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Evolution by critical/stable points
I H := Rd ( Hilbert space),
I E : [0, T ]×H→ R is a C2 time dependent energy with H-differential

DE : [0, T ]×H→ H.
Typical example: time dependent linear perturbation

E(t, x) := E(x) − 〈f(t), x〉, DE(t, x) = DE(x) − f(t).

I u0 ∈ H.

I Critical points:

C :=
{
(t, x) : DE(t, x) = 0

}
,

C(t) :=
{
x : DE(t, x) = 0

}
= “section of C at time t”.

I ρ-critical points: fix some ρ > 0 ‖DE(t, x)‖ 6 ρ
I Globally ρ-stable points:

E(t, x) 6 E(t,y) + ρ‖y− x‖ ∀y ∈ H.

Globally ρ-stable points are ρ-critical.

Aim:

Select “reasonable” evolution curves t 7→ u(t) starting from u0 such that u(t) is
critical/stable for every time t ∈ [0, T ].
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Simple examples in 1D
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Time Incremental Minimization Scheme

In the case of global ρ-stable evolutions, the main tool to provide existence and to
approximate solutions is

The time Incremental Minimization scheme

Fix τ := T/N (for simplicity), tnτ := nτ, U0
τ = u(0).

Recursively choose Unτ among the minimizers of

U 7→ E(tnτ ,U) + ρ‖U−Un−1
τ ‖

Uτ := the piecewise constant interpolant of the values Unτ .

Theorem [Mainik-Mielke ’05]:
There exists a sequence k 7→ τ(k) ↓ 0 and u : [0, T ]→ H such that and

Uτ(k)(t)→ u(t), E(t,Uτ(k)(t)→ E(t,u(t)) for every t ∈ [0, T ]

and u is called an Energetic solution to the Rate Independent Ssystem
(R.I.S.) (H,E,ρ).
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Energetic solutions

Energetic solution: a curve u : [0, T ]→ H satisfying for every t ∈ [0, T ] the
ρ-stability condition

E(t,u(t)) 6 E(t, v) + ρ‖u(t) − v‖ for every v ∈ H, (S)

and the energy balance

E(t,u(t)) + ρVar(u, [0, t]) = E(0,u(0)) +

∫ t
0

P(r,u(r)) dr (E)

where

P(t, x) =
∂

∂t
E(t, x).

[Mielke-Theil-Levitas ’02, Mielke-Theil ’04
Francfort-Marigo ’93/’98, DalMaso-Toader ’02, Francfort-Larsen ’05,
DalMaso-Francfort-Toader ’05
Mainik-Mielke ’05, Francfort-Mielke ’06
. . .
Mielke-Roubicek ’15]
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The “smooth” finite dimensional case
Energetic solutions provides a variational selection among trajectories satisfying

ρ sign(u̇(t)) + DE(t,u(t)) 3 0 in particular ‖DE(t,u(t))‖ 6 ρ,

and at every jump point t ∈ J(u) the energetic jump conditions

E(t, (u(t−)) − E(t,u(t+)) = ρ‖u(t+) − u(t+)‖

u(t)

f(t) − ρ

E ′(u)

u(t−) u(t+)

Energetic solution in the
1-dimensional case for a
strictly increasing f.
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A few technical points

I Compactness w.r.t. space: it follows by the compactness of the sublevels
of E and the estimate

E(t,Uτ(t)) 6 C

I Compactness w.r.t. time: it follows by the uniform BV estimate (Helly’s
Theorem)

ρVar(Uτ, [0, T ]) 6 C

I Stability: it follows by the stability of each minimizer and from the

closure of the ρ-stable set
{
(t, x) : E(t, x) 6 E(t,y) + ρ‖y− x‖

}
.
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Viscous corrections of the Incremental Minimization Scheme
By introducing a small parameter ε = ε(τ) > 0, one may consider the following
modified incremental minimization scheme

minimize U 7→ E(tnτ ,U) + ρ‖U−Un−1
τ ‖+ ε

2τ
‖U−Un−1‖2

and its limit behaviour in three cases:
I Visco Energetic solutions: [Minotti-S.]

ε/τ = µ > 0 and ρ > 0 are fixed. (VE)

I Balanced Viscosity solutions: [Mielke-Rossi-S.] ρ > 0 is fixed and ε
satisfies

ε ↓ 0, ε/τ ↑ +∞, as τ ↓ 0. (BV)

I Vanishing Viscosity solutions: ρ = 0 and

ε ↓ 0, ε/τ ↑ +∞ as τ ↓ 0. (VV)

The last two methods correspond to the limit behaviour of

ρ sign(u̇(t)) + εu̇(t)+ DE(t,u(t)) 3 0
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Singular limit of gradient flows (ρ = 0)

Main problem

Study the asymptotic behaviour as ε ↓ 0 of the solution uε : [0, T ]→ H of the
gradient flow {

εu ′
ε(t) = −DE(t,uε(t))

uε(0) = u0.

Formally, the limit u should be a suitable curve solving

DE(t,u(t)) = 0

In order to avoid a transition layer at t = 0 we will assume DE(0,u0) = 0.
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Basic energy estimate
Set P(t, x) = ∂tE(t, x). Chain rule:

d

dt
E(t, x(t)) = 〈DE(t, x), x ′(t)〉+ P(t, x(t)).

ε‖u ′
ε(t)‖2 =

1

ε
‖DE(t,uε(t))‖2 = −

d

dt
E(t, x(t)) + P(t,uε(t)),

Energy identity

E(T ,uε(T))+

∫T
0

( ε
2
‖u ′
ε(t)‖2+

1

2ε
‖DE(t,uε(t))‖2

)
dt = E(0,u0)+

∫T
0

P(t,uε(t)) dt

If
lim

|x|→∞E(t, x) = +∞, P(t, x) 6 A+ B|E(t, x)|

Basic estimates
‖uε(t)‖ 6 C,

E(t,uε(t)) 6 C,∫T
0

‖u ′
ε(t)‖2 dt 6 C/ε,∫T

0

‖DE(t,uε(t)‖2 dt 6 Cε.
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Main difficulties

I Lack of compactness in time: hard to prove BV estimates ([Krejci ’2005]:
regulated function, 1-D)

I Characterization of the limit.

Formally, we may expect that a limit curve u provides an

“evolution by critical points of E”

satisfying
DE(t,u(t)) = 0, i.e. u(t) ∈ C(t) t ∈ [0, T ].

When E is uniformly convex C(t) contains only the minimizer of E(t, ·) so that the
limit evolution is uniquely characterized.

When E is not convex, one may expect jumps and more complex bifurcation
behaviour when u(t) hits a degenerate critical point of

Cd :=
{
(t, x) ∈ C(t) : D2

xxE(t, x) is not invertible
}

.
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The critical set (1D)
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Jumps between curves
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2 Transversality conditions for the critical set
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4 A useful tool: graph convergence
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Strong transversality [Zanini, ’08]

Convergence can be proved by assuming suitably strong transversality
conditions on the set of degenerate critical points Cd.

I Cd is finite;

I any candidate limit evolution can reach Cd only at points where
D2E(t, x) > 0

I if (t, x) ∈ Cd then


Ker

(
D2E(t, x)

)
= span v,

D3E(t, x)[v, v, v] 6= 0

∂tDE(t, x)[v] 6= 0

In 1D the above conditions mean that G(t, x) := ∂xE(t, x) satisfies

whenever G(t, x) = 0, ∂xG(t, x) = 0 then ∂tG(t, x) 6= 0, ∂2xxG(t, x) 6= 0.

Strong transversality implies that C(t) is discrete for every t ∈ [0, T ].
[Agostiniani-Rossi, Scilla-Solombrino].
It is a “generic” condition, in the following sense: if E is C4, for a Gδ dense set of
g ∈ H and Q ∈ L (H,H) the perturbed energy

Eg,Q(t, x) := E(t, x) − 〈g, x〉− 〈Qx, x〉

satisfies the strong transversality conditions.
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Transversality of the critical set
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Simpler Generic conditions
We consider only linear perturbations

Eg(t, x) := E(t, x) − 〈g, x〉, DEg(t, x) = DE(t, x) − g.

A generic decomposition of C [Sard, Quinn, Hirsch, Simon; Saut-Temam]

The set O of g ∈ H such that the total differential

dDEg(t, x) ∈ L (R×H;H) is surjective for every (t, x) ∈ C

is open, dense, and its complement is Ld-negligible.

If g ∈ O , C can be decomposed as the disjoint union of at most countable C1

curves. In particular

C is countably (H 1, 1)-rectifiable.

I E(t, ·) is constant on every connected component of C(t).
I There is an at most countable set of times N ⊂ [0, T ] such that C(t) is not

totally disconnected:
- if t ∈ [0, T ] \N then every connected component of C(t) is reduced to a
point,
- if t ∈ N then C(t) has “larger” connected components.
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A simple example in infinite dimension

Let Ω be a bounded connected open set of R3, H := L2(Ω),
D(E) := H2(Ω) ∩H1

0(Ω). Consider

E(u) :=

∫
Ω

(1

2
|∇u(x)|2 +W(u(x))

)
dx, f ∈ C2([0, T ];L2(Ω)),

E(t,u) = E(u) −

∫
Ω

f(t, x)u(x) dx, if u ∈ D(E).

−∆u(t, x) +W ′(u(t, x)) − g(x) = f(t, x) in Ω, u(t, ·) = 0 on ∂Ω.

For a dense Gδ-subset O in L2(Ω) the energy Eg, g ∈ O , satisfies the
transversality condition and the critical set is countably (H 1, 1)-rectifiable.

One can also consider genericity w.r.t. Ω or w.r.t. the coefficients of the elliptic
operator.
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Outline

1 Rate-independent evolution and singular perturbation of gradient flows

2 Transversality conditions for the critical set

3 Compactness and variational characterization of the limit evolution

4 A useful tool: graph convergence
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The main compactness result

Theorem (Agostiniani-Rossi-S.)

Suppose that C is countably (H 1, 1)-rectifiable (it is sufficient that H 1 is σ-finite
on C)

Then there exists:
I a subsequence n 7→ ε(n) ↓ 0

I a limit curve u : [0, T ]→ H such that

lim
n→∞uε(n)(t) = u(t) for every t ∈ [0, T ].

22



Properties of limit solutions

Let u : [0, T ]→ H be a limit solution arising from the previous compactness
result.

For the sake of simplicity, we suppose that C(t) is totally disconnected for every
t ∈ [0, T ], i.e. N = ∅.

I u is regulated, i.e. for every t ∈ [0, T ]
∃ lims↑t u(s) = u(t−),
∃ lims↓t u(s) = u(t+),
J(u) := {t ∈ [0, T ] : u(t) 6= u(t±)} is at most countable.

I u(t) ∈ C(t) for every t ∈ [0, T ] \ J(u); if t ∈ J(u) then u(t−),u(t+) ∈ C(t).
I The map t 7→ E(t,u(t)) has bounded variation,

its jump set coincides with the jump set of u
for every 0 6 s < t 6 T the energy balance holds:

E(t,u(t−))+
∑

r∈J(u)∩(s,t)

c(r;u(r−),u(r+)) = E(s,u(s+))+

∫ t
s

P(r,u(r)) dr
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The transition cost c

At every jump t ∈ J(u), the energy dissipation corresponds to the optimal
transition cost:

E(t,u(t−)) − E(t,u(t+)) = c(t;u(t−),u(t+))

For every t ∈ [0, T ] the transition cost c(t;u−,u+) between two points
u−,u+ ∈ H is given by the “Finsler” metric induced by ‖DE‖:

c(t;u−,u+) := inf
{ ∫

Ω(ϑ)

‖DE(t, ϑ(τ))‖ ‖ϑ ′(τ))‖ dτ :

ϑ ∈ C([0, 1];H), ϑ(0) = u−, ϑ(1) = u+

Ω(ϑ) := {τ : ϑ(τ) 6∈ C(t)}

ϑ ∈ Liploc(Ω), E(t, ϑ(·)) ∈ Lip([0, 1])
}

We always have
E(t,u−) − E(t,u+) 6 c(t;u−,u+)
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Transitions
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Structure of limit solutions

The limit energy identity

E(t,u(t−)) +
∑

r∈J(u)∩(s,t)

c(r;u(r−),u(r+)) = E(s,u(s+)) +

∫ t
s

P(r,u(r)) dr

has two important consequences:
I At every jump point t ∈ J(u) there exists an optimal transition
ϑ ∈ C([0, 1];H) connecting u(t−) to u(t+) such that

E(t,u(t−)) − E(t,u(t+)) = c(t;u(t−),u(t+))

I in each connected component of Ω(ϑ) ⊂ [0, 1] where ϑ 6∈ C(t) there is an
increasing change of variable τ = τ(r), r ∈ (a,b), such that the
reparametrized transition θ(r) := ϑ(τ(r)) satisfies the gradient flow
equation

d

dr
θ(r) = −DE(t, θ(r))

at the “frozen time” t.
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I in each connected component of Ω(ϑ) ⊂ [0, 1] where ϑ 6∈ C(t) there is an
increasing change of variable τ = τ(r), r ∈ (a,b), such that the
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d
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θ(r) = −DE(t, θ(r))

at the “frozen time” t.
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Jumps in the smooth 1-dimensional case: double-well potential

u(t)

f(t) E ′(u)

u(t−) u(t+)

Limit solution in the 1-dimensional case for a strictly increasing f. The blue line
represents the graph of the jump transition ϑ.
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1 Rate-independent evolution and singular perturbation of gradient flows

2 Transversality conditions for the critical set

3 Compactness and variational characterization of the limit evolution

4 A useful tool: graph convergence
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Main idea
Instead of studying the convergence of uε we consider the limit of their graphs:

Gε :=
{
(t,uε(t)) : t ∈ [0, T ]

}
⊂ [0, T ]×H ,

a family of compact sets.

We can use Hausdorff-Kuratovski convergence:

Lsn→∞Kn :=
{
y : ∃yn(k) ∈ Kn(k), yn(k) → y as k ↑∞}

Lin→∞Kn :=
{
y : ∃yn ∈ Kn : yn → y as n ↑∞}

Kn
K→ K ⇔ K = Lsn→∞Kn = Lin→∞Kn

Equivalently,

lim
n→∞DH(Kn,K) = 0, DH is the Hausdorff distance.

For every ε > 0 there exists n̄ ∈ N such that for every n > n̄

Kn is contained in the ε-neighborhood of K,

K is contained in the ε-neighborhood of Kn,
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A general compactness property

Blashke compactness theorem

If Gε are contained in a common compact set, there exists a subsequence
n 7→ ε(n) ↓ 0 and a limit set G such that Gε(n)

K→ G.

If moreover the sets Gε are connected then also the limit G is connected.
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Properties of the limit graph

Blashke compactness theorem

There exists a subsequence n 7→ ε(n) ↓ 0 and a limit set G such that

Gε(n) = Graph(uε(n)
K→ G.

I G is compact;
I π1(G) = [0, T ], π1(t, x) := t;
I G is connected and all its sections G(t) := G ∩ {t}×H are connected.

Two alternatives:
I G(t) ⊂ C(t): then G(t) = {u(t)} is a singleton;
I G(t) 6⊂ C(t): then t ∈ J(u) and G(t) contains an optimal transition ϑ

connecting u(t−) with u(t+) along which

E(t,u(t−)) − E(t,u(t+)) > c(t;u(t−),u(t+))
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Extensions

I The assumption that C(t) is totally disconnected for every t ∈ [0, T ] can be
removed, by working with possibly discontinuous functions at a countable
set of times N ⊂ [0, T ]. For each t ∈ N we can only say that u(s)
approaches a connected component of C(t) as s→ t.

I H may have infinite dimensions, E has to be

λ-convex with compact sublevels.

I DE ∂E, the Fréchet subdifferential; C =
{
(t, x) : ∂E(t, x) 3 0

}
;

I The assumption that C is (H 1, 1)-countably rectifiable is sufficient also in
infinite dimension;

I A finer description is possible when E is subanalytic.
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