
Stability of the Riesz potential inequality

Nicola Fusco

Calculus of Variations and Applications

Trieste, January 29, 2020



Riesz inequality

Let f ,g : Rn → [0,∞) and h : R+ → R+ decreasing

(∗)
∫

Rn

∫

Rn
f (x) h(|x−y |) g(y) dxdy ≤

∫

Rn

∫

Rn
f ∗(x) h(|x−y |) g∗(y) dx dy

f ∗,g∗ are the Schwartz symmetrization of f ,g

f f ∗



Riesz inequality

Let f ,g : Rn → [0,∞) and h : R+ → R+ decreasing

(∗)
∫

Rn

∫

Rn
f (x) h(|x−y |) g(y) dxdy ≤

∫

Rn

∫

Rn
f ∗(x) h(|x−y |) g∗(y) dx dy

f ∗,g∗ are the Schwartz symmetrization of f ,g

f f ∗



Riesz inequality

Let f ,g : Rn → [0,∞) and h : R+ → R+ decreasing

(∗)
∫

Rn

∫

Rn
f (x) h(|x−y |) g(y) dxdy ≤

∫

Rn

∫

Rn
f ∗(x) h(|x−y |) g∗(y) dxdy

f ∗,g∗ are the Schwartz symmetrization of f ,g

If f = g and h is strictly decreasing

Equality holds in (∗) ⇐⇒ f = f ∗ up to a translation

Now take

- f = g = χE with |E | <∞ =⇒ f ∗ = χBr (0)
, |E | = |Br |

- h(t) = tλ−n with 0 < λ < n



Riesz inequality

Let f ,g : Rn → [0,∞) and h : R+ → R+ decreasing

(∗)
∫

Rn

∫

Rn
f (x) h(|x−y |) g(y) dxdy ≤

∫

Rn

∫

Rn
f ∗(x) h(|x−y |) g∗(y) dxdy

f ∗,g∗ are the Schwartz symmetrization of f ,g

If f = g and h is strictly decreasing

Equality holds in (∗) ⇐⇒ f = f ∗ up to a translation

Now take

- f = g = χE with |E | <∞ =⇒ f ∗ = χBr (0)
, |E | = |Br |

- h(t) = tλ−n with 0 < λ < n



Riesz potentials

If f ,g = χE , h(t) = tλ−n

∫

Rn

∫

Rn
f (x) h(|x−y |) g(y) dxdy ≤

∫

Rn

∫

Rn
f ∗(x) h(|x−y |) g∗(y) dxdy

becomes the Riesz potential inequality,

(∗∗)
∫

E

∫

E

1
|x−y |n−λ dxdy ≤

∫

Br

∫

Br

1
|x−y |n−λ dxdy , |Br | = |E |

and = holds iff E is a ball

If n = 3, λ = 2, Riesz potential Coulombic potential
∫

E

∫

E

1
|x−y | dxdy



Riesz potentials

If f ,g = χE , h(t) = tλ−n

∫

Rn

∫

Rn
f (x) h(|x−y |) g(y) dxdy ≤

∫

Rn

∫

Rn
f ∗(x) h(|x−y |) g∗(y) dxdy

becomes the Riesz potential inequality,

(∗∗)
∫

E

∫

E

1
|x−y |n−λ dxdy ≤

∫

Br

∫

Br

1
|x−y |n−λ dxdy , |Br | = |E |

and = holds iff E is a ball

If n = 3, λ = 2, Riesz potential Coulombic potential
∫

E

∫

E

1
|x−y | dxdy



Stability for the Riesz potential

P(E) =

∫

E

∫

E

1
|x−y |n−λ dxdy

In other words:
if P(E) w P(Br )

can we say that E is close to Br (x)?



Stability for the Riesz potential

P(E) =

∫

E

∫

E

1
|x−y |n−λ dxdy

Stability of
P(E) ≤ P(Br ), |Br | = |E |

In other words:
if P(E) w P(Br )

can we say that E is close to Br (x)?



Stability for the Riesz potential

P(E) =

∫

E

∫

E

1
|x−y |n−λ dxdy

Stability of
P(E) ≤ P(Br ), |Br | = |E |

In other words:
if P(E) w P(Br )

can we say that E is close to Br (x)?
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1
|x−y |n−λ dxdy

Stability of
P(E) ≤ P(Br ), |Br | = |E |

From now on |E | = |B| = ωn, B the unit ball. Set

D(E) := P(B)− P(E), α(E) := min
x∈Rn

|E∆B(x)| < 2ωn

(Potential gap) (Fraenkel asymmetry)

Theorem (Burchard-Chambers, 2015)
Let n = 3, λ = 2 There exists C > 0 s.t. if |E | = ω3 = 4π/3

α(E)2 ≤ CD(E)

If n > 3, λ = 2 there exists C(n) s.t. if |E | = ωn

α(E)n+2 ≤ CD(E)
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Steps of the proof of Burchard and Chambers:

1) Reduce to the case of a bounded set E ′, with −E ′ = E ′

Therefore:
D(E+) +D(E−) ≤ 2D(E)
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Coming back to the proof, the first step is to pass from a general set E to

a set E� symmetric with respect to a hyperplane, without losing too much in

terms of isoperimetric deficit and asymmetry, namely

(1.7) λ(E) ≤ C(n)λ(E�) and D(E�) ≤ C(n)D(E) .

A natural way to do this, could be to take any hyperplane dividing E in two

parts of equal measure and then to reflect one of them. In fact, calling E+ and

E− the two resulting sets (see Figure 1.a), it is easily checked that

D(E+) + D(E−) ≤ 2D(E) ,

but, unfortunately, it is not true in general that

λ(E) ≤ C(n) max{λ(E+), λ(E−)} .

(a) (b)

E

E−

E

E+

E−

E+

Figure 1: The sets E, E+ and E−

This is clear if we take, for instance, E equal to the union of two slightly

shifted half-balls, as in Figure 1.b. However, if we take, instead, two orthogonal

hyperplanes, each one dividing E in two parts of equal volume, at least one of

the four sets thus obtained by reflection will satisfy (1.7) for a suitable constant

C(n) (see Lemma 2.5). Thus, iterating this procedure, we obtain a set with

(n− 1) symmetries and eventually, using a variant of this argument to get the

last symmetry, an n-symmetric set E� satisfying (1.7).

Once we have reduced the proof of Theorem 1.1 to the case of an

n-symmetric set E, equivalently to a set symmetric with respect to all co-

ordinate hyperplanes, all we have to do, thanks to (1.6), is to estimate d(E,B)

by
�

D(E) (as x0 = 0).

To this aim we compare E with its Steiner symmetral E∗ with respect to

one of the coordinate axes, say x1. Simplifying a bit, the idea is to estimate

each one of the two terms appearing on the right-hand side of the triangular

inequality

(1.8) d(E,B) ≤ d(E,E∗) + d(E∗, B)

To prove Step 1 they use that

for 0 < λ ≤ 2, n ≥ 3

Riesz potential is reflection positive

P(E) ≤ 1
2
P(E+) +

1
2
P(E−)

(a deep result by Frank-Lieb, 2010)

Therefore:
D(E+) +D(E−) ≤ 2D(E)
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Lemma (F.-Maggi-Pratelli, 2008) Given E , one can always
order the orthogonal directions {e1, . . . ,en} in such a way that
the set E ′ obtained by subsequent reflections of E in the
directions {ei1 , . . . ,ein} has the property that

α(E) ≤ 2nα(E ′)

This lemma + Frank-Lieb

⇓
α(E) ≤ 2nα(E ′) D(E ′) ≤ 2nD(E)

1) So, if 0 < λ ≤ 2 they may assume that −E = E

2) Prove by a direct computation D(E ′) ≥ c|E ′∆B|2 ≥ cα(E ′)2

To prove Step 2 they need λ = 2



Lemma (F.-Maggi-Pratelli, 2008) Given E , one can always
order the orthogonal directions {e1, . . . ,en} in such a way that
the set E ′ obtained by subsequent reflections of E in the
directions {ei1 , . . . ,ein} has the property that

α(E) ≤ 2nα(E ′)

This lemma + Frank-Lieb

⇓
α(E) ≤ 2nα(E ′) D(E ′) ≤ 2nD(E)

1) So, if 0 < λ ≤ 2 they may assume that −E = E

2) Prove by a direct computation D(E ′) ≥ c|E ′∆B|2 ≥ cα(E ′)2

To prove Step 2 they need λ = 2



Lemma (F.-Maggi-Pratelli, 2008) Given E , one can always
order the orthogonal directions {e1, . . . ,en} in such a way that
the set E ′ obtained by subsequent reflections of E in the
directions {ei1 , . . . ,ein} has the property that

α(E) ≤ 2nα(E ′)

This lemma + Frank-Lieb

⇓
α(E) ≤ 2nα(E ′) D(E ′) ≤ 2nD(E)

1) So, if 0 < λ ≤ 2 they may assume that −E = E

2) Prove by a direct computation D(E ′) ≥ c|E ′∆B|2 ≥ cα(E ′)2

To prove Step 2 they need λ = 2



Lemma (F.-Maggi-Pratelli, 2008) Given E , one can always
order the orthogonal directions {e1, . . . ,en} in such a way that
the set E ′ obtained by subsequent reflections of E in the
directions {ei1 , . . . ,ein} has the property that

α(E) ≤ 2nα(E ′)

This lemma + Frank-Lieb

⇓
α(E) ≤ 2nα(E ′) D(E ′) ≤ 2nD(E)

1) So, if 0 < λ ≤ 2 they may assume that −E = E

2) Prove by a direct computation D(E ′) ≥ c|E ′∆B|2 ≥ cα(E ′)2

To prove Step 2 they need λ = 2



Theorem (F.-Pratelli, ArXiv, September 25, 2019)
Let n ≥ 2, 1 < λ < n There exists C(n, λ) > 0 s.t. if
|E | = ωn = |B|

α(E)2 ≤ CD(E) = C
[
P(B)− P(E)

]

If ε ≤ ε0(n, λ), then
Knüpfer-Muratov, Bonacini-Cristoferi,
Figalli-F.-Maggi-Millot-Morini, . . .

F(B) ≤ F(E), |E | = |B|

and equality holds iff E is a ball
There exists C = C(n, λ) s.t. if |E | = |B|

α(E)2 ≤ C
[
F(E)−F(B)

]

and the proof is easier
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September 26, 2019: A message from R. Frank

The proof is
based on a deep stability result by M. Christ

Theorem (Christ, ArXiv, June 6, 2017)
Let n ≥ 2 There exists C(n) > 0 s.t. if f : Rn → [0,1],
‖f‖L1 = ωn, then
∫

B

∫

B
χB (x − y) dxdy −

∫

Rn

∫

Rn
f (x)χB (x − y)f (y) dxdy ≥ CA(f )2

where
A(f ) = min

x∈Rn

∥∥f − χB(x)

∥∥
L1
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Nearly spherical sets
Theorem (0 < λ < n)
There exist ε1 ∈ (0,1),C0 > 0 s.t. if |E | = ωn, bar(E) = 0 and

E =
{

t z : z ∈ Sn−1, t ∈ [0,1 + u(z)]
}

with ‖u‖L∞(Sn−1) ≤ ε1, then

P(B)− P(E) ≥ C0|E∆B|2

E

u>0

u<0

Proof by a second variation argument
(Fuglede’s style)
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P(B)− P(E)
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∫

∂B

∫
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|u(x)− u(y)|2
|x − y |n−λ
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The Strategy
To show that for δ > 0 small

(1) α(E)≥ δ =⇒ D(E) ≥ cδ > 0

=⇒ α(E)2 ≤ 4ω2
n

cδ
D(E)

(2) α(E)< δ =⇒ we may reduce to the nearly spherical case

(1) D(Eh)→ 0 =⇒ α(Eh)→ 0

vanishing: ∀R > 0 one has lim
h→∞

sup
x∈Rn

|Eh ∩BR(x)| = 0 NO!

α(Eh) = inf
x
|E∆B(x)| = 2 inf

x
|B(x)\Eh| = 2ωn−2 sup

x
|B(x)∩Eh| → 2ωn

Lemma
There exist ξ(n), c(n) > 0 such that if α(E) ≥ 2ωn − ξ(n) then

D(E) ≥ c(n)



The Strategy
To show that for δ > 0 small

(1) α(E)≥ δ =⇒ D(E) ≥ cδ > 0 =⇒ α(E)2 ≤ 4ω2
n

cδ
D(E)

(2) α(E)< δ =⇒ we may reduce to the nearly spherical case

(1) D(Eh)→ 0 =⇒ α(Eh)→ 0

vanishing: ∀R > 0 one has lim
h→∞

sup
x∈Rn

|Eh ∩BR(x)| = 0 NO!

α(Eh) = inf
x
|E∆B(x)| = 2 inf

x
|B(x)\Eh| = 2ωn−2 sup

x
|B(x)∩Eh| → 2ωn

Lemma
There exist ξ(n), c(n) > 0 such that if α(E) ≥ 2ωn − ξ(n) then

D(E) ≥ c(n)



The Strategy
To show that for δ > 0 small

(1) α(E)≥ δ =⇒ D(E) ≥ cδ > 0 =⇒ α(E)2 ≤ 4ω2
n

cδ
D(E)

(2) α(E)< δ =⇒ we may reduce to the nearly spherical case

(1) D(Eh)→ 0 =⇒ α(Eh)→ 0

vanishing: ∀R > 0 one has lim
h→∞

sup
x∈Rn

|Eh ∩BR(x)| = 0 NO!

α(Eh) = inf
x
|E∆B(x)| = 2 inf

x
|B(x)\Eh| = 2ωn−2 sup

x
|B(x)∩Eh| → 2ωn

Lemma
There exist ξ(n), c(n) > 0 such that if α(E) ≥ 2ωn − ξ(n) then

D(E) ≥ c(n)



The Strategy
To show that for δ > 0 small

(1) α(E)≥ δ =⇒ D(E) ≥ cδ > 0 =⇒ α(E)2 ≤ 4ω2
n

cδ
D(E)

(2) α(E)< δ =⇒ we may reduce to the nearly spherical case

(1) D(Eh)→ 0 =⇒ α(Eh)→ 0

vanishing: ∀R > 0 one has lim
h→∞

sup
x∈Rn

|Eh ∩BR(x)| = 0 NO!

α(Eh) = inf
x
|E∆B(x)| = 2 inf

x
|B(x)\Eh| = 2ωn−2 sup

x
|B(x)∩Eh| → 2ωn

Lemma
There exist ξ(n), c(n) > 0 such that if α(E) ≥ 2ωn − ξ(n) then

D(E) ≥ c(n)



The Strategy
To show that for δ > 0 small

(1) α(E)≥ δ =⇒ D(E) ≥ cδ > 0 =⇒ α(E)2 ≤ 4ω2
n

cδ
D(E)

(2) α(E)< δ =⇒ we may reduce to the nearly spherical case

(1) D(Eh)→ 0 =⇒ α(Eh)→ 0

vanishing: ∀R > 0 one has lim
h→∞

sup
x∈Rn

|Eh ∩BR(x)| = 0 NO!

α(Eh) = inf
x
|E∆B(x)| = 2 inf

x
|B(x)\Eh| = 2ωn−2 sup

x
|B(x)∩Eh| → 2ωn

Lemma
There exist ξ(n), c(n) > 0 such that if α(E) ≥ 2ωn − ξ(n) then

D(E) ≥ c(n)



The Strategy
To show that for δ > 0 small

(1) α(E)≥ δ =⇒ D(E) ≥ cδ > 0 =⇒ α(E)2 ≤ 4ω2
n

cδ
D(E)

(2) α(E)< δ =⇒ we may reduce to the nearly spherical case

(1) D(Eh)→ 0 =⇒ α(Eh)→ 0

vanishing: ∀R > 0 one has lim
h→∞

sup
x∈Rn

|Eh ∩BR(x)| = 0 NO!

α(Eh) = inf
x
|E∆B(x)| = 2 inf

x
|B(x)\Eh| = 2ωn−2 sup

x
|B(x)∩Eh| → 2ωn

Lemma
There exist ξ(n), c(n) > 0 such that if α(E) ≥ 2ωn − ξ(n) then

D(E) ≥ c(n)



The Strategy
To show that for δ > 0 small

(1) α(E)≥ δ =⇒ D(E) ≥ cδ > 0 =⇒ α(E)2 ≤ 4ω2
n

cδ
D(E)

(2) α(E)< δ =⇒ we may reduce to the nearly spherical case

(1) D(Eh)→ 0 =⇒ α(Eh)→ 0

vanishing: ∀R > 0 one has lim
h→∞

sup
x∈Rn

|Eh ∩BR(x)| = 0 NO!

α(Eh) = inf
x
|E∆B(x)| = 2 inf

x
|B(x)\Eh| = 2ωn−2 sup

x
|B(x)∩Eh| → 2ωn

Lemma
There exist ξ(n), c(n) > 0 such that if α(E) ≥ 2ωn − ξ(n) then

D(E) ≥ c(n)



The Strategy

To show that for δ > 0 small

(1) α(E)≥ δ =⇒ D(E) ≥ cδ > 0 =⇒ α(E)2 ≤ 4ω2
n

cδ
D(E)

(2) α(E)< δ =⇒ we may reduce to the nearly spherical case

(1) D(Eh)→ 0 =⇒ α(Eh)→ 0

vanishing: ∀R > 0 one has lim
h→∞

sup
x∈Rn

|Eh ∩BR(x)| = 0 NO!

dichotomy: ∃0 < m < ωn s.t. ∀ε > 0 ∃Rε, E1
h ,E

2
h ⊂ Eh

lim sup
h→∞

∣∣|E1
h |−m

∣∣ < ε, lim sup
h→∞

∣∣|E2
h |−(ωn−m)

∣∣ < ε, dist(E1
h ,E

2
h )→∞

NO!
compactness: ∀ε > 0 ∃Rε s.t. lim sup

h→∞
|Eh \ BRε | < ε



The Strategy

To show that for δ > 0 small

(1) α(E)≥ δ =⇒ D(E) ≥ cδ > 0 =⇒ α(E)2 ≤ 4ω2
n

cδ
D(E)

(2) α(E)< δ =⇒ we may reduce to the nearly spherical case

(1) D(Eh)→ 0 =⇒ α(Eh)→ 0

vanishing: ∀R > 0 one has lim
h→∞

sup
x∈Rn

|Eh ∩BR(x)| = 0 NO!

dichotomy: ∃0 < m < ωn s.t. ∀ε > 0 ∃Rε, E1
h ,E

2
h ⊂ Eh

lim sup
h→∞

∣∣|E1
h |−m

∣∣ < ε, lim sup
h→∞

∣∣|E2
h |−(ωn−m)

∣∣ < ε, dist(E1
h ,E

2
h )→∞

NO!

compactness: ∀ε > 0 ∃Rε s.t. lim sup
h→∞

|Eh \ BRε | < ε



The Strategy

To show that for δ > 0 small

(1) α(E)≥ δ =⇒ D(E) ≥ cδ > 0 =⇒ α(E)2 ≤ 4ω2
n

cδ
D(E)

(2) α(E)< δ =⇒ we may reduce to the nearly spherical case

(1) D(Eh)→ 0 =⇒ α(Eh)→ 0

vanishing: ∀R > 0 one has lim
h→∞

sup
x∈Rn

|Eh ∩BR(x)| = 0 NO!

dichotomy: ∃0 < m < ωn s.t. ∀ε > 0 ∃Rε, E1
h ,E

2
h ⊂ Eh

lim sup
h→∞

∣∣|E1
h |−m

∣∣ < ε, lim sup
h→∞

∣∣|E2
h |−(ωn−m)

∣∣ < ε, dist(E1
h ,E

2
h )→∞

NO!
compactness: ∀ε > 0 ∃Rε s.t. lim sup

h→∞
|Eh \ BRε | < ε



compactness: ∀ε > 0 ∃Rε s.t. lim sup
h→∞

|Eh \ BRε | < ε

This is the difficult case!

χEh
⇀ f weakly* in L∞

∫

Rn
f dx = |B|

Then one has to prove that
∫

Eh

∫

Eh

1
|x − y |n−λ →

∫

Rn

∫

Rn

f (x)f (y)

|x − y |n−λ =

∫

B

∫

B

1
|x − y |n−λ

=⇒ f = χB =⇒ α(Eh)→ 0



compactness: ∀ε > 0 ∃Rε s.t. lim sup
h→∞

|Eh \ BRε | < ε

This is the difficult case!

χEh
⇀ f weakly* in L∞

∫

Rn
f dx = |B|

Then one has to prove that
∫

Eh

∫

Eh

1
|x − y |n−λ →

∫

Rn

∫

Rn

f (x)f (y)

|x − y |n−λ =

∫

B

∫

B

1
|x − y |n−λ

=⇒ f = χB =⇒ α(Eh)→ 0



compactness: ∀ε > 0 ∃Rε s.t. lim sup
h→∞

|Eh \ BRε | < ε

This is the difficult case!

χEh
⇀ f weakly* in L∞

∫

Rn
f dx = |B|

Then one has to prove that
∫

Eh

∫

Eh

1
|x − y |n−λ →

∫

Rn

∫

Rn

f (x)f (y)

|x − y |n−λ =

∫

B

∫

B

1
|x − y |n−λ

=⇒ f = χB =⇒ α(Eh)→ 0



compactness: ∀ε > 0 ∃Rε s.t. lim sup
h→∞

|Eh \ BRε | < ε

This is the difficult case!

χEh
⇀ f weakly* in L∞

∫

Rn
f dx = |B|

Then one has to prove that
∫

Eh

∫

Eh

1
|x − y |n−λ →

∫

Rn

∫

Rn

f (x)f (y)

|x − y |n−λ =

∫

B

∫

B

1
|x − y |n−λ

=⇒ f = χB =⇒ α(Eh)→ 0



Lemma
Given ε ∈ (0,1), there exists δ > 0 such that if α(E) < δ then
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The proof that P(E ′) ≥ P(E) is easy =⇒ D(E ′) ≤ D(E)

The proof that α(E ′) = α(E) is trickier
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Thus from now on we may suppose that |E | = |B| and

B1−ε(0) ⊂ E ⊂ B1+ε(0) for some small ε > 0



Theorem
There exists C1 s.t. if B1−ε(0) ⊂ E ⊂ B1+ε(0), |E | = |B|,

either α(E)2 ≤ C1D(E)

or ∃ E ′ =
{

t z : z ∈ Sn−1, t ∈ [0,1 + u(z)], ‖u‖L∞ ≤ ε
}

s.t. α(E) ≤ 6|E ′∆B|, D(E ′) ≤ 2D(E)
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E ′ is nearly spherical. Can we say that bar(E ′) = 0?

Assume B1−ε2(0) ⊂ E ⊂ B1+ε2(0)  E ′,

but bar(E ′) 6= 0

Moreover B1−ε2(0) ⊂ E ′ ⊂ B1+ε2(0)

Let’s try with another ball. Let’s take |z| ≤ ε. Then

B1−2ε(z) ⊂ E ⊂ B1+2ε(z)  a nearly spherical set Ez

If we are lucky . . . . . . bar(Ez) = z  and we are done!

• z ∈ Bε(0)→ bar(Ez) is continuous

• if 0 < |z| ≤ ε then B1−ε2(0) ⊂ Ez ⊂ B1+ε2(0)

• =⇒ if |z| = ε then (z − bar(Ez)) · z > 0
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1) z ∈ Bε(0)→ bar(Ez) is continuous

2) if |z| = ε then (z − bar(Ez)) · z > 0

Assume by contradiction that bar(Ez) 6= z ∀z ∈ Bε(0)

Set R = min
|z|=ε
|z − bar(Ez)| > 0

F (w) =
1
R

ΠBR(0)
(εw − bar(Eεw )) : B 7→ B \ {0}

Note that F∣∣Sn−1 : Sn−1 7→ Sn−1

F is homotopic to the constant
F (0)

|F (0)| :
F ((1− t)w)

|F ((1− t)w)| t ∈ [0,1]

But F∣∣Sn−1 is also homotopic to the identity thanks to 2)

(1− t)F (ω) + tω
|(1− t)F (ω) + tω| t ∈ [0,1]

Impossible!
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A related result (work in progress with A. Pratelli)

Let g : (0,∞)→ [0,∞) be a continuous, decreasing function,
such that ∫ 1

0
tn−1g(t) dt <∞

(this includes in particular the case

g(t) =
1

tn−λ 0 < λ < n)

There exists ε0 such that if ε ≤ ε0, then

F(B) ≤ F(E), |E | = |B|

and equality holds iff E is a ball
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min
{
F(E) = P(E) + ε

∫

E

∫

E
g(|x − y |) dxdy : |E | = |B|

}

Again,

1) for ε small any minimizer is L1 =⇒ C2,α close to B

2) if E =
{

t z : z ∈ Sn−1, t ∈ [0,1 + u(z)]
}

is C1 close to B

P(E)− P(B) ≥ C0

(
|E∆B|2 + ‖∇u‖2L2(∂B)

)

3) But one can prove that
∫

B
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≤ C
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x dHn−1
y
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Happy birthday to Gianni!


