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E non reflexive Banach space normed by

||u||E = sup
L∈L
||Lu||Y

where L is a collection of linear operators

L ∈ L(X ,Y )

and X and Y Banach spaces (X reflexive)

Example

BMO, C 0,α, BV , Lq,∞ (Marcinkiewicz), EXPα, Lip

B = space of Bourgain, Brezis and Mironescu

We prove that E is a dual space, showing that the elements of the
predual E? have atomic decomposition



Bourgain–Brezis-Mironescu (JEMS, 2015)

B = new BMO–type space on Q0 =]0, 1[n

u ∈ L1(Q0) ‖u‖B = sup
0<ε<1

[u]ε <∞ (big-O condition)

where [u]ε is defined with a suitable maximization procedure.

B0 = its VMO–type space.

[u] = lim sup
ε→0

[u]ε = 0 (little-o condition)

BMO ∪ BV ⊂ B ⊂ L
n

n−1
,∞

VMO ∪W 1,1 ⊂ B0

For n = 1 B = BMO B0 = VMO.



0 < ε < 1, u ∈ L1(Q0)

[u]ε = sup
Fε

εn−1
∑

Qε∈Fε

∫
Qε

|u − uQε |


(where uQ =

∫
Q

u). The supremum runs among all families Fε of

disjoint ε-cubes Qε ⊂ Q0 with sides parallel to the axes such that
#Fε ≤ 1

εn−1

u ∈ B ⇔ ||u||B = sup
0<ε<1

[u]ε <∞

u ∈ B0 ⇔ lim sup
ε→0

[u]ε = 0

Separable vanishing subspace



BMO– seminorm of u : Q0 → R
John–Nirenberg (1961) u ∈ L1(Q0)

‖u‖BMO = sup
0<ε<1

sup
`(Q)=ε

∫
Q
|u − uQ | <∞

Sarason (1975) u ∈ BMO

u ∈ VMO ⇐⇒ lim sup
ε→0

sup
`(Q)=ε

∫
Q
|u − uQ | = 0

VMO(Q0) = closure of C∞(Q̄0) in BMO.



BMO

I is important because its norm is self improving.

I is dual of the separable Banach space H1, defined in
Stein-Weiss, Acta 1960

(H1)? = BMO (Fefferman, 1971 Fefferman − Stein 1972)

H1 = Hardy space =
{

f ∈ L1 : Rj f ∈ L1
}



Duality properties: BMO, H1, VMO

1) (Coifman-Weiss) VMO? = H1

2) VMO?? isometrically isomorphic with BMO

3) (Sarason, 1975) distance formula

lim sup
ε→0

sup
`(Q)=ε

∫
Q
|u − uQ | ' distBMO(u,VMO)



Abstract setting
Let X , Y ∈ L1(Q0) Banach space (X reflexive) and

Lj ∈ L(X ,Y ) j = 1, . . .

Define
E = {u ∈ X : sup

j
||Lju||y <∞}

Suppose E a Banach space , E ⊂ X continuously, E dense in X
and

||u||E = sup
j
||LJu||Y

We prove that E is a dual space and we characterize its predual E∗
and its dual E ∗.



Example (E = BMO(Q0))

X = Lp(Q0), 1 < p < n
n−1 , Y = L1(Q0), Qj a sequence of (well

chosen) cubes contained in Q0 we define

Lj ∈ L(Lp, L1)

Lju(x) =
χQj

|Qj |
(u(x)− uQj

)

that implies

||Lju||L1 =

∫
Qj

|u − uQj
|



Example (E = BV (Q0))

X = Lp(Q0), 1 < p < n
n−1 , Y = L1(Q0),

0 < ε < 1 Fε = {Qε} finite disjoint collection of ε- cubes. define

LFεu = εn−1
∑

Qε∈Fε

χQε

|Qε|
(u − uQε)

choose Lj = LF j
εj
∈ L(Lp, L1) that implies

||Lju||L1 = εn−1
j

∑
j

∫
Qεj

|u − uQεj
|



Example (E = B)

For the space of Bourgain-Brezis-Mironescu we choose only
collections Fε with

#Fε ≤
1

εn−1

LFεu = εn−1
∑

Qε∈Fε

χQε

|Qε|
(u − uQε)

Choosing a suitable Lj = LFεj ∈ (Lp, L1) that implies

||Lju||L1 = εn−1
j

∑
j

∫
Qεj

|u − uQεj
|

With this notations it is obvious that

||u||B ≤ ||u||BV



Example (E = C 0,α(Q0), 0 < α < 1)

X = W `,p \ A
Besov spaces where 0 < ` < α, p` > n where u ∈ Lp(Rn)∫

Rn

∫
Rn

|u(x)− u(y)|p

|x − y |p`+n
dxdy <∞

A = AQ0 = {u ∈W `,p : ∃x0 ∈ Q0 : u(x0) = 0}

Y = R. ∀x , y ∈ Q0, x 6= y

Lx ,yu =
|u(x)− u(y)|
|x − y |α

and a suitable sequence Lj = Lxj ,yj ∈ L(X ,R) = X ∗

|Lju| = sup
xj 6=yj

|u(x)− u(y)|
|x − y |α

Predual of E = C 0,α is M(Q0) equipped with KR norm.



A compactly supported function a = a(x) is an Lq-atom with
defining cube Q, if supp a ⊆ Q,

∫
Q adx = 0 and

(∫
Q
|a(z)|q

) 1
q

≤ 1

|Q|

Hardy space H1(Rn) can be characterized in terms of
decomposition involving Lq-atoms for each fixed q > 1.



Atomic decomposition of L1(Rn)

f =
∑
j

λjaj(x) + λχQ0(x)

∑
j

|λj | <∞ aj(x) is Lqj − atom

‖f ‖L1 ' |λ|+ inf
∑
j

|λj |

λ =

∫
Rn

f dx

2007, Proc. AMS, Torchinski



Atomic decomposition is effective tool to prove boundness of
operators such as: the Hardy-Littlewood maximal operator, Hilbert
transform, the composition operators acting on these spaces: the
boundedness of these operators is reduced to the boundedness on
characteristic functions.



Theorem 1 ((DGPSS) Atomic decomposition for B∗)

B has an (isometric) predual B∗. Every ϕ ∈ B∗ is of the form

(1) ϕ =
∞∑
j=1

λjgj ,

where (λj) ∈ `1(N) and each atom gj is associated with an ε = εj
and |Fε| ≤ ε1−n and

I supp gj ⊂ ∪Fε;
∫
Qε

gj dx = 0 for every Qε ∈ Fε,
I |gj |χQε ≤ εn−1 1

|Qε| for every Qε ∈ Fε.

f (ϕ) =
∞∑
j=1

λj

∫
(0,1)n

fgj dx ,

‖ϕ‖B∗ ∼ inf
∞∑
j=1

|λj |,

and the infimum is taken over all representations of ϕ.



Hardy’s space H1 (Coifman, 1974)

Theorem

Any ϕ ∈ H1 can be written as

ϕ(x) =
∞∑
j=1

λjaj(x)

where aj are q-atoms 1 < q ≤ 2 and

∞∑
j=1

|λj | <∞

furthermore:
||ϕ||H1 ∼ inf

∑
j=1

|λj |



BV (Q0) functions of bounded variation, i.e. u ∈ L1(Q0) and

|Du|(Q0) = sup
‖Φ‖C0(Q0,Rn)≤1

∫
Q0

u divΦ <∞

with the norm
‖u‖BV = ‖u‖L1 + |Du|(Q0)



BV (Q0)

I non separable

I smooth compactly supported functions fail to be norm-dense

I is dual of a separable Banach space

BV? =

T ∈ D′ : T = ϕ0 +
n∑

j=1

∂ϕj

∂xj
, ϕi ∈ C0(Q0)


with integral representation of duality pair.
Fusco–Spector (2018 JMAA) integral characterization of the
dual BV ?.
We find an atomic decomposition for BV? like B? but without
the limitation

|Fε| ≤ ε1−n

ϕ =
∑
j

λjgj



Kantorovich (1942)
Let (K , ρ) be a compact metric space

Lip(K )

I is dual of the space normed space M =M(K ,B) of Borel
measures µ on K with finite total variation , B = Borel
σ-algebra of (K , ρ), equipped with the Kantorovich-Rubinstein
norm || ||KR important in optimal transport (notice that M
equipped with KR norm is not a Banach space):

M∗ w Lip

Angrisani-Ascione-D’Onofrio-Manzo: atomic decomposition of
predual of Lipα (2020).



Relations between Lip(K , ρ) defined by u ∈ Lip iff (Big-O
condition)

sup
x 6=y

|u(x)− u(y)|
ρ(x , y)

<∞

and lip(K , ρ) defined by v ∈ lip iff (little-o condition)

lim sup
ρ(x ,y)→0

|v(x)− v(y)|
ρ(x , y)

= 0

similar to sequence spaces `∞ and c0.



Problem
The question is to know when the second dual to the
‘small’Lipschitz space is isometrically isomorphic to the ‘big
’Lipschitz space i.e.

(2) lip?? ∼= Lip

Equivalently, when the completion of M is isomorphically
isomorphic to lip?

(3) Mc ∼= lip?



Best results in case

C 0,α(K , d) ' Lip(K , ρα) 0 < α < 1.

Here lip(K , ρα) = c0,α is a “rich ”subspace of C 0,α While
lip[0, 1] = {constants} trivial

Lip ⊂ c0,α

c0,α“rich ”



The idea is to identify lip([0, 1], dα) as a subspace of

C0(W ) W ⊂ R2

and then use the Representation Theorem of Riesz

u ∈ lipα → ũ ∈ C0(W )

‖u‖lipα ' ‖ũ‖C0



Let (K , ρ) be a compact metric space, the space M(K ) of Borel
measures µ : B(K )→ R endowed with the total variation norm

(4) ||µ||TV = |µ|(K )

is a Banach space isometric to the dual space of C0(K ). The role
of weak-star convergence in M(K ) as dual of C0(K ) is much more
relevant then the role of strong convergence. Given a sequence
(µj) ⊂M(K ), recall that

(5) µj
∗
⇀ µ

if and only if

(6)

∫
K

udµj →
∫
K

udµ ∀u ∈ C0(K )



We will see that on the subset

M0(K ) = {µ ∈M(K ) : µ(K ) = 0}

besides strong convergence of µj to µ

(7) ||µj − µ||TV → 0

under the norm (4) and the weak star convergence (5), (6) one
can consider the KR-norm convergence

(8) ||µj − µ||KR → 0

and the weak-convergence

(9)

∫
K

udµj →
∫
K

udµ ∀u ∈ Lip(K )



This last weak convergence is of course weaker then the weak-star
convergence (6) but it is possible to prove the surprising
equivalence with the KR-norm convergence.
On subsets of M0(K ) which are uniformly bounded in total
variation the KR-norm convergence induced by equivalent norm

‖µ‖KR = sup
ϕ∈Lip1

∫
K
ϕ dµ

is equivalent to weak-star (6).



The classical KR-norm || ||KR

M0(K ) = {µ ∈M(K ) : µ(K ) = 0}

µ→ Ψµ ⊂M+(K × K )

Ψµ = {ψ ∈M+(K × K ) : ψ(K ,A)− ψ(A,K ) = µ(A)}

A ∈ B(K ), Borel set
ψ(A1,A2) represents transport with given mass µ− and required
mass µ+



The classical KR norm of µ ∈M0(K )

||µ||KR = inf
ψ∈Ψν

∫ ∫
K×K

ρ(x , y)dψ(x , y)

The extended KR norm of ν ∈M(K )

||ν||KR = inf
µ∈M0(K)

{||µ||ρ + Var(ν − µ)}

The normed space (M, || ||τ ) in general is not complete

||ν||KR ≤ cVar(ν)

Theorem (KR)

M0(K )? w Lip(K )
/
R

L ∈M0(K )? → ϕ(x) = 〈L, δx − δa〉 a ∈ K



M0(K )c wM0(K )
Lip?0

Lip0(K ) = Lip(K )
/
R

Theorem

f ∈M0(K )c ⇐⇒ ∃ max in dual Kantorovich problem

sup {〈f , ϕ〉 : ϕ ∈ Lip1(K )} = max {〈f , ϕ〉 : ϕ ∈ Lip1(K )} =

‖f ‖KR = 〈f , ϕf 〉



The case K = Ω̄ has been studied by G.Bouchitté- T.Champion- C.
Jimenez “Completion of the space of measures in the Kantorovich
norm.”(see also Bouchitte’-Buttazzo- De Pascale 2003).
This is a case were double star theorem does not hold, since the
vanishing space is trivial.
Theorem
Let µ ∈M0(K ), then the problem

inf

{∫
K
|λ| : λ ∈M(K ,Rn) div λ = µ

}
= min

{∫
K
|λ| : λ ∈M(K ,Rn) div λ = µ

}
=

∫
K
|λµ| = ‖µ+ − µ−‖KR



Theorem

{Tf : f ∈Mc
0(K )} =

{
− div σ : σ ∈ L1(K ,Rn)

V0

}
V0 = {σ : div σ = 0}

Moreover,
‖σ‖L1 = ‖ div σ‖KR

Lemma

µ ∈Mc
0(K ), ε > 0 =⇒ σ ∈ L1 : − div σ = µ∫

K
|σ| ≤ ‖µ‖KR + ε.



Optimal mass transfer always exists ∀µ ∈M0(K ). A measure
ψ ∈ Ψµ is optimal if and only if there exists u ∈ Lip :

u(x)− u(y)

ρ(x , y)
=

{
≤ 1 ∀(x , y) ∈ K
= 1 ∀(x , y) ∈ suppψ

(dual problem).
While the total variation norm ||ν|| = Var(ν) satisfies for x , y ∈ K

||δx − δy ||TV = 2

where δx(A) = 1 if x ∈ A, δx(A) = 0 otherwise. For the KR-norm
we have

||δx − δy ||KR = ρ(x , y)

it is well related to the existing distance ρ on K .



Theorem (Popoli-Sbordone)
Let (K , ρ) be a compact metric space. Then

lip(K , ρ)?? w Lip(K , ρ)

if and only if

the closed unit ball in lip is dense in the closed unit ball of Lip with
respect to the topology of pointwise convergence.



The set of measures µ with finite support is dense in M(K ) with
|| ||KR .
For infinite K (M(K ), || ||KR) is incomplete.



Theorem (Kantorovich-Rubinstein)

The duality µ ∈M(K ), u ∈ Lip(K , ρ)

〈u, µ〉 =

∫
K

udµ

defines an isometric isomorphism between (M(K ))∗ and Lip(K , ρ)



Proof.

u ∈ Lip, µ ∈M0, ψ ∈ Ψµ

Lu(µ) =
∫
K udµ

=
∫
K u(t)dψ(K , t)−

∫
K u(t)dψ(t,K )

=
∫
K×K u(s)dψ(t, s)−

∫
K×K u(t)dψ(t, s)

=
∫
K×K (u(s)− u(t))dψ(s, t)

≤ ||u||Lip
∫
K×K ρ(t, s)dψ(t, s)

= ||u||Lip||µ||τ



The separation property below, (true for C 0,α, 0 < α < 1) allows
uniform approximation of big Lip functions u by little lip functions
vj .

Theorem (Hanin, separation property)

M(K )c ' lip(K )∗

if and only if
∀A ⊂ K , A finite ∀u : A→ R, ∀ > 1 ∃g ∈ lip(K ):

g|A = u ||g ||K ,τ ≤ C ||u||A,ρ

if and only if
LipK ' (lipK )∗∗

This implies

∀u ∈ Lip(K , ρ)∃vj ∈ lip(K , ρ) : vj → u(x)

∀x ∈ K and sup ||vj ||Lip ≤ ||u||Lip (Angrisani, Ascione, D’Onofrio,
Manzo)



To characterize all metric spaces (K , ρ) such that the space

E = Lip(K ) big space

equipped with the norm

||u||K ,ρ = max{||u||∞, |u|K ,ρ}

with

|u|K ,ρ = sup
x 6=y

|u(x)− u(y)|
ρ(x , y)

<∞

is isometrically isomorphic to the second dual E ∗∗0 of

E0 = lip(K ) little space

defined by the vanishing condition

lim
ρ(x ,y)→0

|u(x)− u(y)|
ρ(x , y)

= 0



Abstract Theorem for E : dual E ∗, predual E∗
Isometric embedding

V : E → `∞(Y )

Vu(j) = Lju

Theorem (DGPSS)

E ∗ ' ba(N,Y ∗)
V (E )⊥

where ba(N,Y ∗) denotes the space of finitely additive Y ∗-valued
set functions on N, with bounded variation.



Theorem

E has predual E∗

E∗ =
`1(Y ∗)

P

where P = V (E )⊥ ∩ `1(Y ∗).
Moreover E∗ admits atomic decomposition



Proof.

Every u ∈ E corresponds to a linear functional on

F =
`1(Y ∗)

P

given by

(y∗j ) ∈ F → u((y∗j )) =
∞∑
j=1

(y∗j , Lju)

and conversely. The range of canonical embedding

W : u ∈ E → (i(Lju)) ∈ `∞(Y ∗∗)

i : Y → Y ∗∗

is weak-* closed in `∞(Y ∗∗) and then E is a dual space.



Proof of Theorem 1 (DGPSS)
Choose a dense sequence (F j

εj ) ⊂ L. Then for ϕ ∈ B∗ there is
y∗j ∈ `1(L∞((0, 1)n)) of comparable norm such that

ϕ =
∑
j

L∗F j
εj

y∗j =
∑
j

LF j
εj

y∗j

Then λj = 2||y∗j ||L∞ and

gj =
LF j

εj
y∗j

2||y∗j ||L∞

satisfy

ϕ =
∑
j

λjgj ;
∑
j

|λj | ≤ c ||ϕ||B∗

and conversely.



Atomic decomposition for E∗

Example (E = BMO(Q0))

We know that ∀u ∈ E , (y∗j ) ∈ E∗, x((y∗j )) =
∑

j〈y∗j , Lju〉, and so
being Y ∗ = L∞(Q0), ∀ϕ ∈ E∗, ∃(y∗j ):

||ϕ||E∗ ∼
∑
j

||y∗j ||L∞(Q0)

Defining

λj = ||y∗j ||L∞(Q0) aj =
L∗j y∗j

||y∗j ||L∞(Q0)
=

Ljy
∗
j

λj

hence
ϕ =

∑
λjaj ||ϕ||E∗ ∼

∑
j

|λj |

supp aj ⊂ Qj , |aj | ≤ 2χQj

1

|Qj |

∫
Qj

aj = 0



∫
Qε

|u − uQε | ≤
c

εn−1
|∇u|(Qε) ⇒ [u]ε ≤ c |∇u|(Q)

B ⊂ L
n

n−1
,∞

DGGPS: Atomic decomposition of preduals of

BMO(Q0) BV (Q0) B(Q0) L
n

n−1
,∞(Q0)

as Corollary



General abstract framework
Let X be a reflexive and separable Banach space and Y a Banach
space. Given a collection L of linear operators

L ⊂ L(X ; Y )

equipped with topology τ which is σ-compact, locally compact,
Hausdorff, such that

L ∈ (L, τ)→ Lu ∈ (Y , || · ||Y )

is continuous ∀u ∈ X .



we define
E = {u ∈ X : sup

L∈L
||Lu||Y <∞}

and suppose that, equipped with

||u||E = sup
L∈L
||Lu||Y

E is a Banach space, continuously contained and dense in X .
Define

E0 = {u ∈ E : lim sup
L∈L, L→∞

||Lu||Y = 0}

Here L→∞ is in the usual sense of escaping all compacts.



(E0 sufficiently rich vanishing space)
Additionally we assume an Approximation Property

AP) ∀u ∈ E there is (vj) ⊂ E0 such that

||vj ||E ≤ ||u||E

and
vj → u in X

Remark

(AP) property can be proved for BMO, B, Lq,∞, C 0,α = Lipα
0 < α < 1, Lq). Not for L∞, Lip(Q0), BV .



Theorem

Suppose (AP) holds then isometric

(E0)∗ ∼ E∗

(E∗)
∗ ∼ E

E ∗∗0 ∼ E

E ∗ ∼ E ∗0 ⊕ E⊥0

∀u ∈ E min
v∈E0

||u − v ||E = lim sup
L→∞

||Lu||Y



Proof
E0 embeds isometrically into

C0(L; Y ) = the space of vanishing continuous Y-valued functions

E embeds isometrically into

Cb(L; Y ) = the space of bounded continuous Y-valued functions

equipped with the sup norm

||T ||Cb
= sup

L∈L
||T (L)||Y



Explicitly
V : E → Cb(L; Y )

Vu(L) = Lu u ∈ E , L ∈ L

V : E0 → C0(L; Y )

ca(L,Y ∗) = the space of countably additive Y ∗-valued Baire measures of bounded variations

equipped with norm

||µ||ca = sup
∑
i

||µ(Ei )||Y ∗

over all pairwise disjoint partitions into sets Ei



Riesz Theorem isometrically isomorphic

ca(L,Y ∗) ∼ (C0(L,Y ))∗

with pairing

〈T , µ〉 =

∫
L

T (L)dµ(L)

T ∈ Cb(L,Y ), µ ∈ ca(L,Y ∗)

Theorem

∀T ∈ Cb(L,Y ) ∃k ∈ ca(L,Y ∗)∗ defined by

k(µ) = 〈T , µ〉

||k ||(ca)∗ = ||T ||Cb



The isometric embedding

Cb(L,Y ) into ca(L,Y ∗)∗
T → k

extends the canonical embedding of C0(L,Y ) into (C0(L,Y ))∗∗.
Use the canonical decomposition

(ca(L,Y ∗))∗∗ = ca(L,Y ∗)⊕ C0(L,Y )

that implies
E ∗ ' (E0)∗∗ = E ∗0 ⊕ E⊥0


