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I Asymptotic shape of minimal clusters in the plane

I Minimal partitions and Hales’s Honeycomb Theorem

I Uniform energy distribution for minimal partitions

I Towards a description of the structure of minimal partitionsTowards a description of the structure of minimal partitions



Partitions

Let Ω be a two-dimensional domain with finite area.

Ω
E1

E2 E3

E4

N=4

An N -partition of Ω is a collection E = {E1, . . . , EN} of closed
sets in Ω (called cells of the partition)

I with pairwise disjoint interiors and union Ω;

I with equal area |Ei| = |Ω|/N ;

I with sufficiently regular boundaries. . .



The perimeter of a partition E is
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I Ω admits a minimal N -partition for every integer N ;

I the local structure of minimal N -partitions is simple;

I computing minimal N -partitions is complicated.



Hales’s Honeycomb Theorem (T.C. Hales, 2001)

Let Ω be a flat torus which admits a regular hexagonal
N -partition Ehex.

N=48

Then Ehex is the unique minimal N -partition of Ω.

I Not all flat tori admit a regular hexagonal partition.

I No counterpart in higher dimension!



Key tool: Hales’s isoperimetric inequality

Simplified version (polygons only):

I let E be an n-polygon with area 1,

I let Rn be the regular n-polygon with area 1,

I let H = R6 be the regular hexagon with area 1.

Then:
Per(E) ≥ Per(Rn) ≥ Per(H)− c(n− 6)

where we use that n 7→ Per(Rn) is a convex function (!)

We can do better:

Per(E) ≥ Per(H)− c(n− 6) + δ dist(E,H)2

where dist(E,H) is for example Hausdorff distance.



Sketch of proof of Hales’s theorem

Let E be an N -partition of Ω with Ei an ni-polygon:
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For the following we set σ := 1
2Per(H) = 4

√
12.



Minimal N-partitions

We fix an arbitrary planar domain Ω with finite area.

ΩΩ

We consider minimal N -partitions of Ω for large N .

I Hales’s theorem suggests that most cells are close to regular
hexagons −→ local hexagonal patterns.

I We expect some “disturbance” close to the boundary of Ω.
Does such disturbance decay away from the boundary?

I Is the orientation of the local hexagonal pattern constant?
If not, is it piecewise constant −→ emergence of “grains”?



Uniform energy distribution

I We want to prove uniform distribution of energy (that is,
perimeter) in the spirit of A. + Choksi + Otto (2009).

I Purpose: prove that “most” cells are close to be regular
hexagons (in a quantified way).

I From now on we replace N with the length parameter

ε :=
√
|Ω|/N .

Thus ε2 is the area of the cells of N -partitions,
which we now call ε-partitions.



Average energy distribution of the hexagonal partition.

Let Ehex be the regular hexagonal partition with cells of area 1.

The average energy density of Ehex is σ := 4
√

12.

That is, for every ball B(x, r) with radius r � 1 there holds

PerB(x,r)(Ehex) = σ area(B(x, r)) +O(r2/3)

I Statement similar to Gauss’s Circle Theorem.

I Proof by Fourier transform.



Let Eεhex be the regular hexagonal partition with cells of area ε2.
Then

PerB(x,r)(Eεhex) =
σ

ε
area(B(x, r)) +O(ε1/3r2/3)

Uniform distribution of energy
Let E be a minimal ε-partition of Ω. Let Bε = B(xε, rε) be a
disc in Ω with rε � ε and dist(Bε, ∂Ω)� ε. Then

PerBε(E) =
σ

ε
|Bε|+O(rε) .

I Proof of lower bound is based Hales inequality.

I Proof of upper bound is based on “cut and paste” technique.

I The actual statement depends on the variant of the problem considered.



Towards a precise description of minimal ε-partitions

I Recall the questions: Is the orientation of the local
hexagonal pattern constant? (we think NO)
Is it piecewise constant? (we think YES)

I From now on we consider the “excess energy” of an
ε-partition E :

Fε(E) := εPer(E)− σ|Ω|

I Ideally, we would like to write a Γ-limit of Fε as ε→ 0.
But what the variable of the Γ-limit should be?
Claim: the “limit” of the orientation of the local hexagonal
patterns. . .

I We did not write the Γ-limit, but we did identify and
partially address some key questions (“cell problems”).



Excess energy due to change of orientation

I Consider a square of side-length L� 1;

I consider all 1-partitions E which are
prescribed in the grey zone (and satisfy
suitable boundary periodic conditions);

I θ := angle between the imposed orientations.

Define

Φ(θ) := lim inf
L→+∞

1

L

{
inf
E
F1(E)

}
.

I Explicit construction gives Φ(θ) = O
(
θ| log θ|

)
;

I Is Φ(θ) > 0? Yes, but proved under undesired assumptions.

I Is Φ superlinear in 0, i.e., lim inf
θ→0+

Φ(θ)

θ
= +∞? Yes, but . . .



Excess energy due to shift? Fortunately not!



Excess energy due to boundary

I Consider a square of side-length L� 1 and
take Ω as in the picture;

I consider all 1-partitions of Ω which are
prescribed in the grey zone (and . . . );

I θ := angle between the imposed orientation
and the vertical direction.

Define

Φb(θ) := lim inf
L→+∞

1

L

{
inf
E
F1(E)

}
.

I Hales (isoperimetric inequality) gives C ≤ Φb ≤ C ′.

I Does Φb(θ) > 0 depends on θ?
We think so, but we have no clue about a proof.
Indeed we cannot prove even the most basic conjecture. . .



Conclusions

I If Φb does NOT depend on θ, then minimal ε-partitions of Ω
have constant orientation (in the regime ε� 1).

I If Φb depends on θ, and Φ is strictly positive then minimal
ε-partitions of Ω may not have constant orientation.

I If in addition Φ is super-linear at 0 then the orientation of
minimal ε-partitions is piecewise constant (and in SBV (Ω))
−→ emergence of “grains”.



From partitions to maps

I We use rigidity estimates a la Friesecke+James+Müller (2002), and
precisely Müller+Scardia+Zeppieri (2015).

I We pass from a partition E of Ω to a map u : Ω→ R2 in several steps.

I We fix ε = 1 and consider for simplicity a polygonal partition. First we
construct the dual network N , connecting the barycenters of
neighbouring cells.

I If the partitions contains only hexagons and has only triple points, then
the the dual network N is made of triangles and contains only 6-nodes.
Then we construct in a natural way a map u from N to the regular
triangular network, which we extend to Ω by linearity.

I We use Hales’s inequality Per(E) ≥ Per(H) + δ dist(E,H)2 to get:

F1(E) &
∫

Ω

dist
(
∇u, SO(2))2 dx



From partitions to maps, continued

I If the partitions contains non hexagonal cells (pentagons,
heptagons,. . . ) and has only triple points, then the the dual network N
is still made of triangles but contains also n-nodes with n 6= 6 (defects).

I In this case we cannot construct a global map u from N to the regular
triangular network (there is a topological issue).
Indeed we can properly define only a matrix-field β : Ω→ R2×2/R6

where R6 ⊂ SO(2) is the subgroup generated by a rotation by 60◦.

I For a suitable Γ ⊂ N we construct a lift β : Ω \ Γ→ R2×2.
We use Hales’s inequality Per(E) ≥ Per(H)− c(n− 6) + δ dist(E,H)2

to get:

F1(E) &
∫

Ω

dist
(
β, SO(2))2 dx+ #{defects}

I Here is the difficulty! If #{defects} & length(Γ) we are in game: we can
use Müller+Scardia+Zeppieri and Lauteri+Luckhaus (2017).
This estimate looks quite plausible but has eluded us (so far).



Thanks for the attention!

E ancora tanti auguri, Gianni!


