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Abstract

We show that the closed simply connected 5-manifold S% x S? admits Riemannian
metrics with strictly positive averages of sectional curvatures of any 2-planes tangent
at a given point and which are separated by the smallest distance in the Grassma-
nian of 2-planes. These metrics have positive Ricci curvature yet there are 2-planes
of negative sectional curvature. We use these metrics to show that every closed
connected simply connected 5-manifold with vanishing second Stiefel-Whitney class
and torsion-free homology admits a Riemannian metric with strictly positive aver-
age of sectional curvatures of any pair of orthogonal 2-planes. We show that the
symmetric space metric on the Wu manifold satisfies such lower curvature bound.
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Chapter 1

Introduction

Riemannian manifolds of non-negative and positive sectional curvature have been
extensively studied, essentially from the beginning of Riemannian geometry. Non-
negatively curved examples are fairly plentiful: they are closed under products and
include all biquotients (as a consequence of O’Neill’s formula [21]), and many coho-
mogeneity one manifolds, see [33] for an extensive survey. Contrasting this, man-
ifolds with positive sectional curvature seem to be quite rare. For example, apart
from spheres and projective spaces, there are no known examples above dimension
24. Further, apart from dimensions 7 and 13, in each dimension there are only
finitely many known examples, up to diffeomorphism. This suggests that there
should be obstructions to equipping a non-negatively curved Riemannian manifold
with a new positively curved metric. However, for closed simply connected mani-
folds, no such obstructions are known. Almost 100 years ago, Hopf conjectured that
S?% x S? (whose standard product metric is non-negatively curved) should not admit
a metric of positive sectional curvature. While many partial results are known, the
full conjecture has not been resolved. As such, in [1], Bettiol introduces a new no-
tion of curvature called distance curvature as well as the special case of biorthogonal
curvature. Positive distance curvature is a weaker property than positive sectional
curvature, so one hopes that constructions of such metrics will be more abundant.
In particlar, Bettiol shows S? x S? admits a metric of positive distance curvature.
Later, using a surgery theoretic result due to Hoezel [16], Bettiol [2] classifies closed
simply connected 4-manifolds admitting metrics of biorthogonal curvature.

The purpose of this thesis is to study the existence of Riemannian metrics on
5-manifolds that satisfy a lower bound on their distance curvature and biorthogonal
curvature. The distance curvature is the minimum of the average between sectional
curvatures of two 2-planes that are at least some distance apart in the Grassmanian;
see Definition 2.14. The biorthogonal curvature is a particular case of the distance
curvature, where we use a distance function on the Grasmannian called symmetric
space distance and a maximal distance between the planes, so that we are taking
averages of two 2-planes that are orthogonal to each other, see Definition 2.15. Our
studies build upon work of Bettiol [1], [3], [2] who constructed a family of metrics of
positive distance curvature on the product of two 2-spheres S? x S? and determined
the homeomorphism classes of closed simply connected smooth 4-manifolds that
admit such metrics.

The main contribution of the thesis is the following theorem.

Theorem 1.1. For every 6 > 0, there is a Riemannian manifold (S® x S%,¢°) such
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that:

1. secgg > 0.

2. There is a metric g° such that g — g® in the C*-topology as @ — 0 for k > 0.
The metric g° is Wilking’s metric gy, of almost-positive curvature.

3. There is a 2-plane o € Gry (T,,(S® x 5?)) with secge(a) < 0.
/. Ricy > 0.

In particular, there is a Riemannian metric of positive biorthogonal curvature on
S3 x §2.

Theorem 1.1 is an extension to S® x S? of the construction of metrics on S? x S?
due to Bettiol.

By using

1) Positivity of biorthogonal curvature is preserved under connected sums, see
[3, Proposition 7.11];

2) Bettiol’s construction, which under certain conditions can be used to deform
metrics with almost positive curvature into metrics with positive biorthogonal cur-
vature, see |1, Section 3];

3) Wilking’s construction of a metric with almost positive curvature on RP3 x
RP?, see [30, Section 5]; Ziller’s proof [33, Section 5]; and

4) Smale’s classification of simply connected 5-manifolds with torsion-free second
homology and trivial second Stiefel-Whitney class [27, Main Theorem|, we obtained
a following result.

Theorem 1.2. Fvery closed connected simply connected 5-manifold with zero sec-
ond Stiefel-Whitney class and torsion-free homology admits a Riemannian metric of
positive biorthogonal curvature.

In Section 3.1, we show that the symmetric space structure on the Wu manifold
has positive biorthogonal curvature. In particular, the hypothesis on the second
Stiefel-Whitney class and homology of Theorem 1.2 are merely technical in nature.
We expect that they can be removed.

A recollection of background notions and results is included in Chapter 2. Chap-
ter 3 starts by showing that the Wu manifold with the symmetric space structure
has positive biorthogonal curvature. Next, Bettiol’s construction of metrics with
positive distance curvature on S? x S? is recalled. Finally, connected sums and their
relation to biorthogonal curvature is considered. In Chapter 4 we first prove Theo-
rem 1.1, and then in the final section we prove Theorem 1.2. Appendix A introduces
the Gell-Mann matrices that are used in the calculations on the Wu manifold.



Chapter 2

Background

2.1 Sectional, Ricci, and scalar curvature

We begin by recalling several basic definitions.

Definition 2.1. A Riemannian manifold (M, g) is a pair where M is a smooth
manifold and g is a symmetric (0, 2)-tensor field on M, i.e., a section of the ST M-
bundle over M such that its restriction g|,, to each point m € M is a positive definite
scalar product on T}, M.

Each Riemannian manifold has associated to it a unique connection on the tan-
gent bundle, called the Levi-Civita connection satisfying what Peterson calls Fun-
damental Theorem of Riemannian geometry, [25, Chapter 2, Theorem 2.2.2]

Theorem 2.2. For a pair of vector fields (X,Y’) on a Riemannian manifold (M, g),
an assignment

(2.1) X(M) x X(M) — X(M)

(2.2) VxY =V(X,Y)
15 uniquely defined by the following properties:

1. X = VxY is a (1,1)-tensor, i.e., it is well defined for all tangent vectors
Y,, € T,,M and linear

(23) VQXH_B)QY = OéVXlX + ﬁVXQY.

2. Y — VY is a deriwation:

Vx (Y1 +Y) =VxY +VxYs,

(24) Vi(8Y) = X(@)Y + ¢VxY .

for ¢ € C*(M).
3. Covariant differentiation V 1is torsion free:

(2.5) ViY — Vy X = [X,Y]
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4. Covariant differentiation is metric:

(2.6) Z(g(X,Y)) = g(VZX,Y) +g(X,V,Y).

The symbol Vx has its usual meaning from Riemannian geometry, i.e, Vy is
the covariant derivative in the direction of X that corresponds to the Levi-Civita
connection. See [25, Chapter 2, Chapter 3] for conventions we are using and more
details.

In what follows, we adapt standard definitions of sectional, Ricci, and scalar
curvature in Riemannian geometry from [25]. Riemann curvature tensor is in the
principal fibre bundle language just a curvature of the Levi-Civita connection, see
[13, Chapter 5, Chapter 9] for the details of this aproach. For our purposes, Riemann
curvature tensor is a (1,3)-tensor defined for all locally defined vector fields X, Y, Z
on (M,g) as

Definition 2.3. The Riemann curvature tensor is a (1, 3)-tensor field given by
(2.7) Riemy(X,Y)Z := (VxVy — VyVx = Vixy)) Z,

for vector fields X,Y, and Z. Using the metric, we can lower the index, or turn
Riem, from a (1, 3)-tensor into a (0, 4)-tensor

(2.8) Riem, (X,Y, Z, W) := g (Riemy(X,Y)Z, W) .

The symbol Riem, in (2.8) is overloaded, but whether we are working with the (1, 3)
or (0,4) version will always be clear from the context. The following proposition
gives the symmetries of Riem,

Proposition 2.4. [25, Proposition 3.1.1] The Riemann curvature tensor Riem,
satisfies:

1. Riem, is skew-symmetric in the first two and the last two entries:

(2.9) Riem, (X,Y,Z, W) = —Riem, (Y, X, Z,W) = Riem, (Y, X, W, Z)

2. Riemg is symmetric between the first two and last two entries:

(2.10) Riem, (X,Y, Z, W) = Riem, (W, Z, X,Y)

3. Riemg R satisfies a cyclic permutation property called Bianchi’s first identity:
(2.11) Riem, (X,Y) Z + Riem, (Z, X)Y + Riem, (Y,Z) X =0.

In the following definition Gro(7M) is the Grassmanian bundle of 2-planes over
M and o is a 2-plane, i.e. 0 € Gro(T,,M)
Definition 2.5. The Sectional curvature of (M, g) is a map
(2.12) secg : Gro(TM) — R,
defined by

Riem,(X,Y,Y, X)
X, X)g(Y,Y) — g(X,Y)?"

where 0 € Gry(T,, M), and X and Y a basis of 0. We call the real number secy(0)
sectional curvature of the 2-plane o.

(2.13) secg(0) 1= o
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Lemma 2.6. Sectional curvature (2.13) doesn’t depend on the choice of basis of o.

Having in mind Lemma 2.6, we will interchangeably use X A'Y and o to denote
the 2-plane o = span{X,Y}.

In terms of Riemann curvature tensor, Ricci curvature (0,2)-tensor, is defined as
the following trace.

Definition 2.7. The Ricci curvature tensor is a (0,2)-tensor defined by
(2.14) Ricg(X,Y) := Trace, (- — Riem, (-, X)Y) .

One should think of the dot in the previous expression as defining a function.
(2.15) Z — Riem, (Z,X)Y

In other words, in (2.15) we keep the variables X and Y fixed and vary Z over
its allowed set of values. With notation (2.15) in mind - + Riem, (-, X)Y is an
R — linear function from 7,,M to itself, i.e, R-linear operator. Since the metric
tensor g induces a scalar product on T}, M, we have enough data to define a unique
trace operation that features in the equation (2.14).

Lemma 2.8. Ricci tensor is symmelric, i.e,
(2.16) Ricg(X,Y) = Ricg (Y, X) .

Definition 2.9. The Ricci curvature of (M, g) is a map

(2.17) Ricg : T'M — R,
defined by
(2.18) Ricg (X)) := Ricg(X, X),

for a unit vector X.

Since Ricci tensor is symmetric, there is one and only one way to take its trace.
Scalar curvature is the unique trace of the Ricci curvature tensor.

Definition 2.10. The scalar curvature of (M, g) is a map

(2.19) scal, : M — R,
defined by
(2.20) scal, := Trace, (Ricy) .

Scalar curvature can be obtained as a sum of sectional curvatures in a following
way

Lemma 2.11. Let {€;};—1._aimw) be an orthonormal basis of T,, M. Then the scalar
curvature of (M, g) is given by

dim(M)

(2.21) scaly = Z secg(e; A ej).

ij=1



2.2 Distance curvature

In this section, we introduce a notion of curvature that will be our main interest in
this thesis. Distance curvature is an average of sectional curvatures of two 2-planes
that are some distance apart on the Grassmanian. We follow Bettiol [3, Chapter 5].
First, we introduce a distance on the Grassmanian of 2-planes of an Euclidean vector
space V. Then, considering tangent space at each point of a Riemannian manifold,
we define distance curvature. Bettiol discusses different distance functions, but we
will only consider symmetric space distance, since this distance function leads to the
biorthogonal curvature. Let P, P" € Gry(V) and let S, and S,/ be the intersections
of the unit sphere in V', Sy, = {v € V : ||[v]|> = 1} with ¢ and o', respectively.

Definition 2.12. Let (V, (-, -)) be an Eucledian vector space and let o,0’ € Gry(V)
be two 2-planes in V. The principal angles 0 < 0, < 6, < 7 between o and o’
are, respectively, the smallest and the largest angle that a line in ¢ makes with a
2-plane o', i.e.,

2.22 = mi
(2.22) 01 min arecos ( iré%z(, (v, w))
(2.23) 0y = maX arccos <5}Ié%i{/ (v, w)) :

Definition 2.13. The Symmetric space distance between two 2-planes 0,0’ €
Gry(V) is defined as:

(2.24) dist(o,0") := /6% 4 63,

where 6; and 6, are principal angles between o and o”.

For a Riemannian manifold (M, g), one gets a fiberwise distance function dist
on GroT'M, that is, a distance function on each Grg(7,,M) that varies continuously
with m € M, by taking the Euclidean space V' to be T,,, M in the previous definitions.

Definition 2.14. The distance curvature of (M, g) for § > 0 is a map

(2.25) secg :Gry(TM),— R
defined by
(2.26) sec’(0) ;=  min 1 (secy (o) + secg(a’))
& o' €Gra(Ty M) 2 & & ’
dist(c,0')>0

where o € Gry(71,,M). We call the real number secg(a) the distance curvature
of the 2-plane o.

For maximal value of 6, § = \/Lﬁ every vector from o is orthogonal to every vector

from ¢’ and we say that the 2-planes o and ¢’ are orthogonal. We call distance
curvature for 6 = % biorthogonal curvature.
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Definition 2.15. The biorthogonal curvature of (M, g) is a map

(2.27) secg : Gra(TM) — R,
defined by
(2.28) secr (o) ;== min E (secg(0) + secg(a')).
& o' eCGra(Trm M) & &
a'Cot

where 0 € Gry(T,,,M). We call the real number sec, (o) the biorthogonal curva-
ture of the 2-plane o.

Note that, biorthogonal curvature is defined for manifolds of dimension four or
higher. In dimension four, the orthogonal subspace of 2-plane is a unique 2-plane
and taking the minimum in (2.28) can be omitted, i.e. in four dimensions

(2.29) sech(a) = - (secy(0) + secg(0)) .

N —

2.3 Notions of positivity of curvature

In this section we introduce some lower bounds on curvatures defined in the last two
sections, i.e, notions of positivity of curvature, and explore relationships between
them.

Definition 2.16. A Riemannian manifold (M, g) has positive sectional curva-
ture if its sectional curvature is a strictly positive function. We denote this as
secg > 0. Similarly, (M, g) has non-negative sectional curvature if its sectional
curvature is a non-negative function. We denote this as sec, > 0.

A weaker notion than positivity of sectional curvature is the following.

Definition 2.17. A Riemannian manifold (M, g) has almost-positive curvature
if its sectional curvature is strictly positive everywhere except at points in a subset
of measure zero L C M.

By the continuity of sectional curvature, a manifold with almost positive curva-
ture has non-negative sectional curvature.

Positivity of Ricci, Scalar, Distance, and Biorthogonal curvature is defined in a
similar fashion to Definition 2.16. We state the definitions for completeness.

Definition 2.18. A Riemannian manifold ()M, g) has positive Ricci curvature
if its Ricci curvature is a strictly positive function. We denote this as Ric, > 0.

Definition 2.19. A Riemannian manifold (M, g) has positive scalar curvature
if its scalar curvature is a strictly positive function. We denote this as scaly > 0.

Lemma 2.20. If (M, g) has positive Ricci curvature then (M,g) has positive scalar
curvature.



Proof. Let {e;}i=1..aim(a) be an orthonormal basis of M, then

dim(M)
(2.30) scal, = Z Ricg(e;) >0
i=1
since every term in the sum is positive by assumption. 0

Note that converse of Lemma 2.20 does not hold, as a following counter-example
shows.

Example 2.20.1. The product of a 2-sphere and 2-torus, (S? x T2 gg> + gp2)
where gg. is the radius one round metric and g;» is a flat metric the 2-torus, and
plus denotes a product metric., has scal, > 0, but not Ric, > 0. To see this, let
{e1, €2, €3, €4} denote an orthonormal basis with vectors e; and e tangent to S? and
vectors e3 and e4 tangent to 72, then

(2.31) Ricy(e1) = Ricg(es) = 1,
and
(2.32) Ricg(e3) = Ricg(eq) = 0.

It follows that scalar curvature is constant and positive
(2.33) scaly, = 2,

while Ricci curvature is not positive, because of (2.32). Furthermore, since the
fundamental group of S? x T? is Z?, by Bonnet—Myers Theorem, [25, Theorem 6.3.3],
52 x T? does not admit a metric of positive Ricci curvature.

Definition 2.21. A Riemannian manifold (M, g) has positive distance curva-

ture if its distance curvature is a strictly positive function. We denote this as
0

sec, > 0.

Definition 2.22. A Riemannian manifold (M, g) has positive biorthogonal cur-
vature if its biorthogonal curvature is a strictly positive function. We denote this
as sech > 0.

By definition, secg1 > 0 implies secg2 > 0, for #; > 6. In particular, since
biorthogonal curvature is the distance curvature for maximal value of 6, positive
distance curvature implies positive biorthogonal curvature. In what follows we will
show that, similarly to Ricci curvature, positive biorthogonal curvature implies pos-
itive scalar curvature. To this end we cite the following Lemma

Lemma 2.23. [/1, Lemma 3.100] For any symmetric bilinear ¢ form on R"
1
(2.34) o(V,V)dSy "t = —voly (8™ 1) Trace, () .
Sn—1 n

Using 2.23 one can prove the following.

Lemma 2.24. If the biorthogonal curvature of (M,g) is positive at a point m € M,
then the scalar curvature is positive at that point.



Proof. Fix a point m € M. Scalar curvature at that point can be written as a
following average

B n(n —1) n—117qn—2
(2.35)  scalg(m) = oS Tvol, (577) /Sn_Q /Sn_1 secg(U A V)ASydSY

by applying Lemma 2.23 two times. First on the trace that defines Ricci curvature,
(2.14) and then on the trace that defines scalar curvature (2.20). More geometrically
. *secg(0)
(2.36) scalg(m) = J 2Tmd) B
fGrz(TmM) 1

where, * denotes the Hodge star operator, see [13, Chapter 3], possibly up to a
positive constant factor that is irrelevant for the proof. We proceed by contradiction
and assume that scaly(m) < 0 and sec, (o) > 0 for all 2-planes o € Gry(7},M). Then
we have the following chain of inequalities

0 > scalg(m) = )\/ *secg(0)

c€Gra(Tm M)

1
)\/ *5 (secg(0) + secg(0))
c€Gra(TmM)

1 .
/ *3 (secg(a) + nin secg(a’)>
UEGI‘Q(TmM)

A / *secy (o).
c€Gra(Tm M)

xsecy (o) < 0, but this means that there exists a 2-plane

(2.37)

v
>

In conclusion, faeGrQ(T M)
m

o at point m € M with sech(a”) < 0, contradicting the initial assumption. O

Applying Lemma 2.24 to all points of M gives the following Corollary.

Corollary 2.24.1. If (M,g) has positive biorthogonal curvature, then (M,g) has
positive scalar curvature.

Despite both positive Ricci curvature and positive biorthogonal curvature im-
plying positive scalar curvature, positive Ricci curvature does not imply positive
biorthogonal curvature, nor does positive biorthogonal curvature imply positive
Ricci curvature.

Example 2.24.1. The Riemannian manifold (S? x S?, g), with g a product of round
metrics on a 2-sphere of radius one S? has positive Ricci curvature, but doesn’t have
positive biorthogonal curvature. The manifold (S* x 52, g) is an Einstein manifold
with

(2.38) Ric, = g,

and thus has positive Ricci curvature. However, sectional curvature of any mixed 2-
plane is zero and an orthogonal 2-plane to a mixed 2-plane is again a mixed 2-plane,
and so biorthogonal curvature of any mixed 2-plane on (52 x 52, g) is zero. By mixed
2-plane we mean a 2-plane a 2-plane is mixed if and only if its projection to each
factor has 1-dimensional image. Note that in [1], Bettiol deforms the metric g to a
metric of positive distance curvature that is arbitrarily close to g in the C*-topology.
In this thesis, we apply a similar deformation to obtain a metric of positive distance
curvature on S% x 52, see Section 4.
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The following is an example of a manifold that has sect > 0, but doesn’t have
Ric, > 0.

Example 2.24.2. The product Riemannian manifold (M? x S, g,, + df?), where
g,y 1s a metric with positive sectional curvature, has positive biorthogonal curvature,
but does not have positive Ricci curvature. A 2-plane is flat if and only if it is mixed,
while 2-planes that are not mixed have positive sectional curvature and in particular
positive biorthogonal curvature. Since S! is 1-dimensional, a plane orthogonal to a
mixed plane cannot be mixed. Thus the biorthogonal curvature of a mixed 2-plane
is positive. On the other hand, the fundamental group of M3 x S' is 7y (M) x Z, and
so by Bonnet-Myers Theorem, M? x S does not admit a metric of positive Ricci
curvature.

2.4 Riemannian submersions

In this section we define Riemannian submersions and homogeneous spaces. Finally
we recall result by O’Neill [241, Corollary 1.3] and a Theorem by Tapp [29, Theorem
1.1] that we will need in later Chapters. See [25, Chapter 1] and [34, Section 1] for
more details.

Definition 2.25. Let (M,g,,) and (N, gy) be Riemannian manifolds and let ¢ be
a smooth submersion from M to N, i.e.,

(2.39) e {pe C®(M,N): (¥Ym € M)(¢.|m is surjective)}.

If in addition 7 is such that at every point m € M the following holds

(2.40) gu (X, Y)(m) = gy (mX, mY)(x(m)) ,

for all X|Y € T,,M, we call ¢ a Riemannian submersion.

Remark 2.25.1. Let 7 be a Riemannian submersion from (M, g,,) to (N, gy). Then

at every point m € M, we call null-space of 7.|,, the vertical space of submersion
TT.

Remark 2.25.2. The horizontal space is the orthogonal complement of the ver-
tical space in T,, M.

While vertical space can be defined in the same manner for any submersion,
notion of the horizontal space requires M and N to be equipped with Riemannian
metrics and condition (2.40).

Definition 2.26. For a Riemannian submersion
(241) 7T:(‘Z\4ng>%(]V’>gN)

to each locally defined vector field on N, X we can associate a unique locally defined
horizontal vector field X, i.e. X(m) € Hor,, M, such that

(2.42) X =X.
The vector field X is called the horizontal lift of X.

11



Remark 2.26.1. By (2.40) and (2.42), the vector X(m(m)) and its horizontal lift
X (m) have the same length.

Example 2.26.2. Homogeneous spaces, for details see [26, Appendix 2], and
section 2.5. Suppose that G is a compact Lie group that acts from the left, transi-
tively, and isometrically on a compact Riemannian manifold (M, g) and call H < G
a Lie subgroup of G that is smoothly isomorphic to isotropy groups of every point
in M. Under these assumptions, the canonical projection:

(2.43) 7:G—G/H
is a submersion, and there is a diffeomorphism:
(2.44) ¢:G/H = M.

Diffeomorphism ¢, precomposed with the canonical projection 7, induces an anti-
homomorphism from the Lie algebra of right invariant vector fields on G to the Lie
algebra of Killing vector fields on (M, g), i.e.,

(2.45) (@om).: [X,Y]g= (pom). ([X,Y]y) = =[(¢om). X, (pom).Y]u

Kernel of this anti-homomorphism is precisely the Lie algebra of H and there is a
direct sum decomposition

(2.46) g=h@bh"

that is orthogonal with respect to some fixed left-G and Ad(H) invariant metric Q
on G. Suppose that (¢ om)(e) = m, € M, then

(2.47) (pom)(e): bt = T, M

is an isomorphism of vector spaces, and one can choose the metric () in such a way
to promote the isomorphism (¢ o), (e) into an isometry. Thus, making submersion
¢ o7 into a Riemannian submersion

(2.48) (pom): (G,Q) — (M,g).

Vertical space and horizontal space of Riemannian submersion 2.48 at the identity
element e are h and h*, while the orthogonal decomposition

(2.49) T.G = Ver.G & Hor.G

is precisely the decomposition (2.46). Differential of left translation on G, L.,
preserves the splitting (2.49) because Q is left invariant, and we get vertical and
horizontal sub-spaces at points other than the identity by left translating tangent
space at the identity T.G.

The following result of O’Neill describes how sectional curvature behaves under
Riemannian submersions.

12



Theorem 2.27. [2/, Corollary 1.3] For a Riemannian submersion
(250) 7.(-:(]\47gM)_>(‘]\77gN)7

2-plane X \Y and its horizontal lift X NY the following holds
I S
(251) secq (X AY) = secy,, (X AY) + (X, V]2,

where superscript Ver denotes projection to the vertical subspace.

A consequence of (2.51) is
(2.52) secg, (X NY) >secy (X AY).

In particular, if (M, g,,) has non-negative sectional curvature so does (IV, g, ). For
Riemannian submersions from Lie groups with bi-invariant metric the second term
on the right hand side of (2.51) is zero on flat horizontal planes by a result of Tapp
[29, Theorem 1.1]

Theorem 2.28. [0, Theorem 1.1] If

(2.53) 7 (G,Q) — (B,g),

is a Riemannian submersion from a Lie group with a bi-invariant metric, then
1. Ewvery horizontal flat 2-plane in G projects to a flat 2-plane in B.

2. Every flat 2-plane in B exponentiates to a totally geodesic immersion of R?
with a flat metric.

Inequality (2.52) and Theorem 2.28 imply that in the case of a Riemannian
submersion (2.53) flat 2-planes in B are in one to one correspondence with horizontal
flat 2-planes in G. We will find this result useful in later chapters. Another useful
Corollaryx of Theorem 2.28 is the following.

Corollary 2.28.1. Let (G, Q) be Lie group equipped with a bi-invariant metric. If

(2.54) 7 (G, Q) — (M, gy)
and
(2.55) p:(M,gn) = (B,gp)

are Riemannian submersions, then any horizontal flat 2-plane in M projects to a
flat 2-plane in B.

2.5 Lie groups, symmetric spaces, and Cartan de-
composition

In this section we review classical results about compact Lie groups and symmetric
spaces. We follow [1], [26], [23], and Eschenburg’s notes on symmetric spaces [9].

First, we adapt a part of [I, Chapter 2, Proposition 2.26] to our conventions and
notation.
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Proposition 2.29. Let G be a Lie group equipped with a bi-invariant metric Q, and
X, Y eg=T.G. Then

1
(2.56) Riemq(X,Y,Y, X) = 1[|[X, Y|P
It follows that if X andY are an orthonormal basis of a 2-plane o € Gro(T.G), then

(2.57) secq(0) = 1| [X, V]|

Definition 2.30. A Geodesic symmetry at a point m of a connected Riemannian
manifold (M, g) is an isometry

(2.58) Sm M — M,
such that

(2.59) sm(m) =m,
and

(2.60) (Sm)slm = —1dg, 01 -

It can be shown that s, = idy,.

Definition 2.31. A Riemannian manifold (M, g) is called a symmetric space if
for every m € M there exists a geodesic symmetry at m.

A symmetric space is geodesically complete because any geodesic can be extended
indefinitely via symmetries about its endpoints. Furthermore, every symmetric space
is a homogeneous space. To see this, take two points of a symmetric space (M, g),
my,my € M and connect them by a unique length minimizing geodesic v. The
geodesic symmetry about the midpoint of v is an isometry that sends m; to ms.
Since my and my are arbitrary (M,g) is a homogeneous space. This means that,
as with any other homogeneous space, we can pick an arbitrary point m. € M and
realize M as a coset space of G/H, see example 2.48. Here, GG is a Lie group of
midpoint geodesic symmetries and H is the isotropy group of m.. We can also pull
back the metric g from M to G/H by the identifying diffeomorphism, and extend
it to a left invariant, Ady(H) invariant metric on G, which we will denote by Q.

Next, we define an involutive automorphism of G by conjugating by the geodesic
symmetry s,, € G

(2.61) O: g Sm.gsn,, .

If we denote the fixed point set of © by F, ie., F :={k € G;0(k) = k} and by F,
the identity component of F', then

(2.62) F,.CHCF.
Let 6 be differential of © at the identity of G, i.e.,

(2.63) 0:=06..:9—9.
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Differential 4 is an involutive automorphism of g with eigenvalues +1. Corresponding
eigenspace decomposition of g is

(2.64) g=bdm,

where

(2.65) m:={X € g,0(X)=-X},
(2.66) h={XeglX)=X}.

Because of (2.62), b is the Lie algebra of H. Furthermore, because of the way Q is
constructed, decomposition (2.64) is Q-orthogonal. Since 6 is an automorphism of
g we have

(2.67) [0(X),00Y)] =6(X,Y]).
From (2.67) and definitions (2.65), (2.66) it follows that

(2.68) [b,b]Ch, [hm]Cm, [mm]Ch.

Definition 2.32. An involutive automorphism
(2.69) 0:9—9

of a Lie algebra g is called a Cartan involution if ad(h)|, is a Lie algebra of
a compact subgroup of GL(m), where b is +1 eigenspace of 6, and m is the —1
eigenspace of 6.

Definition 2.33. Direct sum decompostion
(2.70) g=hodm

of a Lie algebra g is called Cartan decomposition if ad(h)|,, is a Lie algebra of a
compact subgroup of GL(m) and

(2.71) b,pl Ch, [hym]Cm, [mm]Ch.

It is easy to see that each Cartan involution corresponds to a unique Cartan
decomposition and vice versa. Equation (2.64) is a Cartan decomposition of the
Lie algebra of the midpoint geodesic symmetries of a symmetric space (M, g), thus
we can associate a Cartan decomposition to a symmetric space. The compactness
assumption is satisfied for compact M. Converse is also true. Given a Cartan de-
composition of a Lie algebra g we can associate to it a unique simply connected
symmetric space.

Example 2.33.1. Every Cartan decomposition of su(n) is conjugate to one of the
types AI, AII, and AIII [6, Chapter 2]:
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1. Type AT corresponds to a decomposition into purely real and purely imaginary
subspaces

(2.72) su(n) = so(n) @ so(n)*.
Associated Cartan involution is

(2.73) 0: X —XT.

2. Type AII decomposition is defined for even n. It is given by

(2.74) su(n) = 5p(g) ® sp(g)l .
Associated Cartan involution is
(2.75) 0: X —JXTJ,
where
(2.76) J= {_‘} [02} |
3. Type AIII is given in term of two positive integers such that p + ¢ =n. It is
of the form
(2.77) su(n) =h @ m,
where

(2.78) b = span { [61 g} . A cu(p),B e ulg), Tr(A) + Tr(B) = o} ,

(2.79) m := span { {_%* g} ; C e Matpxq((:)} .
Corresponding Cartan involution is
(2.80) 0:Xw—1,,XI,,,
where
_ | 0
(2.81) L, = {o _[J .

Simply connected symmetric space corresponding to a type Al decomposition of
su(3) is called the Wu manifold and in section 3.1 we will show that this manifold
has positive biorthogonal curvature. To do this, we will need the following result.

Proposition 2.34. [23, Proposition 7.29] Let G be a compact Lie group. If a and
a’ are two mazimal abelian subalgebras of m then there is a member h € H with
Ad(h)d" = a.
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2.6 Cheeger deformations on Lie groups

In this section, we introduce Cheeger deformations in the special case of bi-invariant
metrics on Lie groups, see [5], [10].

Let G be a Lie group, and let K C G be closed subgroup. Equip G with a
bi-invariant metric (G, gy). Consider the right diagonal action of K on G x K,

(2.82) (9. k)K" = (gk', kK')
for g € G and k, k' € K. Orbit space of (2.82) is
(2.83) G~ (G x K)/AK,
with the quotient map given by

p:GxK—>G

(2:84 plg. k) =gk™".

Equip the G x K with a product of bi-invariant metrics (G x K, gy + tgo|x ), where
t > 0. Because action (2.82) is by isometries, there is an induced metric g; making
the quotient map p into a Riemannian submersion

(2.85) p:(GxK,go®tg|x) = (G, g1).

Induced metric g; is the Cheeger deformation of g,. Since (G x K, gy + tgo|x) has
sec > 0 and Riemannian submersions don’t decrease the curvature it follows that
secg, > 0. Next, consider two actions on (G x K, gy + tgo|k),

(2.86) 9 *(9.k) = (d'9.k),

(2.87) K (g, k) = (9. K'k),

for g € G, K € K, (9,k) € G x K. Action (2.86) and (2.87) are by isometries and
commute with the action (2.82), so they descend to actions by isometries on (G, g1).
One has

(2.88) p(g *(9,k)) = p(g'g. k) =g'gk™" = ¢'p(g, k),

(2.89) p(K' x (g,k)) = p((g, k') = g(K'k)™" = p(g, k)K"~

so (2.86) descends to left multiplication by elements of G, and (2.87) descends to the
right multiplication by elements of K. It follows that the metric g; is G-left invariant
and K-right invariant. However, right multiplication by an arbitrary element of G
is not an isometry of (G, g1).

Let £ denote the Lie algebra of subgroup K. Lie algebra of GG, g splits into an
orthogonal sum

(2.90) g=pDE,
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Differential of the submersion p is

d
/0*|(e,e) (X,)Y) = £|t:0p(eXP<tX)a exp(tY)) =
(2.91)

d
= £|t:0 (exp(tX)exp(—tY)) =X —-Y.
It follows that the vertical subspace of Ti¢)(G x K) is
(2.92) Vere = {(X, X) : X € ¢}

Given a vector X € g, one can see that its horizontal lift is

t 1

2} X = (X, _
(2.93) ( P T T

Xe) .
Let ® be a symmetric, positive linear map of g, defined as
(2.94) g1(X,Y) =go(PX,Y).
Then one has

2.95 X =X, —X
( ) +1+t ¢

1+t
(2.96) PIX =X, + LX{,,,

and one can write the horizontal lift (2.93) as
(2.97) X = (0X, —t H(DX)y).

By iterating the preceding construction one arrives at the following Lemma. See
[8] for a similar construction.

Lemma 2.35. Let
(298) Kn C Kn,1 C K1 C G == K(]

be a chain of closed subgroups of a compact Lie group (G, gy). Denote the Lie algebra
of K; by € and by p; K,_,-orthogonal complement of & in &_1, i.e,

(2.99) Li=p DY,
fori=1,2..n. Then, the metric g, on G defined by
(2.100) g (X, Y) =go(®X,Y), X,Y €g,

where ® is gyo-symmetric, positive linear map given by

1
@X:Xp1+1—

X +—X + ...+

(2.101)

—— X T =T Xk
1+Z?11tz_ 1+Z7,11 o

for positive real numbers ti,ts...t,, has the following properties:
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1. g, is G-left invariant.
2. g, 18 K,-right invariant.
3. (G, gn) has secg, > 0.

Proof. Proof consists of successively applying Cheeger deformation, starting from
(2102) (G X Kl X K2 X ... X Kn,g() + tlgo‘Kl —+ t2g0|K2 + ...+ tng0|Kn> .
Consider the following submersions

T GXKixKoyx ... xK,—>GxKyx..xK,

7T1<g,k1,]€2, ,]fn) = (gk;l,kg, ...,kn),
TQZGXKQXKgX...XKn%GXKgx...XKn

7TQ<g7 ]{52, ]{53, ceey kn) = (gk?2_17 ]{53, “eey kn) s

(2.103) '
it GX K X Kipg X . X Ky, > G X Ky X ... X K

7T2(g; kiaki+17 Jkn) = (gk;17ki+17 "'7kn)7

G x K, =G
7Tn(g, kn) = gkﬁla

and let p = m, om,_1 0... 0o My o m, metric g, is the metric that makes p into a
Riemannian submersion. Routine calculations show that horizontal lift all the way
up of X € gis

(2.104) X = (X, 7 (PX)ey, — 15 (X )y, oo, =17, (P X))

where @ is given by the expression (2.101). Using (2.104) and the fact that p is a
Riemannian submersion to (G, g,), one finds that (2.100) holds. Group G acts by
isometries on (2.102) by left multiplication on the first factor. This action descends
to an action by isometries on (G, g,) given by left multiplication. The group K,
acts by isometries on (2.102) by left multiplication of the last factor and this action
descends to an action by isometries on (G,g,) that is the right multiplication by
the inverse. The product (2.102) has non-negative sectional curvature, and since
Riemannian submersions don’t decrease curvature, it follows that (G, g,,) has secy, >

0. [l

Necessary and sufficient conditions for a 2-plane on (G, g,) to be flat are given
by the following Lemma.

Lemma 2.36. Let (G,g,) be a compact Lie group with a metric obtained by iterated
Cheeger deformations as in Lemma 2.35. Then a 2-plane X NY € Gry(g) is flat if
and only if

(2.105) [(@X)e,, (PY)e] =0,

for all i = 0,1,...n, where & is the Lie algebra of K; and ® is the isomorphism
(2.101).
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Proof. Denote the product metric (2.102) by

(2.106) gk = 8o + t18o|k, + t280|ks + - + a0k, -

By Theorem 2.28, secg, (X AY) = 0 if and only if secg, (X AY) = 0. Sectional
curvature is zero, secg, (X AY) = 0, if and only if unnormalized sectional curvature
is zero, Riemy(X,Y,Y, X) = 0. Using (2.104) and (2.106) we have

Riem,(X,Y,Y, X) = Riemg, (®X, Y, dY, dX)+
+ tl_sRiemgo((q)X)?N (CI)Y)E“ (CI)Y>?17 (q)X)?1>+
(2.107) + tggRiemng(((I)X)?w (q)Y)Ez? ((I)Y)?Qv (CI)X>92>+

+ tgsRiemgO((®X)en7 (q)y)érﬁ (Qy)hﬂ ((bX)En) *
Using expression (2.56) we have

t
4
-3 -3

2@ (BY DI, + o+ (X, (Y )2,

P |
Riem, (X, V.Y, X) = Z[[@X, @Y, + = II[(@X)er, (PY)e]lly,+

(2.108)

Since (2.108) is a sum of non-negative terms, it is zero if and only if all of the terms
on the right-hand side are zero. This is condition (2.105), completing the proof. [

2.7 Biquotients and Wilking’s doubling trick

In this section, we discuss biquotients following [10], [21]. We proceed to describe

Wilking’s doubling trick as in [31]. Finally, we characterise flat 2-planes on biquo-

tients equipped with metrics obtained by Wilking’s doubling trick following [7].
We start with a following definition.

Definition 2.37. Let G be a compact Lie group and let H C G x G be a closed
subgroup such that the action of H on G given by

(2.109) (hy, ha) * g = haghy ",

for (hi,hy) € H and g € G, is effectively free, i.e., an element h € H has a fixed
point if and only if A is in the kernel of action (2.109). In this case we call the orbit
space of the action (2.109) a biquotient and denote it G/ H.

If H = {e} x H', where H C G is a closed subgroup, biquotient G/ H is the
homogeneous space G/H'.

A metric g on G that is invariant under the action (2.109) induces a metric g on
G JH making the projection

(2.110) m: (G g) = (GJH,g)

into a Riemannian submersion. In what follows we will mostly be concerned with
biquotients equipped with metrics induced in such a way. There are two natural
families of metrics on G H; the family of metrics induced by left invariant metrics
on (G, and the family induced by the right invariant metrics on G. Wilking’s doubling
trick is a construction that gives an even larger family of natural metrics on G/ H.
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Lemma 2.38. Let H C G X G as in definition 2.37, and let AG C G x G denote
the diagonal subgroup. Then the action of AG x H on G x G given by

(2.111) (a,h)* (c,d) =a-(c,d)-ht,

fora € AG,andh € H, is effectively free, the biquotient AG\G x G/H is canoni-
cally diffeomorphic to GJH, and the class of left invariant Adg-invariant on G x G
induces a cone of metrics on the quotient containing the two original families.

Proof. Straightforward calculation shows that action (2.111) is effectively free if and
only if action (2.109) is effectively free. The canonical diffeomorphism is induced by
the map

2.112 GxG—=G, (a,b)—~a'd.
( ) . (a,b)

Finally, consider all left invariant Adg-invariant product metrics g; + g on G x G.
Subfamily of metrics for which g; is a bi-invariant metric on GG corresponds to the
family of metrics on G/ H induced from left invariant metrics on GG, while subfamily
of metrics for which g is a bi-invariant metric corresponds to the family of metrics
on G/ H induced by the right invariant metrics. O

Next, we describe vertical and horizontal distributions of the Riemannian sub-
mersion

(2113) T (G X G,gl ) gg) — (AG\G X G/U, g),

where g; and g are left invariant metrics on GG, and g; & g» is invariant under the
right action of U. Note that we have changed notation for the closed subgroup to
U C G x G, because we will later use H for groups along which we will Cheeger
deform. Since every orbit of the AG x U passes through a point of the form (e, g) €
G x G it is enough to consider only points of this form. An orbit through (e, g) is
given by

(2.114) Fleg ={(gui",dgus") 1 ¢’ € G, (w1, u2) € U}.
An arbitrary curve contained in F{. 4 is given by
(2.115) ~(t) = (exp(tX)exp(—tU;), exp(tX)gexp(—tUs)),

where X € g and (Uy, Us) € u. By differentiating we get that the vertical subspace
of Riemannian submersion (2.113) at the point (e, g) is

(2.116) Ver(e’g)(G X G) = {(X — Ul, Rg*X — Lg*Ug) X € g, (U1, UQ) c u}.

Let &, and ®5 be isomorphisms of g such that

and
(2.118) 22(X,Y) = go(P2X,Y),

for X, Y € g, where gy is a bi-invariant metric on G. We look for the horizontal
vectors at (e, g) in the form (®7'Hi, Ly @5 'Hs) € Tie (G x G), where Hy, Hy €
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g. Since ®; and P, are isomorphisms of g and (Id, L,.) is an isomorphism from
Tie,e) (G x G) to Tieq)(G x G), there is no loss of generality. A straightforward
calculation shows that the horizontal subspace at (e, g) is

Hor(e,g) (G x G) = {(=P7'Ady X, Ly ;' X) :

2.119
( ) X€g, go(X,Adg—lUl—Uz)IOfOI' all (Ul,Ug) EU}.

Note that the map
(2.120) X (=07'Ad, X, L, ®5 ' X)

is an isomorphism of linear subspace {X € g : go(X,Ad;-1U; — Us) = 0} C g and
Hor(e’g)(G X G)
The following Lemma will be used to locate flat 2-planes in Section 4.1.

Lemma 2.39. [7, Lemma 6.1.3] Let g1 and go be metrics on compact Lie group G
obtained by the iterated Cheeger deformations of the bi-invariant metric gy along the
chains of subgroups

(2121) Hn C Hn,1 C H1 C HO = G,
and
(2122) K,CK, 1C.KiCKy=G,

respectively, and let U C H, X K,, be a closed subgroup. Let
(2.123) 7: (G XG, g1 Pg) = (AG\G x G/U,g),

denote the Riemannian submersion to AG\G x G /U with the induced metric g. The
biquotient (AG\G x G/U,g) has a flat 2-plane at a point w(e,g) if there exists a
pair of linearly independent vectors X,Y € g such that for all (Uy,Us) € u we have

(2.124) go(X, Ady-1Ur — Us) = go(Y, Ady-1Uy — Uz) = 0,
and

(2.125) [(AdyX)s,, (AdgY)s,] =0,

(2.126) [Xe,, Ye;] =0,

hold for all i = 0,1,..m and j = 0,1,...m. Moreover, any flat 2-plane at (e, g)
arises in this fashion.

Proof. First, construct the product of Cheeger deformed metrics on G x G as in
Lemma 2.35 and denote the corresponding Riemannian submersion by

(2.127) p1xpa: (GXxHyx...x H) X (GX K1 X...xK,,),en®gr) — (GXG, g15gs)

, where gy and gx are metrics as in (2.102) corresponding to the two chains of
subgroups. Next, given X,Y € g such that for all (Uy,Us) € u, go(X,Ad,~1U; —
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Us) = go(Y,Ad,~1U; — Us) = 0 holds, we have the corresponding horizontal vectors
at (e,g9) € G x G, as in (2.119)

(2.128) X = (X1, Xy) = (-0, 'Ad, X, L., X)

(2.129) Y = (N1,Ys) = (=07 'Ad,Y, L@, 1Y),

and X and Y are linearly independent if and only if X and Y are linearly inde-
pendent. Because g; + g9 is the product of two metrics with non-negative sec-
tional curvature, secg, 1, (X AY) = 0, if and only if both sec,, (X; A Y;) = 0 and
secg, (Xo A Yy) = 0 hold. By Lemma 2.36 this is the case if and only if conditions
(2.125) and (2.126) hold. It follows that the horizontal 2-plane X AY is flat and by
Corollary 2.28.1 it projects to a flat 2-plane on (AG\G x G/U,g). In the other di-
rection, because the horizontal lift of a flat 2-plane at (e, g) is flat, it is of the form
X AY, where X and Y are given by (2.128) and (2.129), with X and Y satisfying
(2.124), (2.125), and (2.126). 0

2.8 First order conformal deformations

In this section we discuss first-order conformal deformations of Riemannian metrics
and some related results following [3, Chapter 3.

Definition 2.40. For a compact Riemannian manifold (M, g), a function ¢ : M —
R, and a small enough s > 0, the following is also a Riemannian metric on M

(2.130) g, =(1+s¢)g.
The metric (2.130) is called the first-order conformal deformation of g.

We will use the following Lemmas from [3, Chapter 3] in Section 4.2 to construct
a metric of positive distance curvature on S® x S2.

Lemma 2.41. [7, Corollary 3.4,] Let (M, g) be a Riemannian manifold with secg >
0, and let X,Y € T,,M be an orthonormal basis of a flat 2-plane o secy(0) = 0.
Then, for a first order conformal deformation of g

(2.131) g, = (1+sd)g,
we have
d 1 1
(2.132) 5% (0) |s=0 = —éHess o(X, X) — EHess o(Y,Y).

Lemma 2.42. [3, Lemma 3.5] Let f :[0,S] x K — R be a smooth function, where
S > 0 and K is a compact subset of a manifold. Assume that f(0,x2) > 0 for all
r e K, and % > 0 if f(0,2) = 0. Then there exists s. > 0 such that f(s,z) >0 for
allz e K and 0 < 8 < s,4.

An important difference between conformal deformations and Cheeger deforma-
tions from Section 2.6 is that, while Cheeger deformations preserve lower curvature
bounds on the sectional curvature, in general, this is not the case for conformal
deformations.
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Chapter 3

Positive biorthogonal curvature

3.1 Wu manifold

The main result in this section is a proof that the symmetric space metric on the
Wu manifold has positive biorthogonal curvature. The proof relies on a result that
was presented in section 2.5. More precisely, we use the fact that flat 2-planes
of SU(3)/SO(3) correspond to horizontal flat 2-planes of SU(3) and characterize
horizontal flat 2-planes of SU(3) as conjugates of a maximal abelian subalgebra of
su(3) by elements of SO(3). Finally, we introduce a basis for su(3) and use this
characterization to show that no two flat 2-planes can be orthogonal, hence, proving
the result. The contents of this section, in a more condensed form, can be found in

[25].

The Wu manifold SU(3)/SO(3) is a rational homology 5-sphere with second
homotopy group of order two [32]. When equipped with a metric (SU(3)/SO(3), g),
that makes the canonical submersion

7 (SU(3),Q) — (SU(3)/SO(3),g) ,

(3:1) u — uSO(3),

into a Riemannian submersion, the Wu manifold is a symmetric space. In (3.1) Q is
a bi-invariant metric on SU(3). As a comparison to the main result of this section,
we note that the metric g has positive Ricci curvature. Now we can state the main
result of this section.

Proposition 3.1. The symmetric space (SU(3)/SO(3),g) has positive biorthogonal
curvature.

Proof. The left action of SU(3) on SU(3)/SO(3) induced from left multiplication
on SU(3) by (3.1) is transitive and isometric for the symmetric space metric. This
means that we can study curvature at one point of SU(3)/SO(3) and isometrically
translate the results to any other point. The Cartan decomposition that corresponds

to SU(3)/SO(3) is of type AlII, see 2.33.1
(3.2) T.SU(3) ~ su(3) = s0(3) ® s0(3)*.

Decomposition (3.2) is orthogonal with respect to the bi-invariant metric and is
precisely the decomposition of 7,SU(3) into vertical and horizontal subspaces of the
Riemannian submersion (3.1). Hence, we have

(3.3) Tso(3)(SU(3)/SO(3)) ~ s0(3)".
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Riemannian manifold (SU(3)/SO(3), g) has non-negative sectional curvature because
it is the image of a Riemannian submersion from a manifold with non-negative
sectional curvature. Hence, to conclude that SU(3)/SO(3) has positive biorthogonal
curvature, we need to show that no two flat 2-planes are orthogonal to each other. A
result of Tapp, stated in the Theorem 2.28, implies that a 2-plane on SU(3)/SO(3)
is flat if and only if its horizontal lift is flat. Thus, it is enough to consider horizontal
flat 2-planes at the identity of SU(3).

A horizontal 2-plane X A Y C s0(3)* at the identity of SU(3) is flat if and
only if [X,Y] = 0. Since the maximal number of linearly independent commuting
matrices in su(3) is two, every horizontal flat 2-plane corresponds to a maximal
abelian subalgebra of s0(3)+

(3.4) span{X,Y} = a C s0(3)".

By a fundamental fact about Cartan decomposition, see proposition 2.34 for the
precise statement, any two maximal abelian subalgebras of s0(3)* are conjugate by
an element of SO(3). This means that by fixing one maximal abelian subalgebra,
or one horizontal flat 2-plane we can parametrize all horizontal flat 2-planes by
SO(3). In what follows we will obtain an explicit parametrization of horizontal flat
2-planes at the identity of SU(3), and so a parametrization of flat 2-planes at a
point of SU(3)/SO(3) by choosing a basis for su(3), fixing a horizontal flat 2-plane
and parametrizing SO(3) by Euler angles. We use this explicit parametrization to
show that no two flat 2-planes can be orthogonal. For the basis of su(3), we choose
{—iXi}iz1,. s, where the \;’s are traceless, self-adjoint 3 by 3 matrices known as the
Gell-Mann matrices, see Appendix A. The scalar product on su(3) that corresponds
to the bi-invariant metric is

(3.5) (X,Y) = —%Tr(XY) |

for X, Y € su(3) and the basis {—i\;};=1 s is orthonormal with respect to (3.5).
The Cartan decomposition (3.2) in this basis is

(3.6) 50(3) = span{—ilg, —iA5, —iA7}
and
(3.7) 50(3)" = span{—i\;, —i\g, —i\g, —i\g, —iMg} .

Matrices A3 and \g are diagonal, so we use —A3 A Ag for the reference horizontal
flat 2-plane. Every horizontal flat 2-plane, X AY, with X,Y € s0(3)* such that
[X,Y] =0, can now be written as

(3.8) XAY = —Ad, (A3 A Xg),

for some r € SO(3). Suppose that X A Y and X’ A Y’ are two such 2-planes with,
X ANY given by (3.8), and X’ A Y’ by

(3.9) X'AY' = —Ady (M3 A Ns),

for some r’ € SO(3). For the 2-planes (3.8) and (3.9) to be orthogonal it is necessary
and sufficient that the equations

(3.10) (Ad, A3, Ad,A3) =0
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(3.11) (Ad, Mg, AdyNs) = 0,

(312) <Ad7«)\8, Adw)\3> =0 5
and
(3.13) (Ad, A, Ad,y Ag) = 0

hold. Using the Ad-invariance of the bi-invariant metric, equations (3.10), (3.11),
(3.12), and (3.13) can be rewritten as

(314) </\37 Adrfl,,,/A3> — O )
(315) <)\3, Adr—lr’)\8> =0 5
(316) <>\87 Ad7ﬁlr/>\3> == O ;
and

(3.17) (Mg, Ad, -1, 2g) = 0.

We now use the Euler angle parametrization of SO(3) to write r~!r' € SO(3) as
(3.18) 1" = exp(—iAow)exp(—idsy)exp(—ia2) ,

where z,y,z € R. Plugging (3.18) into equations (3.14), (3.15), (3.16), and (3.17)
and calculating the traces explicitly, we find

(3.19) 0= (A3,Ad,—14A3) = %cos(Qa:) (3 + cos(2y)) cos(2z) —sin(2z)cos(y)sin(2z) ,

(3.20) 0= (A3, Ad,~1,/Ag) = —?Cos@x)sirﬁ(y) :
(3.21) 0= (N, Ad,—1,4A3) = —\/73005(22)sin2(y) ,
and

1
(322) 0= <A87 Ad,,«flrlA8> = 1(1 + 3COS(2y)) .

Equations (3.20), (3.21), and (3.22) imply cos®(y) = 1/3 and cos(2z) = cos(2z) = 0.
Plugging this into equation (3.19), we obtain

(3.23) (A3, Ad,—1,A3) # 0,

and conclude that there is no solution to the system given by equations (3.19),
(3.20), (3.21), and (3.22). This shows that no two flat 2-planes are orthogonal.
O

In section 4.3 we will show that all closed simply connected with torsion-free ho-
mology and zero second Stiefel-Whitney class admit a metric of positive biorthogonal
curvature. The Wu manifold doesn’t satisfy these conditions on the homology and
the second Stiefel-Whitney class, suggesting that they are technical in nature.
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3.2 Bettiol’s construction

In this section, we will review Bettiol’s constuction of metric with positive distance
curvature for any 6 > 0 on S? x S? given in [3, Chapter 6] and [1]. Our construction
of a metric with the same property on S x S? in Sections 4.1 and 4.2 closely
parallels Bettiol’s construction. The construction is carried out in two steps. First,
the product of the round metrics on S? x S? is deformed to a metric where almost
all points have a unique flat curvature plane, and then this metric is conformaly
deformed to a metric of positive distance curvature. Finally, we show that Bettiol’s
construction can be made to commute with taking certain discrete quotients, and
thus gives metrics of positive distance curvature on S? x PR? = S? x S?/Z, and
Ly =52 x 5?7y as well.

The first step of the construction is carried out by a general version of Cheeger
deformation, whose particular case was discussed in Section 2.6. Given a Riemannian
manifold (M, g) and a Lie group G that acts freely and by isometries on (M, g). One
considers a following Riemannian submersion

(3.24) T (M x G,g+%Q) — (M, g),

where ¢ is a positive real number and Q is a bi-invariant metric on G. For (m, g) €
M x G, 7 is given by m(m,g) = g~'m and M is obtained as the orbit space of the
action

(3.25) g'(m,g) = (g'm,g'g),

for g, € G and m € M, of G on G x M. Action (3.25) is by isometries on the
product (M x G, g+ %Q), and thus the metric g, is well defined. The family of
metrics g,, for ¢ > 0 is called the Cheeger deformation of g. Bettiol’s construction
starts with the

(3.26) §? x 8% = {(p1,p2) R’ xR : [Ip1||* = ||p:|* = 1} CR* x R,

where the metric g on S? x S? is induced from the product of canonical metrics on
R3. Next, the diagonal action of SO(3) on S? x 52 given by

(3.27) A(p1,p2) = (Ap1, Aps)

for A € SO(3) and (p;, P») € S? x S?, is used to obtain the Cheeger deformation
of g. The Cheeger deformed metric g, has non-negative sectional curvature, and
Bettiol shows that at points away from submanifolds

(3.28) AF = {(p1, £p1) € S x §?} ~ S,

there is exactly one flat 2-plane. So, at these points the distance curvature is pos-
itive. However, at each point of (3.28) there is 1-parameter family of flat 2-planes.
Furthermore at these points of (3.28) even the Biorthogonal curvature can be zero.

Second step of the constuction involves a first order deformation of the metric
g,. The conformal factor is given by

(329) J ==Xy — X9,
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where x is the bump function of A%, i.e., function that is identically one in a tubular
neighborhood of A" and identically zero outside of a larger tubular neighborhood
of AT, while 1" is the square of the Riemannian distance function form A

(3.30) by (m) = disty, (m, A7) .

Functions x_ and @~ are similarly defined for A_. Bettiol then proceeds to show
that the first order conformally deformed metric

(3.31) g5 = (L+sf)g,

has positive distance curvature for any # > 0. We mimic this construction precisely
in Section 4.2, and give the details there.

Important thing to note here is that while Cheeger deformation preserves the
non-negativity sectional cutvature of the starting metric g, first order conformal
deformation does not, i.e., there is a 2-plane o € Gry(T,,(S* x S?)) with sec, , < 0.

Now we will show that the construction can be used to obtain discrete quotients

(3.32) S% x RP? = S? x S?/7Zs,,
and
(3.33) Ly =S8*x S?|Z,.

We start with (3.32). First observe that the involution

(3.34) I:5%x85%— 8%xS?
given by
(3.35) (p1,p2) = (p1, —p2)

for (p1,p2) € S? x S? is an isometry of the metric g. Furthermore, it is easy to
see that the involution (3.34) commutes with the action (3.27). It follows that [
is also an isometry of the Cheeger deformed metric. This means that there is a
well defined metric on the quotient S? x S?/ I = S? x RP? such that the quotient
map is a Riemannian submersion. Since Riemannian submersions don’t decrese the
curvature, the lower curvature bound is preserved. If we could show that I is also an
isometry of conformaly deformed metric we would have obtained a metric of positive
distance curvature on S? x RP?. A necessary and sufficient condition for I to be an
isometry of g, , is for the conformal factor to be invariant, i.e.,

(3.36) fol=f.

Note that because I interchanges A* and A~ and it is an isometry of g,. We have
that

(3.37) by ol =,

Next we choose the bump functions in such a way to satisfy

(3.38) Xiol =x=.
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From (3.29), (3.37), and (3.38) is clear that (3.36) holds. Thus metric of positive
distance curvature on S? x S? desends to S? x RP?.
Following a similar line of reasoning for the involution

(3.39) J:8*x 5% — §%x §?
defined by
(3.40) J: (p1,p2) = (—=p1, —p2),

we obtain a metric of positive distance curvature on L.

3.3 Connected sums

We first state the well-known definition of connected sum following Kervaire-Milnor
[22, Section 2]; cf. [1, Definition 1.3.4].

Definition 3.2. Let M; and M5 be closed connected oriented n-manifolds and let

be embeddings of the n-disk for i = 1,2. Suppose that the embedding 7; preserves
orientation, while 75 reverses it. The connected sum of M; and M, is the n-manifold
defined as

(3.42) MMy =

where the equivalence relation identifies i; (tu) with i5((1 — ¢)u) for each unit vector
we S =0D" and 0 < t < 1.

A key ingredient in the proofs in this section and those in Section 4.3, is the
following surgery stability result regarding Riemannian metrics of positive biorthog-
onal curvature.

Proposition 3.3. Bettiol [, Proposition 7.11]. Let (M, g1) and (Ms, g2) be closed
smooth n-manifolds. Suppose that secgi > 0 for i = 1,2. There is a Riemannian
metric (My#M,, g) such that secg > 0.

Proof of Proposition 3.3 relies on the work by Hoelzel [16].
Bettiol classified up to homeomorphism the closed simply connected 4-manifolds
that admit a metric of positive biorthogonal curvature in [2].

Theorem 3.4. [2, Section 1, Theorem]
Let M be a closed smooth simply connected J-manifold. Up to homeomorphism,
the following are equivalent:

1. M admits a metric with sect > 0;
2. M admits a metric with Ric > 0;

3. M admits a metric with scal > 0.
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Remark 3.4.1. Homeomorphism classes of manifolds from Theorem 3.J are
(3.43) mCP*#nCP?
if wa(M) # 0 and to
(3.44) n(S? x S?)#5*
if wa(M) =0 for m,n € Ny.

In this section, we show that Bettiol’s work yields further classification results
on closed 4-manifolds with non-trivial fundamental group.

Lemma 3.5. A closed smooth orientable 4-manifold with infinite cyclic fundamental
group is homeomorphic to a 4-manifold that admits a Riemannian metric of positive
biorthogonal curvature if and only if it is homeomorphic to a 4-manifold that admits
a Riemannian metric of positive scalar curvature.

Proof. By [19, Collorary 1.2], see also [20] and [1 7], every closed smooth orientable 4-
manifold with infinite cyclic fundamental group is TOP-split, i.e., it can be written as
a connected sum S x S3# M, where M, is a simply connected 4-manifold. Since S* x
S3 with the product metric has positive scalar curvature and positive biorthogonal
curvature, and positivity of scalar curvature and positivity of biorthogonal curvature,
Proposition 3.3, being closed under connected sum operation. The connected sum
St x S3# M, admits a metric of positive scalar(biorthogonal) curvature if and only
if M, admits a metric of positive scalar(biorthogonal) curvature. Since M is simply
connected, by Theorem 3.4, M; admits a metric of positive scalar curvature if and
only if it admits a metric of positive biorthogonal curvature and the claim follows.

O

Lemma 3.6. Let M be a closed connected nonorientable 4-manifold with fundamen-
tal group of order two such that wi(M) +we(M) = 0. Then M is homeomorphic to
a manifold that admits a Riemannian metric of positive biorthogonal curvature.

Proof. According to Hambleton-Kreck-Teichner [18, Theorem 1 and Theorem 3],
such a 4-manifold is homeomorphic to

(3.45) S% x RP?#(n — 1)(S% x S?)

for a given n € N. The results of Bettiol stated in Theorem 3.4, the fact that S?xRIP?
admits a metric of positive biorthogonal curvature as was shown in Section 3.2, and
Proposition 3.3 imply that the 4-manifolds (3.45) admit a Riemannian metric of
positive biorthogonal curvature for every n € N. O]

We say that a 4-manifold M has a wy-type (I) if the second Stiefel-Whitney
class of its universal cover is non-zero wy(M) # 0, wy-type (II) if its second Stiefel-
Whitney class is zero we(M) = 0, and wy-type (I11) if wo(M) # 0, but we(M) = 0.

Lemma 3.7. Every closed smooth orientable 4-manifold with fundamental group of
order two and we-type (I) and (III) is homeomorphic to a 4-manifold that admits a
metric of positive biorthogonal curvature.
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Proof. According to Hambleton-Kreck-Teichner [18, Theorem 1 and Theorem 3],
such a 4-manifold is homeomorphic to

(3.46) nCP2#mCP?# L), |
for wo-type (I), and
(3.47) (k—1)(S? x S*)#L,,

for wy-type (I1I). By Proposition 3.3 and the fact that L, admits a metric of positive
biorthogonal curvature as was shown in Section 3.2, each of them admits a metric
of positive biorthogonal curvature. O
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Chapter 4

Positive Distance Curvature on

3 x G2

We proceed to prove the main result of this thesis.

Theorem 4.1. For every 6 > 0, there is a Riemannian manifold (S® x S%, ¢°) such
that:

1. Secgg > 0.

2. There is a metric g° such that g’ — g% in the C*-topology as @ — 0 for k > 0.
The metric g° is Wilking’s metric gy, of almost-positive curvature.

3. There is a 2-plane o € Gry (T,,,(S® x 5?)) with secgg (o) <O0.
J. Ricys > 0.

In particular, there is a Riemannian metric of positive biorthogonal curvature on

S3 x S2.

The proof of Theorem 4.1 consists of two steps and it builds upon Bettiol’s
construction of a metric with positive distance curvature for any > 0 on S? x S?
given in [3, Chapter 6] and [!]. We described Bettiol’s construction in Section 3.2.
Theorem 4.1 should be compared [, Theorem].

The Chapter is structured as follows. In Section 4.1 we review Wilking’s metric
of almost positive curvature on S* x S2. In [30], also see [33, Section 5]. This is the
first step of the construction and it involves Cheeger deformation. The second step
of the construction involves a first order conformal deformation of Wilking’s metric
and is given in Section 4.2.

4.1 Metric of almost positive curvature on S° x S?

In [30], Wilking constructed a metric of almost positive curvature on RP3 x RP?; see
Definition 2.17. Since RP? x RP? an odd-dimensional and non-orientable manifold,
Synge’s Theorem implies it does not admit a metric of positive sectional curvature.
Hence, Wilking’s result is a counterexample to the deformation conjecture. In what
follows we will be interested in a metric with almost positive curvature on S® x S2,
as it was described in [33, Section 5|. These two metrics are related in the following
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way. A metric on S® x S? arises as the pullback of a metric on RP3 x RP? by
the universal covering map. The following construction is essentially the same as
Willking’s construction from [30].

Since S? is parallelizable, its unit tangent sphere bundle is

(4.1) T,5% = § x §2
which can be embedded into R* x R* = H x H in the following way
(4.2) S? x S? = {(p,v) e HxH;p| =|v|=1,(p,v) =0} CH x H.

Here (z,y) = Re (zy) and |x|* = (x,z). The group G = Sp(1) x Sp(1) = 3 x S3,
acts on S® x S? by

(4.3) (91, ¢2) * (p,v) = (pd2, 1v2) ,

for all (q1,4q2) € Sp(1) x Sp(1). This action is effective and transitive. The isotropy
group of (1,7) € S* x 5% is H = {(e",¢") € Sp(1) x Sp(1)} < G. Note that
H ~ S'. Thus, S x S? ~ G/H is a homogeneous space. Discrete subgroup
L < G generated by (1, —1) and (j, j) normalizes H, so it follows that RP? x RP? ~
G/ (LH). Wilking considered this homogeneous space as a biquotient. We now will
do the same but for S® x S? = G/H, as it is done in [33, Section 5], but in more
detail.

We start by defining a left invariant metric Q,, on G = Sp(1) x Sp(1l) by
Cheeger deforming a bi-invariant metric on G along the diagonal subgroup ASp(1) =
{(a,a) € Sp(1) x Sp(1)} < Sp(1) x Sp(1). This metric can we written as (3.12)

(44) Qt ((X>Y>7(X/7Y/)) - Q((I)t (Xv Y),(X’,Y/)) )

where we take t = % for the deformation parameter in &, i.e.,

(4.5) @uypqu—%mxyy

denoting by P the projection onto the diagonal subalgebra Asp(1) C sp(1) @ sp(1).
Explicitly:

1
PX)Y)==-(X+Y, X+Y)
2
(4.6) 1
(1-P)(X,Y) :§(X—Y,—X+Y) )
The induced metric g, on
(4.7) P xS~ G/H=2AG\G xG/{(1,1)} x H
is the one that makes the biquotient submersion
(48) 7r:(vac;’;(QtG%(Qt)_> (S3X327gt)
into a Riemannian submersion. Note that 7 is explicitly

(4.9) 7 ((a,b),(c,d)) = ((a,b)_1 (¢,d)) * (1,4) = (acdb, acidb) € S* x S>.
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Next we locate flat 2-planes on (S® x S?,g,) using Lemma 2.39. Every flat
2-plane at 7 ((1,1),(a,b)) is a projection of a horizontal flat 2-plane Hy A Hy at
((1,1), (a,b)) spanned by (from now on we drop the index ¢ from )

(4.10) Hy = (=07 Adup (V' W), Lo @ (V/, W)
| Hy = (=2 " Ad(y (V!, W), Liap: @ (V/, W),

where (V,W) € sp(1) & sp(1) is such that

(4.11) QV.W), (4,1)) = Q((V!,W'), (4,1)) = 0,
and

[Adp (V.W), Adga (V, V)] =
(V', W]

PAd PAd
(412) [ (ab) (‘/’ W) ) (a,b)

w
[P(V,W), PV W

Since the Lie algebra of {(1,1)} x H is spanned by ((0,0),(7,7)) condition (4.11)
is necessary and sufficient for H; and H, to be horizontal. Conditions (4.12) are
necessary and sufficient for the 2-plane H; A Hy to be flat. When solving (4.11) and
(4.12) one should note that they are linear in (V, W) and (V’, W’), so that the space
of solutions corresponding to the flat 2-plane Hy A Hj is span {(V, W), (V',W')}.
Solutions to (4.11) and (4.12) are of the form span {(V,0), (0, V)}, where V' € Im (H)
is nonzero, satisfies (V,i) = 0, and [Ad,V,Ad,V] = 0. For every such V' we get a
flat 2-plane at 7 ((1,1), (a,b)) that is a projection of a flat 2-plane spanned by

H, = (—(I)_lAd(a,b)(‘/v O)’ L(avb)*q)_l(v’ O))

(4.13) . -
Hy = (=@ 'Ad(4)(0,V), L(ap) 2 (0,V)) .

The condition [Ad,V, Ad,V] = 0 is equivalent to Adz;V = £V. For the plus sign we

have abV' = Vab, so that ab has to be proportional to V, thus because (V,i) = 0 we

have (ab,i) = 0. For the minus sign, real part of ab must be zero, i.e., (ab,1) = 0.

Flat 2-planes on S? x S? are located on submanifolds 7(S;) and 7 (S;), with

Ry S1={((1,1),(a,b)) € G x G : {ab,1) =0} ,
(4.14) S; ={((1,1),(a,b)) € G x G : {(ab,i) = 0} .

Now that we have located the flat 2-planes, a natural question is how many of them
are there at each point. Let us fix the length of V by (V,V) = 1 and note that V'
and —V give the same 2-plane. If (ab, 1) = 0, condition AdgV = —V is equivalent
to (ab, V') = 0, thus if ab # +i then there are three independent conditions on V:
(V,V)y=1,(V,i) =0, and (V,ab) = 0. These conditions determine a unique V', thus
they determine a unique flat 2-plane. However, if ab = 47 then conditions (Vi) = 0
and (V,ab) = 0 are the same, so there is a one-parameter family of flat 2-planes
at these points. Similarly, for (ab,i) = 0 and ab # +1, condition AdgV = V,
provided that (V, V') = 1, is equivalent to (ab, V) = %1, so we get three independent
conditions determining a unique V. However, if ab = +1 then Adg,V = V is satisfied
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for every V', so we have two conditions giving a one-parameter family of flat 2-planes.
Let S1 4, and S; 11 be submanifolds of S} and S; defined by

Siai = {((1,1),(a,b)) € G x G :ab = +i} C Sy,

(4.15) S = {((1,1),(a,b) € Gx G:ab=+1} C S,

At each point of 7 (S1\ (S1; U S1—;)) and 7 (S;\ (S;1 US;—1)) there is exactly one
flat 2-plane, while at each point of 7 (S1;), 7 (S1,—), 7 (Si1), and 7 (S; 1) there is
a one-parameter family of flat 2-planes. Both 7(S;) and 7(.S;) are diffeomorphic to
S% x S2, with 7(S;) N 7(S;) being diffeomorphic to SO(3), while m(S1,), 7(S1,_),
7(S;1), and 7(S; 1) are all diffeomorphic to S%. For example:

7(S1.4i) = {(Faia, +1);a € Sp(1)} = S* x {£1} C $* x S?,
(4.16) ’ B ; , ,
7(S;i 1) = {(£1,+aia);a € Sp(1)} = {£1} x 5= C S° x S°.

Next, consider the diagonal action of Sp(1) from the right on the first factor of
G x @G,

(4.17) g+ ((a,b), (¢, d)) = ((ag, bg), (¢, d)).

Action (4.17) is isometric with respect to g, @ g, and commutes with the actions
of AG and {(1,1)} x H, thus it induces the following isometric action of Sp(1) on
S3 x S%:

(4.18) g * (p,v) = (gpg, gvg) -

Kernel of action (4.18) is {1, —1} C Sp(1), thus the action (4.18) is an effective action
of SO(3) = Sp(1)/ {1, —1}. It is easy to check that for all ¢ € Sp(1), gxm(S;) C 7(5h)
and g7 (S;) C 7(S;) hold, thus action (4.18) restricts to actions on 7(S;) and 7(5;).
The diffeomorphism

¢y m(S1) — S x §? = (Im(H) N Sp(1)) x (Im(H) N Sp(1))

(4.19) (0.0) > (p,0)

intertwines restriction of the action (4.18) to 7(S7) and the diagonal action SO(3)
on 52 x 52 given by the usual rotation action of SO(3) on each of the factors realized
via conjugations by unit quaternions. Similarly, the diffeomorphism

¢; - (i) = S% x S? = (Im(H) N Sp(1)) x (Im(H) N Sp(1))

(4:20) (0.0) > (95, 0)

intertwines restriction of (4.18) to 7(S;) with the diagonal action of SO(3) on S?x S2.
Thus the restriction of the action (4.18) to 7(S;) = S? x 5% is a cohomogeneity one
action equivalent to the diagonal action of SO(3) and similarly for restriction to
7(S;). Singular orbits on 7(S;) are given by m(S) +;) = S? while singular orbits on
7(S;) are given by 7(S;+1) = S% While SO(3) acts on 7(S;) N 7 (S;) freely and
transitively, so 7(51) N7(S;) = SO(3).

Flat 2-planes on 7(S}) are tangent to 7(.S7) and are vertizontal with respect to the
projection pr : w(Sy) — w(51)/SO(3). Similarly, flat 2-planes on 7(S;) are tangent
to m(S;) and are vertizontal with respect to the projection pr : m(S;) — 7(.S;)/SO(3).
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The SO(3)-actions on 7(S;) and 7(S;) dictate the number of flat 2-planes on
7(S7) and 7(S;). SO(3)-action is isometric, so its induced action on the Grassmanian
preserves curvatures and, in particular, maps flat 2-planes to flat 2-planes. There
is no nontrivial element of SO(3) that fixes a point in 7(S;\(S1,; U S1.—i)), so flat
2-plane at a point of 7(S;\(S1,; U S1,—;)) can only be mapped to a flat 2-plane at
some other point of 7(51\(S1; U S1—;)). However, a point of 7(5;;), for example,
is fixed by a subgroup SO(2) C SO(3), so the action of SO(2) on a flat 2-plane at a
point of w(S;;) gives a one-parameter family of flat 2-planes at that point.

4.2 Metric of positive distance curvature on the
5-manifold S° x S?

The next step in our construction is to apply conformal deformations to the metric of
almost positive curvature g, on S? x S? from the previous section in order to obtain
metric a with positive distance curvature 2.14 curvature on S® x S2. Actually, the
construction yields a metric that satisfies a stronger condition sec? > 0 for all § > 0,
see [3, Chapter 5] . We will use a deformation similar to the one Bettiol uses to
construct a metric of sec) > 0 on $? x S2 in [1].

Analogously to Bettiol’s construction of a metric with secg > 0 for any € > 0 on
S? x §% [4], [3, Proposition 6.5], we prove the following

Theorem 4.2. Manifold S® x S? admits a metric of positive distance curvature,
sec? > 0, for any 6 > 0. In particular, S* x S? admits a metric of positive biorthog-
onal curvature.

Proof. Start with the metric of almost positive curvature g, on S? x S? from previous
section and consider its first-order conformal deformation. Following submanifolds
of S? x 5%, 7(S14), 7(S1,—i), ™(Si1), and 7(S; _1) are compact and pairwise disjoint,
as it can be seen from (4.16). This means that they admit pairwise disjoint tubular
neighborhoods and by using partitions of unity one can construct a function x;; :
S3 x S§? — R that is identically zero outside of a tubular neighborhood of (S} ;)
and identically one inside a smaller tubular neighborhood of 7(S;;). Similarly,
one constructs functions x1,—;, x;1 and x;_1, with the same property, but for the
submanifolds 7(S1,_;), m(S;1) and 7(S;_1). Next, consider functions from S* x 52
to the reals given by

@/Ju(m) = diStgt (m, 7T(SLZ‘))2
(4.21) Yy —i(m) = d%stgt (m,ﬂ(517_1)2)2 ’
Vi1 (m) = distg, (m, 7(S;i1))"
thi—1(m) = distg, (m, m(S;-1))" ,

for p € S x S2. Here dist,, is the distance function on (S® x S?,g,) considered as
a complete metric space. Now define a function ¢ : S® x S? — R as

(4-22) ¢ = —Xl,i%,z‘ - X1,—i@/)1,—z‘ - Xi,ﬁ/)m - Xi,—l%’,—l )
and use it to first-order conformaly deform g,,
(4.23) st = (14 59)g; .
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At a point m € w(S5;;) we have
(4.24) Hess ¢(X, X) = —Hess ¢1,;(X, X) = —2g, (X1, X1)? = =2[| X |3 |

where X, denotes the component of X perpendicular to 7(Sy;). At points of
7(S1,-:), m(Si1), and m(S; 1) equations similar to (4.24) are true.
For any 6 > 0 consider the compact subset of

(4.25) (5% x §%) x Gra (T (5% x %)) x Gra (T (S* x %))

given by

(4.26) Ko :={(m,0,0") : 0,0’ € Gra (T,,, (S* x S?)) ,dist (¢,0") > 6} ,
and define

£:00,5] x Ky — R
4.27
(4.27) £ (s, (m, 0,0")) = % (secs. (o) + secq, (o))

Now, f(0,(m,o0,0")) > 0, because secy , > 0. Furthermore, f(0,(m,0,0")) = 0
only for m € m(Sy;) U m(Sy_;) Um(S;_1)Um(S;_1), because these are the only
points of S* x S? that contain more that one flat 2-plane. Let (m, o, 0”) be such that
f(0,(m,0,0")=0,and let c = X AY and 0/ = Z AW, with X, Y g,-orthonormal
and Z, W g,-orthonormal. Then by, Lemma 2.41 and equation (4.24) at these points
of Ky we have

d
(4.28) T ds <Secgs’t(X ANY) +secg (Z A W)) =0

1 1 1 1
= —§Hess o(X, X) — EHessgzb(Y, Y)— §Hessgz3(Z, Z) — éHessgb(I/V, W)
= | X0llg, + IVelg, + 1200, + WL, > 0.

The previous expression is strictly greater that zero because span{X,Y,Z W}
is at least 3-dimensional, since X A'Y and Z A W are different 2-planes, and
7(S1,),m(S1,—;),m(Si1), and 7(S; _1) are two dimensional, meaning that at least one
of the perpendicular components X, Y, Z,, or W, is nonzero. Thus, assump-
tions of Lemma 2.42 for the function f are satisfied, so there is an s, such that
f(s,(m,0,0")) > 0 for all (m,0,0") € Ky and 0 < s < s,. This is precisely the

condition secg . > 0 which proves the Theorem. O

The claims of Items 2. - 5. of Theorem 1.1 follow from our construction verbatim
to Bettiol’s work.

4.3 Metrics of positive biorthogonal curvature on
5-manifolds

In this section, we use Smale’s classification of closed spin simply connected 5-
manifolds with no torsion in homology [27], see also[15, Corollary 7.30]
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Theorem 4.3. A closed connected simply connected 5-manifold M with zero second
Stiefel-Whitney class wy(M) = 0 and torsion-free homology Hy(M) ~ ZF is deter-
mined up to diffeomorphism by its second Betti number by(M) = rank(Hy(M)) =
k € No. In particular, there is a diffeomorphism M ~ce S54#k (S? x S3)

Theorem 4.1 along with the stability of positive biorthogonal curvature under
connected sums that was stated in Proposition 3.3 allow us to prove the following
result.

Theorem 4.4. If M is a closed connected simply-connected 5-manifold with second
Stiefel-Whitney class we(M) = 0 and second homology group Ho(M;7Z) ~ 7 then
M admits a Riemannian metric g such that secgl > 0.

Proof. By Theorem 4.3, every such manifold is ether S5 for Hy(M;Z) = 0, or a
connected sum of k € N copies of S® x S? for Ho(M;Z) = Z*. The sphere S5
with the round metric has positive sectional curvature, so it admits a metric of
positive biorthogonal curvature. By Theorem 4.1, S x S? admits a metric of positive
biorthogonal curvature. By Proposition 3.3 the connected sum #k(S® x S?), also
admits a metric of positive biorthogonal curvature, completing the proof. O
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Appendix A

Gell-Mann matrices

The following matrices \; are traceless self-adjoint 3 by 3 matrices, the Gell-Mann
matrices [12]:

[0 1 0] [0 —i 0] (1 0 0
M=|[100|, X=|i 0 0|, X=|0 -1 0],

0 0 0] 0 0 0 0 0 0

[0 0 1] [0 0 —i [0 0 0

(A1) M=10 00|, Xs=|00 0], X=1/00 1],

10 0] i 0 0 010

00 0] L[ oo
=100 —i|, M=— 101 0

0 i O] \/300—2

-----

matrices. In physics notation, {\;};=12. s is a complete set of generators for the
real Lie algebra su(3) with structure coefficients f;,," € R defined as:

(A.2) A Al =ify," A

In mathematics notation, elements of the real Lie algebra su(3) are antiselfdjoint,
with a corresponding basis:

(A?)) El = —i)\l, = 1,2,...,8,
and structure coeficients defined by the equation:
(A4) (1, En] = fu En.

Note that structure coeficients f;,," € R in equations A.2 and A.4 are the same real
numbers. The group elements in physics notation and mathematics notation are the
same. This is because in physics notation —¢ in the exponential is assumed:

(A.5) u = exp (—ial/\l) = exp (ozlEl) ,

For real numbers oy € R, 1 = 1,2, ...,8 . Furthermore, note that the terms structure
coefficients and structure constants are used interchangeably in the literature.
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