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1. Grüneisen parameters

In Figure 1 we report the mode-Grüneisen parameters used for the thermal expansion
(TE) (Eq. 14) calculation for silicon, aluminum, and silver, calculated along selected
high symmetry lines in the Brillouin zone.

2. Temperature dependent elastic constant flow-chart

The calculation of the temperature dependent elastic constants (TDECs) within the
QHA with the thermo pw code is divided in two parts illustrated in Figure 2.

The first part (a) corresponds to the calculation of the CT
ijkl as a function of the

temperature for the reference geometries given in input. For each reference geometry
all the strained geometries required for an elastic constant calculation are generated
and phonons are computed for each strained configuration. All these calculations can
be ran sequentially or in parallel. The parallelism underlying each phonon-dispersion
calculation (see for instance: ICTP lecture notes 24, 163 (2009) by R. di Meo et
al.) is implemented in thermo pw using images parallelization. Having the phonon
frequencies of each strained geometry it is possible to compute, within the harmonic
approximation, the thermodynamic quantities that depend from them (in particular
the vibrational free energy of Eq. 10). Then the second derivatives of the free-energy
with respect to strain C̃T

ijkl are computed at each temperature (Eq. 9) and the results

are corrected for finite pressure effects in order to get the stress-strain ECs CT
ijkl (Eq.

4): this in shown in the last block in the figure. A file with the CT
ijkl(T ) is written for

each reference geometry.
The second part (b) is devoted to the computation of the anharmonic properties

within the quasi-harmonic approximation. It needs the files of the CT
ijkl(T ) at each

reference geometry produced by the first part (a). The setup of the references
geometries must be the same as in part (a). Phonons are computed at each reference
geometry. This allows to compute the vibrational free-energy of each reference
geometry. For each temperature T , the vibrational free-energy is added to the energy
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Figure 1: Mode-Grüneisen parameters for: a) silicon, b) aluminum, c) silver.

to get the Helmholtz free energy of the solid at the reference geometries. The free-
energies at the various geometries are interpolated by a polynomial (the order of the
polynomial can be varied) and minimized to obtain a(T ). The isothermal CT

ijkl(T )
at the various geometries are interpolated by a polynomial and, at each temperature
T , the value corresponding to a(T ) is evaluated from the polynomial interpolation:
in this way we obtain the final QHA TDECs. Then, starting from this isothermal
QHA TDECs, the adiabatic QHA TDECs, elastic compliances and bulk modulus are
derived. In this second part the parallellization is done as in the first part as shown in
Figure 2 although the number of required phonon dispersions is much smaller than in
the first part. In order to compute the free-energy as a function of the strain we used
in the first part an even number (6 values) of strains centered around ε = 0. However
this point is not included. If the user select an odd number of strained configurations
then the central geometry is considered. In this case the user can use the dynamical
matrices already computed for the reference ε = 0 geometry to run the second part of
the calculation.

In order to compute the TDECs within the QSA, the ECs are computed at T = 0
K at the different reference geometries by using the stress-strain relation (Eq. 2) or
the second derivatives of the total energy (Eq. 3 and Eq. 4) and then they are saved
on a different file for each geometry. Part (b) does not change provided that the files
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Figure 2: Flow-chart of the calculation of the TDECs within the QHA with the
thermo pw code.

of the T = 0 K ECs are read instead of the CT
ijkl(T ).

3. Some tests: elastic constants at T = 0 K

Some tests of the ECs calculation by using the thermo pw code can be found in
Ref. [21]. In this section we investigate a few other examples. As in Ref. [4] we
considered In, TiO2 rutile, and Al2O3 and computed the ECs at T = 0 K from the
second derivatives of the total energy with respect to strain (Eq. 3 of the paper),
after minimizing the total energy with respect to the crystal parameters and finding
the equilibrium geometry. We also verified the result computing the ECs from the
stress-strain relation (Eq. 2 of the paper). Both methods are available in the code.
Moreover, we computed some properties of macroscopic elasticity as described in the
tables captions. In these tables we compare our results with those obtained in Ref.
[4] and with the experimental data reported in the same paper.

3.1. Indium

We used the Wu-Cohen (WC) exchange-correlation functional (Z. Wu, R.E.
Cohen, Phys. Rev. B 73, 235116, 2006) and the pseudopotential



4

Table 1: Elastic properties of indium. Crystal parameters are in units of the Bohr
radius. The elastic constants Cij are in kbar. Bulk modulus B (kbar), shear modulus
S (kbar) and Young’s modulus Y (kbar) and Poisson’s ratio V are calculated within
the Voigt (V) and Reuss (R) approximations. The average of the two according to
the Voigt-Reuss-Hill (H) method is also reported. Transverse elastic wave velocity vt,
longitudinal elastic wave velocity vl and the average wave velocity vm are reported in
m/s and the Debye temperature ΘD in K.

This work Other theoretical Expt.

Method PAW-PP FP-LAPW
Functional WC WC
a0 6.0956 6.0491 6.1439
c0 9.3414 9.4324 9.3479
C11 617 589 525
C12 302 332 368
C13 424 374 371
C33 500 448 530
C44 70 58 78
C66 54 25 147
BV 448 421 422
BR 448 414 422
BH 448 418 422
SV 78 65 92
SR 62 50 86
SH 70 57 89
YV 220 185 257
YR 178 143 242
YH 199 164 250
VV 0.418 0.426 0.398
VR 0.434 0.442 0.404
VH 0.425 0.434 0.401
vt 971 875.2 1105.2
vl 2702 2573.2 2723.6
vm 1103.1 995.4 1251.4
ΘD 109 100.6 125.5

In.wc-dn-kjpaw psl.1.0.0.UPF from pslibrary. The cutoff for the wave functions
was 70 Ry, the one for the charge density 500 Ry, the k-point mesh was 48× 48× 32.
The presence of the Fermi surface has been dealt with by the MP [41] smearing tech-
nique with a value of the smearing parameter σ = 0.02. The equilibrium configuration
was obtained by interpolating the total energy computed in a 5 × 5 grid of a and c/a
crystal parameters with a 2-dimensional fourth-degree polynomial and by minimizing
it (∆a = 0.05 a.u., ∆(c/a) = 0.02). The results are reported in Table 1.

3.2. Rutile TiO2

We used the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional (J.
P. Perdew et al.,, Phys. Rev. Lett. 77, 3865, 1996) and the pseudopoten-
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Table 2: Elastic properties of rutile TiO2. Crystal parameters are in units of the Bohr
radius. The elastic constants Cij are in kbar. Bulk modulus B (kbar), shear modulus
S (kbar) and Young’s modulus Y (kbar) and Poisson’s ratio V are calculated within
the Voigt (V) and Reuss (R) approximations. The average of the two according to
the Voigt-Reuss-Hill (H) method is also reported. Transverse elastic wave velocity vt,
longitudinal elastic wave velocity vl and the average wave velocity vm are reported in
m/s and the Debye temperature ΘD in K.

This work Other theoretical Expt.

Method PAW-PP FP-LAPW
Functional PBE PBE
a0 8.7860 8.6809 8.6806
c0 5.6138 5.5900 5.5911
C11 2566 2683 2690
C12 1677 1802 1770
C13 1465 1464 1460
C33 4693 4779 4800
C44 1148 1223 1240
C66 2111 2236 1920
BV 2116 2178 2173
BR 2012 2094 2086
BH 2064 2136 2130
SV 1229 1298 1246
SR 947 978 986
SH 1088 1138 1116
YV 3090 3248 3138
YR 2456 2538 2556
YH 2773 2898 2851
VV 0.257 0.251 0.259
VR 0.297 0.298 0.295
VH 0.274 0.273 0.276
vt 5133.0 5174.2 5125.8
vl 9224.5 9272.1 9228.0
vm 5716.2 5760.8 5709.0
ΘD 754.7 785.6 778.5

tials Ti.pbe-spn-kjpaw psl.1.0.0.UPF and O.pbe-nl-kjpaw psl.1.0.0.UPF from
pslibrary. The cutoff for the wave functions was 50 Ry, the one for the charge
density 350 Ry, the k-point mesh was 12 × 12 × 20. The equilibrium configuration
was obtained by interpolating the total energy computed in a 5 × 5 grid of a and c/a
crystal parameters with a 2-dimensional fourth-degree polynomial and by minimizing
it (∆a = 0.05 a.u., ∆(c/a) = 0.02). The results are reported in Table 2.

3.3. Rhombohedral Al2O3

We used the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional and the
pseudopotentials Al.pbe-nl-kjpaw psl.1.0.0.UPF and O.pbe-n-kjpaw psl.1.0.0.UPF

from pslibrary. The cutoff for the wave functions was 70 Ry, the one for the charge
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Table 3: Elastic properties of rhombohedral Al2O3. Crystal parameters are in units of
the Bohr radius. The elastic constants Cij are in kbar. Bulk modulus B (kbar), shear
modulus S (kbar) and Young’s modulus Y (kbar) and Poisson’s ratio V are calculated
within the Voigt (V) and Reuss (R) approximations. The average of the two according
to the Voigt-Reuss-Hill (H) method is also reported. Transvers elastic wave velocity
vt, longitudinal elastic wave velocity vl and the average wave velocity vm are reported
in m/s and the Debye temperature ΘD in K.

This work Other theoretical Expt.

Method PAW-PP FP-LAPW
Functional PBE PBE
a0 9.0924 9.0928 8.9916
c0 24.8081 24.8253 24.5498
C11 4516 4656 4974
C12 1510 1383 1640
C13 1091 1036 1122
C33 4537 4588 4991
C44 1319 1363 1474
C14 −200 −24 −236
BV 2328 2312 2523
BR 2325 2308 2518
BH 2326 2310 2521
SV 1487 1569 1660
SR 1443 1547 1606
SH 1465 1558 1633
YV 3677 3838 4084
YR 3587 3793 3974
YH 3632 3816 4029
VV 0.237 0.223 0.230
VR 0.242 0.226 0.236
VH 0.240 0.224 0.233
vt 6160.5 6355.4 6399.3
vl 10529.9 10665.7 10853.7
vm 6831.3 7035.3 7090.9
ΘD 979.4 1015.3 1034.8

density 500 Ry, the k-point mesh was 12×12×12. The equilibrium configuration was
obtained by interpolating the total energy computed in a 5× 5 grid of the lattice con-
stant a and angle α with a 2-dimensional fourth-degree polynomial and by minimizing
it (∆a = 0.05 a.u., ∆α = 0.5). The results are reported in Table 3.
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4. Thermoelasticity of MgO

In this section we compare the results obtained by our approach with the QHA TDECs
of MgO available in the literature in Refs. [9, 10] cited in the paper. This example is
also useful to test a material with ionic bonds, since in the main paper we considered
only covalent and metallic systems.

In order to minimize as much as possible the differences between our calculation
and the literature, we used the LDA for the exchange-correlation energy and the norm-
conserving pseudopotentials from the Quantum Espresso pseudopotentials library:
Mg.pz-n-vbc.UPF and O.pz-mt.UPF. The cutoff for the wave functions was 90 Ry.
The k-point mesh was 12 × 12 × 12. Density functional perturbation theory (DFPT)
was used to calculate the dynamical matrices on a 4 × 4 × 4 q-point grid. These
dynamical matrices have been Fourier interpolated on a 200× 200× 200 q-point mesh
to evaluate the free-energy. We used 9 reference geometries with lattice constants
separated from each other by ∆a = 0.05 a.u. and centered in the T = 0 K equilibrium
lattice constant: 7.93 a.u.. In order to fit the free-energy as a function of strain we
use a polynomial of degree two. To fit the ECs computed at the various reference
configurations at the temperature dependent geometry we use a polynomial of degree
three. In Fig. 3 we report the TDECs.
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Figure 3: Adiabatic QHA TDECs of MgO. This work (red curves) compared with the
results of Refs. [9,10] (blue curve). The points are experimental data, the same shown
in [9,10].


