Stability of the Riesz potential inequality

Nicola Fusco

Calculus of Variations and Applications

Trieste, January 29, 2020

Riesz inequality

Let $f, g: \mathbb{R}^{n} \rightarrow[0, \infty)$ and $h: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$decreasing
$(*) \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x) h(|x-y|) g(y) d x d y \leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f^{*}(x) h(|x-y|) g^{*}(y) d x d y$
f^{*}, g^{*} are the Schwartz symmetrization of f, g

Riesz inequality

Let $f, g: \mathbb{R}^{n} \rightarrow[0, \infty)$ and $h: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$decreasing
$(*) \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x) h(|x-y|) g(y) d x d y \leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f^{*}(x) h(|x-y|) g^{*}(y) d x d y$
f^{*}, g^{*} are the Schwartz symmetrization of f, g

Riesz inequality

Let $f, g: \mathbb{R}^{n} \rightarrow[0, \infty)$ and $h: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$decreasing
$(*) \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x) h(|x-y|) g(y) d x d y \leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f^{*}(x) h(|x-y|) g^{*}(y) d x d y$
f^{*}, g^{*} are the Schwartz symmetrization of f, g

Riesz inequality

Let $f, g: \mathbb{R}^{n} \rightarrow[0, \infty)$ and $h: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$decreasing
$(*) \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x) h(|x-y|) g(y) d x d y \leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f^{*}(x) h(|x-y|) g^{*}(y) d x d y$
f^{*}, g^{*} are the Schwartz symmetrization of f, g
If $f=g$ and h is strictly decreasing
Equality holds in $(*) \Longleftrightarrow f=f^{*}$ up to a translation
Now take

- $f=g=\chi_{E}$ with $|E|<\infty \quad \Longrightarrow \quad f^{*}=\chi_{B_{r}(0)},|E|=\left|B_{r}\right|$
- $h(t)=t^{\lambda-n}$ with $0<\lambda<n$

Riesz potentials

$$
\text { If } f, g=\chi_{E}, h(t)=t^{\lambda-n}
$$

$\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x) h(|x-y|) g(y) d x d y \leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f^{*}(x) h(|x-y|) g^{*}(y) d x d y$
becomes the Riesz potential inequality,
(**) $\int_{E} \int_{E} \frac{1}{|x-y|^{n-\lambda}} d x d y \leq \int_{B_{r}} \int_{B_{r}} \frac{1}{|x-y|^{n-\lambda}} d x d y, \quad\left|B_{r}\right|=|E|$
and $=$ holds iff E is a ball

Riesz potentials

$$
\begin{aligned}
& \text { If } f, g=\chi_{E}, h(t)=t^{\lambda-n} \\
& \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x) h(|x-y|) g(y) d x d y \leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f^{*}(x) h(|x-y|) g^{*}(y) d x d y
\end{aligned}
$$

becomes the Riesz potential inequality,

$$
\text { (**) } \quad \int_{E} \int_{E} \frac{1}{|x-y|^{n-\lambda}} d x d y \leq \int_{B_{r}} \int_{B_{r}} \frac{1}{|x-y|^{n-\lambda}} d x d y, \quad\left|B_{r}\right|=|E|
$$

and $=$ holds iff E is a ball
If $n=3, \lambda=2$, Riesz potential \rightsquigarrow Coulombic potential

$$
\int_{E} \int_{E} \frac{1}{|x-y|} d x d y
$$

Stability for the Riesz potential

$$
\mathcal{P}(E)=\int_{E} \int_{E} \frac{1}{|x-y|^{n-\lambda}} d x d y
$$

Stability for the Riesz potential

$$
\mathcal{P}(E)=\int_{E} \int_{E} \frac{1}{|x-y|^{n-\lambda}} d x d y
$$

Stability of

$$
\mathcal{P}(E) \leq \mathcal{P}\left(B_{r}\right), \quad\left|B_{r}\right|=|E|
$$

Stability for the Riesz potential

$$
\mathcal{P}(E)=\int_{E} \int_{E} \frac{1}{|x-y|^{n-\lambda}} d x d y
$$

Stability of

$$
\mathcal{P}(E) \leq \mathcal{P}\left(B_{r}\right), \quad\left|B_{r}\right|=|E|
$$

In other words:

$$
\text { if } \mathcal{P}(E) \underset{\sim}{\approx} \mathcal{P}\left(B_{r}\right)
$$

can we say that E is close to $B_{r}(x)$?

$$
\mathcal{P}(E)=\int_{E} \int_{E} \frac{1}{|x-y|^{n-\lambda}} d x d y
$$

Stability of

$$
\mathcal{P}(E) \leq \mathcal{P}\left(B_{r}\right), \quad\left|B_{r}\right|=|E|
$$

$$
\mathcal{P}(E)=\int_{E} \int_{E} \frac{1}{|x-y|^{n-\lambda}} d x d y
$$

Stability of

$$
\mathcal{P}(E) \leq \mathcal{P}\left(B_{r}\right), \quad\left|B_{r}\right|=|E|
$$

From now on $|E|=|B|=\omega_{n}, B$ the unit ball. Set

$$
\begin{array}{cc}
\mathcal{D}(E):=\mathcal{P}(B)-\mathcal{P}(E), \quad \alpha(E):=\min _{x \in \mathbb{R}^{n}}|E \Delta B(x)|<2 \omega_{n} \\
\text { (Potential gap) } & \text { (Fraenkel asymmetry) }
\end{array}
$$

$$
\mathcal{P}(E)=\int_{E} \int_{E} \frac{1}{|x-y|^{n-\lambda}} d x d y
$$

Stability of

$$
\mathcal{P}(E) \leq \mathcal{P}\left(B_{r}\right), \quad\left|B_{r}\right|=|E|
$$

From now on $|E|=|B|=\omega_{n}, B$ the unit ball. Set

$$
\begin{array}{cc}
\mathcal{D}(E):=\mathcal{P}(B)-\mathcal{P}(E), \quad \alpha(E):=\min _{x \in \mathbb{R}^{n}}|E \Delta B(x)|<2 \omega_{n} \\
\text { (Potential gap) } & \text { (Fraenkel asymmetry) }
\end{array}
$$

Theorem (Burchard-Chambers, 2015)
Let $n=3, \lambda=2$ There exists $C>0$ s.t. if $|E|=\omega_{3}=4 \pi / 3$

$$
\alpha(E)^{2} \leq \mathcal{C D}(E)
$$

If $n>3, \lambda=2$ there exists $C(n)$ s.t. if $|E|=\omega_{n}$

$$
\alpha(E)^{n+2} \leq C \mathcal{D}(E)
$$

Steps of the proof of Burchard and Chambers:

1) Reduce to the case of a bounded set E^{\prime}, with $-E^{\prime}=E^{\prime}$

Steps of the proof of Burchard and Chambers:

1) Reduce to the case of a bounded set E^{\prime}, with $-E^{\prime}=E^{\prime}$

To prove Step 1 they use that for $0<\lambda \leq 2, n \geq 3$
Riesz potential is reflection positive

$$
\mathcal{P}(E) \leq \frac{1}{2} \mathcal{P}\left(E^{+}\right)+\frac{1}{2} \mathcal{P}\left(E^{-}\right)
$$

(a deep result by Frank-Lieb, 2010)

Steps of the proof of Burchard and Chambers:

1) Reduce to the case of a bounded set E^{\prime}, with $-E^{\prime}=E^{\prime}$

To prove Step 1 they use that for $0<\lambda \leq 2, n \geq 3$
Riesz potential is reflection positive

$$
\mathcal{P}(E) \leq \frac{1}{2} \mathcal{P}\left(E^{+}\right)+\frac{1}{2} \mathcal{P}\left(E^{-}\right)
$$

(a deep result by Frank-Lieb, 2010)
Therefore:

$$
\mathcal{D}\left(E^{+}\right)+\mathcal{D}\left(E^{-}\right) \leq 2 \mathcal{D}(E)
$$

Lemma (F.-Maggi-Pratelli, 2008) Given E, one can always order the orthogonal directions $\left\{e_{1}, \ldots, e_{n}\right\}$ in such a way that the set E^{\prime} obtained by subsequent reflections of E in the directions $\left\{\boldsymbol{e}_{i_{1}}, \ldots, e_{i_{n}}\right\}$ has the property that

$$
\alpha(E) \leq 2^{n} \alpha\left(E^{\prime}\right)
$$

Lemma (F.-Maggi-Pratelli, 2008) Given E, one can always order the orthogonal directions $\left\{e_{1}, \ldots, e_{n}\right\}$ in such a way that the set E^{\prime} obtained by subsequent reflections of E in the directions $\left\{e_{i_{1}}, \ldots, e_{i_{n}}\right\}$ has the property that

$$
\alpha(E) \leq 2^{n} \alpha\left(E^{\prime}\right)
$$

$$
\begin{gathered}
\text { This lemma }+ \text { Frank-Lieb } \\
\Downarrow \\
\alpha(E) \leq 2^{n} \alpha\left(E^{\prime}\right) \quad \mathcal{D}\left(E^{\prime}\right) \leq 2^{n} \mathcal{D}(E)
\end{gathered}
$$

Lemma (F.-Maggi-Pratelli, 2008) Given E, one can always order the orthogonal directions $\left\{e_{1}, \ldots, e_{n}\right\}$ in such a way that the set E^{\prime} obtained by subsequent reflections of E in the directions $\left\{e_{i_{1}}, \ldots, e_{i_{n}}\right\}$ has the property that

$$
\alpha(E) \leq 2^{n} \alpha\left(E^{\prime}\right)
$$

$$
\begin{gathered}
\text { This lemma }+ \text { Frank-Lieb } \\
\Downarrow \\
\alpha(E) \leq 2^{n} \alpha\left(E^{\prime}\right) \quad \mathcal{D}\left(E^{\prime}\right) \leq 2^{n} \mathcal{D}(E)
\end{gathered}
$$

1) So, if $0<\lambda \leq 2$ they may assume that $-E=E$

Lemma (F.-Maggi-Pratelli, 2008) Given E, one can always order the orthogonal directions $\left\{e_{1}, \ldots, e_{n}\right\}$ in such a way that the set E^{\prime} obtained by subsequent reflections of E in the directions $\left\{e_{i_{1}}, \ldots, e_{i_{n}}\right\}$ has the property that

$$
\alpha(E) \leq 2^{n} \alpha\left(E^{\prime}\right)
$$

$$
\begin{gathered}
\text { This lemma }+ \text { Frank-Lieb } \\
\Downarrow \\
\alpha(E) \leq 2^{n} \alpha\left(E^{\prime}\right) \quad \mathcal{D}\left(E^{\prime}\right) \leq 2^{n} \mathcal{D}(E)
\end{gathered}
$$

1) So, if $0<\lambda \leq 2$ they may assume that $-E=E$
2) Prove by a direct computation $\mathcal{D}\left(E^{\prime}\right) \geq c\left|E^{\prime} \Delta B\right|^{2} \geq c \alpha\left(E^{\prime}\right)^{2}$

To prove Step 2 they need $\lambda=2$

Theorem (F.-Pratelli, ArXiv, September 25, 2019)
Let $n \geq 2,1<\lambda<n$ There exists $C(n, \lambda)>0$ s.t. if $|E|=\omega_{n}=|B|$

$$
\alpha(E)^{2} \leq C \mathcal{D}(E)=C[\mathcal{P}(B)-\mathcal{P}(E)]
$$

Theorem (F.-Pratelli, ArXiv, September 25, 2019)
Let $n \geq 2,1<\lambda<n$ There exists $C(n, \lambda)>0$ s.t. if $|E|=\omega_{n}=|B|$

$$
\alpha(E)^{2} \leq \mathcal{C D}(E)=C[\mathcal{P}(B)-\mathcal{P}(E)]
$$

- The exponent 2 is optimal

Theorem (F.-Pratelli, ArXiv, September 25, 2019)
Let $n \geq 2,1<\lambda<n$ There exists $C(n, \lambda)>0$ s.t. if
$|E|=\omega_{n}=|B|$

$$
\alpha(E)^{2} \leq \mathcal{C D}(E)=C[\mathcal{P}(B)-\mathcal{P}(E)]
$$

Consider

$$
\mathcal{F}(E):=P(E)+\varepsilon \int_{E} \int_{E} \frac{1}{|x-y|^{n-\lambda}} d x d y, \quad 0<\lambda<n
$$

Theorem (F.-Pratelli, ArXiv, September 25, 2019)
Let $n \geq 2,1<\lambda<n$ There exists $C(n, \lambda)>0$ s.t. if
$|E|=\omega_{n}=|B|$

$$
\alpha(E)^{2} \leq \mathcal{C D}(E)=C[\mathcal{P}(B)-\mathcal{P}(E)]
$$

Consider

$$
\mathcal{F}(E):=P(E)+\varepsilon \int_{E} \int_{E} \frac{1}{|x-y|^{n-\lambda}} d x d y, \quad 0<\lambda<n
$$

If $\varepsilon \leq \varepsilon_{0}(n, \lambda)$, then
Knüpfer-Muratov, Bonacini-Cristoferi, Figalli-F.-Maggi-Millot-Morini, ...

$$
\mathcal{F}(B) \leq \mathcal{F}(E), \quad|E|=|B|
$$

and equality holds iff E is a ball

Theorem (F.-Pratelli, ArXiv, September 25, 2019)
Let $n \geq 2,1<\lambda<n$ There exists $C(n, \lambda)>0$ s.t. if
$|E|=\omega_{n}=|B|$

$$
\alpha(E)^{2} \leq \mathcal{C D}(E)=C[\mathcal{P}(B)-\mathcal{P}(E)]
$$

Consider

$$
\mathcal{F}(E):=P(E)+\varepsilon \int_{E} \int_{E} \frac{1}{|x-y|^{n-\lambda}} d x d y, \quad 0<\lambda<n
$$

If $\varepsilon \leq \varepsilon_{0}(n, \lambda)$, then
Knüpfer-Muratov, Bonacini-Cristoferi,
Figalli-F.-Maggi-Millot-Morini, ...

$$
\mathcal{F}(B) \leq \mathcal{F}(E), \quad|E|=|B|
$$

and equality holds iff E is a ball
There exists $C=C(n, \lambda)$ s.t. if $|E|=|B|$

$$
\alpha(E)^{2} \leq C[\mathcal{F}(E)-\mathcal{F}(B)]
$$

and the proof is easier

September 26, 2019: A message from R. Frank

Theorem (Frank-Lieb, ArXiv, September 10, 2019)
Let $n \geq 2,0<\lambda<n$ There exists $C(n, \lambda)>0$ s.t. if $|E|=\omega_{n}$

$$
\alpha(E)^{2} \leq \mathcal{C D}(E)=C[\mathcal{P}(B)-\mathcal{P}(E)]
$$

Theorem (Frank-Lieb, ArXiv, September 10, 2019)
Let $n \geq 2,0<\lambda<n$ There exists $C(n, \lambda)>0$ s.t. if $|E|=\omega_{n}$

$$
\alpha(E)^{2} \leq \mathcal{C D}(E)=C[\mathcal{P}(B)-\mathcal{P}(E)]
$$

The proof is based on a deep stability result by M. Christ
Theorem (Christ, ArXiv, June 6, 2017)
Let $n \geq 2$ There exists $C(n)>0$ s.t. if $f: \mathbb{R}^{n} \rightarrow[0,1]$,
$\|f\|_{L^{1}}=\omega_{n}$, then
$\int_{B} \int_{B} \chi_{B}(x-y) d x d y-\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x) \chi_{B}(x-y) f(y) d x d y \geq C A(f)^{2}$
where

$$
A(f)=\min _{x \in \mathbb{R}^{n}}\left\|f-\chi_{B(x)}\right\|_{L^{1}}
$$

Nearly spherical sets

Theorem ($0<\lambda<n$)
There exist $\varepsilon_{1} \in(0,1), C_{0}>0$ s.t. if $|E|=\omega_{n}, \operatorname{bar}(E)=0$ and

$$
E=\left\{t z: z \in \mathbb{S}^{n-1}, t \in[0,1+u(z)]\right\}
$$

with $\|u\|_{L^{\infty}\left(\mathbb{S}^{n-1}\right)} \leq \varepsilon_{1}$, then

$$
\mathcal{P}(B)-\mathcal{P}(E) \geq C_{0}|E \Delta B|^{2}
$$

Nearly spherical sets

Theorem ($0<\lambda<n$)
There exist $\varepsilon_{1} \in(0,1), C_{0}>0$ s.t. if $|E|=\omega_{n}, \operatorname{bar}(E)=0$ and

$$
E=\left\{t z: z \in \mathbb{S}^{n-1}, t \in[0,1+u(z)]\right\}
$$

with $\|u\|_{L^{\infty}\left(\mathbb{S}^{n-1}\right)} \leq \varepsilon_{1}$, then

$$
\mathcal{P}(B)-\mathcal{P}(E) \geq C_{0}|E \Delta B|^{2}
$$

Proof by a second variation argument
(Fuglede's style)

Nearly spherical sets

Theorem ($0<\lambda<n$)
There exist $\varepsilon_{1} \in(0,1), C_{0}>0$ s.t. if $|E|=\omega_{n}, \operatorname{bar}(E)=0$ and

$$
E=\left\{t z: z \in \mathbb{S}^{n-1}, t \in[0,1+u(z)]\right\}
$$

with $\|u\|_{L^{\infty}\left(\mathbb{S}^{n-1}\right)} \leq \varepsilon_{1}$, then

$$
\mathcal{P}(B)-\mathcal{P}(E) \geq C_{0}|E \Delta B|^{2}
$$

Proof by a second variation argument In [FFMMM] it is proved that for a nearly spherical set

$$
\begin{aligned}
& \mathcal{P}(B)-\mathcal{P}(E) \\
& \leq C_{1}\left(|E \Delta B|^{2}+\int_{\partial B} \int_{\partial B} \frac{|u(x)-u(y)|^{2}}{|x-y|^{n-\lambda}}\right)
\end{aligned}
$$

The Strategy

To show that for $\delta>0$ small

(1) $\alpha(E) \geq \delta \Longrightarrow \mathcal{D}(E) \geq \boldsymbol{c}_{\delta}>0$

The Strategy

To show that for $\delta>0$ small

(1) $\alpha(E) \geq \delta \Longrightarrow \mathcal{D}(E) \geq \boldsymbol{c}_{\delta}>0 \quad \Longrightarrow \quad \alpha(E)^{2} \leq \frac{4 \omega_{n}^{2}}{\boldsymbol{c}_{\delta}} \mathcal{D}(E)$

The Strategy

To show that for $\delta>0$ small
(1) $\alpha(E) \geq \delta \Longrightarrow \mathcal{D}(E) \geq \boldsymbol{c}_{\delta}>0 \quad \Longrightarrow \quad \alpha(E)^{2} \leq \frac{4 \omega_{n}^{2}}{\boldsymbol{c}_{\delta}} \mathcal{D}(E)$
(2) $\alpha(E)<\delta \Longrightarrow$ we may reduce to the nearly spherical case

The Strategy

To show that for $\delta>0$ small
(1) $\alpha(E) \geq \delta \Longrightarrow \mathcal{D}(E) \geq \boldsymbol{c}_{\delta}>0 \quad \Longrightarrow \quad \alpha(E)^{2} \leq \frac{4 \omega_{n}^{2}}{\boldsymbol{c}_{\delta}} \mathcal{D}(E)$
(2) $\alpha(E)<\delta \Longrightarrow$ we may reduce to the nearly spherical case
(1)

$$
\mathcal{D}\left(E_{h}\right) \rightarrow 0 \quad \Longrightarrow \quad \alpha\left(E_{h}\right) \rightarrow 0
$$

The Strategy

To show that for $\delta>0$ small
(1) $\alpha(E) \geq \delta \Longrightarrow \mathcal{D}(E) \geq \boldsymbol{c}_{\delta}>0 \quad \Longrightarrow \quad \alpha(E)^{2} \leq \frac{4 \omega_{n}^{2}}{\boldsymbol{c}_{\delta}} \mathcal{D}(E)$
(2) $\alpha(E)<\delta \Longrightarrow$ we may reduce to the nearly spherical case
(1)

$$
\mathcal{D}\left(E_{h}\right) \rightarrow 0 \Longrightarrow \alpha\left(E_{h}\right) \rightarrow 0
$$

vanishing: $\forall R>0$ one has $\lim _{h \rightarrow \infty} \sup _{x \in \mathbb{R}^{n}}\left|E_{h} \cap B_{R}(x)\right|=0 \quad$ NO!

The Strategy

To show that for $\delta>0$ small
(1) $\alpha(E) \geq \delta \Longrightarrow \mathcal{D}(E) \geq c_{\delta}>0 \quad \Longrightarrow \quad \alpha(E)^{2} \leq \frac{4 \omega_{n}^{2}}{\boldsymbol{c}_{\delta}} \mathcal{D}(E)$
(2) $\alpha(E)<\delta \Longrightarrow$ we may reduce to the nearly spherical case
(1)

$$
\mathcal{D}\left(E_{h}\right) \rightarrow 0 \quad \Longrightarrow \quad \alpha\left(E_{h}\right) \rightarrow 0
$$

vanishing: $\forall R>0$ one has $\lim _{h \rightarrow \infty} \sup _{x \in \mathbb{R}^{n}}\left|E_{h} \cap B_{R}(x)\right|=0 \quad$ NO!

$$
\alpha\left(E_{h}\right)=\inf _{x}|E \Delta B(x)|=2 \inf _{x}\left|B(x) \backslash E_{h}\right|=2 \omega_{n}-2 \sup _{x}\left|B(x) \cap E_{h}\right| \rightarrow 2 \omega_{n}
$$

The Strategy

To show that for $\delta>0$ small
(1) $\alpha(E) \geq \delta \Longrightarrow \mathcal{D}(E) \geq c_{\delta}>0 \quad \Longrightarrow \quad \alpha(E)^{2} \leq \frac{4 \omega_{n}^{2}}{\boldsymbol{c}_{\delta}} \mathcal{D}(E)$
(2) $\alpha(E)<\delta \Longrightarrow$ we may reduce to the nearly spherical case
(1)

$$
\mathcal{D}\left(E_{h}\right) \rightarrow 0 \quad \Longrightarrow \quad \alpha\left(E_{h}\right) \rightarrow 0
$$

vanishing: $\forall R>0$ one has $\lim _{h \rightarrow \infty} \sup _{x \in \mathbb{R}^{n}}\left|E_{h} \cap B_{R}(x)\right|=0 \quad$ NO!

$$
\alpha\left(E_{h}\right)=\inf _{x}|E \Delta B(x)|=2 \inf _{x}\left|B(x) \backslash E_{h}\right|=2 \omega_{n}-2 \sup _{x}\left|B(x) \cap E_{h}\right| \rightarrow 2 \omega_{n}
$$

Lemma
There exist $\xi(n), c(n)>0$ such that if $\alpha(E) \geq 2 \omega_{n}-\xi(n)$ then

$$
D(E) \geq c(n)
$$

The Strategy

To show that for $\delta>0$ small
(1) $\alpha(E) \geq \delta \Longrightarrow \mathcal{D}(E) \geq c_{\delta}>0 \quad \alpha(E)^{2} \leq \frac{4 \omega_{n}^{2}}{c_{\delta}} \mathcal{D}(E)$
(2) $\alpha(E)<\delta \Longrightarrow$ we may reduce to the nearly spherical case
(1)

$$
\mathcal{D}\left(E_{h}\right) \rightarrow 0 \Longrightarrow \alpha\left(E_{h}\right) \rightarrow 0
$$

vanishing: $\forall R>0$ one has $\lim _{h \rightarrow \infty} \sup _{x \in \mathbb{R}^{n}}\left|E_{h} \cap B_{R}(x)\right|=0 \quad N O$!

The Strategy

To show that for $\delta>0$ small
(1) $\alpha(E) \geq \delta \Longrightarrow \mathcal{D}(E) \geq c_{\delta}>0 \Longrightarrow \alpha(E)^{2} \leq \frac{4 \omega_{n}^{2}}{c_{\delta}} \mathcal{D}(E)$
(2) $\alpha(E)<\delta \Longrightarrow$ we may reduce to the nearly spherical case
(1)

$$
\mathcal{D}\left(E_{h}\right) \rightarrow 0 \Longrightarrow \alpha\left(E_{h}\right) \rightarrow 0
$$

vanishing: $\forall R>0$ one has $\lim _{h \rightarrow \infty} \sup _{x \in \mathbb{R}^{n}}\left|E_{h} \cap B_{R}(x)\right|=0 \quad$ NO! dichotomy: $\exists 0<m<\omega_{n}$ s.t. $\forall \varepsilon>0 \quad \exists R_{\varepsilon}, \quad E_{h}^{1}, E_{h}^{2} \subset E_{h}$ $\limsup \left|\left|E_{h}^{1}\right|-m\right|<\varepsilon, \quad \limsup | | E_{h}^{2}\left|-\left(\omega_{n}-m\right)\right|<\varepsilon, \quad \operatorname{dist}\left(E_{h}^{1}, E_{h}^{2}\right) \rightarrow \infty$ $h \rightarrow \infty$ $h \rightarrow \infty$

The Strategy

To show that for $\delta>0$ small
(1) $\alpha(E) \geq \delta \Longrightarrow \mathcal{D}(E) \geq c_{\delta}>0 \Longrightarrow \alpha(E)^{2} \leq \frac{4 \omega_{n}^{2}}{c_{\delta}} \mathcal{D}(E)$
(2) $\alpha(E)<\delta \Longrightarrow$ we may reduce to the nearly spherical case
(1)

$$
\mathcal{D}\left(E_{h}\right) \rightarrow 0 \quad \Longrightarrow \quad \alpha\left(E_{h}\right) \rightarrow 0
$$

vanishing: $\forall R>0$ one has $\lim _{h \rightarrow \infty} \sup _{x \in \mathbb{R}^{n}}\left|E_{h} \cap B_{R}(x)\right|=0 \quad N O$! dichotomy: $\exists 0<m<\omega_{n}$ s.t. $\forall \varepsilon>0 \quad \exists R_{\varepsilon}, \quad E_{h}^{1}, E_{h}^{2} \subset E_{h}$ $\limsup \left|\left|E_{h}^{1}\right|-m\right|<\varepsilon, \quad \lim \sup | | E_{h}^{2}\left|-\left(\omega_{n}-m\right)\right|<\varepsilon, \quad \operatorname{dist}\left(E_{h}^{1}, E_{h}^{2}\right) \rightarrow \infty$ $h \rightarrow \infty$

$$
h \rightarrow \infty
$$

NO!
compactness: $\forall \varepsilon>0 \exists R_{\varepsilon}$ s.t. $\quad \lim \sup \left|E_{h} \backslash B_{R_{\varepsilon}}\right|<\varepsilon$

$$
h \rightarrow \infty
$$

compactness: $\forall \varepsilon>0 \exists R_{\varepsilon}$ s.t. $\lim \sup \left|E_{h} \backslash B_{R_{\varepsilon}}\right|<\varepsilon$ $h \rightarrow \infty$
compactness: $\forall \varepsilon>0 \exists R_{\varepsilon}$ s.t. $\lim \sup \left|E_{h} \backslash B_{R_{\varepsilon}}\right|<\varepsilon$ $h \rightarrow \infty$

This is the difficult case!
compactness: $\forall \varepsilon>0 \exists R_{\varepsilon}$ s.t. $\lim \sup \left|E_{h} \backslash B_{R_{\varepsilon}}\right|<\varepsilon$

$$
h \rightarrow \infty
$$

This is the difficult case!

$$
\chi_{E_{h}} \rightharpoonup f \quad \text { weakly* in } L^{\infty} \quad \int_{\mathbb{R}^{n}} f d x=|B|
$$

compactness: $\forall \varepsilon>0 \exists R_{\varepsilon}$ s.t. $\lim \sup \left|E_{h} \backslash B_{R_{\varepsilon}}\right|<\varepsilon$

$$
h \rightarrow \infty
$$

This is the difficult case!

$$
\chi_{E_{h}} \rightharpoonup f \quad \text { weakly* in } L^{\infty} \quad \int_{\mathbb{R}^{n}} f d x=|B|
$$

Then one has to prove that

$$
\begin{gathered}
\int_{E_{h}} \int_{E_{h}} \frac{1}{|x-y|^{n-\lambda}} \\
\Longrightarrow \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{f(x) f(y)}{|x-y|^{n-\lambda}}=\int_{B} \int_{B} \frac{1}{|x-y|^{n-\lambda}} \\
\Longrightarrow \quad f=\chi_{B} \quad \Longrightarrow \quad \alpha\left(E_{h}\right) \rightarrow 0
\end{gathered}
$$

Lemma
Given $\varepsilon \in(0,1)$, there exists $\delta>0$ such that if $\alpha(E)<\delta$ then one can find a set E^{\prime} with $\left|E^{\prime}\right|=\omega_{n}$ and

$$
\begin{gathered}
B_{1-\varepsilon}(0) \subset E^{\prime} \subset B_{1+\varepsilon}(0) \\
\alpha(E)=\alpha\left(E^{\prime}\right)
\end{gathered}
$$

if $\alpha(E)<\delta \ll \varepsilon \Longrightarrow\left|E \backslash B_{1+\varepsilon}(0)\right| \leq\left|E \backslash B_{1}(0)\right|=\frac{1}{2} \alpha(E) \ll \varepsilon$
if $\alpha(E)<\delta \ll \varepsilon \Longrightarrow\left|E \backslash B_{1+\varepsilon}(0)\right| \leq\left|E \backslash B_{1}(0)\right|=\frac{1}{2} \alpha(E) \ll \varepsilon$

The proof that $\mathcal{P}\left(E^{\prime}\right) \geq \mathcal{P}(E)$ is easy
if $\alpha(E)<\delta \ll \varepsilon \Longrightarrow\left|E \backslash B_{1+\varepsilon}(0)\right| \leq\left|E \backslash B_{1}(0)\right|=\frac{1}{2} \alpha(E) \ll \varepsilon$

The proof that $\mathcal{P}\left(E^{\prime}\right) \geq \mathcal{P}(E)$ is easy $\quad \Longrightarrow \quad \mathcal{D}\left(E^{\prime}\right) \leq \mathcal{D}(E)$
if $\alpha(E)<\delta \ll \varepsilon \Longrightarrow\left|E \backslash B_{1+\varepsilon}(0)\right| \leq\left|E \backslash B_{1}(0)\right|=\frac{1}{2} \alpha(E) \ll \varepsilon$

The proof that $\mathcal{P}\left(E^{\prime}\right) \geq \mathcal{P}(E)$ is easy $\quad \Longrightarrow \quad \mathcal{D}\left(E^{\prime}\right) \leq \mathcal{D}(E)$
The proof that $\quad \alpha\left(E^{\prime}\right)=\alpha(E) \quad$ is trickier

Thus from now on we may suppose that $|E|=|B|$ and

$$
B_{1-\varepsilon}(0) \subset E \subset B_{1+\varepsilon}(0) \quad \text { for some small } \varepsilon>0
$$

Theorem
There exists C_{1} s.t. if $\quad B_{1-\varepsilon}(0) \subset E \subset B_{1+\varepsilon}(0),|E|=|B|$,

$$
\begin{gathered}
\text { either } \quad \alpha(E)^{2} \leq C_{1} \mathcal{D}(E) \\
\text { or } \quad \exists E^{\prime}=\left\{t z: z \in \mathbb{S}^{n-1}, t \in[0,1+u(z)],\|u\|_{L^{\infty}} \leq \varepsilon\right\} \\
\text { s.t. } \quad \alpha(E) \leq 6\left|E^{\prime} \Delta B\right|, \quad \mathcal{D}\left(E^{\prime}\right) \leq 2 \mathcal{D}(E)
\end{gathered}
$$

Theorem
There exists C_{1} s.t. if $\quad B_{1-\varepsilon}(0) \subset E \subset B_{1+\varepsilon}(0),|E|=|B|$,

either

$$
\alpha(E)^{2} \leq \mathcal{C}_{1} \mathcal{D}(E)
$$

$$
\text { or } \quad \exists E^{\prime}=\left\{t z: z \in \mathbb{S}^{n-1}, t \in[0,1+u(z)],\|u\|_{L \infty} \leq \varepsilon\right\}
$$

$$
\text { s.t. } \quad \alpha(E) \leq 6\left|E^{\prime} \Delta B\right|, \quad \mathcal{D}\left(E^{\prime}\right) \leq 2 \mathcal{D}(E)
$$

$\tilde{E}=\left\{t z: z \in \mathbb{S}^{n-1}, t \in\left[0,1-u_{1}(z)\right] \cup\left[0,1+u_{2}(z)\right],\|u\|_{L \infty} \leq \varepsilon\right\}$

Theorem
There exists C_{1} s.t. if $\quad B_{1-\varepsilon}(0) \subset E \subset B_{1+\varepsilon}(0),|E|=|B|$, either $\alpha(E)^{2} \leq \mathcal{C}_{1} \mathcal{D}(E)$
or $\quad \exists E^{\prime}=\left\{t z: z \in \mathbb{S}^{n-1}, t \in[0,1+u(z)],\|u\|_{L^{\infty}} \leq \varepsilon\right\}$
s.t. $\quad \alpha(E) \leq 6\left|E^{\prime} \Delta B\right|, \quad \mathcal{D}\left(E^{\prime}\right) \leq 2 \mathcal{D}(E)$

E^{\prime} is nearly spherical. Can we say that $\operatorname{bar}\left(E^{\prime}\right)=0$?

Assume $B_{1-\varepsilon^{2}}(0) \subset E \subset B_{1+\varepsilon^{2}}(0) \rightsquigarrow E^{\prime}$,
E^{\prime} is nearly spherical. Can we say that $\operatorname{bar}\left(E^{\prime}\right)=0$?

Assume $B_{1-\varepsilon^{2}}(0) \subset E \subset B_{1+\varepsilon^{2}}(0) \rightsquigarrow E^{\prime}$, but $\operatorname{bar}\left(E^{\prime}\right) \neq 0$
Moreover $B_{1-\varepsilon^{2}}(0) \subset E^{\prime} \subset B_{1+\varepsilon^{2}}(0)$
E^{\prime} is nearly spherical. Can we say that $\operatorname{bar}\left(E^{\prime}\right)=0$?

Assume $B_{1-\varepsilon^{2}}(0) \subset E \subset B_{1+\varepsilon^{2}}(0) \rightsquigarrow E^{\prime}, \quad$ but $\operatorname{bar}\left(E^{\prime}\right) \neq 0$
Moreover $B_{1-\varepsilon^{2}}(0) \subset E^{\prime} \subset B_{1+\varepsilon^{2}}(0)$
Let's try with another ball.
E^{\prime} is nearly spherical. Can we say that $\operatorname{bar}\left(E^{\prime}\right)=0$?

Assume $B_{1-\varepsilon^{2}}(0) \subset E \subset B_{1+\varepsilon^{2}}(0) \rightsquigarrow E^{\prime}, \quad$ but $\operatorname{bar}\left(E^{\prime}\right) \neq 0$
Moreover $B_{1-\varepsilon^{2}}(0) \subset E^{\prime} \subset B_{1+\varepsilon^{2}}(0)$
Let's try with another ball. Let's take $|z| \leq \varepsilon$. Then

$$
B_{1-2 \varepsilon}(z) \subset E \subset B_{1+2 \varepsilon}(z) \leadsto \text { a nearly spherical set } E_{z}
$$

E^{\prime} is nearly spherical. Can we say that $\operatorname{bar}\left(E^{\prime}\right)=0$?

Assume $B_{1-\varepsilon^{2}}(0) \subset E \subset B_{1+\varepsilon^{2}}(0) \rightsquigarrow E^{\prime}, \quad$ but $\operatorname{bar}\left(E^{\prime}\right) \neq 0$
Moreover $B_{1-\varepsilon^{2}}(0) \subset E^{\prime} \subset B_{1+\varepsilon^{2}}(0)$
Let's try with another ball. Let's take $|z| \leq \varepsilon$. Then

$$
B_{1-2 \varepsilon}(z) \subset E \subset B_{1+2 \varepsilon}(z) \leadsto \text { a nearly spherical set } E_{z}
$$

If we are lucky $\ldots \ldots \operatorname{bar}\left(E_{z}\right)=z \quad \rightsquigarrow$ and we are done!
E^{\prime} is nearly spherical. Can we say that $\operatorname{bar}\left(E^{\prime}\right)=0$?

Assume $B_{1-\varepsilon^{2}}(0) \subset E \subset B_{1+\varepsilon^{2}}(0) \rightsquigarrow E^{\prime}, \quad$ but $\operatorname{bar}\left(E^{\prime}\right) \neq 0$
Moreover $B_{1-\varepsilon^{2}}(0) \subset E^{\prime} \subset B_{1+\varepsilon^{2}}(0)$
Let's try with another ball. Let's take $|z| \leq \varepsilon$. Then

$$
B_{1-2 \varepsilon}(z) \subset E \subset B_{1+2 \varepsilon}(z) \rightsquigarrow \quad \text { a nearly spherical set } E_{z}
$$

If we are lucky $\ldots \ldots \operatorname{bar}\left(E_{z}\right)=z \leadsto$ and we are done!

- $z \in \bar{B}_{\varepsilon}(0) \rightarrow \operatorname{bar}\left(E_{z}\right)$ is continuous
- if $0<|z| \leq \varepsilon$ then $B_{1-\varepsilon^{2}}(0) \subset E_{z} \subset B_{1+\varepsilon^{2}}(0)$
- \Longrightarrow if $|z|=\varepsilon$ then $\left(z-\operatorname{bar}\left(E_{z}\right)\right) \cdot z>0$

1) $z \in \bar{B}_{\varepsilon}(0) \rightarrow \operatorname{bar}\left(E_{z}\right)$ is continuous
2) if $|z|=\varepsilon$ then $\left(z-\operatorname{bar}\left(E_{z}\right)\right) \cdot z>0$
3) $z \in \bar{B}_{\varepsilon}(0) \rightarrow \operatorname{bar}\left(E_{z}\right)$ is continuous
4) if $|z|=\varepsilon$ then $\left(z-\operatorname{bar}\left(E_{z}\right)\right) \cdot z>0$

Assume by contradiction that $\operatorname{bar}\left(E_{z}\right) \neq z \forall z \in \bar{B}_{\varepsilon}(0)$

1) $z \in \bar{B}_{\varepsilon}(0) \rightarrow \operatorname{bar}\left(E_{z}\right)$ is continuous
2) if $|z|=\varepsilon$ then $\left(z-\operatorname{bar}\left(E_{z}\right)\right) \cdot z>0$

Assume by contradiction that $\operatorname{bar}\left(E_{z}\right) \neq z \forall z \in \bar{B}_{\varepsilon}(0)$

$$
\text { Set } \quad R=\min _{|z|=\varepsilon}\left|z-\operatorname{bar}\left(E_{z}\right)\right|>0
$$

1) $z \in \bar{B}_{\varepsilon}(0) \rightarrow \operatorname{bar}\left(E_{z}\right)$ is continuous
2) if $|z|=\varepsilon$ then $\left(z-\operatorname{bar}\left(E_{z}\right)\right) \cdot z>0$

Assume by contradiction that $\operatorname{bar}\left(E_{z}\right) \neq z \forall z \in \bar{B}_{\varepsilon}(0)$

$$
\begin{gathered}
\text { Set } R=\min _{|z|=\varepsilon}\left|z-\operatorname{bar}\left(E_{z}\right)\right|>0 \\
F(w)=\frac{1}{R} \Pi_{\bar{B}_{R}(0)}\left(\varepsilon w-\operatorname{bar}\left(E_{\varepsilon w}\right)\right): \bar{B} \mapsto \bar{B} \backslash\{0\}
\end{gathered}
$$

1) $z \in \bar{B}_{\varepsilon}(0) \rightarrow \operatorname{bar}\left(E_{z}\right)$ is continuous
2) if $|z|=\varepsilon$ then $\left(z-\operatorname{bar}\left(E_{z}\right)\right) \cdot z>0$

Assume by contradiction that $\operatorname{bar}\left(E_{z}\right) \neq z \forall z \in \bar{B}_{\varepsilon}(0)$

$$
\begin{gathered}
\text { Set } R=\min _{|z|=\varepsilon}\left|z-\operatorname{bar}\left(E_{z}\right)\right|>0 \\
F(w)=\frac{1}{R} \Pi_{\bar{B}_{R}(0)}\left(\varepsilon w-\operatorname{bar}\left(E_{\varepsilon w}\right)\right): \bar{B} \mapsto \bar{B} \backslash\{0\}
\end{gathered}
$$

Note that $F_{\mid \mathbb{S}^{n-1}}: \mathbb{S}^{n-1} \mapsto \mathbb{S}^{n-1}$

1) $z \in \bar{B}_{\varepsilon}(0) \rightarrow \operatorname{bar}\left(E_{z}\right)$ is continuous
2) if $|z|=\varepsilon$ then $\left(z-\operatorname{bar}\left(E_{z}\right)\right) \cdot z>0$

Assume by contradiction that $\operatorname{bar}\left(E_{z}\right) \neq z \forall z \in \bar{B}_{\varepsilon}(0)$

$$
\begin{gathered}
\text { Set } R=\min _{|z|=\varepsilon}\left|z-\operatorname{bar}\left(E_{z}\right)\right|>0 \\
F(w)=\frac{1}{R} \Pi_{\bar{B}_{R}(0)}\left(\varepsilon w-\operatorname{bar}\left(E_{\varepsilon w}\right)\right): \bar{B} \mapsto \bar{B} \backslash\{0\}
\end{gathered}
$$

Note that $F_{\mid \mathbb{S}^{n-1}}: \mathbb{S}^{n-1} \mapsto \mathbb{S}^{n-1}$
F is homotopic to the constant $\frac{F(0)}{|F(0)|}: \frac{F((1-t) w)}{|F((1-t) w)|} \quad t \in[0,1]$

1) $z \in \bar{B}_{\varepsilon}(0) \rightarrow \operatorname{bar}\left(E_{z}\right)$ is continuous
2) if $|z|=\varepsilon$ then $\left(z-\operatorname{bar}\left(E_{z}\right)\right) \cdot z>0$

Assume by contradiction that $\operatorname{bar}\left(E_{z}\right) \neq z \forall z \in \bar{B}_{\varepsilon}(0)$

$$
\begin{gathered}
\text { Set } R=\min _{|z|=\varepsilon}\left|z-\operatorname{bar}\left(E_{z}\right)\right|>0 \\
F(w)=\frac{1}{R} \Pi_{\bar{B}_{R}(0)}\left(\varepsilon w-\operatorname{bar}\left(E_{\varepsilon w}\right)\right): \bar{B} \mapsto \bar{B} \backslash\{0\}
\end{gathered}
$$

Note that $F_{\mid \mathbb{S}^{n-1}}: \mathbb{S}^{n-1} \mapsto \mathbb{S}^{n-1}$
F is homotopic to the constant $\frac{F(0)}{|F(0)|}: \frac{F((1-t) w)}{|F((1-t) w)|} \quad t \in[0,1]$
But $F_{\mid \mathbb{s}^{n-1}}$ is also homotopic to the identity thanks to 2)

$$
\frac{(1-t) F(\omega)+t \omega}{|(1-t) F(\omega)+t \omega|} \quad t \in[0,1]
$$

1) $z \in \bar{B}_{\varepsilon}(0) \rightarrow \operatorname{bar}\left(E_{z}\right)$ is continuous
2) if $|z|=\varepsilon$ then $\left(z-\operatorname{bar}\left(E_{z}\right)\right) \cdot z>0$

Assume by contradiction that $\operatorname{bar}\left(E_{z}\right) \neq z \forall z \in \bar{B}_{\varepsilon}(0)$

$$
\begin{gathered}
\text { Set } \quad R=\min _{|z|=\varepsilon}\left|z-\operatorname{bar}\left(E_{z}\right)\right|>0 \\
F(w)=\frac{1}{R} \Pi_{\bar{B}_{R}(0)}\left(\varepsilon w-\operatorname{bar}\left(E_{\varepsilon w}\right)\right): \bar{B} \mapsto \bar{B} \backslash\{0\}
\end{gathered}
$$

Note that $F_{\mathbb{S}^{n-1}}: \mathbb{S}^{n-1} \mapsto \mathbb{S}^{n-1}$
F is homotopic to the constant $\frac{F(0)}{|F(0)|}: \frac{F((1-t) w)}{|F((1-t) w)|} \quad t \in[0,1]$
But $F_{\mathbb{S}^{n-1}}$ is also homotopic to the identity thanks to 2)

$$
\frac{(1-t) F(\omega)+t \omega}{|(1-t) F(\omega)+t \omega|} \quad t \in[0,1] \quad \text { Impossible! }
$$

A related result (work in progress with A. Pratelli)

Let $g:(0, \infty) \rightarrow[0, \infty)$ be a continuous, decreasing function, such that

$$
\int_{0}^{1} t^{n-1} g(t) d t<\infty
$$

(this includes in particular the case

$$
\left.g(t)=\frac{1}{t^{n-\lambda}} \quad 0<\lambda<n\right)
$$

A related result (work in progress with A. Pratelli)

Let $g:(0, \infty) \rightarrow[0, \infty)$ be a continuous, decreasing function, such that

$$
\int_{0}^{1} t^{n-1} g(t) d t<\infty
$$

Set for $\varepsilon>0$

$$
\mathcal{F}(E):=P(E)+\varepsilon \int_{E} \int_{E} g(|x-y|) d x d y
$$

A related result (work in progress with A. Pratelli)

Let $g:(0, \infty) \rightarrow[0, \infty)$ be a continuous, decreasing function, such that

$$
\int_{0}^{1} t^{n-1} g(t) d t<\infty
$$

Set for $\varepsilon>0$

$$
\mathcal{F}(E):=P(E)+\varepsilon \int_{E} \int_{E} g(|x-y|) d x d y
$$

There exists ε_{0} such that if $\varepsilon \leq \varepsilon_{0}$, then

$$
\mathcal{F}(B) \leq \mathcal{F}(E), \quad|E|=|B|
$$

and equality holds iff E is a ball
$\min \left\{\mathcal{F}(E)=P(E)+\varepsilon \int_{E} \int_{E} g(|x-y|) d x d y:|E|=|B|\right\}$

$$
\min \left\{\mathcal{F}(E)=P(E)+\varepsilon \int_{E} \int_{E} g(|x-y|) d x d y:|E|=|B|\right\}
$$

Again,

1) for ε small any minimizer is $L^{1} \Longrightarrow C^{2, \alpha}$ close to B

$$
\min \left\{\mathcal{F}(E)=P(E)+\varepsilon \int_{E} \int_{E} g(|x-y|) d x d y:|E|=|B|\right\}
$$

Again,

1) for ε small any minimizer is $L^{1} \Longrightarrow C^{2, \alpha}$ close to B
2) if $E=\left\{t z: z \in \mathbb{S}^{n-1}, t \in[0,1+u(z)]\right\}$ is C^{1} close to B

$$
P(E)-P(B) \geq C_{0}\left(|E \Delta B|^{2}+\|\nabla u\|_{L^{2}(\partial B)}^{2}\right)
$$

3) But one can prove that

$$
\begin{aligned}
& \int_{B} \int_{B} g(|x-y|) d x d y-\int_{E} \int_{E} g(|x-y|) d x d y \\
& \leq C\left(|E \Delta B|^{2}+\int_{\partial B} \int_{\partial B}|u(x)-u(y)|^{2} g(|x-y|) d \mathcal{H}_{x}^{n-1} d \mathcal{H}_{y}^{n-1}\right) \\
& \leq C_{1}\left(|E \Delta B|^{2}+\|\nabla u\|_{L^{2}(\partial B)}^{2}\right)
\end{aligned}
$$

Happy birthday to Gianni!

