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0. Introduction

In this thesis work we deal with a typical problem in the asymptotc calculus of variations, that
is the limit behaviour of a sequence of minimization problems. The study of this topic, together
with other questions of variational convergence, that have considerably developed in the last twenty
years, has a relevant interest both from the theoretical point of view and from the aspect of the
applications to different branches of mathematics and to other sciences.

Roughly speaking, many physical phenomena find their mathematical formulation in
minimization problems that sometimes cannot be treated with numerical techniques for the
heaviness of computations. The alternative approach of approximation gives rise to mathematical
problems of the type studied in this thesis work. A tipical example is given by the behaviour of non
homogeneous media with a fine periodic structure that at present can be suitably approached with
the different techniques of the homogenization theory.

Among the mathematical tools generally known as variational convergences, the theory of
I'-convergence (for which we refer to [17] and [2]) turns out to be the most appropriate for the
study of sequences of minimum problems. Following Attouch (see[2]), the idea is that, given a
sequence of functions, the notion of I'-convergence "may be regarded as the 'weakest' notion
which allows to approach the limit in the corresponding minimizadon problems".

This fact has a precise formulation in the following theorem (Corollary 2.4 in [17]): if a
sequence (F,), of extended real valued functions on a topological space X is equicoercive, i.e. for
every te R U ({F, 2t} is relatively compact in X, and (F,), I'-converges to a function F, then the
sequence of minimum values of (F,), tends to the minimum value of F. Additional hypotheses
imply also the convergence of the corresponding minimizers.

The case of non equicoercive sequences has been extensively studied but complete results have
been proved only for some classes of problems, like the ones of homogenization type (see [4],
[26]), or for particular situations, as Neumann problems in domains with holes (see for instance
[23], [31]) where the lack of coercivity is "concentrated" on some special sets. This thesis concerns
a situation of this second type.

More pi'ecisely, we deal with the limit behaviour of a sequence of non-equicoercive integral
functionals of the form F, % LP(€Q) — [0,+o0]

[ ffh(x,Du)dx if u-ge Wy(Q)
(0.1) FPu) =1

h
+ oo otherwise ,

where Q is a bounded open subset of RN, N>2, p > 1, and © € WHP(Q). We assume that Dy




[38)

are non-negative Borel functions defined on Q x RN, convex on RN fora.e. x & Q, satisfying the

following inequalides

0.2) 0<f(x5<c,le]? in B, x RN
0.3) ¢, lelP<f(x8) e, le]p inQ, xRY,

with 0 < ¢, < ¢,, Q,UB,=Qand Q, NB,=¢. For the domain of equicoerciveness Q, we shall
consider two different situations.
First of all, we shall deal with the case in which the sets B, are fragmented into an increasing

number of connected homothetic components, i.e.

i
Bh= _U Bh ,
IEIh
where B! =x'+1'B, x'eQ, r,> 0 and B is a given closed subset of RN. Under suitable

assumptions on such sets B,, we study the asymprotic behaviour, as h goes to infinity, of the
minimum problems with Dirichlet boundary conditions

0.4) m, = inf F‘}f(u) ,
p
: ueL (Q2)

and of their solutions, when F, ?® satisfies (0.1) - (0.3).

Problems similar to (0.4) have been extensively studied by many authors. Most of the papers
cited in the References study the associated Euler equations, instead of the minimum problems
themselves. Some of them (see, for instance, [10], [14]) deal with Neumann BVP's for the Laplace
operator on perforated domains and require a periodic distribution of the holes. Eigenvalue
problems under similar assumptions are considered in [32], [33], [30]. Homogenization results for
non-coercive functionals when u is a vector valued function can be found in [1]. The non-periodic
case is studied in [23], [31] and, with Dirichlet boundary conditions, in [9] and [11], [12] which
regard also the related obstacle problems.

Our approach to problem (0.4) is in the framework of I'-convergence theory and follows the
ideas of Mortola and Profeti (see [26]) who studied the corresponding periodic quadratic case.

The first step (see Section 1) consists in individuating a limiting minimum problem

0.5 m= inf F®u)
we LP(Q)

defined by the I'-limit F? of the given sequence (0.1) and in proving that F® is an integral and




coercive functional.

Then, by applying a general result in I'-convergence theory (see Theorem 1.1), our problem
reduces to find a sequence of minimum points u, of F,®, which is strongly convergent in LP(Q).
This in fact implies the convergence of the corresponding minimum values m, (see Corollary 2.6).

The main difficulty, at this point, is clearly the lack of a priori bounds in W1-P(Q) for the
minimizers of F; ®, that usually come from equicoerciveness assumptions. Nevertheless, extending
the ideas of [26] to our non-quadratic, non-periodic case, we are actually able to prove the strong
compactess of a sequence of minimum points, taking the weak maximum principle into account in
the estimates of the LP-norm on each B,f . The geometric assumptions on such sets play here a
crucial role. '

In the remaining part of Section 2.and in Section 3 we replace (0.2) by

(0.6) £(x,8)=0 in Bx RN

and weaken the hypothesis on B,, dropping the assumption of fragmentation into homothetic
components. More generally, we require (£2,), to satisfy a suitable extension property for functions
in the Sobolev class W1~P(Qh). A condition of this type was inroduced by Hruslov in [23], where
an analogous problem for the Laplace operator is studied. In this setting problem (0.4) takes the

simpler form

©7) m, = inf {J.fh(x,Du)dx tue W P(Q,), u=gonaQ),
Q,

and all the results of the first part, concerning I'-convergence and convergence of minima and
minimizers, still hold, with slight modifications in the proofs.
In Section 3, under the same assumptions, we restrict ourselves to the particular case in which

f, is a quadratic form in &, i.e
fh(x:a) = aihj (X)E"Ii_j 2

that vanishes on B, X RN, The main purpose is then to study the asymptotic behaviour of the weak
solutions, the eigenvalues, and the eigenspaces related to the following mixed BVP:

(~Dy(a; D)+ Au =g inQ,

(0.8) 122 g on 3B,
v,

lu=0 on 02,




where ge L*(Q), 1>0 and 9/0v, denotes the conormal derivative operator at 9B,. To this aim,
according to the usual variational formulation, we introduce the functional

<Dh(u) = J‘ fh(x,Du) dx + j (?\.uz— 2gu) dx
Q, Q,

obtained perturbing Fho (see (0.1) with ¢=0) by the addition of continuous terms, and consider the
related minimum problem on L3(Q).
First of all, we prove that (®, ), ['-converges to the functional

D(u) = J' a,DuDudx + j(?»uz—.?gu)bdx,
Q Q

where b denotes the L=(Q)-weak™ limit of the characteristc functions of Q-

Then, provided (£2)),, satisfies the extension property mentioned above, we obtain the strong
compactness of a sequence (u), of minimizers of @, , that are clearly weak solutions to (0.8). The
limit u of such a sequence turns out to minimize @ on L%(Q), that is to solve the following limit
equation

~D.(a.. D.u) + Abu” = bg in Q
(0.9) £

ue H(Q)

Finally, we consider the spectral behaviour of the operators defining equation (0.8). The same
problem has been studied by Boccardo and Marcellini in [3], in the case of uniformly elliptic
operators and by Vanninathan and Shamaev (see [32], [33], [30]), for the homogenization of
elliptic eigenvalue problems with periodic holes.

In our case, even if we do not have the uniform convergence of the resolvent operators, that are
simply pointwise convergent, under the above assumptions, we obtain (see Theorem 3.6) the
convergence of the eigenvalues to the ones of the limit operator defining equation (0.9), and the
Mosco-convergence of corresponding spaces of eigenvectors.

A detailed proof of this theorem is provided in Appendix A, where some basic results on the
spectral properties of compact operators are also recalled, with a special regard to the variational
characterization of their eigenvalues.

In Appendix B the problem of determining some analytic formula for the I'-limit is briefly

mentioned through two simple cases. The former concerns a sequence of quadratic integral




w

functionals whose coetficients aﬁ"j tend in measure to a matrix of functions bij that turn out to be the
coefficients of the integrand of the I'-limit. The latter is the case of homogenization of non linear,
non equicoercive integral functionals. For both cases we just state the results and send back to the
original papers ([15] and [4], respectively) for the proofs and more references.

The results of Sections 1, 2, 3 will be published in the paper [8].

1. I'-convergence results

In this section we consider sequences of non-coercive integral functionals. We are interested in
their behaviour with respect to I'-convergence and in (possibly) integral representation formulas for
the I'-limits. Therefore we remind, first of all, some basic definitions.

Let Q be a bounded open subset of RN, N>2 and p € R, p > 1. Given a sequence of
functionals F,: LP(Q2) — R, we say that

F'= I-liminf F

h—e D

if for every u e LP(Q) the following conditions are satisfied:
1. Yu, —u strongly in LP(Q) F'(u) < iminf F, (u,)
hoew hh
2. 3u, —u swongly inL’(Q)  F(u) 2 liminf F, (u,).
h— oo
Moreover, we say that
F''= I'-li
r I%lnlflip F

if 1. and 2. are verified with F' replaced by F" and liminf replaced by limsup, respectively.
Finally, we say that (F,), I'-converges to F and write

F = I'-lim Fh or Fh——-—-> F ,
h—yeo




UF =F"=F or, equivalently, if for every ue LP(Q) one has

3.V u,—>u strongly in LP(Q) F(u) £ lgrgi&f Fh(uh)

4 3 y—u swongly inL(Q)  F(u) 2 limsup F, (u,).

The next Theorem 1.1, which is nothing but a particular case of a basic theorem in
I'-convergence theory that suitably applies to many problems in calculus of variations, is due to
De Giorgi-Franzoni ([17], Corollary 2.4). It will be needed in Section 2 in order to deduce

convergence for minimizers and minima of our functionals.

THEOREM 1.1
Let (F,), be a sequence of functions from LP(Q) to the extended reals and (uy)y, a sequence in
LP(Q), such that for every h

F (u)= min E (v).
AR ey D

Then, if (Fpy, T-converges to F and (uy)y, converges to u in LP(Q), it follows that

Fh(uh)——> min F(v) and F(u) = min F() .
v e L) ve LA(Q)

il

In order to deal with integral functionals of the type

Fh(u) = J’fh(x,Du) dx,
o

we consider now a sequence Ednens fi QXRN—-}»[O,-*-OO[ , of non negative Borel functions
which are defined on QxRN and are convex on RN for almost every x in Q. We assume that
there exist two positive constants Cys oy With 0 < C; $¢,, such that

(1.1 0 < f,(x,8) < c,EP in Q@ x RN
(1.2) ¢, &P < £ (x,8) in Q_x RN

where Q; = Q-B, and B, is the union of a finite family {B;: ie I} of closed sets of the
form B =x/+ 1B, withx' € Q and 1, > 0. We suppose that BERN is a given closed set with
non empty interior and regular boundary (say Lipschitz»continuous). Moreover, we assume that




0 e B, diamB <1 and B CC D, where D is a fixed open subset of RN, From now on we shall

use the following notation:

[ D, = x,+D
(1.3) | ¢=P-B
i i i
C, =Dy- B,
i i 1
B,=UB, , D,=UD, , G =UC
el iel, i€l
Let us suppose that
(1.4) D, ND =g Vijel,iziV he N
(1.5) D, c Q Viel,V heN
i
(1.6) rh_?éai rh——-)O as h — oo,

Let us denote by A=4(Q) the family of the open subsets of Q and define the sequence of
functionals (F,); o n» F: LP(Q) x 4 — [0,+<] as follows:

. 1
th(x,Du)dx if ue W 2(A),
(1.7) F (5,A)=1 A

) otherwise.

The following theorem gives, up to a subsequence, an integral representation formula for the
I"-limit of (F,), in the space WP

THEOREM 1.2
Under the assumptions (1.1) - (1.7), there exist a subsequence (Fc(h))h of the sequence (1.7)
anda functional F:LP(Q) x 4 — [0,+e] such that

(1.8) Fc(h)( .»A) T-convergesto F(.,A)

for every A € 4. Moreover, there exists a Borel function f:Q x RN 5 [0,+e<[, convex on RN

for almost every xeQ, for which




jf(x,Du)dx if ue WPA)
(L.9) F(u,A) =19 a
+oco otherwise
and
(1.10) colﬁlpsf(x,E_)Scle‘,lp ae.xe Q,VEe RN,

for a suitable constant ¢y, with 0 < ¢y < c,.

We present here some technical lemmas, which are needed for the proof of Theorem 1.2. They
will also be exploited in Section 2, to prove some compactness result. We begin with the following

extension lemma, proved for instance in [13] (see Lemma 3).

LEMMA 1.3
Given >0 and xye RN, we denote by B, C, D, the sets B =x,+1B, D_=x,+1D,
C, =D, - B,. Then for every ue W'P(C)), there exists an extension Ue WLP(D ) such that

(1.1D) U=u onC,
(1.12) j!DHIdescsleulpdx,
DI Cr
where the constant ¢, depends on N, p, B and D, but not on r and u. 1

Let us denote by 1, the characteristic function of the set €, :
h

1 X e Qh

L

1
Q, 0 xeBh.

By the Banach-Alaoglu theorem it is not restrictive to assume that (1Qh)h converges to a non

negative function b € L=(2), in the weak™* topology of L=(2):

(1.14) IQ —b L™(Q)-weak*.
h

In the following lemma we prove that b is strictly positive.




LEMMA 1.4
If the sequence (B,) satisfies the assumptions (1.4), (1.5), (1.6) then

(1.15)  bx)2P>0 ae. xeQ,
where B = IC/IDI.

PROOQF:
By the Lebesgue derivation theorem, it is enough to prove that

(1.16) J' bdx > BlBx 1 ,
for every ball B(xg,p) of centre x; and radius p, contained in Q. Since b is the weak*-limit of
(1 Qh)h’ (1.16) is equivalent to

IB|
ID|

1.17) lim |B,N Beeyp) | < | Bxpp) |-

~ To prove (1.17) we observe that, since for h large enough Bh‘ﬂ B(xpp) # & implies
D, S B(xy.p + r,diamD), we have

IDY/BI | B,N B(xgp) | < DN Bxgp +rydiamD) | < | B(xy,p + r,diamD) |

and then
Dl . . .
= < : =
= lim |B,N BGxp) | <lim |BGpp + rdiamD) | = [Bxpp) |
which concludes the proof. |

PROOF OF THEOREM 1.2:

Theorem 4.3 and Proposition 2.4 in [5] prove the existence of a subsequence (Fﬁ(h))h and a
Borel function f: Q x RN — [0,+e[, convex on RN for almost every xe Q, such that, for
every A € 4, the I™-limit of (Fg,( . ,A))y exists on WLP(A) and is given by

jf(x,Du)dx,
A
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for each u € WI'P(A). For simplicity, along this proof we denote such a subsequence by (F,), and

we set

F(u,A) = ([-liminf F,)(w.A).

To complete the proof of (1.8), (1.9) we now show that
(1.18) F'(u,A) = +oo,

for every A € Aand u e LP(A)~-WLIP(A). Actually, F'(u,A) < + s implies ue WLP(A). In fact,
letus fix A € Z2and u € LP(A) such that F'(u,A) < + o= . From the definition of I"-liminf and from
(1.2), it follows the existence of a sequence (uy), in LP(A) that tends to a function u in the norm

topology, such that up to a subsequence

¢ im ‘Duhlpdx < F'(u,A).
h—yo0
QnNa

Our aim is to show that this implies

(1.19) leu | Pdx < cF'(u,A),
A

which clearly proves that ue WHP(A).
For technical reasons we choose an arbitrary open subset A' CC A and we denote by J, the
subset of I defined as follows

J={ie L; Bm Az g}
Note that, for h large enough, i€ J = D,fg A.Using Lemma 1.3, we can find suitable functions

1, R i
u,eW (A" U UD)

iely

such that

=2
il
o

. on (A'U YD) NQ,
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[ 1bu, IPax < IDu, I7ax.
D, G,

forevery h e N and i € J;. Since the constant ¢ in the preceding inequality does not depend on i
and h and the sets (Dh")i do not intersect each others for h fixed, we obtain that

(1.20) limsup f |Du, [Pdx < cF'(u,A).
h-— o
AV

Let us now consider for every te R, the function Adh‘ = (ﬁh Vv t) A (-t). It is clear that (iif) has at least
a subsequence which is bounded in W!P(A"), independently of h. Then, passing if necessary to a
turther subsequence, (ffh‘) tends for every t weakly in WHP(A") and strongly in LP(A") to a function
v.e WIP(A"), depending on t. It can be proved that v=u'=(uV 1) A (-t) on A in fact, since U
=u' on Q NA

j ’u[—vt!pdx < CJ. lut—u;lpdx-%-cj Iﬁ;—vt | Pdx
ANQ, AN, ANQ,
where the right hand side tends to zero as h goes to infinity, while
jlu[—-v[lpdx e J‘b‘ut—~v[’pdx.
AN, A

This yields

beut—vllpdx =0
A

and by (1.15) u' = v, on A'. As a consequence u'e W!-P(A") for every te R* and moreover, by
(1.20), we have

J‘IDutlpdx < liminf | [Df, [Pdx < cF(u,A).
h— e
2 hé

Taking into account that ue LP(A') and that

t
flu “LP(A') < HuIILp( A)




it follows that (u'), is bounded in WLP(A") and hence, up to a subsequence, tends to u weakly in
WLP(A"). This immediatly yields (1.19).

In order to complete the proof of the theorem, we now show that the two inequalites in (1.10)
hold. Taking u, = u in condition 3. of the definition of I'-limit, from (1.1) we obtain

f(x,Du)dx < czliminfj | Du, |Pdx.
A R A

for every Ae A4 and ue WHP(A). Taking now u(x) = £'x, with £ € QN and using the Lebesgue

derivation theorem we first have
f(x,8)<c, &P Vxe Q,VEie QY

where (), is a suitable subset of 2, whose complement in Q has Lebesgue measure zero. Since

f(x, . ) is convex for a.e. x € Q, it finally follows
(1.21) f(x,8) <c, &P VxeQ, ,VEe RN

In order to prove the first inequality in (1.10), we arbitrarily choose A € 4 and u e WIP(A);

from the definition of I'-limit and from (1.2), there exists a sequence (uy)y, in LP(A) OW]";E (A)

which tends to u in the LP-norm and such that

ff(x,Du)dx >c liminf | |Du, [Pdx,
h—> e
A Q.NA

Hence, up to a subsequence,

¢, Iim lDuh |Pdx < jf(x,Du)dx < oo
h—yce
QNA A

Applying the same argument as in the proof of (1.19), we obtain that

C1 ) .
! j|Du| dx < Jf(x,Du)d;(,
3 A A

where ¢, is the constant defined in Lemma 1.3. From this inequality, taking u(x) = &'x and using

again the Lebesgue derivation theorem and the convexity of f(x, . ), we finally have




f(x,i)ZcolF;lp forae.xe Q,VE&e RY,

where ¢, = 01/03 ) i

From now on, we shall always suppose that

(1.22) F.(..A) —-—F—> F(.,A)

for every Ae 4, where F satisfies (1.9).and (1.10). To study the asymptotic behaviour of minimum
problems for the functionals F, with Dirichlet boundary conditions, given @ e WIP(Q), we
consider the functionals F,?, F®: LP(Q) — [0,+<<], defined as follows

. L.p
F (u,Q2) fu—-pe W, ()
(1.23) Ef(u) [ 7= Mo
+oo otherwise ,
J F(u,Q) if u-¢e W;P(Q)
(1.24) Fo(u) =
oo otherwise

Taking into account the preceding theorems and lemmas, we can immediately prove a result

about '-convergence for the sequence (F;®), and integral representation of its I™-limit.

THEOREM 1.5

In addition to the assumptions (1.1) - (1.7), we assume that F, satisfies (1.22). Then the
sequence (F,®), T-converges in the norm topology of LP(Q) 1o the functional F°.
PROOF:

We have to check that for every u € LP(Q)

(a) Feu) < (T-lgniinf F‘}f)(u)
(b) FPu) 2 (I'—lilfnjup F‘}f)(u).

To prove (a) we can assume that u makes the right hand side finite. Then there exist an
increasing sequence of integers (h,), and a sequence (U with (u,— @) € W(‘;p(Q), which tends to
u in the LP-norm, such that
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1 1 ¢ = 1 (P - 1 O
T -lérmr:f Fh“’)(u) = iml, Fhk(uk) 11<1moo Fhk(uk,Q) < oo,
Then, the following inequality

J. I Duk ‘ Pdx < const
Q.

holds for k large enough. Taking into account Lemma 1.3, one can finda sequence (u),,
U~ ¢ e WIA(Q), which converges weakly in W1P(Q) and strongly in LP(Q) to some function
ve WH(Q) + o, such that

Using the same argument as in the proof of Theorem 1.2 (where we prove v,=u‘ on A'), one
obtains thatu =vin Q and henceu~ @ € Wé"’ (€). Since Fy(..,) <F,®(.), we then have:

Fu) = J.f(x,Du)dx = (T-IPEOFh)(u,Q) < (F—lérr_iirg Fg)(u),
Q

that is (a).

We now prove (b) adapting an argument used in [5] (see the proof of Theorem 3.1) to obtain
the subadditivity of the I'-limit. We can assume F®(u) finite, from which F®(u) = F(u,Q2) and u - ¢
€ Wé"’ (€2). From (1.22) there exists up—> u in LP(Q2), such that

F(u,Q) = lim F, (u,.Q).

Setting ®(x) = dist(x,0Q2), we then have @ e Wé"’(Q) and |D®| <1 ae. in Q. Let us now define

Ju-—(b uh<u—<D
v, =Y u luh—ulﬁ(I)
[u+CD uh>u+(D ,

thatis vp=[(u — @)V u,]A(u + D). Since l vy —u | <@ with ®e Wé"’ (€2), then v,—u Wé’(Q),
from which it follows that ‘

F,0(v,) = F,(v,,Q).
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Moreover | v~ u | < | u,—u | a.e.in Q and hence v, = u in LP(Q). This implies that
. - p —_ -
T —I}Imjll? F‘{;’)(u) < 1}?}3‘2’ Fh(vh) = hhmj‘i? F,(v,,9).

We finally get the conclusion if we prove that

thls)lﬂ) Fh(vh,Q) Shli_r& Fh(uh,Q).
But this is an easy consequence of the estimate

F (v,,Q) < F,(u Q) + CZJ.(IDu‘p-f-l)dx
{luy—ul>®)

and of the fact that | {luy—ul > P} | -0 ash goes to infinity. 1

2. Compactness of minima and minimizers

“In addition to the assumptions (1.1) - (1.7), in this section we shall always suppose that for every
A e Athe sequence (F,( . ,A)), I'-converges to a functional F( . ,A) satisfying (1.9) and (1.10).
Our interest is now to investigate the asymptotic behaviour of the sequence of Dirichlet minimum
problems of the form

@.1) m = inf FP).
ue L@

More precisely we want to prove that
2.2) m, —m as h — oo,

where m denotes the minimum value of the I'-limit F®:

2.3) m= min F®u).
ue L(Q)

To this aim, given h, we introduce the relaxed functional (or LP-lower semicontinuous

envelope) sc’F,® defined as follows
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(2.4) sc”F®(u) = inf {liminf Ff(u ) :u_ e L’(Q), u — u strongly in LA(Q))
n —> o

for every ue LP(Q). It is well known that sc‘Fh‘P can be characterized as the greatest LP-l.s.c.
functional which is less then or équal to Fh‘p on LP(Q) and that

inf F;‘l’(u) = inf sc_Ff:(u).
welP(Q) ueL(Q)

In the following theorem we briefly consider the particular case in which fj is identically zero
on thRN and show that the corresponding relaxed functional sc’F, ? takes a very simple integral
form.

THEOREM 2.1
In addition to assumptions (1.1) - (1.5), suppose that

(2.5) f.(x,8) =0 on B, xRN

and consider F,® as given by (1.23). Then the relaxed functional sc’F,® defined by (2.4) has the
Jollowing structure

J J. fh(x,Du)dx ifu[q‘e Wl'p(Qh), u=¢ ondQ
(2.6) sCFO(w) = B

| 4o otherwise in LY(Q),

for every he N.
PROOF:

First of all, we note that the equality u=¢ on 0Q in (2.6) means simply that if ye CZ (Q) such
that y=1 a.e. in a neighbourhood of B,, then (1-y)(u-¢) € Wé"’ (). In particular, if 0Q is regular
enough (say Lipschitz-continuous) then u=¢ ond{Q2 in the sence of the trace operator from WLP(Qh)
to LP(9Q).

In order to prove (2.6), let us set
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B J jfh(x,Du)dx if ulﬂhe Wl’p(Qh), u=¢ onadQ
=1,
l

+o0 otherwise in Lp(Q),

with h fixed in N. We want to prove that

i) F% isLs.c. on LP(Q)
i) F® <F® onLP(Q)
iii) if G: LP(Q) — [0,4<] is Ls.c. and G < F®, , then G < F? on LP(Q).

Let us prove i). Given ue LP(Q2) and unz——> u in LP(Q) such that

liminf F(u ) < +ee

h— e

there exists a subsequence (uc(m)n for which

j lDu Ipdx < c.
o(n)
Qh

Then, passing, if necessary, to a further subsequence, ugq, tends to u weakly in WI'P(Qh), as n
goes to infinity. Since F? is finite on ugy, and u, and the functional

J. fh(x,Dv) dx
Qh

is weakly-lower semicontinuous on Wl'p(Qh), it follows that
Eory o e o B
Ff(u) < liminf F‘,ﬁ’(uc(n)),

which proves 1).

The proof of ii) turns out right from the definitions.

To show that iii) holds, let us consider a functional G: LP(Q) — [0,+<<], L.s.c. on LP(Q),
G < F%,. It is enough to prove that for every ue LP(Q) such that w(e WI'P(Qh) and u=@ on dQ it

n

follows
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Gu) SJ fh(x,Du)dx .
Qh

Given such a function u, let us consider a sequence (@) in C§ (€2) such that supp ¢ <C B, for
every nand @ — (u— Eu) in LP(Q), as n tends to infinity. If we setu = ¢@_+ Eh(u,fl ), then (u_—
@)W (Q), u_=uon Q, and u, > u in LP(Q). Since G < F®,, this implies

G(u) £ liminf G(u ) < liminf Ff(u ) = 1iminfj f (x,Du )dx = J. f (x,Du)dx,
n— oo o n—soe 0N n - oo h n h
@ Q,

that concludes the proof. 1

Going back to the general assumptions (1.1) - (1.7), we remark that the problem of proving an
integral representation formula for sc”F,® on the space X(F,®)={ue LP(Q): scTF®(u) < +e0} is
still an open question. Anyway, many results are already known for functionals of this type on
suitable subspaces of X(Fh‘*’). For more details see, for instance, [7], that concerns a representation
formula on the space of the Lipschitz-continuous functions, [19], for the L2-lower semicontinuous
envelope of quadratic functionals on HY(Q), [6], regarding integral representation on the Sobolev
space WP, and the wide bibliography therein.

In order to prove (2.2) we study existence and properties of the minimizers of sc’F,® and we
individuate a set M: of minimum points with the following property: if u, € M: forevery he N,
then (u,), has at least one subsequence which converges to some ue LP(2) in the LP-norm. As a
consequence of Theorem 1.1, one obtains that u solves problem (2.3) and that (2.2) is then
fulfilled. Moreover in the case F? is strictly convex, one has also that the whole sequence (u),
tends to u. ,

The existence of minimizers for sc’F,®, which in the general case is not trivial, is proved in
Theorem 2.3. The proof goes through an approximation argument that characterizes the elements of
the class I\/I:. Some technical lemmas, concerning extension properties (see Lemma 1.3) and local
LP-estimates (Lemma 2.2) for the minimum points u,, are also needed. They allow also to show
the compactness of sequences of the form (u,)y, u, € M,- We start now by establishing Lemma
2.2.

LEMMA 2.2
Let B,C,D,N,p be defined as in Lemma 1.3 and let ue WI'P(DI) be a solution of the
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following minimum problem

1
2.7 G(u) £ G(v) Vve WLP(D)/v-ue WD)
with G: WHP(D ) — [0, +eo] defined by

GWv) = J‘g(x,Dv)dx;
D

Let us assume thar g: D_ x RN [0, +oo[ is a Borel function, g(x, . ) is convex for a.e.x € D and
there exist three real constants ki, k,, k,, 0 <ky<k, <k, such that

P in B_x RN

2.8) K | & |
l lel» in C_x RN,

| )
(2.9) k &P <8 <

Then the function u sarisfies the following estimates:
@10 swp lalP<c flulPex
B .

. : C,
(2.1D flulpdxgcsjlulpdx
B, C,

where /f denotes the average and the constants ¢4, C5 depend on kX, k,, p, N, B, and D, but are
independent of kyandr.
PROOF:

It is enough to prove (2.10) since it immediately implies (2.11). Let us assume that
ue Wl'P(Dr) is a solution of the minimum problem (2.7); then, for every open set A € D, u

satisfies the weak maximum principle

(2.12) sup u=supu
A dA

(see, for instance, [21], Theorem 4.3) and the local estimate

(2.13) sup [ul Scs(/‘flu |Pax)'
B(y.R/2)
B(y.R)




for every y, R such that B(y,R) = {x € RN: Ix — yl < R} is contained in C, (see [20], Theorem 2.1).
Here the constant ¢, depends only on N, p and k /k;. ’

Now (2.10) follows easily from (2.12) and (2.13); in fact, since BCCD, there exist an open set A
and a positive number €, such that BCC A CC D and {xe RN: d(x,A) < 2¢} C C. Then,
setting A_ = X, + rA we have

supu € supu < sup sup lul <

B’ aAr ye BA, B(y.er)
C
C sup jc’lu [Pax)'P < 6 L sup (jlu | Pax) P <
A B(y er) i ‘B(O er)l PyeodA, By
S a— P

Taking the power p, it follows that

sup lul? < [supul® < (Er)—NCGJ-Iulpdx=c4:flulpdx,
: B C C

e T

where ¢, depends on N, p, k'z/ky B and D, but not on kj and r. 1

In the proof of the next existence theorem, we need to approximate sc’F,® with a
sequence of coercive functionals (G® ). Therefore we first introduce the functionals ‘Pp,
Gy, G%, 1 LP(Q) x 4. — [0,+e<] defined as follows:

J | Du | Pdx if ue WP(A)

(2.14) ¥ (wA)=174

+oo otherwise

1
(2.15) Gy s(WA) = (Fy + =F)(,A)




Gh S(u,Q) if u-pe Wé'p(Q)
(2.16) G (w=y

+oo otherwise.

THEOREM 2.3

If we assume (1.1) - (1.5), then for every h € N there exists u, € LP(Q) such that

my, = s¢’F, ®(u).

PROOF:
In order to prove the theorem, we first show that (G“’h‘s)s has a sequence of minimizers which

is bounded in LP(Q2).
Since Gq’h's is l.s.c. and coercive in LP(L), for every h,s € N there exists a solution

u, € LP(Q) of the minimum problem

— : ¢
2.17D m, = rru{,l Gh's(u).
ue L(Q)

From (1.2) one first obtains that

(2.18) J"lDuhs |Pdx < const.
Q

n

Let us prove that

(2.19) J | uy | Pdx < const.
Qh

By Lemma 1.3 and assumption (1.4), there exists ifh.se W;"’ (€2) + ¢ such that

(2.20) j D, ) |Pdx < c3f | D@, .~ ) |Pdx
Q Q,

and from Poincaré inequality




(2.21) j lu, —o[Pdx sj |G, —olPaxsc j |D, - o) [Pdx.
Q, Q Q

From (2.21), (2.20) and (2.18), we then have (2.19). Moreover we can show that

(2.22) J. lu, _ [Pdx < const

uniformly with respect to h and s; in fact from (2.11) it follows that
P, p
Jluh’s l dx SCSJ‘!uh‘S I dx
B, G,

from which, taking the sum over i and using (1.4) we obtain

(2.23) [ 1o, 1Paxc [ Ta,, 7ax
By Q,

This last inequality, together with (2.19), gives (2.22). Hence we have finally

(2.29 J | u | Pdx < const
: ;

for every s,h € N.
Now, up to a subsequence, u, ; coverges weakly in LP(Q) as s — oo, to some function
u,€ LP(Q), which, as we are going to show, minimizes sc"F?,. In fact, since (G ), is
monotonically decreasing and pointwise convergent to F; as s — oo, we have
— (p - . . - (P
< <
sc Fp(u,) < lin_iirif F‘é’(uh’s) < Iéniug Gy (u

h,s) :

But the fact that uy, ( minimizes G% ;on LP(Q) yields
G(Ph,s(uh,s) s G(ph,s(v)

for every v e LP(Q) and hence




se Fi(u) < lim Gf (v) = FJ(V)
s

for every v € LP(£2). Then we have

sc FPu,) € inf FP(v) = inf sc FX(v),
BT T e M velf@ O

that concludes the proof. 1

REMARK 2.4
The limiting function uy, € LP(€2), which has been determined in the preceding theorem, has

the following properties:

< Lp
2.2
(2.25) u lQﬁ e W (Qh)
(2.26) Uyo|g, = Ulq  Weaklyin W P(Q), as s —
(2.27) U] 30 = ®laa
(2.28) f luh S |Pdx — 0 as s —> oo,
Qh

In fact (2.25) and (2.26) follow from (2.18) and (2.19); taking into account (2.20) and Rellich's
Theorem one gets also (2.28). Finally (2.27) can be obtained noticing that, for every s € N,
(uy, s-9) belongs to the set of v's in WLP(Q, ) such that vlyo= 0, which is a weakly closed subspace
of W1P(Q). |

In order to state the main compactness theorem, from now on, we shall indicate by M, the
class of the solutions of the minimum problem (2.1) and by Mh* the subset formed by the functions
up € LP(Q) which are weak-LP-limits of sequences (uh's)S of minimizers of G‘Ph'sz

(229) M, = {ue LP(Q): scF,%u) = m, }

(2.30) M= {u e LP(Q): 3 a9Tee, 3 u;—> u weakly in LI(Q), G® o(ug) = my o).
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THEOREM 2.5

Ler us assume that (1.1) - (1.7) hold and let (u, ), be such that u, e Mh*, for every h. Then there
exist an increasing sequence of integers (t(h)), and a function u e WLP(Q), with u~¢ € W;'P(.Q),
such that u 4, —uin the norm topology of LP(Q).
PROOF:

Since u, is a minimum point for sc’F,® and (1.1) - (1.3) hold, it follows that

2.31) j | Du, |Pdx < const.
&,

By Lemma 1.3, there exists a sequence of functions (UI,), in WP(Q) + ¢ such that

(2.32) uh]Qh = uh]Qh
(2.33) j D8, [Pax < ¢ j | Du, |Pdx.
Q Q,

But (2.31), (2.32), (2.33) imply that (ﬁh)h is bounded in W1P(Q) and hence it has a subsequence,
still denoted by (&iy),, such that k

(2.34) 4, —u weakly in WLP(Q) and strongly in LP(Q)
where ue Wi (Q) + 0.

Our aim is now to prove that also (uy), tends to the same u in the LP-norm. From (2.18) we

have .

—u | Pdx = ~v L ]P . lr

J[uh u!dx-—J.[uh ul +z Jluh u’dx
Q Q-D, el p

where the first term tends to zero because of (2.34). Setting

i—»
v, =f u

D,

the second one can be estimated as follows:




(2.35) > f!u —ulPax< ey jlu —vi P+ c Y, le —uPax.

ie 1<5L1D‘1 1eIh

Using Poincaré inequality and assumption (1.6), we obtain for the second term in the right hand
side of (2.35) that

(2.36) > le -ul"dx<cr"leul"dx—>o
leI“Dh

The estimate of the first term is more delicate. We can actually prove the next inequality:

2.37) Z Jlu -V lpdx<cz jlu -v {pdx

ie I 1eIhC
h

In fact, since u,e Mh*, u,, is the weak-LP-limit of a sequence (u (), of minimizers of G® ;. In

particular foreachhe Nandie [

i, . . P =1
u - uh—vh!qx‘ as s —> oo, weakly in L°(D, ).

i
s~ VrlD}

Hence we have

z J.Iu—v |pdx<z liminf lu —v ' |Pyx.

5.~ oo

ie Iy ie Iy i
DBy

Moreover (u,, -~ v, restricted to D}, is a local minimizer of Gy, , (defined by (2.13)) on D, ie.

i i i
G v, D)) € G, (w, D))

hs(Uns™
for every w € WLP(D)) such that w — (u, o~ v)) € WiH(D,). Hence, by Lemma 2.2, (up = v.)
satisfies an estimate of the type (2.11) on D', which implies

Z liminf ‘u —-v [pdx<c52 liminf Iu -—vx|pdx

el §—ro0 W 1 S0 o
1€ 1 i€ 1
h D, h C

h
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Since the convergence of (u, .— V), is strong in G ,(see (2.28)), we finally obtain

CSZ liminf 'u —~v |pdx_c j.luh—vih!pdx,

. I s . I .
1€ 1 ie 1
h :h hDh

which concludes the proot of (2.37). Now, to complete the proof of the theorem, it is enough to
show that the right hand side of (2.37) tends to zero as h goes to infinity. To this aim we prove that

(2.38) > [lu-vlPax =0
ieIhC‘i1

as h goes to infinity. Since U= u, in Q, , then

Z jiuh—-vihlpdx Z J.]u —ulPdx + Z Jlu v lpdx

iel, ie ]y, Ch ie i
h
from which, taking (3.34) and (3.36) into account, we obtain (2.38). Hence we have finally

proved that
(2.39) u, —u strongly in LP(Q),

as h goes to infinity. |

COROLLARY 2.6 ,
In the hypothesis of Theorem 2.5 it follows that m, — m, with m,, m defined by (2.1), (2.3)

respectively.
PROOF:
Trivial, using Theorems 1.1, 1.5, 2.5. |

REMARK 2.7
If the limiting functional F? is strictly convex, then the minimum point u of (2.3) is unique.
This implies that the whole sequence (u,), converges to u, strongly in LP(€2). |

The assumptions (1.1) - (1.6) stated in Section 1 contain as a particular case the situation.in
which the integrands f; are identically zero on the holes B, i.e.
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£ (x,£)=0 in B,x RN,

In this case the asymprotic behaviour of problem (2.1) can be investigated in a different way,

weakening the hypothesis concerning the structure of the holes and allowing more general

geometric configurations.

To this aim we assume the following:

(2.40)

(2.41)

Q is a bounded subset of RN and for every he N B, is a compact subset of { that lies
locally on one side of its boundary; 0B, is supposed to be Lipschitz-continuous. The
complement of B, in Q will be denoted by ;..

The sequence of characteristié functions (1 )y, is supposed to L(£2)-weak* converge to
Qh h pp

a limidng function b € L>(£2) such that
b=2B>0 a.e. in Q,
where J3 is a real constant.
For every heN, f: QX RN - [0,4eo[ is a Borel function, convex on RN for almost

every xe€{2and satisfying
@ o lelrsrxB e, lelr  inQ xRN

) fxE=0 in B;x RN,

where ¢, and ¢, are independent of h and 0 <¢, <c,.

The sequence (€2,)y, has the Uniform Local Extension Property (ULEP) according to the

following definition.

DEFINITION 2.8

The sequence of sets (,)y, has the Uniform Local Extension Property (ULEP) with constant
¢ >0, if for every pair A’, A of open subsets of RN such thar A'CCA and for every he N there
exist a linear and continuous extension operator E,: WP(ANQ,) = WIP(A'NQ) and a constant
¢, > O such that for every ue WHP(AN Q)

1) Eu=u ae.in A'N Qh

if) J' IDE,w [Pdx < chf | Du [Pdx
ANQ, ANQ,
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i limsupc, € ¢ < oo,
) h — oop h

REMARK 2.9
Note that the sets L, Q,, B, defined in Section 1 are a particular case of (2.40) and by
Lemma 1.4 satisfy (2.41). Moreover, an extension property of the type (2.43) holds, by

Lemma 1.3. |

REMARK 2.10

Note that the bound iii) in the previous definition is independent of the sets A, A'. If the
conditions of Definition 2.8 are fulfilled just for A'= Q and A = RN, then the sequence (), is
said to be satisfying the Strong Connectivity Condition (SCC) with constant ¢ (see [23]). It is an
easy matter to prove that SCC implies £, to be connected for h large enough. |

Under assumptions (2.40) - (2.43) most of the results of Sections 1 and 2 concerning
I"-convergence, integral representation of I'-limits, existence and compactness of minimizers and
minima for problem (2.1), are still valid, while some proofs need suitable modifications. What in
fact loses its meaning in this new context is Lemma 2.1, whose application (see proof of
Theorem 2.5) is based on the homothetic structure of the holes considered before. In order to
avoid confusion and misunderstandings, we now consider one by one the true results, giving the
proof if necessary. '

Theorems 1.2 and 1.5 are still valid when assumptions (1.1) - (1.7) are replaced by (2.40) -
(2.43); their proofs require simply to use the ULEP in place of Lemma 1.3. Moreover
Theorem 2.3 can be replaced by the following one.

THEOREM 2.11
Under assumptions (2.40) - (2.43), for every he N there exists u,€ LP(Q) such thar

m, = sc‘F‘If(uh) ,
where my, and sc”F?, are given by (2.1) and (2.6), respectively.
PROOF:

Let (u,), be a minimizing sequence, that is

scTFp(u )—> m,




as n tends to infinity. Then sc”F® (u ) is bounded for n large enough and hence from (2.6)
u e WHP(Q), u = ¢ on 0Q. But from (2.42-2) it follows that

[ 1oy, IFax <
€,

independently of n. Taking into account the ULEP, it follows that E,u_ is bounded in WLIP(Q) and
hence weakly converges to some function u,, withu,— @ W(’;" (Q). By the lower semicontinuity
of sc”F?, we obtain

s Ffu,) < liminf s FJ(E,u,) = liminf ffh(x,Dun)dx =m,

@

that concludes the proof. 1

COROLLARY 2.12

In the hypothesis of Theorem 2.11 it follows thar m, — m, with my, m defined by (2.1), (2.3)
respectively.
PROOF:

From the I'-convergence results (Theorems 1.2, 1.5) and the existence of minimum points for
(2.1) (Theorems 2.11) it follows directly the conclusion using Theorem 1.1. In fact if u; is a
solution to problem (2.1), then |

J. 'Duhlpdx <c
Q,

independently of h. By the ULEP one can find a sequence of functions E,u,e Wé"’(Q) + @, such
that E u,=u; on ,, which are bounded in WLP(Q), are still solutions to (2.1) because of the
particular structure (2.6) of sc™F?,, and finally have a subsequence which is strongly convergent in
LP(Q) to some function u. |
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3. The quadratic case with holes: resolvent and spectrum convergence

In this section we consider a case in which f, is a quadratic form

3.1) £ (x,5) = a (OEE.

J “17)
where (zLi"J. ) is a NxN symmetric matrix of functions in L*(€2), that satisfy the following conditions

(3.2) c, g2 <al; EE <c, ]2 in Q x RN
(3.3) al (x)=0 inB,,

with 0 < ¢,< ¢,. We assume that Q, Q,, B, satisfy (2.40). Moreover we suppose that (Q,),
verifies (2.41) and the SCC in the sense of the following definition (see [23]).

DEFINITION 3.1

The sequence of sets (C)y), satisfies the Strong Connectivity Condition (SCC) with constant
¢ >0 if for every he N there exists a linear and continuous extension operator
E,:HYQ,) —» HYQ) such that

i) Eu=u a.e.in Qn

if) J‘ID(Ehu)Izdx < cj | Du | %ax
Q Q,

for every ue H{(Q,) . |

We assume that there exists a functional F satisfying (1.9) such that the sequence of functionals
E%L%(Q) — [0,+e<] I'-converges to the functional FY, where E®and F are given by (1.23) and
(1.24), respectively, with @ = 0 and p = 2. Under our assumptions it can be proved that the
integrand f: QxRN — [0,+ec[ corresponding to FO in (1.9) is a quadratic form of the type

(3'4) f(xaé) = aij(x)gigj
and ay; is a NxN symmetric matrix in L=(Q) such that

(3.5) c,lel?< ay(OEES |2 ae.xe Q VEe RV

for a suitable constant ¢, 0 < ¢, < ¢, (see [28], [29]) for the proof of (3.4) and [15] for (3.5)). ‘
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Under these assumptions we consider the following boundary value problem

r h .
- D.x(aij Dju) +Au=g in Q
du
(3.6) Y e = () on dB,
dv,
u=0 on dQ s

where 6/0v, denotes the conormal derivative operator at dBy

v Bu h i
——=a..Dun
auh ij7)" h

and n, is the outer normal at 0B, . The main purpose of this section is to study the behaviour of the
weak solutions, the eigenvalues, and the eigenspaces related to problem (3.6) as h goes to infinity.
First of all, in order to briefly deal with existence of the weak solutions, we introduce the

function space Y,, defined by

Y,={ve Hl(Qh):v::O on 9Q}.

As an immediate consequence of Lax-Milgram Lemma, for every h there exists one and only one
weak solution u,e Y, to problem (3.6), according to the usual variational formulation. Note that,
since (3.6) defines its solution only on ,, every extension of u, to a function ﬁhe LZ(Q)

minimizes the functional

Fo(v) + f(kvz— 2gv)dx
Q,

in the class L?(Q). That is true in particular when ﬁh= E,u,, with E, given by Definition 3.1. In
order to make an asymptotic analysis of problem (3.6) we need a further I'-convergence result.

THEOREM 3.2
If (g, is a sequence in LXQ) which strongly converges to some g € LX(Q), then

3.7) Fo(v) + J(k&- 2g, v)dx —— F(v) + J.(?wz- 2gv)bdx,
Q, Q
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where b e L=(Q) is defined by (2.41).
PROOF:
In order to semplify notation, let us set

69) G0 = Jav- 260, G = [ 2gvbax
Q, Q.

The proof of (3.7) is an easy consequence of the fact that, for every sequence (vy), in L3(Q) which

is strongly convergent in L%(Q) to some v, we have

(3.9) Gy(vy) = G(v) “ash - +eo X

We now introduce the operator A,: Y, — Y, ', defined as follows

(3.10) Au=g fahj DuDydx=<gv> VveY,,

Qh
Where <., .>denotes the duality pairing between the spaces Y, and Yh'. According to (3.10),
problem (3.6) takes the form '
(3.11) (Ay+ADu=g,

where . Y, — Yh' denotes the canonical immersion defined by

<lu,v> = juv dx YV ve Y,.
Q

Moreover we define two operators which are going to express the limiting problem. Let
A: HI(Q) — H(Q) be the operator defined by

—Di(aij Dju) =g inQ,

(3.12) Au=g & {
ue H(l)(Q) ,

and denote by B: L%(£2) — L%(Q) the operator of pointwise multiplication by b, i.e.

(Bu)(x) = b(x) u(x) a.e.in Q.
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With this notation we prove the following theorem.

THEOREM 3.3
If (g, is a sequence in L2(Q), which strongly converges to g € LX(Q), A is non negative and

uh" € Y, issuchthat
(3.13) (A ADuy =g o .

then the sequence (Ehuh}‘)h , where E, is given by Definition 3.1, converges weakly in H(', () and
strongly in LXQ) to the unique solution u*e H{ (Q) of

(3.14) (A +AB) u* = Bg.

PROQF:
After recalling that Ehuh>~ is a minimizer of the functional Fh°+ Gy, (G,, is defined by (3.8)), in
the class L%(Q) and that

Fg-r- Gh—r—> F0+ G,

(see Theorem 3.2), it remains to prove that (Ehuhl)h is bounded in H(‘, (£2). This is almost
immediate, since (3.2) implies

(3.15) clj | DU | %dx < const
b

and from ii) in Definition 1.3 one obtains

(3.16) J‘ lD(E’muﬁ) |2dx < const.
Q

Hence, there exists at least one convergent subsequence of (Ehuh;‘)h, whose limit u* has to be
minimizer of the limit functional F%+ G (see Theorem 1.1). This is equivalent to say that u* solves
equation (3.14). From the uniqueness of u*, which is due to the strong convexity of the functional

Fo+ G (see (3.5)), we can conclude that the whole sequence converges to ut

(3.17) E.u* — u*  weakly in H! (Q), strongly in L3(Q). |
h*h 0
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REMARK 3.4

The result stated in the preceding theorem, considered in the case g, = g for every h, can be
interpreted as the strong convergence of the resolvent operators (A, + AD)L, up to the composition
with restriction and extension operators. If we denote by R, the restriction operator from LAQ) to

LX(Q,), we actually have
(3.18) (E (A + ADIR)g — ((A+2AB)'B)g ,

strongly in L%(Q) and weakly in H! (Q), for every g € L%(Q) and every A 2 0. ]
gly 0

The remaining part of Section 3 concerns the spectral behaviour of the sequence (Ap), as
h—eo. From classical spectral theory for compact operators, one can easily prove that, for every h,
there exists a sequence (A ), of positive real numbers and a sequence of functions (uh“ )pin Y, such
that

(3.19) VneN Ag’= ATy,
(3.20) 0<)) SA?S . SAN S el > 400,
3.2D the sequence (4 ), s an orthonormal basis for Lz(Qh).

Moreover, the following variational characterization of A" holds:

<Ahu,u> . <Ahu,u> .
n Yh’Yh . Yh‘Yh
(3.22) xh =  min ———— = min  max ————,
ue Y, tull, VY, veV ull,
(uvu;)h . O L (%) du’nV =n L (%)

j = lL..n-1

where (u,v), denotes the scalar product in L3(Q,).
An analogous result holds for the eigenvalue problem Au = ABu. More precisely, there exist a
sequence (A")_ of positive real numbers and a sequence of functions (u" ), in Hé (Q) for which

(3.23) YneN Au"= A"Bu® ,
(3.24) O<A'<A?< ... SA< ... — 4o,
(3.25) the sequence (u™), is an orthonormal basis in L2(Q), with respect to the scalar

product (., . ), defined by
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2
(3.26) (uv), = J. uvb dx Vuve L (Q).
Q

Moreover, the following variational characterization of A™ holds:

<Au,u> , - <Auu> ,
H, L H,
(3.27) A=  min —————— = min max 2
ueH,@  lulf VEHyQ) ueV i
(uu)y=0 dim¥Y=n

1= l..., n-1

Finally, we say that Ae (A™" has multiblicity m(A), if m(A) =card{n: A =A"}.
Before stating the main result about spectrum convergence, we introduce the following

definition (see [27]).

DEFINITION 3.5
Ler (S))y, S be a sequence of convex subsets of a reflexive Banach space X. We say that Sy

Mosco-converges to S, and we write

M
S, —S ,
if the following relation is fulfilled:
(3.28) w—lihrnjuag Sh =8 = S'l}ilr{ljlf Sh

Notation in (3.28) has the following meaning. By

w-limsup S
h— og h
we denote the set of all x € X for which there exists a sequence (xy)y in X that weakly converges
to x and such that x,e §; frequently. By
s-liminf Sy
h— e
we mean the set of all x € X for which there exists a sequence (x,), in X that strongly converges to

x and such that x,e S, definitely.
We can now state the following theorem:




THEOREM 3.6
According ro the notation introduced in (3.19) - (3.21) and (3.23) - (3.26), we have the

following:
(a) A= An as h — +oo, for every ne N
(b) if A has multiplicity m and l“=l“+1=....=>»n+m‘1, and we set
n n n+m-1 n n n+m -1
Sh= span [Ehuh, ..... Euy ] . S'=spanfu,.....,u ],
then (Sh")h Mosco-converges to S™ in LXQ), for everyn € N. |

The proof of this result is postponed in Appendix A.
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APPENDIX A. Proof of Theorem 3.6.

The present section consists mainly in a detailed proof of Theorem 3.6. Before entering in
this topic, we briefly recall some facts that are needed in the following.
First of all, we observe that the Mosco-convergence of convex sets, given by Definition

3.5, has the following property:

(A.1) Urysohn Properry: Let (%)h, S be a sequence of convex subsets of a reflexive Banach
space X. Then (S ), Mosco-converges to S if and only if for every subsequence (SG(’h))n
there exists a further subsequence (Sc(*(h))}1 that Mosco-converges to S.

For more details see [27], 1.3.(c).

Moreover, in addition to formula (3.22) we recall another useful variational
characterization for the eigenvalue A of problem (3.19). Let (up) be the sequence in (3.21) and
denote by W the space Wi= span[u;, ..., uy]. Then the following formula holds

<Ahu,u>Yh'Yh

(A2) Ay = max 3
UEWh il 2
h

for every h, ne N. A complete proof of (3.22) and (A.2) will be given at the end of this section.

LEMMA A1
For every n there exists a positive constant c=c(n), independent of h, such that

(A.3) ?»E < ¢(n) for every he N.
PROOF:
Let us fix ne N and denote by A" the n eigenvalue of the Laplace operator in HS(Q),
J'IDvlzd X
. Q
(A4 A= min max
WQPIé(Q) ve W 2
dimW =n J.V dx
Q

Using (3.2), we have that for every ve Y
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2
Dvidx
<A"V’V>Yith Qj
h

IN

(AS) 19%)

2
Ivil, 2
L (Qh) Jvzdx

Qp

Moreover, by writing v instead of E, v, the following estimate holds trivially

JIDvlzd x Jlbvlzd X j v x
h Q Q

Q
(A.6) <

J.vzd X jvzd X J.vzd X

Qy Q Qp

Now, let us denote by W™ the subspace of H(l)(Q) which reaches the minimum in (A.4) and by
Wﬁ the space of restrictions to £, of functions in W? , namely R;,(W™"). Since the elements of
Wn are eigenvectors of the Laplace operator, and hence analytic, by the unique continuation
‘property it follows that dimwg = dimW" = n. Hence, if we can prove that

jvzd X
Q
J—vzd X

Qp

(A7)

< c'(n) Yhe N, Vve Wn,

where c'(n) is independent of h, then the lemma is proved. In fact, using (3.22) and (A.5), we
can conclude that

2
Dvidx
<AhV’V>Yi1,Yh J.
n Qh
A, £ max 5 < ¢y max =
veWw, vl 2 veW;I 2
h
L@ j Vi x
Qp
levlzdx levIzdx
Qy Q
=Cp, max ———— < ¢ ¢'(n) max ———— = c(mA™
ve Wi s ve Wi 2
jv dx jv dx

o4 o




In order to prove (A.7) it is enough to show that

jvzd X
Q
< c'(n) VheN, Vve Wt such that |v3dx =1,

Q
jvzd X

Qy

(A.8)

since (A.7) follows then by a simple homogeneity argument. Let us show (A.8). First of all, by
(2.41)

(A.9) J’ Vidx - [ovidx
Qy Q

for every ve W1, as h goes to infinity. Now, since the set

K= {veWn: jvzdx= 1}
. Q

is compact in Wn and the functions in (A.9) are equicontinuous on K, by Ascoli-Arzela'

Theorem the convergence in (A.9) is uniform on K. Using the fact that
J.bvzdx > B Vvek,
Q

we then obtain that

J.vzd X jvzd X

Q Q

-—-) ?
J‘vzd X fbvzd X
Q

Qp

uniformly on K, and this immediately implies (A.8). |

PROOQF OF THEOREM 3.6:

Let us start with the proof of (a), that will be obtained through four steps.

Step 1. There exist an increasing sequence of integers o(h), a sequence of positive real
numbers {A" ne N} and a sequence of functions {u® ne N} _GH(I)(Q) such that for every ne N
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n Tn
(A.10) ?»c(h) - A

n —n . 1 . 2
(A.11) Ec(h)uc(h) - u weakly in Hy(€2) and strongly in L'(Q)

as h goes to infinity. Moreover

(A.12) the sequence {1_1—;} ne N} is orthonormal in LZ(Q) with respect to the scalar
product (, ) defined by (3.26).

Step 2. If Ais given by (3.27) and A"is obtained in step 1, then we have
(A.13) {A®neN} € (A" neN},
i.e. every X' is an eigenvalue of problem (3.23).
Step 3.
(A.14) {A* neN} = (A% neN},
i.e. every eigenvalue of problem (3.23) belongs to the sequence {A* ne N}.
Step 4. For every ne N
(A.15) CAE AT,

i.e. {A* neN} coincides with the sequence of the eigenvalues of problem (3.23) repeated

according to their multiplicity.

Proof of Step 1. (A.10) follows directly from (A.3). To prove (A.11) it is enough to
show that (Ehuf:)h is bounded in Hé(Q), independently of h. First of all, if we multiply

Aty =ty Ay
by uﬁ, we integrate by parts on £} and we take (3.2) into account, then we obtain

c, f Dudx < AL

Q
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Hence, from (A.3) and the SCC it follows that

2 Cl
le(%uh)l & < oy
Q

for every he N, which concludes the proof of (A.11).
Proof of Step 2. Let us consider (Kg(h)), (ug(h)), A% u” satisfying (A.10), (A.11). We

n

n n . . « . .
note that Ec(h)u o(h) solves (3.6) when A =0 and g = ?LG(h) Usny that is to say it minimizes

0 n V n
Fom(¥) =2 f Moy Yoy 4%
QU(h)

on LZ(Q). Since

n n anTn
Ay Bmlsm — M U

strongly in LZ(Q), as h goes to infinity, then by Theorem 3.2 and 1.1 u"minimizes the I"-limit
Flv) -2 Jb??‘ "y dx
Q
on LZ(Q). This means that u” solves
Aun"=A"Bu" in Q,

i.e. AMis an eigenvalue of problem (3.23) and hence that {A" ne N} € {A" ne N},where
(A", is given by (3.24), (3.27).
Proof of Step 3. First of all we prove that

(A.16) 0<A'<S A%< . = +oo.
From (3.20) and (A.10) we obtain easily that

0< s A< ... <A< ...
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To complete the proof of (A.16) we now show that
(A.17) Ap 2 cgA” for every he N,

where A™s the o™ eigenvalue of the Laplace operator in Hé(Q) given by (A.4) and c is the
constant of the SCC (see Definition 3.1). From (A.2), (3.2) and SCC we have in fact

le(Ehu)lzdx
Q
Ap 2 cq lxl'za); )
flEhu!dx
Q

Since dim E (W}r:) = n, the right hand side of the preceding inequality is larger than or equal to

J' Dvid x
o

. n
cq min max-—-—-—-——:cqz\.
i
VEHy(Q) veV 5
J-vdx

dimV=n

Q

The proof of (A.16) follows then from the fact that
C0<A'sA’S o e

We now prove (A.14) arguing by contradiction. We suppose there exists Ae {A" ne N}, such
that Ae {A" ne N}. From (A.16) there exists me N for which

}\' < xrm—l
Our purpose is now to construct a sequence of functions w €Y, such that
(A.18) (woup) =0  i=1l..m,

where (u,v}‘ denotes the scalar product in L2( Qh) and
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<A w_,wW >_,
RUR TR YL Y

(A.19) 5 - A
1wl %

as h goes to infinity. Before proving that this is possible, we show that it brings to the con-
clusion of the proof. In fact, by (A.18) and by the variational characterization (3.22) of ?\;’M
we get
<Ahwh,wh>\‘,h,Yh
5 ;
Hwy ”LZ(Qh)

At <

hence, from the fact that A™" — X™! and from (A.19) it immediately follows that A" < A,
which clearly contradicts our assumption.
In order to construct w we consider a solution u of the eigenvalue problem

Au = ABu ,

with (u,u))= 1. We also consider the solution y, to

Av, = Au

v, € Yh

which is uniquely determined and, by Theorem 3.3, satisfies
Ev, —»u weakly in Hé(Q), strongly in LZ(Q)

as h goes to infinity. If we set

m

i i

W, =Y - E (vh,uh)huh
1=1

with (u;) given by (3.19), then (A.18) is immediately satisfied. Moreover, using the fact that




(vh,u;)h - (u,_ﬁi)b
as h goes to infinity and that, since A¢ {A: ne N},
(wu),=0
for every i, (A.19) can be easily obtained by direct computation. This concludes the proof of

(A.14).
Proof of Step 4. To prove (A.15) it is enough to show that

m() = m(\)

for any eigenvalue A of problem (3.23), where m(A) and m(}) denote the multiplicity of A in
the sequence (I": ne N} and {?\.n: ne N}, respectively, i.e.

m(A) = card{n: A ="}
and
m(A) = card{n: A =A"} .

Given Ae (7&")n we claim that

i) m(\)

<
i) m(A) <

)
).

m
m

If E, denotes the eigenspace associated to A and 173;‘ is the space generated by the eigenvectors
associated to _?:n, for all the n such that "= A, it is clear that

E, C E,.

Since the sequences {u™ neN} and {a" ne N} are orthonormal in LZ(Q) with respect to the
scalar product (, %, we conclude that

m(}) = dimE,
m(}) = dimE,),

which implies 1).
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To prove ii) we argue by contradiction and suppose that
(A.20) m(A) < m(R).

From (A.14) and (A.16) there exists Me N such that

(A21) ™Mo <M

Let us construct a sequence of real numbers (7\,‘ ), such that

1) A — A ash goes to infinity,
2) Xn is not an eigenvalue of ‘Ah’

3) Ki\f <A <Kﬁ4+1.

Note that 3) can be certainly obtained for h large enough by virtue of (A.21). Let k be the least
index such that A<= AM = A, so that Hk, v 0™ be the corresponding eigenvectors defined in
Step 1. From (A.20) we can find a solution ue Hé(Q) to the eigenvalue problem

Au =2ABu
such that
(u,uh),=0 i = KM,
Moreover we can require also that

(u,u'), =0 i= 1.kl

! k-1

since u,....u"" correspond to eigenvalues X' A different from A.

Let us consider ¥ such that

Avy = Mu
v, € Yh

and set




Wh =%

2Ngh

~~
<
o

£
o
:;./
=]
oo il ol

Using the fact that for everyi=1,..M
i =iy _
(voup), — (wu )= 0
as h goes to infinity, it is easy to check that

D W€ Y.,
2) (W) =0 i=1,...M

<Ahwh’wh>Yi1,Yh

3) - A as h goes to infinity.

2
2
Hw 1l @)
Then, since from the variational characterization (3.22) of th+1 we have

<Ahwh,wh>Yh'Y}1

M+1

Hw Il 2
h'L (Qh)

M

and since 7\,1:4’“1 - Wt follows immediately that

which clearly contradicts our assumptions. This concludes the proof of Step 4.
Since by (A.15) the limit in (A.10) does not depend on the particular subsequence, then

Ay — A"

as h goes to infinity and the proof of (a) is then completed.
In order to prove (b), given ne N, let us consider (u:ls (h))h ,un satisfying (A.11) and set

- - -1
S"= span[un,....,l_ln+m 1.
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According to Definition 3.5 we also set

Vel n
S'=5s llllmmf Sc(h)

and
n

S" = w-limsup S oy

h—3+o0
By the Urysohn property (A.1), it is enough to prove that
) s"es”

y S'c §
y §h=8"

LSS (V]

For simplicity in the following we denote o(h) by h. To prove 1) we consider ve S". By
definition there exists a sequence (‘ﬁ)h in H(I)(Q) such that

v, &V weakly in Hy(Q2), strongly in LQ)
as h goes to infinity and y & SE frequently. Then vy is of the form

m-1
i n+i
Vh = E ¢y Epuy

i=0
where c}l1 are suitable constants. Since (v, ), is bounded in LZ(Q) it follows that
m-1
i 2
E (C;)z = J vy dx < const.
i=0 Qy
Then, up to a subsequence, for every i = 0,..., m-1, there exists ¢’ such that
i i
¢, > cC

as h goes to infinity. Taking (A.11) into account we obtain that v has the form
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i=0

and hence it belongs to sm
To prove 2) let v be an element of S”. Then v is of the form

Setting
m-1

i n+i
vy = E C Ehuh ,

i=0

we have that ye S}’: for every h and that y tends to v, strongly in L?(Q), which proves 2).

To prove 3) we observe that S" is a linear subspace of S” because it is spanned by
eigenvectors related to A" Moreover from (3.21) and (A.12) it follows that dimS" = n = dimS"
and hence thatS" = S" |

In this final part of Appendix A we recall some well known results of classical spectral
theory for compact operators. We are going to apply them for proving formulas (3.22) and
(A.2).

THEOREM A.2

Ler T be a linear compact operator from a Hilbert space H of infinite dimension into itself.
If T is injective, positive and selfadjoint then its spectrum consists in a non increasing sequence
of positive real numbers (L) that tends to zero as n goes to infinity. Every non-zero eigenvalue
(1) has a finite number of associated, linearly independent eigenvectors, that is to say: () has
Jinite multiplicity. There exists an orthonormal basis (x)_ for H consisting of eigenvectors of
T.

Setting W, = span[X,,...., X ]and denoting by

(Tx,x)

(A.22) R =12

the Rayleigh quotient at x, where ( , ) and | l| are the scalar product and the associated norm in
H, respectively, we have
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(A.23) K, =max R(x)
xeH
= min R(x) = max min R(x)
er1 VEH xeV
dimV=l
(A.24) M = max Rx) = min - max R(x)
(x,xi =0 Yyreees yk_leH (x,yi )=0
i=1,....k-1 i=1,....k-1
= min R(x) = max min R(x)
erk VCH xeV
dimV=k

foreveryk > 1.

For the proof and more details see for instance [18], chapters VII, X.

Our aim is now to define a suitable compact operator ’II\‘h to which Theorem A.2 applies
and to deduce the variational characterization of its eigenvalues that will turn out to be the
inverse of ().:). The proof of (3.22) and (A.2) will follow easily.

We denote by T : Y, — Y, the linear operator defined by

(A.25) Tg=y f ang yDvdx=<gv>  VveY,
2

where <, > is the duality pairing between 341 and Yl'1 (see also (3.10)).

REMARK A.3
We recall that

Y, = {ve Hl(Qh): v =0o0noQ}

is a closed linear subspace of Hl(.Qh) and that the norm

[lvl = [|Dvl} 2
b L@,

is equivalent to the one induced by Hl(Qh). This fact can be easily proved taking into account
the SCC (see Definition 3.1).

L]
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PROPOSITION A4

Th is a continuous isomorphism from Y}'1 to Xl If Ah is given by (3.10), then 'I}“z A{ll.
PROOF:

Taking v =y, in (A.25) and recalling (3.2), we have

2 h o
c, f‘D%‘ < jaiij uD;udx = <gg>y, S lgh lyll .
2 2

Hence, from Remark A.3 we conclude that
Ha I, <cligl,
Wik b

that is to say

H’[;‘gHYh <c llgl{,,h,

from which follows the continuity of T, . The surjectivity and injectivity of T turn out right
from the definition. The equality T = A}’I1 follows from (3.10). |

A
We denote, now, by T, : Y, — Y, the operator

'I\
T, =1

where . ¥ — Y, is the canonical immersion defined by

<Iu’V>Y',Y = Juvdx
he th
Qy

for every u, ve Y .

PROPOSITION A.5
f‘h is injective, compact, positive and selfadjoint.
PROOF:
First of all, 'f“h is clearly injective, being the composition of two injective maps. Then let

us consider I as the composition of two maps i , i, defined by
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i: Y, - LYQ)

il (u)=u Yue Y

. 2 '
L:L(Q) = Y,

<i, (u),v> = fuvdx Vu, ve Y, .

YL Y,
he Yy
Q

By the SCC and Rellich Theorem applied to H(l)(Q) it is easy to prove that j is compact from
Y, into LY, ), while it is clear that § is continuous from L, ) to Y; . Hence Lis compact
and for the same reason also T, .

In order to complete the proof of this proposition we introduce in Y; an equivalent norm
i Ul'h which is given by the following scalar product

(A26) (f,g)l,h = <f’T“g>Yi1'Yh VigeY,.

It is easy to verify that (, )r is a scalar product on Y ; in fact it is clearly a simmerric bilinear
h . .. . .
form (note that ai}} = aﬁ). Moreover it is positive definite, that is to say

(’f,f)rh <0 = f=0.

To prove this fact it is enough to notice that, for every fe Y,

h
(B0 = <ETE>y o = J’ ayD, u, D uy dx 2

Q

c, leqllzdx 2 cq le(Fhuh)lzdx
Q

Qh

where y = 'l;\f. From the preceding inequalities it follows that if (f,f)r <0, then I%uh =01in
Q and hence y =0in % By the injectivity of T it follows then that F-o.

The equivalence between i l{, and the usual norm in Y, can be proved as follows. For
any fe Y, we have, as proved abo]{le,
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2 2
Ity = (€0, 2qIDyl2gq )

T

Finally, since T;ll = A is continuous from ¥ toY

2 ' 2
g lly = cliA Iy,

and A u, =f, we have the inequality
2 2
(A27) ek, = cmlifll,. .
h h

On the other hand, by the continuity of T itself we have for every fe Y,

2 2
“f”rh = <f,'I;1f>Yi1'Yh < llﬂ{{,h H’[K']fIL[h < Cl]f”y'h

that together with (A.27) proves the equivalence between ll q, and I I&,
We can now check without any difficulty that T is posmvc and selfadjomt with respect to
the new scalar product (, )r .Forevery fe Y, w1th T f =y, we have in fact
h

e, =<hET >, =<ITET >, | = juﬁdx 2 0.
h

Yho Y Yo Yy
Q

Moreover, given f, ge Y; withy =Tf, v = we have
h % % g

A A
= f dx = <Iy,v>y y =<DETe>y o =(Tfey
2
that concludes the proof. i

PROOF OF (3.22), (A.2):
We are now allowed to apply Theorem A.1 to "I\‘h. It turns out that "1‘"h has a decreasing
sequence of non negative eigenvectors (].L;l ), that can be characterized, for instance, by

(A.28) Hp = max R (x)
(g, gh)r =0
i=1,...., n 1
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where (g;‘)n is a fixed orthonormal basis consisting of eigenvectors of ’/I\‘h associated to the
corresponding eigenvectors (u;: Do and

A
(A.29) R, () =———F—

lgll

g Ty,
for every ge Y, .
Let us see now the relationship existing between the sequences (u;‘) and (?\,ﬁ) given by

(A.28) and (3.22) respectively. First of all we can prove that

(A.30) bt = o

. A 3
for every n, he N. Let g be an eigenvector of T, associated to iy and set T g = vy, or
equivalently, g = A vy.. Then

A

n nn
Thgh = uhgha
i.e.

n n n
Ivy = uhAhvh,
‘that is to say

B 'IVE = A vi.

Comparing the last equation with (3.19) it turns out that (1,1;1‘)'1 belongs to the sequence
(Ay), defined by (3.22). Moreover it is easy to prove that

where v = ’J;‘ g. This implies that (v;:)n, up to a normalization, is an orthonormal basis of
Lz(Qh) consisting in eigenvectors of problem (3.19). Hence we can conclude that (;_L;:)'1 =Ap,
for every n, he N.

Now, since for every ge Y, , with T g=v, we have

A A 2
(Thg,g)l_h = <Thg’Thg>Yh,Yh = <IV’V>Yh’Yh = J.v dx
&
and
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2
h
g, = <g T8>y, y = j a;D, vD, vdx

Q
then the Rayleigh quotient R, (g) takes the form

livil, 2
L7Q,)

(A3 Rh (g)= .
<Ahv,v>

Then from (A.30), (A.31), (A.23) and (A.24) we deduce (3.22) and (A.2) without any
difficulty. |

Analogue techniques can be used to study the asymptotic behaviour of the eigenvalue

problem
-D (a}D;u) = Au in Q,
A32 ,
¢ ) —Q-l-l—= 0 on 0Q
o,

with Neumann conditions on the whole boundary d€;,, that, according to the usual variational

formulation, can be written in the form

(A33) | f aiD uD vix= [Ruvdx  VveH(Q).

ol
h
Q

More precisely, the following theorem holds.
THEOREM A.6

In addition to the assumptions (3.2), (3.3) let us suppose that dQ is Lipschitz-continuous
and that (%)h satisfies the SCC in the sense of Definition 3.1 with the inequality i1) replaced

by

(A34) IEulltg, < ¢ lulkq
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for every ue Hl( Qh). Then there exist a sequence of eigenvalues (7\;1) and of eigenvectors (ug)
of problem (A.32) that satisfy conditions (a) and (b) of Theorem 3.6, where Atand a"solve the
limit eigenvalue problem

—Q(aiiju) = Abu in
(433 _a_u_= 0 on 3Q
ov

whose variational formulation is given by

(A36) f 2,D, uD, vdx = [Abuvdx vve H{Q).
Q

Q
Moreover A, has the following variational characterization

Jaf}DJ. uDi udx

Q

7&2 = max . |
(u,u}1 =0
h Juzd X

i=1,....,n-1
Qy
REMARK A.7

Let us denote by T the isomorphism T:H(Q) — Hy(®Q) such that T = A™, with A
satisfying (3.12), and by [ the compact immersion of Hé(Q) into H'(Q) defined by

I, Hy(Q) - H'(Q)

< (,v>,1 ( Q),Hé @ g{ buvdx

for every u, ve Hé(Q). Then formula (3.27) can be proved applying Theorem A.1 to the
compact operator 'f‘: Hé(Q) - Hé(Q) given by "I\‘ =T {3 i
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APPENDIX B. Explicit computation of the I'-limit.

In this section we shall briefly consider two cases in which the I'-limit of a sequence of
functionals can be computed explicitly.

The first one, which is given by the following theorem, is a particular case of a more
general situation considered in [15] (see Prop. 4. 5) It concerns a sequence of quadratic
functonals F whose integrands have the coefficients a that tend in measure on £ to a matrix
of functions b it turns out that b are the coefficients of the integrand of the I"-limit B,

THEOREM B.1
In addition to the assumptions (3.1) - (3.3), with (Q‘)h satisfying the SCC in the sense
of Definition 3.1, let us suppose that

(B.1) Bhl - 0 as h goes to infinity,

(B.2) al g blj in measure on Q.

Then (Fh)h T-converges in L (Q) to F where F and F are given by (1.23) and (1.24)
respectively, with ¢ =0 and p = 2, and the integrand (3.4) of F satisfies

(B.3) g = blj a.e. in Q. |

The proof of this result and references on similar cases can be found in [15].

Another situation in which the I'-limit can be computed explicitely and which is also well
known is the one of homogenization. Here we shall briefly consider a homogenization problem
that will turn out to be a particular case of (1.1) - (1.7) and for which it is possible to prove the
so-called homogenization formula for the I'-limit.

Let Y = ]0,1[ be the unit cube of RNand B denote the cube [p,1-pl" 0 < p < 1/2.

DEFINITION B.2
We say that a function f: R — R is Y-periodic if f(x) = f(x + e ) for every xe R and for
every i = 1,...,N, where € seealy is the canonical base of R

Let us consider a Borel function W:RNXRN—-> [0,4=[ with the following properties:

(B.4) (. ,£) is Y-periodic for every &e RY,
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(B.5) W(y, . ) is convex on RNfor every ye RN,
B.6) 0<wy(yE)<glP onYxR',
N

(B.7) c EP<y(y.E) on(Y-B)XR,

with 0 <gsgq,.
Now we assume that the integrands { introduced in Section 1 are of the form

B.8) £, (08 =yhxk)

N
for every x, e R
Letus set

_1 a_1
(B.9) Y:-H(OL+Y) , Bh -—H-(OL+ B),

where oe ZNand suppose that

(B.10) Q is a parallelepiped whose vertices have integral coordinates.

Then assumptions (1.1) - (1.6) are all satisfied when D is replaced by Y and the set ¥1 is
replaced by the set of multi-indexes oe ZNsuch that o/h belongs to Q. Under conditions (B.4)-
(B.10) an explicit formula can be given for the I'-limit of the sequence &)y defined by (1.7),

as the following theorem states.

THEOREM B.3

Suppose that the sequence (E), given by (1.7) satisfies (B.4)-(B.10) and (1.22). Then

the integrand £ in (1.9) coincides with the function \f, given by the following formula
(B.11) Y, (&) = inf{ Jw(y,Du(y) + &)dy : ue Wllo’f(RI\S, u Y-periodic }

for every Ee RY

The proof of this theorem can be obtained by a direct application of a more general result
by Braides (see Theorem 15 in [4]) concerning the homogenization of a wide class of non linear
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and non equicoercive variational problems. An analogous result for equicoercive sequences of
functionals is announced in [25] and proved in [24], where a wide bibliography on this topic

can be found.
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