Stability of the Riesz potential inequality

Nicola Fusco

Calculus of Variations and Applications

Trieste, January 29, 2020

$$(*) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x) h(|x-y|) g(y) dxdy \le \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f^*(x) h(|x-y|) g^*(y) dx dy$$

$$f^* g^* \text{ are the Schwartz symmetrization of } f g$$

Let $f, g: \mathbb{R}^n \to [0, \infty)$ and $h: \mathbb{R}^+ \to \mathbb{R}^+$ decreasing

$$f^*, g^*$$
 are the Schwartz symmetrization of f, g

Let $f, g: \mathbb{R}^n \to [0, \infty)$ and $h: \mathbb{R}^+ \to \mathbb{R}^+$ decreasing

$$(*) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x) h(|x-y|) g(y) dxdy \leq \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f^*(x) h(|x-y|) g^*(y) dx dy$$

$$f^*, g^* \text{ are the Schwartz symmetrization of } f, g$$

7, g are the Schwartz symmetrization of 7, g

Let
$$f,g:\mathbb{R}^n \to [0,\infty)$$
 and $h:\mathbb{R}^+ \to \mathbb{R}^+$ decreasing

 f^*, g^* are the Schwartz symmetrization of f, g

$$(*) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x) h(|x-y|) g(y) dxdy \leq \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f^*(x) h(|x-y|) g^*(y) dxdy$$

Let $f,g:\mathbb{R}^n \to [0,\infty)$ and $h:\mathbb{R}^+ \to \mathbb{R}^+$ decreasing

$$(*) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x) h(|x-y|) g(y) dxdy \leq \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f^*(x) h(|x-y|) g^*(y) dxdy$$

$$f^*, g^* \text{ are the Schwartz symmetrization of } f, g$$

If f = g and h is strictly decreasing

Equality holds in
$$(*) \iff f = f^*$$
 up to a translation

Now take

-
$$f = g = \chi_E$$
 with $|E| < \infty$ \Longrightarrow $f^* = \chi_{B_r(0)}, |E| = |B_r|$
- $h(t) = t^{\lambda - n}$ with $0 < \lambda < n$

Riesz potentials

If $f, g = \chi_F$, $h(t) = t^{\lambda - n}$

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x) \, h(|x-y|) \, g(y) \, dx dy \leq \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f^*(x) \, h(|x-y|) \, g^*(y) \, dx dy$$
 becomes the Riesz potential inequality,

becomes the Riesz potential inequality,
$$(**) \int_{E} \int_{E} \frac{1}{|x-y|^{n-\lambda}} \, dx dy \leq \int_{B_r} \int_{B_r} \frac{1}{|x-y|^{n-\lambda}} \, dx dy, \quad |B_r| = |E|$$

and = holds iff E is a ball

Riesz potentials

If $f, g = \chi_F$, $h(t) = t^{\lambda - n}$

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x) \, h(|x-y|) \, g(y) \, dx dy \leq \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f^*(x) \, h(|x-y|) \, g^*(y) \, dx dy$$
 becomes the Riesz potential inequality,

(**)
$$\int_{E} \int_{E} \frac{1}{|x-y|^{n-\lambda}} dxdy \le \int_{B_{r}} \int_{B_{r}} \frac{1}{|x-y|^{n-\lambda}} dxdy, \quad |B_{r}| = |E|$$
and = holds iff E is a ball

If n = 3, $\lambda = 2$, Riesz potential \rightarrow Coulombic potential

$$\int_{E} \int_{E} \frac{1}{|x-y|} \, dx dy$$

Stability for the Riesz potential

$$\mathcal{P}(E) = \int_{E} \int_{E} \frac{1}{|x - y|^{n - \lambda}} \, dx dy$$

Stability for the Riesz potential

$$\mathcal{P}(E) = \int_{E} \int_{E} \frac{1}{|x - y|^{n - \lambda}} \, dx dy$$

$$\mathcal{P}(E) \leq \mathcal{P}(B_r), \quad |B_r| = |E|$$

Stability for the Riesz potential

$$\mathcal{P}(E) = \int_{E} \int_{E} \frac{1}{|x - y|^{n - \lambda}} \, dx dy$$

$$\mathcal{P}(E) \leq \mathcal{P}(B_r), \quad |B_r| = |E|$$

In other words:

if
$$\mathcal{P}(E) \lessapprox \mathcal{P}(B_r)$$

can we say that
$$E$$
 is close to $B_r(x)$?

$$\mathcal{P}(E) = \int_{E} \int_{E} \frac{1}{|x - y|^{n - \lambda}} \, dx dy$$

Stability of

$$\mathcal{P}(E) \leq \mathcal{P}(B_r), \quad |B_r| = |E|$$

$$\mathcal{P}(E) = \int_{E} \int_{E} \frac{1}{|x - y|^{n - \lambda}} \, dx dy$$

Stability of

$$\mathcal{P}(E) \leq \mathcal{P}(B_r), \quad |B_r| = |E|$$

(Fraenkel asymmetry)

From now on $|E| = |B| = \omega_n$, B the unit ball. Set

$$\mathcal{D}(F) := \mathcal{D}(B) = \mathcal{D}(F)$$
 $\alpha(F) := \min |F \wedge B|$

(Potential gap)

$$\mathcal{D}(E) := \mathcal{P}(B) - \mathcal{P}(E), \qquad \alpha(E) := \min_{x \in \mathbb{R}^n} |E \Delta B(x)| < 2\omega_n$$

$$\mathcal{P}(E) = \int_{E} \int_{E} \frac{1}{|x - y|^{n - \lambda}} \, dx dy$$

 $\mathcal{P}(E) \leq \mathcal{P}(B_r), \quad |B_r| = |E|$

Stability of

From now on
$$|E| = |B| = \omega_n$$
, B the unit ball. Set

$$\mathcal{D}(E) := \mathcal{P}(B) - \mathcal{P}(E), \qquad \alpha(E) := \min_{x \in \mathbb{R}^n} |E \Delta B(x)| < 2\omega_n$$

Theorem (Burchard-Chambers, 2015)

Let
$$n = 3$$
, $\lambda = 2$ There exists $C > 0$ s.t. if $|E| = \omega_3 = 4\pi/3$

$$\alpha(E)^2 < CD(E)$$

(Potential gap)

If n > 3, $\lambda = 2$ there exists C(n) s.t. if $|E| = \omega_n$

(Fraenkel asymmetry)

Steps of the proof of Burchard and Chambers:

1) Reduce to the case of a bounded set E', with -E' = E'

Steps of the proof of Burchard and Chambers:

1) Reduce to the case of a bounded set E', with -E' = E'

for $0 < \lambda < 2$, n > 3

$$\mathcal{P}(E) \leq \frac{1}{2}\mathcal{P}(E^+) + \frac{1}{2}\mathcal{P}(E^-)$$

(a deep result by Frank-Lieb, 2010)

Steps of the proof of Burchard and Chambers:

1) Reduce to the case of a bounded set E', with -E' = E'

for $0 < \lambda \le 2$, $n \ge 3$

Riesz potential is reflection positive

$$\mathcal{P}(E) \leq \frac{1}{2}\mathcal{P}(E^+) + \frac{1}{2}\mathcal{P}(E^-)$$

To prove Step 1 they use that

(a deep result by Frank-Lieb, 2010)

Therefore: $\mathcal{D}(E^+) + \mathcal{D}(E^-) < 0$

$$\mathcal{D}(E^+) + \mathcal{D}(E^-) \leq 2\mathcal{D}(E)$$

Lemma (F.-Maggi-Pratelli, 2008) Given E, one can always order the orthogonal directions $\{e_1, \ldots, e_n\}$ in such a way that the set E' obtained by subsequent reflections of E in the directions $\{e_{i_1}, \ldots, e_{i_n}\}$ has the property that

$$\alpha(E) \leq 2^n \alpha(E')$$

Lemma (F.-Maggi-Pratelli, 2008) Given E, one can always order the orthogonal directions $\{e_1, \dots, e_n\}$ in such a way that the set E' obtained by subsequent reflections of E in the directions $\{e_{i_1}, \dots, e_{i_n}\}$ has the property that

$$\alpha(E) \leq 2^n \alpha(E')$$

$$\alpha(E) \leq 2^n \alpha(E')$$
 $\mathcal{D}(E') \leq 2^n \mathcal{D}(E)$

$$\alpha(E)$$
 $\beta(E) \leq 2 \beta(E)$

Lemma (F.-Maggi-Pratelli, 2008) Given E, one can always order the orthogonal directions $\{e_1, \ldots, e_n\}$ in such a way that the set E' obtained by subsequent reflections of E in the directions $\{e_{i_1}, \ldots, e_{i_n}\}$ has the property that

$$\alpha(E) \leq 2^n \alpha(E')$$

₩

This lemma + Frank-Lieb

$$\alpha(E) \leq 2^n \alpha(E')$$
 $\mathcal{D}(E') \leq 2^n \mathcal{D}(E)$

1) So, if $0 < \lambda \le 2$ they may assume that -E = E

Lemma (F.-Maggi-Pratelli, 2008) Given E, one can always order the orthogonal directions $\{e_1, \ldots, e_n\}$ in such a way that the set E' obtained by subsequent reflections of E in the directions $\{e_{i_1}, \ldots, e_{i_n}\}$ has the property that

$$\alpha(E) \leq 2^n \alpha(E')$$

This lemma + Frank-Lieb

$$\alpha(E) \leq 2^n \alpha(E')$$
 $\mathcal{D}(E') \leq 2^n \mathcal{D}(E)$

- 1) So, if $0 < \lambda \le 2$ they may assume that -E = E
- 2) Prove by a direct computation $\mathcal{D}(E') \geq c|E'\Delta B|^2 \geq c\alpha(E')^2$

To prove Step 2 they need $\lambda = 2$

Theorem (F.-Pratelli, ArXiv, September 25, 2019)

Let
$$n \ge 2$$
, $1 < \lambda < n$ There exists $C(n, \lambda) > 0$ s.t. if $|E| = \omega_n = |B|$

Let
$$n \ge 2$$
, $1 < \lambda < n$ There exists $C(n, \lambda) > 0$ s.t. i $|E| = \omega_n = |B|$
$$\alpha(E)^2 \le C \mathcal{D}(E) = C \left[\mathcal{P}(B) - \mathcal{P}(E) \right]$$

Theorem (F.-Pratelli, ArXiv, September 25, 2019) Let $n \ge 2$, $1 < \lambda < n$ There exists $C(n, \lambda) > 0$ s.t. if

 $|E| = \omega_n = |B|$

$$\alpha(E)^2 \leq C \mathcal{D}(E) = C [\mathcal{P}(B) - \mathcal{P}(E)]$$

The exponent 2 is optimal

Theorem (F.-Pratelli, ArXiv, September 25, 2019)

Let $n \ge 2$, $1 < \lambda < n$ There exists $C(n, \lambda) > 0$ s.t. if $|E| = \omega_n = |B|$

$$\alpha(E)^2 \leq C \mathcal{D}(E) = C [\mathcal{P}(B) - \mathcal{P}(E)]$$

$$\mathcal{F}(E) := P(E) + \varepsilon \int_{E} \int_{E} \frac{1}{|x - y|^{n - \lambda}} dxdy, \qquad 0 < \lambda < n$$

Theorem (F.-Pratelli, ArXiv, September 25, 2019)

Let $n \ge 2$, $1 < \lambda < n$ There exists $C(n, \lambda) > 0$ s.t. if $|E| = \omega_n = |B|$

$$\alpha(E)^2 \leq C \mathcal{D}(E) = C [\mathcal{P}(B) - \mathcal{P}(E)]$$

Consider

$$\mathcal{F}(E) := P(E) + \varepsilon \int_{E} \int_{E} \frac{1}{|x - y|^{n - \lambda}} dxdy, \qquad 0 < \lambda < n$$

If $\varepsilon \leq \varepsilon_0(n,\lambda)$, then Knüpfer-Muratov, Bonacini-Cristoferi, Figalli-F.-Maggi-Millot-Morini, . . .

$$\mathcal{F}(B) \leq \mathcal{F}(E), \qquad |E| = |B|$$

and equality holds iff E is a ball

Theorem (F.-Pratelli, ArXiv, September 25, 2019) Let $n \ge 2$, $1 < \lambda < n$ There exists $C(n, \lambda) > 0$ s.t. if $|E| = \omega_n = |B|$

$$\alpha(E)^2 \leq C \, \mathcal{D}(E) = C \, \big[\mathcal{P}(B) - \mathcal{P}(E) \big]$$

Consider

$$\mathcal{F}(E) := P(E) + \varepsilon \int_{E} \int_{E} \frac{1}{|x - y|^{n - \lambda}} dx dy, \qquad 0 < \lambda < n$$

If $\varepsilon \leq \varepsilon_0(n,\lambda)$, then Knüpfer-Muratov, Bonacini-Cristoferi, Figalli-F.-Maggi-Millot-Morini, . . .

$$\mathcal{F}(B) \leq \mathcal{F}(E), \qquad |E| = |B|$$

and equality holds iff E is a ball There exists $C = C(n, \lambda)$ s.t. if |E| = |B| $\alpha(E)^2 \leq C[\mathcal{F}(E) - \mathcal{F}(B)]$

September 26, 2019: A message from R. Frank

Theorem (Frank-Lieb, ArXiv, September 10, 2019) Let $n \ge 2$, $0 < \lambda < n$ There exists $C(n, \lambda) > 0$ s.t. if $|E| = \omega_n$

$$\alpha(E)^2 \leq C \mathcal{D}(E) = C \left[\mathcal{P}(B) - \mathcal{P}(E) \right]$$

Theorem (Frank-Lieb, ArXiv, September 10, 2019)

Let $n \ge 2$, $0 < \lambda < n$ There exists $C(n, \lambda) > 0$ s.t. if $|E| = \omega_n$

$$\alpha(E)^2 \leq C \mathcal{D}(E) = C [\mathcal{P}(B) - \mathcal{P}(E)]$$

The proof is based on a deep stability result by M. Christ

Theorem (Christ, ArXiv, June 6, 2017)

Let $n \ge 2$ There exists C(n) > 0 s.t. if $f : \mathbb{R}^n \to [0, 1]$, $||f||_{L^1} = \omega_n$, then

$$\int_{B}\int_{B}\chi_{B}(x-y)\,dxdy-\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}f(x)\chi_{B}(x-y)f(y)\,dxdy\geq CA(f)^{2}$$

where

$$A(t) = \min_{\mathbf{x} \in \mathbb{R}^n} \| t - \chi_{B(\mathbf{x})} \|_{L^1}$$

Nearly spherical sets Theorem (0 $< \lambda < n$)

There exist
$$\varepsilon_1 \in (0,1), C_0 > 0$$
 s.t. if $|E| = \omega_n, \text{bar}(E) = 0$ and

$$E = \{tz : z \in \mathbb{S}^{n-1}, t \in [0, 1 + u(z)]\}$$

with
$$||u||_{L^{\infty}(\mathbb{S}^{n-1})} \leq \varepsilon_1$$
, then

$$\mathcal{P}(B) - \mathcal{P}(E) \geq C_0 |E \Delta B|^2$$

Nearly spherical sets

Theorem $(0 < \lambda < n)$

There exist $\varepsilon_1 \in (0,1), C_0 > 0$ s.t. if $|E| = \omega_n, \text{bar}(E) = 0$ and

$$E = \{tz : z \in \mathbb{S}^{n-1}, t \in [0, 1 + u(z)]\}$$

with $\|u\|_{L^{\infty}(\mathbb{S}^{n-1})} \leq \varepsilon_1$, then

$$\mathcal{P}(B) - \mathcal{P}(E) \geq C_0 |E\Delta B|^2$$

Proof by a second variation argument (Fuglede's style)

Nearly spherical sets

Theorem (0 < λ < n)

There exist $\varepsilon_1 \in (0,1), C_0 > 0$ s.t. if $|E| = \omega_n, \text{bar}(E) = 0$ and

$$E = \{tz : z \in \mathbb{S}^{n-1}, t \in [0, 1 + u(z)]\}$$

with $\|u\|_{L^{\infty}(\mathbb{S}^{n-1})}\leq arepsilon_1$, then

$$\mathcal{P}(B) - \mathcal{P}(E) \geq C_0 |E\Delta B|^2$$

Proof by a second variation argument
In [FFMMM] it is proved that
for a nearly spherical set

$$\mathcal{P}(B) - \mathcal{P}(E)$$

$$\leq C_1 \left(|E\Delta B|^2 + \int_{\partial B} \int_{\partial B} \frac{|u(x) - u(y)|^2}{|x - y|^{n - \lambda}} \right)$$

To show that for $\delta > 0$ small

$$(1) \ \alpha(E) \geq \delta \implies \mathcal{D}(E) \geq c_{\delta} > 0$$

To show that for $\delta > 0$ small

$$(1) \ \alpha(E) \geq \delta \implies \mathcal{D}(E) \geq c_{\delta} > 0 \implies \alpha(E)^{2} \leq \frac{4\omega_{n}^{2}}{c_{\delta}} \mathcal{D}(E)$$

To show that for $\delta > 0$ small

$$(1) \ \alpha(E) \geq \delta \ \implies \ \mathcal{D}(E) \geq c_{\delta} > 0 \ \implies \ \alpha(E)^2 \leq \frac{4\omega_n^2}{c_{\delta}} \mathcal{D}(E)$$

(2) $\alpha(E) < \delta \implies$ we may reduce to the nearly spherical case

To show that for $\delta > 0$ small

$$(1) \ \alpha(E) \ge \delta \implies \mathcal{D}(E) \ge c_{\delta} > 0 \implies \alpha(E)^2 \le \frac{4\omega_n^2}{c_{\delta}} \mathcal{D}(E)$$

(2)
$$\alpha(E) < \delta \implies$$
 we may reduce to the nearly spherical case

$$(1) \mathcal{D}(E_h) \to 0 \implies \alpha(E_h) \to 0$$

To show that for $\delta > 0$ small

$$(1) \ \alpha(E) \ge \delta \implies \mathcal{D}(E) \ge c_{\delta} > 0 \implies \alpha(E)^2 \le \frac{4\omega_n^2}{c_{\delta}} \mathcal{D}(E)$$

(2) $\alpha(E) < \delta \implies$ we may reduce to the nearly spherical case

$$(1) \mathcal{D}(E_h) \to 0 \implies \alpha(E_h) \to 0$$

vanishing:
$$\forall R > 0$$
 one has $\limsup_{h \to \infty} |E_h \cap B_R(x)| = 0$ NO!

To show that for $\delta > 0$ small

$$(1) \ \alpha(E) \geq \delta \implies \mathcal{D}(E) \geq c_{\delta} > 0 \implies \alpha(E)^{2} \leq \frac{4\omega_{n}^{2}}{c_{\delta}}\mathcal{D}(E)$$

(2) $\alpha(E) < \delta \implies$ we may reduce to the nearly spherical case

$$(1) \mathcal{D}(E_h) \to 0 \implies \alpha(E_h) \to 0$$

 $h \rightarrow \infty \underset{X \in \mathbb{R}^n}{\longrightarrow}$ $\alpha(E_h) = \inf_{x} |E \triangle B(x)| = 2\inf_{x} |B(x) \setminus E_h| = 2\omega_n - 2\sup_{x} |B(x) \cap E_h| \to 2\omega_n$

vanishing: $\forall R > 0$ one has $\lim \sup |E_h \cap B_R(x)| = 0$ NO!

$$\alpha(E_h) = \inf_{x} |E \triangle B(x)| = 2\inf_{x} |B(x) \setminus E_h| = 2\omega_n - 2\sup_{x} |B(x) \cap E_h| \to 2\omega$$

To show that for $\delta > 0$ small

$$(1) \ \alpha(E) \geq \delta \implies \mathcal{D}(E) \geq c_{\delta} > 0 \implies \alpha(E)^{2} \leq \frac{4\omega_{n}^{2}}{c_{\delta}} \mathcal{D}(E)$$

(2) $\alpha(E) < \delta \implies$ we may reduce to the nearly spherical case

$$(1) \mathcal{D}(E_h) \to 0 \implies \alpha(E_h) \to 0$$

vanishing: $\forall R > 0$ one has $\limsup_{h \to \infty} \sup_{x \in \mathbb{R}^n} |E_h \cap B_R(x)| = 0$ NO!

$$\alpha(E_h) = \inf_{x} |E \triangle B(x)| = 2\inf_{x} |B(x) \setminus E_h| = 2\omega_n - 2\sup_{x} |B(x) \cap E_h| \to 2\omega_n$$

Lemma

There exist $\xi(n)$, c(n) > 0 such that if $\alpha(E) \geq 2\omega_n - \xi(n)$ then

$$D(E) \geq c(n)$$

To show that for $\delta > 0$ small

$$(1) \ \alpha(E) \geq \delta \implies \mathcal{D}(E) \geq c_{\delta} > 0 \implies \alpha(E)^{2} \leq \frac{4\omega_{n}^{2}}{c_{\delta}} \mathcal{D}(E)$$

(2) $\alpha(E) < \delta \implies$ we may reduce to the nearly spherical case

$$(1) \mathcal{D}(E_h) \to 0 \implies \alpha(E_h) \to 0$$

vanishing: $\forall R > 0$ one has $\lim_{h \to \infty} \sup_{x \in \mathbb{R}^n} |E_h \cap B_R(x)| = 0$ NO!

To show that for $\delta > 0$ small

$$(1) \ \alpha(E) \geq \delta \implies \mathcal{D}(E) \geq c_{\delta} > 0 \implies \alpha(E)^2 \leq \frac{4\omega_n^2}{c_{\delta}} \mathcal{D}(E)$$

(2)
$$\alpha(E) < \delta \implies$$
 we may reduce to the nearly spherical case

$$(1) \mathcal{D}(E_h) \to 0 \implies \alpha(E_h) \to 0$$

vanishing:
$$\forall R > 0$$
 one has $\lim_{h \to \infty} \sup_{x \in \mathbb{R}^n} |E_h \cap B_R(x)| = 0$ NO!

dichotomy:
$$\exists \ 0 < m < \omega_n$$
 s.t. $\forall \varepsilon > 0 \ \exists R_{\varepsilon}, \ E_h^1, E_h^2 \subset E_h$

$$\limsup_{h\to\infty} ||E_h^1| - m| < \varepsilon, \quad \limsup_{h\to\infty} ||E_h^2| - (\omega_n - m)| < \varepsilon, \quad \operatorname{dist}(E_h^1, E_h^2) \to \infty$$

NO!

To show that for $\delta > 0$ small

$$(1) \ \alpha(E) \geq \delta \implies \mathcal{D}(E) \geq c_{\delta} > 0 \implies \alpha(E)^{2} \leq \frac{4\omega_{n}^{2}}{c_{\delta}} \mathcal{D}(E)$$

(2)
$$\alpha(E) < \delta \implies$$
 we may reduce to the nearly spherical case

$$(1) \mathcal{D}(E_h) \to 0 \implies \alpha(E_h) \to 0$$

vanishing:
$$\forall R > 0$$
 one has $\lim_{h \to \infty} \sup_{x \in \mathbb{R}^n} |E_h \cap B_R(x)| = 0$ NO!

dichotomy:
$$\exists 0 < m < \omega_n$$
 s.t. $\forall \varepsilon > 0 \ \exists R_{\varepsilon}, \ E_h^1, E_h^2 \subset E_h$

$$\limsup_{h\to\infty} ||E_h^1| - m| < \varepsilon, \quad \limsup_{h\to\infty} ||E_h^2| - (\omega_n - m)| < \varepsilon, \quad \operatorname{dist}(E_h^1, E_h^2) \to \infty$$

NO!

compactness:
$$\forall \varepsilon > 0 \ \exists R_{\varepsilon} \ \text{s.t.} \ \limsup_{h \to \infty} |E_h \setminus B_{R_{\varepsilon}}| < \varepsilon$$

compactness: $\forall \varepsilon > 0 \ \exists R_{\varepsilon} \ \text{s.t.} \ \limsup_{h \to \infty} |E_h \setminus B_{R_{\varepsilon}}| < \varepsilon$

compactness:
$$\forall \varepsilon > 0 \ \exists R_{\varepsilon} \ \text{s.t.} \ \limsup_{h \to \infty} |E_h \setminus B_{R_{\varepsilon}}| < \varepsilon$$

This is the difficult case!

compactness:
$$\forall \varepsilon > 0 \ \exists R_{\varepsilon} \ \text{s.t.} \ \limsup_{h \to \infty} |E_h \setminus B_{R_{\varepsilon}}| < \varepsilon$$

This is the difficult case!

$$\chi_{E_h}
ightharpoonup f$$
 weakly* in L^{∞} $\int_{\mathbb{R}^n} f \, dx = |B|$

compactness:
$$\forall \varepsilon > 0 \ \exists R_{\varepsilon} \ \text{s.t.} \ \limsup_{h \to \infty} |E_h \setminus B_{R_{\varepsilon}}| < \varepsilon$$

This is the difficult case!

$$\chi_{E_h}
ightharpoonup f$$
 weakly* in L^{∞} $\int_{\mathbb{R}^n} f \, dx = |B|$

Then one has to prove that

$$\int_{E_h} \int_{E_h} \frac{1}{|x - y|^{n - \lambda}} \to \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{f(x)f(y)}{|x - y|^{n - \lambda}} = \int_B \int_B \frac{1}{|x - y|^{n - \lambda}}$$

$$\implies f = \chi_B \implies \alpha(E_h) \to 0$$

Lemma

Given $\varepsilon \in (0,1)$, there exists $\delta > 0$ such that if $\alpha(E) < \delta$ then one can find a set E' with $|E'| = \omega_n$ and

$$B_{1-\varepsilon}(0)\subset E'\subset B_{1+\varepsilon}(0)$$

$$\alpha(E) = \alpha(E')$$
 $\mathcal{D}(E') \leq \mathcal{D}(E)$

The proof that $\mathcal{P}(E') \geq \mathcal{P}(E)$ is easy

The proof that
$$\mathcal{P}(E') \geq \mathcal{P}(E)$$
 is easy $\Longrightarrow \mathcal{D}(E') \leq \mathcal{D}(E)$

$$|E \setminus B_1 + \varepsilon(0)| \le |E \setminus B_1(0)| = \frac{1}{2}\alpha(E) \ll \varepsilon$$

$$r = 1$$

The proof that
$$\mathcal{P}(E') \geq \mathcal{P}(E)$$
 is easy $\Longrightarrow \mathcal{D}(E') \leq \mathcal{D}(E)$

The proof that $\alpha(E') = \alpha(E)$ is trickier

Thus from now on we may suppose that |E| = |B| and

for some small $\varepsilon > 0$

 $B_{1-\varepsilon}(0)\subset E\subset B_{1+\varepsilon}(0)$

Theorem

There exists C_1 s.t. if $B_{1-\varepsilon}(0) \subset E \subset B_{1+\varepsilon}(0)$, |E| = |B|,

either
$$\alpha(E)^2 \leq C_1 \mathcal{D}(E)$$

or
$$\exists E' = \{tz : z \in \mathbb{S}^{n-1}, t \in [0, 1 + u(z)], ||u||_{L^{\infty}} \le \varepsilon\}$$

s.t. $\alpha(E) \le 6|E'\Delta B|, \quad \mathcal{D}(E') \le 2\mathcal{D}(E)$

Theorem

There exists C_1 s.t. if $B_{1-\varepsilon}(0) \subset E \subset B_{1+\varepsilon}(0)$, |E| = |B|,

$$\begin{array}{ccc} \text{either} & \alpha(E)^2 \leq C_1 \mathcal{D}(E) \\ \\ \text{or} & \exists \ E' = \left\{t\,z: \, z \in \mathbb{S}^{n-1}, \, t \in [0, 1+u(z)], \, \|u\|_{L^\infty} \leq \varepsilon \right\} \end{array}$$

s.t.
$$\alpha(E) \leq 6|E'\Delta B|, \quad \mathcal{D}(E') \leq 2\mathcal{D}(E)$$

$$\widetilde{E} = \left\{ t \, z : \, z \in \mathbb{S}^{n-1}, \, t \in [0, 1 - u_1(z)] \cup [0, 1 + u_2(z)], \, \|u\|_{L^{\infty}} \le \varepsilon \right\}$$

Theorem

There exists C_1 s.t. if $B_{1-\varepsilon}(0) \subset E \subset B_{1+\varepsilon}(0)$, |E| = |B|,

either
$$\alpha(E)^2 \leq C_1 \mathcal{D}(E)$$

or
$$\exists E' = \{tz : z \in \mathbb{S}^{n-1}, t \in [0, 1 + u(z)], ||u||_{L^{\infty}} \le \varepsilon\}$$

s.t.
$$\alpha(E) \leq 6|E'\Delta B|, \quad \mathcal{D}(E') \leq 2\mathcal{D}(E)$$

E' is nearly spherical. Can we say that
$$bar(E')=0$$
?

Assume $B_{1-\varepsilon^2}(0)\subset E\subset B_{1+\varepsilon^2}(0)$ \leadsto E' ,

$$E'$$
 is nearly spherical. Can we say that $bar(E') = 0$?

Assume
$$B_{1-\varepsilon^2}(0) \subset E \subset B_{1+\varepsilon^2}(0) \iff E'$$
, but $\operatorname{bar}(E') \neq 0$
Moreover $B_{1-\varepsilon^2}(0) \subset E' \subset B_{1+\varepsilon^2}(0)$

$$E'$$
 is nearly spherical. Can we say that $bar(E') = 0$?

Assume
$$B_{1-\varepsilon^2}(0) \subset E \subset B_{1+\varepsilon^2}(0) \iff E'$$
, but $bar(E') \neq 0$
Moreover $B_{1-\varepsilon^2}(0) \subset E' \subset B_{1+\varepsilon^2}(0)$

Let's try with another ball.

$$E'$$
 is nearly spherical. Can we say that $bar(E') = 0$?

Assume
$$B_{1-\varepsilon^2}(0) \subset E \subset B_{1+\varepsilon^2}(0) \iff E'$$
, but $bar(E') \neq 0$
Moreover $B_{1-\varepsilon^2}(0) \subset E' \subset B_{1+\varepsilon^2}(0)$

Let's try with another ball. Let's take
$$|z| \le \varepsilon$$
. Then

$$B_{1-2\varepsilon}(z) \subset E \subset B_{1+2\varepsilon}(z) \quad \leadsto \quad \text{a nearly spherical set } E_z$$

$$E'$$
 is nearly spherical. Can we say that $bar(E') = 0$?

Assume
$$B_{1-\varepsilon^2}(0) \subset E \subset B_{1+\varepsilon^2}(0) \longrightarrow E'$$
, but $\operatorname{bar}(E') \neq 0$
Moreover $B_{1-\varepsilon^2}(0) \subset E' \subset B_{1+\varepsilon^2}(0)$

Let's try with another ball. Let's take
$$|z| \le \varepsilon$$
. Then

$$B_{1-2\varepsilon}(z) \subset E \subset B_{1+2\varepsilon}(z) \quad \leadsto \quad \text{a nearly spherical set } E_z$$

If we are lucky..... $bar(E_z) = z \longrightarrow and we are done!$

$$E'$$
 is nearly spherical. Can we say that $bar(E') = 0$?

Assume
$$B_{1-\varepsilon^2}(0) \subset E \subset B_{1+\varepsilon^2}(0) \iff E'$$
, but $\operatorname{bar}(E') \neq 0$
Moreover $B_{1-\varepsilon^2}(0) \subset E' \subset B_{1+\varepsilon^2}(0)$

Let's try with another ball. Let's take
$$|z| \le \varepsilon$$
. Then

$$B_{1-2\varepsilon}(z) \subset E \subset B_{1+2\varepsilon}(z) \quad \Leftrightarrow \quad \text{a nearly spherical set } E_z$$

If we are lucky bar $(E_z) = z \quad \Leftrightarrow \quad \text{and we are done!}$

- $z \in \overline{B}_{\varepsilon}(0) \to \text{bar}(E_z)$ is continuous
- if $0 < |z| \le \varepsilon$ then $B_{1-\varepsilon^2}(0) \subset E_z \subset B_{1+\varepsilon^2}(0)$
- \implies if $|z| = \varepsilon$ then $(z bar(E_z)) \cdot z > 0$

2) if
$$|z| = \varepsilon$$
 then $(z - \text{bar}(E_z)) \cdot z > 0$

2) if
$$|z| = \varepsilon$$
 then $(z - bar(E_z)) \cdot z > 0$

Assume by contradiction that
$$bar(E_z) \neq z \ \forall z \in \overline{B}_{\varepsilon}(0)$$

2) if
$$|z| = \varepsilon$$
 then $(z - bar(E_z)) \cdot z > 0$

Assume by contradiction that
$$\operatorname{bar}(E_z) \neq z \ \forall z \in \overline{B}_{\varepsilon}(0)$$

Set
$$R = \min_{|z|=\varepsilon} |z - \operatorname{bar}(E_z)| > 0$$

2) if
$$|z| = \varepsilon$$
 then $(z - \text{bar}(E_z)) \cdot z > 0$

Assume by contradiction that
$$bar(E_z) \neq z \ \forall z \in \overline{B}_{\varepsilon}(0)$$

$$\operatorname{Set} \quad R = \min_{|z|=\varepsilon} |z - \operatorname{bar}(E_z)| > 0$$

$$F(w) = rac{1}{B} \Pi_{\overline{B}_B(0)}(\varepsilon w - \operatorname{bar}(E_{\varepsilon w})) : \overline{B} \mapsto \overline{B} \setminus \{0\}$$

2) if
$$|z| = \varepsilon$$
 then $(z - bar(E_z)) \cdot z > 0$

Assume by contradiction that
$$bar(E_z) \neq z \ \forall z \in \overline{B}_{\varepsilon}(0)$$

Set
$$R = \min_{|z|=\varepsilon} |z - \text{bar}(E_z)| > 0$$

$$F(w) = rac{1}{R}\Pi_{\overline{B}_R(0)}(\varepsilon w - \mathrm{bar}(E_{\varepsilon w})) : \overline{B} \mapsto \overline{B} \setminus \{0\}$$

$$F(w) = rac{1}{R} \Pi_{\overline{B}_R(0)} (arepsilon w - \mathrm{bar}(E_{arepsilon w})) : \overline{B} \mapsto \overline{B} \setminus \{0\}$$
Note that $F_{|_{\mathbb{S}^{n-1}}} : \mathbb{S}^{n-1} \mapsto \mathbb{S}^{n-1}$

2) if
$$|z| = \varepsilon$$
 then $(z - bar(E_z)) \cdot z > 0$

Assume by contradiction that
$$\frac{\mathrm{bar}(E_z)}{\mathrm{bar}(E_z)} \neq z \ \forall z \in \overline{B}_{\varepsilon}(0)$$

Set
$$R = \min_{|z|=\varepsilon} |z - \operatorname{bar}(E_z)| > 0$$

$$F(w) = rac{1}{B}\Pi_{\overline{B}_{B}(0)}(\varepsilon w - \mathrm{bar}(E_{\varepsilon w})) : \overline{B} \mapsto \overline{B} \setminus \{0\}$$

$$F(w) = rac{1}{R} \Pi_{\overline{B}_R(0)} (\varepsilon w - \operatorname{bar}(E_{\varepsilon w})) : \overline{B} \mapsto \overline{B} \setminus \{0\}$$

$$F(w) = \overline{R} \Pi_{\overline{B}_R(0)}(\varepsilon w - \operatorname{bar}(E_{\varepsilon w})) : B \mapsto B \setminus \{0\}$$
Note that $F_{|_{\mathbb{S}^{n-1}}} : \mathbb{S}^{n-1} \mapsto \mathbb{S}^{n-1}$

$$F(W) = \overline{R}^{11} \overline{B}_{R(0)} (\varepsilon W - \text{bar}(E_{\varepsilon W})) : B \mapsto B \setminus \{0\}$$
Note that $F_{|_{\mathbb{S}^{n-1}}} : \mathbb{S}^{n-1} \mapsto \mathbb{S}^{n-1}$

Note that
$$F_{|\mathbb{S}^{n-1}}:\mathbb{S}^{n-1}\mapsto\mathbb{S}^{n-1}$$

Note that
$$F_{|\mathbb{S}^{n-1}}: \mathbb{S}^{n-1} \mapsto \mathbb{S}^{n-1}$$

$$F \text{ is homotopic to the constant } \frac{F(0)}{|F(0)|}: \frac{F((1-t)w)}{|F((1-t)w)|} \quad t \in [0,1]$$

2) if
$$|z| = \varepsilon$$
 then $(z - \text{bar}(E_z)) \cdot z > 0$

Assume by contradiction that
$$bar(E_z) \neq z \ \forall z \in \overline{B}_{\varepsilon}(0)$$

Set
$$R = \min_{|z|=\varepsilon} |z - \text{bar}(E_z)| > 0$$

$$F(w) = \frac{1}{R} \Pi_{\overline{B}_{R}(0)}(\varepsilon w - \operatorname{bar}(E_{\varepsilon w})) : \overline{B} \mapsto \overline{B} \setminus \{0\}$$

Note that
$$F_{|\mathbb{S}^{n-1}}: \mathbb{S}^{n-1} \mapsto \mathbb{S}^{n-1}$$

$$\mathbb{S}^{n-1}$$

$$\mathsf{nt} \; \frac{F(0)}{|F(0)|} : \; \frac{F((1-t)w)}{|F((1-t)w)|}$$

s homotopic to the constant
$$\frac{F(0)}{|F(0)|}$$
: $\frac{F((1-t)w)}{|F(0)|}$

 $t \in [0, 1]$

F is homotopic to the constant
$$\frac{F(0)}{|F(0)|}$$
: $\frac{F((1-t)w)}{|F((1-t)w)|}$ $t \in [0,1]$

is homotopic to the constant
$$\frac{1}{|F(0)|}$$
: $\frac{1}{|F((1-t)w)|}$

is nonotopic to the constant
$$\frac{|F(0)|}{|F(1-t)w|}$$

$$F_{|_{\mathbb{S}^{n-1}}}$$
 is also homotopic to the identity thanks to 2

ut
$$F_{|_{\mathbb{S}^{n-1}}}$$
 is also homotopic to the identity thanks to 2)

But
$$F_{|_{\mathbb{S}^{n-1}}}$$
 is also homotopic to the identity thanks to 2)

$$\frac{(1-t)F(\omega)+t\omega}{|(1-t)F(\omega)+t\omega|}\qquad t\in [0,1]$$

2) if
$$|z| = \varepsilon$$
 then $(z - \text{bar}(E_z)) \cdot z > 0$

Assume by contradiction that
$$bar(E_z) \neq z \ \forall z \in \overline{B}_{\varepsilon}(0)$$

Set
$$R = \min_{|z|=\varepsilon} |z - \text{bar}(E_z)| > 0$$

$$F(w) = \frac{1}{R} \Pi_{\overline{B}_R(0)} (\varepsilon w - \operatorname{bar}(E_{\varepsilon w})) : \overline{B} \mapsto \overline{B} \setminus \{0\}$$

Note that
$$F_{|\mathbb{S}^{n-1}}: \mathbb{S}^{n-1} \mapsto \mathbb{S}^{n-1}$$

 $\frac{(1-t)F(\omega)+t\omega}{|(1-t)F(\omega)+t\omega|}$

Note that
$$F_{|\mathbb{S}^{n-1}}: \mathbb{S}^{n-1} \mapsto \mathbb{S}^{n-1}$$

$$\mathsf{nt} \ \frac{F(0)}{|F(0)|} : \ \frac{F}{|F|}$$

nt
$$\frac{F(0)}{|F(0)|}: \frac{F((1-t)w)}{|F((1-t)w)|}$$
 t

But
$$F_{|\mathbb{S}^{n-1}}$$
 is also homotopic to the identity thanks to 2)
$$\frac{(1-t)F(\omega)+t\omega}{t} \qquad t \in [0,1]$$
 Impossible!

is nonotopic to the constant
$$|F(0)|$$

is homotopic to the constant
$$\frac{F(0)}{|F(0)|}$$

A related result (work in progress with A. Pratelli)

Let $g:(0,\infty)\to [0,\infty)$ be a continuous, decreasing function, such that

$$\int_0^1 t^{n-1} g(t) dt < \infty$$

(this includes in particular the case

$$g(t) = \frac{1}{t^{n-\lambda}} \qquad 0 < \lambda < n$$

A related result (work in progress with A. Pratelli)

Let $g:(0,\infty)\to [0,\infty)$ be a continuous, decreasing function, such that

$$\int_0^1 t^{n-1} g(t) dt < \infty$$

Set for $\varepsilon > 0$

$$\mathcal{F}(E) := P(E) + \varepsilon \int_{E} \int_{E} g(|x - y|) dxdy$$

A related result (work in progress with A. Pratelli)

Let $g:(0,\infty)\to [0,\infty)$ be a continuous, decreasing function, such that

$$\int_0^1 t^{n-1} g(t) dt < \infty$$

Set for $\varepsilon > 0$

$$\mathcal{F}(E) := P(E) + \varepsilon \int_{E} \int_{E} g(|x - y|) dxdy$$

There exists ε_0 such that if $\varepsilon \leq \varepsilon_0$, then

$$\mathcal{F}(B) \leq \mathcal{F}(E), \qquad |E| = |B|$$

and equality holds iff E is a ball

$$\min \left\{ \mathcal{F}(E) = P(E) + \varepsilon \int_{E} \int_{E} g(|x - y|) \, dx dy : |E| = |B| \right\}$$

$$\min \left\{ \mathcal{F}(E) = P(E) + \varepsilon \int_{E} \int_{E} g(|x - y|) \, dx dy : |E| = |B| \right\}$$

Again,

1) for ε small any minimizer is $L^1 \Longrightarrow C^{2,\alpha}$ close to B

$$\min \left\{ \mathcal{F}(E) = P(E) + \varepsilon \int_{E} \int_{E} g(|x - y|) \, dx dy : |E| = |B| \right\}$$

Again,

1) for
$$\varepsilon$$
 small any minimizer is $L^1 \Longrightarrow C^{2,\alpha}$ close to B

2) if
$$E = \{tz : z \in \mathbb{S}^{n-1}, t \in [0, 1 + u(z)]\}$$
 is C^1 close to B

$$P(E) - P(B) \ge C_0 \Big(|E\Delta B|^2 + \|\nabla u\|_{L^2(\partial B)}^2 \Big)$$

3) But one can prove that

$$\begin{split} &\int_{B} \int_{B} g(|x-y|) \, dx dy - \int_{E} \int_{E} g(|x-y|) \, dx dy \\ &\leq C \bigg(|E \Delta B|^{2} + \int_{\partial B} \int_{\partial B} |u(x) - u(y)|^{2} g(|x-y|) \, d\mathcal{H}_{x}^{n-1} \, d\mathcal{H}_{y}^{n-1} \bigg) \\ &\leq C_{1} \bigg(|E \Delta B|^{2} + \|\nabla u\|_{L^{2}(\partial B)}^{2} \bigg) \end{split}$$

Happy birthday to Gianni!