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Riesz inequality

Let f,g:R" —[0,00) and h: Rt — Rt decreasing

() [ [ foanix-yhawidry < [ [ 00 n(x—y) g (v) dicy
f*.g* are the Schwartz symmetrization of f,g

If f=g and h is strictly decreasing
Equality holds in (x) <= f = f* up to a translation

Now take
- f=g=x with [E|<oo = "=y, |E|=|B
- h(t) =t"" with 0 <A <n



Riesz potentials

It £,9= g, h(t) ="

| oonixyiamaay < [ [ 00 hey) gty ddy

n Rn

becomes the Riesz potential inequality,
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Riesz potentials
If f,g = Xg> h(t) — tA-n
/R ] /R () h(lxy1) g(y) dxdy < / L, T h(x-y1) g (y) dely
becomes the Riesz potential inequality,

1 1
Ay L b L Loyl ol
) /E/E |x—y|n=A 4 g, [x—y|n=> ly, |Br| = |E]
and — holdsiff E isa ball

If n=3, A=2, Rieszpotential ~~ Coulombic potential

]
axd
/E/E x—y] Y




Stability for the Riesz potential
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Stability for the Riesz potential

1
P(E ://—dxd
(E) eJe [x=y|"* Y

P(E) <P(Br), [Br|=|E]|

Stability of

In other words:
it P(E) = P(B)

can we say that E iscloseto By(x)?
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P(E)<P(Br), |B/|=IE|
Fromnowon |E| = |B| =w;, B the unit ball. Set

Stability of

D(E) :=P(B)~P(E),  a(E):= min|EAB(x)| < 2w

(Potential gap) (Fraenkel asymmetry)

Theorem (Burchard-Chambers, 2015)
Let n=3,\=2 Thereexists C >0 s.t. if |[E| =w3=4r/3

a(E)? < CD(E)
If n>3,\=2 there exists C(n) s.t. if |E| =wp

a(E)™2 < CD(E)
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Steps of the proof of Burchard and Chambers:

1) Reduce to the case of a bounded set E’, with —E' = FE’

Et

To prove Step 1 they use that
for 0<A<2 n>3

Riesz potential is reflection positive

P(E) < %P(E*) + %P(E*)

(a deep result by Frank-Lieb, 2010)

Therefore:
D(ET) +D(E™) < 2D(E)
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Lemma (F.-Maggi-Pratelli, 2008) Given E, one can always

order the orthogonal directions {ey,...,e,} insuch a way that
the set E’ obtained by subsequent reflections of E in the
directions {e;,...,e;,} has the property that

a(E) < 2"a(E")

This lemma + Frank-Lieb

J
a(E) < 2"(E')  D(E') < 2"D(E)

1) So,if 0 < X <2 they may assumethat —E =E
2) Prove by a direct computation D(E’) > ¢|E'ABJ? > ca(E')?

To prove Step 2 they need )\ =2
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Let n>2,1< X< n Thereexists C(n,\) > 0 s.t. if
|E| = wn = |B

a(E)? < CD(E) = C[P(B) — P(E)]

Consider
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Theorem (F.-Pratelli, ArXiv, September 25, 2019)

Let n>2,1< X< n Thereexists C(n,\) > 0 s.t. if
|E| = wn = |B

a(E)? < CD(E) = C[P(B) — P(E)]

Consider
1
]-"E::PE+5//—dxd, O0<A<n
( ) () EE‘X_y|nf)\ y

If € <eg(n,A), then
Knipfer-Muratov, Bonacini-Cristoferi,
Figalli-F.-Maggi-Millot-Morini, . ..

F(B) < F(E), |E[=|B]

and equality holds iff E is a ball
There exists C = C(n,\) s.t.if |E|=|B|

a(E)? < C[F(E) - F(B)]

and the proof is easier



September 26, 2019: A message from R. Frank



Theorem (Frank-Lieb, ArXiv, September 10, 2019)
Let n>2,0 <\ <n Thereexists C(n,\) >0 s.t. if |E| =wp

o(E)? < CD(E) = C[P(B) - P(E)]



Theorem (Frank-Lieb, ArXiv, September 10, 2019)
Let n>2,0< X< n Thereexists C(n,\) >0 s.t. if |[E| =uwp

o(E)? < CD(E) = C[P(B) - P(E)]

The proof is based on a deep stability result by M. Christ

Theorem (Christ, ArXiv, June 6, 2017)

Let n>2 There exists C(n) >0 s.t. if f:R" — [0,1],
[fll ;1 = wn, then

I [ xate=yyavay = [ [ #0000 = y)ity) dedy > CA(T2

where

A= i

f— XB(X)HU



Nearly spherical sets

Theorem (0 < A < n)
There exist ¢4 € (0,1),Cp > 0 s.t. if |E| = wp, bar(E) =0 and

E={tz:zes" ' te[0,1+u(z)]}
with ”UHL‘X’(S”*U <eq, then

P(B) — P(E) > Co|EABI?
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u>0

Proof by a second variation argument
(Fuglede’s style)



Nearly spherical sets

Theorem (0 < A < n)
There exist ¢4 € (0,1),Cp > 0 s.t. if |E| = wp, bar(E) =0 and

E={tz:zes" ' te[0,1+u(z)]}
with HUHLOO(S’FU < eq, then

P(B) — P(E) > Co|EABI?

« Proof by a second variation argument
In [FFMMM] it is proved that
for a nearly spherical set

P(B) -

N < /85/ i
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The Strategy

To show that for 6 > 0 small

(1) a(E)>6 = DE)>c>0 = «o(E)?< ?D(E)

(2) a(E)<d = we may reduce to the nearly spherical case

(1) D(Ep) -0 = «a(Ep)—0

vanishing: VR >0 onehas lim sup |E,NBgr(x)|=0 NO!

h— oo XER"

o En) = inf |EAB(x)| = 2inf | B(x)\En| = 2un—25Up|B(x)NEn| - 2w

Lemma
There exist £(n), c(n) > 0 such that if o(E) > 2w, — £(n) then

D(E) = ¢(n)
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The Strategy

To show that for 6 > 0 small
2

(1) «(E)>9 = DE)>c;>0 = a(E)2 < %D(E)
S

(2) a(E)<d = we may reduce to the nearly spherical case
(1) D(Ep) -0 = «a(Ep)—0

vanishing: VR >0 onehas lim sup |E,NBg(x)|=0 NO!

h—00 xcRrn

dichotomy: 30<m<w, st Ve>0 3R, E} E2CE,

limsup||EA|—m| <e, limsup||EZ|—(wn—m)| <e, dist(E}, EZ) — oo
h—o0 h—oo
NO!

compactness: Ve >0 3R. st. limsup|E,\ Bg.|<e
h—o0
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compactness: Ve >0 3R. s.t. limsup|Ep\ Bg.| <e
h—o0

This is the difficult case!

h

Xg——F weakly* in L™ / fdx = |B|
Rn

Then one has to prove that

/E,,/Eh X — yl“ /R/R X — yl“ // X — yl“

f=xg — a(Ep) — 0



Lemma
Given e € (0, 1), there exists 6 > 0 such that if «(E) < ¢ then
one can find a set E' with |E'| = w, and

B;_.(0) c E' c By,.(0)

a(E) = a(E') D(E') < D(E)
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if a(E)<d<<e = |E\B1+(0)] <|E\B1(0)| = %a(E) <e

o =0
r=1+e

The proof that P(E’) > P(E) iseasy — D(E’) <D(E)

The proof that  «(E’) = a(E) is trickier



Thus from now on we may suppose that |[E| = |B| and

Bi_.(0) C E C B1,.(0) for some small ¢ > 0
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Theorem
There exists Cy s.t. if By_.(0) C E C B;.(0), |E|=8B|,

either a(E)? < CyD(E)

or  JE ={tz:zeS" te[0,1+u2)], |uli~ <e}
st o(E) <6|E'AB|,  D(E') < 2D(E)

E={tz:zes" ' te]0,1-u(2)]U[0,1+ux(2)], Ul < e}



Theorem
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either a(E)? < CiD(E)
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E’ is nearly spherical. Can we say that bar(E’) = 07

Assume B;__(0) C E C By, 2(0) ~ E’, but bar(E’)#0
Moreover B;_.»(0) C E' C By, .2(0)
Let’s try with another ball. Let's take |z| <e. Then

By 2.(z) C EC Byyo.(2) ~ a nearly spherical set E,

If we are lucky...... bar(E;) =z ~-» and we are done!

e z € B.(0) — bar(E;) is continuous
o if 0<|z| <e then By _.»(0) C E; C By,.2(0)

e — if |z]=¢ then (z—bar(E;))-z>0
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1) z € B.(0) — bar(E;) is continuous
2) if |z| =¢ then (z—bar(E;))-z>0
Assume by contradiction that bar(E,) # z Vz € B.(0)

Set R = min |z —bar(E;)| >0

|z|=¢

F(w) = %HEH(O)(SW —bar(E.y)) : B B\ {0}

. Sn_1 — Sn_1

Note that £,




1) z € B.(0) — bar(E;) is continuous
2) if |z| =¢ then (z—bar(E;))-z>0
Assume by contradiction that bar(E,) # z Vz € B.(0)

Set R = min |z —bar(E;)| >0

|z|=¢

1 4 (=
F(w) = Zg,)(eW — bar(Ezw)) : B> B\ {0}
Note that F_, ,:S" !+ S7

FO) . F(U=tw)

F is homotopic to the constant :
[F(O)l [F((1 = t)w)]

te[0,1]



1) z € B.(0) — bar(E;) is continuous
2) if |z| =¢ then (z—bar(E;))-z>0
Assume by contradiction that bar(E,) # z Vz € B.(0)

Set R = min |z —bar(E;)| >0

|z|=¢

1 1 1=
F(w) = Zg,)(eW — bar(Ezw)) : B> B\ {0}
Note that F_, ,:S" !+ S7

, : F(O)  F((1—-tw)
F is homotopic to the constant FO)] TF(A=tw)|

But F is also homotopic to the identity thanks to 2)

sn—1

(1 -t)F(w) + tw
(1 — H)F(w) + tw]

te[0,1]

te[0,1]



1) z € B.(0) — bar(E;) is continuous
2) if |z| =¢ then (z—bar(E;))-z>0
Assume by contradiction that bar(E,) # z Vz € B.(0)

Set R = min |z — bar(E;)| > 0

|z|=¢

1 1 1=
F(w) = Zg,)(eW — bar(Ezw)) : B> B\ {0}
Note that F_, ,:S" !+ S7

, : F(O)  F((1—-tw)
F is homotopic to the constant FO)] TF(A=tw)|

But F is also homotopic to the identity thanks to 2)

sn—1

(1 -t)F(w) + tw
(1 — H)F(w) + tw]

te[0,11 Impossible!

te[0,1]



A related result (work in progress with A. Pratelli)

Let g:(0,00) — [0,00) be a continuous, decreasing function,
such that

]
/ t"1g(t) dt < 0o
0

(this includes in particular the case

1
g(t) = Y 0<A<n)
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such that
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A related result (work in progress with A. Pratelli)

Let g:(0,00) — [0,00) be a continuous, decreasing function,
such that

;
/ t"1g(t) dt < 0o
0

Setfore >0
F(E):= P(E)+= [_[ ollx—y))dey
There exists g such thatif ¢ < ¢g, then
F(B) < F(E), |E|=1B|

and equality holds iff E is a ball



min { 7(E) = P(E) += [ [ alix—yoxay - |EI |8}



min {]—'(E) = P(E) +5/E/Eg(\x—y|)dxdy: |E| = |B[}
Again,

1) for ¢ small any minimizeris L' — C?>® closeto B



min {J—'(E) = P(E) +5/E/Eg(\x —y|)dxdy : |E|= |B|}
Again,

1) for ¢ small any minimizeris L' — C?>® closeto B

2)if E={tz: zeS" ' te[0,1+u(z)]}is C'closeto B

P(E) - P(B) > Co(IEABI2 + HVUHfsz))

3) But one can prove that

/B/Bg(lx_y\)dxdy—/E/Eg(!)(—yndxdy

< C<|EAB!2 +/ / u(x) — u(y)Pa(lx - yl) dHQ—1dH9_1>
8. oB
< Gy (!EAB|2 + ||VU||§2(33))



Happy birthday to Gianni!



