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INTRODUCTION

In this thesis, we discuss the influence of random geometrical microdeforma
tions on the attenuation of light signals travelling inside an optical fiber.

By geometrical microdeformations we mean microbendings of the axis of the
fiber and slight variations of the diameter of the fiber.

Very little is known, experimentally, on such a subject (*). In particular,
no statistic on the microdeformations of actual fibers is available.

The only results in the literature are numerical ones, such as those in
[20]. (see §3.4 for a discussion of these results).

Here, we discuss a particular, disctretized model of a randomly microdefor-
med fiber, in which we require that the "allowed" geometrical deformation exibit
some kind of continuity. This requirement creates correlation between the
stochastic variables defining the model.

Most of the works on disordered systems available in the litérature are
about the asymptotic behaviour fo the solutions of a discretized Schroedinger
equation with random potentials indipendentely distributed at each lattice site.
This problem has been introduced by P.W. Anderson [2], and it is usually refer-
red to as Anderson's localization; it is connected with the diffusion properties
of an electron in a solid presenting random impurities.

Two viewpoints are possible in studying localization: one static, the
other dynamic: in the firs} one studies the spectrum of the Hamiltonian H(V)
and tries to predict under which conditions, for almost all V, it is purely

point or continuous; in the second, one studies the time-evolution of a solution,

(*) In fact, the amplitude of the deformations that can cause the losses
measured on actual fibers are too small to be detected by optical means, the

only available.



and in particualr the probability of finding the associated particle in a
finite region of the space. It is well known [26], that these two approaches
are equivalent, the coﬁtinuous spectrum corresponding to solutions that
diffuse at infinity, the pure point épectrum to solutibns that remain
essentially confined in a finite region of the space during the evolution. In
the literature, these are referred to as extended or localized states.

In the picture of the localization problem associated to Anderson's
model, the following results have been proved. (for almost all potentials V):
In dimension 1:

a) the spectrum of the Hamiltonian H(V) does not contains the absolutely
continuous component (see [23]);

b) the spectrum is purely point and the relative eigenfunctions exponentially
localized (see [13], [7], [15], [8]);

c) the rates of exponential decrease is at least equal to the Lyapounov
Characteristic Exponent (see §2.1 for a definition) (see [14], [7]);

d) in presence of an electric field, arbitrairily small, the spectrum becames
absolutely continuous (see [4] ).

In higher dimensions:

e) in dimension 3, as the disorder is varied, a transition between localized
and extended states has been numerically observed (see [ 241}

f) in two and three dimensions, for large disorder or higﬁ energy, all
eigenstates are exponentially localized and the spectrum is purely point. (see
[e], [10]);

g) in a two-dimensional strip it has been shown (see [16]) that all the states
are exponentially localized; the same behaviour seems to be exibited by the
whole bidimensional system (see [1]).

Also our problem is a localization one, though different from the one
discussed above. We have tackled such a problem through the study of the
Lyapounov Characteristic exponents of the product of the random matrices
associated with our model. This technique is the same one which has been used

to obtain the results a),c),e),g)-



In particular, we will show how it is possible to evaluate numerically
the LCE's of our model. This is a first step toward an understanding of the
behaviour of our disordered system. Also,itcould give an hint to which kind
af a statistic actual fiber could obéy to.

The exposition is organized as follows:
In chapter 1 we describe our discretized model of a randomly distorted fiber
and define the associated transfer matrices.
Chapter 2 is devoted to the exposition of the theory of Lyapounov Characteristic
Exponents, together with their main properties and the description of the method
which allows the computation of all of them.
In Chapter 3 we give the detailed construction of the random transfer matrices
connected with our discretized equation in the special case of a 2-dimensional
model and indicate how explicit numerical calculations of all the LCE's of
the family of such random matrices can be carried out. A brief discussion
of the numerical results obtained by Marcuse is also presented.

We want to point out that this thesis is just a first report on a ongoing
joint research with Prof. F. Bentosela. Our aim, after the numerical calculations
will be carried out, is to see whether results analogous to those proved for

Anderson's model can be proved in this different situation.



Chapter 1

DISCRETIZED MODEL OF A DISTRORTED FIBER.

In fig. 1 is showed the transversal section of a coaxial step-index optical
fiber. Such an optical waveguide is employed for long distance communications
and may tipically be a few kilometers in length. It consists of a core of a
dielectric material with refractive index nl, sorrounded by a cladding df
another dieletric material whose refractive
index n2 is less than nl.

All dieletric waveguides support, in addition

to the infinite number of cladding modes, a

R4
finite number of guided modes confined in the 2L, 4\\_/)T
«—
core region and transmitted by means of total 2Ly
internal reflections occurring at the core/
cladding separation surface. FiG.A
The diameter of the fiber core can usually vary between few micrometers and few
dozens of micrometers, the external diamater of the cladding between one and
two hundreds of micrometers. In most optical fibers these parameters are chosen
so as to allow only one guided mode (single-mode fibers), to avoid pulse
distorsions caused by the different group delays of the modes exhibited by
multi-modes fibers. The guided mode propagates without losses along the axis
of the fiber, provided that the wavgguide structure is free of imperfections.
But actual waveguides are never perfect, there are always index inhomogeneities
or geometrical defects as microbends of the fiber axis or slight random changes
of the core width. These deformation of the fiber structure determine the
coupling between the different modes of the waveguide. This coupling causes a
power transfer from the guided mode to the cladding modes and, since the power
carried awayfrom the core region into the cladding is dissipated by the lossy
coating sorrounding the fiber, results in waveguide losses.

In what follows we shall be concerned in the study of attenuations dues to

geomerrical imperfections of the fiber structure as random microbends of the



geometrical imperfections of the fiber structure as microbends of the of the
axis or random core diameter variations.

Experiments perfofmed on single-mode optical fibers seem in fact to
indicate that are the random fluctuafions in the geomefry of the fiber which
are mainly responsible for attenuations.

The losses of single-mode step-index fibers experimentally measured are
of the order of few decibel per kilometer. The microscopical size of micro-
bends that can cause such losses (on the order of nanometers) results in
the difficulty to obtain experimental informations about the geometrical
defects of actual fibers.

For a general discussion of optical fibers, see E431.

§ 1.1 Distorted waveguides.

In fig. 2 is shown a coaxial (cylindrical) step-index fiber with an

undistorted refractive index

profile. In the case of such

2L,
a perfectly cylindrical fiber, “
the refractive index function eSS e = =
n(x,y,z) does not depend on _-— __d.‘% »

the x-coordinate, here

assumed to be the axis of the

fiber. It is of the form:
FiG.2

h1 -(‘-£ 437"? %Z‘L'1
(1.2.1) n(y,z)= ' V'
ny 4 L141%2*Q?5:L2

where n. and n_ are the refractive indices of the core and cladding materials,
and Ll’L2 their radii.

As we have already said in the introduction, we will be interested in
studying attenuations due to geometrical imperfections only. We can essentially
distinguish between two kinds of geometrical defects: microbendings of the

fiber axis and variation of the core and cladding diameters. We will treat



separately each of these cases.

To treat the microbending case, we shall allow the center of the fiber to
perform slight random variations of its position with respect to the x-axis,
while the diameters Ll and LZ will be kept fixed. The model correspons to a

refractive index function defined as:

Ne 28 (M= M 0N 4 (R-2000 £ Ly
(1.1.2)  n(y-8,0X),2-20) =

Ry Af La< (Bodo O 4 (-2 00OV2 L,
where y_(x) and z_(x) are the y and z-coordinates of the center of the
fiberat some poin Xx. |

Tn the second case we shall fix the position of the center of the fiber to

be fixed on the x-axis, while the diameters Ll and L2 will vary randomly
with x. We shall assume for simplicity that such random width variations do
not affect the rotational symmetry of the fiber with respect to the x-axis.

The function n(x,y,z) will then be:

Ny A% (We2®) £ g0
(1.1.3) n(x) =

Ny AR Lal) 2 (gPya®) & L0

As we have mentioned above, these two kinds of geometrical random ifregularities
seem to be the main cause of waveguide losses.

In either cases we shall assume some kind of probability distributions for
the random fiber defects, and we will study the behaviour of the fiber
attenuations as the "disorder" is varied.

As it is usually the case for any kind of disordered system, we can model
the distorted fiber with an ensemble L) consitued by an infinite number of
sample systems ¢>, each one corresponding to a particular choice of the fiber
geometrical parameters (position of the centre of the fiber or values of the
fiber diameter) at each point, together with the recourrence probability of

each sample.



Once a probability measure has assigned on the space of all allowed geometrical
shapes of the distorted fiber (all possible configurations «w) of the system),
one is interested in gétting results on the behaviour of a "typical" fiber,
i.e. results holding for almost all éonfigurations w Qith respect to the

assigned probability measure.



§ 1.2. Discretized equation and random transfer matrices.

The light signal travelling inside the waveguide is a solution of the
wave equation:
’az ~ 2 ~r
(1.8.1) — AP (Xt Rak) = 74(% 132D Ay (3 2t) =0
K

is which the propagation velocity is v= c/n, where c¢ 1is the the light
propagation velocity in vacuum and n(x,y,z) is one of the refractive index
functions defined in the previous section.(see (1.1.2) and (1.1.3)) for
2 2 . e 2 2 .
y +2 & L2(x). We will assume Y (x,y,z) to be zero for y +z .,>,L2(x); i.e. we
will assume Dirichlet boundary conditions on the boundary of the region

3 2 2 . i .
%(x,y,z) elR | y +2 & L2(x)}. One way, particularly suitable for numerical
calculations, to study such an equation is to discretize it, i.e. to consider

3

it defined not on IR , but on the three dimensional lattice (of lattice side

aéelR):
g 3
(1.2.2) gy = %_’_‘,e R2 1% = (Wqa, Wagk s Wza Dy W, Wg Wy € 7 §

One then has to deal with the following discrtied operator, acting on the
2 .
Hilbert space £ Czi):
(1.2.3) Hoy = -cf Doy
n
R¥(zE) = e 3 2
(1.2.4) Y& x2= SWIW), weZig | 2 glr\_gCu&)x4ao}

weZqg

with scalar product (\f!'\_{)) zZ:, u_—ﬁ(_m) Ap(w) where Ao\ is the discretized
5 o) A

2y, g BERE
Laplacian operator on °(ZgJ) :

(1.2.5) CAgap)(8I¥I=& pCud v 4 7y gl
o* %

3
the sum running over all m' nearest neighbours of m ZZa. We want to look for

solutions of the eigenvalues equation:

(1.2.6) Hf‘}.’.(.vl\«.uz»wg) - - Ad A{C\M,,N;,L\A&] = E’\_Y.O“-i.“"u‘ua)
V\zcw"“u'Zt‘u%)
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and we will choose Dirichlet boundary conditions on the external surface of the
fiber's cladding.

we first rewrite the equation (1.2.6) esplicitely as:

(1.2.7) iz. Lé‘\_{(.wa.Mz.\Mg,) = AR Qa4 wip , wag)~ NP (Whged, Wag, WA

- AP (Way Waid, W3 ~ Y (wiy, Wa=d, W3 = NP (g Wig  Wgs 1) +

2
- Y G e iy 1) | = RO ) B ARl ey W)
c2
or

(1.2.8) i-z. (ny(‘mnwz‘w.%)« AP (Utitt Usg, Wg) — AP (Uag=y yuag gD+
[e§

) [( 4 - v wzw) B >’\BU’-‘-H“‘2AW~3) A (g, wptn W) +
o cZ (e X

4 ,Y (w‘,uz_i'w%‘) % ’ch"w'u*%*‘) < &Cm'imzlws*l)>] = O

The term in square braket in equation (1.2.8) corresponds (for each fixed ml)

to the operator:

(. @)
(1.2.9) H ‘:—A - En?
CZ

W

where zﬁrd. is the discretized Laplacian operator in the two dimensional

(ml)

2
lattice Z , and H is a two-dimensional Schroedinger operator, where
a
the potential has the shape of an infinitely deep (this because of Dirichlet
boundary conditions) cylindrical hole presenting a small cylindrical well at

his bottom as showed in fig. 3.

‘v‘
: m3
m,
/‘ Y —t | ——
A"‘~d j
1 I (w§-n3)
— = = ]
: R e !
e 2. J Fie. 2
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Once we have obtained the solutions of the eigenvalue equation

. Cure) | (o (W) T
(1.2.10) H ¢,$ QWQ‘U‘LB)E) = 9‘:’8 (.E) ¢;“)sz,&$(€)

we can decompose all vectors nf (ml;m ,ms), ml being fixed, on the eigenvectors

2
(ta) (mq)
, of H :
d)'b
(1.2.11) CU““N Wz Wkz) = Z O~' (wy) Qb Cmuws)

)
where the sum runs over all the eigenvectors ¢> and

(1.2.12) G-a'CU-n) = (Cblz » Cuzuagd } Y (uas 1U-lz..u*33)

2
( | ) being the scalar product in {?CZQL)(we have omitted the E dependence
to semplify the notation). Making use of the developement (1.2.11), the

equation (1.2.8) becames:

(wa+ )

(CD)
(12339 g‘@k‘ 23 o Gy Py (W) - ? 3%(“*4*1) g (Waiwz) *

1) )
+ Z oy (way-1) c\> CU-lz.UJ3)J + @ A (W) ﬁcw)cbcu )sz.ku;) = O

Taking the scalar product of (1.2.13) with 4) (m ,m ), one gets:

e i:: P é’ Z’;: O (et K ’a'cumw‘“) B %zzf;: X4 C“‘“‘)K-kicu-u,w.-ﬂ+
N T

where we have posed:

(1.2+15) hﬁ (Ut w4 = ch(,uu) ) d)(uutl)

the K. 's depending on the energy E and onthe shape configuration ¢ of the
1)
fiber. We have thus obtained the following system of coupled equations:

(U.n

(1.2.16) [%z+ ']O.,hcw..) :i. 2: Ek‘hé (g ung 1) Qg Cusy 1) +
+ _K,h,a' (_Nll We-4) a/a. CUJ-x‘I)] I

which can be rewritten into a matricial form as:

Coany

(1.2.17) ¥ Ay = WOy ) Alue) — W lw o= Al -4) =
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-

where _K = EKJ\:"b] ) A= Eo"aj ‘ D('m‘): L(\‘,O.z}‘ié +2) 5,53'.‘

b
Remark. 1.2.1. In the case of a perfect (non distorted) fiber,
K. (m_,m_+1)= d. ,¥m_, and the equations in (1.2.16) are no more coupled.
ij 11 ij 1 ‘
The system (1.2.16) becames in this case:
2 2 s ’( . —_ 4 > - oy
L2 +a3@]a50m- d.ajlmro-2 a50u- =0
the solutions then being
Az (us) = exp (< k3 wyad
the corresponding eigenvalues (not depending on ml) being

AgCEY = - & (A~ s Rza)
Q

For ﬂhé(E) % 0, all solutions a_(ml) are exponentially decreasing/
J
increasing and the corresponding modes do not propagate. In fact the

eigenstates of (1.2.6) are given by
e ¢(_UAQ IR
"f,s(.mnuz-‘ui' )= 3 (utzs Wz E) exp (LRywa)

This implies that, when studying propagation (and attenuation) along the ml
axis, one can neglet the components of the solution along the Kbi(E) such

that '}s,s(E)?O.

Remark 1.2.2. In analogy with the simple case of a perfect fiber, to
perform numerical calculations we shall make the assumption that all the modes
Cusy)
of a distorted fiber corresponding to eigenvalues ‘Aj (E) greater than some

constant (to be precised) can be negleted. In such a way we will be allowed

to retain only a smaller number of coupled equations from system (1.2.16)

Remark 1.2.3. We remark that the qualitative results one can obtain in the
study of a disordered system will not depend on the continuum or discrete
character of the equation describing it. In particular, since the eigenvalues
of the bottom of the spectrum of H(ml), if the lattice shift a is taken to
be sufficiently small, are independent from a, the number of modes to be
taken into account in ourt computation (i.e. the number of eigenvectors

() (mq) . . ) Cusy
4P5(E) of H such that their corresponding eigenvalues ‘A« (E) are

smaller then some constant) will not depend on a, tocc.
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Remark.1.2.4. In the case of microbends of the axis of the fiber two
eigenvalue equations (1.2.10) corresponding to two neighbouring sections, and
the two sets of correséonding eigenfunctions are just translated one with
respect to the other, while the eigenvalues ﬁé(E,ml) are independent from
m . This fact implies that the diagonal matrix D(ml) does not depent on ml,
while K(ml,m1+1) will depend only on the relative positions of the fiber
at the sections ml and m1+1. We will suppose that the variations of the
position of the center of the fiber occur only in the m2—direction, and,
denoting with zr (ml) the value of its m2—coordinate at the ml—section
we will also assume that Y Unl+l) can take (with certain probabilities)
only the values ¥ Sml), B”(ml)+1 and Er(ml)—l. Since each matrix element

Kﬁd involves a scalar product between the k-th and the j-th eigenvector of
m
H( l), taken at neighbours sections of the waveguide, each of them can take

only three different values:

Ehé L3 Y (ue) = Flwsd
'K,Ra. (g, W+ 1) = 'kaa- L8 Fluwr) = JCuN + 1

s A8 W(uart) = Y-

ﬁf' not depending on ml. The matrices K% will be described explicitely,

J
together with their properties, in the third chapter, when we shall treat a

two dimensional case.
On the other hand, in the random width's case, both D(ml) and the sets of

(ml)

eigenvectors of H will depend on the choosen section ml.

Denoting with 'Mr(ml) the waveguide diameter at ml, we will still have

alas A W usrt) = WD
‘thuu.mm )= :{a, AL Wlu ) = W (lwa + 3w
'th,a‘ L2 W) = wWlwn) - ow
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+ x ; 2 ;
but now Kgﬂ = Kk-(1v1m1>" This means that, in this second case, there
i 1

will be as many different matrices K as twice the number of the possible

different widths of the diameter, plus the identity matrix.

Equation (1.2.17) provides a recurrence formula for calculating A(m_+1)

1
once A(m_ ) and A(ml—l) are known:
_ | = ;Sun+| =
A(‘\U-:) A(.uh")
(1.2.18)
Ky wae+) D(WO -—K°1CW..Wx-H) IO Alwnd
i 1 l o N

Starting with an initial condition A(0), A(-1), the solution at the point
m +1, A(ml+l) is then obtained by iterated applications of the transfer

random matrices S , n=l,...,m_+1 (S =S (E,w)):
n 1 n n

Aus+t) A(o)
) B B S e S [
(1.2.19) Ao wy W g 1 AT

Denoting as EgN the N-th product of the matrices S :
m

N
(1.2.20) ESN ) =TT Sm

m=4

the asymptotic behaviour of our solution is given by the behaviour of

(o)
(1.2.21) i E‘SN(w) A%y as N — oo
A“” denoting the initial condition(Aﬁg?\
Ao

In particular, as we shall discuss in the following chapter, the relevant

quantities to be investigated are the so called Lyapounov Characteristic
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Exponents (LCE's) of the product of the matrices S (), defined as:

(1.2.22) X (w, A%) = —Ez};mm 1 %og KA BL Sy A

their existence, for m -almost all uwe O., being guaranteed by Oseledec's
non commutative ergodic theorem. The next chapter is therefore

devoted to this subject.
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Chapter 2

LYAPOUNOV CHARACTERISTIC EXPONENTS.

As we have seen in the preceding chapter, we are interested in the
behaviour of infinite products of nxn random matrices, depending on we {L,
L. a probability space.

A very useful tool in studying this kind of objects is the theory of
Lyapounov Characteristic Exponents (LCE), first introduced by Lyapounov [48]
for dynamical systems and later extended, essentially through Oseledec's
theorem [ZZJ to ergodic systems. This chapter will be devoted to expose this
theory.

In §2.1 we will define LCE's for infinite products of matrices and
state their most important properties. §2.2 will be devoted to Oseledec's
theorem, which we will state in the improved version given by Raghunathatan
Egﬂ; we will also discuss how LCE's can be used to obtain results on the
behaviour of disordered‘systems. In the last section we will state a theorem
by Benettin et al.[;bj, on which our numerical calculations of the LCE's will

be based.

§ 2.1. Lyapounov Caracteristic Exponents: definition and basic properties.

Let MnsiK) ‘{(9‘41) : a«‘/jem} where TK=Ror € . Let

1€ 4y en
5 Z - MK 4 5. e Mn;IK)
and set:
(2.1.1) @ON =1§F S

4=1

We are interested in the behaviour of ESN' for Naoo . If

(2.1.2) m sup L Log 1Syl < oo

M- m
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N s
then, Y ay=2 &, w0, we can define:

(2.1.3) X (S.0) = Lum sup J%_ fog ISy arll < 00

N-yoo

(the existence of vectors arzo such that I}(CS,nr):-mbéing not excluded).

The number #X(S,v) is called the Lyapounov Caracteristic Exponent (LCE) of the
vector nr with respect to the family of matrices {'59‘}9&2. The definition
(2.1.3) is e‘><tended to the zero vector, OeTKn, setting 4 (5,0)=~c0.

From definition (2.1.3) easily follows:

(2.1.4) (S remr) & max (X (S, %X (S, m)}
and

(2.1.5) X(S,a07) = X(S,v)

By property (2.1.5), we can consider 4(S,n~) as a function defined on the
set of the one—dimensional subsets of TK™ . From properties (2.1.4),(2.1.5) it

follows that, VX e K , the set
{:u-e"K“ | X (8,0 £ &}

is a vector subspace of 1K” .

The functions {'X (S,r\r)}‘m ®" can take at most n different values (see
[48]) — including = 00— say:
(2.1.6) K, > v = > Nun 4£men

Let

(2.1.7) L. = {m'e]K“l’x(S,nr)é')(,;‘"g

N
(L‘c:L&(S')). By (2.1.6), one has:

(2.1.8) {0-%315:5M+1c t‘m“"'CL’_=1K"

(2.1.9) L, # Ty 4eiem

and
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(2.1.10) X (S, = X, 23 ve LN,

The numbers ., 4€4 <wm,are called LCE's of the family {S,a-ig_ém.
We will now introduce the notion of LCE's of higher order.
Let ef be a p—dimensional subspace of 1K™, 1¢p<n, and U a bounded open
subset of ef.
One then defines the LCE, of order p, of the subspace ef, with respect to the

famil . , to be the quantity:
y i’s?}q;em q y

(2.1.11) X (S,e’) = msup 4 Log Voef(&ggU)
No>oo N

where Volp is the p-dimensional euclidean volume. One can easily see that

the definition (2.1.11) does not depend on the particular choice of veef.

In particular, let us choose U to be the open parallelepiped generated by

»
p linearly independent vectors {ewg belonging to ef. By Hadamard's

d€dep

inequality [28], the euclidean volume of U is less or equal than the product

of the lenghts of its sides. We then get:

f’
X(S,e") ¢ fimsup £ 2og T 18y el

.‘7
= Wmswp A 7 Log NSy efi
pN»:P N 4=1 4 8‘” N

(2.1.12) 2o X(S, ey 2 oo
ied

i~

In the case one can replace, in the definition of the LCE's of any order

lim sup by 1lim , then the LCE's are called the Exact LCE's of the family
NHo N0

is’i.géez.
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§ 2.2. Oseledec's non commutative ergodic theorem.

Let now (.CL,Z,,);) be a probability spéce. Suppose we have a measurable
map :
S:Zxl —» M(n;K)

(A, w) = S (wd

Vwe, we can define (see §2.1) the LCE's of the family of random matrices

g, . ., that we shall denote as p
{b‘b(““)?"aem
Oseledec's theorem assures the existence, for u -almost every we Q., of
the exact LCE's of 15,3 C"")}a'e‘m . Raghunatan's [25] version of Oseledec's

theorem is the following:

Theorem 2.2.1. (Noncommutative Ergodic Theorem).
Let © : 0+ .0 be a measure preserving transormation (i.e. (e/u.)(B)=}LCS'46)=
= p(8) W B measurable subset of L) ) and let S ZxQ—>MMIK) be a

meausurable map s.t. Vp.,q , g%0

(2.2.1) S(# w)F(q,w) = F(p+q,wd
%

(2.2.2)  (Rog" 1S (2, il A (e <00

then there exists a measurable subset f1'c )., with jLC.Q-'): 4, such that,

¥ we O, the limits

N>co

Lim 4 Rog KFN,w)ar i)
N .
exist VarelK™.

Remark 2.2.2. In its original form, as stated in [2.2.1, Oseledec's theorem
is proved under the additional hypothesis: 1°) that the map © and the matrices
-4
é(ﬁ,w),(‘d‘weﬂ.) , are inverible, and 2°) (ég(:t,w))&. Lq(-‘\,)h),

The improved result obtained in {_25] uses a weaker result by [’1’1] .

We will now clarify the rciationship between Oseledec's theorem and the

exact LCE's.
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Let

5(?.(») = Eip.(uﬂ = S?Cw)‘ . -SicQ)

with this choice for 5 , Oseledec's theorem proves the existence of the exact

LCE's under the following hypothesis:
(2.2.3) 3 S : ) 5 QO meausure preserving transformation

(2.2.4) S5

pag (P = S—p (®%w) VpeZ , Vq» o0

{2.2.5) S%o%‘.n S, (ud W dp(w) < o

In this case, the exact LCE'ls are © -invariant. If the measure 2 is

© - ergodic (¥), then these limits are constants for j-almost all wel . [:H‘]

Let us now consider a discretized disordered system. With this we mean
that our probability space is the set of all possible configurations of the

system under consideration. We will take we L to be a function

d n
w: L, =+ R

defining the configuration ws i“’c’l"}mezﬁ d’For example, w(m) could be the value
of some random potential in the lattic; si?c‘.e ™ (this is the case when one is
studying Schroedinger equation with random potentials); in our case, w(m)e= w(m,)
will be the position of the fiber's centre TCW\‘) and/or the diameter of
the fiber's core w(m,) in the plane 1_-r_|.§1=m3assumed to be the plane.‘perpendi—
cular to the fiber axis.

It is now necessary to define a probability measure i on N . We will
require that such a measure makes the functions AL 3w > w,(mye R
M -measurable (i.e. that W > w,(m) are stochastic variables). The standard

way to define such a measure is to assign finite dimensional probability

(*) A probability measure #, invariant under a transformation © , is said to
be © -ergodic iff the only sets which are © -invariant are sets of M -measure

0 or 1, or, eguivaientely, if the only functions which are ® —-invariant are

the constants.
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distributions to the values w; (wo. It is then a standard procedure (see for
example [23] ) the construction of the probabiiity space (n,Zo, ).
Suppose the probability measure s has been assigned on (L. Then the probability

distribution of a stochastic variable E‘ (i.e. % ; 0= R 1is measurable), is:

(2.2.6) ﬂ§(83=)&§weﬂ.l§(w)€ﬁ7s

where B 1is some Borel subset of 1IR.

Let g4,’é_n_ be stochastic variables. Let

(2.2.7) M .%zC84x B) = jwe LB, (wre By and E(wde B2}
4

be their joint distribution. If

(2.2.8) MEE, (B4xB;) = }"31{54)}*3;(.62)
o B]_,B2 Borel subsets of IR, then the two random variables g,,gz are said to
be independent.

Besides the configuration space L , our discretized disordered system will
also consists of a transfer equation, of the kind of (1.2.18),involving products
of random transfer matrices S.,;Cw} y 6%, well .

If 5“.‘6»)': E')(w(&g.,)),,(which is, for example, true if w.‘:(v_r_z) is independent from

w,b-(_m‘}, for Mm#w), then condition (2.2.4) implies:
(2.2.9) Slwpeqdesd = S Ul w)Cpe

Defining, ¥q&¢% , the transformation & : QL>Q. , requested by Oseledec's

theorem, to be the lattice translation along the _e_l axis, i.e.
(2.2.10) Om = m-e, mem‘i

acting on w& L as:

(2.2.11) Bw(md = w(m+epd

then (2.2.9) is automatically satisfied, and Oseledec's theorem will hold under

the hypothesis that the measure s 1is invariant under translations  along the

e axis and (2.2.5). In the case in which the .'_:_;j.,;’:—g) are mutually independent
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random variables, with a common distribution law, it is immediate to see

that the probability measure g is invariant ‘under translations and ergodic.
Hypothesis (2.2.5) is then satisfied taking a bounded probability distribution
for the transfer matrices Sa-(w)(probability distribution that will derive from
the probability distribution of the random variables wa-(vn) ). Actually, the
invariance property of the measure (2.2.3) requested by Oseledec's theorem

and hypothesis (2.2.5) are much less restrictive then the situation of inde-
pendence, and are fuifilled by more general classes of variables, for example
in the case in which they behave as an ergodic Markov chain. (This, in particu-

lar, will be our case in chapter 3).

The proof of theorem 2.2.1 consists then in showing that the matrices
* Y257
(ﬁﬂ..(w) ES_N. (_w)) converge, as N —00 , to an asymptotic matrix A (Oseledec's

matrix), for each w belonging to asubset L'c O, with s ()=4;
" o 4!2.N'
(2.2.12) A = -m (Bx Fe)
N->c0

Let us denote by oy the eigenvector of A , corresponding to the eigenvalue ?sa-.
Then ﬁa' = exp (q((w,vé)),/x(w, n3) being the exact LCE'of the vector asy , with

respect to the family fo random matrices {5£(w)},4‘,¢_2,. (see 2.1.3). In fact,

A"T',j - /}.,é :u—a implies:

. 1[2r€ . 4
Dy = LUFIANTEY - ljm 4433;155;.53“«5'5?[ = fum “8}("0’3‘“/"—
Loslwyy N T gy Nxe g

and then:

(2.2.13) Rog Ay = fru‘_v:m f_t Log né,,ar,&u 2 X (w, 107g)

THe spaces Li’ defined in (2.1.7) are then the eigenspaces of the Oseledec's
matrix corresponding to the eigenvalues smaller than the i-th eigenvalue ﬁ,\-’ .
If Vl,...,Vm are the eigenspaces of J/\ corresponding to the eigenvalues
=ex yeee =ex then . ; th t LCE:* f th
’z\l p (% 1) A =exp(X ), V""a e Vy , the exac s (xg )4e5c.-mo e
family iS,dw)} , are given by:
ie Z
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{2.2.14) Xy = X (w175)
For a detailed discussion of LCE's and Oseledec's theorem see also [4%].

Remark 2.2.4 We want to point out that Oseledec”s theorem appears as a
generaliization to (non-commutative) random matrices of the Birkhoff Ergodic
theorem. In fact, let us suppose that © is a measure preserving transforma-
tion on a probability space (D.,Z,‘,)J. ), and let fe Ll( o, ), flwled.
Define A, € Ll(.O.,),L) as A (w)= ﬂ ." Consider the family §Q.(};.z

of diagonal, unimodular, commuting matrices, where:

A () o
Q’i'(w) - ( o 'A}%w))

Such a family satisfies the hypothesis of Oseledecs theorem (more precisely,
1
(2.2.3),(2.2.4),(2.2.5), the last one being nothing but the requirement fel ).

Then we know that exists, for . -almost every we Q.

aw=an [(T10, )*(fia 8 2o [T (" 2L )™

N=>co 'L"‘l N'-»00 = A=z4 o]

which wilY be a matrix of the form:

w3 ©
A @)= exp (Xew
c exP(=X{(»)
with
X @) = Lm & Log LT (% a2a) (&)
N> N =4 O X
= Zum A Z: Rog, | Az (wnl
N N gr -
(2.2.15) = Lm 2o 12(0%w]
N0 N' A=

We have already remarked that such a #(w)is G—invariant. If the measure is

© -ergodic, then s is a (for M -almost every wefk ) a constant, precisely:

(2.2.16]) Ky =% = § |1 $l duun
o

(this can be seen integrating the (2.2.15), knowing that #(w) is a constant).
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Then we have obtained:

Theorem (Birkhoff) (¥*).Let © be a measure preserving transformation on a
1
probability space (&L,Z, ). Then, . Vfel (L, 1), the limit

= Qm 4 "
fo N mezo 7R o)

N—>»o0

exists, for . -—almost every well, and it is B -invariant, i.e.:
A
2w = Lew

~
Moreover, if © is ergodic, f(w) is equal to the (constant) mean value of f:

Loy = § e dp(an
Q.

This example shows that Oseledec?s theorem introduces in a natural way
a mean value through a Large Number Law; and, moreover, that by multiplying
the N-th matrix 81; by its adjoint, it eliminates the phases of the eigenvalues
of E?w which do not obey to such a law. Finally, Oseledec proves that é;ﬁ_ﬂ.
behaveé, for N Yarge, as Aw and differs from its mean taken over all
possible configurations.

The non commutative ergodic theorem 2.2.1 can also be seen as a generaliza
tion of the spectral theory, which allows the analysis of the N-th iterates of
some matrix @, the LCE#s in this (non disordered) case corresponding to the

logarithm of the moduli of the eigenvalues of Q.

Finally, let us briefly discuss the relation between Lyapunov Exponents,
describing the rates of growth of the norms !1;9,,&7&1 as N—oo for some tre R ,
and the behaviour of the (&%) solutions of equations (1.2.6).

First of all we recall that any solution of (1.2.6) which behaves as e_(-a!m’,l
£ >0, for m, large, is said to be (exponentially) localized, with Yocaliza-
tion length 4/€ .

Borland [ ] conjectured that the LCE's are closely related to the localization

Yength of an eigenstate (if it exists at such an energy), in the sense that

(*) see, for example, {57
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CK£><D should imply the existence of a solution with Xocalization length 4/Xi.
For one dimensinal Schroedinger operators with random potentials, Matsuda and
Ishii [24] ,[44] ' prove, under additional hypothesis that the LCE's
(which in this case are only two'x4=;x2 are different from zero using a
theorem of Furstenberg [42], and from this fact Pastur [23] deduces the absence
of absolutely continuous spectrum (with probability one), thus proving a
weaker form of Borland®s conjecture.

Following this interpretation of the LCE /X, - as the inverse of the loca-
lization length of a possible eigenstate, one is interested in the evaluation
of all LCE"s, and in particular of the smaller one, that should correspond to
the maximal Yocalization Yength.

Recalling the definition of the attenuation:f:

I
B = —1010g10?

o
I and I, being the intensities of the output and input signals, respectevely,

it is clear that the LCE's are proportional to the expected attenuation of

a "typical" fiber, belonging to the statistical ensemble (L,Z,4).
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§ 2.3. A method for computing all LCE s.

From what we have been discussing at the end of §2.2, it is clear that,
to determine the asymptotic behaviour of the solutions of our random transfer
equation (1.2.18), we have to compute all the LCE's of the family isa'(“")}gezzj
In particular, one wouldlike to get estimations on the smalYer LCE, which
should correspond to the maximal localization Yength and, in our picture,
to the smaller attenuation of a typical fiber belonging to the ensemble J[L .

In principle,if one could know a priori the spaces Li (defined in (2.1.7)),
and make exact computations, it should be possible to estimate all LCE's using

the (2.2.13). In fact, it would be sufficient in that case to take any vector

v, € LgNL,,,to obtain

(2.3.1) X, =%olnw%£os &Sy 0o 1 Aciam

On the other hand, since all subspaces L2,...,Lm have positive codimension,
and thus zero Lebesgue measure, it is clear that any random choice of a are R™
should take to the computation of the maximal LCE, X, .

In particular, if one wants to compute the LCE"s numerically, even the exact
knotwedge of the spaces Li is not enough to allow the computation of the

LCE's different from the maximal one.

In fact, the unavoidable numerical errors reproduce a situation equivalent to
that of a random choice of the initial vector, leading in any case to the
evaluation of the maximal LCE.(for an example of such a pathoXogy, see [3 1T part].
Nevertheless one can show that, in the same way that the random choice of a one
dimensional subspace 'in IRN teads to the computation of X 4» @ random choice of
a p-dimensianal subspace of IRN gives the maximal LCE of order p, A 4p<m.

This fact is at the basis of the method developed by Benettin, Galgani, Giorgil

i and Strelcyn [ 2 ], for the computation of alt LCE's.
Let us introduce the following

T
Definition 2.3.1. A basis {el,...,e % of IR is said to be a normal
= n
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P
(b) V¥ p-dimentional subspace 2 ¢ R one has:

4?
P .
(2.3.5) x(w,ef) =-J§3 %y

. . . < .
with a suitable sequence A& £ A4, ... € Xp &m

n
(¢) ¥ p-dimentional subspace e?c R

?
(2.3.6) X (w,e” = mim Z} X (w, el)
A=A
where the minimum is taken over all bases iﬁ;u- e,‘,,,} of ePc fRn .

We remark that,for p==m ,point (b) of Theorem 2.3.3 reads:

n
X(w RY) = 25 oy
A=l
and is an immediate consequence of the regularity of {Sa(w)}§ since,being
L

ldak Bl = (Voo (B5U)) 7 (Voe U
V U bounded subset of R ,
(2.3.7) X (@ R") = Lum 4 —Qo%ldlb She |

o0 N

Point (a) is an extension of Oseledecs Theorem as stated in [22.] ,points (b)
and (c),under a sXightly different form,are stated in [25] and also in [2.4] .
By Theorem 2.3.3, it is easy to see that,given a p-dimensional subspace

e'Q [R." ,the necessary and sufficient condition to be satisfied to have
(2.3.8) X(wief) = o+ h g
is the following '"random condition'":

Condition 2.3.4. Va’ , 2&3’-:-_m one has:

. P ' 9.‘4
(2.3.9) dim (e'n Lé) = Mmax (O,p—iz" 'hg.)
=

Jh,ibeing the number of repetitions of o ,i.e., VA4c A 2w
(2.3.10) R = dm L - dum Lo,

Let us illustrate this in the simple case in which sw=m , i.e. at¥ multi-

plicities of the ‘y.fs are equal to one. From point (b} of Theorem 2.3.3 follows
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basis, with respect to the family {5 ((“)}gez , 1f, for any other basis

{e ,...,efg of W:

(2.3.2) Z X(w, e & 5 XCw, ey )

A=A =1

We remark that, even if a normal basis (when it exists) is never unique,
nevertheless the numbers i')( (_w,e,,;)}l(‘d‘“ do not depend on the particular

choice of the normal basis.

RecalYing the definition of LCE's, in fact we will have:
Klw,ed a oty =Xy
A

where 4¢ne¢n ,424kR;e¢m, and we will order the basis {el,...,e % in
n

such a way that X,=o,& &, < ... £ Ky = K0

Definition 2.3.2. The family {5 (m)} 1s called regular if, WyeZ :
1°) a(o.:) is invertible,
2°) &m 1L Logldet Syl exists and it is finite,

N N

3°) ‘there exists a basis je€q...€n} of R such that
(2.3.3) Kum i—Qo%ldU:-ESN- Z/x (w,e)
A=A

N'-»c0

Note that any basis such that (2.3.3) holds is a normal one,since,by
Hadamard's inequality recalled in section 2.2,one has,for any basis {2'1 ...e‘,,‘&

of R",that

n
(2.3.4) Lum 2og |dat Sl 2 2 X, (w,ey)
N'-»0c0 N- A=A

It is easy to prove the following:
Theorem 2.3.2. In the hypothesis of Oseledec's Theorem (Thm 2.2.1),
if VyeZ and VYwell, S,j(w) is invertible,then F.L e L, ()4, such that

Vwe Q' the family {5,30.&))}, zis a regular family.
L3
In [ 3 ] ,Benettin et al. prove:

Theorem 2.3.3. Let isd(w)}d ” be a regular family.Then:
€

(a2) the exact LCEs of any order exist,
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(2e311) /X(w,ep) £ Oy +...+ Xp

In order to have /x(w.e,?) < Oy+...4+ Hp, it is clearly necessary that cP:a LP+4

which is surely not the case if e,P ié spanned by p-Yinearly independent vectors,
randomly choosen in I'P\". (In the same way in which a plane in ‘Ra, chosen at ran
dom between those planes passing thréugh the origin, does not contain a given

straight Yine through the origin).

Thus one obtains the folYowing:

Theorem 2.3.5. Let isa-(m)}é&zbe a regutar family and ef a p—dimensional
subspace of R" (A4€pPen ), satisfying Condition 2.3.4 w.r. to the family
384 (W} 5wz, - Then :

?
(2.3.12) X (w,efH =T oy
1L=1

Condition 2.3.4 being obviously satisfied within a numerical procedure,
theorem 2.3.5 furnishes a constructive method for the computation of all LCE's
of the family {Sg (o.;)}ao(__z, method which will be specialized to our case in

chapter 3.
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Chapter 3

COMPUTATION OF THE LCE's

In this chapter, we want to discuss the strategy for the numerical
computation of all LCE's of the family of random transfer matrices in the
case of a two-dimensional distorted fiber's model.

We start in §3.1 by transforming the matrices Sj(oJ) in such a way
that the new transfer matrices Tj(uJ) are symplectic so that we will be in
the position to use the symmetry property of the LCE's, holding in the
symplectic case, as a numerical test for our ;omputations.

The two-dimensional problem of an optical fiber presenting random micro-
bends of its axis is described in details in §3.2, together with the explicit
construction of the transfer matrices.

§3.3 is devoted to the description of the main steps through which the
numerical computations of all LCE's can be carried out, while in §3.4 we
present some numerical results on optical fibers losses obtained, through

different methods, by D. Marcuse.[29]

§ 3.1. A transformation of the transfer matrices.

As we have seen in chapter 1, we are interested in the study of the

asymptotic behaviour of the solutions of the following transfer equation:

7

Almg+ ) A(wm) ' K™ (mg , wmy+1) Dth),-K?uq.uqfof) K, v -t) A(wm)
(3:1:1) Ao = 5,“‘“ m =
\ AlM4) » 1 ] o A (w,-1)

where

m

] >
(3.1.2)  Kiy Cmq maxa) (b, (wz.wxa.s)l¢§m')cwz.m.e>)

(3.1.3)  Dyg(wn) = (?xa?ﬁﬁj')CE))a&a'
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(uny (W)
and ¢,,_' (#g, my, E) are the solutions, A, (E) being the corresponding

eigenvalues, of the the two-dimensional problem:
Wy | () - 1 (w) (W)
(3.1.4) (H D) (M2, Wy E) = 9;_ cbn: (W, waz ) -4 . Cb,,: ‘CW':L-WLE)-i-
fo

A2 (wh, mipd
».n, ?\u;-w-ﬁ

() ()
" __E_insz\z..M,,} d)'\: Yua,wmg) = AL (B cbi,"‘"cwz.w;,E)
c

the sum running over all lattice sites (mé,mé) nearest neighbours of the site

(m2,m3)-

First of all, we remark that in the case the transfer matrices S,a.(w) are
symplectic ones, the following symmetry property for the 2n-LCE (note that,
if our state vector are n-dimensional, the transfer matrices are 2n-dimensio-
nal) of the family $S, (w

v §95¢ )};a. ez,
(3-1.5) d,‘ >, -.42& “Zn
(not all necessarely different), hold:
3.1.6 = =X y
( R 14 4 ¢ 2n
Such a property is a direct consequence of the symplecticity of the Oseledec's

matrix A In fact if _[\ is symplectic
& - 34 ? .
NANTN=T or TAT (NP L (A?) mhee T = %\_&)
- O

and, since det(/A)=1, one has:

i

de¥ (N -2T) =2 dek (TA-24)T™) = dek (A= A1)

det (A(4-2A)) = der (T -2A)
aek (A (X4 - AY) = 2Mdek (X4 -A)

t

It

and then, (A= o being not an eigenvalue of A\ ),
det(A -24) =0 iff  det (A=-A'4) = 0

This means that if exp( 0(3‘) is an eigenvalue of A\, so is exp(-*da'), and
then, ordering the c:id's as in (3.1.5), the (3.1.6) holds.

Our transfer matrices defined in (3.1.1) are not symplectic (relative to
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the form J given above):

[’K -('w...w..-n)’ _ 'K-'Cm.\ .w-;-*l)] D(Wh) l Kﬂ(w.,ml-&l) g ks

it U T o ¢

On the other hand, we would like to use the symmetry property (3.1.6) of LCE's
as a useful numerical test for the numerically calculated values of the LCE's.
For this reason, we perform the following transformation: we define the

sequence of matrices J(ml) as:

Jo =4
TMM = K—4CO, 1)
T2)= K1,2) KM,0)

co i e

(3.1.7)
3 (W) = K-z, wy - 1)K (-2, uty -3 K0y~ 4 = 3) KCuta4, wh=5)...
Tm) = K-t mag YK (waa-1, why-2) KT Owmy-3, wa-2) K (w,-3, mag=4)...
T (W) = KT we ) K(wa  wa-1) K (w2, my-1) K (W-2, wa-3),.

- -

constructed in such a way that:

(3.1.8) K (wg,wa+4) T (W41 = Ty, way =1D (-1

Rewriting equation (1.3.17)

(3.1.9)  HW(wywa+1) Alw+1) + K, wi=1D Alw=t) = DCuwa) Alwd

as

(3.1.10) K (b, Wiy +1) T (Wi +3) T 0wy +1) Alt) + Ty w=i) T(wa ) T (0w, =1) Aui-4)=

= DO T (we) I A ()

and defining

(3.1.11) @M = 7w Almn
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From property (3.1.8) follows:

(3.1.12)  K(wwy+) T(w,+1) [@(w\-ﬂ) + ®(wl-i)_'| = DD T ® (w

@CW--H))— T (@(w() >
(3.1.13) \ @ (w) oo @ (- | -

or

Ig((m‘*l)"K-lCu&”w;-ﬂ) D(w) JCw) ‘ -1 @(u'l‘)

P

:ﬂ. l O @(‘ul"I)
Denoting as
'5-4Cu1.+l) ) O
(3.1.14) 6n.+- -
O / j—|CUJ-t)
we have that:
-4

(3.1.15) Tw.+| = Gm,-u E>w..+;

w,

Let us check that the new tranfer matrices T i1 defined in (3.1.13) are in
m_+
fact symplectic.

It is sufficient to show that the matrix
T ) Ko w4 1) D wmod T (W)
is equal to its adjoint matrix, or that

(3.1.16) Tty K™'(we yum+1) = TECwy)

Since:

Wy i) e
(3:2.27) Kay Cuaemri) = (7™ [ &) = Ky (e, un)
one has:

(3.1.18) K (w u) = K (ur+r, wn)

This identity implies (3.1.16) for m1=l,2.In fact one has:

THAY A [RY 0] =T (1,0) = K KM K H2) 2 3Ty K C1:2)
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T*2) = Ko [K(42)] = Ko Kz K3y K(23) = 3@ K 2.3)
(3.1.10) then follows recoursively \/"ﬁ’ noting that, if
JFPWi-1y = 3T K e, w)

property (3.1.8) implies:

T = ST (WD [R e wd] s 37 (WD K Con o)

"

370w K ey w0

As we shall see in detail in the two dimensional case, the matrices J(ml)
are bounded function of the position of the center of the fiber in ml,}r(ml),
in the microbending case and of the core width at the point ml,’MF(ml), in
the case of random diameter changes.
If we denote as:
N
(3.1.19) "@N.Cw)= TTT,()-(w)

é:l
by (3.1.15) we have:

(3.1.20) m A | = Gm A -
0 iarm 2 Log W Byl ﬁ‘fw T 2og 16 By & wl

Since
(3.1.21) NG N B G wll £ NonBn &' Il £ 16y | 1S G3'as )

and

(3.1.22) 0< G, ¢ WG 2 IG ) £ 3, < oo VN

it readely follows that the LCE's of the family {"rjg e 77 are exactly the
J

same as the LCE's of the famil S. ¢ . .
v 5.3 . p
Let us conclude this section by noting that, by the construction of the

o il -1
matrices J(ml) (property (3.1.8)), J (ml+l)K (ml,ml+1) is a constant

matrix. More precisely, lee, ZZ%

T R 4,0) 2 K-¢4,0) i§ mukt is
€ven

% -1
(3.1.23) T le'i'l)—K (l-u,,ul.|+|) -
T KT A2 K (0K T(2 49 wyrt s
odd



Then, if we set:

-1
(3.1.24a) K = K (1,0)D(2n)
even

(3.1.24Db) K =K(O,1)K_l(2,l)D(2ri+l)
odd

we have to deal with two kinds of transfer matrices

1<even IT(my) ]~—1L

(3.1.28) ‘Tz =
1 | o

corresponding respectively to mfieven or odd.

T
i

“v"\ =

1<odd:ycu“) ] -4

34.

4 | o
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§ 3.2. The two dimensional case.

To fix the ideas, and to semplify the calculations, let us consider the
case of random microbends of a two-dimensional single-mode optical waveguide

(fig. 1). N-’Aml

—_— s L — — — e = e e e

Its refractive index function is taken to be:
n, 4 Iwmy-y(wmn}]z Ny
(3.2.1) n{ma-y(my) =
N, 4§ Naiglm-ygmdleN,
X(ml) being the m2—coordinate of the center of the fiber at the point ml.
The construction of the transfer matrices T will be carried out in three
. m
1
steps: )
step 1: construction of the eigenfunctions 4),(‘m2,E);
)

step 2: construction of K"t, their properties ;

step 3: construction of the matrices J(ml)

Step 1. Construction of the eigenfunctions d).(m E).

2 2’
We have to construct the solutions of the following one-dimensional, '

discretized eigenvalue equation (ml being fixed):
~x ~ ~ 2,7~ ~
(3.2.2) 3—7— [Z ¢,a-(""*z) - d:'a (WM +i) = 4)2‘ C“"z“)_] -E !‘C_ZCW\?-) 43,3—("“2.) =
= ’>\,a‘ cb,a'(’“z)

where ?n'2=-_=m2— }{(ml), d)é(ﬁz) = cbé(ﬁz,E), ﬁa' :9‘3-02'-.) and we impose Diriclet

boundary condition on the boundary of the cladding:

(3.2.3) C§>a. (¥ = NY = o
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The (ci)’é,';\a-)'s are then the eigenfuntions and eigenvalues of the problem of a
rectangular potential well between two infinite walls (fig. 2), the depth of

the well being fixed I;y the choice Qf the refractive indexes r1:L and n2 of the
core and cladding's materials

Loned

and of the wavelength A of

<,

1

— e G G v e o G peste a--ﬂ-'.“"",;z
o]

-Ny

»
z
o

the light signal travelling

LR

m
in the waveguide. (E = fiwt=

= ’hcz(ZTr)z/ 3\2). To see how
the solutions Cba.('r?fz) are
constructed, let us consider,
for example, the antisymmetric

solutions Cbzé“(?n'z) living

@

above the well, i.e. such

2 2
that ﬁzz‘,,.,? ~n2E/c : FiG.2 SRS 1

—~— 22

In the 2 -zone (—N2£-?'n2£. —Nl) one has (setting i=2j+1)
2 (2)
(3.2.4) cpq: (%) = Az sim (R, o (W, + N))
. ] @
the relationship between 42‘,;_ and 9\,{' being:
. @ 2 y-2
(3.2.5) Mp=2 (M=coskR,a)-EN/C
0.7‘
while in the 1 -zone (-N &m_<£N )
1 2 1
Q) ] W o~
{8:2.6) Cb&. = Ay sin (R amy)
with ,
W) (€] - 2 |
(3.2.7) os(RioD) =cos (R ) - c;: E CnF-wn?
Writing equation (3.2.2) for ?n'z = —Nl and ‘52 = —Nl—l, one gets the relations

betwee A d A _:
etween 1an 5

(3.2.82) Ay sim Ch‘ga (Ng+4)) + Ag sém (Jg‘j”a (Ma-Nz-1N =0

. ¢ s -
(3.2.80) A4 sim (»h,'sa Ny + Ay sim (zh?c,(ﬁrpmﬂ) =0



o @
which give the following equation for /k,i and 'hfz; (Vi=2j+1):
(3.2.9)

F(RoY = sin (R a (Ny+4Y)- 30 (RS o (N3~ 159)) 4
- SUn (/ﬁ)a (N-Na)s sim (Ko Ny =

A1l (7) Jhm can be can be obtained numerically as the zeros of F(k.) (for

example with Newton's method), the

k@.'s being given by (3.2.7), and the

eigenvalues ﬁ,‘: being given by (3.2.5).

Similarly we get the symmetric solutions

~ 2 2
d)?_. (mz) ; 9‘?;2,57—n22E/ c , and
~ 2
the (only one) well's solution Cbo(mz), -, E/c £ A & -n, E/c .
(l)(.z) 0),c2>
Setting ‘h 5 the solutions are:

Ao cos C«h’(gNJ,) simB (RE(Waz + N
byy= { Ao smb (BNa-Nd) cos (RS W)

Ao cos¢ T NL) simb (R (N2 - W)Y

G P
Azé"" e (4223-*, Na) 3tm C'h'zgﬂ (Mo + N2))

- Ny & By & ~N,
. ) . ) ~
_A23+4 SsUn ('hz,b'_ﬂ CNZ— N/\)) Hm C’hlé-ﬂ W‘z.) - Ny

& \7\)4?_ &« Ny
"A » [4)) . ) ~ ~
23+ s ()Rzé-w N4 swm (’hzéﬂ (N2-wy)) Ny 2w, &N,

Azg cos C-'h,_a N41) sun C'h,_a Wy + N2Y)

- No Gi,_ e -0y
. (3] [41] > L N

Cbzé(ﬁz)— A sin (Rag (N2-N4)) Co® C‘kzg Wi2) -N, e W= N
' L (> e o, & N

A?.a' Cos (‘h;_; N.‘) S C‘hza‘ CNz-—Lu.z) N4 e By 2

(2.2.40)

(*) As already

observed in remark 1.2.2, we will actually consider only the

eigenfunctions d),é(_ﬁ:)(and the corresponding'h

such that 9*,54 some constant.
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where the A  are (computable) normalization constants.
J .

Step 2. The matrices K(ml_,_nll'.‘:l).
Since we are considering the case in which only displacement of the center

H(ml), relative to two

of the fiber can occur, the set of eigenfunctions of
consecutive sections ml, ml+1, are just translated one with respect to the
other by the amount 325': X(m1+1) - X’(ml).

We assume that 58" can only take the values:

+ 4
(3.2.11) Oy =4-4
o}

with some probabilities, say pl,pz,pa, pl+p2+p3=l. In correspondence with the

values taken by 5'X', the matrix elements K. (m_,m +1) will be:
ij 171

Y

(3.2.12) 'K,;,j (W, Mys4) = 'K;a. g Jy=-4

3o 4% J¥=0°

where Kt do not depend on ml. For the matrices K(ml,ml+l) the following

ix 3}(= +1

properties hold:
(3.2.13) KOmg, mag 1) = K*(Ws+1,m,) (see (3.1.17))

(3.2.14) 'Kt(w,,,wu,-r/t) = K* (wmq+1, my)
N+ yluey)

(since k:g', (g, wy+4) = 25 Dy (Wa-FCuad) 4;9. Coag - Ylam) -1)
Wz:-Nz,*X'Cu.l.‘)

N+ yasd
= 25 Ny d>),\; Cusg - Fs+1) e (wp - ¥eund) = K Canrt,wn)
Uhy 2 = -+ QLy 3|
(3.2.18) K= f2)°* R (see (3.2.13) and (3.2.14))

(3.2.16) KK # K K*

_K;m. if d?b and d)a..have the same symmetry
“+
(3.2.17) -Kag- =

L ——K;n: s (b’cand Cb@' have different symmetry.

The matrix K* (K~ being its adjoint matrix) then looks like:
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,’/(:bc\cbo-" (d:o‘cb,*) (d)old’):) $Re v e
~@eld?) (1) (bl dF) e
(3.2.18) KY - (¢ 1 &) NI ,".‘

2t o m e o o v
*

Nz
where C‘b,\‘ \d>’3+> = Z PR ¢’5 (W,-1)

To get all matr-i';zelements Kitj is then sufficient to compute the elements
belonging to the "upper triangle half" of the matrix K%, i.e. the elements K;j
with i4j.

Even if we confine our computation of the eigenvectors d)a.(E) only to those
corresponding, for example, to ')wa'(E)<O, we will have still to deal with a
number of eigenstates of the order of 102, and then with the evaluation of
about 104 scalar products.

To make the numerical procedure quicker, several explicit formulas for
the scalar products (<I>A:[ d),;") have been obtained, using the orthonormality

of the set {cb&(;E)}, the (3.2.9) and the (3.2.7). For example, the scalar product

between an antisymmetric eigenfunction ¢z§+ and the same 2 translated is:
1

(3.2.19) (b, 1 b5, > = AL Slcos(&‘;;ﬂ)-c stm? ((N2-NadRogp)

29+
@) Q
. [N/‘ - COS Cc N4+4) 'kti?l ) < Sim CN4 ’kz;+f ) %

o E 2 2
— = (Nn=wn
(c= 2 @ ‘)) Sin (K350

Similar formulas have been obtained for the scalar products involving the other

kinds of eigenfunctions, precisely for (ol ), (ol <bz-§) . (Dol q):gu) '
Cd)zél d)z; > 1 (‘bz‘j |¢;3") \ Cd)zq’ ‘ d):a'-\-l) * Ctbﬁ'a'*l[ ¢2;‘-'H ) v

Step 3. The matrices J(mll.

Our last step toward the construction of the matrices Tm is the evaluation

1
of the matrices J(ml) defined in (3.1.7)..

It is easy to convince oneself that J'(ml) depends only on the position of
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the center of the fiber at the point ml and not on the particular sequence of
K's that has brought the center into x’(ml).'Let us in fact consider any random
path followed by the center of the fiber from zero to a certain ml. J(m_) is

1
by definition a product of the type:

FCuwy = (KO K* (k-)"....

K* and K~ randomly alternated (we are considering only the matrices K+, K~
since the eventual presence of the identity matrix gives no contribution to
J(m .

(1))
Every time the displacement of the center changes direction, i.e. a K* is fol-
lowed by a K7, and vice-versa, the K's compensate giving the identity matrix.

For example the sequence

2}
| /".\\
(o] =~ £ 3 § t/ 3 \l
- ’ o
\.\ 2 5// 4 5 (=
'_1 o .\ °
~ P
*ZJ' \\’//

which takes the center of the fiber back to zero after 6 steps, gives:
36 = K (5,6) K(BAY K (3,4) K(2,2) K (12 KEho)
a(K YT KT (R T K (RY ! K
=14

On the other hand, the sequence:

% 1 13 vL =
© 4 2 3 4 5
corresponding to the path:
2'— '-\ Py
/, N /,
4+ 7 N
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gives:

J(e)

n

(Y K* (w7 K- (w YK
(k*Y" K~

it

and is then equivalent (for what concerns J(6)) to any path that brings the
center of the fiber into X’(6)=2, in particular to the path containing only

two jumps here described:

2.. L d
A
”

it PP

Vg

o T

-1 7 6

_2..

From example of this sort we deduce that:

- if X"(ml)=0, J(ml) is the product of an equal number of XK' and K™, which
compensate giving J(ml)=ﬂ., while

- if ‘o"(ml)=h;é0, what is left in J(ml) are the K's corresponding to the
"effective" jumps that take the center of the fiber from zero to h.

More precisely, one has: (for X’(ml)=h)
4 2
[R-CK*) *] if h is even

for h»o - _ _a-h/
Y IR =Y ™ r b s oag
(3.2.20) J(m_ ) = [
h
1 [:-K-r(«;(-“)*'-‘:[ #= if h is even
for h<o = 12
CK,") [k+(x-Y ] if h is odd

Remark 3.2.1. Also in the case of random variations of the diameter of the

fiber, "W"(ml), to each pair of consecutive sections will be associated some
matrix Kt (or the identity matrix), but such matrices will depend on the
diameters of the investigated sections. This is a consequence of the fact that
the two sets of eigenfunctions,. whose scalar products are the elements of the
matrices K, will depend on such diameters (as the corresponding eigenvalues).
If we assume that the number of eigenstates (corresponding to negative

eigenvalues) do not change while the width changes (and this will be the case
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for slight variations), the matrices K at different sections will have

the same dimension.

It is then easy to sho@ (as for the microbending case) that properties from
(3.2.13) to (3.2.17) still hold in this case, each K * still having the form
(3.2.18), the matrix elements K:}(ml,ml+l) now depending on WN‘(ml).

In particular a width' growth followed by a width decrease (or viceversa)
will still produce, for what concerns the matrices J(ml), a compensation
between the relative K's; this will lead to an expression of J(ml) as a

function of WT(ml) completely analogous to (3.2.20).

Once we have fixed some h ax” that is to say we have fixed the maximal
max
range of the random variations of the center of the fiber to be [~h ,h ],
max max
the matrix elements of the 2tha different matrices J(h), h#0, can be
54

numerically computed and stocked.

For each mls-o, the matrix K(ml,m1+l) will be chosen at random (in
a way that will be discussed in the next section) to be equal to K*, K~ or the

identity matrix; this choice (clearly equivalent to that of 2{(m1+1)) will

determine the appropriate transfer matrix T +1:

|
TKeve.n TFCur) -4 for =m_+1 even
1
4 (@]
(3.2.21) T, =

Kodd SC¥an+)) -1 )
4 o

for m1+1 odd

where the matrices (See (3.1.18)):

-1

(3.2.22a) K = K (1,0)D

even

-1

(3.2.22b) K = K(0,1) K "(2,1)D

odd

2
(D being the constant diagonal matrix Di.=Ea ﬁ§+2_§5:_ ) are computed at the
J = 1]



beginning of the programme and stocked afterwards.
In the next section we are going to sketch the main steps of the procedure
used for the numerical calculation of all the LCE's of the product of the

random transfer matrices described so far.

43.
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§ 3.3. The numerical procedure for calculating all LCE's.

The aim of this section is to illustrate the computational method that
will lead us to the evaluation of all LCE's of the family of random transfer

matrices T (w).
my

In the last section we sketched out how the computation of the matrix

elements of Tm (w) is carried out.
1

We have now to specify the way one uses for choosing at random, for
each m the jump & hich fixes T .

L” Jjump O ¥ whic x my+1
Let us still consider, as in the previous section, the case of a two dimensional
waveguide whose center is allowed to vary its position with respect to the
ml—axis randomly.
More precisely, we are concerned with the case in which each section of the
fiber can be, with respect to the preceding one, either rigidly translated of
1 lattice shift in the positive or negative m2—direction, or beunshifted; these

three possibilities occurring respectively with probabilities pl,pz,pg, where

+p +p =1, i. e.
plp2P3 ’

¥mg)+4  with probability p
(3.3.1) Ylwpi){ yMmd-21 with probability p

(w4)  with probability p

As already mentioned in §3.2, the center of the fiber will be allowed to vary

its m2—coordinate, )?"(ml), only within a bounded interval [—hmax’hmax]; SO

that a "stop'" condition has to be imposed on the extreme points % h o We
max

will ask that , if \J(ml) =%*h ax’ then:
m

D aTY . o -
(3.3.2) \brcw.,ﬂ): (fc ) with probability p4

YladT4 with probability p5

where p4+p5=l. At any section m:L one chooses, through a computer's random
numbers generator, 5‘3" to be £ 1 or 0 depending on the values assigned to the

transition probabilities p_,p ,p_ (or p and p_, if the value *h has been
12 °3 4 5 max
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reached in ml).

For example, a choice of such a probability could be:

1
(3.3.3) P =p_=p_ = and p=p=5

[OVE

The choice of 53’ is the accomplished in this case by letting the computer

choose at random a real number o & [O,l[ and associating to it:

+4  if <412
(3.3.4) SY =<4-4 if A3 &k 23
o if oL 213

if ]\a'(ml)l.{hmax, and

-4 (resp.+31) if x < 4/2
(3.3.5) JY¥=
o if ot > 472

if m)=h resp. m ) = -h
T( 1 max ( ’p 3’( l) max)

The transition probabilities P(Z'(ml)=h,\3"(ml+1)=k) defined above, give
naturally rise to a probability measure on the whole configuration space
Il:slT:ZZﬁ [—h yh ]} We have already remarked that, with respect to

max max
such a probability measure, X‘(ml) is not independent from X‘(ﬁl). In fact,
it is easy to see that the process m ~is a Markov process.
y p R LIPS p
In spite of that, it is easy to show that the measure is invariant under

translation along the ml—-axis, and that the hypothesis of Oseledec's theorem

are satisfied.

We want to compute the LCE's ®y4,..., X,y of the family of random transfer
2n
matrices T (). Given 2n initial vectors wvy,..., J,, € R , choosen
m
1
numerically at random, so to satisfy the condition 2.3.4, one has to evaluate,

according to theorem 2.3.5, the quantities:

(3.3.6) & < Log Voo [ Bl wy, -, Byl 0p ] = &y reet ot
N> v

for p=1,...,n, where
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-
(3.3.7) G () =TT T4 (w)
’a:l

[mn1,...,nxb:lbeing the open parallelepiped generated by the vectors R
of IR2n, and Volp is the p-dimensional euclidean volume (Voll[02]= aght) .
If one applies directly the formula (3.3.6), that is to say, if one computes
the products of the matrices Tj(tﬂ) acting on the vectors wn7, i=1,...p, and
calculates the volume spanned by the resulting p vectors, one has to face two
kinds of difficulties (see EB,PRRTIE):
1°) since Ar is choosen at random, in general one has that W\ %Wgnll grows
exponentially with N (this is the case of X470);
2°) since both A4, and A3, are choosen at random, the angle between ?Skn& and
?Sgﬁibecames in general very small after few steps (this can be viewed as a
conseguence of theorem 2.3.5 if Ky7 Q(z).
This two difficulties cause the computations to exceed rapidly the possibilities
of ordinary numerical calculations.

To evaluate the maximal LCE, Kq s only the first difficulty has to be
overcome. This is possible using the following normalization procedure:

~e

one fix an integeftM,"and defines f;h (uJ)=TkM(uJ)TkM_l(aJ)...T(k_l)M+1(uJ).

n
Then one chooses at random a vector Aze R , Iiwlt=1, and compute recoursively:

“Weo = U
(3.3.8) Vg = 1 G Wi 4 ll k74
Wy, = Bk Wk-1
Ve
It is easy to see that:
(3.3.9)  NGpynrll = V4V Rz 4

Then, by (3.3.9), one has:
(3.3.10) oy, = om 2. Log I B, ar |
TS e R8T TR

£
= B A 2] Rog Oy
/h-im )RM el
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It is then sufficient to take M to be not too large, in such a way that the \Zg
(i>1) be uniformely bpunded to avoid computér's overflow caused by 1°).

In the case in which p-vectors are involved, to avoid 1°) and 2°) it is
sufficient to perform the Gram-Schmidt orthonormalization procedure every M

steps; that is to say, with the same definition of ?54235 before, one sets:

("

<o [0)
'W':’-_- o@h'\l\r:@.; A7 4
e
(3.3.11) R "
Ve = U hwiz-:‘é:; Wy | Brwy., 7 Wi
(‘3') 5-1 (,'\') (.’0) . a"'-' 2, ’A-]P

| 05 Wk-1 >W1z

At
»
VL

One can easily see that:

?
(3.3.12) Voe [aélk“ Uo},-nl @’hﬂ (\rP] —

— . Pras 0
= Vol [-gzgkwéﬂ,“_' J&wép)_‘l % »s.%x VOC [aglkw%-‘l N ’ékw.k* ]

a) ) {e) ®>
__( eV, Yoo (Y e Vp )

and then, by (3.3.6)

4 CHE N B 4
o &M k—m hn is4 Aed

sttt s

(3.3.13) Oy 4.t Xy = L
,h
P

= Z Z:Qo%. »

rb' 1 )g-->co ﬁﬂ A=A

In such a way one also obtain a direct formula for ol ,svw, Kgn :

(3.3.14) olp = —itm &H Z: QO% 9- A=zP & 2n
—>00

This is the relation we will actually use to compute the LCE's.
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§ 3.4. Marcuse's numerical results on scattering losses.

In [20], Marcuse analyses the scatteriné losses of single-mode optical
fibers due to geometrical microdeformations of the fibers, such us random
microbends of their axis or random variations of their core width.

He describes the random deformations by means of a deformation function,
whose rms variation. is fixed, and assumes that the autocorrelation function
of the random defect is Gaussian, characterized by the rms variation and the
correlation lengthof the deformation function.

Since the random deformation of the geometrical shape of the fiber cause
the coupling of the guided mode with the cladding modes, the scattering losses
can be studied with the aid of the coupled mode theory (see [19]). The
strenght of coupling between the guided and the cladding modes is expressed
in terms of the rms variation and of the correlation lenght of thedistortion
function.

Then numerical computations are performed to study the dependence of
scattering losses on the wavelength of the signal.

The results found by Marcuse are the following:

— step-index fibers with large core radii have higher losses, and the losses

of all fibers decrease. very sharply with increasing wavelength;

-if the microdeformations have a correlation length of the order of the fiber
core radius, the scattering losses are nearly independent from the wavelength;
however, if the correlation length is sensibly greater than the core radius,

the microdeformations losses increase very sharply with increasing wavelength.
-rms deviations of the order of few micrometers cause very high losses, provided
their correlation length is short;

-in general, random fluctuations of the diameter of the fiber core produce

higher losses than random microbends with the same rms deformation.
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