Singular perturbations of gradient flows and rate-independent evolution

Giuseppe Savaré
http://www-dimat.unipv.it/~savare

Dipartimento di Matematica "F. Casorati", Università di Pavia

CALCULUS OF VARIATIONS AND APPLICATIONS
A conference to celebrate Gianni Dal Maso's 65th birthday
January 29, 2020, SISSA, Trieste
In collaboration with Virginia Agostiniani, Riccarda Rossi

Outline

1 Rate-independent evolution and singular perturbation of gradient flows

2 Transversality conditions for the critical set

3 Compactness and variational characterization of the limit evolution

4 A useful tool: graph convergence

Outline

1 Rate-independent evolution and singular perturbation of gradient flows

2 Transversality conditions for the critical set

3 Compactness and variational characterization of the limit evolution

4 A useful tool: graph convergence

Evolution by critical/stable points

- $\mathbb{H}:=\mathbb{R}^{\mathrm{d}}(\rightsquigarrow$ Hilbert space),
- $\mathcal{E}:[0, \mathrm{~T}] \times \mathbb{H} \rightarrow \mathbb{R}$ is a C^{2} time dependent energy with \mathbb{H}-differential $\mathrm{D} \mathcal{E}:[0, \mathrm{~T}] \times \mathbb{H} \rightarrow \mathbb{H}$.
Typical example: time dependent linear perturbation

$$
\mathcal{E}(\mathrm{t}, \mathrm{x}):=\mathrm{E}(\mathrm{x})-\langle\mathrm{f}(\mathrm{t}), \mathrm{x}\rangle, \quad \mathrm{D} \mathcal{E}(\mathrm{t}, \mathrm{x})=\mathrm{DE}(\mathrm{x})-\mathrm{f}(\mathrm{t})
$$

- $\mathbf{u}_{0} \in \mathbb{H}$.

Evolution by critical/stable points

- $\mathbb{H}:=\mathbb{R}^{\mathrm{d}}(\rightsquigarrow$ Hilbert space),
- $\mathcal{E}:[0, \mathrm{~T}] \times \mathbb{H} \rightarrow \mathbb{R}$ is a C^{2} time dependent energy with \mathbb{H}-differential $\mathrm{D} \mathcal{E}:[0, \mathrm{~T}] \times \mathbb{H} \rightarrow \mathbb{H}$.
Typical example: time dependent linear perturbation

$$
\mathcal{E}(\mathrm{t}, \mathrm{x}):=\mathrm{E}(\mathrm{x})-\langle\mathrm{f}(\mathrm{t}), \mathrm{x}\rangle, \quad \mathrm{D} \mathcal{E}(\mathrm{t}, \mathrm{x})=\mathrm{DE}(\mathrm{x})-\mathrm{f}(\mathrm{t}) .
$$

- $\mathbf{u}_{0} \in \mathbb{H}$.
- Critical points:

$$
\begin{aligned}
\mathbf{C} & :=\{(t, x): D \mathcal{E}(\mathrm{t}, \mathrm{x})=0\}, \\
\mathbf{C}(\mathrm{t}) & :=\{x: \mathrm{D} \mathcal{E}(\mathrm{t}, \mathrm{x})=0\}=\text { "section of } \mathrm{C} \text { at time } \mathrm{t} \text { ". }
\end{aligned}
$$

- ρ-critical points: fix some $\rho>0 \quad\|\mathrm{D}(\mathrm{t}, \mathrm{x})\| \leqslant \rho$
- Globally ρ-stable points:

$$
\mathcal{E}(\mathrm{t}, \mathrm{x}) \leqslant \mathcal{E}(\mathrm{t}, \mathrm{y})+\rho\|y-x\| \quad \forall y \in \mathbb{H}
$$

Globally ρ-stable points are ρ-critical.

Evolution by critical/stable points

- $\mathbb{H}:=\mathbb{R}^{\mathrm{d}}(\rightsquigarrow$ Hilbert space),
- $\mathcal{E}:[0, \mathrm{~T}] \times \mathbb{H} \rightarrow \mathbb{R}$ is a C^{2} time dependent energy with \mathbb{H}-differential $\mathrm{D} \mathcal{E}:[0, \mathrm{~T}] \times \mathbb{H} \rightarrow \mathbb{H}$.
Typical example: time dependent linear perturbation

$$
\mathcal{E}(\mathrm{t}, \mathrm{x}):=\mathrm{E}(\mathrm{x})-\langle\mathrm{f}(\mathrm{t}), \mathrm{x}\rangle, \quad \mathrm{D} \mathcal{E}(\mathrm{t}, \mathrm{x})=\mathrm{DE}(\mathrm{x})-\mathrm{f}(\mathrm{t}) .
$$

- $\mathbf{u}_{0} \in \mathbb{H}$.
- Critical points:

$$
\begin{aligned}
\mathbf{C} & :=\{(t, x): D \mathcal{E}(\mathrm{t}, \mathrm{x})=0\}, \\
\mathrm{C}(\mathrm{t}) & :=\{x: \mathrm{D} \mathcal{E}(\mathrm{t}, \mathrm{x})=0\}=\text { "section of } \mathrm{C} \text { at time } \mathrm{t} \text { ". }
\end{aligned}
$$

- ρ-critical points: fix some $\rho>0 \quad\|\mathrm{D}(\mathrm{t}, \mathrm{x})\| \leqslant \rho$
- Globally ρ-stable points:

$$
\mathcal{E}(\mathrm{t}, \mathrm{x}) \leqslant \mathcal{E}(\mathrm{t}, \mathrm{y})+\rho\|y-x\| \quad \forall y \in \mathbb{H}
$$

Globally ρ-stable points are ρ-critical.

Aim:

Select "reasonable" evolution curves $t \mapsto \mathbf{u}(t)$ starting from \mathbf{u}_{0} such that $\mathbf{u}(t)$ is critical/stable for every time $t \in[0, T]$.

Simple examples in 1D

Double well

Time Incremental Minimization Scheme

In the case of global ρ-stable evolutions, the main tool to provide existence and to approximate solutions is

The time Incremental Minimization scheme
Fix $\tau:=T / N$ (for simplicity), $t_{\tau}^{n}:=n \tau, U_{\tau}^{0}=\mathbf{u}(0)$.
Recursively choose U_{τ}^{n} among the minimizers of

$$
\mathrm{U} \mapsto \mathcal{E}\left(\mathrm{t}_{\tau}^{\mathrm{n}}, \mathrm{U}\right)+\rho\left\|\mathrm{U}-\mathrm{U}_{\tau}^{\mathrm{n}-1}\right\|
$$

$\overline{\mathrm{U}}_{\tau}:=$ the piecewise constant interpolant of the values U_{τ}^{n}.

Time Incremental Minimization Scheme

In the case of global ρ-stable evolutions, the main tool to provide existence and to approximate solutions is

The time Incremental Minimization scheme

Fix $\tau:=T / N$ (for simplicity), $t_{\tau}^{n}:=n \tau, U_{\tau}^{0}=\mathbf{u}(0)$.
Recursively choose U_{τ}^{n} among the minimizers of

$$
\mathrm{U} \mapsto \mathcal{E}\left(\mathrm{t}_{\tau}^{\mathrm{n}}, \mathrm{U}\right)+\rho\left\|\mathrm{U}-\mathrm{U}_{\tau}^{\mathrm{n}-1}\right\|
$$

$\overline{\mathrm{U}}_{\tau}:=$ the piecewise constant interpolant of the values U_{τ}^{n}.
Theorem [Mainik-Mielke '05]:
There exists a sequence $\mathrm{k} \mapsto \tau(\mathrm{k}) \downarrow 0$ and $\mathrm{u}:[0, \mathrm{~T}] \rightarrow \mathbb{H}$ such that and

$$
\overline{\mathrm{U}}_{\tau(\mathrm{k})}(\mathrm{t}) \rightarrow \mathbf{u}(\mathrm{t}), \quad \mathcal{E}\left(\mathrm{t}, \overline{\mathrm{U}}_{\tau(\mathrm{k})}(\mathrm{t}) \rightarrow \mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t})) \quad \text { for every } \mathrm{t} \in[0, \mathrm{~T}]\right.
$$

and \mathbf{u} is called an Energetic solution to the Rate Independent Ssystem (R.I.S.) $(\mathbb{H}, \mathcal{E}, \rho)$.

Energetic solutions

Energetic solution: a curve $u:[0, T] \rightarrow \mathbb{H}$ satisfying for every $t \in[0, T]$ the ρ-stability condition

$$
\begin{equation*}
\varepsilon(\mathrm{t}, \mathbf{u}(\mathrm{t})) \leqslant \varepsilon(\mathrm{t}, v)+\rho\|\mathbf{u}(\mathrm{t})-v\| \quad \text { for every } v \in \mathbb{H}, \tag{S}
\end{equation*}
$$

and the energy balance

$$
\begin{equation*}
\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}))+\rho \operatorname{Var}(\mathbf{u},[0, \mathrm{t}])=\mathcal{E}(0, \mathbf{u}(0))+\int_{0}^{\mathrm{t}} \mathcal{P}(\mathrm{r}, \mathbf{u}(\mathrm{r})) \mathrm{dr} \tag{E}
\end{equation*}
$$

where

$$
\mathcal{P}(t, x)=\frac{\partial}{\partial t} \mathcal{E}(t, x) .
$$

[Mielke-Theil-Levitas '02, Mielke-Theil '04
Francfort-Marigo '93/'98, DalMaso-Toader '02, Francfort-Larsen '05,
DalMaso-Francfort-Toader '05
Mainik-Mielke '05, Francfort-Mielke '06
Mielke-Roubicek '15]

The "smooth" finite dimensional case

Energetic solutions provides a variational selection among trajectories satisfying

$$
\rho \operatorname{sign}(\dot{\mathbf{u}}(\mathrm{t}))+\mathrm{D} \mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t})) \ni 0 \quad \text { in particular }\|\mathrm{D} \mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}))\| \leqslant \rho,
$$

and at every jump point $t \in J(u)$ the energetic jump conditions

$$
\mathcal{E}(\mathrm{t},(\mathbf{u}(\mathrm{t}-))-\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}+))=\rho\|\mathbf{u}(\mathrm{t}+)-\mathbf{u}(\mathrm{t}+)\|
$$

The "smooth" finite dimensional case

Energetic solutions provides a variational selection among trajectories satisfying

$$
\rho \operatorname{sign}(\dot{\mathbf{u}}(\mathrm{t}))+\mathrm{D} \mathcal{\varepsilon}(\mathrm{t}, \mathbf{u}(\mathrm{t})) \ni 0 \quad \text { in particular }\|D \mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}))\| \leqslant \rho
$$

and at every jump point $t \in J(u)$ the energetic jump conditions

$$
\mathcal{E}(\mathrm{t},(\mathbf{u}(\mathrm{t}-))-\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}+))=\rho\|\mathbf{u}(\mathrm{t}+)-\mathbf{u}(\mathrm{t}+)\|
$$

Energetic solution in the 1-dimensional case for a strictly increasing f.

A few technical points

- Compactness w.r.t. space: it follows by the compactness of the sublevels of E and the estimate

$$
\mathrm{E}\left(\mathrm{t}, \overline{\mathrm{U}}_{\tau}(\mathrm{t})\right) \leqslant \mathrm{C}
$$

A few technical points

- Compactness w.r.t. space: it follows by the compactness of the sublevels of E and the estimate

$$
\mathrm{E}\left(\mathrm{t}, \overline{\mathrm{U}}_{\tau}(\mathrm{t})\right) \leqslant \mathrm{C}
$$

- Compactness w.r.t. time: it follows by the uniform BV estimate (Helly's Theorem)

$$
\rho \operatorname{Var}\left(\overline{\mathrm{U}}_{\tau},[0, \mathrm{~T}]\right) \leqslant \mathrm{C}
$$

A few technical points

- Compactness w.r.t. space: it follows by the compactness of the sublevels of E and the estimate

$$
\mathrm{E}\left(\mathrm{t}, \overline{\mathrm{U}}_{\tau}(\mathrm{t})\right) \leqslant \mathrm{C}
$$

- Compactness w.r.t. time: it follows by the uniform BV estimate (Helly's Theorem)

$$
\rho \operatorname{Var}\left(\overline{\mathrm{U}}_{\tau},[0, \mathrm{~T}]\right) \leqslant \mathrm{C}
$$

- Stability: it follows by the stability of each minimizer and from the

$$
\text { closure of the } \rho \text {-stable set }\{(t, x): E(t, x) \leqslant E(t, y)+\rho\|y-x\|\}
$$

Viscous corrections of the Incremental Minimization Scheme

By introducing a small parameter $\varepsilon=\varepsilon(\tau)>0$, one may consider the following modified incremental minimization scheme

$$
\text { minimize } \quad \mathrm{U} \mapsto \mathcal{E}\left(\mathrm{t}_{\tau}^{\mathrm{n}}, \mathrm{U}\right)+\rho\left\|\mathrm{U}-\mathrm{U}_{\tau}^{\mathrm{n}-1}\right\|+\frac{\varepsilon}{2 \tau}\left\|\mathrm{U}-\mathrm{U}^{\mathrm{n}-1}\right\|^{2}
$$

and its limit behaviour in three cases:

- Visco Energetic solutions: [Minotti-S.]

$$
\begin{equation*}
\varepsilon / \tau=\mu>0 \text { and } \rho>0 \text { are fixed. } \tag{VE}
\end{equation*}
$$

Viscous corrections of the Incremental Minimization Scheme

By introducing a small parameter $\varepsilon=\varepsilon(\tau)>0$, one may consider the following modified incremental minimization scheme

$$
\text { minimize } \quad \mathrm{U} \mapsto \mathcal{E}\left(\mathrm{t}_{\tau}^{\mathrm{n}}, \mathrm{U}\right)+\rho\left\|\mathrm{U}-\mathrm{U}_{\tau}^{\mathrm{n}-1}\right\|+\frac{\varepsilon}{2 \tau}\left\|\mathrm{U}-\mathrm{U}^{\mathrm{n}-1}\right\|^{2}
$$

and its limit behaviour in three cases:

- Visco Energetic solutions: [Minotti-S.]

$$
\begin{equation*}
\varepsilon / \tau=\mu>0 \text { and } \rho>0 \text { are fixed. } \tag{VE}
\end{equation*}
$$

- Balanced Viscosity solutions: [Mielke-Rossi-S.] $\rho>0$ is fixed and ε satisfies

$$
\begin{equation*}
\varepsilon \downarrow 0, \quad \varepsilon / \tau \uparrow+\infty, \quad \text { as } \tau \downarrow 0 \tag{BV}
\end{equation*}
$$

Viscous corrections of the Incremental Minimization Scheme

By introducing a small parameter $\varepsilon=\varepsilon(\tau)>0$, one may consider the following modified incremental minimization scheme
minimize

$$
\mathrm{U} \mapsto \mathcal{E}\left(\mathrm{t}_{\tau}^{\mathrm{n}}, \mathrm{U}\right)+\rho\left\|\mathrm{U}-\mathrm{U}_{\tau}^{\mathrm{n}-1}\right\|+\frac{\varepsilon}{2 \tau}\left\|\mathrm{U}-\mathrm{U}^{\mathrm{n}-1}\right\|^{2}
$$

and its limit behaviour in three cases:

- Visco Energetic solutions: [Minotti-S.]

$$
\begin{equation*}
\varepsilon / \tau=\mu>0 \text { and } \rho>0 \text { are fixed. } \tag{VE}
\end{equation*}
$$

- Balanced Viscosity solutions: [Mielke-Rossi-S.] $\rho>0$ is fixed and ε satisfies

$$
\begin{equation*}
\varepsilon \downarrow 0, \quad \varepsilon / \tau \uparrow+\infty, \quad \text { as } \tau \downarrow 0 \tag{BV}
\end{equation*}
$$

- Vanishing Viscosity solutions: $\rho=0$ and

$$
\begin{equation*}
\varepsilon \downarrow 0, \quad \varepsilon / \tau \uparrow+\infty \quad \text { as } \tau \downarrow 0 \tag{VV}
\end{equation*}
$$

Viscous corrections of the Incremental Minimization Scheme

By introducing a small parameter $\varepsilon=\varepsilon(\tau)>0$, one may consider the following modified incremental minimization scheme
minimize

$$
\mathrm{U} \mapsto \mathcal{E}\left(\mathrm{t}_{\tau}^{\mathrm{n}}, \mathrm{U}\right)+\rho\left\|\mathrm{U}-\mathrm{U}_{\tau}^{\mathrm{n}-1}\right\|+\frac{\varepsilon}{2 \tau}\left\|\mathrm{U}-\mathrm{U}^{\mathrm{n}-1}\right\|^{2}
$$

and its limit behaviour in three cases:

- Visco Energetic solutions: [Minotti-S.]

$$
\begin{equation*}
\varepsilon / \tau=\mu>0 \text { and } \rho>0 \text { are fixed. } \tag{VE}
\end{equation*}
$$

- Balanced Viscosity solutions: [Mielke-Rossi-S.] $\rho>0$ is fixed and ε satisfies

$$
\begin{equation*}
\varepsilon \downarrow 0, \quad \varepsilon / \tau \uparrow+\infty, \quad \text { as } \tau \downarrow 0 \tag{BV}
\end{equation*}
$$

- Vanishing Viscosity solutions: $\rho=0$ and

$$
\begin{equation*}
\varepsilon \downarrow 0, \quad \varepsilon / \tau \uparrow+\infty \quad \text { as } \tau \downarrow 0 \tag{VV}
\end{equation*}
$$

The last two methods correspond to the limit behaviour of

$$
\rho \operatorname{sign}(\dot{\mathbf{u}}(\mathrm{t}))+\varepsilon \dot{\mathbf{u}}(\mathrm{t})+\mathrm{D} \mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t})) \ni 0
$$

Singular limit of gradient flows $(\rho=0)$

Main problem

Study the asymptotic behaviour as $\varepsilon \downarrow 0$ of the solution $\mathfrak{u}_{\varepsilon}:[0, \mathrm{~T}] \rightarrow \mathbb{H}$ of the gradient flow

$$
\left\{\begin{aligned}
\varepsilon \mathbf{u}_{\varepsilon}^{\prime}(\mathrm{t}) & =-\mathrm{D} \mathcal{E}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right) \\
\mathbf{u}_{\varepsilon}(0) & =\mathbf{u}_{0}
\end{aligned}\right.
$$

Singular limit of gradient flows $(\rho=0)$

Main problem

Study the asymptotic behaviour as $\varepsilon \downarrow 0$ of the solution $\mathfrak{u}_{\varepsilon}:[0, T] \rightarrow \mathbb{H}$ of the gradient flow

$$
\left\{\begin{aligned}
\varepsilon \mathbf{u}_{\varepsilon}^{\prime}(\mathrm{t}) & =-\mathrm{D} \mathcal{E}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right) \\
\mathbf{u}_{\varepsilon}(0) & =\mathbf{u}_{0}
\end{aligned}\right.
$$

Formally, the limit u should be a suitable curve solving

$$
\mathrm{D} \mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}))=0
$$

Singular limit of gradient flows $(\rho=0)$

Main problem

Study the asymptotic behaviour as $\varepsilon \downarrow 0$ of the solution $\mathbf{u}_{\varepsilon}:[0, \mathrm{~T}] \rightarrow \mathbb{H}$ of the gradient flow

$$
\left\{\begin{aligned}
\varepsilon \mathbf{u}_{\varepsilon}^{\prime}(\mathrm{t}) & =-\mathrm{D} \mathcal{E}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right) \\
\mathbf{u}_{\varepsilon}(0) & =\mathbf{u}_{0}
\end{aligned}\right.
$$

Formally, the limit \mathbf{u} should be a suitable curve solving

$$
\mathrm{D} \mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}))=0
$$

In order to avoid a transition layer at $t=0$ we will assume $D \mathcal{E}\left(0, \mathbf{u}_{0}\right)=0$.

Basic energy estimate

Set $\mathcal{P}(t, x)=\partial_{t} \mathcal{E}(t, x)$. Chain rule: $\frac{d}{d t} \mathcal{E}(t, x(t))=\left\langle D \mathcal{E}(t, x), x^{\prime}(t)\right\rangle+\mathcal{P}(t, x(t))$.

Basic energy estimate

Set $\mathcal{P}(t, x)=\partial_{t} \mathcal{E}(t, x)$. Chain rule: $\frac{d}{d t} \mathcal{E}(t, x(t))=\left\langle D \mathcal{E}(t, x), x^{\prime}(t)\right\rangle+\mathcal{P}(t, x(t))$.

$$
\varepsilon\left\|\mathbf{u}_{\varepsilon}^{\prime}(\mathrm{t})\right\|^{2}=\frac{1}{\varepsilon}\left\|\mathrm{D} \varepsilon\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right)\right\|^{2}=-\frac{\mathrm{d}}{\mathrm{dt}} \varepsilon(\mathrm{t}, \mathrm{x}(\mathrm{t}))+\mathcal{P}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right),
$$

Basic energy estimate

Set $\mathcal{P}(\mathrm{t}, \mathrm{x})=\partial_{\mathrm{t}} \mathcal{E}(\mathrm{t}, \mathrm{x})$. Chain rule: $\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{E}(\mathrm{t}, \mathrm{x}(\mathrm{t}))=\left\langle\mathrm{D} \mathcal{E}(\mathrm{t}, \mathrm{x}), \mathrm{x}^{\prime}(\mathrm{t})\right\rangle+\mathcal{P}(\mathrm{t}, \mathrm{x}(\mathrm{t}))$.

$$
\varepsilon\left\|\mathbf{u}_{\varepsilon}^{\prime}(\mathrm{t})\right\|^{2}=\frac{1}{\varepsilon}\left\|\mathrm{D} \mathcal{E}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right)\right\|^{2}=-\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{E}(\mathrm{t}, \mathrm{x}(\mathrm{t}))+\mathcal{P}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right)
$$

Energy identity

$\mathcal{E}\left(T, \mathbf{u}_{\varepsilon}(\mathrm{T})\right)+\int_{0}^{T}\left(\frac{\varepsilon}{2}\left\|\mathbf{u}_{\varepsilon}^{\prime}(\mathrm{t})\right\|^{2}+\frac{1}{2 \varepsilon}\left\|D \mathcal{E}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right)\right\|^{2}\right) d t=\mathcal{E}\left(0, \mathbf{u}_{0}\right)+\int_{0}^{T} \mathcal{P}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right) \mathrm{dt}$

Basic energy estimate

Set $\mathcal{P}(t, x)=\partial_{t} \mathcal{E}(t, x)$. Chain rule: $\frac{d}{d t} \mathcal{E}(t, x(t))=\left\langle D \mathcal{E}(t, x), x^{\prime}(t)\right\rangle+\mathcal{P}(t, x(t))$.

$$
\varepsilon\left\|\mathbf{u}_{\varepsilon}^{\prime}(\mathrm{t})\right\|^{2}=\frac{1}{\varepsilon}\left\|\mathrm{D} \mathcal{E}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right)\right\|^{2}=-\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{E}(\mathrm{t}, \mathrm{x}(\mathrm{t}))+\mathcal{P}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right)
$$

Energy identity

$\mathcal{E}\left(T, \mathbf{u}_{\varepsilon}(\mathrm{T})\right)+\int_{0}^{T}\left(\frac{\varepsilon}{2}\left\|\mathbf{u}_{\varepsilon}^{\prime}(\mathrm{t})\right\|^{2}+\frac{1}{2 \varepsilon}\left\|\mathrm{D} \mathcal{E}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right)\right\|^{2}\right) \mathrm{dt}=\mathcal{E}\left(0, \mathbf{u}_{0}\right)+\int_{0}^{T} \mathcal{P}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right) \mathrm{dt}$
If

$$
\lim _{|x| \rightarrow \infty} \mathcal{E}(t, x)=+\infty, \quad \mathcal{P}(t, x) \leqslant A+B|\mathcal{E}(t, x)|
$$

Basic energy estimate

Set $\mathcal{P}(\mathrm{t}, \mathrm{x})=\partial_{\mathrm{t}} \mathcal{E}(\mathrm{t}, \mathrm{x})$. Chain rule: $\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{E}(\mathrm{t}, \mathrm{x}(\mathrm{t}))=\left\langle\mathrm{D} \mathcal{E}(\mathrm{t}, \mathrm{x}), \mathrm{x}^{\prime}(\mathrm{t})\right\rangle+\mathcal{P}(\mathrm{t}, \mathrm{x}(\mathrm{t}))$.

$$
\varepsilon\left\|\mathbf{u}_{\varepsilon}^{\prime}(\mathrm{t})\right\|^{2}=\frac{1}{\varepsilon}\left\|\mathrm{D} \mathcal{E}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right)\right\|^{2}=-\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{E}(\mathrm{t}, \mathrm{x}(\mathrm{t}))+\mathcal{P}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right)
$$

Energy identity

$\mathcal{E}\left(T, \mathbf{u}_{\varepsilon}(\mathrm{T})\right)+\int_{0}^{T}\left(\frac{\varepsilon}{2}\left\|\mathbf{u}_{\varepsilon}^{\prime}(\mathrm{t})\right\|^{2}+\frac{1}{2 \varepsilon}\left\|\mathrm{D} \mathcal{E}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right)\right\|^{2}\right) \mathrm{dt}=\mathcal{E}\left(0, \mathbf{u}_{0}\right)+\int_{0}^{T} \mathcal{P}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right) \mathrm{dt}$
If

$$
\lim _{|x| \rightarrow \infty} \mathcal{E}(t, x)=+\infty, \quad \mathcal{P}(t, x) \leqslant A+B|\mathcal{E}(t, x)|
$$

Basic estimates

$$
\left\|\mathbf{u}_{\varepsilon}(\mathrm{t})\right\| \leqslant \mathrm{C}
$$

Basic energy estimate

Set $\mathcal{P}(\mathrm{t}, \mathrm{x})=\partial_{\mathrm{t}} \mathcal{E}(\mathrm{t}, \mathrm{x})$. Chain rule: $\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{E}(\mathrm{t}, \mathrm{x}(\mathrm{t}))=\left\langle\mathrm{D} \mathcal{E}(\mathrm{t}, \mathrm{x}), \mathrm{x}^{\prime}(\mathrm{t})\right\rangle+\mathcal{P}(\mathrm{t}, \mathrm{x}(\mathrm{t}))$.

$$
\varepsilon\left\|\mathbf{u}_{\varepsilon}^{\prime}(\mathrm{t})\right\|^{2}=\frac{1}{\varepsilon}\left\|\mathrm{D} \mathcal{E}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right)\right\|^{2}=-\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{E}(\mathrm{t}, \mathrm{x}(\mathrm{t}))+\mathcal{P}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right)
$$

Energy identity

$\mathcal{E}\left(T, \mathbf{u}_{\varepsilon}(\mathrm{T})\right)+\int_{0}^{T}\left(\frac{\varepsilon}{2}\left\|\mathbf{u}_{\varepsilon}^{\prime}(\mathrm{t})\right\|^{2}+\frac{1}{2 \varepsilon}\left\|\mathrm{D} \mathcal{E}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right)\right\|^{2}\right) \mathrm{dt}=\mathcal{E}\left(0, \mathbf{u}_{0}\right)+\int_{0}^{T} \mathcal{P}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right) \mathrm{dt}$
If

$$
\lim _{|x| \rightarrow \infty} \mathcal{E}(t, x)=+\infty, \quad \mathcal{P}(t, x) \leqslant A+B|\mathcal{E}(t, x)|
$$

Basic estimates

$$
\begin{aligned}
\left\|\mathbf{u}_{\varepsilon}(\mathrm{t})\right\| & \leqslant \mathrm{C} \\
\mathcal{E}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right) & \leqslant \mathrm{C}
\end{aligned}
$$

Basic energy estimate

Set $\mathcal{P}(\mathrm{t}, \mathrm{x})=\partial_{\mathrm{t}} \mathcal{E}(\mathrm{t}, \mathrm{x})$. Chain rule: $\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{E}(\mathrm{t}, \mathrm{x}(\mathrm{t}))=\left\langle\mathrm{D} \mathcal{E}(\mathrm{t}, \mathrm{x}), \mathrm{x}^{\prime}(\mathrm{t})\right\rangle+\mathcal{P}(\mathrm{t}, \mathrm{x}(\mathrm{t}))$.

$$
\varepsilon\left\|u_{\varepsilon}^{\prime}(\mathrm{t})\right\|^{2}=\frac{1}{\varepsilon}\left\|\mathrm{D} \mathcal{E}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right)\right\|^{2}=-\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{E}(\mathrm{t}, \mathrm{x}(\mathrm{t}))+\mathcal{P}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right)
$$

Energy identity

$\mathcal{E}\left(T, \mathbf{u}_{\varepsilon}(\mathrm{T})\right)+\int_{0}^{T}\left(\frac{\varepsilon}{2}\left\|\mathbf{u}_{\varepsilon}^{\prime}(\mathrm{t})\right\|^{2}+\frac{1}{2 \varepsilon}\left\|\mathrm{D} \mathcal{E}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right)\right\|^{2}\right) \mathrm{dt}=\mathcal{E}\left(0, \mathbf{u}_{0}\right)+\int_{0}^{T} \mathcal{P}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right) \mathrm{dt}$
If

$$
\lim _{|x| \rightarrow \infty} \mathcal{E}(t, x)=+\infty, \quad \mathcal{P}(t, x) \leqslant A+B|\mathcal{E}(t, x)|
$$

Basic estimates

$$
\begin{aligned}
\left\|\mathbf{u}_{\varepsilon}(\mathrm{t})\right\| & \leqslant \mathrm{C} \\
\mathcal{E}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right) & \leqslant \mathrm{C} \\
\int_{0}^{T}\left\|\mathbf{u}_{\varepsilon}^{\prime}(\mathrm{t})\right\|^{2} \mathrm{dt} & \leqslant \mathrm{C} / \varepsilon
\end{aligned}
$$

Basic energy estimate

Set $\mathcal{P}(\mathrm{t}, \mathrm{x})=\partial_{\mathrm{t}} \mathcal{E}(\mathrm{t}, \mathrm{x})$. Chain rule: $\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{E}(\mathrm{t}, \mathrm{x}(\mathrm{t}))=\left\langle\mathrm{D} \mathcal{E}(\mathrm{t}, \mathrm{x}), \mathrm{x}^{\prime}(\mathrm{t})\right\rangle+\mathcal{P}(\mathrm{t}, \mathrm{x}(\mathrm{t}))$.

$$
\varepsilon\left\|\mathbf{u}_{\varepsilon}^{\prime}(\mathrm{t})\right\|^{2}=\frac{1}{\varepsilon}\left\|\mathrm{D} \mathcal{E}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right)\right\|^{2}=-\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{E}(\mathrm{t}, \mathrm{x}(\mathrm{t}))+\mathcal{P}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right)
$$

Energy identity

$\mathcal{E}\left(T, \mathbf{u}_{\varepsilon}(\mathrm{T})\right)+\int_{0}^{T}\left(\frac{\varepsilon}{2}\left\|\mathbf{u}_{\varepsilon}^{\prime}(\mathrm{t})\right\|^{2}+\frac{1}{2 \varepsilon}\left\|\mathrm{D} \mathcal{E}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right)\right\|^{2}\right) \mathrm{dt}=\mathcal{E}\left(0, \mathbf{u}_{0}\right)+\int_{0}^{T} \mathcal{P}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right) \mathrm{dt}$
If

$$
\lim _{|x| \rightarrow \infty} \mathcal{E}(t, x)=+\infty, \quad \mathcal{P}(t, x) \leqslant A+B|\mathcal{E}(t, x)|
$$

Basic estimates

$$
\begin{aligned}
\left\|\mathbf{u}_{\varepsilon}(\mathrm{t})\right\| & \leqslant \mathrm{C} \\
\mathcal{E}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right) & \leqslant \mathrm{C} \\
\int_{0}^{T}\left\|\mathbf{u}_{\varepsilon}^{\prime}(\mathrm{t})\right\|^{2} \mathrm{dt} & \leqslant \mathrm{C} / \varepsilon \\
\int_{0}^{T} \| \mathrm{D} \mathcal{E}\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t}) \|^{2} \mathrm{dt}\right. & \leqslant \mathrm{C} \varepsilon
\end{aligned}
$$

Main difficulties

- Lack of compactness in time: hard to prove BV estimates ([Krejci '2005]: regulated function, 1-D)

Main difficulties

- Lack of compactness in time: hard to prove BV estimates ([Krejci '2005]: regulated function, 1-D)
- Characterization of the limit.

Main difficulties

- Lack of compactness in time: hard to prove BV estimates ([Krejci '2005]: regulated function, 1-D)
- Characterization of the limit.

Formally, we may expect that a limit curve u provides an
"evolution by critical points of \mathcal{E} "
satisfying

$$
\mathrm{D} \mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}))=0, \quad \text { i.e. } \quad \mathbf{u}(\mathrm{t}) \in \mathbf{C}(\mathrm{t}) \quad \mathrm{t} \in[0, \mathrm{~T}]
$$

Main difficulties

- Lack of compactness in time: hard to prove BV estimates ([Krejci '2005]: regulated function, 1-D)
- Characterization of the limit.

Formally, we may expect that a limit curve u provides an
"evolution by critical points of $\mathcal{E} "$
satisfying

$$
\mathrm{D} \mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}))=0, \quad \text { i.e. } \quad \mathbf{u}(\mathrm{t}) \in \mathbf{C}(\mathrm{t}) \quad \mathrm{t} \in[0, \mathrm{~T}]
$$

When \mathcal{E} is uniformly convex $\mathbf{C}(\mathrm{t})$ contains only the minimizer of $\mathcal{E}(\mathrm{t}, \cdot)$ so that the limit evolution is uniquely characterized.

Main difficulties

- Lack of compactness in time: hard to prove BV estimates ([Krejci '2005]: regulated function, 1-D)
- Characterization of the limit.

Formally, we may expect that a limit curve u provides an
"evolution by critical points of $\mathcal{E} "$
satisfying

$$
\mathrm{D} \mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}))=0, \quad \text { i.e. } \quad \mathbf{u}(\mathrm{t}) \in \mathbf{C}(\mathrm{t}) \quad \mathrm{t} \in[0, \mathrm{~T}]
$$

When \mathcal{E} is uniformly convex $\mathbf{C}(\mathrm{t})$ contains only the minimizer of $\mathcal{E}(\mathrm{t}, \cdot)$ so that the limit evolution is uniquely characterized.

When \mathcal{E} is not convex, one may expect jumps and more complex bifurcation behaviour when $\mathbf{u}(t)$ hits a degenerate critical point of

$$
\mathbf{C}_{\mathrm{d}}:=\left\{(\mathrm{t}, \mathrm{x}) \in \mathbf{C}(\mathrm{t}): \mathrm{D}_{x x}^{2} \mathcal{E}(\mathrm{t}, \mathrm{x}) \quad \text { is not invertible }\right\}
$$

The critical set (1D)

Jumps between curves

Outline

1 Rate-independent evolution and singular perturbation of gradient flows

2 Transversality conditions for the critical set

3 Compactness and variational characterization of the limit evolution

4 A useful tool: graph convergence

Strong transversality [Zanini, '08]

Convergence can be proved by assuming suitably strong transversality conditions on the set of degenerate critical points \mathbf{C}_{d}.

Strong transversality [Zanini, '08]

Convergence can be proved by assuming suitably strong transversality conditions on the set of degenerate critical points \mathbf{C}_{d}.

- C_{d} is finite;

Strong transversality [Zanini, '08]

Convergence can be proved by assuming suitably strong transversality conditions on the set of degenerate critical points \mathbf{C}_{d}.

- C_{d} is finite;
- any candidate limit evolution can reach C_{d} only at points where $\mathrm{D}^{2} \mathcal{E}(\mathrm{t}, \mathrm{x}) \geqslant 0$

Strong transversality [Zanini, '08]

Convergence can be proved by assuming suitably strong transversality conditions on the set of degenerate critical points \mathbf{C}_{d}.

- C_{d} is finite;
- any candidate limit evolution can reach C_{d} only at points where $\mathrm{D}^{2} \mathcal{E}(\mathrm{t}, \mathrm{x}) \geqslant 0$
- if $(t, x) \in C_{d}$ then $\left\{\begin{aligned} \operatorname{Ker}\left(D^{2} \mathcal{E}(t, x)\right) & =\operatorname{span} v, \\ D^{3} \mathcal{E}(t, x)[v, v, v] & \neq 0 \\ \partial_{t} D \mathcal{E}(t, x)[v] & \neq 0\end{aligned}\right.$

Strong transversality [Zanini, '08]

Convergence can be proved by assuming suitably strong transversality conditions on the set of degenerate critical points C_{d}.

- C_{d} is finite;
- any candidate limit evolution can reach \mathbf{C}_{d} only at points where $D^{2} \mathcal{E}(t, x) \geqslant 0$
- if $(t, x) \in C_{d}$ then $\left\{\begin{aligned} \operatorname{Ker}\left(D^{2} \varepsilon(t, x)\right) & =\operatorname{span} v, \\ D^{3} \varepsilon(t, x)[v, v, v] & \neq 0 \\ \partial_{t} D \mathcal{E}(t, x)[v] & \neq 0\end{aligned}\right.$

In 1 D the above conditions mean that $\mathrm{G}(\mathrm{t}, \mathrm{x}):=\partial_{x} \mathcal{E}(\mathrm{t}, \mathrm{x})$ satisfies
whenever $G(t, x)=0, \partial_{x} G(t, x)=0$ then $\partial_{t} G(t, x) \neq 0, \quad \partial_{x x}^{2} G(t, x) \neq 0$.
Strong transversality implies that $\mathbf{C}(\mathrm{t})$ is discrete for every $\mathrm{t} \in[0, \mathrm{~T}]$. [Agostiniani-Rossi, Scilla-Solombrino].

Strong transversality [Zanini, '08]

Convergence can be proved by assuming suitably strong transversality conditions on the set of degenerate critical points C_{d}.

- C_{d} is finite;
- any candidate limit evolution can reach \mathbf{C}_{d} only at points where $D^{2} \mathcal{E}(t, x) \geqslant 0$
- if $(t, x) \in C_{d}$ then $\left\{\begin{aligned} \operatorname{Ker}\left(D^{2} \varepsilon(t, x)\right) & =\operatorname{span} v, \\ D^{3} \varepsilon(t, x)[v, v, v] & \neq 0 \\ \partial_{t} D \varepsilon(t, x)[v] & \neq 0\end{aligned}\right.$

In 1D the above conditions mean that $G(t, x):=\partial_{x} \mathcal{E}(t, x)$ satisfies

$$
\text { whenever } G(t, x)=0, \partial_{x} G(t, x)=0 \text { then } \partial_{t} G(t, x) \neq 0, \quad \partial_{x x}^{2} G(t, x) \neq 0 .
$$

Strong transversality implies that $\mathbf{C}(\mathrm{t})$ is discrete for every $\mathrm{t} \in[0, \mathrm{~T}]$. [Agostiniani-Rossi, Scilla-Solombrino].
It is a "generic" condition, in the following sense: if \mathcal{E} is C^{4}, for a G_{δ} dense set of $\mathrm{g} \in \mathbb{H}$ and $\mathrm{Q} \in \mathscr{L}(\mathbb{H}, \mathbb{H})$ the perturbed energy

$$
\mathcal{E}_{\mathrm{g}, \mathrm{Q}}(\mathrm{t}, \mathrm{x}):=\mathcal{E}(\mathrm{t}, \mathrm{x})-\langle\mathrm{g}, \mathrm{x}\rangle-\langle\mathrm{Qx}, \mathrm{x}\rangle
$$

satisfies the strong transversality conditions.

Transversality of the critical set

Simpler Generic conditions

We consider only linear perturbations

$$
\mathcal{E}_{\mathrm{g}}(\mathrm{t}, \mathrm{x}):=\mathcal{E}(\mathrm{t}, \mathrm{x})-\langle\mathrm{g}, \mathrm{x}\rangle, \quad \mathrm{D} \mathcal{E}_{\mathrm{g}}(\mathrm{t}, \mathrm{x})=\mathrm{D} \mathcal{E}(\mathrm{t}, \mathrm{x})-\mathrm{g} .
$$

A generic decomposition of C [Sard, Quinn, Hirsch, Simon; Saut-Temam]
The set \mathscr{O} of $g \in \mathbb{H}$ such that the total differential

$$
\mathrm{dD} \mathcal{E}_{\mathrm{g}}(\mathrm{t}, \mathrm{x}) \in \mathscr{L}(\mathbb{R} \times \mathbb{H} ; \mathbb{H}) \quad \text { is surjective for every }(\mathrm{t}, \mathrm{x}) \in \mathbf{C}
$$

is open, dense, and its complement is \mathcal{L}^{d}-negligible.

Simpler Generic conditions

We consider only linear perturbations

$$
\mathcal{E}_{\mathrm{g}}(\mathrm{t}, \mathrm{x}):=\mathcal{E}(\mathrm{t}, \mathrm{x})-\langle\mathrm{g}, \mathrm{x}\rangle, \quad \mathrm{D} \mathcal{E}_{\mathrm{g}}(\mathrm{t}, \mathrm{x})=\mathrm{D} \mathcal{E}(\mathrm{t}, \mathrm{x})-\mathrm{g} .
$$

A generic decomposition of C [Sard, Quinn, Hirsch, Simon; Saut-Temam]

The set \mathscr{O} of $g \in \mathbb{H}$ such that the total differential

$$
\mathrm{dD} \mathcal{E}_{\mathrm{g}}(\mathrm{t}, \mathrm{x}) \in \mathscr{L}(\mathbb{R} \times \mathbb{H} ; \mathbb{H}) \quad \text { is surjective for every }(\mathrm{t}, \mathrm{x}) \in \mathbf{C}
$$

is open, dense, and its complement is \mathcal{L}^{d}-negligible.
If $\mathbf{g} \in \mathscr{O}, \mathbf{C}$ can be decomposed as the disjoint union of at most countable C^{1} curves. In particular

$$
\text { C is countably }\left(\mathscr{H}^{1}, 1\right) \text {-rectifiable. }
$$

Simpler Generic conditions

We consider only linear perturbations

$$
\mathcal{E}_{\mathrm{g}}(\mathrm{t}, \mathrm{x}):=\mathcal{E}(\mathrm{t}, \mathrm{x})-\langle\mathrm{g}, \mathrm{x}\rangle, \quad \mathrm{D} \mathcal{E}_{\mathrm{g}}(\mathrm{t}, \mathrm{x})=\mathrm{D} \mathcal{E}(\mathrm{t}, \mathrm{x})-\mathrm{g} .
$$

A generic decomposition of C [Sard, Quinn, Hirsch, Simon; Saut-Temam]

The set \mathscr{O} of $g \in \mathbb{H}$ such that the total differential

$$
\mathrm{dD} \mathcal{E}_{\mathrm{g}}(\mathrm{t}, \mathrm{x}) \in \mathscr{L}(\mathbb{R} \times \mathbb{H} ; \mathbb{H}) \quad \text { is surjective for every }(\mathrm{t}, \mathrm{x}) \in \mathbf{C}
$$

is open, dense, and its complement is \mathcal{L}^{d}-negligible.
If $\mathbf{g} \in \mathscr{O}, \mathbf{C}$ can be decomposed as the disjoint union of at most countable C^{1} curves. In particular

$$
\text { C is countably }\left(\mathscr{H}^{1}, 1\right) \text {-rectifiable. }
$$

- $\mathcal{E}(\mathrm{t}, \cdot)$ is constant on every connected component of $\mathbf{C}(\mathrm{t})$.

Simpler Generic conditions

We consider only linear perturbations

$$
\mathcal{E}_{\mathrm{g}}(\mathrm{t}, \mathrm{x}):=\mathcal{E}(\mathrm{t}, \mathrm{x})-\langle\mathrm{g}, \mathrm{x}\rangle, \quad \mathrm{D} \mathcal{E}_{\mathrm{g}}(\mathrm{t}, \mathrm{x})=\mathrm{D} \mathcal{E}(\mathrm{t}, \mathrm{x})-\mathrm{g} .
$$

A generic decomposition of C [Sard, Quinn, Hirsch, Simon; Saut-Temam]

The set \mathscr{O} of $g \in \mathbb{H}$ such that the total differential

$$
\mathrm{dD} \mathcal{E}_{\mathrm{g}}(\mathrm{t}, \mathrm{x}) \in \mathscr{L}(\mathbb{R} \times \mathbb{H} ; \mathbb{H}) \quad \text { is surjective for every }(\mathrm{t}, \mathrm{x}) \in \mathbf{C}
$$

is open, dense, and its complement is \mathcal{L}^{d}-negligible.
If $\mathbf{g} \in \mathscr{O}, \mathbf{C}$ can be decomposed as the disjoint union of at most countable C^{1} curves. In particular

$$
\text { C is countably }\left(\mathscr{H}^{1}, 1\right) \text {-rectifiable. }
$$

- $\mathcal{E}(\mathrm{t}, \cdot)$ is constant on every connected component of $\mathbf{C}(\mathrm{t})$.
- There is an at most countable set of times $N \subset[0, T]$ such that $\mathbf{C}(t)$ is not totally disconnected:
- if $t \in[0, T] \backslash N$ then every connected component of $\mathbf{C}(t)$ is reduced to a point,
- if $t \in N$ then $\mathbf{C}(t)$ has "larger" connected components.

A simple example in infinite dimension

Let Ω be a bounded connected open set of $\mathbb{R}^{3}, \mathbb{H}:=\mathrm{L}^{2}(\Omega)$,
$D(E):=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. Consider

$$
\begin{aligned}
E(u) & :=\int_{\Omega}\left(\frac{1}{2}|\nabla u(x)|^{2}+W(u(x))\right) d x, \quad f \in C^{2}\left([0, T] ; L^{2}(\Omega)\right) \\
\mathcal{E}(t, u) & =E(u)-\int_{\Omega} f(t, x) u(x) d x, \quad \text { if } u \in D(E) . \\
-\Delta u(t, x) & +W^{\prime}(u(t, x))-g(x)=f(t, x) \quad \text { in } \Omega, \quad u(t, \cdot)=0 \text { on } \partial \Omega .
\end{aligned}
$$

For a dense G_{δ}-subset \mathscr{O} in $\mathrm{L}^{2}(\Omega)$ the energy $\mathcal{E}_{g}, \mathrm{~g} \in \mathscr{O}$, satisfies the transversality condition and the critical set is countably $\left(\mathscr{H}^{1}, 1\right)$-rectifiable.

A simple example in infinite dimension

Let Ω be a bounded connected open set of $\mathbb{R}^{3}, \mathbb{H}:=\mathrm{L}^{2}(\Omega)$, $D(E):=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. Consider

$$
\begin{aligned}
E(u) & :=\int_{\Omega}\left(\frac{1}{2}|\nabla u(x)|^{2}+W(u(x))\right) d x, \quad f \in C^{2}\left([0, T] ; L^{2}(\Omega)\right) \\
\mathcal{E}(t, u) & =E(u)-\int_{\Omega} f(t, x) u(x) d x, \quad \text { if } u \in D(E) . \\
-\Delta u(t, x) & +W^{\prime}(u(t, x))-g(x)=f(t, x) \quad \text { in } \Omega, \quad u(t, \cdot)=0 \text { on } \partial \Omega .
\end{aligned}
$$

For a dense G_{δ}-subset \mathscr{O} in $\mathrm{L}^{2}(\Omega)$ the energy $\mathcal{E}_{g}, \mathrm{~g} \in \mathscr{O}$, satisfies the transversality condition and the critical set is countably $\left(\mathscr{H}^{1}, 1\right)$-rectifiable.

One can also consider genericity w.r.t. Ω or w.r.t. the coefficients of the elliptic operator.

Outline

1 Rate-independent evolution and singular perturbation of gradient flows

2 Transversality conditions for the critical set

3 Compactness and variational characterization of the limit evolution

4 A useful tool: graph convergence

The main compactness result

Theorem (Agostiniani-Rossi-S.)

Suppose that \mathbf{C} is countably $\left(\mathscr{H}^{1}, 1\right)$-rectifiable (it is sufficient that \mathscr{H}^{1} is σ-finite on C)

Then there exists:

- a subsequence $\mathrm{n} \mapsto \varepsilon(\mathrm{n}) \downarrow 0$
- a limit curve $\mathbf{u}:[0, \mathrm{~T}] \rightarrow \mathbb{H}$ such that

$$
\lim _{n \rightarrow \infty} \mathbf{u}_{\varepsilon(n)}(t)=\mathbf{u}(t) \quad \text { for every } t \in[0, T]
$$

Properties of limit solutions

Let $\mathfrak{u}:[0, \mathrm{~T}] \rightarrow \mathbb{H}$ be a limit solution arising from the previous compactness result.

For the sake of simplicity, we suppose that $\mathbf{C}(\mathrm{t})$ is totally disconnected for every $t \in[0, T]$, i.e. $N=\emptyset$.

Properties of limit solutions

Let $\mathfrak{u}:[0, \mathrm{~T}] \rightarrow \mathbb{H}$ be a limit solution arising from the previous compactness result.

For the sake of simplicity, we suppose that $\mathbf{C}(\mathrm{t})$ is totally disconnected for every $t \in[0, T]$, i.e. $N=\emptyset$.

- u is regulated, i.e. for every $t \in[0, T]$
$\exists \lim _{s \uparrow t} \mathbf{u}(\mathrm{~s})=\mathbf{u}(\mathrm{t}-)$,
$\exists \lim _{s \downarrow t} \mathbf{u}(\mathrm{~s})=\mathbf{u}(\mathrm{t}+)$,
$\mathrm{J}(\mathbf{u}):=\{\mathrm{t} \in[0, \mathrm{~T}]: \mathbf{u}(\mathrm{t}) \neq \mathbf{u}(\mathrm{t} \pm)\}$ is at most countable.

Properties of limit solutions

Let $\mathfrak{u}:[0, \mathrm{~T}] \rightarrow \mathbb{H}$ be a limit solution arising from the previous compactness result.

For the sake of simplicity, we suppose that $\mathbf{C}(\mathrm{t})$ is totally disconnected for every $t \in[0, T]$, i.e. $N=\emptyset$.

- u is regulated, i.e. for every $t \in[0, T]$
$\exists \lim _{s \uparrow t} \mathbf{u}(\mathrm{~s})=\mathbf{u}(\mathrm{t}-)$,
$\exists \lim _{s \downarrow t} \mathbf{u}(\mathrm{~s})=\mathbf{u}(\mathrm{t}+)$,
$J(u):=\{t \in[0, T]: \mathbf{u}(t) \neq \mathbf{u}(\mathrm{t} \pm)\}$ is at most countable.
- $\mathbf{u}(\mathrm{t}) \in \mathbf{C}(\mathrm{t})$ for every $\mathrm{t} \in[0, \mathrm{~T}] \backslash \mathrm{J}(\mathbf{u})$; if $\mathrm{t} \in \mathrm{J}(\mathrm{u})$ then $\mathbf{u}(\mathrm{t}-), \mathbf{u}(\mathrm{t}+) \in \mathbf{C}(\mathrm{t})$.

Properties of limit solutions

Let $\mathbf{u}:[0, \mathrm{~T}] \rightarrow \mathbb{H}$ be a limit solution arising from the previous compactness result.

For the sake of simplicity, we suppose that $\mathbf{C}(t)$ is totally disconnected for every $t \in[0, T]$, i.e. $N=\emptyset$.

- u is regulated, i.e. for every $t \in[0, T]$ $\exists \lim _{s \uparrow t} \mathbf{u}(s)=\mathbf{u}(\mathrm{t}-)$, $\exists \lim _{s \downarrow t} \mathbf{u}(s)=\mathbf{u}(\mathrm{t}+)$, $J(u):=\{t \in[0, T]: \mathbf{u}(t) \neq \mathbf{u}(\mathrm{t} \pm)\}$ is at most countable.
- $\mathbf{u}(\mathrm{t}) \in \mathbf{C}(\mathrm{t})$ for every $\mathrm{t} \in[0, \mathrm{~T}] \backslash \mathrm{J}(\mathbf{u})$; if $\mathrm{t} \in \mathrm{J}(\mathrm{u})$ then $\mathbf{u}(\mathrm{t}-), \mathbf{u}(\mathrm{t}+) \in \mathbf{C}(\mathrm{t})$.
- The map $t \mapsto \mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}))$ has bounded variation, its jump set coincides with the jump set of u for every $0 \leqslant s<t \leqslant T$ the energy balance holds:

$$
\mathcal{E}(t, \mathbf{u}(t-))+\sum_{r \in J(u) \cap(s, t)} c(r ; \mathbf{u}(r-), \mathbf{u}(r+))=\mathcal{E}(s, \mathbf{u}(s+))+\int_{s}^{t} \mathcal{P}(r, \mathbf{u}(r)) d r
$$

The transition cost c

At every jump $t \in J(u)$, the energy dissipation corresponds to the optimal transition cost:

$$
\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}-))-\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}+))=\mathrm{c}(\mathrm{t} ; \mathbf{u}(\mathrm{t}-), \mathbf{u}(\mathrm{t}+))
$$

The transition cost c

At every jump $t \in J(u)$, the energy dissipation corresponds to the optimal transition cost:

$$
\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}-))-\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}+))=\mathrm{c}(\mathrm{t} ; \mathbf{u}(\mathrm{t}-), \mathbf{u}(\mathrm{t}+))
$$

For every $\mathrm{t} \in[0, \mathrm{~T}]$ the transition cost $\mathrm{c}\left(\mathrm{t} ; \mathrm{u}_{-}, \mathrm{u}_{+}\right)$between two points $u_{-}, u_{+} \in \mathbb{H}$ is given by the "Finsler" metric induced by $\|D \mathcal{E}\|$:

$$
c\left(t ; u_{-}, u_{+}\right):=\inf \left\{\int_{\Omega(\vartheta)}\|D \mathcal{E}(t, \vartheta(\tau))\| \| \vartheta^{\prime}(\tau)\right) \| d \tau:
$$

The transition cost c

At every jump $t \in J(u)$, the energy dissipation corresponds to the optimal transition cost:

$$
\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}-))-\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}+))=\mathrm{c}(\mathrm{t} ; \mathbf{u}(\mathrm{t}-), \mathbf{u}(\mathrm{t}+))
$$

For every $\mathrm{t} \in[0, \mathrm{~T}]$ the transition cost $\mathrm{c}\left(\mathrm{t} ; \mathrm{u}_{-}, \mathrm{u}_{+}\right)$between two points $u_{-}, u_{+} \in \mathbb{H}$ is given by the "Finsler" metric induced by $\|D \mathcal{E}\|$:

$$
\begin{aligned}
& \mathrm{c}\left(\mathrm{t} ; \mathrm{u}_{-}, \mathrm{u}_{+}\right):=\inf \left\{\int_{\Omega(\vartheta)}\|\mathrm{D} \mathcal{E}(\mathrm{t}, \vartheta(\tau))\| \| \vartheta^{\prime}(\tau)\right) \| \mathrm{d} \tau: \\
& \quad \vartheta \in \mathrm{C}([0,1] ; \mathbb{H}), \vartheta(0)=u_{-}, \vartheta(1)=u_{+}
\end{aligned}
$$

The transition cost c

At every jump $t \in J(u)$, the energy dissipation corresponds to the optimal transition cost:

$$
\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}-))-\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}+))=\mathrm{c}(\mathrm{t} ; \mathbf{u}(\mathrm{t}-), \mathbf{u}(\mathrm{t}+))
$$

For every $\mathrm{t} \in[0, \mathrm{~T}]$ the transition cost $\mathrm{c}\left(\mathrm{t} ; \mathrm{u}_{-}, \mathrm{u}_{+}\right)$between two points $u_{-}, u_{+} \in \mathbb{H}$ is given by the "Finsler" metric induced by $\|D \mathcal{E}\|$:

$$
\begin{gathered}
\mathrm{c}\left(\mathrm{t} ; \mathrm{u}_{-}, \mathrm{u}_{+}\right):=\inf \left\{\int_{\Omega(\vartheta)}\|\mathrm{D} \mathcal{E}(\mathrm{t}, \vartheta(\tau))\| \| \vartheta^{\prime}(\tau)\right) \| \mathrm{d} \tau: \\
\vartheta \in \mathrm{C}([0,1] ; \mathbb{H}), \vartheta(0)=\mathrm{u}_{-}, \vartheta(1)=\mathrm{u}_{+} \\
\Omega(\vartheta):=\{\tau: \vartheta(\tau) \notin \mathbf{C}(\mathrm{t})\}
\end{gathered}
$$

The transition cost c

At every jump $t \in J(u)$, the energy dissipation corresponds to the optimal transition cost:

$$
\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}-))-\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}+))=\mathrm{c}(\mathrm{t} ; \mathbf{u}(\mathrm{t}-), \mathbf{u}(\mathrm{t}+))
$$

For every $\mathrm{t} \in[0, \mathrm{~T}]$ the transition cost $\mathrm{c}\left(\mathrm{t} ; \mathrm{u}_{-}, \mathrm{u}_{+}\right)$between two points $u_{-}, u_{+} \in \mathbb{H}$ is given by the "Finsler" metric induced by $\|D \mathcal{E}\|$:

$$
\begin{aligned}
\mathrm{c}\left(\mathrm{t} ; \mathrm{u}_{-}, \mathrm{u}_{+}\right):=\inf \left\{\int_{\Omega(\vartheta)}\right. & \left.\|\mathrm{D} \mathcal{E}(\mathrm{t}, \vartheta(\tau))\| \| \vartheta^{\prime}(\tau)\right) \| \mathrm{d} \tau: \\
& \vartheta \in \mathrm{C}([0,1] ; \mathbb{H}), \vartheta(0)=\mathrm{u}_{-}, \vartheta(1)=\mathrm{u}_{+} \\
& \Omega(\vartheta):=\{\tau: \vartheta(\tau) \notin \mathbf{C}(\mathrm{t})\} \\
& \left.\vartheta \in \operatorname{Lip}_{\mathrm{loc}}(\Omega), \mathcal{E}(\mathrm{t}, \vartheta(\cdot)) \in \operatorname{Lip}([0,1])\right\}
\end{aligned}
$$

The transition cost c

At every jump $t \in J(u)$, the energy dissipation corresponds to the optimal transition cost:

$$
\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}-))-\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}+))=\mathrm{c}(\mathrm{t} ; \mathbf{u}(\mathrm{t}-), \mathbf{u}(\mathrm{t}+))
$$

For every $\mathrm{t} \in[0, \mathrm{~T}]$ the transition cost $\mathrm{c}\left(\mathrm{t} ; \mathrm{u}_{-}, \mathrm{u}_{+}\right)$between two points $u_{-}, u_{+} \in \mathbb{H}$ is given by the "Finsler" metric induced by $\|D \mathcal{E}\|$:

$$
\begin{aligned}
\mathrm{c}\left(\mathrm{t} ; \mathrm{u}_{-}, \mathrm{u}_{+}\right):=\inf \left\{\int_{\Omega(\vartheta)}\right. & \left.\|\operatorname{DE}(\mathrm{t}, \vartheta(\tau))\| \| \vartheta^{\prime}(\tau)\right) \| \mathrm{d} \tau: \\
& \vartheta \in \mathrm{C}([0,1] ; \mathbb{H}), \vartheta(0)=\mathrm{u}_{-}, \vartheta(1)=\mathrm{u}_{+} \\
& \Omega(\vartheta):=\{\tau: \vartheta(\tau) \notin \mathbf{C}(\mathrm{t})\} \\
& \left.\vartheta \in \operatorname{Lip}_{\mathrm{loc}}(\Omega), \mathcal{E}(\mathrm{t}, \vartheta(\cdot)) \in \operatorname{Lip}([0,1])\right\}
\end{aligned}
$$

We always have

$$
\mathcal{E}\left(\mathrm{t}, \mathbf{u}_{-}\right)-\mathcal{E}\left(\mathrm{t}, \mathbf{u}_{+}\right) \leqslant \mathrm{c}\left(\mathrm{t} ; \mathbf{u}_{-}, \mathbf{u}_{+}\right)
$$

Transitions

$$
C(t)=\left\{x_{1}, x_{2}, x_{3}, x_{L}\right\} \quad \int_{z_{-}}^{\tau_{t}}|D \varepsilon(t, \theta(t))| \cdot\left|\theta^{\prime}(t)\right| d \tau-\operatorname{simin}
$$

Structure of limit solutions

The limit energy identity

$$
\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}-))+\sum_{\mathrm{r} \in \mathrm{~J}(\mathbf{u}) \cap(\mathrm{s}, \mathrm{t})} \mathbf{c}(\mathrm{r} ; \mathbf{u}(\mathrm{r}-), \mathbf{u}(\mathrm{r}+))=\mathcal{E}(\mathrm{s}, \mathbf{u}(\mathrm{~s}+))+\int_{\mathrm{s}}^{\mathrm{t}} \mathcal{P}(\mathrm{r}, \mathbf{u}(\mathrm{r})) \mathrm{dr}
$$

has two important consequences:

Structure of limit solutions

The limit energy identity

$$
\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}-))+\sum_{r \in J(u) \cap(s, t)} c(r ; \mathbf{u}(r-), \mathbf{u}(r+))=\mathcal{E}(s, \mathbf{u}(s+))+\int_{s}^{t} \mathcal{P}(r, \mathbf{u}(r)) d r
$$

has two important consequences:

- At every jump point $t \in J(u)$ there exists an optimal transition $\vartheta \in \mathrm{C}([0,1] ; \mathbb{H})$ connecting $\mathbf{u}(\mathrm{t}-)$ to $\mathbf{u}(\mathrm{t}+)$ such that

$$
\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}-))-\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}+))=\mathrm{c}(\mathrm{t} ; \mathbf{u}(\mathrm{t}-), \mathbf{u}(\mathrm{t}+))
$$

Structure of limit solutions

The limit energy identity

$$
\mathcal{E}(t, \mathbf{u}(t-))+\sum_{r \in J(u) \cap(s, t)} c(r ; \mathbf{u}(r-), \mathbf{u}(r+))=\mathcal{E}(s, \mathbf{u}(s+))+\int_{s}^{t} \mathcal{P}(r, \mathbf{u}(r)) d r
$$

has two important consequences:

- At every jump point $t \in J(u)$ there exists an optimal transition $\vartheta \in \mathrm{C}([0,1] ; \mathbb{H})$ connecting $\mathbf{u}(\mathrm{t}-)$ to $\mathbf{u}(\mathrm{t}+)$ such that

$$
\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}-))-\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}+))=\mathrm{c}(\mathrm{t} ; \mathbf{u}(\mathrm{t}-), \mathbf{u}(\mathrm{t}+))
$$

- in each connected component of $\Omega(\vartheta) \subset[0,1]$ where $\vartheta \notin \mathbf{C}(\mathrm{t})$ there is an increasing change of variable $\tau=\tau(r), r \in(a, b)$, such that the reparametrized transition $\theta(\mathrm{r}):=\vartheta(\tau(\mathrm{r}))$ satisfies the gradient flow equation

$$
\frac{\mathrm{d}}{\mathrm{dr}} \theta(\mathrm{r})=-\mathrm{D} \mathcal{E}(\mathrm{t}, \theta(\mathrm{r}))
$$

at the "frozen time" t .

Jumps in the smooth 1-dimensional case: double-well potential

Limit solution in the 1-dimensional case for a strictly increasing f. The blue line represents the graph of the jump transition ϑ.

Outline

1 Rate-independent evolution and singular perturbation of gradient flows

2 Transversality conditions for the critical set

3 Compactness and variational characterization of the limit evolution

4 A useful tool: graph convergence

Main idea

Instead of studying the convergence of u_{ε} we consider the limit of their graphs:

$$
\mathbf{G}_{\varepsilon}:=\left\{\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right): \mathrm{t} \in[0, \mathrm{~T}]\right\} \subset[0, \mathrm{~T}] \times \mathbb{H}
$$

a family of compact sets.

Main idea

Instead of studying the convergence of u_{ε} we consider the limit of their graphs:

$$
\mathbf{G}_{\varepsilon}:=\left\{\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right): \mathrm{t} \in[0, \mathrm{~T}]\right\} \subset[0, \mathrm{~T}] \times \mathbb{H}
$$

a family of compact sets.
We can use Hausdorff-Kuratovski convergence:

$$
L s_{n \rightarrow \infty} K_{n}:=\left\{y: \exists y_{n(k)} \in K_{n(k)}, y_{n(k)} \rightarrow y \quad \text { as } k \uparrow \infty\right\}
$$

Main idea

Instead of studying the convergence of u_{ε} we consider the limit of their graphs:

$$
\mathbf{G}_{\varepsilon}:=\left\{\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right): \mathrm{t} \in[0, \mathrm{~T}]\right\} \subset[0, \mathrm{~T}] \times \mathbb{H},
$$

a family of compact sets.
We can use Hausdorff-Kuratovski convergence:

$$
\begin{aligned}
& L s_{n \rightarrow \infty} K_{n}:=\left\{y: \exists y_{n(k)} \in K_{n(k)}, y_{n(k)} \rightarrow y \quad \text { as } k \uparrow \infty\right\} \\
& L i_{n \rightarrow \infty} K_{n}:=\left\{y: \exists y_{n} \in K_{n}: y_{n} \rightarrow y \quad \text { as } n \uparrow \infty\right\}
\end{aligned}
$$

Main idea

Instead of studying the convergence of u_{ε} we consider the limit of their graphs:

$$
\mathbf{G}_{\varepsilon}:=\left\{\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right): \mathrm{t} \in[0, \mathrm{~T}]\right\} \subset[0, \mathrm{~T}] \times \mathbb{H},
$$

a family of compact sets.
We can use Hausdorff-Kuratovski convergence:

$$
\begin{aligned}
L s_{n \rightarrow \infty} K_{n} & :=\left\{y: \exists y_{n(k)} \in K_{n(k)}, y_{n(k)} \rightarrow y \quad \text { as } k \uparrow \infty\right\} \\
L i_{n \rightarrow \infty} K_{n} & :=\left\{y: \exists y_{n} \in K_{n}: y_{n} \rightarrow y \quad \text { as } n \uparrow \infty\right\} \\
K_{n} & \stackrel{K}{\rightarrow} \mathbf{K} \Leftrightarrow K=L s_{n \rightarrow \infty} K_{n}=L i_{n \rightarrow \infty} K_{n}
\end{aligned}
$$

Main idea

Instead of studying the convergence of u_{ε} we consider the limit of their graphs:

$$
\mathbf{G}_{\varepsilon}:=\left\{\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right): \mathrm{t} \in[0, \mathrm{~T}]\right\} \subset[0, \mathrm{~T}] \times \mathbb{H}
$$

a family of compact sets.
We can use Hausdorff-Kuratovski convergence:

$$
\begin{aligned}
L s_{n \rightarrow \infty} K_{n} & :=\left\{y: \exists y_{n(k)} \in K_{n(k)}, y_{n(k)} \rightarrow y \quad \text { as } k \uparrow \infty\right\} \\
L i_{n \rightarrow \infty} K_{n} & :=\left\{y: \exists y_{n} \in K_{n}: y_{n} \rightarrow y \quad \text { as } n \uparrow \infty\right\} \\
\mathbf{K}_{n} & \xrightarrow{K} \mathbf{K} \quad \Leftrightarrow \quad K=L s_{n \rightarrow \infty} K_{n}=L i_{n \rightarrow \infty} K_{n}
\end{aligned}
$$

Equivalently,

$$
\lim _{n \rightarrow \infty} D_{H}\left(K_{n}, K\right)=0, \quad D_{H} \text { is the Hausdorff distance. }
$$

Main idea

Instead of studying the convergence of u_{ε} we consider the limit of their graphs:

$$
\mathbf{G}_{\varepsilon}:=\left\{\left(\mathrm{t}, \mathbf{u}_{\varepsilon}(\mathrm{t})\right): \mathrm{t} \in[0, \mathrm{~T}]\right\} \subset[0, \mathrm{~T}] \times \mathbb{H}
$$

a family of compact sets.
We can use Hausdorff-Kuratovski convergence:

$$
\begin{aligned}
\mathrm{Ls}_{\mathrm{n} \rightarrow \infty} \mathrm{~K}_{\mathrm{n}} & :=\left\{\mathrm{y}: \exists \mathrm{y}_{\mathrm{n}(\mathrm{k})} \in \mathbf{K}_{\mathrm{n}(\mathrm{k})}, \mathrm{y}_{\mathrm{n}(\mathrm{k})} \rightarrow \mathrm{y} \quad \text { as } \mathrm{k} \uparrow \infty\right\} \\
\mathrm{Li}_{\mathrm{n} \rightarrow \infty} K_{\mathrm{n}} & :=\left\{\mathrm{y}: \exists \mathrm{y}_{\mathrm{n}} \in \mathbf{K}_{\mathrm{n}}: \mathrm{y}_{\mathrm{n}} \rightarrow \mathrm{y} \quad \text { as } \mathrm{n} \uparrow \infty\right\} \\
\mathbf{K}_{\mathrm{n}} & \xrightarrow{\mathrm{~K}} \mathbf{K} \quad \Leftrightarrow \quad \mathbf{K}=\mathrm{Ls}_{\mathrm{n} \rightarrow \infty} \mathbf{K}_{\mathrm{n}}=\mathrm{Li}_{\mathrm{n} \rightarrow \infty} \mathbf{K}_{\mathrm{n}}
\end{aligned}
$$

Equivalently,

$$
\lim _{n \rightarrow \infty} D_{H}\left(K_{n}, K\right)=0, \quad D_{H} \text { is the Hausdorff distance. }
$$

For every $\varepsilon>0$ there exists $\bar{n} \in \mathbb{N}$ such that for every $n \geqslant \bar{n}$
K_{n} is contained in the ε-neighborhood of K ,
K is contained in the ε-neighborhood of K_{n},

A general compactness property

Blashke compactness theorem

If \mathbf{G}_{ε} are contained in a common compact set, there exists a subsequence $n \mapsto \varepsilon(n) \downarrow 0$ and a limit set \mathbf{G} such that $\mathbf{G}_{\varepsilon(n)} \xrightarrow{K} \mathbf{G}$.

A general compactness property

Blashke compactness theorem

If \mathbf{G}_{ε} are contained in a common compact set, there exists a subsequence $n \mapsto \varepsilon(n) \downarrow 0$ and a limit set \mathbf{G} such that $\mathbf{G}_{\varepsilon(n)} \xrightarrow{K} \mathbf{G}$.

If moreover the sets \mathbf{G}_{ε} are connected then also the limit \mathbf{G} is connected.

Examples

Examples

Examples

Examples

Examples

Examples

$N M N$ AMMA.

Examples

Properties of the limit graph

Blashke compactness theorem

There exists a subsequence $n \mapsto \varepsilon(n) \downarrow 0$ and a limit set \mathbf{G} such that $\mathbf{G}_{\varepsilon(\mathfrak{n})}=\operatorname{Graph}\left(\mathbf{u}_{\varepsilon(n)} \xrightarrow{\mathrm{K}} \mathbf{G}\right.$.

Properties of the limit graph

Blashke compactness theorem

There exists a subsequence $n \mapsto \varepsilon(n) \downarrow 0$ and a limit set \mathbf{G} such that $\mathbf{G}_{\varepsilon(\mathfrak{n})}=\operatorname{Graph}\left(\mathbf{u}_{\varepsilon(n)} \xrightarrow{\mathrm{K}} \mathbf{G}\right.$.

- G is compact;

Properties of the limit graph

Blashke compactness theorem

There exists a subsequence $n \mapsto \varepsilon(n) \downarrow 0$ and a limit set \mathbf{G} such that $\mathbf{G}_{\varepsilon(n)}=\operatorname{Graph}\left(\mathbf{u}_{\varepsilon(n)} \xrightarrow{\mathrm{K}} \mathbf{G}\right.$.

- \mathbf{G} is compact;
- $\pi^{1}(\mathbf{G})=[0, \mathrm{~T}], \pi^{1}(\mathrm{t}, \mathrm{x}):=\mathrm{t}$;

Properties of the limit graph

Blashke compactness theorem

There exists a subsequence $n \mapsto \varepsilon(n) \downarrow 0$ and a limit set \mathbf{G} such that $\mathbf{G}_{\varepsilon(n)}=\operatorname{Graph}\left(\mathbf{u}_{\varepsilon(n)} \xrightarrow{\mathrm{K}} \mathbf{G}\right.$.

- \mathbf{G} is compact;
- $\pi^{1}(\mathbf{G})=[0, \mathrm{~T}], \pi^{1}(\mathrm{t}, \mathrm{x}):=\mathrm{t}$;
- \mathbf{G} is connected and all its sections $\mathbf{G}(\mathrm{t}):=\mathbf{G} \cap\{\mathrm{t}\} \times \mathbb{H}$ are connected.

Properties of the limit graph

Blashke compactness theorem

There exists a subsequence $n \mapsto \varepsilon(n) \downarrow 0$ and a limit set \mathbf{G} such that $\mathbf{G}_{\varepsilon(n)}=\operatorname{Graph}\left(\mathbf{u}_{\varepsilon(n)} \xrightarrow{\mathrm{K}} \mathbf{G}\right.$.

- \mathbf{G} is compact;
- $\pi^{1}(\mathbf{G})=[0, \mathrm{~T}], \pi^{1}(\mathrm{t}, \mathrm{x}):=\mathrm{t}$;
- \mathbf{G} is connected and all its sections $\mathbf{G}(\mathrm{t}):=\mathbf{G} \cap\{\mathrm{t}\} \times \mathbb{H}$ are connected.

Two alternatives:

- $\mathbf{G}(\mathrm{t}) \subset \mathbf{C}(\mathrm{t})$: then $\mathbf{G}(\mathrm{t})=\{\mathbf{u}(\mathrm{t})\}$ is a singleton;

Properties of the limit graph

Blashke compactness theorem

There exists a subsequence $n \mapsto \varepsilon(n) \downarrow 0$ and a limit set \mathbf{G} such that
$\mathbf{G}_{\varepsilon(\mathfrak{n})}=\operatorname{Graph}\left(\mathbf{u}_{\varepsilon(n)} \xrightarrow{\mathrm{K}} \mathbf{G}\right.$.

- \mathbf{G} is compact;
- $\pi^{1}(\mathbf{G})=[0, \mathrm{~T}], \pi^{1}(\mathrm{t}, \mathrm{x}):=\mathrm{t}$;
- \mathbf{G} is connected and all its sections $\mathbf{G}(\mathrm{t}):=\mathbf{G} \cap\{\mathrm{t}\} \times \mathbb{H}$ are connected.

Two alternatives:

- $\mathbf{G}(\mathrm{t}) \subset \mathbf{C}(\mathrm{t}):$ then $\mathbf{G}(\mathrm{t})=\{\mathbf{u}(\mathrm{t})\}$ is a singleton;
- $\mathbf{G}(\mathrm{t}) \not \subset \mathbf{C}(\mathrm{t}):$ then $\mathrm{t} \in \mathrm{J}(\mathbf{u})$ and $\mathbf{G}(\mathrm{t})$ contains an optimal transition ϑ connecting $\mathbf{u}(t-)$ with $\mathbf{u}(\mathrm{t}+)$ along which

$$
\mathcal{E}(t, \mathbf{u}(\mathrm{t}-))-\mathcal{E}(\mathrm{t}, \mathbf{u}(\mathrm{t}+)) \geqslant \mathrm{c}(\mathrm{t} ; \mathbf{u}(\mathrm{t}-), \mathbf{u}(\mathrm{t}+))
$$

Extensions

- The assumption that $\mathbf{C}(t)$ is totally disconnected for every $t \in[0, T]$ can be removed, by working with possibly discontinuous functions at a countable set of times $N \subset[0, T]$. For each $t \in N$ we can only say that $u(s)$ approaches a connected component of $\mathbf{C}(\mathrm{t})$ as $\mathrm{s} \rightarrow \mathrm{t}$.

Extensions

- The assumption that $\mathbf{C}(t)$ is totally disconnected for every $t \in[0, T]$ can be removed, by working with possibly discontinuous functions at a countable set of times $N \subset[0, T]$. For each $t \in N$ we can only say that $u(s)$ approaches a connected component of $\mathbf{C}(\mathrm{t})$ as $\mathrm{s} \rightarrow \mathrm{t}$.
- \mathbb{H} may have infinite dimensions, \mathcal{E} has to be
λ-convex with compact sublevels.

Extensions

- The assumption that $\mathbf{C}(t)$ is totally disconnected for every $t \in[0, T]$ can be removed, by working with possibly discontinuous functions at a countable set of times $N \subset[0, T]$. For each $t \in N$ we can only say that $u(s)$ approaches a connected component of $\mathbf{C}(\mathrm{t})$ as $\mathrm{s} \rightarrow \mathrm{t}$.
- \mathbb{H} may have infinite dimensions, \mathcal{E} has to be
λ-convex with compact sublevels.
- $\mathrm{D} \mathcal{E} \rightsquigarrow \partial \mathcal{E}$, the Fréchet subdifferential; $\mathbf{C}=\{(\mathrm{t}, \mathrm{x}): \partial \mathcal{E}(\mathrm{t}, \mathrm{x}) \ni 0\}$;

Extensions

- The assumption that $\mathbf{C}(t)$ is totally disconnected for every $t \in[0, T]$ can be removed, by working with possibly discontinuous functions at a countable set of times $N \subset[0, T]$. For each $t \in N$ we can only say that $u(s)$ approaches a connected component of $\mathbf{C}(\mathrm{t})$ as $\mathrm{s} \rightarrow \mathrm{t}$.
- \mathbb{H} may have infinite dimensions, \mathcal{E} has to be
λ-convex with compact sublevels.
- $\mathrm{D} \mathcal{E} \rightsquigarrow \partial \mathcal{E}$, the Fréchet subdifferential; $\mathbf{C}=\{(\mathrm{t}, \mathrm{x}): \partial \mathcal{E}(\mathrm{t}, \mathrm{x}) \ni 0\}$;
- The assumption that \mathbf{C} is $\left(\mathscr{H}^{1}, 1\right)$-countably rectifiable is sufficient also in infinite dimension;

Extensions

- The assumption that $\mathbf{C}(t)$ is totally disconnected for every $t \in[0, T]$ can be removed, by working with possibly discontinuous functions at a countable set of times $N \subset[0, T]$. For each $t \in N$ we can only say that $u(s)$ approaches a connected component of $\mathbf{C}(\mathrm{t})$ as $\mathrm{s} \rightarrow \mathrm{t}$.
- \mathbb{H} may have infinite dimensions, \mathcal{E} has to be
λ-convex with compact sublevels.
- $\mathrm{D} \mathcal{E} \rightsquigarrow \partial \mathcal{E}$, the Fréchet subdifferential; $\mathbf{C}=\{(\mathrm{t}, \mathrm{x}): \partial \mathcal{E}(\mathrm{t}, \mathrm{x}) \ni 0\}$;
- The assumption that \mathbf{C} is $\left(\mathscr{H}^{1}, 1\right)$-countably rectifiable is sufficient also in infinite dimension;
- A finer description is possible when \mathcal{E} is subanalytic.

