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It has been 34 years!. . .
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Van Der Waals (1893), Cahn and Hilliard (1958), Gurtin (1987)
. . . it started in 2003 . . .

Equilibrium behavior of a fluid with two stable phases may be described by
the Gibbs free energy per unit volume

I(u) :=

ˆ
Ω
W (u) dx

W : R→ [0,+∞) is a double well potential

W (p) := (p2 − 1)2, {W = 0} = {−1, 1}
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Ω ⊂ RN open, bounded, container

u : Ω→ R density of a fluid´
Ω u dx = m . . .m total mass of the fluid

W double-well potential energy per unit volume

W−1 ({0}) = {a, b} . . . a < b two phases of the fluid

Problem

Minimize total energy

I(u) =

ˆ
Ω
W (u) dx

subject to
´

Ω u dx = m
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Solution

Assume |Ω| = 1 and a < m < b. Then minimizers are of the form

uE (x) =

{
a if x ∈ E,
b if x ∈ Ω \ E,

where E ⊆ Ω is any measurable set with |E| = b−m
b−a

NONUNIQUENESS OF SOLUTIONS

Selection via singular perturbations:

Iε(u) :=

ˆ
Ω

[
W (u) + ε2|∇u|2

]
dx, u ∈ C1 (Ω) , ε > 0

ε2
´

Ω |∇u|
2 dx . . . surface energy penalization
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Modica–Mortola, 1977

{W = 0} = {a, b}

Gurtin’s 1985 conjecture:

Asymptotic behavior of minimizers to Eε described via Γ-convergence.
Scaling by ε−1 yields

ε−1Iε
Γ−→ F0,

F0(u) :=

{
cW P (A; Ω) u ∈ BV (Ω; {a, b}),
+∞ u ∈ L1(Ω) \BV (Ω; {a, b})

where

A := {u(x) = a}, cW := 2

ˆ b

a

√
W (s)ds
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Iε(u) :=

ˆ
Ω

[
W (u) + ε2|∇u|2

]
dx, u ∈ C1 (Ω)

Gurtin’s Conjecture (1987): Minimizers uε

min

{
Iε(u) : u ∈ C1 (Ω) ,

ˆ
Ω
u dx = m

}
converge to uE0 , where

PerΩ (E0) ≤ PerΩ (E)

over all E ⊆ Ω measurable with |E| = b−m
b−a

Fε(u) :=
1

ε
Iε(u) =

ˆ
Ω

[
1

ε
W (u) + ε|∇u|2

]
dx

Fε and Iε have the same minimizers
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So . . . if we know the Γ-limit of {Fε} then we know where the minimizers
of Iε converge to . . .

Fε(u) =

ˆ
Ω

[
1

ε
W (u) + ε|∇u|2

]
dx, u ∈ C1 (Ω)

Theorem (Modica (1987), Sternberg (1988), F. and Tartar (1989),...)

Fε
Γ→ F0 with respect to strong convergence in L1 (Ω), where

F0(u) :=

{
cW PerΩ

(
u−1 ({a})

)
if u ∈ BV (Ω; {a, b}) ,

´
Ω u dx = m,

+∞ otherwise

cW := 2

ˆ b

a

√
W (s) ds
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What about higher order nonlocal regularizations?

• G. Dal Maso, I.F. and G. Leoni, Trans. Amer. Math. Soc. (2018)

Fε(u) :=

{ ´
Ω

1
εW (u) dx+ Jε(u) if u ∈W 1,2

loc (Ω) ∩ L2 (Ω) ,
+∞ otherwise

where

Jε(u) := ε

ˆ
Ω

ˆ
Ω
Jε(x− y)|∇u(x)−∇u(y)|2dxdy for u ∈W 1,2

loc (Ω)

Jε(x) :=
1

εN
J
(x
ε

)
J : RN → [0,+∞). . . even measurable functionˆ

Rn
J(x)(|x| ∧ |x|2) dx < +∞

where a ∧ b := min{a, b}.
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Nonlocal higher order singular perturbations

J : RN → [0,+∞). . . even measurable function

ˆ
RN

J(x)(|x| ∧ |x|2) dx < +∞

For example

J(x) := |x|−N−2s,
1

2
< s < 1

leads to Gagliardo’s seminorm for the fractional Sobolev space Hs(R)
In this case

Jε(x) = ε2s|x|−N−2s

• G. Alberti and G. Belletini, Math. Ann. (1998)

Fε(u) :=

{ ´
Ω

1
εW (u) dx+ J̃ε(u) if u ∈W 1,2

loc (Ω) ∩ L2 (Ω) ,
+∞ otherwise,
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J̃ε(u) :=
1

ε

ˆ
Ω

ˆ
Ω
Jε(x− y)(u(x)− u(y))2dxdy for u ∈W 1,2

loc (Ω)

Jε(x) :=
1

εN
J
(x
ε

)
(statistical mechanics) free energies of continuum limits of Ising spin
systems on lattices

u . . . macroscopic magnetization

J . . . ferromagnetic Kac potential

but dependence on ∇u in place of u adds remarkable difficulties!
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Relevant Spaces:
ν ∈ SN−1 := ∂B1(0)
ν1, . . . , νN . . . orthonormal basis in RN with νN = ν

V ν := {x ∈ RN : |x · νi| < 1/2 for i = 1, . . . , N − 1}
Qν := {x ∈ RN : |x · νi| < 1/2 for i = 1, . . . , N}

W 1,2
ν1,...,νN−1

:={v ∈W 1,2
loc (RN ) :v(x+νi) = v(x) for a.e. ∈ RN , i = 1, . . . , N−1}

Xν := {v ∈W 1,2
ν1,...,νN−1

: v(x) = ±1 for a.e. x ∈ RN with ± x · ν ≥ 1/2}

When N = 1 take ν = ±1, V ν := R, Qν := (−1/2, 1/2)
Xν := {v ∈W 1,2

loc (R) : v(x) = ±1for a.e.x ∈ R with ± x ≥ 1/2}

13 / 53



Surface Energy

ψ(ν) := inf
0<ε<1

inf
v∈Xν

Fνε (v)

where

Fνε (u) :=
1

ε

ˆ
Qν
W (u(x)) dx+ ε

ˆ
V ν

ˆ
RN

Jε(x− y)|∇u(x)−∇u(y)|2dxdy

Define F : L2(Ω)→ [0,+∞] by

F(u) :=


ˆ
Su

ψ(νu) dHN−1 if u ∈ BV (Ω; {−1, 1}) ,

+∞ otherwise in L2(Ω)

Compactness in L2 of energy bounded sequences

{Fε} Γ-converges to F in L2(Ω)

nonlocality → remarkable technical difficulties! 14 / 53



Localized energies:

Wε(u,A) :=
1

ε

ˆ
A
W (u(x)) dx

Jε(u,A,B) := ε

ˆ
A

ˆ
B
Jε(x− y)|∇u(x)−∇u(y)|2dxdy

When A = B we set

Fε(u,A) :=Wε(u,A) + Jε(u,A,A) and Jε(u,A) := Jε(u,A,A)

Theorem (Interpolation Inequality)

ε

ˆ
A
|∇u(x)|2dx ≤ CFε(u, (A)2εγJ )

for every ε > 0, for every open set A ⊂ RN , and for every
u ∈W 1,2

loc ((A)2εγJ )

(A)η := {x ∈ RN : dist(x,A) < η}
15 / 53



ε

ˆ
A
|∇u(x)|2dx ≤ CFε(u, (A)2εγJ )

(A)η := {x ∈ RN : dist(x,A) < η}

γJ : For all ξ ∈ SN−1 there exist −γJ < α(ξ) < β(ξ) < γJ s.t.

ˆ β(ξ)

α(ξ)

1

J(tξ)|t|N−1
dt ≤ CJ

Next . . . “modification lemma” . . . proof 11 pages long . . .
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Interaction Phase Transition/Homogenization

Consider fluids which exhibit periodic heterogeneity at small scales, i.e.

Fε(u) :=

ˆ
Ω

[
1

ε
W

(
x

δ(ε)
, u

)
+ ε|∇u|2

]
dx

where
• W (x, p) = 0 iff p ∈ {a, b}
• W (·, p) is Q-periodic for every p, δ(ε)→ 0 as ε→ 0
Example: W (x, p) = χE(x)W1(p) + χQ\EW2(p)

Goal: Identify Γ-limit of Fε
Ansini, Braides, Chiadò-Piat (2003): W homogeneous, regularization

f
(

x
δ(ε) ,∇u

)
Braides, Zeppieri (2009):

´ 1
0

[
W (k)

(
x
δ(ε) , u

)
+ ε2|u′|2

]
dx
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Scaling regime δ(ε) = ε

Theorem (Cristoferi, F., Hagerty, Popovici. Interfaces Free Bound.(2019))

Let δ(ε) = ε. Then Fε
Γ−→ F0,

F0(u) :=


ˆ
∂∗A

σ(ν)dHN−1 u ∈ BV (Ω; {a, b}),

+∞ otherwise

where
A := {u(x) = a}, ν is the outward normal to A,

and

σ(ν) := lim
T→∞

inf
u∈Aν,T

{
1

TN−1

ˆ
TQν

[
W (y, u(y)) + |∇u(y)|2

]
dy

}
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Cell Problem

σ(ν) = lim
T→∞

inf
u∈Aν,T

{
1

TN−1

ˆ
TQν

[
W (y, u(y)) + |∇u(y)|2

]
dy

}
where

Aν,T :=
{
u ∈ H1(TQν ;Rd) : u(x) = (ρT ∗ u0)(x · ν) on ∂TQν

}
u0(t) :=

{
b if t > 0,

a if t < 0

ρT (x) := TNρ(Tx), ρ ∈ C∞c (R) with

ˆ
R
ρ = 1

R. Choksi, I. F., J. Lang and R. Venkatraman (to appear): isotropy
σ is constant!
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Outline of Proof

Compactness: Bounded energy → BV structure
Reduction to classical Modica-Mortola technique
W (x, p) = 0 iff p ∈ {a, b}
(x, p)→W (x, p) Carathéodory, only measurability in x
W (x, p) ≥ W̃ (p), W̃ (p) = 0 iff p ∈ {a, b}, W̃ (p) ≥ C|p| for |p| >> 1

Γ-liminf: “Lower-semicontinuity” result using blow-up
techniques
|p|q
C − C ≤W (x, p) ≤ C(1 + |p|q), some q ≥ 2

“Blow up” at points in jump set
De Giorgi’s slicing method → prescribe boundary conditions from σ
Compare with optimal profiles given by σ

Γ-limsup: Recovery sequences
Blow-Up Method
Recovery sequences for polyhedral sets with ν ∈ QN ∩ SN−1

Density result and upper semicontinuity of σ
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Compactness

Reduce to

Eε(u) :=

ˆ
Ω

[
W̃ (u) + ε2|∇u|2

]
dx

Use F. and Tartar (1989)
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u ∈ BV (Ω; {a, b}), A := {u = a}, εn → 0+

Claim: there exists {un} ⊂ H1(Ω;Rd) s.t. un → u in L1 and

lim supFεn(un) ≤ F (u) =

ˆ
∂∗A

σ(ν)dHN−1

Localization: for U ⊂ Ω open

F{εn}(u;U) := inf{lim inf Fεn(un, U) : un → u in L1(U ;Rd)}

Up to a subsequence

λ : A(Ω)→ [0,+∞), λ(B) := F{εn}(u;B), B Borel set

is a positive finite measure, and

λ << µ := HN−1b∂∗A
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Done if
dλ

dµ
(x0) ≤ σ(ν(x0))

To prove it:

dλ

dµ
(x0) = lim

λ(Qν(x0, ε))

εN−1

λ(Qν(x0, ε))

εN−1
≤ lim inf

n→∞

1

εN−1
Fεn(un,ε, Qν(x0, ε))

with un,ε → u, n→∞, in L1(Qν(x0, ε))

How do we construct these approximating sequences?
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Easy Case: Transition Layer Aligned with Principal Axes

If ν ∈ {e1, . . . , eN}, create recovery sequence by tiling optimal profiles
from definition of σ.

Say ν = eN
Pick Tk ⊂ N and uk s.t.

σ(eN ) = lim
k→∞

1

TN−1
k

ˆ
TkQ

[
W (y, uk(y)) + |∇uk(y)|2

]
dy

vk(x) := uk(Tkx), extended by Q′-periodicity

vk,ε,r(x) :=


u0(x) |xN | ≥ εTk

2r

vk

(
rx
εTk

)
|xN | < εTk

2r

uk,ε,r(x) := vk,ε,r

(x
r

)
→ u in L1(rQ)
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Transition Layer Aligned with Principal Axes, cont.

Blow up:

lim
r→0

F (u; rQ)

rN−1
≤ lim

r→0
lim
ε→0

1

rN−1

ˆ
rQ

[
1

ε
W (x, uk,ε,r) + ε|∇uk,ε,r|2

]
dx

= lim
r→0

lim
ε→0

ˆ
Q′

ˆ εTk/2r

−εTk/2r

[
r

ε
W

(
r

ε
y, vk

(
ry

εTk

))
+

r

εT 2
k

∣∣∣∣∇vk ( ry

εTk

)∣∣∣∣2 ]dy
= lim

r→0
lim
ε→0

ˆ
Q′

ˆ 1/2

−1/2

[
TkW

((
Tk
rz′

εTk
, TkzN , vk

(
rz′

εTk
, zN

))
+

1

Tk

∣∣∣∣∇vk( rz′εTk
, zN

)∣∣∣∣2 ]dz
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lim
r→0

F (u; rQ)

rN−1
≤ lim

r→0
lim
ε→0

1

rN−1

ˆ
rQ

[
1

ε
W (x, uk,ε,r) + ε|∇uk,ε,r|2

]
dx

= lim
r→0

lim
ε→0

ˆ
Q′

ˆ εTk/2r

−εTk/2r

[
r

ε
W

(
r

ε
y, vk

(
ry

εTk

))
+

r

εT 2
k

∣∣∣∣∇vk ( ry

εTk

)∣∣∣∣2 ]dy
= lim

r→0
lim
ε→0

ˆ
Q′

ˆ 1/2

−1/2

[
TkW

((
Tk
rz′

εTk
, TkzN , vk

(
rz′

εTk
, zN

))
+

1

Tk

∣∣∣∣∇vk( rz′εTk
, zN

)∣∣∣∣2 ]dz
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Transition Layer aligned with Principal Axes, cont.

Since W and vk are BOTH Q′-periodic and Tk ∈ N, we can use the
Riemann Lebesgue Lemma:

lim
r→0

lim
ε→0

ˆ
Q′

ˆ 1/2

−1/2

[
TkW

((
Tk
rz′

εTk
, TkzN

)
, vk

(
rz′

εTk
, zN

))
+

1

Tk

∣∣∣∣∇vk( rz′εTk
, zN

)∣∣∣∣2 ]dz
= lim

r→0

ˆ
Q′

ˆ 1/2

−1/2

[
TkW ((Tky

′, TkzN ), vk(y
′, zN )

+
1

Tk
|∇vk(y′, zN )|2dzN

]
dy′

=
1

TN−1
k

ˆ
TkQ

[
W (x, uk(x)) + |∇uk(x)|2

]
dx
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Other Transition Directions?

(a)
Aligned

(b)
Misaligned

Figure : Since W is Q-periodic, can tile along principal axes. What if the
transition layer is not aligned?
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Q-periodic implies λνQν-periodic

Key observation: Periodic microstructure in principal directions →
periodicity in other directions.

Figure : Integer lattice contains copies of itself, rotated and scaled

B W is λνQν-periodic for some λν ∈ N, and for ν ∈ Λ := QN ∩ SN−1:
Dense!
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Orthonormal Bases in QN

Important: Every face of Qν has rational normal.

Need an orthonormal basis using rational vectors:

Theorem (Witt, ’37)

Any isometry between two subspaces F1 and F2 of a finite-dimensional
vector space V defined over a field K of characteristic different from 2 and
provided with a metric structure induced from a nondegenerate symmetric
or skew-symmetric bilinear form B[·, ·] may be extended to a metric
automorphism of the entire space V .

In particular:

V = QN , F1 := spanQ(eN ), F2 := spanQ(ν), B[x, y] := x · y

Then, the mapping eN 7→ ν extends to an isometry!
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Theorem (Cristoferi, F., Hagerty, Popovici, Interfaces Free Bound.(2019))

Let νN ∈ Λ = QN ∩ SN−1. There exist ν1, . . . , νN−1 ∈ Λ, λν ∈ N, s.t.

ν1, . . . , νN−1, νN

o.n. basis of RN and

W (x+ nλννi, p) = W (x, p)

a.e. x ∈ Q, all n ∈ N, p ∈ Rd.

Also use:
ε > 0, ν ∈ Λ, S : RN → RN rotation, SeN = ν.

Then there is a rotation R : RN → RN s.t. ReN = ν, Rei ∈ Λ all
i = 1, . . . , N − 1, ||R− S|| < ε
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Properties of σ are important

σ(ν) = lim
T→∞

inf
u∈AQν,T ,Qν∈Qν

{
1

TN−1

ˆ
TQν

[
W (y, u(y)) + |∇u(y)|2

]
dy

}
where

AQν ,T :=
{
u ∈ H1(TQν ;Rd) : u(x) = (ρT ∗ u0)(x · ν) on ∂TQν

}
u0(t) :=

{
b if t > 0

a if t < 0

ρT (x) := TNρ(Tx), ρ ∈ C∞c (R) with

ˆ
R
ρ = 1

Qν . . . unit cubes centered at the origin with two faces orthogonal to ν
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Properties of σ (before knowing it is constant!):

• σ is well defined and finite

• the definition of σ does not depend on the choice of the mollifier

• σ : SN−1 → [0,+∞) is upper semicontinuous

• if ν ∈ Λ then

σ(ν) = lim
n→∞

lim
T→∞

inf
u∈AQn,T

{
1

TN−1

ˆ
TQn

[
W (y, u(y)) + |∇u(y)|2

]
dy

}
where the normals to all faces of Qn belong to Λ
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Transition Layer aligned with ν ∈ QN ∩ SN−1

Same periodic tiling technique: Use Tk ∈ λνN.

B Blow up method → Recovery sequences for polyhedral sets A with
normals to its facets in Λ
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Blow up method → Recovery sequences for polyhedral sets A with
normals to its facets in Λ

x0 ∈ Ω ∩ ∂∗A, ν := νA(x0).

Find rotation Rν , λν ∈ N, s.t. with Qν := Rν(x0 +Q)

W (x+ nλνv, p) = W (x, p)

a.e. x ∈ Ω, every n ∈ N, every p ∈ Rd, every v orthogonal to one face of
Qν
As before, done if

dλ

dµ
(x0) ≤ σ(ν(x0))

To prove it:

dλ

dµ
(x0) = lim

λ(Qν(x0, ε))

εN−1

. . . and work a little harder . . .
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Recovery sequences for arbitrary u ∈ BV (Ω; {a, b})

For u ∈ BV (Ω; {a, b}), we can find u(n) ∈ BV (Ω; {a, b}) such that
A(n) are polyhedral,

u(n) → u in L1

|Du(n)|(Ω)→ |Du|(Ω).

Since QN ∩ SN−1 dense, can require ν(n) ∈ QN ∩ SN−1.

Since σ upper-semicontinuous, by Reshetnyak’s,ˆ
∂∗A

σ(ν)dHn−1 ≤ lim sup
n→∞

ˆ
∂∗A

(n)
0

σ
(
ν(n)

)
dHn−1

Find recovery sequences u
(n)
ε for the u(n) so thatˆ

∂∗A(n)

σ
(
ν(n)

)
dHn−1 ≤ lim sup

ε→0+
Fε

(
u(n)
ε

)
Diagonalize!
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Other scaling regimes

Recently considered the case where the scale of homogenization is much
smaller than the scale of the phase transition

Fε(u) :=

ˆ
Ω

[
1

ε
W

(
x

δ(ε)
, u

)
+ ε|∇u|2

]
dx.

If δ(ε) is sufficiently small compared to ε, the homogenization effects are
effectively instantaneous, and we can pass to a homogenized system

FHε (u) =

ˆ
Ω

[
1

ε
WH (u) + ε|∇u|2

]
dx

where

WH(p) :=

ˆ
Q
W (y, p)dy
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Scaling regime δ(ε) << ε

Theorem (Cristoferi, F., Hagerty (2019))

Let δ(ε) be such that

lim
ε→0

ε
3
2

δ(ε)
= +∞.

Then, Fε
Γ−→ FH0 , where

FH0 (u) :=

{
KH PerΩ(A) u ∈ BV (Ω; {a, b}),
+∞ u ∈ L1(Ω) \BV (Ω; {a, b})

WH(p) :=
´
QW (y, p) dy, A := {u(x) = a}

KH := 2 inf

{ˆ 1

0

√
WH(g(s))|g′(s)|ds : g piecewise C1, g(0) = a, g(1) = b

}
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Outline of Proof

Homogenization Lemma
Compare the bulk energy to a homogenized bulk energy
Requires quantitative control on δ vs ε

Use the result of F. and Tartar to identify Γ-limit of homogenized
energy

Comparison with homogenized energy yields information about
minimizing sequences → relaxed growth assumptions for W

Theorem (F., Tartar (1989))

Functionals of the form

Gε(u) =

ˆ
Ω

[
1

ε
W̃ (u) + ε|∇u|2

]
dx, u ∈ H1(Ω;Rd)

have a Γ-limit

G0(u) := KG P (A0; Ω), u ∈ BV (Ω; {a, b})
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Homogenization Lemma

The key tool in comparing Fε and FHε is a Riemann-Lebesgue type result
for all W uniformly bounded.

Lemma

Let εn, δn and {un}n∈N ⊂ H1(Ω;Rd) be such that

sup
n∈N

ˆ
Ω
εn|∇un|2dx <∞ and lim

n→∞
ε
− 3

2
n δn = 0.

Then,

lim
n→∞

1

εn

ˆ
Ω

[
W

(
x

δn
, un(x)

)
−WH(un(x))

]
dx = 0

Uniform boundedness: NOT required for the main theorem- will be
discussed later

Scaling: More on this...
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Scaling

The homogenization lemma requires a particular exponent ε
3
2

If the regularization is of the form |∇u|p, the exponent would be ε1+
1
p .

This same exponent is necessary Ansini, Braides, Chiadò-Piat (2003)
who homogenized the regularization term

Unclear if this is purely technical or if truly different behavior is
possible in the intermediate regime

41 / 53



Homogenization Lemma - Outline of Proof

At scale δn, decompose Ω into δn-cubes and a remainder Rn

Ω =

Mn⋃
i=1

Q(pi, δn) ∪Rn,

where pi are on the lattice δnZN
Rn . . . collection of cubes Q(z, δn), z ∈ δnZN , intersecting ∂Ω

|Rn| ≤ Cδn

Uniform boundedness:

1

εn

ˆ
Rn

W

(
x

δn
, un(x)

)
dx ≤ C δn

εn
→ 0
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Homogenization Lemma - Outline of Proof, cont.

Sufficient to control

1

εn

Mn∑
i=1

∣∣∣∣∣
ˆ
Q(pi,δn)

W

(
x

δn
, un(x)

)
−WH(un(x))dx

∣∣∣∣∣
Apply the substitution x = pi + δny and periodicity:

δNn
εn

Mn∑
i=1

∣∣∣∣ˆ
Q
W (y, un(pi + δny))−WH(un(pi + δny))dy

∣∣∣∣
Recast as the double integral

δNn
εn

Mn∑
i=1

∣∣∣∣ˆ
Q

ˆ
Q
W (y, un(pi + δny))−W (z, un(pi + δny))dzdy

∣∣∣∣
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Homogenization Lemma - Outline of Proof, cont.

After another change of variables, this is

δNn
εn

Mn∑
i=1

∣∣∣∣ˆ
Q

ˆ
Q
W (y, un(pi + δny))−W (y, un(pi + δnz))dzdy

∣∣∣∣
and by Lipschitz behavior of W , enough to control

δNn
εn

Mn∑
i=1

ˆ
Q

ˆ
Q
|un(pi + δny)− un(pi + δnz)| dzdy

By Poincaré, we can estimate via

δn
δN

εn

Mn∑
i=1

ˆ
Q
|∇un(pi + δny)|dy ≤ δn

εn

ˆ
Ω
|∇un|dx

≤ δn
εn
ε−1/2
n

(
εn

ˆ
Ω
|∇un|2dx

)1/2
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Uniform Boundedness

To apply the homogenization lemma to potentials which may be
unbounded, we use a cut-off trick- possible because by F.-Tartar, the
homogenized problem is based on the 1-dimensional optimization

KH = 2 inf

{ˆ 1

0

√
WH(g(s))|g′(s)|ds

}
where the g are pointwise C1 so that g(0) = a, g(1) = b. Pick R > 0 so
that for optimal curves g, |g(t)| ≤ R. Let

M = ess sup
x∈Ω

max
|p|≤R

W (x, p)

and define the truncated potential

W̃ (x, p) := min{W (x, p),M}
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Gradient Flow: Current work with Rustum Choksi, Jessica
Lin and Raghavendra (Raghav) Venkatraman

L2-gradient flow of Fε:

Fε(u) :=

ˆ
Ω

[
1

ε
a
(x
ε

)
W (uε) + ε |∇uε|2

]
dx.

W (y, u) := a(y)W (u)
a : RN → [λ,Λ], 0 < λ < Λ, C2 and periodic
{W = 0} = {−1, 1} C2 double-well potential

uεt − 2∆uε = − 1
ε2
a
(
x
ε

)
W
′
(uε) in (0,∞)× Ω,

uε(0, x) ≈ χA − χAc in Ω,
∂uε

∂n = 0 on (0,∞)× ∂Ω,

∂A . . . interface
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To show: uε converge to a 1,−1 sharp interface limit which is governed by
the mean curvature equation

ut − σdiv
(
Du
|Du|

)
|Du| = 0 in (0,∞)× Ω,

u(0, x) = χA − χAc in Ω,
∂u
∂n = 0 on (0,∞)× ∂Ω

Recall: Fε
Γ−L1

−−−→ F0 where

F0(u) =

{´
∂∗A σ(νA(x)) dHN−1(x) if u ∈ BV (Ω),

+∞ otherwise

for σ : SN−1 → [0,+∞) given by the cell formula (AND constant!)

σ(ν) := lim
T→∞

1

TN−1
inf

{ˆ
TQν

[
a(y)W (u(y)) + |∇u(y)|2

]
dy : u ∈ A(ν, T )

}
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The PDE now becomes:

uεt = −∇XεFε(u).

with

∇XεFε(u) = −2∆u+
1

ε2
a
(x
ε

)
W
′
(u),

and ‖ · ‖2Xε := ε‖ · ‖2L2(Ω)

Ideas from : Sandier-Serfaty, Mugnai-Röger, Röger- Schäzle

Many references when a = 1, including:
Alikakos-Bates-Chen, Xinfu Chen, Bronsard- Kohn,
Rubinstein-Sternberg-Keller, Ilmanen, Tonegawa-Hutchinson, Tonegawa,
Tim Laux and Thilo Simon, Evans-Soner-Souganidis, Lions-Souganidis
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Future problems

Moving wells

Scaling regime ε << δ(ε) . . . homogenization of the “surface
Cahn-Hilliard limiting energy”. Forthcoming

multiple wells

More general regularization terms, i.e. |∇u|2 → f(x, u,∇u)

Nonlocal stochastic homogenization

Solid-solid phase transitions: W
(

x
δ(ε) ,∇u(x)

)
Solid-sold phase transitions without homogenization:

W (F ) ≈ |F |p, Conti, Fonseca, Leoni, ’02.

W (F ) ≈ distp(F, SO(N)A ∪ SO(N)B)

only studied for N=2 (Conti–Schweizer, ’06) . . . and in arbitrary
dimensions under a suitable anisotropic penalization of second variations
Elisa Davoli and Manuel Friedrich, 2018
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Something funny about moving wells . . .

W (x, p) = 0 iff p ∈ {a(x), b(x)}

{uε} with bounded energy, so that

1

ε

ˆ
Ω
W
(x
ε
, uε(x)

)
dx < +∞

Now, if {uε} has a L1 limit, then its 2-scale limit u(x, y) is actually just
u(x), and so

ˆ
Ω
W
(x
ε
, uε(x)

)
dx→

ˆ
Q

ˆ
Ω
W (y, u(x)) dx dy = 0

But then

W (y, u(x)) = 0 for almost every (x, y) ∈ Ω×Q

50 / 53



Something funny about moving wells . . .

W (y, u(x)) = 0 for almost every (x, y) ∈ Ω×Q

and so

u(x) ∈ {a(y), b(y)} for almost every (x, y) ∈ Ω×Q

. . . basically {a(y), b(y)} = {a(y′), b(y′)} a.e. . . . NOT moving wells . . .

wrong scaling?

(without homogenization) sharp interface limit W (x, p) = 0 iff
p ∈ {z1(x), z2(x), . . . , zk(x)} by Riccardo Cristoferi and Giovanni
Gravina, 2020
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HAPPY BIRTHDAY GIANNI!
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A good place to stop . . .
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