiable.

» &(t,-) is constant on every connected component of C(t).

» There is an at most countable set of times N C [0, T] such that C(t) is not
totally disconnected:
-if t € [0, T] \ N then every connected component of C(t) is reduced to a

point, é';é

-if t € N then C(t) has “larger” connected components. <3



A simple example in infinite dimension

Let Q be a bounded connected open set of R3, H := 12(Q),
D(E) := H2(Q) N H}(Q). Consider

E(u) = L (%\Vu(x)\z +W(u(x))> dx, fe C([0,T]:12(Q)),

E(t,u) =E(u) — JQ f(t, x)u(x)dx, ifue D(E).

—Au(t,x) + W (ut,x)) —g(x) = f(t,x) inQ, u(t,-)=00n03Q.

For a dense G;-subset ¢ in L2(Q) the energy &g, g € U, satisfies the
transversality condition and the critical set is countably (s#*, 1)-rectifiable.



A simple example in infinite dimension

Let Q be a bounded connected open set of R3, H := 12(Q),
D(E) := H2(Q) N H}(Q). Consider

E(u) = L (%\Vu(x)F +W(u(x))> dx, fe C([0,T]:12(Q)),

E(t,u) =E(u) — JQ f(t, x)u(x)dx, ifue D(E).

—Au(t,x) + W (ut,x)) —g(x) = f(t,x) inQ, u(t,-)=00n03Q.
For a dense G;-subset ¢ in L2(Q) the energy &g, g € U, satisfies the
transversality condition and the critical set is countably (s#*, 1)-rectifiable.

One can also consider genericity w.r.t. Q or w.r.t. the coefficients of the elliptic
operator.
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The main compactness result

Theorem (Agostiniani-Rossi-S.)

Suppose that C is countably (£, 1)-rectifiable (it is sufficient that ##* is o-finite
onC)

Then there exists:
» asubsequencen — ¢(n) | 0

» a limit curve u : [0, T] — H such that

lim u,qm)(t) =u(t) foreveryte[0,T].

n—oo
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Letu: [0, T] — H be a limit solution arising from the previous compactness
result.

For the sake of simplicity, we suppose that C(t) is totally disconnected for every
te[0,T],i.e. N =0.
» uis regulated, i.e. for every t € [0, T]
Flimgpuls) = u(t—),
Flimg e u(s) = u(t+),
J(w) :={t € [0, T]: u(t) # u(t+)}is at most countable.

» u(t) € C(t) forevery t € [0, T]\ J(u);if t € J(u) then u(t—), u(t+) € C(t).

» The map t — &(t,u(t)) has bounded variation,
its jump set coincides with the jump set of u
for every 0 < s < t < T the energy balance holds:

E(t,u(t—))+ c(ryu(r—),u(r+)) :8[3,u(s+))+J P(r,u(r))dr

reJ(u)n(s,t) s
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The transition cost c

At every jump t € J(u), the energy dissipation corresponds to the optimal
transition cost:

’ et u(t—)) — &(t,u(th)) = c(t; u(t—), u(t+)) \

For every t € [0, T] the transition cost c(t; u_, u, ) between two points
u_,u; € His given by the “Finsler” metric induced by ||DE||:

c(t;u_,uy) :=inf { L}(S] [IDE(t, (T [0 (T))] dT:

9 € ([0, 1]; H), 9(0) =u_,d(1) =u,
QD) :={r:d(7) ¢ C(t)}

9 € Lipe(Q), €(t,9()) € Lip(10,1))}

We always have

E(t,u_)—E&(t,uy) <cltyu_,uy)




Transitions
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Structure of limit solutions

The limit energy identity
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Structure of limit solutions

The limit energy identity

E(t,u(t—)) + Z cr;u(r—=),u(r+)) |= E(s,u(s+)) + Jt P(r,u(r))dr

reJ(u)n(s,t) N

has two important consequences:

» At every jump point t € J(u) there exists an optimal transition
9 € C([0, 1]; H) connecting u(t—) to u(t+) such that

E(t,u(t—)) — E(t, u(t+)) = c(t; u(t—), u(t+))

» in each connected component of Q(9) C [0, 1] where & ¢ C(t) there is an
increasing change of variable T = t(r), r € (a, b), such that the
(r))

reparametrized transition 0(r) := 9(t(r)) satisfies the gradient flow
equation

d

—0(r) = —DE(t, (1))

dr

at the “frozen time” t.



Jumps in the smooth 1-dimensional case: double-well potential

Limit solution in the 1-dimensional case for a strictly increasing f. The blue line
represents the graph of the jump transition 9.



Outline

A A useful tool: graph convergence
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Main idea
Instead of studying the convergence of u. we consider the limit of their graphs:

G, = {(t,ug(t)) ite [O,T}} C[0TIxH|

a family of compact sets.
We can use Hausdorff-Kuratovski convergence:

Lsn—oo Kn ::{y : E|yn(k) € Kn(k)v Yn(k) 7Y as k1 OO}

Lin—eo Kn ::{y dyn €Kyiyn >y asnToo}

Ki 85K o K=Lsy.oKn=LinoKn

Equivalently,
lim Dy (Kn, K) =0, Dy, is the Hausdorff distance.

n—oo

For every ¢ > 0 there exists 1 € N such that for every n > n

K., is contained in the e-neighborhood of K,
K is contained in the ¢-neighborhood of K., E9



A general compactness property

Blashke compactness theorem

If G, are contained in a common compact set, there exists a subsequence
n+— ¢(n) | 0 and a limit set G such that G, ) LG



A general compactness property

Blashke compactness theorem

If G, are contained in a common compact set, there exists a subsequence
n+— ¢(n) | 0 and a limit set G such that G, ) LG

If moreover the sets G, are connected then also the limit G is connected.
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Properties of the limit graph

Blashke compactness theorem

There exists a subsequence n — ¢(n) | 0 and a limit set G such that
K

Gs(n) = Graph(ue(n) — G.

» G is compact;
» ©(G) = [0, T, mi(t, x) ==1t;
» G is connected and all its sections G(t) := G N{t} x H are connected.
Two alternatives:
» G(t) C C(t): then G(t) ={u(t)}is a singleton;
» G(t) ¢ C(t): then t € J(u) and G(t) contains an optimal transition &
connecting u(t—) with u(t+) along which

E(t,u(t—)) — E(t, u(t+)) = c(t;u(t—), u(t+))



Extensions

» The assumption that C(t) is totally disconnected for every t € [0, T] can be
removed, by working with possibly discontinuous functions at a countable
set of times N C [0, T]. For each t € N we can only say that u(s)
approaches a connected component of C(t) as s — t.
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Extensions

» The assumption that C(t) is totally disconnected for every t € [0, T] can be
removed, by working with possibly discontinuous functions at a countable
set of times N C [0, T]. For each t € N we can only say that u(s)
approaches a connected component of C(t) as s — t.

» H may have infinite dimensions, € has to be
A-convex with compact sublevels.

» D& ~ 3¢, the Fréchet subdifferential; C = {(t,x) : 9€(t,x) 2 0};

» The assumption that C is (#*, 1)-countably rectifiable is sufficient also in
infinite dimension;

» A finer description is possible when € is subanalytic.
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