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» Minimal partitions and Hales’s Honeycomb Theorem
» Uniform energy distribution for minimal partitions

» Towards a description of the structure of minimal partitions



Partitions

Let Q be a two-dimensional domain with finite area.
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An N-partition of Q is a collection &€ = {Ey,..., Ex} of closed
sets in  (called cells of the partition)

» with pairwise disjoint interiors and union 2;
» with equal area |E;| = |Q|/N;

» with sufficiently regular boundaries. ..



The perimeter of a partition £ is

Per(€) := length(0E, U --- UDE,)
N
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> ) admits a minimal N-partition for every integer IV;
» the local structure of minimal N-partitions is simple;

» computing minimal N-partitions is complicated.



Hales’s Honeycomb Theorem (T.C. Hales, 2001)

Let Q2 be a flat torus which admits a reqular hexagonal
N -partition Epex-

N=48
Then Enex s the unique minimal N -partition of 2.

> Not all flat tori admit a regular hexagonal partition.

> No counterpart in higher dimension!



Key tool: Hales’s isoperimetric inequality
Simplified version (polygons only):

» let £ be an n-polygon with area 1,

> let R, be the regular n-polygon with area 1,

» let H = Rg be the regular hexagon with area 1.

Then:
Per(E) > Per(R,,) > Per(H) — ¢(n — 6)

where we use that n — Per(R,) is a convex function (!)

We can do better:
Per(E) > Per(H) — ¢(n — 6) + d dist(E, H)?

where dist(E, H) is for example Hausdorfl distance.



Sketch of proof of Hales’s theorem
Let £ be an N-partition of ) with E; an n;-polygon:

Per(€) = % Z Per(E;)
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For the following we set o := 4Per(H) = v/12.



Minimal N-partitions
We fix an arbitrary planar domain 2 with finite area.
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We consider minimal N-partitions of ) for large N.

» Hales’s theorem suggests that most cells are close to regular
hexagons — local hexagonal patterns.

» We expect some “disturbance” close to the boundary of .
Does such disturbance decay away from the boundary?

» Is the orientation of the local hexagonal pattern constant?
If not, is it piecewise constant — emergence of “grains”?



Uniform energy distribution

» We want to prove uniform distribution of energy (that is,
perimeter) in the spirit of A. + Choksi + Otto (2009).

» Purpose: prove that “most” cells are close to be regular
hexagons (in a quantified way).

» From now on we replace N with the length parameter

e:=/[Q|/N.

Thus €2 is the area of the cells of N-partitions,
which we now call e-partitions.



Average energy distribution of the hexagonal partition.

Let &nex be the regular hexagonal partition with cells of area 1.
The average energy density of ey is 0 := v/12.

That is, for every ball B(x,r) with radius r > 1 there holds

PerB(:L’,r) (‘S‘hex) =0 area(B(m, T)) + O(T2/3)

» Statement similar to Gauss’s Circle Theorem.

» Proof by Fourier transform.



Let &, be the regular hexagonal partition with cells of area 2.

Then

Perp(a ) (Ehex) = garea(B(m, ) 4+ O(e'/3r%/3)

Uniform distribution of energy
Let € be a minimal e-partition of Q. Let B. = B(zc,7e) be a
disc in Q with r. > ¢ and dist(B, 0Q) > e. Then

Perp, (£) = g]B€| +O0(re).

> Proof of lower bound is based Hales inequality.
» Proof of upper bound is based on “cut and paste” technique.

» The actual statement depends on the variant of the problem considered.



Towards a precise description of minimal e-partitions

» Recall the questions: Is the orientation of the local
hexagonal pattern constant? (we think NO)
Is it piecewise constant? (we think YES)

» From now on we consider the “excess energy” of an

e-partition &:
F.(€) :=ePer(€) — o]

> Ideally, we would like to write a ['-limit of F; as ¢ — 0.
But what the variable of the I'-limit should be?
Claim: the “limit” of the orientation of the local hexagonal
patterns. ..

» We did not write the I'-limit, but we did identify and
partially address some key questions (“cell problems”).



Excess energy due to change of orientation
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Define

o(0)

» Consider a square of side-length L > 1;

> consider all 1-partitions £ which are
prescribed in the grey zone (and satisfy
suitable boundary periodic conditions);

> ¢ := angle between the imposed orientations.

:= lim inf %{ iIglf Fl(E)} .

L—+o0o

» Explicit construction gives ®(4) = O(6]log¥|);

» Is @(0) > 07 Yes, but proved under undesired assumptions.

()

» [s ® superlinear in 0, i.e., liminf —= = +00? Yes, but ...

0—0+



Excess energy due to shift? Fortunately not!



Excess energy due to boundary

> Consider a square of side-length L > 1 and
take €2 as in the picture;

|

:}& ‘ > consider all 1-partitions of €2 which are
L . .
‘ prescribed in the grey zone (and ...);

> 0 := angle between the imposed orientation
and the vertical direction.

Define 1
20 = fmint 7 {p (O}
» Hales (isoperimetric inequality) gives C' < &, < .

» Does ®p,(#) > 0 depends on 67
We think so, but we have no clue about a proof.
Indeed we cannot prove even the most basic conjecture. ..



Conclusions

» If &, does NOT depend on 6, then minimal e-partitions of {2
have constant orientation (in the regime ¢ < 1).

» If &, depends on 0, and @ is strictly positive then minimal
e-partitions of 2 may not have constant orientation.

» If in addition ® is super-linear at 0 then the orientation of
minimal e-partitions is piecewise constant (and in SBV (Q))
— emergence of “grains”.



From partitions to maps

>

We use rigidity estimates a la Friesecke4James+Miiller (2002), and
precisely Miiller+Scardia+Zeppieri (2015).

» We pass from a partition £ of Q to a map u : Q — R? in several steps.

We fix ¢ = 1 and consider for simplicity a polygonal partition. First we
construct the dual network N, connecting the barycenters of
neighbouring cells.

If the partitions contains only hexagons and has only triple points, then
the the dual network N is made of triangles and contains only 6-nodes.
Then we construct in a natural way a map u from N to the regular
triangular network, which we extend to €2 by linearity.

We use Hales’s inequality Per(FE) > Per(H) + ¢ dist(E, H)? to get:

Fi(€) 2 / dist(Vu, SO(2))* dz



From partitions to maps, continued

> If the partitions contains non hexagonal cells (pentagons,
heptagons,...) and has only triple points, then the the dual network N
is still made of triangles but contains also n-nodes with n # 6 (defects).

> In this case we cannot construct a global map u from N to the regular
triangular network (there is a topological issue).
Indeed we can properly define only a matrix-field 8 : Q — R?*%/R;
where Rg C SO(2) is the subgroup generated by a rotation by 60°.

> TFor a suitable I' C N we construct a lift 8 : Q\ ' — R?*2.
We use Hales’s inequality Per(E) > Per(H) — ¢(n — 6) + 6 dist(E, H)?
to get:

Fi(&) = / dist (3, S0(2))? dz + #{defects}
Q

> Here is the difficulty! If #{defects} = length(I") we are in game: we can
use Miiller+Scardia+Zeppieri and Lauteri+Luckhaus (2017).
This estimate looks quite plausible but has eluded us (so far).



Thanks for the attention!

E ancora tanti auguri, Gianni!



