A Homogenization Result in the Gradient Theory of Phase Transitions

Irene Fonseca

Center for Nonlinear Analysis (CNA)
Department of Mathematical Sciences
Carnegie Mellon University

Supported by the National Science Foundation (NSF)

It has been 34 years!.. .

Van Der Waals (1893), Cahn and Hilliard (1958), Gurtin (1987)

....it started in 2003 ...
Equilibrium behavior of a fluid with two stable phases may be described by the Gibbs free energy per unit volume

$$
I(u):=\int_{\Omega} W(u) d x
$$

$W: \mathbb{R} \rightarrow[0,+\infty)$ is a double well potential

$W(p):=\left(p^{2}-1\right)^{2},\{W=0\}=\{-1,1\}$

- $\Omega \subset \mathbb{R}^{N}$ open, bounded, container
- $u: \Omega \rightarrow \mathbb{R}$ density of a fluid
- $\int_{\Omega} u d x=m \ldots m \quad$ total mass of the fluid
- W double-well potential energy per unit volume
- $W^{-1}(\{0\})=\{a, b\} \ldots a<b \quad$ two phases of the fluid

Problem

Minimize total energy

$$
I(u)=\int_{\Omega} W(u) d x
$$

subject to $\int_{\Omega} u d x=m$

Solution
Assume $|\Omega|=1$ and $a<m<b$. Then minimizers are of the form

$$
u_{E}(x)= \begin{cases}a & \text { if } x \in E \\ b & \text { if } x \in \Omega \backslash E\end{cases}
$$

where $E \subseteq \Omega$ is any measurable set with $|E|=\frac{b-m}{b-a}$

NONUNIQUENESS OF SOLUTIONS

Selection via singular perturbations:

$$
I_{\varepsilon}(u):=\int_{\Omega}\left[W(u)+\varepsilon^{2}|\nabla u|^{2}\right] d x, \quad u \in C^{1}(\Omega), \varepsilon>0
$$

$\varepsilon^{2} \int_{\Omega}|\nabla u|^{2} d x \ldots$ surface energy penalization

Modica-Mortola, 1977

$\{W=0\}=\{a, b\}$
Gurtin's 1985 conjecture:
Asymptotic behavior of minimizers to E_{ε} described via Γ-convergence. Scaling by ε^{-1} yields

$$
\varepsilon^{-1} I_{\varepsilon} \xrightarrow{\Gamma} F_{0}
$$

$$
F_{0}(u):= \begin{cases}c_{W} P(A ; \Omega) & u \in B V(\Omega ;\{a, b\}) \\ +\infty & u \in L^{1}(\Omega) \backslash B V(\Omega ;\{a, b\})\end{cases}
$$

where

$$
A:=\{u(x)=a\}, c_{W}:=2 \int_{a}^{b} \sqrt{W(s)} d s
$$

$$
I_{\varepsilon}(u):=\int_{\Omega}\left[W(u)+\varepsilon^{2}|\nabla u|^{2}\right] d x, \quad u \in C^{1}(\Omega)
$$

Gurtin's Conjecture (1987): Minimizers u_{ε}

$$
\min \left\{I_{\varepsilon}(u): u \in C^{1}(\Omega), \quad \int_{\Omega} u d x=m\right\}
$$

converge to $u_{E_{0}}$, where

$$
\operatorname{Per}_{\Omega}\left(E_{0}\right) \leq \operatorname{Per}_{\Omega}(E)
$$

over all $E \subseteq \Omega$ measurable with $|E|=\frac{b-m}{b-a}$

$$
F_{\varepsilon}(u):=\frac{1}{\varepsilon} I_{\varepsilon}(u)=\int_{\Omega}\left[\frac{1}{\varepsilon} W(u)+\varepsilon|\nabla u|^{2}\right] d x
$$

F_{ε} and I_{ε} have the same minimizers

So ... if we know the Γ-limit of $\left\{F_{\varepsilon}\right\}$ then we know where the minimizers of I_{ε} converge to ...

$$
F_{\varepsilon}(u)=\int_{\Omega}\left[\frac{1}{\varepsilon} W(u)+\varepsilon|\nabla u|^{2}\right] d x, \quad u \in C^{1}(\Omega)
$$

Theorem (Modica (1987), Sternberg (1988), F. and Tartar (1989),...)
$F_{\varepsilon} \xrightarrow{\Gamma} F_{0}$ with respect to strong convergence in $L^{1}(\Omega)$, where

$$
\begin{gathered}
F_{0}(u):= \begin{cases}c_{W} \operatorname{Per}_{\Omega}\left(u^{-1}(\{a\})\right) & \text { if } u \in B V(\Omega ;\{a, b\}), \int_{\Omega} u d x=m \\
+\infty & \text { otherwise }\end{cases} \\
c_{W}:=2 \int_{a}^{b} \sqrt{W(s)} d s
\end{gathered}
$$

What about higher order nonlocal regularizations?

- G. Dal Maso, I.F. and G. Leoni, Trans. Amer. Math. Soc. (2018)

$$
F_{\varepsilon}(u):= \begin{cases}\int_{\Omega} \frac{1}{\varepsilon} W(u) d x+\mathcal{J}_{\varepsilon}(u) & \text { if } u \in W_{\mathrm{loc}}^{1,2}(\Omega) \cap L^{2}(\Omega) \\ +\infty & \text { otherwise }\end{cases}
$$

where

$$
\begin{gathered}
\mathcal{J}_{\varepsilon}(u):=\varepsilon \int_{\Omega} \int_{\Omega} J_{\varepsilon}(x-y)|\nabla u(x)-\nabla u(y)|^{2} d x d y \quad \text { for } u \in W_{\mathrm{loc}}^{1,2}(\Omega) \\
J_{\varepsilon}(x):=\frac{1}{\varepsilon^{N}} J\left(\frac{x}{\varepsilon}\right)
\end{gathered}
$$

$J: \mathbb{R}^{N} \rightarrow[0,+\infty) \ldots$ even measurable function

$$
\int_{\mathbb{R}^{n}} J(x)\left(|x| \wedge|x|^{2}\right) d x<+\infty
$$

where $a \wedge b:=\min \{a, b\}$.

Nonlocal higher order singular perturbations

$J: \mathbb{R}^{N} \rightarrow[0,+\infty) \ldots$ even measurable function

$$
\int_{\mathbb{R}^{N}} J(x)\left(|x| \wedge|x|^{2}\right) d x<+\infty
$$

For example

$$
J(x):=|x|^{-N-2 s}, \quad \frac{1}{2}<s<1
$$

leads to Gagliardo's seminorm for the fractional Sobolev space $H^{s}(\mathbb{R})$ In this case

$$
J_{\varepsilon}(x)=\varepsilon^{2 s}|x|^{-N-2 s}
$$

- G. Alberti and G. Belletini, Math. Ann. (1998)

$$
F_{\varepsilon}(u):= \begin{cases}\int_{\Omega} \frac{1}{\varepsilon} W(u) d x+\tilde{\mathcal{J}}_{\varepsilon}(u) & \text { if } u \in W_{\mathrm{loc}}^{1,2}(\Omega) \cap L^{2}(\Omega) \\ +\infty & \text { otherwise }\end{cases}
$$

$$
\begin{gathered}
\tilde{\mathcal{J}}_{\varepsilon}(u):=\frac{1}{\varepsilon} \int_{\Omega} \int_{\Omega} J_{\varepsilon}(x-y)(u(x)-u(y))^{2} d x d y \quad \text { for } u \in W_{\mathrm{loc}}^{1,2}(\Omega) \\
J_{\varepsilon}(x):=\frac{1}{\varepsilon^{N}} J\left(\frac{x}{\varepsilon}\right)
\end{gathered}
$$

(statistical mechanics) free energies of continuum limits of Ising spin systems on lattices
u... macroscopic magnetization
J. . . ferromagnetic Kac potential
but dependence on ∇u in place of u adds remarkable difficulties!

Relevant Spaces:

$\nu \in \mathbb{S}^{N-1}:=\partial B_{1}(0)$
$\nu_{1}, \ldots, \nu_{N} \ldots$ orthonormal basis in \mathbb{R}^{N} with $\nu_{N}=\nu$

$$
\begin{aligned}
V^{\nu} & :=\left\{x \in \mathbb{R}^{N}:\left|x \cdot \nu_{i}\right|<1 / 2 \text { for } i=1, \ldots, N-1\right\} \\
Q^{\nu} & :=\left\{x \in \mathbb{R}^{N}:\left|x \cdot \nu_{i}\right|<1 / 2 \text { for } i=1, \ldots, N\right\}
\end{aligned}
$$

$W_{\nu_{1}, \ldots, \nu_{N}:=1}^{1,2}:=\left\{v \in W_{\mathrm{loc}}^{1,2}\left(\mathbb{R}^{N}\right): v\left(x+\nu_{i}\right)=v(x)\right.$ for a.e. $\left.\in \mathbb{R}^{N}, i=1, \ldots, N-1\right\}$
$X^{\nu}:=\left\{v \in W_{\nu_{1}, \ldots, \nu_{N-1}}^{1,2}: v(x)= \pm 1\right.$ for a.e. $x \in \mathbb{R}^{N}$ with $\left.\pm x \cdot \nu \geq 1 / 2\right\}$
When $N=1$ take $\nu= \pm 1, V^{\nu}:=\mathbb{R}, Q^{\nu}:=(-1 / 2,1 / 2)$
$X^{\nu}:=\left\{v \in W_{\text {loc }}^{1,2}(\mathbb{R}): v(x)= \pm 1\right.$ for a.e. $x \in \mathbb{R}$ with $\left.\pm x \geq 1 / 2\right\}$

Surface Energy

$$
\psi(\nu):=\inf _{0<\varepsilon<1} \inf _{v \in X^{\nu}} \mathcal{F}_{\varepsilon}^{\nu}(v)
$$

where
$\mathcal{F}_{\varepsilon}^{\nu}(u):=\frac{1}{\varepsilon} \int_{Q^{\nu}} W(u(x)) d x+\varepsilon \int_{V^{\nu}} \int_{\mathbb{R}^{N}} J_{\varepsilon}(x-y)|\nabla u(x)-\nabla u(y)|^{2} d x d y$
Define $\mathcal{F}: L^{2}(\Omega) \rightarrow[0,+\infty]$ by

$$
\mathcal{F}(u):= \begin{cases}\int_{S_{u}} \psi\left(\nu_{u}\right) d \mathcal{H}^{N-1} & \text { if } u \in B V(\Omega ;\{-1,1\}) \\ +\infty & \text { otherwise in } L^{2}(\Omega)\end{cases}
$$

Compactness in L^{2} of energy bounded sequences

$$
\left\{\mathcal{F}_{\varepsilon}\right\} \Gamma \text {-converges to } \mathcal{F} \text { in } L^{2}(\Omega)
$$

Localized energies:

$$
\begin{gathered}
\mathcal{W}_{\varepsilon}(u, A):=\frac{1}{\varepsilon} \int_{A} W(u(x)) d x \\
\mathcal{J}_{\varepsilon}(u, A, B):=\varepsilon \int_{A} \int_{B} J_{\varepsilon}(x-y)|\nabla u(x)-\nabla u(y)|^{2} d x d y
\end{gathered}
$$

When $A=B$ we set

$$
\mathcal{F}_{\varepsilon}(u, A):=\mathcal{W}_{\varepsilon}(u, A)+\mathcal{J}_{\varepsilon}(u, A, A) \quad \text { and } \quad \mathcal{J}_{\varepsilon}(u, A):=\mathcal{J}_{\varepsilon}(u, A, A)
$$

Theorem (Interpolation Inequality)

$$
\varepsilon \int_{A}|\nabla u(x)|^{2} d x \leq C \mathcal{F}_{\varepsilon}\left(u,(A)^{2 \varepsilon \gamma_{J}}\right)
$$

for every $\varepsilon>0$, for every open set $A \subset \mathbb{R}^{N}$, and for every $u \in W_{\mathrm{loc}}^{1,2}\left((A)^{2 \varepsilon \gamma_{J}}\right)$
$(A)^{\eta}:=\left\{x \in \mathbb{R}^{N}: \operatorname{dist}(x, A)<\eta\right\}$

$$
\varepsilon \int_{A}|\nabla u(x)|^{2} d x \leq C \mathcal{F}_{\varepsilon}\left(u,(A)^{2 \varepsilon \gamma_{J}}\right)
$$

$(A)^{\eta}:=\left\{x \in \mathbb{R}^{N}: \operatorname{dist}(x, A)<\eta\right\}$
$\gamma_{J}:$ For all $\xi \in \mathbb{S}^{N-1}$ there exist $-\gamma_{J}<\alpha(\xi)<\beta(\xi)<\gamma_{J}$ s.t.

$$
\int_{\alpha(\xi)}^{\beta(\xi)} \frac{1}{J(t \xi)|t|^{N-1}} d t \leq C_{J}
$$

Next . . . "modification lemma" ... proof 11 pages long ...

Interaction Phase Transition/Homogenization

Consider fluids which exhibit periodic heterogeneity at small scales, i.e.

$$
F_{\varepsilon}(u):=\int_{\Omega}\left[\frac{1}{\varepsilon} W\left(\frac{x}{\delta(\varepsilon)}, u\right)+\varepsilon|\nabla u|^{2}\right] d x
$$

where

- $W(x, p)=0$ iff $p \in\{a, b\}$
- $W(\cdot, p)$ is Q-periodic for every $p, \delta(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$

Example: $W(x, p)=\chi_{E}(x) W_{1}(p)+\chi_{Q \backslash E} W_{2}(p)$
Goal: Identify Γ-limit of F_{ε}
Ansini, Braides, Chiadò-Piat (2003): W homogeneous, regularization $f\left(\frac{x}{\delta(\varepsilon)}, \nabla u\right)$
Braides, Zeppieri (2009): $\int_{0}^{1}\left[W^{(k)}\left(\frac{x}{\delta(\varepsilon)}, u\right)+\varepsilon^{2}\left|u^{\prime}\right|^{2}\right] d x$

Scaling regime $\delta(\varepsilon)=\varepsilon$

Theorem (Cristoferi, F., Hagerty, Popovici. Interfaces Free Bound.(2019))
Let $\delta(\varepsilon)=\varepsilon$. Then $F_{\varepsilon} \xrightarrow{\Gamma} F_{0}$,

$$
F_{0}(u):= \begin{cases}\int_{\partial^{*} A} \sigma(\nu) d \mathcal{H}^{N-1} & u \in B V(\Omega ;\{a, b\}) \\ +\infty & \text { otherwise }\end{cases}
$$

where

$$
A:=\{u(x)=a\}, \nu \text { is the outward normal to } A
$$

and

$$
\sigma(\nu):=\lim _{T \rightarrow \infty} \inf _{u \in \mathcal{A}_{\nu, T}}\left\{\frac{1}{T^{N-1}} \int_{T Q_{\nu}}\left[W(y, u(y))+|\nabla u(y)|^{2}\right] d y\right\}
$$

Cell Problem

$$
\sigma(\nu)=\lim _{T \rightarrow \infty} \inf _{u \in \mathcal{A}_{\nu, T}}\left\{\frac{1}{T^{N-1}} \int_{T Q_{\nu}}\left[W(y, u(y))+|\nabla u(y)|^{2}\right] d y\right\}
$$

where

$$
\begin{gathered}
\mathcal{A}_{\nu, T}:=\left\{u \in H^{1}\left(T Q_{\nu} ; \mathbb{R}^{d}\right): u(x)=\left(\rho_{T} * u_{0}\right)(x \cdot \nu) \text { on } \partial T Q_{\nu}\right\} \\
u_{0}(t):= \begin{cases}b & \text { if } t>0, \\
a & \text { if } t<0\end{cases} \\
\rho_{T}(x):=T^{N} \rho(T x), \rho \in C_{c}^{\infty}(\mathbb{R}) \text { with } \int_{\mathbb{R}} \rho=1
\end{gathered}
$$

R. Choksi, I. F., J. Lang and R. Venkatraman (to appear): isotropy σ is constant!

Outline of Proof

- Compactness: Bounded energy $\rightarrow B V$ structure
- Reduction to classical Modica-Mortola technique
- $W(x, p)=0$ iff $p \in\{a, b\}$
- $(x, p) \rightarrow W(x, p)$ Carathéodory, only measurability in x
- $W(x, p) \geq \tilde{W}(p), \tilde{W}(p)=0$ iff $p \in\{a, b\}, \tilde{W}(p) \geq C|p|$ for $|p| \gg 1$
- Γ-liminf: "Lower-semicontinuity" result using blow-up techniques
- $\frac{|p|^{q}}{C}-C \leq W(x, p) \leq C\left(1+|p|^{q}\right)$, some $q \geq 2$
- "Blow up" at points in jump set
- De Giorgi's slicing method \rightarrow prescribe boundary conditions from σ
- Compare with optimal profiles given by σ
- Γ-limsup: Recovery sequences
- Blow-Up Method
- Recovery sequences for polyhedral sets with $\nu \in \mathbb{Q}^{N} \cap \mathbb{S}^{N-1}$
- Density result and upper semicontinuity of σ

Compactness

Reduce to

$$
E_{\varepsilon}(u):=\int_{\Omega}\left[\tilde{W}(u)+\varepsilon^{2}|\nabla u|^{2}\right] d x
$$

Use F. and Tartar (1989)
$u \in B V(\Omega ;\{a, b\}), A:=\{u=a\}, \varepsilon_{n} \rightarrow 0^{+}$
Claim: there exists $\left\{u_{n}\right\} \subset H^{1}\left(\Omega ; \mathbb{R}^{d}\right)$ s.t. $u_{n} \rightarrow u$ in L^{1} and

$$
\lim \sup F_{\varepsilon_{n}}\left(u_{n}\right) \leq F(u)=\int_{\partial^{*} A} \sigma(\nu) d \mathcal{H}^{N-1}
$$

Localization: for $U \subset \Omega$ open

$$
\mathcal{F}_{\left\{\varepsilon_{n}\right\}}(u ; U):=\inf \left\{\liminf F_{\varepsilon_{n}}\left(u_{n}, U\right): u_{n} \rightarrow u \operatorname{in} L^{1}\left(U ; \mathbb{R}^{d}\right)\right\}
$$

Up to a subsequence

$$
\lambda: \mathcal{A}(\Omega) \rightarrow[0,+\infty), \quad \lambda(B):=\mathcal{F}_{\left\{\varepsilon_{n}\right\}}(u ; B), \quad B \text { Borel set }
$$

is a positive finite measure, and

$$
\lambda \ll \mu:=\mathcal{H}^{N-1}\left\lfloor\partial^{*} A\right.
$$

Done if

$$
\frac{d \lambda}{d \mu}\left(x_{0}\right) \leq \sigma\left(\nu\left(x_{0}\right)\right)
$$

To prove it:

$$
\begin{gathered}
\frac{d \lambda}{d \mu}\left(x_{0}\right)=\lim \frac{\lambda\left(Q_{\nu}\left(x_{0}, \varepsilon\right)\right)}{\varepsilon^{N-1}} \\
\frac{\lambda\left(Q_{\nu}\left(x_{0}, \varepsilon\right)\right)}{\varepsilon^{N-1}} \leq \liminf _{n \rightarrow \infty} \frac{1}{\varepsilon^{N-1}} F_{\varepsilon_{n}}\left(u_{n, \varepsilon}, Q_{\nu}\left(x_{0}, \varepsilon\right)\right)
\end{gathered}
$$

with $u_{n, \varepsilon} \rightarrow u, n \rightarrow \infty$, in $L^{1}\left(Q_{\nu}\left(x_{0}, \varepsilon\right)\right)$
How do we construct these approximating sequences?

Easy Case: Transition Layer Aligned with Principal Axes

If $\nu \in\left\{e_{1}, \ldots, e_{N}\right\}$, create recovery sequence by tiling optimal profiles from definition of σ.

Say $\nu=e_{N}$

Pick $T_{k} \subset \mathbb{N}$ and u_{k} s.t.

$$
\begin{aligned}
& \sigma\left(e_{N}\right)=\lim _{k \rightarrow \infty} \frac{1}{T_{k}^{N-1}} \int_{T_{k} Q}\left[W\left(y, u_{k}(y)\right)+\left|\nabla u_{k}(y)\right|^{2}\right] d y \\
& v_{k}(x):=u_{k}\left(T_{k} x\right), \text { extended by } Q^{\prime} \text {-periodicity } \\
& v_{k, \varepsilon, r}(x):= \begin{cases}u_{0}(x) & \left|x_{N}\right| \geq \frac{\varepsilon T_{k}}{2 r} \\
v_{k}\left(\frac{r x}{\varepsilon T_{k}}\right) & \left|x_{N}\right|<\frac{\varepsilon T_{k}}{2 r}\end{cases} \\
& u_{k, \varepsilon, r}(x):=v_{k, \varepsilon, r}\left(\frac{x}{r}\right) \rightarrow u \text { in } L^{1}(r Q)
\end{aligned}
$$

Transition Layer Aligned with Principal Axes, cont.

Blow up:

$$
\begin{aligned}
\lim _{r \rightarrow 0} \frac{F(u ; r Q)}{r^{N-1} \leq} & \lim _{r \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \frac{1}{r^{N-1}} \int_{r Q}\left[\frac{1}{\varepsilon} W\left(x, u_{k, \varepsilon, r}\right)+\varepsilon\left|\nabla u_{k, \varepsilon, r}\right|^{2}\right] d x \\
= & \lim _{r \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \int_{Q^{\prime}} \int_{-\varepsilon T_{k} / 2 r}^{\varepsilon T_{k} / 2 r}\left[\frac{r}{\varepsilon} W\left(\frac{r}{\varepsilon} y, v_{k}\left(\frac{r y}{\varepsilon T_{k}}\right)\right)\right. \\
& \left.+\frac{r}{\varepsilon T_{k}^{2}}\left|\nabla v_{k}\left(\frac{r y}{\varepsilon T_{k}}\right)\right|^{2}\right] d y \\
= & \lim _{r \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \int_{Q^{\prime}} \int_{-1 / 2}^{1 / 2}\left[T _ { k } W \left(\left(T_{k} \frac{r z^{\prime}}{\varepsilon T_{k}}, T_{k} z_{N}, v_{k}\left(\frac{r z^{\prime}}{\varepsilon T_{k}}, z_{N}\right)\right)\right.\right. \\
& \left.\quad+\frac{1}{T_{k}}\left|\nabla v_{k}\left(\frac{r z^{\prime}}{\varepsilon T_{k}}, z_{N}\right)\right|^{2}\right] d z
\end{aligned}
$$

$$
\begin{aligned}
\lim _{r \rightarrow 0} \frac{F(u ; r Q)}{r^{N-1} \leq} \leq \lim _{r \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \frac{1}{r^{N-1}} \int_{r Q}[& \left.\frac{1}{\varepsilon} W\left(x, u_{k, \varepsilon, r}\right)+\varepsilon\left|\nabla u_{k, \varepsilon, r}\right|^{2}\right] d x \\
= & \lim _{r \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \int_{Q^{\prime}} \int_{-\varepsilon T_{k} / 2 r}^{\varepsilon T_{k} / 2 r}[
\end{aligned} \begin{array}{r}
\frac{r}{\varepsilon} W\left(\frac{r}{\varepsilon} y, v_{k}\left(\frac{r y}{\varepsilon T_{k}}\right)\right) \\
\\
\left.\quad+\frac{r}{\varepsilon T_{k}^{2}}\left|\nabla v_{k}\left(\frac{r y}{\varepsilon T_{k}}\right)\right|^{2}\right] d y \\
=\lim _{r \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \int_{Q^{\prime}} \int_{-1 / 2}^{1 / 2}\left[T _ { k } W \left(\left(T_{k} \frac{r z^{\prime}}{\varepsilon T_{k}}, T_{k} z_{N}, v_{k}\left(\frac{r z^{\prime}}{\varepsilon T_{k}}, z_{N}\right)\right)\right.\right. \\
\left.\quad+\frac{1}{T_{k}}\left|\nabla v_{k}\left(\frac{r z^{\prime}}{\varepsilon T_{k}}, z_{N}\right)\right|^{2}\right] d z
\end{array}
$$

Transition Layer aligned with Principal Axes, cont.

Since W and v_{k} are BOTH Q^{\prime}-periodic and $T_{k} \in \mathbb{N}$, we can use the Riemann Lebesgue Lemma:

$$
\begin{gathered}
\begin{array}{c}
\lim _{r \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \int_{Q^{\prime}} \int_{-1 / 2}^{1 / 2}[
\end{array} T_{k} W\left(\left(T_{k} \frac{r z^{\prime}}{\varepsilon T_{k}}, T_{k} z_{N}\right), v_{k}\left(\frac{r z^{\prime}}{\varepsilon T_{k}}, z_{N}\right)\right) \\
\left.\quad+\frac{1}{T_{k}}\left|\nabla v_{k}\left(\frac{r z^{\prime}}{\varepsilon T_{k}}, z_{N}\right)\right|^{2}\right] d z \\
=\lim _{r \rightarrow 0} \int_{Q^{\prime}} \int_{-1 / 2}^{1 / 2}\left[T _ { k } W \left(\left(T_{k} y^{\prime}, T_{k} z_{N}\right), v_{k}\left(y^{\prime}, z_{N}\right)\right.\right. \\
\left.\quad+\frac{1}{T_{k}}\left|\nabla v_{k}\left(y^{\prime}, z_{N}\right)\right|^{2} d z_{N}\right] d y^{\prime} \\
=\frac{1}{T_{k}^{N-1}} \int_{T_{k} Q}\left[W\left(x, u_{k}(x)\right)+\left|\nabla u_{k}(x)\right|^{2}\right] d x
\end{gathered}
$$

Other Transition Directions?

(a)

Aligned

(b)

Misaligned

Figure: Since W is Q-periodic, can tile along principal axes. What if the transition layer is not aligned?

Q-periodic implies $\lambda_{\nu} Q_{\nu}$-periodic

Key observation: Periodic microstructure in principal directions \rightarrow periodicity in other directions.

Figure: Integer lattice contains copies of itself, rotated and scaled
$\triangleright W$ is $\lambda_{\nu} Q_{\nu}$-periodic for some $\lambda_{\nu} \in \mathbb{N}$, and for $\nu \in \Lambda:=\mathbb{Q}^{N} \cap \mathbb{S}^{N-1}$: Dense!

Orthonormal Bases in \mathbb{Q}^{N}

Important: Every face of Q_{ν} has rational normal.

Need an orthonormal basis using rational vectors:
Theorem (Witt, '37)
Any isometry between two subspaces F_{1} and F_{2} of a finite-dimensional vector space V defined over a field \mathbb{K} of characteristic different from 2 and provided with a metric structure induced from a nondegenerate symmetric or skew-symmetric bilinear form $B[\cdot, \cdot]$ may be extended to a metric automorphism of the entire space V.

In particular:

$$
V=\mathbb{Q}^{N}, F_{1}:=\operatorname{span}_{\mathbb{Q}}\left(e_{N}\right), F_{2}:=\operatorname{span}_{\mathbb{Q}}(\nu), B[x, y]:=x \cdot y
$$

Then, the mapping $e_{N} \mapsto \nu$ extends to an isometry!

Theorem (Cristoferi, F., Hagerty, Popovici, Interfaces Free Bound.(2019)) Let $\nu_{N} \in \Lambda=\mathbb{Q}^{N} \cap \mathbb{S}^{N-1}$. There exist $\nu_{1}, \ldots, \nu_{N-1} \in \Lambda, \lambda_{\nu} \in \mathbb{N}$, s.t.

$$
\nu_{1}, \ldots, \nu_{N-1}, \nu_{N}
$$

o.n. basis of \mathbb{R}^{N} and

$$
W\left(x+n \lambda_{\nu} \nu_{i}, p\right)=W(x, p)
$$

a.e. $x \in Q$, all $n \in \mathbb{N}, p \in \mathbb{R}^{d}$.

Also use:
$\varepsilon>0, \nu \in \Lambda, S: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ rotation, $S e_{N}=\nu$.
Then there is a rotation $R: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ s.t. $R e_{N}=\nu, R e_{i} \in \Lambda$ all $i=1, \ldots, N-1,\|R-S\|<\varepsilon$

Properties of σ are important

$$
\sigma(\nu)=\lim _{T \rightarrow \infty} \inf _{u \in \mathcal{A}_{Q_{\nu}, T}, Q_{\nu} \in \mathcal{Q}_{\nu}}\left\{\frac{1}{T^{N-1}} \int_{T Q_{\nu}}\left[W(y, u(y))+|\nabla u(y)|^{2}\right] d y\right\}
$$

where

$$
\begin{gathered}
\mathcal{A}_{Q_{\nu}, T}:=\left\{u \in H^{1}\left(T Q_{\nu} ; \mathbb{R}^{d}\right): u(x)=\left(\rho_{T} * u_{0}\right)(x \cdot \nu) \text { on } \partial T Q_{\nu}\right\} \\
u_{0}(t):= \begin{cases}b & \text { if } t>0 \\
a & \text { if } t<0\end{cases} \\
\rho_{T}(x):=T^{N} \rho(T x), \rho \in C_{c}^{\infty}(\mathbb{R}) \text { with } \int_{\mathbb{R}} \rho=1
\end{gathered}
$$

$\mathcal{Q}_{\nu} \ldots$ unit cubes centered at the origin with two faces orthogonal to ν

Properties of σ (before knowing it is constant!):

- σ is well defined and finite
- the definition of σ does not depend on the choice of the mollifier
- $\sigma: \mathbb{S}^{N-1} \rightarrow[0,+\infty)$ is upper semicontinuous
- if $\nu \in \Lambda$ then

$$
\sigma(\nu)=\lim _{n \rightarrow \infty} \lim _{T \rightarrow \infty} \inf _{u \in \mathcal{A}_{Q_{n}, T}}\left\{\frac{1}{T^{N-1}} \int_{T Q_{n}}\left[W(y, u(y))+|\nabla u(y)|^{2}\right] d y\right\}
$$

where the normals to all faces of Q_{n} belong to Λ

Transition Layer aligned with $\nu \in \mathbb{Q}^{N} \cap \mathbb{S}^{N-1}$

Same periodic tiling technique: Use $T_{k} \in \lambda_{\nu} \mathbb{N}$.

\triangleright Blow up method \rightarrow Recovery sequences for polyhedral sets A with normals to its facets in Λ

Blow up method \rightarrow Recovery sequences for polyhedral sets A with normals to its facets in Λ
$x_{0} \in \Omega \cap \partial^{*} A, \nu:=\nu_{A}\left(x_{0}\right)$.
Find rotation $R_{\nu}, \lambda_{\nu} \in \mathbb{N}$, s.t. with $Q_{\nu}:=R_{\nu}\left(x_{0}+Q\right)$

$$
W\left(x+n \lambda_{\nu} v, p\right)=W(x, p)
$$

a.e. $x \in \Omega$, every $n \in \mathbb{N}$, every $p \in \mathbb{R}^{d}$, every v orthogonal to one face of Q_{ν}
As before, done if

$$
\frac{d \lambda}{d \mu}\left(x_{0}\right) \leq \sigma\left(\nu\left(x_{0}\right)\right)
$$

To prove it:

$$
\frac{d \lambda}{d \mu}\left(x_{0}\right)=\lim \frac{\lambda\left(Q_{\nu}\left(x_{0}, \varepsilon\right)\right)}{\varepsilon^{N-1}}
$$

... and work a little harder ...

Recovery sequences for arbitrary $u \in B V(\Omega ;\{a, b\})$

- For $u \in B V(\Omega ;\{a, b\})$, we can find $u^{(n)} \in B V(\Omega ;\{a, b\})$ such that $A^{(n)}$ are polyhedral,

$$
\begin{gathered}
u^{(n)} \rightarrow u \text { in } L^{1} \\
\left|D u^{(n)}\right|(\Omega) \rightarrow|D u|(\Omega) .
\end{gathered}
$$

Since $\mathbb{Q}^{N} \cap \mathbb{S}^{N-1}$ dense, can require $\nu^{(n)} \in \mathbb{Q}^{N} \cap \mathbb{S}^{N-1}$.

- Since σ upper-semicontinuous, by Reshetnyak's,

$$
\int_{\partial^{*} A} \sigma(\nu) d \mathcal{H}^{n-1} \leq \limsup _{n \rightarrow \infty} \int_{\partial^{*} A_{0}^{(n)}} \sigma\left(\nu^{(n)}\right) d \mathcal{H}^{n-1}
$$

- Find recovery sequences $u_{\varepsilon}^{(n)}$ for the $u^{(n)}$ so that

$$
\int_{\partial^{*} A^{(n)}} \sigma\left(\nu^{(n)}\right) d \mathcal{H}^{n-1} \leq \limsup _{\varepsilon \rightarrow 0^{+}} F_{\varepsilon}\left(u_{\varepsilon}^{(n)}\right)
$$

- Diagonalize!

Other scaling regimes

Recently considered the case where the scale of homogenization is much smaller than the scale of the phase transition

$$
F_{\varepsilon}(u):=\int_{\Omega}\left[\frac{1}{\varepsilon} W\left(\frac{x}{\delta(\varepsilon)}, u\right)+\varepsilon|\nabla u|^{2}\right] d x .
$$

If $\delta(\varepsilon)$ is sufficiently small compared to ε, the homogenization effects are effectively instantaneous, and we can pass to a homogenized system

$$
F_{\varepsilon}^{H}(u)=\int_{\Omega}\left[\frac{1}{\varepsilon} W_{H}(u)+\varepsilon|\nabla u|^{2}\right] d x
$$

where

$$
W_{H}(p):=\int_{Q} W(y, p) d y
$$

Scaling regime $\delta(\varepsilon) \ll \varepsilon$

Theorem (Cristoferi, F., Hagerty (2019))
Let $\delta(\varepsilon)$ be such that

$$
\lim _{\varepsilon \rightarrow 0} \frac{\varepsilon^{\frac{3}{2}}}{\delta(\varepsilon)}=+\infty
$$

Then, $F_{\varepsilon} \xrightarrow{\Gamma} F_{0}^{H}$, where

$$
F_{0}^{H}(u):= \begin{cases}K_{H} \operatorname{Per}_{\Omega}(A) & u \in B V(\Omega ;\{a, b\}) \\ +\infty & u \in L^{1}(\Omega) \backslash B V(\Omega ;\{a, b\})\end{cases}
$$

$W_{H}(p):=\int_{Q} W(y, p) d y, A:=\{u(x)=a\}$
$K_{H}:=2 \inf \left\{\int_{0}^{1} \sqrt{W_{H}(g(s))}\left|g^{\prime}(s)\right| d s: g\right.$ piecewise $\left.C^{1}, g(0)=a, g(1)=b\right\}$

Outline of Proof

- Homogenization Lemma
- Compare the bulk energy to a homogenized bulk energy
- Requires quantitative control on δ vs ε
- Use the result of F. and Tartar to identify Γ-limit of homogenized energy
- Comparison with homogenized energy yields information about minimizing sequences \rightarrow relaxed growth assumptions for W

Theorem (F., Tartar (1989))
Functionals of the form

$$
G_{\varepsilon}(u)=\int_{\Omega}\left[\frac{1}{\varepsilon} \widetilde{W}(u)+\varepsilon|\nabla u|^{2}\right] d x, u \in H^{1}\left(\Omega ; \mathbb{R}^{d}\right)
$$

have a Γ-limit

$$
G_{0}(u):=K_{G} P\left(A_{0} ; \Omega\right), u \in B V(\Omega ;\{a, b\})
$$

Homogenization Lemma

The key tool in comparing F_{ε} and F_{ε}^{H} is a Riemann-Lebesgue type result for all W uniformly bounded.

Lemma
Let $\varepsilon_{n}, \delta_{n}$ and $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset H^{1}\left(\Omega ; \mathbb{R}^{d}\right)$ be such that

$$
\sup _{n \in \mathbb{N}} \int_{\Omega} \varepsilon_{n}\left|\nabla u_{n}\right|^{2} d x<\infty \text { and } \lim _{n \rightarrow \infty} \varepsilon_{n}^{-\frac{3}{2}} \delta_{n}=0
$$

Then,

$$
\lim _{n \rightarrow \infty} \frac{1}{\varepsilon_{n}} \int_{\Omega}\left[W\left(\frac{x}{\delta_{n}}, u_{n}(x)\right)-W_{H}\left(u_{n}(x)\right)\right] d x=0
$$

- Uniform boundedness: NOT required for the main theorem- will be discussed later
- Scaling: More on this...

Scaling

- The homogenization lemma requires a particular exponent $\varepsilon^{\frac{3}{2}}$
- If the regularization is of the form $|\nabla u|^{p}$, the exponent would be $\varepsilon^{1+\frac{1}{p}}$.
- This same exponent is necessary Ansini, Braides, Chiadò-Piat (2003) who homogenized the regularization term
- Unclear if this is purely technical or if truly different behavior is possible in the intermediate regime

Homogenization Lemma - Outline of Proof

At scale δ_{n}, decompose Ω into δ_{n}-cubes and a remainder R_{n}

$$
\Omega=\bigcup_{i=1}^{M_{n}} Q\left(p_{i}, \delta_{n}\right) \cup R_{n}
$$

where p_{i} are on the lattice $\delta_{n} \mathbb{Z}^{N}$
$R_{n} \ldots$ collection of cubes $Q\left(z, \delta_{n}\right), z \in \delta_{n} \mathbb{Z}^{N}$, intersecting $\partial \Omega$

$$
\left|R_{n}\right| \leq C \delta_{n}
$$

Uniform boundedness:

$$
\frac{1}{\varepsilon_{n}} \int_{R_{n}} W\left(\frac{x}{\delta_{n}}, u_{n}(x)\right) d x \leq C \frac{\delta_{n}}{\varepsilon_{n}} \rightarrow 0
$$

Homogenization Lemma - Outline of Proof, cont.

Sufficient to control

$$
\frac{1}{\varepsilon_{n}} \sum_{i=1}^{M_{n}}\left|\int_{Q\left(p_{i}, \delta_{n}\right)} W\left(\frac{x}{\delta_{n}}, u_{n}(x)\right)-W_{H}\left(u_{n}(x)\right) d x\right|
$$

Apply the substitution $x=p_{i}+\delta_{n} y$ and periodicity:

$$
\frac{\delta_{n}^{N}}{\varepsilon_{n}} \sum_{i=1}^{M_{n}}\left|\int_{Q} W\left(y, u_{n}\left(p_{i}+\delta_{n} y\right)\right)-W_{H}\left(u_{n}\left(p_{i}+\delta_{n} y\right)\right) d y\right|
$$

Recast as the double integral

$$
\frac{\delta_{n}^{N}}{\varepsilon_{n}} \sum_{i=1}^{M_{n}}\left|\int_{Q} \int_{Q} W\left(y, u_{n}\left(p_{i}+\delta_{n} y\right)\right)-W\left(z, u_{n}\left(p_{i}+\delta_{n} y\right)\right) d z d y\right|
$$

Homogenization Lemma - Outline of Proof, cont.

After another change of variables, this is

$$
\frac{\delta_{n}^{N}}{\varepsilon_{n}} \sum_{i=1}^{M_{n}}\left|\int_{Q} \int_{Q} W\left(y, u_{n}\left(p_{i}+\delta_{n} y\right)\right)-W\left(y, u_{n}\left(p_{i}+\delta_{n} z\right)\right) d z d y\right|
$$

and by Lipschitz behavior of W, enough to control

$$
\frac{\delta_{n}^{N}}{\varepsilon_{n}} \sum_{i=1}^{M_{n}} \int_{Q} \int_{Q}\left|u_{n}\left(p_{i}+\delta_{n} y\right)-u_{n}\left(p_{i}+\delta_{n} z\right)\right| d z d y
$$

By Poincaré, we can estimate via

$$
\begin{aligned}
\delta_{n} \frac{\delta^{N}}{\varepsilon_{n}} \sum_{i=1}^{M_{n}} \int_{Q}\left|\nabla u_{n}\left(p_{i}+\delta_{n} y\right)\right| d y & \leq \frac{\delta_{n}}{\varepsilon_{n}} \int_{\Omega}\left|\nabla u_{n}\right| d x \\
& \leq \frac{\delta_{n}}{\varepsilon_{n}} \varepsilon_{n}^{-1 / 2}\left(\varepsilon_{n} \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x\right)^{1 / 2}
\end{aligned}
$$

Uniform Boundedness

To apply the homogenization lemma to potentials which may be unbounded, we use a cut-off trick- possible because by F.-Tartar, the homogenized problem is based on the 1-dimensional optimization

$$
K_{H}=2 \inf \left\{\int_{0}^{1} \sqrt{W_{H}(g(s))}\left|g^{\prime}(s)\right| d s\right\}
$$

where the g are pointwise C^{1} so that $g(0)=a, g(1)=b$. Pick $R>0$ so that for optimal curves $g,|g(t)| \leq R$. Let

$$
M=\underset{x \in \Omega}{\operatorname{ess} \sup _{|p| \leq R} \max _{|p| \leq R} W(x, p), ~(x)}
$$

and define the truncated potential

$$
\widetilde{W}(x, p):=\min \{W(x, p), M\}
$$

Gradient Flow: Current work with Rustum Choksi, Jessica

 Lin and Raghavendra (Raghav) VenkatramanL^{2}-gradient flow of F_{ε} :

$$
F_{\varepsilon}(u):=\int_{\Omega}\left[\frac{1}{\varepsilon} a\left(\frac{x}{\varepsilon}\right) \bar{W}\left(u^{\varepsilon}\right)+\varepsilon\left|\nabla u^{\varepsilon}\right|^{2}\right] d x .
$$

$W(y, u):=a(y) \bar{W}(u)$
$a: \mathbb{R}^{N} \rightarrow[\lambda, \Lambda], 0<\lambda<\Lambda, C^{2}$ and periodic
$\{\bar{W}=0\}=\{-1,1\} C^{2}$ double-well potential

$$
\begin{cases}u_{t}^{\varepsilon}-2 \Delta u^{\varepsilon}=-\frac{1}{\varepsilon^{2}} a\left(\frac{x}{\varepsilon}\right) \bar{W}^{\prime}\left(u^{\varepsilon}\right) & \text { in }(0, \infty) \times \Omega \\ u^{\varepsilon}(0, x) \approx \chi_{A}-\chi_{\bar{A}^{c}} & \text { in } \Omega, \\ \frac{\partial u^{\varepsilon}}{\partial n}=0 & \text { on }(0, \infty) \times \partial \Omega\end{cases}
$$

$\partial A \ldots$ interface

To show: u^{ε} converge to a $1,-1$ sharp interface limit which is governed by the mean curvature equation

$$
\begin{cases}\bar{u}_{t}-\sigma \operatorname{div}\left(\frac{D \bar{u}}{|D \bar{u}|}\right)|D \bar{u}|=0 & \text { in }(0, \infty) \times \Omega \\ \bar{u}(0, x)=\chi_{A}-\chi_{\bar{A}^{c}} & \text { in } \Omega, \\ \frac{\partial u}{\partial n}=0 & \text { on }(0, \infty) \times \partial \Omega\end{cases}
$$

Recall: $F_{\varepsilon} \xrightarrow{\Gamma-L^{1}} F_{0}$ where

$$
F_{0}(u)= \begin{cases}\int_{\partial^{*} A} \sigma\left(\nu_{A}(x)\right) d \mathcal{H}^{N-1}(x) & \text { if } u \in B V(\Omega) \\ +\infty & \text { otherwise }\end{cases}
$$

for $\sigma: \mathbb{S}^{N-1} \rightarrow[0,+\infty)$ given by the cell formula (AND constant!)
$\sigma(\nu):=\lim _{T \rightarrow \infty} \frac{1}{T^{N-1}} \inf \left\{\int_{T Q_{\nu}}\left[a(y) \bar{W}(u(y))+|\nabla u(y)|^{2}\right] d y: u \in \mathcal{A}(\nu, T)\right\}$

The PDE now becomes:

$$
u_{t}^{\varepsilon}=-\nabla_{X_{\varepsilon}} F_{\varepsilon}(u)
$$

with

$$
\nabla_{X_{\varepsilon}} F_{\varepsilon}(u)=-2 \Delta u+\frac{1}{\varepsilon^{2}} a\left(\frac{x}{\varepsilon}\right) \bar{W}^{\prime}(u)
$$

and $\|\cdot\|_{X_{\varepsilon}}^{2}:=\varepsilon\|\cdot\|_{L^{2}(\Omega)}^{2}$
Ideas from: Sandier-Serfaty, Mugnai-Röger, Röger- Schäzle
Many references when $a=1$, including:
Alikakos-Bates-Chen, Xinfu Chen, Bronsard- Kohn,
Rubinstein-Sternberg-Keller, Ilmanen, Tonegawa-Hutchinson, Tonegawa, Tim Laux and Thilo Simon, Evans-Soner-Souganidis, Lions-Souganidis

Future problems

- Moving wells
- Scaling regime $\varepsilon \ll \delta(\varepsilon)$... homogenization of the "surface Cahn-Hilliard limiting energy". Forthcoming
- multiple wells
- More general regularization terms, i.e. $|\nabla u|^{2} \rightarrow f(x, u, \nabla u)$
- Nonlocal stochastic homogenization
- Solid-solid phase transitions: $W\left(\frac{x}{\delta(\varepsilon)}, \nabla u(x)\right)$

Solid-sold phase transitions without homogenization:

$$
\begin{aligned}
W(F) & \approx|F|^{p}, \text { Conti, Fonseca, Leoni, '02 } \\
W(F) & \approx \operatorname{dist}^{p}(F, S O(N) A \cup S O(N) B)
\end{aligned}
$$

only studied for $\mathrm{N}=2$ (Conti-Schweizer, '06) ... and in arbitrary dimensions under a suitable anisotropic penalization of second variations Elisa Davoli and Manuel Friedrich, 2018

Something funny about moving wells ...

$$
W(x, p)=0 \text { iff } p \in\{a(x), b(x)\}
$$

$\left\{u_{\varepsilon}\right\}$ with bounded energy, so that

$$
\frac{1}{\varepsilon} \int_{\Omega} W\left(\frac{x}{\varepsilon}, u_{\varepsilon}(x)\right) d x<+\infty
$$

Now, if $\left\{u_{\varepsilon}\right\}$ has a L^{1} limit, then its 2-scale limit $u(x, y)$ is actually just $u(x)$, and so

$$
\int_{\Omega} W\left(\frac{x}{\varepsilon}, u_{\varepsilon}(x)\right) d x \rightarrow \int_{Q} \int_{\Omega} W(y, u(x)) d x d y=0
$$

But then

$$
W(y, u(x))=0 \text { for almost every }(x, y) \in \Omega \times Q
$$

Something funny about moving wells

$$
W(y, u(x))=0 \text { for almost every }(x, y) \in \Omega \times Q
$$

and so

$$
u(x) \in\{a(y), b(y)\} \text { for almost every }(x, y) \in \Omega \times Q
$$

\ldots basically $\{a(y), b(y)\}=\left\{a\left(y^{\prime}\right), b\left(y^{\prime}\right)\right\}$ a.e. \ldots NOT moving wells \ldots
wrong scaling?
(without homogenization) sharp interface limit $W(x, p)=0$ iff $p \in\left\{z_{1}(x), z_{2}(x), \ldots, z_{k}(x)\right\}$ by Riccardo Cristoferi and Giovanni Gravina, 2020

HAPPY BIRTHDAY GIANNI!

A good place to stop ...

