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ABSTRACT

This dissertation presents a family of Reduced Order Models (ROMs) which is specifically
designed to deal with both laminar and turbulent flows in a finite volume full order setting.
Several aspects associated with the reduction of the incompressible Navier–Stokes equations
have been investigated. The first of them is related to the need of an accurate reduced pressure
reconstruction. This issue has been studied with the help of two main approaches which
consist in the use of the Pressure Poisson Equation (PPE) at the reduced order level and also
the employment of the supremizer stabilization method. A second aspect is connected with
the enforcement of non-homogeneous Dirichlet boundary conditions at the inlet boundary at
the reduced order level. The solutions to address this aspect include two methods, namely,
the lifting function method and the penalty method.

Different solutions for the treatment of turbulence at the reduced order level have been
proposed. We have developed a unified reduction approach which is capable of dealing
with turbulent flows based on the Reynolds Averaged Navier–Stokes (RANS) equations
complemented by any Eddy Viscosity Model (EVM). The turbulent ROM developed is
versatile in the sense that it may be applied on the FOM solutions obtained by different
turbulent closure models or EVMs. This is made possible thanks to the formulation of the
ROM which merges projection-based techniques with data-driven reduction strategies. In
particular, the work presents a mixed strategy that exploits a data-driven reduction method
to approximate the eddy viscosity solution manifold and a classical POD-Galerkin projection
approach for the velocity and the pressure fields. The newly proposed turbulent ROM has
been validated on benchmark test cases in both steady and unsteady settings with Reynolds
up to Re “ Op105q.
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Chapter 1

Introduction and Motivation
In this chapter the notions of reduced order modeling are introduced. This chapter also outlines
the motivation behind developing Reduced Order Methods (ROMs) in a finite volume setting for
both laminar and turbulent flows. The first section gives motivations for the work conducted
in this thesis. In addition it provides details about the thesis contents. Then the second section
offers a broad review of the works done in the literature on projection-based ROM, turbulent
ROMs and data-driven ROMs. The next section explains the added contributions of this thesis.
Finally the thesis structure is laid out in the last section.
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2 1. Introduction and Motivation

1.1 Motivation and Contents of the Thesis

In Computational Fluid Dynamics (CFD), the scientific community has been recently trying
to cope with the growing demand for simulating industrial problems. These problems which
come from various engineering fields are characterized in being governed by conservation laws
resulting in a system of Partial Differential Equations (PDEs). Several numerical methods for
solving systems of PDEs have been developed in the last decades. These methods include the
finite difference (FDM), the finite element (FEM), the finite volume (FVM), and the spectral
element method (SEM).

In the recent years we have seen considerable breakthroughs and progresses in computational
sciences and scientific computing. However, solving CFD problems numerically in an efficient
way remains a huge challenge and a task which demands greater efforts. In particular, such
challenging situations are manifested in the context of Parametric PDEs (PPDEs), where
one seeks to solve systems of PDEs for a large set of different input parameters. This may
happen in applications like optimization, real-time control and uncertainty quantification. In
the aforementioned problems, the computational cost of resorting to a classical numerical
method for solving the PDEs system could be prohibitive. Reduced Order Methods (ROMs)
[71, 120, 24, 23, 11] have been proposed for the goal of reducing the cost imposed by standard
numerical methods and to achieve significant computational speed up. This chapter gives a
brief overview on the state of the art of ROMs in the context of PPDEs, and on the relevance
of developing ROMs for FVM-based discretization and for turbulent flows.

The main objective of this thesis is to carry out reduced order simulations for turbulent flows
and fluid problems of interest in the industrial community. The first part of this thesis is
focused on ROMs for fluid problems discretized with the finite volume method [110, 148].
The objectives of this thesis originate from the following points:

• Currently, the usage of the FVM for solving fluid dynamics problems in the industrial
community is prevailing and predominant. In fact, most of the CFD solvers used for
tackling real-life applications are based on the FVM, we mention Fluent [8] and STAR
CCM+ [2] (commercial codes) and OpenFOAM [1] (open-source code). These CFD
solvers are well equipped with the computational tools needed for tackling problems
coming from various engineering fields.

• Most of the CFD problems in which the industry is interested are turbulent problems.
For these problems, the cost of running the full order simulations could be significant.

• CFD researchers and engineers demand novel methods which could eventually reduce
the computational burden caused by the full order model simulations. This can be seen
for example in shape optimization problems, in which the fluid dynamics problem is
required to be run for different configurations.

These observations and demands motivate investing efforts in constructing ROMs for FVM-
based discretization, and thereafter introducing turbulence treatment at the reduced order
level. In this thesis, the full order CFD solver is chosen to be OpenFOAM, this choice
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is justified by the fact that it is an open-source code. In addition, OpenFOAM offers
well-established documentation and tutorials for various benchmark CFD problems. As a
consequence, the reduced order models proposed in this thesis have taken into consideration
the full order modeling techniques utilized by OpenFOAM, especially when it comes to
turbulence modeling.

The work carried out in this thesis can be divided into two main parts. At first, ROMs for
FVM-based discretization are presented, by adapting ROMs techniques used in the finite
element environment to work also in a finite volume setting. The second part involves the
construction of reduced order models tailored to work with turbulent flows.

The next section reports the relevant contributions on reduced order modeling for the finite
volume method, as well as the efforts made for the reduction of turbulent flows. The final part
of the next section addresses the ROMs which involve the usage of data-driven methods.

1.2 Literature Review

In this section, I will review works in the literature which are focused on ROMs developed in
the finite volume setting. In addition, I will address different approaches for the treatment
of turbulent flows at the reduced order level. We shall start by introducing the concept of
projection-based ROMs in the next subsection. Then ROMs designed to computationally
reduce turbulent flows are presented followed by data-driven reduced order methods. Finally,
the notion of hybrid ROMs is introduced.

1.2.1 Projection-based ROMs

The paradigm of projection-based ROMs [23, 13, 19, 7, 22] is a popular reduction approach
which has been used in numerous CFD applications. Projection-based ROMs are based on
the notion of casting the high-order numerical solution manifold onto a low-dimensional
manifold. The construction of such a ROM involves then the projection of the governing
equations onto this low-dimensional space. Such a low-dimensional manifold or reduced order
space can be generated by the use of different methods. Examples of such methods are the
Reduced Basis (RB) with the greedy approach [71], the Proper Orthogonal Decomposition
(POD) [132, 42], the Proper Generalized Decomposition (PGD) [50], or by the Dynamic
Mode Decomposition (DMD) [130]. As for the projection techniques which can be employed,
Galerkin projection and Petrov-Galerkin projection are considered the most used ones. In
this thesis, the POD technique is chosen for the generation of the reduced order space and a
Galerkin projection is applied for the construction of the projection-based ROM. In this case
the ROM is often termed as POD-Galerkin ROM, for references on POD-Galerkin ROMs see
[114, 4, 26, 93, 33, 12].
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In literature, earlier works on ROMs based on the finite volume discretization include
[49, 67, 69, 66, 68]. In these works, the Reduced Basis (RB) approach has been extended
to work in general linear evolution schemes such as finite volume schemes. In [103], the
authors presented a POD-Galerkin ROM for the finite volume method. The ROM has been
constructed to reduce the Navier–Stokes equations for both laminar and turbulent flows.
Another POD-Galerkin ROM is presented in [137], where this ROM has been dedicated
to deal with the reduction of the problem of vortex shedding around a circular cylinder
in a finite volume environment. Stabilization techniques have been extended to work also
in finite volume ROMs [139]. In particular, the last work presents a POD-Galerkin ROM
which employs the supremizer stabilization method in order to obtain a stable pressure
ROM field. The supremizer stabilization method ensures that a reduced order version of the
inf-sup condition is met, initially it was constructed for finite element POD-Galerkin ROM
in [16]. The POD-Galerkin ROMs in [103, 137, 139] differ in the methodology adapted for
the reduction of the Navier–Stokes equations. Further details on the approaches employed
in these works are recalled in section 2.4, section 2.5 and section 2.6. We mention works in
which numerical analysis has been used for the study of ROMs for turbulent flows and ROMs
for pressure approximations [124, 90, 34]. The last works present different ROMs frameworks
for the computation of the reduced pressure field.

Recently, the work [140] tackles the issue of geometrical parametrization for FVM-based
POD-Galerkin ROM. The authors in [140] propose a reduced order model which is fully
consistent with the SIMPLE algorithm [117]. The SIMPLE algorithm is the full order solver
approach for steady flows in OpenFOAM and it is a segregated approach. Other works
which deal with geometrical parametrization in FVM-based ROM include [98, 164] which
focus on inviscid Euler equations. Also addressing the issue of geometrical parametrization,
the contributions [154] and [161] deal with turbulent compressible Navier–Stokes equations
and PDE-constrained optimization problems, respectively. Extension of the FVM-based
POD-Galerkin ROM for thermal mixing problem is presented in [57]. Another POD-Galerkin
ROM for the problem of buoyancy-driven enclosed flows is developed in [141].

1.2.2 ROMs for turbulent flows

Turbulent flows are ubiquitous in nature and in real world applications. Turbulence as a
physical phenomenon is characterized by being chaotic, disorder, non-stationary and multi-
scale [156]. Turbulent flows can be seen in civil, aerospace and naval engineering, for example
we mention the flow around circular cylinders [91], the flow around aircraft wing tips [3]
and the dynamics of rowing and sailing boats [54, 102]. These kinds of applications are of
significant interest in the industrial community. Understanding the underlying dynamics of
such flows and capturing the quantities of interest from engineering perspective is of paramount
importance. Therefore, numerical simulations of the Navier–Stokes equations are carried
out to address these issues. However, the task of simulating the Navier–Stokes equations for
turbulent flows is not straightforward. In more details, simulating the Navier–Stokes equations
for all the scales in the case of turbulent flows, which is known as the Direct Numerical
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Simulations (DNS) approach, is not feasible. The argument for this claim is based on the
Kolmogorov length microscales. If one simulates the NSE using the DNS approach (or without
any form of turbulence modeling), then the computational grid has to be fine enough to
capture all the length scales up to the Kolmogorov length microscales η [94]:

η “

˜

ν3

ε

¸
1
4

, ε “
u13

L
. (1.1)

In the above relations ε is the turbulent dissipation rate, L is the integral length scale which
is the largest scale in the energy spectrum, ν is the kinematic viscosity and u1 is the root
mean square of the turbulent velocity fluctuation field which is present in the Reynolds
decomposition assumption (see 3.1). Consequently, the number of points needed for the
discretization of the domain is:

N “
L

η
“

ˆ

u1L

ν

˙
3
4

, (1.2)

where one can see that the term inside the brackets is basically a form of the Reynolds number.
Hence, the number of cells N3 inside a box which has the dimension of the integral length
scale scales up with the Reynolds number as follows:

N3
9Re

9
4 . (1.3)

The relation above indicates that spatial refinement is needed for flows with high Reynolds
number. It has to be remarked that the temporal resolution of the numerical scheme has
to be also refined in order to make sure that fluid particles do not cross more than one cell
within a time step. The last considerations render the task of carrying out DNS simulations
for turbulent flows prohibitive in terms of computational cost.

To overcome the problems caused by the DNS approach, turbulence is treated usually with the
help of modeling strategies. These modeling strategies include mainly the idea of averaging
and obtaining under-resolved solutions which reflect, to the best extent, the physics of the
problem under interest. The first common approach in the CFD community is called Reynolds
Averaged Navier–Stokes (RANS) equations. This approach solves for the time-averaged part
of the fluid dynamics variables. On the other hand, there is another approach named Large
Eddy Simulations (LES) [28, 126] which is based on the concept of filtering. In LES, the
Navier–Stokes equations are filtered to some scale, and the large scales are simulated while
the small scales are modeled.

After giving this short introduction on turbulence, we will proceed to address the reduction
approaches dedicated to deal with turbulent flows. POD-Galerkin ROMs have several issues
when it comes to the reduction of turbulent flows. Most of the issues are related to energy
stability problems [35]. In more details, the POD method retrieves the modes which are
representative of the high-energy scales. This results in ROMs which are not dissipative since
the turbulent small scales are the ones responsible for the dissipation of the turbulent kinetic
energy [107].
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A brief overview of the reduction strategies proposed to deal with turbulent flows will be
outlined. The works [25, 116, 153, 9] propose to include dissipation via a closure model. The
work [44] shows numerically that the POD modes have similar energy transfer to the one of
the Fourier modes. This may suggest that LES ideas could be beneficial in POD-Galerkin
ROMs given the analogy with LES which is based on the energy cascade concept. In [77], it
is suggested that the usage of the H1 inner product instead of the L2 one in the generation of
the POD space could result in more dissipative ROMs. This is justified by the fact that small
scale modes have H1 norm value that is higher than their L2 norm value. In [15, 14, 5], the
reduced order space has been enriched in order to better account for the truncated modes.
In [5] for example, the POD modes have been enriched with dissipative modes associated
with the gradient of the velocity fields. A priori analysis is performed on the POD modes,
and a rearrangement of them is done in a way that leads to the enforcement of the energetic
dissipative modes within the first orders of the reduced order basis. The ROM in [5] has been
tested on an aeronautical injector with Reynolds number of 45000.

Minimum residual formulation has been constructed in the reduced order model in order
to accurately reduce turbulent flows [36, 37, 145, 60]. Other works include the use of the
Dynamic Mode Decomposition (DMD) [6, 48, 146, 97]. The work [52] presents a constrained
formulation to deal with long time instabilities in the context of turbulent flows.

The efforts to reduce turbulent flows in the ROM community include the development of
turbulent ROMs which are designed to work with specific turbulence model at the full order
level. Such ROMs are developed in [38, 147, 113, 152, 112]. In [38], the ROM is dedicated
to reduce flows modeled with the Smagorinsky turbulence model [134] for steady flows in a
finite element setting. In the last work, the non-linear eddy diffusion term is approximated
using the Empirical Interpolation Method (EIM). Also the work in [147] is designed to deal
with the Smagorinsky turbulence model. In this Smagorinsky-ROM, it is assumed that the
projection matrix coefficients (which come from the projection of the eddy viscosity term onto
the velocity POD modes) are time dependent. Later, these coefficients are updated during
the time integration of the momentum equation at the reduced order level. The Variational
Multi-Scale (VMS) method has been employed in several VMS-ROM works see [27, 136, 76].
In addition, Smagorinsky VMS-ROMs are constructed for turbulent flows as in [39, 18].

It is important to highlight one of the main differences between the works mentioned in this
subsection which is the presence or the absence of a turbulence modeling strategy at the full
order level. Therefore, one may divide these ROMs into two categories, the first is called
ROMs with FOM turbulence modeling and the second is referred to as ROMs without FOM
turbulence modeling. For example, the works [15, 14] are based on DNS full order model
snapshots without turbulence modeling and so they belong to the second category. On the
other hand, in [5] LES full order turbulence modeling is employed. Likewise, the turbulent
ROMs which are based on the Smagorinsky turbulence model such as [147, 38] are considered
in first category.
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1.2.3 Data Driven and Hybrid ROMs

The majority of the works reported in the previous subsections are for projection-based ROMs.
In this thesis, we also address ROMs which employ data-driven techniques, for references
on data-driven ROMs see [78, 118, 101, 123, 86, 64, 70, 111]. For instance, we mention
the work [65] in which the reduced order model uses regression for the approximation of
the maps between time-parameter values and the projection coefficients onto the reduced
modes. We remark that the data-driven ROMs mentioned are not necessary designed to deal
with turbulent flows. Data-driven techniques can be implemented to approximate certain
variables or certain quantities in the reduced order formulation, while other variables are still
approximated using classical projection-based techniques. In the latter case, we refer to the
reduced order model as hybrid/combined/mixed ROM. Hybrid ROMs have been constructed
in previous works, in this subsection we will report hybrid ROMs developed for the reduction
of the Navier–Stokes equations whether for laminar or turbulent flows.

In [160], a hybrid ROM is presented, where data-driven filtering techniques have been utilized.
The last ROM employ data-driven methods for the approximation of a correction term which
has been added in order to model the interaction between truncated and resolved modes.
This hybrid ROM has been tested on a 2D channel flow past a circular cylinder at various
Reynolds number values.

Calibration methods in reduced order modeling are considered as data-driven approaches.
These methods have been implemented in the formulation of hybrid ROMs such as in [56, 43].
In the last two mentioned contributions, the calibration methods have been implemented in
the context of POD-Galerkin ROMs for the purpose of reducing the Navier–Stokes equations.
The approach in [56] assumes that pressure gradient term which appears in the projected
momentum equation is approximated as the product of a calibration matrix and the reduced
velocity vector degrees of freedom. The entries of the calibration matrix are then computed by
solving a minimization problem of a functional which has dependence on the interpolated L2

projection coefficients of the velocity. On the other hand, the calibration procedure in [43] is
done differently. In more details, the hybrid ROM [43] involves the tuning of the polynomial
that defines the reduced order dynamical system. The reduced order polynomial is therefore
different from the original one, where it minimizes a certain meaningful functional. This
functional has basically two properly weighted terms, one accounts for the error committed
between the projection coefficients (which come from the data) and the reduced order solution,
the second term penalizes the difference between the original polynomial and the one which
solves the optimization problem.

The hybrid ROM in [115] presents an empirical pressure model for the approximation of the
pressure term in the projected momentum equation. Linear regression technique has been
used to fit the coefficients of the empirical pressure model from the data.

We mentioned earlier works on ROMs which are focused on the variational multi-scale (VMS)
method which focus on turbulent flows. The aforementioned works are based on projection
techniques. Recently, a hybrid ROM has been presented in [109] which makes use of the VMS
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method. In this hybrid ROM (referred to in the article as DD-VMS-ROM), projection-based
techniques are used to separate the scales into three categories which are resolved large scales,
resolved small scales and unresolved scales. Then the terms which represent the interactions
between the three categories of scales (which are called the VMS-ROM closure terms) are
identified. Later, the VMS-ROM closure terms are modeled using data-driven approach. The
main difference between turbulent VMS-ROMs and the DD-VMS-ROM is that in the former
the VMS closure models are utilized to help the dissipation of energy from the ROM, unlike
in DD-VMS-ROM where the VMS-ROM closure terms constructed by the usage of data are
not required to be dissipative.

Modeling projected terms at the reduced order level and modifying the reduced order matrices
entries in the reduced dynamical system is the main pattern observed in the last mentioned
works. Moreover, one can notice that these hybrid ROMs concentrate on reproducing the
velocity field. The pressure field and the turbulence variables have not been considered in the
reduced order model formulation.

1.3 Thesis Contributions

The main objective of this thesis is to construct ROMs for industrial fluid dynamics problems.
The prerequisites for achieving this goal are the following:

• To extend ROMs techniques and methodologies to work in the finite volume environment.
This is important because of the fact that the FVM is widespread in the industrial
community.

• To have ROMs developed specifically to deal with turbulent flows. Since these flows are
common in real applications and in industrial problems.

The first part of this thesis deals with the issue of FVM-based ROMs. It offers a survey of
projection-based ROMs developed for FVM-based discretization. In addition, the ROMs
have been equipped with needed techniques for the reduced treatment of non-homogeneous
Dirichlet boundary conditions. Furthermore, a fully offline/online decoupled procedure for
computing the fluid dynamics forces is developed for the aforementioned ROMs.

In the second of part of this thesis, the attention is shifted to the treatment of turbulent
flows. In chapter 3, a hybrid ROM is proposed for the treatment of turbulent flows. The
novelty of this ROM is in its generality and versatility, where it is designed to work with full
order models in OpenFOAM based on different turbulence closure models. In contrast to
the hybrid ROMs mentioned in subsection 1.2.3, this ROM has introduced a reduced order
approximation of the velocity u, the pressure p and the eddy viscosity νt. The motivation
behind having a reduced order version of the pressure and the eddy viscosity fields can be
summarized by the following points:
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• Having an accurate reconstruction of the pressure field at the reduced order level is
vital. This is because of the need to recover certain performance indicators which highly
depend on the pressure field. An example of such performance indicators is the fluid
dynamics forces acting on the surface of bodies immersed in the flow.

• The reduced eddy viscosity is essential for having a stable reduced order model since
the full order model itself has been stabilized by presenting the eddy viscosity into its
formulation.

The hybrid ROM proposed in this thesis assumes that each of the fluid dynamics variables
of velocity u, pressure p and the eddy viscosity νt has a different set of reduced degrees of
freedom. The model utilizes classical projection techniques for the approximation of velocity
and pressure at the reduced order level. In ideal situation, similar projection procedure has
to be employed for the specific turbulence model equations. However, this would mean that a
turbulent ROM has to be developed for each different turbulence model. Given the abundant
number of turbulence models available, the last option would be problematic. This is because
of the implications in terms of the number of different ROMs needed to be developed and
monitored at the same time for potential updates. Consequently, unlike the case of velocity
and pressure, the reduced eddy viscosity in the hybrid ROM proposed here is approximated
by the data-driven techniques.

1.4 Thesis Structure

This thesis comprises of 5 chapters which are organized as it follows:

• The first chapter Introduction and Motivation. introduces the general notions of reduced
order modeling. It also addresses the motivations and contents of this thesis. It gives
an idea of why it is relevant to develop reduced order models for problems in CFD
in a finite volume setting. The first chapter provides a broad review of the literature
contributions on projection-based ROM, turbulent ROMs and data-driven ROMs.

• The second chapter Projection-based ROMs for the NSE in FV deals with the problem
of interest at the full order level which is the incompressible Navier–Stokes equations. It
explains how the finite volume discretization of this problem is done and then it lays out
the algorithms employed for solving the governing equations. In the same chapter, the
POD method for the generation of reduced order spaces is presented. After that, several
POD-Galerkin ROMs are proposed, these ROMs are used for the reduction of laminar
flows. The last sections of this chapter deal with the issues of non-homogeneous boundary
condition treatment and the offline/online decoupling procedure for the computation of
the forces.

• The third chapter Hybrid ROMs for the Turbulence Treatment in the NSE is dedicated
to the treatment of turbulence at both the full and the reduced order levels. At first,
turbulence modeling with the Reynolds Averaged Navier–Stokes (RANS) equations is
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introduced. Then a hybrid POD-Galerkin ROM is proposed for the goal of reducing
turbulent flows. This hybrid ROM utilizes interpolation using radial basis function for
the approximation of the turbulent viscosity. The interpolation procedure is done in
two different ways which are addressed in detail in this chapter.

• The fourth chapter Applications and Numerical Results presents the results of the ROMs
developed in both the second and the third chapters. The results are for benchmark
cases in computational fluid dynamics. These cases include the angle of attack for
the airfoil (studied in uncertainty quantification context), the backstep problem in
turbulent setting and the flow around a circular cylinder in turbulent setting as well.
The reduction methodologies are compared to each other on several fronts.

• The final chapter Conclusions and Outlook outlines the conclusions which are drawn
from the results of the work carried out in this thesis. It also gives several future paths
for the extension of the work presented here.



Chapter 2

Projection-based ROMs for the
Incompressible Navier–Stokes
Equations in a Finite Volume Setting
This chapter addresses the parametrized incompressible Navier–Stokes equations when dis-
cretized using the finite volume method. Then the algorithms employed for solving the equations
are presented. Later, the POD method is introduced and then projection-based ROMs for
laminar flows are discussed. These ROMs varied according to the equations used at the reduced
order level. The first ROM introduces a uniform approach with the usage of solely the momen-
tum equation. Another ROM which is based on the Poisson equation for pressure is introduced.
Then we present a ROM which employs the supremizer stabilization method with the use of
both the momentum and the continuity equations. In this chapter, the treatment methods
for the non-homogeneity at the Dirichlet boundary are addressed. Finally, the offline/online
decoupling procedure for the computation of the forces is explained.
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2.1 Full Order Model (FOM)

This section presents the full order model starting with the governing equations of interest
which are the incompressible Navier–Stokes Equations (NSE). The NSE are studied here
in a parametrized form, we start with recalling their strong form. Given a parameter
vector µ P P Ă Rq, where P is a q-dimensional parameter space. The incompressible NSE
parametrized by µ read as follows:

$
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’
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’

’

’

’

%

Bu
Bt
`∇ ¨ pub uq ´∇ ¨ ν

´

∇u` p∇uqT
¯

“ ´∇p in Ω ˆ r0, T s,

∇ ¨ u “ 0 in Ω ˆ r0, T s,
+ Boundary conditions on Γ ˆ r0, T s,
+ Initial conditions in pΩ, 0q,

(2.1)

where Γ is the boundary of the fluid domain Ω P Rd, with d “ 1, 2 or 3. u is the flow velocity
vector field, t is the time, ν is the fluid kinematic viscosity, p is the normalized pressure field,
which is divided by the fluid density ρf , and the time window under consideration is r0, T s.
We remark that in this work the parameter µ could be a physical parameter such as the
fluid kinematic viscosity or a geometrical one such as the dimension of a certain part of the
domain. We would like to emphasize that the velocity and pressure fields are functions of
time, space and the parameter, that is u “ upt,x;µq, p “ ppt,x;µq. These dependencies
have been dropped in the equations above for the sake of keeping the notation concise.

2.1.1 Finite Volume Discretization

The incompressible Navier–Stokes equations in 2.1 are solved by the finite volume method
[110]. The first step in this method is to choose a suitable polygonal tessellation, then the
PDEs system is written in integral form over each control volume. Denote by Nh the dimension
of the full order model (FOM) which is basically the number of degrees of freedom of the
discretized problem. The momentum and continuity equations are solved with the help of
a segregated approach which adapts the Rhie and Chow interpolation. The discretization
process starts with the momentum equation by writing it in integral form over each control
volume Vi as follows:

ż

Vi

B

Bt
udV `

ż

Vi

∇ ¨ pub uqdV ´

ż

Vi

∇ ¨ ν
´

∇u` p∇uqT
¯

dV `

ż

Vi

∇pdV “ 0. (2.2)

The discretization procedure of all terms in the momentum equation is explained in what
follows. The pressure gradient term is discretized using the Gauss’s theorem:

ż

Vi

∇pdV “

ż

Si

pdS «
ÿ

f

Sfpf , (2.3)
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Figure 2.1: Sketch of a finite volume in 2 dimensions.

where pf is the value of pressure at the center of the faces and Sf is the area vector of each
face of the control volume (Figure 2.1).

The convective term is discretized also by exploiting the Gauss’s theorem as follows:
ż

Vi

∇ ¨ pub uqdV “

ż

Si

pdS ¨ pub uqq «
ÿ

f

Sf ¨ uf b uf “
ÿ

f

Ffuf . (2.4)

In the above equation uf is the velocity vector evaluated at the center of each face of the
control volume. It has to be remarked that velocity values are initially computed at the
cell centres and therefore the values at the center of the faces have to be deduced from the
ones calculated at the cell centres. Consequently, these uf values are interpolated using the
values computed at the cell centers. There are plenty of interpolation schemes which can be
used such as central, upwind, second order upwind and blended differencing schemes. The
mass flux Ff is computed using the previous converged velocity in the first iteration and then
updated by Ff “ uf ¨ Sf for removing the non-linearity.

As for the diffusion term, it is discretized as it follows:

ż

Vi

∇ ¨ ν
´

∇u` p∇uqT
¯

dV “

ż

Si

dS ¨ ν
´

∇u` p∇uqT
¯

«
ÿ

f

νfSf ¨ p∇uqf , (2.5)

where p∇uqf is the gradient of u at the faces. In similar fashion to the computation of
the pressure gradient in (2.3), one may compute p∇uqf . As for the computation of the
term Sf ¨ p∇uqf in (2.5), this depends on one particular feature of the mesh which is the
orthogonality. The mesh 2.1 is orthogonal if the line that connects two cell centers is orthogonal
to the face that divides these two cells. If the mesh is orthogonal, and assuming that the two
cell centres are equally distanced to the face, then the term Sf ¨ p∇uqf is computed as it
follows:

Sf ¨ p∇uqf “ |Sf |
uN ´ uP
|d|

, (2.6)

where uN and uP are the velocities at the centers of two neighboring cells and d is the distance
vector connecting the two cell centers see Figure 2.1. On the other hand, non-orthogonal
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correction term is needed for the case of non-orthogonal meshes. The computation of the
correction term [83] is given by the following equation:

Sf ¨ p∇uqf “ |∆|
uN ´ uP
|d|

` J ¨ p∇uqf , (2.7)

where the following relation holds Sf “∆` J . The first vector ∆ is chosen parallel to Sf .
The term p∇uqf is obtained through interpolation of the the values of the gradient at the
cell centers p∇uqN and p∇uqP in which the subscripts N and P indicate the values at the
center of the cells of the two neighboring cells. In the next section, the discretized equations
(written in matrix form) for velocity and pressure are addressed. Additionally, the segregated
pressure-based solver approaches are presented.

2.2 Segregated Pressure-Based Solvers for The
Incompressible NSE

After having introduced the discretization of the different terms in the NSE, one may proceed
to address the algorithm used in solving the discretized system. The algorithm employed in
OpenFOAM is a segregated pressure-based approach. Its version for the case of steady flows
is called the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) [117]. On the
other hand the Pressure Implicit with Splitting of Operators (PISO) [79] algorithm is utilized
for unsteady flows, also one may use the PIMPLE [110] algorithm which is a combined version
of PISO and SIMPLE.

The starting point is the discretized system of the NSE which can be written in matrix form
as follows:

«

rAus r∇p¨qs
r∇ ¨ p¨qs r0s

ff«

u

p

ff

“

«

0

0

ff

, (2.8)

where Au is the matrix containing the velocity coefficients which comes from the momentum
equation, Auu “ Bu

Bt
`∇ ¨ pub uq ´∇ ¨ ν

´

∇u` p∇uqT
¯

. The last system is called a
saddle-point system.

The momentum equation in Equation 2.8 can be written as:

u` rA´1
u sr∇p¨qsrps “ 0, (2.9)

where A´1
u denotes the inverse of the momentum matrix in the discretized form. By applying

the divergence operator on the last equation, one obtains

r∇ ¨ p¨qsu` r∇ ¨ p¨qsrA´1
u sr∇p¨qsrps “ 0, (2.10)
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then by exploiting the free divergence constraint on velocity r∇ ¨ p¨qsu “ 0, one may derive
the following pressure equation

r∇ ¨ p¨qsrA´1
u sr∇p¨qsrps “ 0. (2.11)

Thus the matrix A´1
u acts as the diffusivity in the Laplace equation for the pressure. For

computational reasons, solving Equation 2.11 in this form is inconvenient. This is related
to the fact that A´1

u is likely to be dense. In addition the product of three matrices could
result in a dense matrix which rises the difficulty of solving the linear system. As a result, a
different approach is used in which the momentum matrix is decomposed into diagonal and
off-diagonal matrices:

rAus “ rDus ` rLUus, (2.12)

where rDus is a diagonal matrix and therefore can be easily inverted, and rLUus is the matrix
containing the off-diagonal part of rAus. Inserting Equation 2.12 into Equation 2.8, yields
the following modified system

«

rDus r∇p¨qs
r∇ ¨ p¨qs r0s

ff«

u

p

ff

“

«

´rLUusrus

0

ff

, (2.13)

This gives the following equation for pressure:

r∇ ¨ p¨qsrD´1
u sr∇p¨qsrps “ ´r∇ ¨ p¨qsrD´1

u srLUusrus. (2.14)

The last equation is a Poisson equation for pressure with the diagonal part of the momentum
equation acting as a diffusivity, while divergence of the velocity is on the right hand side.
The last derivation of the pressure equation is referred to as the pressure equation as a Schur
Complement.

In the next part of this section, the same derivation will be done without having to use the
assembly of Schur’s complement. The first step is to write the discretized momentum equation,
for each control volume, namely:

auPuP `
ÿ

N

auNuN “ rp ´∇p, (2.15)

where P represents a generic cell center and N is the set of neighboring points around it
(Figure 2.1), uN and uP are the velocities at the centers of two neighboring cells, auP is the
vector of diagonal coefficients of the equations, auN is the vector that consists off-diagonal
coefficients and rp is a term that contains any r.h.s contributions. For sake of simplicity, one
may introduce the operator Hpuq “ rp ´

ř

N a
u
NuN which contains the off-diagonal part of

the momentum matrix and any r.h.s contributions. It follows:

auPuP “Hpuq ´∇p, (2.16)
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and

uP “ pa
u
P q
´1
pHpuq ´∇pq. (2.17)

Inserting the last expression for uP inside the continuity equation ∇ ¨ u “ 0, gives:

∇ ¨ rpauP q
´1∇ps “∇ ¨ rpauP q

´1Hpuqs. (2.18)

The last pressure equation is equivalent to the one in Equation 2.14, where it can be noticed
that auP is a coefficient in the diagonal matrix rDus and thatHpuq is the product rLUusrus.

The mass flux through each face of the control volume is denoted by Ff . Equation 2.17 and
Equation 2.18 are used together with the discretized version of the continuity equation to
update the mass fluxes Ff .

Ff “ uf ¨ Sf “ ´pa
u
P q
´1Sf ¨∇p` pauP q

´1Sf ¨Hpuq. (2.19)

The term pauP q
´1Sf ¨∇p is computed in a similar manner to Equation 2.6:

pauP q
´1Sf ¨∇p “ pauP q

´1 |Sf |

|d|
ppN ´ pP q “ apNppN ´ pP q, (2.20)

where pP and pN are pressure values at the centers of two neighboring cells and apN “ pauP q´1 |Sf |

|d|

which represents the off-diagonal matrix coefficient in the pressure equation.

At this point, the SIMPLE algorithm may be introduced. The first step in this algorithm is
called the momentum predictor step, where one solves the momentum equation 2.16 for an
initial guessed pressure field p‹. Then using the obtained value of the velocity u‹ from the
last step one may assemble the new off-diagonal vectorHpu‹q. This is followed by solving the
Poisson equation for pressure 2.18 to correct the pressure field. The next step is to assemble
the conservative flux fields Ff before going through the cycle again and carrying out the
momentum predictor. This procedure is repeated till convergence is achieved. However, the
pressure correction equation in its current form is prone to divergence [148]. In order to assure
convergence, under-relaxation is employed.

The pressure field which results from solving the Poisson equation in 2.18 is p‹ ` p1, where
the resulted pressure field is seen as the sum of the guessed initial one p‹ and a correction
term denoted by p1. The under-relaxed pressure field is modified as follows:

p‹‹ “ p‹ ` αpp
1, (2.21)

where αp is the pressure under-relaxation factor. If αp “ 1 this means that no under-relaxation
is introduced and this choice of αp is too large for stable computations, particularly when p‹
is far away from the final solution. A zero value of αp means that no correction is introduced
at all, which is obviously unwanted. Therefore, the value of αp should be taken in the range
of p0, 1q so as to allow to add a correction term which is a fraction of p1. This term should be
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large enough to move forward the algorithm towards convergence and at the same time small
enough to secure stable computations.

Unlike pressure, the under-relaxation for the velocity is not explicit, instead momentum
under-relaxation is implicit, where the discretized momentum equation in 2.16 is modified by
adding artificial terms as follows:

1´ αu
αu

auPu
‹‹
P ` a

u
Pu

‹‹
P “Hpu

‹
q ´∇p‹ `

1´ αu
αu

auPu
‹
P . (2.22)

The new added terms consists of the new under-relaxed velocity values denoted by u‹‹P and
the old ones denoted by u‹P . These terms cancel each other in case of convergence. Here αu is
the velocity under-relaxation factor, the above equation simplifies to

1
αu
auPu

‹‹
P “Hpu

‹
q ´∇p‹ `

1´ αu
αu

auPu
‹
P . (2.23)

As for the guidelines for choosing under-relaxation factors, there is no straightforward way for
setting their optimum values, where in fact their values depend on the type of problem and
the flow. However, in the literature it is recommended that:

0 ă αu ă 1,
0 ă αp ă 1,
αu ` αp « 1.

(2.24)

Let us summarize the important aspects of the SIMPLE algorithm. In the SIMPLE algorithm,
the role of pressure in the momentum equation is to ensure that the velocity field is divergence
free. After carrying out the momentum predictor step, the velocity field does not satisfy the
divergence constraint since the pressure field is a guessed one. Consequently, the pressure
field is corrected and this gives a pressure field which consist into two parts. The first one
is physical and thus consistent with the global flow field, while the other one represents the
correction term which guarantees the continuity. Only the first component of the pressure
field is desired and used in building the physical pressure field. To build this physical pressure
field, the SIMPLE algorithm resorts to the under-relaxing approach explained in this section.
The full SIMPLE algorithm is outlined in Algorithm 1.

The SIMPLE algorithm is used in OpenFOAM for solving the velocity-pressure coupled
system for the case of steady flows. This algorithm may be extended to transient simulations,
however, the most used transient solver in CFD codes is PISO. In the remaining part of this
section, the PISO algorithm is addressed. The PISO algorithm is based on the idea that for
low values of the Courant number (small time steps) the pressure-velocity coupling is much
stronger than the non-linear u´ u coupling in the convective term. Thus it suggests that a
repeated number of pressure corrections can be carried out without having to rediscretize the
momentum equation. The PISO algorithm consist into two correction steps for the pressure
field. The first one will yield a conservative velocity field, while the second will give back a
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more physical pressure field. The usage of more than one pressure corrector implies that it
is not necessary anymore to under-relax the pressure field. However, one thing that could
be seen as a drawback of the PISO algorithm is that it is assumed that the momentum
discretization is not needed when the pressure correctors are applied. This last assumption is
only true for small time steps, which forces that the maximum Courant number [45, 46] has
to be under the value of Comax “ 0.9.

Algorithm 1 The SIMPLE algorithm
1: Start with an initial guess of the pressure field p‹ and the velocity field u‹.
2: Momentum predictor step : solve the discretized momentum equation for the guessed pressure field p‹:

auPu
‹
P “Hpu

‹q ´∇p‹.

3: Calculate the off-diagonal vector Hpu‹q after obtaining the velocity field u‹.
4: Correct pressure and velocity: the new pressure field is computed based on the obtained velocity field from the last step:

∇ ¨ rpauP q
´1∇p̃s “∇ ¨ rpauP q

´1Hpu‹qs.

Then correct the velocity explicitly by:
ũP “ pa

u
P q
´1pHpu‹q ´∇p̃q.

5: Relax the pressure field and the velocity equation with the prescribed under-relaxation factors αp and αu, respectively.
The under-relaxed fields are called p‹‹ and u‹‹

6: Assemble the conservative face flux Ff :

Ff “ uf ¨ Sf “ pa
u
P q
´1Sf ¨Hpu

‹‹q ´ apN pp
‹‹
N ´ p‹‹P q.

7: Set u‹ “ u‹‹ and p‹ “ p‹‹

8: Repeat until achieving convergence.

The PISO algorithm starts in a similar way to the SIMPLE, where it uses a guessed pressure
field to carry out the momentum predictor step. Then it assembles the Hpu‹q vector and
corrects pressure and velocities. The next step represents the key difference between the two
algorithms, where at this point the velocity field has been corrected after solving the pressure
equation. This means that the H vector has been changed and so has the source term in
the pressure equation, which makes the pressure field no longer correct and thus one has to
update the H vector. To address this issue, the SIMPLE the algorithm goes all the way back
to the momentum equation and performs another momentum predictor, and thus it obtains
a new velocity value which will be used to update the H vector for resolving the pressure
equation. On the other hand, in the PISO loop the momentum predictor is just done once.
In more details, rather than solving the momentum equation for the second time, it uses
the corrected velocity field to update directly the H vector and then performs the second
pressure correction step. The PISO complete procedure is structured in Algorithm 2.

There are other transient solvers which could be used for solving the couple velocity-pressure
system. We mention here the PIMPLE algorithm which merges PISO and SIMPLE. The
PIMPLE algorithm contains an outer loop which iterates over the PISO procedure resulting in
a more robust algorithm in terms of stability. The number of times the outer loop is entered is
known as the number of outer correctors of the PIMPLE, if it is set to one then the PIMPLE
replicates the PISO.
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Algorithm 2 The PISO algorithm
1: Perform steps 1´ 4 in the SIMPLE algorithm:

• Solve the discretized momentum equation.

• Update the off-diagonal vector H.

• Solve the pressure correction equation.

• Correct pressure and velocities.

2: Solve the second pressure correction, and obtain the second pressure correction component p2.
3: Correct pressure and velocities, this step gives p‹‹‹ and u‹‹‹.

p‹‹‹ “ p‹ ` p1 ` p2

4: Assemble the conservative face flux Ff :

Ff “ uf ¨ Sf “ pa
u
P q
´1Sf ¨Hpu

‹‹‹q ´ apN pp
‹‹‹
N ´ p‹‹‹P q.

5: Set u‹ “ u‹‹‹ and p‹ “ p‹‹‹

6: Go to step 1 if convergence is not reached.
7: Proceed to the next time step if the final time is not reached.

2.3 Proper Orthogonal Decomposition (POD)

The Proper Orthogonal Decomposition (POD) is a technique which was first introduced for
the identification of coherent structures in turbulent flows [133, 9]. The POD has been used
then extensively in the generation of the reduced order spaces [149, 26, 12, 33, 19]. The
method can be described as a process of exploring and compressing information embedded in
high-dimensional spaces, and at the end this procedure retains the important information.
One of the possible ways of carrying out the POD is based on the method of snapshots. In this
thesis, we rely on this method for the generation of the POD reduced order space. The method
starts by sampling the parameter space and computing the FOM solutions for each value of
the parameter samples. Each of the FOM solutions computed is called a FOM snapshot. A
finite discrete parameter set PM “ tµ1,µ2, ...,µMu is sampled from the parameter space P,
the cardinality of PM is equal to M . In the general case of unsteady flows, the FOM solutions
for the parameter samples are computed for different time instants tt1, t2, ..., tNT u Ă r0, T s,
this means that the total number of snapshots is Ns “M ˚NT . The snapshots matrices Su
and Sp, for velocity and pressure, respectively, will be given by:

Su “ tupx, t1;µ1q, ...,upx, tNT ;µMqu P RNh
uˆNs , (2.25)

Sp “ tppx, t1;µ1q, ..., ppx, tNT ;µMqu P RNh
pˆNs , (2.26)

where Nh
u and Nh

p are the degrees of freedom for velocity and pressure fields, respectively.

The velocity and pressure POD spaces are the ones that solve the following minimization
problems:
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Vu
POD “ arg min 1

Ns

Ns
ÿ

n“1
||Sn

u ´

Nu
ÿ

i“1
pSn

u ,φiqL2pΩqφi||
2
L2pΩq for all Nu “ 1, ..., Ns, (2.27)

Vp
POD “ arg min 1

Ns

Ns
ÿ

n“1
||Sn

p ´

Np
ÿ

i“1
pSn

p , χiqL2pΩqχi||
2
L2pΩq for all Np “ 1, ..., Ns, (2.28)

where Sn
u and Sn

p are the n´th velocity and pressure snapshots, respectively, which have been
obtained for a value of the parameter which belongs to the finite parameter set PM and acquired
at any time instant inside the time window [0,T]. The POD spaces are spanned by the POD
basis/modes, namely Vu

POD “ spantrφis
Nu
i“1u, and Vp

POD “ spantrχis
Np
i“1u, with Nu ăă Nh

u ,

Np ăă Nh
p . Therefore, the construction of the POD spaces requires the computation of the

velocity POD basis rφisNui“1 and the pressure POD basis rχisNpi“1. Solving the minimization
problems reported above is equivalent to solve the eigenvalue problem of the correlation matrix
of the velocity and pressure fields, respectively [93]. The case of the velocity is addressed as
follows:

pCuqij “
´

Si
u,S

j
u

¯

L2pΩq
, (2.29)

where Cu P RNsˆNs is the velocity correlation matrix. One can show that the velocity POD
modes are computed as follows [137],

φi “
1

Nsλui

Ns
ÿ

j“1
Sj
uV

u
ij , (2.30)

where V u P RNsˆNs is the matrix whose columns are the eigenvectors of Cu and λu is a
diagonal matrix whose entries are the eigenvalues of Cu. Similar procedure can be followed
for the computation of the POD pressure modes rχisNpi“1.

The POD space is optimal in the sense that, for any choice of the number of modes, it
minimizes the difference between the snapshots and their projection onto the modes in the L2

norm. In this thesis, the POD is applied on the snapshots matrices which have snapshots
from mixed parameter values and acquired at different time instants. Other procedures for
the generation of the reduced order space can be followed. Examples include the nested POD,
where the POD is applied on the set of snapshots obtained by each parameter value and
then another POD procedure is carried out on the resulting POD modes from the first step.
Another approach is the one utilized in [67], where a POD-Greedy method (POD in time and
RB method with the greedy algorithm in the parameter space) is used for the generation of
the reduced order space.
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2.4 Momentum Equation Solely ROM

After having introduced the POD method in the previous section, one may perform the
projection procedure in order to construct the reduced order system. As mentioned earlier, in
this thesis Galerkin projection is employed resulting in a POD-Galerkin ROM. At this point,
different procedures could be followed for what concerns the construction of POD-Galerkin
ROMs designed to reduce the NSE. In this section, the most simple option is addressed.
This approach consists of the usage of just the momentum equation of the incompressible
Navier–Stokes equations 2.1 at the reduced order level [103].

The assumption on which projection-based ROMs sit is that the dynamics of the PPDEs
system can be described by few dominant modes. These modes when suitably combined, they
give an accurate reproduction of the full order solution. The last assumption translates to the
following decomposition approximation of velocity and pressure fields:

upx, t;µq « urpx, t;µq “
řNr
i“1 aipt;µqφipxq,

ppx, t;µq « prpx, t;µq “
řNr
i“1 aipt;µqχipxq,

(2.31)

where ur and pr are the reduced velocity and pressure fields, respectively, while φipxq and
χipxq are the reduced modes for velocity and pressure, respectively. These modes do not
depend on µ and t. The reduced order degrees of freedom are denoted by aipt;µq for both
of velocity and pressure, the number of these degrees of freedom is Nr (notice that Nu and
Np in Equation 2.27 and Equation 2.28 are equal to Nr in this formulation). The temporal
coefficients aipt;µq depend on time t and on the parameter vector µ. One can notice that in
Equation 2.31 the velocity and pressure fields share the same temporal coefficients. This last
assumption makes the projection-based ROM simpler as mentioned earlier. However, this
assumption has several limitations and drawbacks as it may be foreseen, in the next sections
these drawbacks will be addressed in greater details.

The velocity POD modes are computed using Equation 2.30. On the other hand, the pressure
modes in this formulation are computed using the eigenvectors and the eigenvalues obtained
in the SVD procedure for the velocity POD modes. Thus, the pressure modes are expressed
as:

χi “
1

Nsλui

Ns
ÿ

j“1
Sj
pV

u
ij . (2.32)

The next step in building the POD-Galerkin ROM is to project the momentum equation of
2.1 onto the velocity POD basis rφisNri“1 as follows:

ˆ

φi,
Bu

Bt
`∇ ¨ pub uq ´∇ ¨ ν

´

∇u` p∇uqT
¯

`∇p

˙

L2pΩq

“ 0. (2.33)

The following reduced order dynamical system is obtained after inserting the decomposition
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assumptions of Equation 2.31:

9a “ νpB `BT qa´ a
TCa´Ha, (2.34)

where a is the vector of reduced order degrees of freedom, and each of B,BT ,C and H is
either a reduced order matrix or tensor. These terms are computed as follows:

pBqij “
`

φi,∇ ¨∇φj
˘

L2pΩq
, (2.35)

pBT qij “
´

φi,∇ ¨ p∇φTj q
¯

L2pΩq
, (2.36)

pCqijk “
`

φi,∇ ¨ pφj b φkq
˘

L2pΩq
, (2.37)

pHqij “
`

φi,∇χj
˘

L2pΩq
. (2.38)

It is important to mention that the convective non-linear term in the Navier–Stokes equations
is approximated at the reduced order level through a third order tensor C. This last approach
in handling the non-linear term in the momentum equation could potentially increase the
computational cost when the number of reduced velocity modes grows. Other techniques
for the treatment of this term include EIM-DEIM methods [159, 20] and the Gappy-POD
method [37]. At this stage, Equation 2.34 can be solved for the reduced degrees of freedom of
the fluid dynamics fields. This system can be integrated for time values which are outside the
time window in which snapshots were acquired, namely r0, T s. That case is referred to as
extrapolation in time.

In the context of reduced order modeling, the notion of having two fully decoupled stages
named the offline and the online stages is crucial. The offline stage represents the training
stage which starts by sampling the parameter space. Then the FOM simulations are run
and snapshots are acquired. The last step in the offline stage involves the computation of
the POD modes, as well as any other term which depends on the POD modes such as the
reduced order matrices and tensors. The offline stage is characterized in being of significant
computational cost since the computations depend on the dimension of the FOM. On the
other hand, the online stage involves fast computations which should not depend on the
dimension of the FOM. In the POD-Galerkin ROM developed in this section, the online stage
consists of solving Equation 2.34 for parameter values which could be new ones with respect
to those used in the training of the model.

2.5 Momentum and Poisson Pressure Equations ROM

This sections presents a POD-Galerkin ROM which is based on the usage of both the
momentum equation and the Poisson pressure equation at the reduced order level. This
ROM approach is first presented in [137]. This POD-Galerkin ROM can be used only for the
reduction of unsteady flows.
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The POD-Galerkin ROM presented in the last section has shown lack of accuracy for what
regards the reconstruction of the pressure field at the reduced order level. An accurate pressure
approximation is imperative as many outputs of interest depend highly on the pressure field.
Consequently, stabilization methods have been considered in order to reproduce the pressure
field in an accurate fashion. In this thesis, two stabilization techniques are addressed. The
first one exploits the Poisson equation for pressure at the reduced order level which makes, the
separation of the pressure reduced degrees of freedom from the ones of the velocity, possible.
The Poisson equation for pressure can be obtained by taking the divergence of the momentum
equation in 2.1 and then taking advantage from the fact that the divergence of the velocity
field is null. The resulting system is the following:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Bu
Bt
`∇ ¨ pub uq “∇ ¨

„

´pI` ν
´

∇u` p∇uqT
¯



in Ω ˆ r0, T s,

∆p “ ´∇ ¨ p∇ ¨ pub uqq in Ω,
+ Boundary conditions on Γ ˆ r0, T s,
+ Initial conditions in pΩ, 0q.

(2.39)

We remark that the ROM developed in this section can not be used for the reduction of
steady flows [84, 99]. In fact, among the possible choices for the pressure boundary condition
which is required to render the PPE formulation of the NSE equivalent to the original one,
we selected one which ensures that the velocity is divergence free only in the unsteady setting
(see the remark in section 2 in [84]).

The reduced order decomposition assumptions in this case are:

upx, t;µq « urpx, t;µq “
řNu
i“1 aipt;µqφipxq,

ppx, t;µq « prpx, t;µq “
řNp
i“1 bipt;µqχipxq,

(2.40)

where one can see that new temporal coefficients denoted by bipt;µq have been introduced
for the approximation of the reduced pressure field. It is worth mentioning that the way
the pressure modes are computed now is different to the previous section, where the SVD
decomposition of the pressure correlation matrix Cp P RNsˆNs has to be done. The entries
of the matrix Cp are:

pCpqij “
´

Si
p,S

j
p

¯

L2pΩq
, (2.41)

then the pressure modes read as follows:

χi “
1

Nsλ
p
i

Ns
ÿ

j“1
Sj
pV

p
ij , (2.42)

where λp is the matrix containing in its diagonal the eigenvalues of the pressure correlation
matrix Cp and V p is the corresponding matrix of eigenvectors. At this point one may proceed
in performing Galerkin projection of the equations. The momentum equation is projected
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onto the velocity POD modes, while the Poisson equation for pressure is projected onto the
pressure POD space, these projections yield:

˜

φi,
Bu

Bt
`∇ ¨ pub uq ´∇ ¨

„

´pI` ν
´

∇u` p∇uqT
¯



¸

L2pΩq

“ 0, (2.43a)

`

∇χi,∇p`∇ ¨ pub uq
˘

L2pΩq
´ ν pnˆ∇χi,∇ˆ uqΓ ´ pχi,n ¨RtqΓ “ 0, (2.43b)

where in the last equation, R is the initial velocity field. Substituting the reduced order
approximations into the projected equations gives the following reduced order dynamical
system:

9a “ νpB `BT qa´ a
TCa´Hb, (2.44a)

Db` aTGa´ νNa´L “ 0, (2.44b)

where the new additional matrices and tensors are defined as follows:

pDqij “
`

∇χi,∇χj
˘

L2pΩq
, pGqijk “

`

∇χi,∇ ¨ pφj b φkq
˘

L2pΩq
, (2.45)

pN qij “
`

nˆ∇χi,∇ˆ φj
˘

Γ
, pLqi “ pχi,n ¨RtqΓ . (2.46)

The reduced order system Equation 2.44 is a differential-algebraic system of equations (DAE).
This DAE can be solved to obtain at the end the reduced order vector degrees of freedom for
velocity and pressure named a and b, respectively. As mentioned earlier the ROM approach
presented in this section is restricted to work with unsteady flows. Therefore, a different
ROM procedure is needed for the treatment of steady flows.

2.6 Momentum and Continuity Equations ROM using
a Supremizer Stabilization Method

The supremizer enrichment approach introduced in [16] has been successful in stabilizing
POD-Galerkin ROMs. This approach is based on enriching the velocity POD space by
velocity-like modes which solve a supremizer problem associated with each of the pressure
modes or snapshots. This procedure guarantees the fulfillment of a reduced order version
of the inf-sup condition. As it will be shown shortly, employing the supremizer enrichment
technique in the ROM formulation will allow the usage of the continuity equation at the
reduced order level.

It is worth mentioning that there are two versions of the supremizer enrichment technique.
The first one called the exact supremizer enrichment in which one solves the supremizer
problem for each pressure mode χi obtaining at the end the velocity-like mode spχiq. Then
the supremizers rspχiqsNSi“1 are added to the velocity basis. In the second approach called
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approximate supremizer enrichment, the supremizer problem is solved for each pressure
snapshot Si

p which gives the supremizer spSi
pq. Then a POD is applied on the supremizer

snapshots matrix which yields the supremizer POD modes. These modes are then used to
enrich the velocity POD space. If we adopt the first approach, the supremizer problem reads
as follows:

$

&

%

∆si “ ´∇χi in Ω, @χi P Vp
POD,

si “ 0 on BΩ.
(2.47)

The supremizer space is then constructed:

Vs
POD “ rspχ1q, spχ2q, ..., spχNpqs. (2.48)

After that the velocity POD space can be enriched with the supremizer modes:

Ṽu
POD “ rφ1, . . . ,φNus ‘ rs1, . . . , sNS s P R

Nh
uˆpNu`NSq. (2.49)

The enriched velocity POD space Ṽu
POD and its i-th basis φ̃i will still be called Vu

POD and φi,
respectively, for making the notations easier. However, the dimension of the original velocity
POD space Nu will still have its meaning, and if the supremizer approach is used in the ROM
formulation then NS will be mentioned explicitly.

The original velocity POD modes (see Equation 2.30) are a linear combination of the velocity
snapshots which are divergence free. Therefore, the projection of the continuity equation onto
the pressure modes would have made no sense since the velocity modes have zero divergence.
Now after introducing the supremizer modes, one may utilize the continuity equation for the
projection procedure. The velocity and pressure decomposition assumptions are the same
as the ones used in the previous section in Equation 2.40, also the velocity and pressure
POD modes are computed in the same way. The projection of the momentum and continuity
equations reads as follows:

˜

φi,
Bu

Bt
`∇ ¨ pub uq ´∇ ¨

„

´pI` ν
´

∇u` p∇uqT
¯



¸

L2pΩq

“ 0, (2.50a)

pχi,∇ ¨ uqL2pΩq “ 0. (2.50b)

The reduced order dynamical system resulted from inserting the reduced approximations into
Equation 2.50, is the following:

M 9a “ νpB `BT qa´ a
TCa´Hb, (2.51a)

Pa “ 0. (2.51b)

The new reduced matricesM and P are the mass matrix, that due to the additional supremizer
modes is not anymore unitary, and the matrix associated with the continuity equation. The
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entries of the two additional matrices are given by:

pM qij “
`

φi,φj
˘

L2pΩq
, (2.52)

pP qij “
`

χi,∇ ¨ φj
˘

L2pΩq
. (2.53)

2.7 Non-homogeneous Dirichlet Boundary Conditions
Treatment

In simulating physical fluid dynamics problems, it is often required to impose non-homogeneous
Dirichlet boundary conditions on certain parts of the boundary. This might be the case in
inlet-outlet problems, where it is natural to have non-homogeneous Dirichlet velocity condition
at the inlet. In the context of PPDEs, it may be very well the case that this non-homogeneous
boundary velocity vector is the parameter under study. These aspects make the treatment of
the non-homogeneous Dirichlet boundary conditions essential for building an accurate reduced
order model.

The methods employed for the enforcement of non-homogeneous boundary Dirichlet condition
include the penalty method [30, 10, 21, 88, 131] and the lifting function method [59, 62, 73].

Before entering into the details of both methods, we introduce the following notations: let
ΓD Ă Γ be the Dirichlet boundary that might be composed by separate boundaries, i.e.
ΓD “ ΓD1 Y ΓD2...Y ΓDK . Let NBC be the number of velocity boundary conditions we would
like to impose on some parts of the Dirichlet boundary. It is important to clarify that, each
non-zero scalar component value of the velocity field that has to be set at one part of the
boundary, is counted as one boundary condition. As an example, in a two dimensional problem
let UΓD1 “ pU

1
x , 0q and UΓD2 “ pU

2
x , 0q be the velocity vectors that must be imposed at the

Dirichlet boundaries ΓD1 and ΓD2, respectively. In this case there are two non-homogeneous
Dirichlet boundary conditions to set and thus NBC “ 2. Let UBC,i,j be the non-zero value of
the i-th component of the velocity vector to be imposed at the reduced order level at the j-th
part of the Dirichlet boundary ΓDj. Denote by UBC the vector of all scalar velocities UBC,i,j,
this vector has a dimension of NBC , and its k-th element is called UBCk.

2.7.1 The Lifting/Control Function Method

In the lifting/control function method, the enforcement of the non-homogeneous boundary
condition is done by introducing a lifting function which carries the non-homogeneity. This
is followed by homogenizing the velocity snapshots by subtracting from each snapshots a
suitably scaled version of the lifting function. This results in a set of velocity snapshots
which have homogeneous boundary conditions. The POD method is applied on the new set
of velocity snapshots giving at the end homogeneous POD modes.
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The non-homogeneous Dirichlet boundary conditions are removed as follows:

ũ “ u´UBC ¨ φL, (2.54)

where φL P RNBCˆN
h
u is a matrix of the lifting functions φLi,j . Each lifting function φLi,j

has homogeneous Dirichlet boundary conditions in all parts of the Dirichlet boundary except
in the i-th component at ΓDj where it has unitary value. At this point, one can apply the
POD method on the snapshots matrix:

Sũ “ tũpx, t1;µ1q, ..., ũpx, tNT ;µMqu P RNh
uˆNs . (2.55)

In the online stage the boundary velocity vector given is called U˚
BC which may contain values

different from the ones present in the original velocity snapshots. It is sought to approximate
the reduced order velocity field corresponding to U˚

BC , the ROM velocity field is approximated
as follows:

upx, ¨;U˚
BCq « U

˚
BC ¨ φL `

Nu
ÿ

i“1
aip¨qφipxq. (2.56)

It can be seen above that the boundary velocity vector UBC is assumed to be the parameter
under question. However, in the presence of non-homogeneous boundary condition/s for the
velocity field at a part of the boundary, the same described boundary treatment procedure
has to be followed in all the following cases:

• When building a ROM for the reproduction and extrapolation in time without parameters
(non-parametrized ROM).

• With the parametrized case with the boundary velocity vector being one of the parame-
ters.

• With the parametrized case with the boundary velocity vector not being a parameter.

The way of choosing a suitable lifting function is problem dependent. In the case of the
reduction of unsteady non-parametrized cases, where reduction aims to reproduce time
snapshots and potentially extrapolate in time, a possible choice of the lifting function could
be the average of the offline velocity snapshots. A more general approach for the generation
of appropriate lifting functions is to solve linear potential flow problems with a unitary
boundary condition for each non-homogeneous boundary condition to be set. These problems
are steady ones, therefore, an iterative procedure with a tentative velocity field is carried
out till convergence. While solving each of these potential flows, the value of the starting
guessed velocity field at the Dirichlet boundary has to be zero everywhere except for one scalar
entity where the lifting function is sought. The converged velocity field will be considered
as the lifting function corresponding to the non-homogeneous boundary condition at the
aforementioned entity. Besides the requirement of having unitary boundary condition, the
lifting functions have to be divergence free fields.
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The lifting/control function method can be adapted to work with the ROMs addressed in
section 2.5 (PPE-ROM) and section 2.6 (SUP-ROM). On the other hand, adapting this
method with the ROM mentioned in section 2.4 (U-ROM) is not straightforward. This is
because of the fact that the reduced order degrees of freedom of the velocity are the same as the
ones of the pressure. Therefore, the homogenization of the velocity snapshots in Equation 2.54
has to be accompanied with a procedure that obtains the corresponding pressure snapshots.
This procedure is not easily defined.

As a consequence of the additional lifting function mode/modes, the dimension of the velocity
POD space Vu

POD will be Nu`NBC and Nu`NS`NBC for the PPE-ROM and the SUP-ROM,
respectively.

2.7.2 The Penalty Method

The enforcement of the non-homogeneous boundary conditions in the penalty method is
done by presenting a constraint in the reduced order dynamical system. This is done by
adding a term in the reduced momentum equation which has zero value everywhere except on
the Dirichlet boundary. This method has been initially implemented in the context of the
finite element method in [10, 21]. In [59], the authors utilized the penalty method for the
enforcement of non-homogeneous time-dependent Dirichlet boundary conditions for the case
of the flow around a circular cylinder at Reynolds of 100. The POD-Galerkin ROM in [131]
introduced the penalty method in order to account for the time-dependent Dirichlet boundary
conditions, the authors presented a study of the accuracy and the stability of the method
depending on the penalty parameters values. The penalty method has been used also in other
ROMs such as in [87, 88, 81, 103, 137].

The method can be employed to all the ROMs mentioned in the previous sections. For
example the SUP-ROM addressed in section 2.6 will be modified as follows:

M 9a “ νpB `BT qa´ a
TCa´Hb` τp

NBC
ÿ

k“1
pUBCkD

k
´Ekaqq, (2.57a)

Pa “ 0, (2.57b)

where τ is a penalization factor whose value is set by sensitivity analysis, or by automatic
tuning as recently presented in [142], where an iterative penalty method is presented. Generally
speaking, having a higher value of τ leads to a stronger enforcement of the boundary conditions
but might ill-condition the dynamical system. The newly introduced boundary matrices Ek
and vectors Dk are defined as follows:

pEkqij “
`

φi,φj
˘

L2pΓDkq
, for all k “ 1, ..., NBC , (2.58)

pDk
qi “ pφiqL2pΓDkq

, for all k “ 1, ..., NBC . (2.59)
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Unlike in the lifting function method, the POD is done here directly on the non-homogeneous
velocity snapshots.

2.8 Lift and Drag Forces Offline/Online Computations

In this thesis we are interested in recovering specific performance indicators which are
important in engineering problems. This section addresses one of them which is the forces
acting on the surface of bodies immersed in the flow.

The forces F acting on the surface of a body denoted by BΩf are given by the following
surface integral:

F “

ż

BΩf

p2µ∇u´ pIqnds. (2.60)

As mentioned earlier, having full decoupling between the offline and the online stages is a
vital feature of efficient reduced order modeling. One may approximate the reduced order
forces Fr by simply computing the following integral after reconstructing the reduced fields:

Fr “

ż

BΩf

p2µ∇ur ´ prIqnds, (2.61)

but this would require accessing the original mesh which means that the computational cost
of carrying out this integral will depend on Nh (the number of degrees of freedom of the
FOM). Therefore, an alternative approach is needed for having an efficient reconstruction of
the fluid dynamics forces.

The approach which is used throughout this work involves inserting the reduced order
approximations in Equation 2.60. These approximations could be the uniform ones in
Equation 2.31 or the non-uniform ones in Equation 2.40. Assuming the latter approximations,
the forces are computed as follows:

Fr “

ż

BΩf

p2µ∇p
Nu
ÿ

i“1
aipt;µqφipxqq ´

Np
ÿ

i“1
bipt;µqχiIqnds, (2.62)

Fr “

ż

BΩf

2µ
Nu
ÿ

i“1
aipt;µq∇φipxqnds´

ż

BΩf

Np
ÿ

i“1
bipt;µqχinds, (2.63)

Fr “
Nu
ÿ

i“1
aipt;µq

ż

BΩf

2µ∇φipxqnds´
Np
ÿ

i“1
bipt;µq

ż

BΩf

χinds. (2.64)

Let:
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δi “

ż

BΩf

2µ∇φipxqnds, for i “ 1, ..., Nu, (2.65a)

θj “

ż

BΩf

χjnds, for j “ 1, ..., Np, (2.65b)

where each of ∇φipxq and χj can be viewed as a velocity and a pressure field, respectively.
The terms (2.65a) and (2.65b) can be precomputed during the offline stage and then stored.

In the online stage when a new time and parameter values of t˚ and µ˚, respectively, are
introduced, the full order forces are computed as follows:

F pt˚;µ˚q “
ż

BΩf

p2µ∇upx, t˚;µ˚q ´ ppx, t˚;µ˚qIqnds, (2.66)

while the reduced order approximation is the following

Frpt
˚;µ˚q “

Nu
ÿ

i“1
aipt

˚;µ˚qδi ´
Np
ÿ

j“1
bjpt

˚;µ˚qθj. (2.67)

It is important to underline the fact that the above formulas for the reduced forces are valid
just in the case of affine parameter dependency.

2.9 Contents Summary

This section provides a summary of the contents of the current chapter. Firstly, this chapter
has introduced in section 2.1 the mathematical problem which is the Navier–Stokes equations
for incompressible fluids. The discretization employed at the full order level in this work is
the finite volume discretization which has been addressed in subsection 2.1.1. The numerical
algorithms which are used by the full order solver are then explained in section 2.2.

Then the attention shifts to the reduction methodologies utilized in this thesis. At first,
the POD (section 2.3) as a method for generating reduced order spaces is addressed. Then,
a group of reduced order models (ROMs) dedicated to the reduction of the Navier–Stokes
equations are presented. These ROMs are based on different approaches when it comes to
the reduced solutions. The first one (in section 2.4) uses a uniform approach in which only
the momentum equation is needed for the determination of the reduced solutions. As for the
second one (in section 2.5), it makes use of the Poisson equation for pressure at the reduced
level. The latter ROM assumes that the velocity and pressure reduced solutions are different,
where the usage of the momentum and the pressure equation permits to close the reduced
dynamical system. The third ROM (in section 2.6) is based on a well-known stabilization
approach in the ROM community, which is the supremizer stabilization method. This ROM
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enriches the velocity space by adding to it the supremizer modes, this allows to use continuity
equation at the reduced order level.

In several applications, one may have non-homogeneous boundary conditions for the velocity
field at the Dirichlet boundary. For this reason, the methods for dealing with such conditions
at the reduced order level have been considered in this chapter in section 2.7. These methods
are the lifting function method (subsection 2.7.1) and the penalty method (subsection 2.7.2).
section 2.7 has addressed the differences between these two methods and the possibility of
merging them with the three ROMs presented earlier.

Finally, this chapter has explained how the reduced forces acting on a certain surface can be
computed in section 2.8. This procedure is recommended in reduced order modeling since
it is essential for avoiding a computational cost which is dependent on the dimension of the
FOM.

This chapter focused on laminar incompressible flows in finite volume setting. At this point,
the tools needed to address turbulent flows are partially in place. In the next chapter,
turbulence treatment at the full and the reduced order levels is going to be covered.





Chapter 3

Hybrid Projection-based/Data-driven
ROMs for the Turbulence Treatment
in the Incompressible Navier–Stokes
Equations
This chapter focuses on the turbulence treatment of the incompressible Navier–Stokes equation
at both the full and the reduced order levels. Firstly, the turbulence modeling part at the full
order level is explained with direct reference to the methodologies available in OpenFOAM.
The second part is devoted to the construction of versatile ROMs for turbulent flows with the
help of the paradigm of hybrid ROMs. The hybrid ROMs considered in this work employ a
data-driven technique for the approximation of the turbulent eddy viscosity. This data-driven
technique is the interpolation using the Radial Basis Functions (RBF). The interpolation
procedure is presented in two forms, in which different maps are constructed and approximated.
Finally, other turbulent ROMs are presented.
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3.1 Turbulence Modeling in the Full Order Model

In chapter 2 we have addressed the finite volume discretization of the NSE. In addition, the
solution algorithms for both steady and unsteady flows have been presented. These aspects
(the discretization technique and the solution algorithms) of the full order model have been
discussed taking into account the methodologies available in the full order solver used in
this thesis which is OpenFOAM. In similar fashion, we are going to approach the issue of
turbulence modeling in the full order model, where we have to take into consideration what is
already available in OpenFOAM when we build the reduced order model. There are several
turbulence modeling strategies implemented in OpenFOAM. In this work we relied mainly on
two of them which are the Reynolds Average Navier–Stokes (RANS) equations and the Large
Eddy Simulation (LES). In this thesis we relied on the first option for treating turbulence at
the full order level. It is important to mention that turbulence modeling is a rich field, where
numerous models and techniques could be found in literature but here we aim at presenting
and discussing a small set of them, which are coinciding or closely related with the models
employed in this work’s computations. The next subsection aims to introduce the idea of
Reynolds averaging and the closure problem in turbulence. In subsection 3.1.2 the notion of
the eddy viscosity models is introduced.

3.1.1 The Closure Problem and Reynolds Averaging

One of the main traits of turbulent flows is that several flow properties in such regime exhibit
high frequency random oscillations both in the time and space domains. For such reason,
Reynolds [122] introduced the concept of time averaging, in which all the fields are expressed
as the sum of mean and fluctuating parts. In the majority of cases, the fluctuating component
appears as a vibration around an equilibrium, or average flow solution. In the rather common
case in which fluid dynamics simulations are only aimed at identifying the characteristics
of the mean flow one would ideally want to be able to only to solve for the time-averaged
part of the fluid dynamic variables. To this end, following the Reynolds procedure, after
decomposing all the variables into a sum of mean and fluctuating terms, the momentum and
continuity equations are time averaged giving rise to another system of equations. In such
averaged system, the unknowns are the mean components of all the flow fields. However the
non-linearity of the NSE leads to residual terms in which the fluctuations are still present
in the new system, where the number of equations is not equal to the number of unknowns.
This problem is called the closure problem. This section aims to give an idea about the time
averaging of the NSE and the closure problem.

If we consider a generic fluid dynamics scalar field called σpx, tq, then the Reynolds decompo-
sition assumption of σpx, tq is the following:

σpx, tq “ σpx, tq ` σ1px, tq, (3.1)
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where σpx, tq and σ1px, tq are the mean and the fluctuating parts, respectively. In the case of
steady flows, the mean part σ is a spatial field without dependence on time that is σ “ σpxq.
In this case the mean field is computed as follows:

σpxq “ lim
TÑ8

1
T

ż t`T

t

σpx, τqdτ. (3.2)

As for the unsteady case, assuming that the fluctuating and the mean fields time scales are T1

and T2, respectively. Time averaging is done by calculating the following integral

σpx, tq “
1
T

ż t`T

t

σpx, τqdτ, T1 ď T ď T2. (3.3)

The overbar notation is used from here on to indicate any time-averaged quantity. We here
recall that the time average of the mean field σpx, tq is the mean field itself, while the time
average of the fluctuating part σ1px, tq is zero.

The idea of Reynolds averaging can be used to form a new set of equations for the averaged
part of each fluid dynamics variable starting from the NSE. Before doing that, deriving the
formulas of the time averaging of non-linear quantities is needed. We first consider the time
average of the product of two scalar quantities named φ and ψ:

φψ “ pφ` φ1qpψ ` ψ1q “ φψ ` φψ1 ` ψφ1 ` φ1ψ1 “ φψ ` φ1ψ1, (3.4)

where one exploits the fact that the product of a mean quantity and a fluctuating quantity
has zero mean. On the other hand, the quantity φ1ψ1 is not zero and this basically means
that product of the means φψ is not equal to the mean of the products φψ. In fact the two
quantities φ and ψ are called uncorrelated if φ1ψ1 “ 0, and otherwise they are correlated.

Once these instruments are in place, one may derive the Reynolds averaged NSE. Starting
from the NSE equations 2.1 but written in the scalar form:

Bui
Bxi

“ 0, (3.5)

Bui
Bt
` uj

Bui
Bxj

“ ´
Bp

Bxi
` 2ν BSji

Bxj
, (3.6)

where the Einstein summation convention has been used, and where S is the strain-rate
tensor, defined by:

Sij “
1
2

˜

Bui
Bxj

`
Buj
Bxi

¸

. (3.7)

The convective term can be written as follows:

uj
Bui
Bxj

“
B
`

uiuj
˘

Bxj
´ ui

Buj
Bxj

“
B
`

uiuj
˘

Bxj
, (3.8)
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where Equation 3.5 has been used, this will simplify the momentum equation to:

Bui
Bt
`
B
`

uiuj
˘

Bxj
“ ´

Bp

Bxi
` 2ν BSji

Bxj
. (3.9)

The application of Reynolds time averaging to Equation 3.5 and Equation 3.9 leads to the
Reynolds averaged equations, namely:

Bui
Bxi

“ 0, (3.10)

Bui
Bt
`
B

´

uiuj ` u1iu
1
j

¯

Bxj
“ ´

Bp

Bxi
` 2ν BSji

Bxj
. (3.11)

We point out that the averaged continuity equation is identical to the original one, which also
means that the fluctuating velocity component u1i has zero divergence. As for the momentum
equation, not all the fluctuating terms appearing in it have vanished. In fact, the term u1iu

1
j

still appears in the momentum equation because of the non-linearity of the convective term.

The averaged momentum equation can be rewritten as

Bui
Bt
` uj

Bui
Bxj

“ ´
Bp

Bxi
` 2ν

B

´

Sji ´ u1iu1j
¯

Bxj
, (3.12)

in which the term u1iu
1
j is often referred to as the Reynolds stress tensor R, where Rij “ u1iu

1
j .

The Reynolds stress tensor is a symmetric tensor with 6 unknown components. Therefore,
the Reynolds averaging has brought 6 additional unknowns without any additional equation.
The system composed by Equation 3.12 and Equation 3.10 is called the Reynolds Averaged
Navier–Stokes (RANS) equations. The bottom line in turbulence modeling is to deal with
the Reynolds stress tensor in order to close the system so as to compute the mean flow fields.
This issue in turbulence modeling is the aforementioned closure problem.

3.1.2 The Eddy Viscosity Models (EVMs)

Over the years the closure problem has been addressed by several methodologies, characterized
by different computational costs and accuracy of the results. Among others we mention
methods which consists in deriving a transport equation for the Reynolds stress tensor
components. Such closure models are obtained by taking moments of the NSE, that is by
multiplying the NSE by a fluctuating quantity and then taking the mean. However, this
procedure will result in additional non-linear terms containing fluctuation products averages
which at the end increase again the number of unknowns. Specifically, these additional
unknowns include a correlation term involving fluctuating velocity components coming from
the convective term, and also other correlation terms from the diffusive part and a term
which amounts to a fluctuating velocity-pressure correlation. Overall, the procedure brings
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in 22 new unknowns, which makes the closure problem even more apparent, and forces to
approximate the unknown correlations in terms of the known mean flow fields. To avoid such
complexity, several algorithms in RANS turbulence modeling are based on the Boussinesq
eddy viscosity assumption [32]. The Boussinesq assumption (or hypothesis) states that the
Reynolds stress tensor is proportional to the trace-less strain rate tensor S, namely:

Rij “ 2νtSij ´
2
3kδij, (3.13)

where k “ 1
2u
1
iu
1
i is the turbulent kinetic energy and νt is the so-called artificial or eddy

viscosity. The turbulence models which employ the Boussinesq eddy viscosity assumption
are often called the Eddy Viscosity Models (EVMs). In these models, the eddy viscosity is
approximated making use of either algebraic relations or transport-diffusion PDEs for other
quantities which have an algebraic relationship with the eddy viscosity. The first group of
EVMs is the algebraic models or the zero-equation models. As an example we mention the
mixing length turbulence model [119]. First examples of PDEs-based model are represented
by the Spalart–Allmaras model [135]. In such model one solves for a viscosity-like variable
called ν̃, where the eddy viscosity is related to ν̃ through an algebraic relation. Richer EVMs
are based on solving two additional transport-reaction-diffusion PDEs for specific turbulent
flow variables. Among which we here mention the k ´ ε and the k ´ ω models [85, 92]. In
these models, k, ε and ω represent the turbulent kinetic energy, turbulent dissipation and
the specific turbulent dissipation rate, respectively. The turbulent kinetic energy from the
turbulent velocity fluctuations u1i is measured per unit mass:

k “
1
2u

1
iu
1
i “

1
2pu

1
1

2
` u12

2
` u13

2
q, (3.14)

while turbulence dissipation rate ε is the rate at which turbulent kinetic energy is converted
into thermal internal energy, and it is defined by:

ε “ ν
Bu1i
Bxk

Bu1i
Bxk

. (3.15)

As for ω, it represents the conversion rate of turbulent kinetic energy into thermal internal
energy per unit volume and time. It is defined implicitly in terms of k and ε, one of its varied
definitions is:

ω “
ε

kβ˚
, (3.16)

where β˚ is a constant equal to 0.09.

The first form of a two equations turbulence model was presented by Kolmogorov in [92] which
is a k ´ ω model. Later on, other forms of the k ´ ω model were proposed with significant
improvements such as in [125, 157, 158]. In [95] the standard k ´ ε is presented. Another
two equations model called the SST k ´ ω has been presented in [104], this turbulence model
merges the k´ω model proposed by Wilcox and the k´ ε model. In fact, it has combined the
advances in both standard version of the k ´ ε and the k ´ ω models. The SST k ´ ω is used
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extensively in the CFD community, as it is a good compromise for flows with detachment and
recirculation. This model also has been utilized in this thesis, for this reason we have chosen
to report its complete turbulence equations.

The turbulent kinetic energy k equation is

Bk

Bt
` uj

Bk

Bxj
“ P ´ β˚ωk `

B

Bxj

«

pν ` σkνtq
Bk

Bxj

ff

, (3.17)

and the second PDE for the specific turbulent dissipation rate ω is the following:

Bω

Bt
` uj

Bω

Bxj
“ αΩ2

s ´ βω
2
`

B

Bxj

«

pν ` σωνtq
Bω

Bxj

ff

` 2p1´ F1q
σω2

ω

Bk

Bxj

Bω

Bxj
. (3.18)

As for the terms and the constants which appear in the two equations above, they are defined
as follows:

P “ min
˜

Rij
Bui
Bxj

, 10β˚ωk
¸

, Wij “
1
2

˜

Bui
Bxj

´
Buj
Bxi

¸

, Ωs “
a

2WijWij,

νt “
a1k

maxpa1ω,ΩsF2q
, φ “ F1φ1 ` p1´ F1qφ2,

F1 “ tanh
`

arg4
1
˘

, arg1 “ min

»

–max
˜ ?

k

β˚ωy
,
500ν
y2ω

¸

,
4σω2k

CDkωy2

fi

fl ,

CDkω “ max
˜

2ρσω2
1
ω

Bk

Bxj

Bω

Bxj
, 10´10

¸

,

F2 “ tanh
`

arg2
2
˘

, arg2 “ max
˜

2
?
k

β˚ωy
,
500ν
y2ω

¸

,

σk1 “ 0.85, σw1 “ 0.65, β1 “ 0.075,
σk2 “ 1.00, σw2 “ 0.856, β2 “ 0.0828,
β˚ “ 0.09, a1 “ 0.31.

Hence the RANS equations complemented by the SST k ´ ω turbulence model are written as
follows:
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Bt
`∇ ¨ pub uq “∇ ¨

„

´pI` pν ` νtq
´

∇u` p∇uqT
¯



in Ω ˆ r0, T s,

∇ ¨ u “ 0 in Ω ˆ r0, T s,
νt “

a1k
maxpa1ω,ΩsF2q

, in Ω ˆ r0, T s,
Bk
Bt
` u ¨∇k “ P ´ β˚ωk `∇ ¨

“

pν ` σkνtq∇k
‰

, in Ω ˆ r0, T s,
Bω
Bt
` u ¨∇ω “ αΩ2

s ´ βω
2 `∇ ¨

“

pν ` σωνtq∇ω
‰

`2p1´ F1q
σω2
ω
∇ω ¨∇k, in Ω ˆ r0, T s,

+ Boundary conditions on Γ ˆ r0, T s,
+ Initial conditions in pΩ, 0q.

(3.19)

The RANS equations have been utilized extensively in literature for modeling turbulence in
different fields. In [55] one may find an application of the RANS in aerodynamics. In the
last work, the RANS equations have been used for modeling high-speed aerodynamic flow
transition. In [89], the work employs the RANS equations for simulating steady turbulent
problems in automotive engineering using the Spalart–Allmaras turbulence model. The RANS
equations has been used also in studying wind dynamics in civil engineering, in [108] the
authors present a three dimensional study involving the use of steady RANS for the prediction
of mean wind pressure distributions on windward and leeward surfaces of a medium-rise
building with and without balconies. In [53], the RANS equations with the k ´ ε model
are used to describe the hydrodynamic flow around the boat. The work [47] presents an
application of the RANS equations for the design of sailing yachts.

3.2 Hybrid Projection-based/Data-driven ROM for
Turbulent Flows

In section section 3.1 we have addressed turbulence modeling at the full order level. The focus
now shifts to the treatment of turbulence at the reduced order level. We have mentioned that
turbulence is simulated using the RANS equations with the help of a suitable eddy viscosity
model. Thus, the construction of a turbulent ROM has to take into account the fact that
the full order model involves several different turbulence variables. This is the case due to
the abundant number of EVMs available to the user of OpenFOAM for closing the RANS
equations.

The methodology which could be adapted at the reduced order level could involve decomposing
each turbulence variables such as k, ε, ω or ν̃ into a finite sum of spatial modes multiplied
by temporal coefficients as was done with velocity and pressure in Equation 2.40. This is
followed by carrying out the POD procedure onto the snapshots of each turbulence variable.
After that, a Galerkin projection of the additional transport-diffusion PDEs can be done
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resulting in a reduced version of each turbulence PDE. A set of reduced equations is obtained
from the projection of the momentum, the continuity and the turbulence additional equations.
These reduced equations are then coupled and the reduced solution for velocity, pressure and
each of the turbulence variables could be obtained by solving the coupled system. Yet, the
last approach has several issues and is deemed inconvenient, in particular for the following
reasons:

• The approach renders the task of solving the reduced order system in the online stage
complex. This is because of the additional equations which have to be treated at the
reduced order level, where the turbulent additional equations are characterized usually
of having high level of non-linearity.

• The approach forces the creation and the maintenance of a ROM for each turbulence
closure model available at the full order level. This customization of the reduced order
model is clearly not practical, for instance a popular library such as OpenFOAM is
well-supplied with various closure models. All of which would require a separate and
specific reduced order model.

The last mentioned approach has been ruled out in this work due to the fact that the goal is
to design unified reduction methodologies which work with multiple full order model solvers,
each coming with its own specific implementation of several different turbulence models. To
this end, the proposed approach in this thesis involves the extension of the decomposition
assumption in Equation 2.40 only to the eddy viscosity νt without doing the same for the
other turbulence variables such as k, ε, ω or ν̃. This essentially means that a reduced order
version of the eddy viscosity (νtr) is introduced, namely:

νtpx, t;µq « νtrpx, t;µq “
Nνt
ÿ

i“1
gipt,µqηipxq, (3.20)

where ηipxq is the i-th eddy viscosity POD mode and gipt,µq is the i-th coefficient of the POD
expansion. If one considers the above expansion as an extension to those used in sections 2.5
and 2.6, then it can be seen that the reduced eddy viscosity assumes a different set of degrees
of freedom to aipt,µq and bipt,µq, which are the reduced velocity and pressure solutions,
respectively. Indeed, in principle, g varies over time responding to variations of a and b. This
reflects at the reduced order level, the fact that the turbulent viscosity in every EVM depends
on the mean flow field variables. At this point, one has to find a suitable way to compute the
eddy viscosity reduced solution rgipt,µqs

Nνt
i“1 . Since the specific turbulence equations of each

EVM will not be used, the approach chosen for the computation of the reduced eddy viscosity
coefficients is based on data-driven methods and in particular interpolation with Radial Basis
Functions [96, 105]. In detail, the reduced turbulent model treatment starts with computing
the eddy viscosity modes making use of the snapshots method as explained in section 2.3.
First, we define the eddy viscosity snapshots matrix:

Sνt
“ tνtpx, t1;µ1q, ..., νtpx, tNT ;µMqu P RNh

νt
ˆNs , (3.21)
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where Si
νt

is the i-th column of the eddy viscosity snapshots matrix Sνt
. Then the eddy

viscosity correlation matrix is computed

pCνtqij “

´

Si
νt
,Sj

νt

¯

L2pΩq
. (3.22)

The eddy viscosity modes are then expressed as:

ηi “
1

Nsλ
νt
i

Ns
ÿ

j“1
Sj
νt
V νt
ij , (3.23)

where the matrix λνt contains in its diagonal the eigenvalues of the matrix Cνt and V νt is
the matrix whose columns are the corresponding eigenvectors of Cνt .

The next step consists into the training of the RBF using the data of the snapshots acquired.
Later, during the online stage the coefficients rgipt,µqs

Nνt
i“1 are interpolated.

We will extend the SUP-ROM presented in section 2.6 for the turbulent case with the
decomposition assumption 3.20. This means that the momentum equation is projected onto
the modes of the velocity and the continuity equation is projected onto the modes of pressure,
with the usage of the supremizer stabilization approach. These projections will result in the
following DAE:

M 9a “ νpB `BT qa´ a
TCa` gT pCT1 `CT2qa´Hb, (3.24a)

Pa “ 0, (3.24b)

where g is the vector containing the reduced order degrees of freedom of the eddy viscosity,
and the new terms in the DAE above are defined as follows:

pCT1qijk “
`

φi, ηj∇ ¨∇φk
˘

L2pΩq
, (3.25)

pCT2qijk “
´

φi,∇ ¨ ηjp∇φTk q
¯

L2pΩq
. (3.26)

The system 3.24 has Nu ` Np equations while the number of unknowns is Nu ` Np ` Nνt .
This problem is solved, as mentioned, by employing an interpolation technique to obtain the
vector g. Thus for the vector g we are using a data-driven approach known in the literature
as POD-I [151, 150, 127]. We would like to mention that the ROM in section 2.5 can be
extended to the turbulent case as done above but the drawback of not working in the steady
case will persist, therefore we have firstly extended the SUP-ROM. We remark that the system
in 3.24 will have the penalty additional terms in case of using the penalty method for the
treatment of the non-homogeneous boundary conditions.

The reduced order model that is put forward makes use of the projected momentum and
continuity equations to obtain the reduced solution of the velocity and the pressure. On the
other hand, it employs data-driven techniques for the approximation of the eddy viscosity
solution manifold. These kind of ROMs are termed as Hybrid ROMs because they merge the
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classical projection-based methods with data-driven techniques. It is often common to label
the projection-based methods with the term intrusive, while the term non-intrusive is used to
describe the methods which employ the usage of the data. In this thesis we will refer to the
ROM given by the reduced DAE in 3.24 as H-SUP-ROM.

The data-driven methods are helpful in approximating the maps between various terms and
quantities which appear in the FOM formulation of the NSE. In this thesis, the data-driven
method selected is, as mentioned, interpolation using RBF. This method is used for the
purpose of approximating the coefficients rgipt,µqs

Nνt
i“1 in 3.24. In order to do this, one has to

make use of the data available for what concerns the eddy viscosity. This task can be done by
properly choosing the maps needed to be approximated, or in other words, by choosing the
suitable independent variable of the RBF interpolation. In the upcoming subsections, we are
going to present two different methodologies for carrying the out the interpolation step with
their corresponding hybrid ROM.

3.2.1 Hybrid ROM with RBF Interpolation Based on the
Time-Parameter Values

In this subsection, we are going to assume that the independent variable of the RBF interpo-
lation is the vector that merges the time and the parameter values. In order to render the
methodology clear, we are going to set up the following conventions and notation, let Xµ,t be
the set given by:

Xµ,t “ PM
ą

tt1, t2, ..., tNT u, (3.27)

here Xµ,t is the Cartesian product of the set containing the time instants at which snapshots
were acquired and the discretized parameter set. The set Xµ,t has a cardinality Ns and its
i-th member will be denoted by xiµ,t. It can be seen that there is unique correspondence
between the elements of Xµ,t and the columns of the matrix of snapshots (for all fields) used
in the offline stage for the construction of the reduced basis.

The parameter sample introduced in the reduced order model at the online stage is denoted
by µ˚ . In order to have an accurate ROM result, the value of µ˚ should be close enough
to the values of the parameter samples used in the offline phase. Let t˚ be the time instant
at which the ROM solution is sought, where t1 ď t˚ ď tNT . We refer to z˚ “ pt˚,µ˚q as the
online time-parameter combined vector.

Let gr,l be the offline L2 projection coefficient which results from the projection of the r-th
eddy viscosity snapshot Sr

νt
onto the l-th eddy viscosity mode ηl, as follows:

gr,l “ pSr
νt
, ηlqL2pΩq, for r “ 1, 2, ..., Ns and l “ 1, 2, ..., Nνt . (3.28)

At this point, one may define the problem of the interpolation as follows. Given the set
Xµ,t, the corresponding eddy viscosity snapshots rSi

νt
s
Ns
i“1 and the corresponding coefficients

rgr,ls
Ns,Nνt
r“1,l“1, approximate the vector g in (3.24) for the online time-parameter vector z˚. The
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interpolation in this case is done on the scalar coefficients of the reduced eddy viscosity
expansion rgipt˚,µ˚qs

Nνt
i“1 (or denoted shortly by rgipz˚qs

Nνt
i“1), which means that one has to

perform one interpolation for each of the Nνt modes used in the online stage.

It is worth remarking that the procedure described implies that each of the modes coefficients
is interpolated independently from the others. Therefore, we may fix the eddy viscosity mode
to be the L-th one ηL, where L is an arbitrary integer index, 1 ď L ď Nνt . The goal of the
interpolation is to approximate the following map rGLs in gL “ GLpt,µq:

GL : Rq`1
Ñ R, for any L “ 1, 2, ..., Nνt . (3.29)

In order to approximate this map, firstly, we form the set of observations which consists
of the coefficients of the L2 projections of all the offline snapshots onto the eddy viscosity
mode ηL, namely YL “ rgr,Ls

Ns
r“1 P RNs . The goal will be to approximate the value of

gLpz
˚q “ gLpt

˚,µ˚q.

Interpolation using RBF is based on the following formula:

GLpzq “
Ns
ÿ

j“1
wL,jζL,j

ˆ∥∥∥z ´ xjµ,t∥∥∥
L2pRq`1q

˙

, for L “ 1, 2, ..., Nνt , (3.30)

where ζL,j for j “ 1, ..., Ns are the RBF functions, z “ pt,µq, where here t refer to any time
instant inside the snapshots window and µ is a parameter value which lies in the parameter
space P, and wL,j are the weights of the radial basis functions which have to be computed
during the training stage. In order to compute the weights, we will make use of the data
obtained by the FOM:

GLpx
i
µ,tq “ gi,L, for i “ 1, 2, ..., Ns, (3.31)

which implies that,

Ns
ÿ

j“1
wL,jζL,j

ˆ∥∥∥xiµ,t ´ xjµ,t∥∥∥L2pRq`1q

˙

“ gi,L, for i “ 1, 2, ..., Ns. (3.32)

It is possible to rewrite the last equation as a linear system:

Aζ
LwL “ YL, (3.33)

where pAζ
Lqij “ ζL,j

ˆ∥∥∥xiµ,t ´ xjµ,t∥∥∥L2pRq`1q

˙

, the linear system can be solved to obtain the
weights wL, the latter will be stored in order to use them during the online stage. In this work,
the linear system above is solved by a linear solver which is based on a QR decomposition
with column pivoting, this solver has achieved relatively fast performance with acceptable
accuracy.
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In the online stage, the value of gpz˚q “ rgipz˚qs
Nνt
i“1 may be computed as follows:

gipz
˚
q « Gipz

˚
q “

Ns
ÿ

j“1
wi,jζi,j

ˆ∥∥∥z˚ ´ xjµ,t∥∥∥
L2pRq`1q

˙

, for i “ 1, 2, ..., Nνt . (3.34)

The strategy of the RBF interpolation in this subsection has the deficiency of not being accurate
for values of time t˚ which lie outside the snapshots window r0, T s (the RBF interpolant
is trained with time values which lie inside the aforementioned range, and therefore, it is
not logical to expect that it could give accurate approximation for values of t˚ that do not
fall in r0, T s). This could be considered as a major issue in several applications in reduced
order modeling as extrapolation is generally regarded as a rather complex task compared
to interpolation. In addition, the strategy of treating time as a part of the interpolation
independent variable might not have physical sense. In fact, in several applications the flow
could be periodic, which could make the absolute value of the time variable not relevant to
the dynamics of the fluid fields. For such reason, we have tried to circumvent this problem
by adopting a different methodology for the RBF interpolation, as explained in the next
subsection.

3.2.2 Hybrid ROM with RBF Interpolation Based on the Velocity
Projection Coefficients Values

The RBF interpolation methodology discussed in the last subsection is quite simple and
straightforward. However, this methodology is limited to work with steady flows and unsteady
flows without the capacity of carrying out extrapolation over time (outside the offline time
window snapshots r0, T s). The H-SUP-ROM with the methodology presented in the last
subsection has been put forth in [72], where it has been applied on a steady problem. This
subsection suggests a different way of carrying out the RBF interpolation, in which the velocity
projection coefficients (or a form of them as we will see) are to be the independent variable of
the interpolation. The justification of this choice will be provided in the following discussion.
The approach carried out in this subsection has been presented in [74].

Before addressing the interpolation independent variable choice though, it is important to
introduce a modification to the way the eddy viscosity field was decomposed at the reduced
order level in Equation 3.20. Primarily, we suggest to split the FOM eddy viscosity field as
follows:

νtpx, t;µq “ νtpx;µq ` ν 1tpx, t;µq, (3.35)

where basically we have divided the eddy viscosity into two contributions. The first one
corresponds to the time-averaged viscosity field for the parameter µ, while the second term
represents the time varying part. The rationale behind this proposal is based on the fact
that the parameter variation is largely seen in the mean part νtpx;µq. On the other hand,
parameter changes do not affect to great extent the small oscillations in the field ν 1tpx, t;µq. In
fact, we have noticed that, in the numerical examples discussed in this work, we may drop the
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dependency on the parameter for what concern the time varying field, i.e. ν 1tpx, t;µq « ν 1tpx, tq.
This decomposition will turn out to be beneficial in the approximation of the reduced order
eddy viscosity. The splitting of the eddy viscosity into two terms, one which is time dependent
and the other which is parameter dependent, renders the approximation of νt an easier task.

The reduced order approximation of the νt is now modified as follows:

νtpx, t;µq « νtrpx, t;µq “
M
ÿ

i“1
gipµqηipxq `

Nνt
ÿ

i“1
giptqηipxq, (3.36)

where the averaged part νtpx;µq is approximated by the first sum in the above decomposition,
and the second sum approximates the time varying part ν 1tpx, tq. In this formulation, one
may look at the fields rηisMi“1 as additional eddy viscosity modes. The number of these fields
is M which is the number of parameter samples used in the offline stage (or the dimension
of the discretized parameter set PM). Each of these fields is computed by taking the time
average over the offline snapshots which only correspond to one of the parameter samples
inside PM . In other words, the field ηi is computed by taking the average of the eddy viscosity
fields acquired at different time instants but correspond to the i-th parameter in PM . As
for rgisMi“1 they represent the degrees of freedom corresponding to the averaged fields, these
coefficients are important for periodic regime problems. They are parameter dependent,
and in case of testing the ROM in the online stage for the i-th parameter inside the offline
parameter set (i.e. µ˚ “ µi), which is a reproduction test in the parameter space, then
the vector g “ eMi , where eMi is the unit vector of dimension M consisting of zeros except
for the its i-th component in which it has the value 1. The value of g for cross validation
tests (extrapolation in the parameter space) can be fixed by linear interpolation, for example
if µ˚ lies at the distances d˚1 and d˚2 in the parameter space from its closest two offline
parameter samples µ1 and µ2, respectively (i.e. ‖µ˚ ´ µ1‖L2pRqq “ d˚1 , ‖µ˚ ´ µ2‖L2pRqq “

d˚2 , d˚1 ă‖µ˚ ´ µi‖L2pRqq and d˚2 ă‖µ˚ ´ µi‖L2pRqq for all i “ 3, 4, ...M), then g can
be approximated as d˚2

d˚1`d
˚
2
eM1 `

d˚1
d˚1`d

˚
2
eM2 . Finally the dynamical system of the H-SUP-ROM

is modified as follows:

M 9a “ νpB `BT qa´ a
TCa` gT pCT1 `CT2qa` g

T
pCT1 `CT2qa´Hb, (3.37a)

Pa “ 0, (3.37b)

where the two new tensors are defined as:

pCT1qijk “
´

φi, ηj∇ ¨∇φk
¯

L2pΩq
, (3.38)

pCT2qijk “
´

φi,∇ ¨ ηjp∇φTk q
¯

L2pΩq
. (3.39)

At this point, we may come back to tackle the main issue in this subsection which is how
we could choose the interpolation independent variable in such a way that leads to a hybrid
ROM which could extrapolate over time. The suggested solution is by taking the velocity L2
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projection coefficients as the independent variable of the RBF interpolation. This choice is
inspired by the fact that the eddy viscosity is ultimately depending on the mean velocity field
and its gradient. The spirit of this choice is established on the fact that the eddy viscosity νt
is a function of the time history of the velocity field u. In other words, if we call the FOM
eddy viscosity and the velocity at time tn by νnt and un, respectively, then one may express
the eddy viscosity as νnt “ νtpu

1,u2, ...,unq. In order to mimic the dependency between the
velocity field and the eddy viscosity field at the reduced order level, we have to take into
account the time evolution aspect of the last equation. This is done by assuming that the
eddy viscosity reduced vector g is function of the velocity coefficients a, along with their time
derivative 9a, that is:

gn “ gnptnq « gnpan, 9anq. (3.40)

The last formula (3.40) represents an approximation of the relationship that exists between
eddy viscosity and velocity fields. This approximation has been successfully used in the
numerical examples that we considered in this work. However, the eddy viscosity is evolved
through a PDE, albeit in many cases not directly but passing through an algebraic relationship
with turbulence variables which in turn evolve through PDEs. Thus, it is possible that the
approximation 3.40 could be eventually improved by including other fluid dynamics variables
appearing in the turbulence model PDEs.

We proceed now to the training phase of the RBF in this formulation. This phase is conducted
in the ROM offline stage. First, the L2 projection coefficients of the velocity modes onto the
snapshots are computed. Then, those corresponding to the supremizer are dropped, and the
time derivatives of the projection coefficients are calculated using a backward Euler scheme.
The velocity projection coefficients with their corresponding derivatives are put together to
train the RBF. More in detail, the procedure starts from the solution snapshots, namely:

Su “

»

—

—

—

—

–

Sµ1,u

Sµ2,u
...

SµM ,u

fi

ffi

ffi

ffi

ffi

fl

,Sp “

»

—

—

—

—

–

Sµ1,p

Sµ2,p
...

SµM ,p

fi

ffi

ffi

ffi

ffi

fl

,Sνt
“

»

—

—

—

—

–

Sµ1,νt

Sµ2,νt

...
SµM ,νt

fi

ffi

ffi

ffi

ffi

fl

, (3.41)

where the snapshots matrices for all the variables have been expressed as M vertically aligned
submatrices with each one of the submatrices containing the time snapshots corresponding
to a single parameter sample. Then one may define the L2 velocity projection coefficients
arµk,L2 P RNu :

arµk,L2 “ rpSr
µk,u

,φ1qL2pΩq, ..., pSr
µk,u

,φNuqL2pΩqs,

for r “ 1, 2, ..., NT , k “ 1, 2, ...,M.
(3.42)

Let

A1,k “

»

—

—

—

—

–

a1
µk,L2

a2
µk,L2

...
aNT´1
µk,L2

fi

ffi

ffi

ffi

ffi

fl

P RpNT´1qˆNu ,A2,k “

»

—

—

—

—

–

a2
µk,L2

a3
µk,L2

...
aNTµk,L2

fi

ffi

ffi

ffi

ffi

fl

P RpNT´1qˆNu , (3.43)
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at this point, we can compute the time derivative vectors which are needed for the RBF
interpolation by simply using the backward differentiation scheme as follows:

9arµk,L2 “
arµk,L2 ´ a

r´1
µk,L2

∆tµk
, for r “ 2, 3, ..., NT , k “ 1, 2, ...,M, (3.44)

where ∆tµk is the time step at which snapshots were acquired for the parameter sample µk.
This yields the following matrix of time derivative velocity coefficients:

9Ak “
A2,k ´A1,k

∆tµk
“

»

—

—

—

—

–

9a2
µk,L2

9a3
µk,L2

...
9aNTµk,L2

fi

ffi

ffi

ffi

ffi

fl

P RpNT´1qˆNu . (3.45)

In order to build the matrix which contain all the data observation needed to train the RBF,
one has to merge the L2 projection coefficients of velocity starting from the second time
snapshot with the time derivative coefficients. This gives the following matrix:

Ãk “

”

A2,k 9Ak

ı

P RpNT´1qˆ2Nu . (3.46)

As for the eddy viscosity, one has to compute the projection coefficients of the eddy viscosity
modes onto the snapshots corresponding to the time-varying part in Equation 3.35. In other
words, the time-averaged part corresponding to the k-th parameter in the training set PM
which is νtpx;µkq has to be subtracted from each eddy viscosity snapshot, as follows:

grµk,i,L2 “ pSr
µk,νt

´ νtpx;µkq, ηiqL2pΩq, for r “ 2, 3, ..., NT ,
i “ 1, 2, ..., Nνt and k “ 1, 2, ...,M.

(3.47)

Let G̃i,k P RpNT´1q be the vector containing the coefficients in (3.47) for a fixed i and k.
The combined matrices and vectors for all parameter samples are denoted by Ã and G̃i,
respectively, and are defined as follows:

Ã “

»

—

—

—

—

–

Ã1

Ã2
...
ÃM

fi

ffi

ffi

ffi

ffi

fl

P RpNs´Mqˆ2Nu , G̃i “

»

—

—

—

—

–

G̃i,1

G̃i,2
...

G̃i,M

fi

ffi

ffi

ffi

ffi

fl

P RpNs´Mq. (3.48)

The maps to be interpolated are the following rGis
Nνt
i“1 in gi “ Gipa, 9aq, where:

Gi : R2Nu Ñ R, for i “ 1, 2, ..., Nνt . (3.49)

This approximation is based on the interpolation points given in each row of the matrix Ã
and the vector G̃i. The interpolation procedure relates the m-th row of Ã which is a vector
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called ãmL2 P R2Nu with the m-th element of G̃i denoted by rG̃ism P R.

In this formulation, the interpolation equation is the following

Gipãonlineq “

Ns´M
ÿ

j“1
wi,jζi,j

´∥∥∥ãonline ´ ã
j
L2

∥∥∥
R2Nu

¯

, for i “ 1, 2, ..., Nνt , (3.50)

where ãonline :“ raonline, 9aonlines P R2Nu is a combination of the reduced velocity vector and
its vector derivative. The FOM data is used to establish the following relation

Gipã
m
L2q “ rG̃ism, for m “ 1, 2, ..., Ns ´M, (3.51)

Ns´M
ÿ

j“1
wi,jζi,j

´∥∥∥ãmL2 ´ ã
j
L2

∥∥∥
R2Nu

¯

“ rG̃ism, for m “ 1, 2, ..., Ns ´M. (3.52)

In the online stage one can approximate gpa˚, 9a˚q “ rgipa
˚, 9a˚qs

Nνt
i“1 :

gippa
˚, 9a˚qq « Giprpa

˚, 9a˚qsq “
Ns´M
ÿ

j“1
wi,jζi,j

´∥∥∥rpa˚, 9a˚qs ´ ãjL2

∥∥∥
R2Nu

¯

. (3.53)

We would like to remark that the H-SUP-ROM in its different versions discussed in this
section is compatible with both the penalty method and the lifting function method. The
interpolation discussed in this subsection could be done with the velocity coefficients coming
from the lifting modes when the lifting function approach is employed. If that is the case,
then the maps rGis

Nνt
i“1 in gi “ Gipa, 9aq are:

Gi : R2NBC`2Nu Ñ R, for i “ 1, 2, ..., Nνt . (3.54)

It is also important to underline that the homogenized set of velocity snapshots Sũ in
Equation 2.55 has to replace Su in Equation 3.41 in case of the use of the lifting function
method.

The H-SUP-ROM in Equation 3.37 can be solved by time integrating the dynamical system
in the case of unsteady flows, or by simply solving the algebraic system in the case of steady
flows. In this work, we used a Newton method for solving the reduced dynamical system. The
Newton method computes the Jacobian in a numerical way. In the general unsteady case,
it is recommended to choose a time step which is consistent with the one used during the
FOM simulations. The time advancement scheme for computing the derivative of the reduced
vector a is chosen as first order backward Euler scheme or a second order one.
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3.3 Turbulent ROMs based on the Uniform-ROM and
the PPE-ROM

In the last section, we have introduced the H-SUP-ROM proposed for the reduction of
turbulent flows. The H-SUP-ROM is based on the projection of the momentum and continuity
equations with the supremizer approach to obtain the reduced velocity and pressure degrees of
freedom, while it employs a data-driven strategy for closing the system through approximation
of the reduced eddy viscosity coefficients. In this section, we are going to address other relevant
ROM formulations which may reduce turbulent flows under certain specific conditions.

The first turbulent ROM addressed here is an extension of the ROM addressed in 2.4 to
which we refer as the Uniform-ROM or U-ROM. In this case, the extended ROM involves the
approximation of the reduced eddy viscosity field through the use of the velocity degrees of
freedom as it was done with the pressure field. In other words, the reduced eddy viscosity is
given by:

νtpx, t;µq « νtrpx, t;µq “
Nr
ÿ

i“1
aipt,µqηipxq, (3.55)

where the eddy viscosity modes rηipxqsNri“1 in this case are computed using the SVD decompo-
sition of the velocity correlation matrix:

ηi “
1

Nsλui

Ns
ÿ

j“1
Sj
νt
V u
ij . (3.56)

The corresponding DAE for this turbulent ROM, which is only based on the projection of the
momentum equation, is:

9a “ νpB `BT qa´ a
T
pC ´CT1 ´CT2qa´Ha, (3.57)

where the vector a represents the degrees of freedom of the velocity, pressure and the eddy
viscosity. This ROM can be used for the reduction of both steady and unsteady flows. It has
also the advantage of being of low computational online cost, as the system 3.57 has relatively
small size. However, as mentioned earlier, this formulation undermines the reduced pressure
approximation. In addition, numerical evidences have demonstrated that this ROM is prone
to long-term instabilities when the system 3.57 is integrated for long times (see section 4.3).
Furthermore, the U-ROM has the limitation of not being compatible with the lifting function
method described in subsection 2.7.1. The lifting function method requires a homogenization
process for the velocity snapshots. The proposal of having unique set of reduced coefficients
raipt,µqs

Nr
i“1 is directly affected by the homogenization process of the velocity snapshots. The

process of modifying the velocity snapshots suggests that such process should follow for the
pressure and the eddy viscosity snapshots which is not well defined. In the next chapter,
we will present a comparison between the turbulent U-ROM and the H-SUP-ROM with the
penalty method used for the enforcement of the non-homogeneous boundary conditions.
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At this point, one may proceed to the extension of the PPE-ROM presented in section 2.5.
There are two different ways of extending such ROM. The first one is based on assuming that
the reduced eddy viscosity field shares the same temporal coefficients with the velocity field as
proposed in 3.56. In this formulation the velocity and the eddy viscosity fields will have the
vector a as their reduced vector, while the pressure field will still be computed using different
set of coefficients represented by the vector b. This ROM is called Semi-Uniform-PPE-ROM
or SU-PPE-ROM. We recall the reduced approximations of this ROM:

upx, t;µq «
Nu
ÿ

i“1
aipt,µqφipxq, ppx, t;µq «

Np
ÿ

i“1
bipt;µqχipxq, (3.58)

νtpx, t;µq «
Nu
ÿ

i“1
aipt,µqηipxq, (3.59)

with the POD modes computed as follows:

φi “
1

Nsλui

Ns
ÿ

j“1
ujV

u
ij , χi “

1
Nsλ

p
i

Ns
ÿ

j“1
pjV

p
ij , (3.60)

ηi “
1

Nsλui

Ns
ÿ

j“1
νtjV

u
ij . (3.61)

The FOM momentum and Poisson equations for the RANS turbulent modeling read as
follow:

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Bu
Bt
`∇ ¨ pub uq “∇ ¨

„

´pI` pν ` νtq
´

∇u` p∇uqT
¯



in Ω ˆ r0, T s,

∆p “ ´∇ ¨ p∇ ¨ pub uqq `∇ ¨

«

∇ ¨

ˆ

νt

´

∇u` p∇uqT
¯

˙

ff

in Ω,

+ Boundary conditions on Γ ˆ r0, T s,
+ Initial conditions in pΩ, 0q.

(3.62)

The Galerkin projections of the momentum and the Poisson equations give the following DAE:

9a “ νpB `BT qa´ a
T
pC ´CT1 ´CT2qa´Hb, (3.63a)

Db` aT pG´CT3 ´CT4qa´ νNa´L “ 0. (3.63b)

The additional tensors appearing in the reduced Poisson equation come from the divergence
of the eddy viscosity term in the FOM momentum equation in Equation 3.19. Their entries
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are defined as:

pCT3qijk “
`

∇χi, ηj∇ ¨∇φk
˘

L2pΩq
, (3.64)

pCT4qijk “
´

∇χi,∇ ¨ ηjp∇φTk q
¯

L2pΩq
. (3.65)

The SU-PPE-ROM can not be used for the reduction of steady flows. This is related to the
boundary conditions which have to be satisfied at the full order level. We have mentioned this
issue in section 2.5, where it is related to the way the PPE is derived from the momentum
and continuity equations of the NSE or the RANS. The derivation of an equivalent system
to the one formed by the NSE requires an additional boundary condition for the divergence
of the velocity or the pressure [84, 99]. In this work, the PPE formulation adopted involves
an additional Neumann boundary condition for the pressure field. This latter condition is
needed in order to make sure that the velocity field is divergence free for all time instants.
The fulfillment of such condition can happen only in the general unsteady setting (see the
remark in section 2 in [84]).

3.3.1 Hybrid ROM based on the PPE-ROM

In this subsection, we address the second choice for the extension of the PPE-ROM for the
goal of reducing turbulent flows. The second methodology proposes to employ the reduced
approximation of the eddy viscosity fields as the one used in the case of the H-SUP-ROM.
That means decomposing νt as done in Equation 3.20 or in Equation 3.36, where this implies
that the coefficients of the reduced eddy viscosity will be computed by the interpolation
strategy explained in the last section. This ROM will be called H-PPE-ROM. Its DAE will
read as follows:

9a “ νpB `BT qa´ a
TCa` gT pCT1 `CT2qa` g

T
pCT1 `CT2qa´Hb, (3.66a)

Db` aTGa´ gT pCT3 `CT4qa´ g
T
pCT3 `CT4qa´ νNa´L “ 0, (3.66b)

the additional tensors CT3 and CT4 account for the parameter contribution of the eddy
viscosity in the Poisson equation, they are calculated as:

pCT3qijk “
´

∇χi, ηj∇ ¨∇φk
¯

L2pΩq
, (3.67)

pCT4qijk “
´

∇χi,∇ ¨ ηjp∇φTk q
¯

L2pΩq
. (3.68)

Like the case of the PPE-ROM, its hybrid turbulent extension works just for non-stationary
flows. The H-PPE-ROM has an advantage over the H-SUP-ROM in having less unknowns in
the dynamical system because of the fact that the supremizer reduced degrees of freedom are
not present in the H-PPE-ROM formulation. This often results in a slight advantage in terms
of speed up during the online stage.
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3.4 Contents Summary

In this section, we will give a recap of what has been presented in this chapter. The chapter
is dedicated to the construction of turbulent ROMs for the incompressible Navier–Stokes
equations. It starts with providing an overview of turbulence modeling at the full order
level in section 3.1. The closure problem is addressed in subsection 3.1.1 and then the eddy
viscosity models with the RANS formulation are considered in subsection 3.1.2.

Section 3.2 focuses on the development of a ROM which is capable of reducing turbulent flows.
It presents a hybrid ROM which is based on both projection-based methods and data-driven
techniques. The latter ROM is an extension to the one presented in section 2.6, and it employs
interpolation using RBF for the approximation of the reduced eddy viscosity. Two different
interpolation methodologies are presented in subsection 3.2.1 and subsection 3.2.2.

Finally, section 3.3 addresses other turbulent ROMs which are extended versions to the ones
put forward in section 2.4 and section 2.5.

The main objective of this chapter is to provide a general reduction methodology for turbulent
flows when the FOM is based on the RANS equations. This goal has been accomplished
thanks to incorporating data-driven techniques in the ROM formulation.

The turbulent ROMs will be applied in the next chapter on different CFD problems. Compar-
isons on various fronts will be made.



Chapter 4

Applications and Numerical Results
In this chapter, the reduced order models developed in this thesis are tested on benchmark
CFD cases. The reduction methodologies are applied on different CFD problems such as
Uncertainty Quantification (UQ) problems and also turbulent problems. The results highlight
the differences between the proposed reduction methods in several aspects. The first section of
this chapter presents a numerical test for a UQ problem, in which the UQ technique employed
is the non-intrusive Polynomial Chaos Expansion (PCE). In the same UQ problem, we will use
the SUP-ROM developed in this work for the reduction of the parametrized problem. This test
is aimed at evaluating the reliability and the accuracy of the SUP-ROM when considered as
the input of the PCE instead of the FOM. This numerical test represents an interesting aspect
in reduced order modeling for UQ problems. The second section addresses the application
of the hybrid ROM constructed in the third chapter on a steady turbulent case. The results
include the comparison with the turbulent uniform ROM introduced in the previous chapter.
As for the third section, it deals with the unsteady case of the flow past a circular cylinder.
This numerical case is considered in turbulent setting with Reynolds number Re “ Op105q.
The hybrid and the non-hybrid turbulent ROMs are used for the reduction of this case. The
results address the issues of long-time integration and ROM stability, accurate extrapolation
in the parameter space and versatility in terms of the turbulent closure model employed at the
FOM level. The finite volume C++ library OpenFOAM R© (OF) [1] is used as the numerical
solver at the full order level. At the reduced order level the reduction and resolution of the
reduced order system is carried out using the C++ based library ITHACA-FV [138].
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4.1 Applications of ROMs in CFD Uncertainty
Quantification (UQ) Problems

In this section, we aim at merging the ROMs developed in this thesis with other approaches
in Uncertainty Quantification (UQ). The objective of this numerical study is to limit the
computational cost associated with the simulations required by the non-intrusive UQ algo-
rithms. In fact, we aim at proposing a framework in which we provide the UQ algorithms
with a computational asset that improves the performance of these algorithms. That asset is
represented by the fast online computations performed by the ROMs developed in this work.
To this end, the UQ algorithm chosen in this work is the non-intrusive Polynomial Chaos
Expansion (PCE). Reduced order models have been used extensively in UQ problems, we
refer the reader to the following works on ROMs in UQ available in literature [41, 40, 63].

In the first part of this section we will introduce physical problem of interest, on which we will
apply the UQ and the ROM. Later we will address the PCE and we will give an overview of
this UQ algorithm. Finally, we will present numerical results for the PCE and the SUP-ROM
which are aimed at both comparing the two approaches and also to show that they could be
combined for having better efficiency.

In CFD problems, input parameters uncertainties could affect the results of the numerical
simulations resulting in a significant impact on the outputs of interest. In this section, we
are going to study the methods which have been developed to evaluate these uncertainties.
In particular, the method considered in this section is the non-intrusive Polynomial Chaos
Expansion (PCE), which has been applied to the results of CFD simulations. In the context of
the PCE method, random variables or random processes are represented in terms of orthogonal
polynomials. The PCE method proposes the decomposition of the random variable into
separable deterministic and stochastic components [100, 75]. The principal challenge in PCE
consists in obtaining the deterministic coefficients of the expansion. In the framework on non-
intrusive PCE, which is designed to require no changes to the CFD solver, the deterministic
coefficients are computed in a post-processing phase which follows the simulations. In this
case, a sampling based approach is employed for the identification of the coefficients as done
in [80, 121]. In such settings, samples in the input parameter space are predefined and then
numerical simulations are conducted for each sample. After that, the output of interest of the
latter simulations is available, one may obtain the PCE coefficients, where the orthogonality of
the polynomials is exploited to compute the deterministic coefficients in the expansion through
integrals in the sampling space. However, the computational cost will grow significantly as
the parameter space dimension increases, due to the fact that the sampling points chosen are
quadrature points for such integrals. This represents a problem which has to be circumvented
since the computational cost of the CFD simulations associated to the output evaluation
at each sampling point is of considerable amount. In order to solve this problem, we relied
in this work on a regression approach which is based on least squares minimization for the
computation of the PCE coefficients.
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In this work, we apply the PCE method to results obtained both with the full order solver
and with the reduced order one. The goal of applying the PCE on the ROM results is to
explore the possibility of offering further reductions of the computational cost. In addition,
these tests have the objective of assessing how the PCE results are influenced by the use
of the ROM developed in this work which is a POD-Galerkin based one. Thus, we will
apply the POD-Galerkin ROM on the results obtained by solving the incompressible steady
Navier–Stokes equations. The ROM-based PCE results will be compared to the original PCE
results on the FOM data, and as a result, it will be possible to evaluate the ROM reliability
as an output evaluator for the PCE.

In the next subsection we are going to introduce the physical problem, which is the flow
around an airfoil, a classical benchmark in the field of aerospace engineering. Then we will
explain the methodology on which the PCE is based. The output of interest in the considered
problem is the lift coefficient Cl which comes from the non-dimensionalization of the lift force
L. The latter is defined as the component of the fluid dynamic force (acting on the surface
of the airfoil) in the direction perpendicular to the undisturbed flow direction. The interest
is in approximating the Cl using both the ROM developed in section 2.6 and also the PCE
method. As we mentioned, comparison of the results obtained by both techniques will be
presented. Also, we will propose an idea of merging the two techniques which could reduce of
the computational cost of the PCE.

4.1.1 The Physical Problem

The physical problem of interest is the two dimensional problem of the flow past an airfoil
section with variable angle of attack and inflow velocity. In this problem, uncertainties arise
from possible input parameters variations, where the input parameters consist of the inlet
flow velocity and the angle of attack. The angle of attack in aerospace engineering is defined
as the angle that lies between the flow velocity vector at infinite distance from the airfoil
(U8) and the airfoil chord, see Figure 4.1. It is important from an engineering perspective to
determine the angle at which the maximum value of the lifting force occurs (the lifting force is
the forces component in the direction perpendicular to U8). After reaching that angle which
is called the critical angle, the stall phenomenon takes place, where the lift forces acting on
the surface of the airfoil suffer a typically sudden drop. Figure 4.2 shows lift coefficient, which
is computed from the lift forces L as Cl “ L

1
2ρU

2D
, as a function of the airfoil angle of attack.

The plot refers to the NACA 0012 ´ 64 airfoil [3, 128], at a fixed Reynolds number of 106.
The plot shows that the lift coefficient grows by increasing the angle of attack until the point
when the flow separation occurs resulting in a loss of lift force. In the case of low Reynolds
number flows, such as the ones considered in this section, this phenomenon occurs in mild
fashion, unlike the more abrupt stalls manifested at higher velocities like the one in Figure 4.2.
In such plot, the lift coefficient reaches its maximum value at an angle of 17 degrees before
stall happens. The maximum lift coefficient is observed at higher values of the angle of attack
in the case of laminar flows.
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U8

α

Figure 4.1: The angle of attack on an airfoil.
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Figure 4.2: The lift coefficient curve for the airfoil NACA0012.

4.1.2 Non-Intrusive PCE

This subsection addresses the mathematical formulation of the PCE technique. In the context
of Polynomial Chaos (PC) theory formulated by Wiener [155], real-valued multivariate Random
Variables (RVs), such as the one considered in this work in the previous subsection (the lift
coefficient Cl) can be decomposed into an infinite sum of separable deterministic coefficients
and orthogonal polynomials [82]. Such polynomials are considered a group of stochastic terms
which have dependency on mutually orthogonal Gaussian random variables. If we consider
applying these polynomial to the output of interest (in this case the Cl), the decomposition
assumption gives:

Cl
‹
pξq “

8
ÿ

i“0
CliΨipξq, (4.1)

where the random variable ξ “ pα, Uq expresses the uncertainty caused by the angle of attack
and the inflow velocity. Cli is termed usually as the ith stochastic mode of the expansion,
while Ψipξq is the ith polynomial. However, a truncation of the series above is usually done in
practical applications, that is:

Cl
‹
pξq «

P
ÿ

i“0
CliΨipξq, (4.2)

where here one may see that just the first P ` 1 values are computed.
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The orthogonal polynomials used in this work are called Hermite polynomials. These poly-
nomials form a set of orthogonal basis functions in terms of Gaussian distribution [58]. In
(4.2) P ` 1 is the number of Hermite polynomials used in the expansion which depends on
the order of the polynomials chosen and on the dimension n of the random variable vector
ξ “ tξ1, . . . , ξnu. In more details, the number P of Hermite polynomials of degree p in an
n-dimensional space, is given by P ` 1 “ pp`nq!

p!n! [58].

The main problem in the PCE approximation of RVs is the identification of the coefficients in
the expansion, that is Cli in (4.1). This task can be done making use of different strategies,
among them we mention the sampling based approaches and the quadrature method. In
this work, we decided to use a sampling based approach which is based on the methodology
proposed in [75]. The coefficients estimation begins by writing a discretized version of (4.2),
namely

»

—

—

—

—

–

Cl
˚
0

Cl
˚
1
...

Cl
˚
N

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

Ψ1pξ0q Ψ2pξ0q . . . ΨP pξ0q

Ψ1pξ1q Ψ2pξ1q . . . ΨP pξ1q
... . . .

Ψ1pξNq Ψ2pξNq . . . ΨP pξNq

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

Cl0
Cl1
...

ClP

fi

ffi

ffi

ffi

ffi

fl

,

where N is the number of the samples taken. In the case of N “ P ` 1, then the matrix in the
system above becomes a square one which permits solving the linear system for obtaining the
coefficients Cli given the known output coefficients Cl˚i . However, what is practically common
is that one may take a redundant number of samples and then the system can be solved in a
least squares sense, as follows:

Cl “ pL
TLq´1LTCl

˚, (4.4)

where L, Cl and Cl˚ denote the rectangular matrix in (4.3), the PCE coefficients vector and
output vector, respectively.

4.1.3 Application of PCE and the SUP-ROM

In this section, we are going to show the results of the SUP-ROM developed in section 2.6 in
terms of the fluid dynamics fields and outputs of interest for the airfoil problem described
in subsection 4.1.1. Then the results of PCE method on the main output of interest the lift
coefficient are presented. Afterwards, we will make comparisons of the ROM and the PCE
approaches for recovering the lift coefficient. Finally we will evaluate the performance of the
UQ technique on the airfoil problem, both when FOM and ROM simulation results are used
to feed the PCE algorithm. The tests carried out in this numerical example have two main
goals. Firstly, we would like to make a comparison of the performance of the PCE and the
ROM in approximating certain output of interest in such a CFD problem. The second goal
is to study the potential merge of the two approaches for improving the accuracy and the
efficiency.
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4.1.3.1 The ROM Results

In this part we are going to test the SUP-ROM on the FOM results obtained for the
airfoil problem described in subsection 4.1.1. We will start by describing the FOM settings.
The computational domain is depicted in Figure 4.3, the FOM simulations were carried
out using the simpleFoam solver in OpenFOAM, that is based on the SIMPLE algorithm
which is designed for steady flows. The Gauss linear numerical scheme is employed for the
approximation of gradients and Laplacian terms. We used a bounded Gauss upwind scheme
for the convective term approximation. As for the linear solvers, a Preconditioned bi-conjugate
gradient (PBiCG) solver is used for the velocity equations with Diagonal-based Incomplete
LU (DILU) preconditioner, while the Geometric agglomerated Algebraic MultiGrid (GAMG)
preconditioner with a GaussSeidel smoother is used for solving the pressure equation.

We recall that the parameters in this case are the airfoil angle of attack and the magnitude
of the inflow velocity at the inlet. The training stage of the ROM demands an adequate
number of FOM snapshots to be taken. Therefore, we decided to generate 520 snapshots
which correspond to 520 different parameter samples. These samples are generated making use
of the Latin Hyper Cube (LHC) [143] sampling algorithm. In order to generate the samples
for the two parameters using the LHC sampling approach, one has to predefine the mean and
the variance values of each parameter distribution. In all tests conducted in this numerical
example, the mean values are 100 m{s and 0˝, while the variances are equal to 20 m2{s2 and
300˝2 for velocity and angle of attack, respectively. The lift coefficient curve for this case
is depicted in Figure 4.4. It can be deduced from this figure that the lift coefficient seems
to be independent from the value of the inlet velocity, where different samples which have
close values of the angle of attack but different inlet velocities, have resulted in equivalent
value of Cl. Thus, we can conclude that input-output relationship can be considered as a
curve in the Cl-α plane. We remark that this is an outcome of the fact that we consider
the non-dimensional Cl as an output instead of the dimensional lift forces. In addition, the
Reynolds number variation is not extremely wide which might have contributed to the last
observation about the Cl-α curve.

After carrying out the full order simulations for the 520 samples, one may obtain the POD
modes by applying the procedure explained in section 2.3. However, this problem features non-
homogeneous boundary conditions at the Dirichlet boundary for the velocity field. Therefore,
boundary treatment has to be taken into consideration. In the present test we have utilized
the lifting function method in which the non-homogeneous boundary values in the velocity
snapshots are transferred to one or more lifting velocity fields. In this case, we have two
non-homogeneous boundary conditions to be set, i.e. NBC “ 2. The two conditions correspond
to the x1-component and the x2-component of the velocity field at the inlet. The lifting
functions φLx1 and φLx2 are found by solving two linear potential flow problems with the
boundary conditions at the inlet being p1, 0q and p0, 1q, respectively, for φLx1 and φLx2 . At
this point, the new velocity snapshots matrix with homogeneous values at the inlet can be
computed. Then the POD velocity modes are obtained by applying the method of snapshots.
Similar procedure is carried out for the pressure snapshots matrix giving the pressure POD



4.1. Applications of ROMs in UQ 59

modes. The cumulative eigenvalues of the correlation matrices built by the snapshots for the
velocity and pressure are reported in Table 4.1. We list their values up to the fifteenth mode,
and it can be seen that 5 modes allow for retaining 99.9% of the energy embedded in the
system. After computing the pressure POD modes, one may solve the supremizer problem for
each pressure mode resulting in the supremizer POD modes which will be used to enrich the
velocity POD space [17]. The last step in the offline stage is to compute the reduced vectors,
matrices and tensors which are needed to solve the system 2.51, and also for the computation
of the reduced approximation of the forces (in Equation 2.65).

N Modes u p
1 0.9033783 0.6497208
2 0.9978160 0.9649042
3 0.9985026 0.9926364
4 0.9990236 0.9986204
5 0.9993273 0.9996405
6 0.9995563 0.9998175
7 0.9996990 0.9999221
8 0.9998033 0.9999446
9 0.9998687 0.9999648
10 0.9999153 0.9999754
11 0.9999449 0.9999837
12 0.9999651 0.9999883
13 0.9999780 0.9999914
14 0.9999864 0.9999932
15 0.9999916 0.9999947

Table 4.1: Cumulative Eigenvalues of the correlation matrices for velocity and pressure.

At this point, all the offline computations are completed and it is possible to proceed to
the online stage. The first test carried out is a reproduction test in the parameter space,
where the same parameter samples used in the offline stage are also used in the online stage.
Figure 4.5 depicts the results of the lift coefficient obtained by the SUP-ROM and compared
to the FOM ones. These results are obtained using 10 modes for the reconstruction of velocity,
pressure and supremizers. The figure shows that the ROM reconstruction of the Cl is not
entirely accurate, as it can be noticed that the SUP-ROM Cl in the range α P r´50,´30s
is not closely reproducing its FOM counterpart. However, the approximation accuracy is
improved significantly by adding more modes to the velocity POD space. Figure 4.6 shows
the lift coefficient obtained by the SUP-ROM with 15 modes for the velocity and 10 for each
of the pressure and supremizers. The ROM Cl in the last figure matches the FOM one to a
higher degree. To measure the accuracy of the ROM reconstruction of the lift coefficients, we
introduce the following L2 relative error:

ε “ 100

b

řn
t“1pC

FOM
lt

´ CROM
lt

q2

b

řn
t“1pC

FOM
lt

q2
%, (4.5)

where n is the number of sampling points, CFOM
lt and CROM

lt are the t´th sample point of the



60 4. Applications and Numerical Results

(a) (b)
Figure 4.3: (a) The OpenFOAM mesh used in the simulations. (b) A picture of the mesh zoomed near the airfoil.

Figure 4.4: The FOM lift coefficient for the samples taken for the training phase.

lift coefficients for the FOM and the ROM, respectively. The values of ε for the SUP-ROM
Cl in Figure 4.5 and Figure 4.6 are 3.5301 % and 1.5644 %, respectively.

We would like to mention that the settings of the numerical test carried out here is identical to
the one presented in [73]. In such work, based on the same problem with identical parametric
setting, it is claimed (in the section named ROM results) that building an accurate ROM
requires aggregating samples from several Gaussian distributions which have different mean
values of the angle of attack. In such way, it is possible to locate enough samples in the
extreme angles of attack region, which is where the stall occurs. However, we can say that
the aforementioned claim is only partially correct. In fact, further improvements in the
lifting function technique used to deal with inflow BCs, resulted in a reduced model able to
obtain low errors in the stall regions without the need of samples grouped in several Gaussian
distributions centered in different parts of the Cl-α curve.

After having conducted a reproduction test in the parameter space, we increase the complexity
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Figure 4.5: The first sampling case which is used for the training of the SUP-ROM : the full order lift coefficients curve
versus the ROM reconstructed one with 10 modes used for each of velocity, pressure and supremizer fields.

Figure 4.6: The first sampling case which is used for the training of the SUP-ROM : the full order lift coefficients curve
versus the ROM reconstructed one with 15, 10 and 10 modes are used for velocity, pressure and supremizer fields respectively.
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(a) (b)

(c) (d)
Figure 4.7: The full order velocity field for the parameter µ˚ “ p98.8548 m{s , 35.3141˝ q and a comparison with the

reconstructed field by means of different number of modes for velocity, pressure and supremizer fields. (a) FOM field (b) ROM
velocity field with 5 modes used for all variables. (c) ROM velocity field with 8 modes used for all variables. (d) ROM velocity

field with 15, 10 and 10 modes used for velocity, pressure and supremizers, respectively.

by considering a general cross validation test in the parameter space. Therefore, we generated
a new set of samples which contains 1000 sample points for the parameters space plot. This
set is also obtained by making use of LHC with the same prescribed values of the means and
the variances as in the first test.

Firstly, we present the results of the ROM fields in Figure 4.7. The plot in part (a) portrays
contours of the FOM velocity field obtained for the parameter value µ˚ “ p98.8548 m{s ,
35.3141˝ q. The similar diagrams in (b), (c) and (d) depict different reconstructed surrogate
fields obtained employing different number of modes for the same parameter value.

The lift coefficient curve for the 1000 new samples is depicted in Figure 4.8. The results of
the SUP-ROM Cl approximation are shown in Figure 4.9, where the number of modes used
in the online stage are 10 for each field in (a) and 15 modes for the velocity and 10 modes
for each of the pressure and the supremizers in (b). The error values for the Cl in the last
figures are 3.7659 % and 1.6079 % for (a) and (b), respectively. This last test has shown that
the SUP-ROM is accurate also in the approximation of the flow fields and other outputs of
interest for parameter values which were not used in the training stage.

4.1.3.2 The PCE Results

The aim of the present section is to evaluate the performance of the PCE algorithm imple-
mented for the fluid dynamic problem at hand. To better describe the amount of simulations
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Figure 4.8: The FOM lift coefficient as a function of the angle of attack α for the second sampling group which is used for the
cross validation test of the SUP-ROM.

(a)

(b)
Figure 4.9: A comparison between the FOM and the SUP-ROM reconstructed lift coefficients for the cross validation test (a)
10 modes are used for each of velocity, pressure and supremizer fields. (b) 15, 10 and 10 modes are used for velocity, pressure

and supremizer fields, respectively.
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carried out to both train and validate the UQ PCE model implemented, we present in
Figure 4.10 a conceptual scheme of the simulation campaign carried out in this work.

One of the main features of non intrusive PCE is that it can use any deterministic simulation
software as a black box input source. We will then present different tests in which PCE
has been fed with the output of fluid dynamic simulations based on models characterized by
different fidelity levels. In a first test we have in fact generated a PCE based on the FOM,
and evaluated its performance in a prediction test. The second test consisted in generating
a PCE based on the SUP-ROM used in the previous section. The latter test allows for an
evaluation of how the PCE results are affected when the expansion is based on a surrogate
ROM model rather than the FOM one. Given the relatively high number of samples required
for the PCE setup, it is in fact interesting to understand if the ROM can be used to reduce
the computational cost associated with the evaluation of the solution output for a new sample,
without a significant loss in terms of accuracy.

One of the main assumptions of the non intrusive PCE algorithm implemented is that of
operating on Gaussian distributed input parameters. In fact, we have decided to apply PCE
on the same sampling set that was used in the previous section for the cross validation test
of the SUP-ROM. We recall that it contains 1000 samples which are generated by the LHC
technique with the means of the inlet velocity and angle of attack being 100 m{s and 0˝, while
the variances are equal to 20 m2{s2 and 300˝2.

In the PCE methodology, one has to start by training the PCE (for determining the PCE
coefficients). For this purpose, we decided to divide the 1000 samples block into two groups,
each of which contains 500 samples. This is done by first ordering the samples according
to the angle of attack, and then taking one sample for the training procedure and leaving
the next one for the checking phase. In the first test, we use the FOM Cl values to feed the
PCE algorithm. By solving system 4.3 in a least square sense, one may obtain the PCE
reconstructed lift values for the 500 checking samples. In Figure 4.11, one may see the resulted
PCE lift coefficient curve for the values of the angle of attack used as check samples. The last
figure shows also the corresponding FOM Cl values. The error in this case is 2.4208 %. It can
be deduced that the PCE has given satisfactory results when it was applied directly on the
FOM results.

In the second test we replace the FOM results with the SUP-ROM data as input for PCE.
Thus, the SUP-ROM Cl values were computed by running the SUP-ROM solver with 15
modes for the velocity and 10 modes for pressure and supremizers. After using the same 500
samples to compute the PCE coefficients, we used the PCE to predict the lift coefficients for
the remaining 500 samples used for the check. We then compared the value of the predicted
PCE coefficients in this case to both the SUP-ROM values and the FOM values.

The results of the aforementioned test are reported in Figure 4.12. The figure includes
comparison of the PCE predicted Cl curve with both its SUP-ROM and FOM counterparts.
The plots show a similar behavior of the PCE predictions obtained using the SUP-ROM and
the FOM output data. By a quantitative standpoint, the PCE predictions present a 2.6522 %
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Figure 4.10: The flowcharts describing the procedure followed in the numerical simulations for the UQ model generation and
validation campaign respectively. The top scheme focuses on the procedure adopted for the generation of the UQ model, and
in particular on the identification of the PCE coefficients. The polynomial surrogate based on the full order model (indicated
in green) has been generated using 1000 Gaussian distributed samples in the α,U space. The same samples have been used to
obtain the polynomial surrogate input-output relationship for the POD-Galerkin ROM (denoted by the yellow box). Note that
the ROM used in this simulation campaign has been trained by means of 520 samples in the α,U space. Finally, the bottom

flowchart illustrates the PCE validation campaign. Here, the same last 1000 samples have been used to obtain the
corresponding output with the full order model, with the polynomial UQ surrogate trained with the FOM simulations (green

box), and with the polynomial UQ surrogate trained with the ROM simulations (yellow box). For both polynomial UQ
surrogates, the set of 1000 samples has been divided into two sets of 500 samples each, one set has been used for the

identification of the PCE coefficients, while the second is used for the validation phase.
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Figure 4.11: The PCE lift coefficient for the checking samples versus that computed by the FOM, the checking samples are
500, the PCE polynomials are of the fourth degree.

error with respect to the SUP-ROM predictions, while the L2 norm of the error with respect
to the FOM predictions is 2.8530 %. A summary of the comparisons made is reported in
Table 4.2.

First data Second data Error
FOM SUP-ROM 1.6079 %
FOM PCE on FOM 2.4208 %

SUP-ROM PCE on SUP-ROM 2.6522 %
FOM PCE on SUP-ROM 2.8530 %

Table 4.2: A comparison between the relative error in L2 norm for the results obtained from the SUP-ROM and the PCE,
with the PCE being used on both the FOM and the SUP-ROM results. We remark that the number of POD modes used (if
apply) are 15, 10 and 10 for velocity, pressure and supremizer fields, respectively, for all cases. We underline also that 500

samples have been used for testing the PCE wherever it is used.

If we shift the attention to the computational side of the results addressed in the current and
previous sections, we observe that the SUP-ROM has performed positively in that regard.
In more details, the wall time consumed by the FOM in running the steady simulations for
the 1000 parameter samples used in the cross validation test was 10185.5 s. On the other
hand, the SUP-ROM with 15 modes of velocity and 10 modes for each of the pressure and the
supremizers, has computed the lift and drag forces and also exported the reduced solutions in
just 61.3889 s, which means that the SUP-ROM has a speed up of 165. It is worth remarking
that the time taken by the FOM in simulating the 520 offline parameter samples is 5076.38 s.
It can be, therefore, concluded that the SUP-ROM can be used as an accelerator for the PCE
method, whenever the 0.43 % error increment associated with it are considered acceptable.

To summarize, in this numerical example, we studied two popular techniques that are used
often in the fields of ROM and UQ which are the POD and PCE, respectively. The study
aimed at comparing the accuracy of the two techniques in reconstructing the outputs of
interest of viscous fluid dynamic simulations. We have concluded the work with combining
the two approaches so as to exploit the ROM to speed up the many query problem needed to
obtain the PCE coefficients. POD-Galerkin ROMs such as the SUP-ROM can be a reliable
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(a)

(b)
Figure 4.12: (a) The SUP-ROM lift coefficient versus the PCE lift coefficient curve when the PCE has been applied on the
SUP-ROM output with 15, 10 and 10 modes used for velocity, pressure and supremizer fields respectively. (b) The FOM lift
coefficient versus the PCE lift coefficient curve when PCE has been applied on the SUP-ROM output with same number of

modes as in (a). In both graphs, the PCE coefficients were obtained with polynomial of the fourth grade.

output evaluator for the PCE, as the value of relative error PCE had when it was based
on ROM results was 2.8530 % while the error was 2.4208 % when PCE was based on FOM
outputs. The last result speaks positively for POD-Galerkin ROMs and makes them a valid
tool to be possibly used in the field of uncertainty quantification.

4.2 A Steady Turbulent Case: Reynolds Parametrized
Backward Step Case

In this section we are going to evaluate the performance of the hybrid ROM developed in
section 3.2 on a benchmark test case in a steady setting. The problem considered is the
backward step case. The computational domain is depicted in Figure 4.13. The boundary
conditions for the velocity and the pressure fields are also indicated in the figure, which also
reports the domain size and more specifically the lengths in Figure 4.13 are reported in terms
of the characteristic length is D “ 1 m, the physical viscosity is ν “ 10´3 m2{s. The inlet
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Figure 4.13: The computational domain used in the numerical simulations, all lengths are described in terms of the
characteristic length D that is equal to 1 meter.

velocity U is varied between from 1 m{s to 25 m{s, this gives values of the Reynolds number
which lie in the range r1ˆ 103, 2.5ˆ 104s.

.

The parameter considered in this problem is the velocity at the inlet U , or in other words the
Reynolds number. The goal of this test is to investigate the performance of the hybrid ROM
(the H-SUP-ROM) at high Reynolds number values. Therefore, we aim at reproducing the
fluid dynamics fields using the H-SUP-ROM for several values of the parameter. In this test,
we are also interested in assessing the H-SUP-ROM ability of reducing steady problems with
the offline snapshots generated by different FOM turbulence closure models. To this end, we
have considered FOM simulations carried out with both the k ´ ε and the SST k ´ ω models.
In this numerical example, we are going to compare the results obtained by the H-SUP-ROM
to the FOM ones and also to the uniform ROM or the U-ROM addressed in section 3.3.

In the full order simulations, Gauss linear scheme was selected for the approximation of the
gradients and Gauss linear scheme with non-orthogonal correction was selected to approximate
the Laplacian terms. A 2-nd order bounded Gauss upwind scheme was instead used for the
approximation of the convective term. Finally, 1st order bounded Gauss upwind scheme is
used to approximate all terms involving the turbulence model parameters k, ε and ω. The
linear solver used for the velocity equation uses a symmetric Gauss Seidel smoother, while
the pressure solver is based on the GAMG with GaussSeidel smoother.

100 snapshots were generated in the offline stage by running the FOM which utilizes the
SIMPLE algorithm addressed in section 2.2. This has been done for the two FOMs based
on both turbulence models considered. The 100 snapshots correspond to values of the inlet
velocity which are equally distributed in the range mentioned above, i.e. r1, 25s m{s.

In the present case, the non-homogeneous inlet boundary conditions are dealt with by the
help of the penalty method. We remark that the ROM results were sensitive to the value of
the penalization factor τ . Therefore, we have carried out a sensitivity analysis in order to
determine the appropriate value of τ for both k ´ ε and SST k ´ ω turbulence models. As
explained in section 2.7, the penalty method allows for the application of the POD procedure
directly on the original snapshots. After applying the SVD on the snapshots of the velocity,
the pressure and the eddy viscosity fields, the POD modes are obtained. The cumulative
eigenvalues decay for the three fluid dynamics variables is presented in Figure 4.14. The plot
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Figure 4.14: Cumulative ignored eigenvalues decay. In the plot, the solid red line refers to the velocity eigenvalues, the dashed
black line indicates the pressure eigenvalues and the dash-dotted blue line finally refers to the eddy viscosity eigenvalues.

suggests that a small number of modes is already sufficient in order to retain the energetic
information in the snapshots.

After obtaining the POD modes, the reduced vectors, matrices and tensors are also computed
and stored. In order to evaluate the accuracy of the two ROMs considered, one has to consider
taking a cross validation test for the parameter considered in this work. In practice, this
consists in testing the ROM in the online stage with parameter values which were not present
in the offline parameter training set. Therefore, a different set of 80 online parameters U˚i
(where i “ 1, ..., Ntest “ 80) was generated. The online parameters are taken as equally
distributed points in the range r3, 20s m{s. This online sample set has values of the parameter
which lie almost mid way between two offline parameter samples, and also it contains values
which are very close to the offline parameter samples. It has to be recalled that the offline
stage contains the training of the interpolation using the RBF for the approximation of
the eddy viscosity reduced vector g in the H-SUP-ROM dynamical system in 3.24. The
RBF interpolation strategy is simply based on approximating the maps between the offline
parameter values U and the L2 projection coefficients of the eddy viscosity modes onto the
snapshots. This strategy is basically the one addressed in subsection 3.2.1. The interpolation
using the RBF in this work has been carried out using the C++ library SPLINTER [61].

The online stage needs that a value of the reduced eddy viscosity vector g be available in order
to solve the reduced system of the H-SUP-ROM. This value is obtained by the employing
the RBF interpolant constructed in the offline stage. The RBF interpolant of each eddy
viscosity mode will give an approximated value of its corresponding coefficient in the vector
g as indicated in Equation 3.34. After having approximated g one may solve the algebraic
system to obtain at the end the reduced velocity and pressure vector a and b. Finally, the
H-SUP-ROM fields for velocity, pressure and the eddy viscosity could be recovered. In the
case of the U-ROM, the procedure is similar, where the dynamical system to be solved is the
one defined by 3.57. Obviously, in the case of the U-ROM, the number of reduced unknowns
is smaller than its counterpart in the H-SUP-ROM. In addition, the U-ROM formulation is
purely intrusive, therefore, no interpolation procedure is needed.
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(a) (b)

(c)
Figure 4.15: k ´ ε turbulence model case, velocity fields for the value of the parameter U “ 7.0886 m{s: (a) shows the FOM

velocity, while in (b) one can see the U-ROM velocity, and finally in (c) we have the H-SUP-ROM velocity.

The first turbulence model considered is the k´ ε model. The FOM field corresponding to all
online parameter values were computed for the sake of comparing the ROMs results to them.
The reduced ROM fields obtained by both the U-ROM and the H-SUP-ROM for the online
parameter value of U˚ “ 7.0886 m{s are compared to their FOM counterparts. The figures of
the velocity, pressure and the eddy viscosity fields are presented in Figure 4.15, Figure 4.16
and Figure 4.17, respectively. The plots suggest that the reduced approximation of the FOM
velocity field is acceptable from a qualitative viewpoint. The same can not be said for the
pressure field. In order to have a clearer picture, we decided to introduce the following L2

relative error defined as:

εu “
‖u´ u˚‖L2pΩq

‖u‖L2pΩq

ˆ 100%, εp “
‖p´ p˚‖L2pΩq

‖p‖L2pΩq

ˆ 100%, (4.6)

where u˚ and p˚ are general reduced order velocity and pressure fields, respectively. The
values of the velocity relative error εu for the H-SUP-ROM and the U-ROM are 0.4444 % and
0.6522 %, respectively. On the other hand, the pressure errors εp are 0.3654 % and 20.9441
% for the H-SUP-ROM and the U-ROM, respectively. The last values indicate clearly that
the H-SUP-ROM was accurate in reproducing the FOM pressure field, while the U-ROM has
failed in giving satisfactory results in that regard.

At this point, we move to the next test which involves the use of the SST k ´ ω model
turbulence model. The FOM simulation were run for the same offline and online parameter
sets with equivalent FOM and ROM settings for the numerical schemes and the treatment
of boundary conditions. We recall that the objective of this test is to assess how responsive
the H-SUP-ROM and the U-ROM results are with respect to the turbulence model used for
the FOM simulations. In Figure 4.18, Figure 4.19 and Figure 4.20, one may see the velocity,
the pressure and the eddy viscosity fields, respectively, for the FOM, the U-ROM and the
H-SUP-ROM for the online parameter value U˚ “ 7.0886 m{s. As in the previous case, it
may be observed that the H-SUP-ROM was successful in recovering the fluid dynamics field
from qualitative standpoint, while the same can not be said for the U-ROM. Considering the
error values for this case, one may deduce that the pressure reconstruction by the U-ROM is
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(a) (b)

(c)
Figure 4.16: k ´ ε turbulence model case, pressure fields for the value of the parameter U “ 7.0886 m{s: (a) shows the FOM

pressure, while in (b) one can see the U-ROM pressure, and finally in (c) we have the H-SUP-ROM pressure.

(a) (b)

(c)
Figure 4.17: k ´ ε turbulence model case, eddy viscosity fields for the value of the parameter U “ 7.0886 m{s: (a) shows the
FOM eddy viscosity, while in (b) one can see the U-ROM eddy viscosity, and finally in (c) we have the H-SUP-ROM eddy

viscosity.

quite poor, as the error value εp is 22.3972 % for such intrusive model. On the contrary, the
H-SUP-ROM has achieved a higher level of accuracy with εp “ 0.7329 %. As for the velocity
field errors, the U-ROM led to an error of εu “ 0.8177 %, while the H-SUP-ROM gives a
value of εu “ 0.8088 %.

The reader may observe that the FOM fields obtained by different turbulence closure models
have different values across the domain (except for the velocity). For the sake of having a
clear picture of how accurate the reduction carried out by the hybrid ROM regardless of
which turbulence modes was used at the full level, one may consider plotting the FOM and
the H-SUP-ROM pressure fields (obtained by the two turbulence models) for a fixed value
along the x2 axis (the perpendicular axis) versus the values along the x1 axis (the horizontal
one). The result of this additional check can be seen in Figure 4.21, here this figure relates the
FOM and the H-SUP-ROM pressure values for the distance of the points in space from the
inlet when the second spatial variable x2 is fixed at 5D

6 which is half the height of the domain.
The last figure shows the pressure distributions obtained by both the k ´ ε and the SST
k ´ ω models. Figure 4.21 proves that the H-SUP-ROM is able to capture the flow solution
differences between the two different turbulence models. The latter results accomplishes one
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(a) (b)

(c)
Figure 4.18: SST k ´ ω turbulence model case, velocity fields for the value of the parameter U “ 7.0886 m{s: (a) shows the

FOM velocity, while in (b) one can see the U-ROM velocity, and finally in (c) we have the H-SUP-ROM velocity.

(a) (b)

(c)
Figure 4.19: SST k ´ ω turbulence model case, pressure fields for the value of the parameter U “ 7.0886 m{s: (a) shows the

FOM pressure, while in (b) one can see the U-ROM pressure, and finally in (c) we have the H-SUP-ROM pressure.

of the main goals of the hybrid ROM proposed in this work.

The final result in this section is for the H-SUP-ROM convergence analysis which is shown
Figure 4.22. These figures show the mean L2 relative error for all the 80 samples used in
the cross validation test in the online stage, as a function of the number of modes used. As
previously mentioned, the number of modes used for velocity (Nu), pressure (Np), supremizer
(NS) and eddy viscosity (Nνt) was kept uniform in these preliminary tests. The plots indicate
that for the problem considered, the H-SUP-ROM results exhibit fast convergence to the
FOM solution for both k ´ ε and SST k ´ ω. Yet, after less then ten modes, the convergence
appears to stall, as the error settles on non zero, but fairly acceptable values. This is likely due
to the fact that as the number of modes grows, the gain in accuracy becomes only marginal
compared to the νt field interpolation error.
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(a) (b)

(c)
Figure 4.20: SST k´ ω turbulence model case, eddy viscosity fields for the value of the parameter U “ 7.0886 m{s: (a) shows
the FOM eddy viscosity, while in (b) one can see the U-ROM eddy viscosity, and finally in (c) we have the H-SUP-ROM eddy

viscosity.

Figure 4.21: The pressure fields obtained using both k´ ε and SST k´ ω turbulence models and the H-SUP-ROM ones. The
plot is for the pressure value along the x1 direction keeping the value of x2 fixed at half the maximum height.

(a) (b)

Figure 4.22: The mean of the L2 relative errors for all the online samples versus the number of modes used in the online
stage. The convergence analysis is done for both H-SUP-ROM models obtained with two different turbulence models at the

full order level which are k ´ ε and SST k ´ ω. The errors are reported in percentages, in (a) we have the velocity fields mean
error, while in (b) the pressure fields mean error .
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4.3 An Unsteady Turbulent Case: Reynolds
Parametrized Flow Past a Circular Cylinder

In this subsection, the reduction methodologies are tested on a turbulent case. The problem
under study is the classical CFD benchmark of the unsteady flow past a circular cylinder.
We refer the reader to [162, 163, 129] for a deep analysis of this problem. This problem has
been used for testing reduced order methods in numerous works in the literature, see for
example [137, 106, 160, 34, 65]. As the vortex shedding past circular cylinders is an inherently
two-dimensional phenomenon, she case is studied in two dimensions. The computational
grid and the flow domain are illustrated in Figure 4.23. The figure also shows the boundary
conditions set for the velocity and the pressure fields, in which all the distances are expressed
in terms of the characteristic length of the problem the diameter of the cylinder D “ 1 m.
The physical kinematic viscosity ν is equal to 10´4 m2{s and the velocity at the inlet is
horizontal and uniform with magnitude Uin. The number of cells in the mesh is equal to
11644. The case is parametrized through the Reynolds number Re by changing the velocity
at the inlet Uin. The latter varies inside the range of r7.5, 12s m{s which corresponds to
Re P r7.5ˆ 104, 1.2ˆ 105s. The simulations will run and evolve in time until a final periodic
regime is fully developed.

The simulations are carried out using the non-steady solver named pimpleFoam which is based
on merging the SIMPLE and the PISO algorithms described in section 2.2. The pimpleFoam
solver in OpenFOAM has the capacity of adapting the time steps in a way which assures that
the maximum Courant number CFL [45, 46] does not exceed a prescribed value which is in
this case has been set to CFLmax “ 0.9. In relation to the time advancing schemes used in
this case, the backward Euler scheme is utilized for the computation of the time derivative
of the velocity field. As for the spatial gradients, a Gauss linear scheme is employed. The
convective term has been approximated with a 2nd order bounded Gauss upwind divergence
scheme which utilizes upwind interpolation weights, with an explicit correction based on the
local cell gradient. Gauss linear scheme is used for the discretization of the diffusive term.
The values of the relaxation factors αu and αp are fixed at 0.7 and 0.3, respectively. Only one
non-orthogonal corrector iteration is used for dealing with the non-orthogonality of the mesh.
As for the linear solvers, a GaussSeidel smoother solver is used for the velocity equation,
whereas the GAMG solver with GaussSeidel smoother is used for solving the pressure equation.
Turbulence treatment at the full order level is carried out by the usage of the SST k ´ ω

turbulence model.

The first step of the offline stage is to sample the parameter space. Therefore, ten samples for
the horizontal velocity at the inlet are taken inside the range r7.5, 12s m{s. The next task is to
take time snapshots for each parameter value after making sure that the flow reaches the final
periodic regime. We emphasize that the objective of the reduction in this numerical example
is to reproduce the fields and other related quantities only for the final periodic regime. As
for the time snapshots, they have to be taken wisely by covering 1.5´ 2 solution cycles of the
periodic regime. This is vital for having POD modes which are representative of the fluid
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dynamics fields across the periodic solution cycle. Thus, in order to properly choose the time
instants at which snapshots will be acquired, one has to compute the time period of the final
periodic regime. This has been done by performing Fourier analysis on the FOM time signal
of lift and drag fluid dynamic forces acting on the cylinder’s surface. The lift coefficient Cl
is obtained by the lift force L as Cl “ L

1
2ρU

2D
. To illustrate the aforementioned procedure,

Figure 4.24 depicts the lift coefficient time signal for the case of the Uin “ 10 m{s. This time
signal is computed with non-uniform time steps, therefore an interpolation procedure on a
uniform time grid has been done in order to allow for the Fast Fourier Transform (FFT)
algorithm. After doing so, the FFT resulted in a vortex shedding period of 0.4299 s. This
period corresponds to a Strouhal number [144] value of 0.2326. We recall that the Strouhal
number is a non-dimensional number associated with the frequency St “ fD

U
. The value

obtained is relatively close to the experimental one of approximately 0.20 [31]. Once the time
period is computed, one may proceed by simulating enough cycles of the solution. In this
case, 1.2 additional seconds were simulated with a fixed time step of 0.0003 s, and snapshots
of the fluid dynamics fields were saved each 0.006 s, which results in a total of 200 snapshots
for this parameter sample.

The procedure of acquiring the snapshots has been repeated for each parameter sample in the
training set. The number of snapshots taken for each parameter sample is NT “ 200 giving a
total number of snapshots Ns “ 2000. Table 4.3 reports the time steps and the time intervals
in which snapshots were taken for each value of the sampled parameter. The table suggests
that the time step and the time window in which snapshots were saved vary as a result of the
change in the frequency of vortex shedding of the system, which is in turn dependent on the
asymptotic velocity Uin.

The enforcement of non-homogeneous boundary conditions at the inlet is carried out with the
help of the penalty method [59, 131]. The POD procedure is therefore applied directly on the
snapshots matrices of the velocity, pressure and the eddy viscosity. In that regard, Figure 4.25
shows the cumulative eigenvalues decay of the correlation matrices of the three fluid dynamics
variables. Afterwards, the supremizer problem has been solved for each pressure mode [16],
resulting in the supremizer modes which have been used for the enrichment of the velocity
POD space.

The first attempt for the reduction of this unsteady parameterized problem will be carried out
using the Uniform-ROM and the H-SUP-ROM. At a later stage, we will also investigate the
other turbulent ROMs which are based on the Poisson pressure equation. However, most of
the tests carried out in this section will be focused on the H-SUP-ROM because of its general
reduction formulation (it may be used for both steady and unsteady flows).

Firstly, we recall that in the formulation of the H-SUP-ROM, an interpolation procedure
for the approximation of the eddy viscosity coefficient vector g is required. This procedure
has to be performed at each time step t˚ of the simulation corresponding to the online
parameter value U˚in. In fact, the vector gpt˚, U˚inq can be computed by employing one of
the two interpolation strategies addressed in sections 3.2.1 and 3.2.2. In the first strategy
introduced in subsection 3.2.1, the interpolation has to be done with respect to the combined
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time-parameter vector. However, this choice restricts the online time integration to be confined
in the window where snapshots have been acquired (for example the 1.2 seconds for the case
of Uin “ 10 m{s or the window of 1 second length for Uin “ 12 m{s). In order to allow time
extrapolation in the ROM formulation, we decided to employ the second strategy addressed
in subsection 3.2.2 in which the vector g is obtained through RBF interpolation from the
reduced order velocity coefficients vectors of a and 9a (Equation 3.40). As the values of the
components of the vector time signal aptq oscillate between a minima and a maxima over
time, the replacement of of t by aptq as the RBF interpolation independent variable has in
fact the advantage of allowing extrapolation. Nonetheless, this is true if the values of the
vector a components obtained during the ROM time integration fall within the bounds of the
FOM snapshots. Consequently, it is evident that the accuracy of such interpolation outside
the offline snapshots window is highly dependent on how close the current solution vector a
is to the vectors of the L2 projection coefficients (see Equation 3.42) used in the offline stage
for training the RBF.

We would like to remark that in this problem we applied the splitting assumption in Equa-
tion 3.35. Thus, the interpolation using RBF is actually aimed at obtaining the coefficients of
the expansion of the fluctuating reduced eddy viscosity field which approximates the FOM
one ν 1tpx, tq. As a result, the contribution of the parameter (which is Uin) is present only in
the time-averaged part νtpx;µq. At reduced order level, the vector g is dependent on the
parameter. In this example, we have M “ 10 which corresponds to the number of eddy
viscosity time-averaged fields, which were computed as the average of the 200 time snapshots
corresponding to each parameter sample. In the online stage, the vector gpU˚inq is computed
by linear interpolation, while the vector gpt˚q (notice that there is no dependency on the
parameter) is obtained from the RBF interpolation with respect to a and 9a. Finally, the
initial values for all vectors ap0, U˚inq, bp0, U˚inq and gp0q are obtained from the inlet velocity
parameter using a linear interpolation (based on the values of the initial L2 projection vectors
of ap0, Uinq, bp0, Uinq and gp0q). We also mention that in the RBF interpolation, a shape
parameter of the RBF functions has to be tuned. In this work the chosen RBFs are always
of the Gaussian type, where their formula is ζi,j

`

‖¨‖R2Nu

˘

“ expp´r2‖¨‖2
R2Nu q, where r is

the shape parameter of the RBF, which plays an important role for the accuracy of the
interpolation. In order to determine a suitable value for this parameter, we relied on the cross
validation algorithm named Leave-One-Out Cross Validation (LOOCV) [51]. This choice
turned out to be sufficient for the tests conducted in this chapter.

At this point, we proceed to illustrate the details of the first numerical test, which is a cross
validation or an extrapolation test in the parameter space. The test is aimed at reconstructing
the time history of the fluid dynamics fields for the online parameter value U˚in “ 7.75 m{s,
which was not used for training the ROM. Also, one of the objectives of this test is to obtain
the fluid dynamic forces for time values which go far beyond the offline snapshots time window.
After carrying out the offline phase, all the reduced vectors, matrices and tensors which appear
in the dynamical systems of the U-ROM and H-SUP-ROM (in 3.57 and 3.37, respectively)
are saved for later use in the online stage. The online stage involves solving the dynamical
systems mentioned for the vector a in the case of the U-ROM, and for the two vectors a and
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(a) (b)

Figure 4.23: (a) The OpenFOAM mesh used in the simulations for the unsteady case of the flow around a circular cylinder.
(b) A picture of the mesh zoomed near the cylinder.

Figure 4.24: The lift coefficient curve for parameter sample Uin “ 10 m{s.

b in the case of the H-SUP-ROM. The initial reduced vectors are approximated as the average
of the ones corresponding to the first two offline parameter samples since U˚in “ 7.75 m{s lies
between them. We recall that the reduced vector gpU˚inq is time independent and therefore it
does not change during the time integration of the dynamical system. The latter vector has
been approximated as 0.5eM1 ` 0.5eM2 (recall that eMi is the unit vector of dimension M and
contains zero elements everywhere except in its i-th component in which it has the value 1).
The fields obtained by solving the reduced systems of both ROMs are then compared the
FOM ones. The FOM simulator has been run for enough time to reach the periodic regime,
before extending the simulation at fixed time step of 0.0004 s. FOM snapshots were taken
every 0.008 s, and the total simulation time is 8 s which encompassed 13 solution periods. We
emphasize that the last FOM snapshots mentioned are computed just for the sake of making
the comparison with the obtained ROM fields, and these FOM fields were obviously not used
during the offline stage for the computation of the POD modes. It is also important that
special attention is given to the phase of the FOM snapshots. In more details, the phase of
the first snapshot acquired for all the parameter samples is recommended to be the same.
This is also the case for the FOM snapshots computed for the online parameter for the ROM
assessment. It is assumed that the starting time of the online simulations is equal to 0 in all
the tests considered in this subsection.

The results for the velocity, pressure and the eddy viscosity fields computed by the FOM,
the U-ROM and the H-SUP-ROM at the time instant t “ 2.8 s are depicted in Figure 4.26,
Figure 4.27 and Figure 4.28, respectively. The results show clearly that the velocity field
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Parameter sample : Uin in m{s FOM time step in s Snapshot acquiring time in s
7.5 0.0004 0.008
8 0.0004 0.008

8.5 0.00035 0.007
9 0.0003 0.006

9.5 0.0003 0.006
10 0.0003 0.006

10.5 0.0003 0.006
11 0.0003 0.006

11.5 0.00025 0.005
12 0.00025 0.005

Table 4.3: Offline parameter samples and the corresponding snapshots data

Figure 4.25: Cumulative ignored eigenvalues decay. In the plot, the solid red line refers to the velocity eigenvalues, the dashed
black line indicates the pressure eigenvalues and the dash-dotted blue line finally refers to the eddy viscosity eigenvalues.

has been reconstructed accurately by both the U-ROM and the H-SUP-ROM. This can be
seen at both the qualitative and the quantitative levels. The L2 relative errors for both the
U-ROM and the H-SUP-ROM are in fact 1.3553 % and 0.6954 %, respectively. As for the
pressure field, the accuracy of the U-ROM is considerably poor in contrast to the case of the
hybrid ROM. The value of the L2 relative error for the pressure reduced field is 33.0963 %
for the U-ROM, and it is 4.8085 % for the H-SUP-ROM. The reduced pressure fields figure
illustrates certainly that the U-ROM has failed in approximating the FOM pressure field.
This lack of accuracy can be evidently seen in the region close to the surface of the cylinder,
which clearly affects the accuracy of the reduced approximation of the lift and drag forces.
On the other hand, the H-SUP-ROM reconstruction of the pressure field is acceptable. We
would also like to remark that the number of modes used in the online stage in the case of the
U-ROM is Nr “ 14, where as for the H-SUP-ROM, the online modes setting is Nu “ 20 and
Np “ NS “ Nνt “ 10. These choices of the number of the online modes have given the best
results in terms of L2 relative error for both ROMs in question among the other attempted
possible choices.

In order to have a better assessment of the accuracy achieved by both ROMs, it is particularly
useful plotting the time evolution of the L2 relative error associated with the approximation
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(a) (b)

(c)
Figure 4.26: Velocity fields for the parameter value Uin “ 7.75 m{s at t “ 2.8 s: (a) shows the FOM velocity, while in (b) one

can see the U-ROM velocity with Nr “ 14, and finally in (c) we have the H-SUP-ROM velocity with Nu “ 20 and
Np “ NS “ Nνt “ 10.

(a) (b)

(c)
Figure 4.27: Pressure fields for the parameter value Uin “ 7.75 m{s at t “ 2.8 s: (a) shows the FOM pressure, while in (b)
one can see the U-ROM pressure with Nr “ 14, and finally in (c) we have the H-SUP-ROM pressure with Nu “ 20 and

Np “ NS “ Nνt “ 10.
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(a) (b)

(c)
Figure 4.28: Eddy viscosity fields for the parameter value Uin “ 7.75 m{s at t “ 2.8 s: (a) shows the FOM eddy viscosity,
while in (b) one can see the U-ROM eddy viscosity with Nr “ 14, and finally in (c) we have the H-SUP-ROM eddy viscosity

with Nu “ 20 and Np “ NS “ Nνt “ 10.

(a) (b)

Figure 4.29: The time evolution of the L2 relative errors of the velocity reduced approximations for both the U-ROM and the
H-SUP-ROM models. The curves correspond to the case run with the parameter value Uin “ 7.75 m{s : (a) shows the error
curve for the U-ROM model. Figure (b) depicts the case of the H-SUP-ROM model. The error values in both graphs are in

percentages.

of each field. Such plot for the case of the velocity field is depicted in Figure 4.29, while
Figure 4.30 shows the error curve for the pressure field. In reduced order modeling, one
should expect that the behavior of the error as function of the time is going to be increasing.
However, ROMs which are able to contain the growth of such error during the integration of
the dynamical system are considered more accurate and favorable. In this regard, it can be
appreciated from the error figures that the H-SUP-ROM has given better results in terms
of curbing the error values, where one can see that by increasing the number of velocity
modes Nu the maximum values of εu tend to decrease. Also, it may be well observed from
Figure 4.30 that the pressure reduced approximation is not accurate for the U-ROM, while
the H-SUP-ROM has given satisfactory pressure results.

The next result in this test is related to one of the most important performance indicators
for engineers when dealing with problems such as the crossflow cylinder. This performance
indicator is the fluid dynamics forces acting on the surface of the cylinder. These forces
depend on the values of the velocity and pressure fields in specific local areas. Thus, evaluating
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(a) (b)

Figure 4.30: The time evolution of the L2 relative errors of the pressure reduced approximations for both the U-ROM and
the H-SUP-ROM models. The curves correspond to the case run with the parameter value Uin “ 7.75 m{s : (a) shows the

error curve for the U-ROM model. Figure (b) depicts the case of the H-SUP-ROM model. The error values in both graphs are
in percentages.

the accuracy of the ROM through the global error evaluators discussed so far is not enough,
especially when there is an interest in recovering the forces acting on the surface of a body
immersed in the flow. In the case of the present numerical test for instance, a considerable
pressure or velocity error localized in the small region around the cylinder might have a
substantial impact on the forces values, while having little effect on the global fields errors.
For such reason, the following analysis considers the time evolution of the lift coefficient Cl,
i.e.: the non-dimensionalized vertical component of the fluid dynamic force acting on the
cylinder. It is important to point out that the lift and drag forces exerted by the fluid on
the cylinder are not a direct result of the H-SUP-ROM computations. The reduced system
solution consists in fact in the modal coefficients of the velocity and pressure fields at each
time instant, which are in turn used to obtain the H-SUP-ROM approximation of the full
rank flow field. Such approximation can be obviously used to obtain — through integration of
pressure and skin friction on the cylinder surface — the reduced order approximation of the
fluid dynamic force components and the corresponding force non-dimensional coefficients. Yet,
in the reduced order modeling community it is recommended to refrain from such procedure,
as it involves a possibly expensive operation such as the evaluation of the full rank flow field.
For this reason, the lift and drag coefficients in this work are computed in a fully reduced
order fashion, based on the offline computation of suitable matrices which are then used in
the online stage. The detailed procedure for the online fluid dynamic forces computation has
been laid out in section 2.8.

The resulting lift coefficients curves computed by both the U-ROM and the H-SUP-ROM are
compared to the FOM one. Figure 4.31 shows the time signal of the lift coefficient obtained by
all of the FOM, the U-ROM and the H-SUP-ROM for the parameter value U˚in “ 7.75 m{s. In
(a), one may see the full history of the lift coefficient for the time range considered in this test,
that is r0, 8s s. The figure on the right in (b) depicts the values of the lift coefficient curves
just in the segment containing the last two seconds. The last figures apparently illustrate
the fact that the H-SUP-ROM outperforms the U-ROM. In fact, it can be concluded from
the previous figures that the U-ROM has an instability problem when it comes to long-time
integration. On the other hand, the H-SUP-ROM Cl curve is matching its FOM counterpart
to a good degree. The number of reduced modes employed in the online stage is still the same
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as mentioned for the fields results reported above.

In order to have a better assessment of the reconstruction of the lift coefficient by both ROMs
through a quantitative point of view, we introduce the following L2 relative percentage error,
in the integration time interval rT1, T2s, between the FOM Cl and its reduced approximations
by the both ROMs, namely

εCL “
‖Clptq ´ Cl˚ptq‖L2pT1,T2q

‖Clptq‖L2pT1,T2q

ˆ 100%, (4.7)

where Clptq is the time signal of the values of the FOM lift coefficients at all time instants
between T1 and T2. On the other hand Cl

˚
ptq is the time evolution of the lift coefficients

computed by the reduced order model — whether the U-ROM or the H-SUP-ROM. Referring
back to Figure 4.31, we calculated the error metric defined above for the full time range of
r0, 8s and also for its corresponding first half r0, 4s. The values of the U-ROM εCL for the two
time intervals are 16.7095 % and 5.1252 %, for the full range and its first half, respectively.
Instead, the H-SUP-ROM approximation of the Cl has given two close error values for these
ranges, which are 3.5792 % and 4.0504 %. The latter values of the Cl error demonstrate in
fact that the U-ROM has a clear stability problem for long-time integration problems. Such
instabilities have not been observed in the case of the hybrid model. In Figure 4.32, one may
see the behavior of the error mentioned above as a function of the number of modes used in
the online stage. It can be noticed from the previous figures that the H-SUP-ROM has been
capable of recovering the FOM force coefficient with satisfying level of accuracy. Actually, the
error values obtained by the H-SUP-ROM approach values as low as 3 %, while the U-ROM
Cl is consistently above 16 % off the FOM values.

A further aspect of the results shown in Figure 4.32 will be investigated for the sake of having
a better understanding of the ROMs accuracy. This is done by trying to attribute how much
of the L2 error is caused by imprecise reproduction of the amplitude or the frequency of the
lift coefficient oscillations. To this end, we define the relative peak error εpeak as follows:

εn,peak “
PKn,FOM ´ PKn,˚

PKn,FOM

ˆ 100%, (4.8)

where PKn,FOM is the value of the n´th FOM Cl peak and PKn,˚ is the value of the n´th
U-ROM or H-SUP-ROM Cl peak. Figure 4.33 shows the relative peak error for both ROMs.
The relative peak error values computed for each of the 29 peaks the time interval r0, 8s s
are presented in Figure 4.33. It has to be remarked that the peak errors are presented for
the values of the number of online modes used for the U-ROM Nr which has given the best
results for the relative L2 lift error analysis shown previously. Figure 4.33 indicates that the
relative error of the U-ROM increases with time until it reaches values as high as 10´ 20 %.
Unlike the case of the U-ROM, the hybrid ROM has lower values of the relative peak errors
which are below 3.5 % for several modal truncation order for velocity, pressure, supremizers
and the eddy viscosity.
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(a) (b)

Figure 4.31: Lift coefficients curves for the cross validation test done for the parameter value Uin “ 7.75 m{s for the time
range r0, 8s s, the figure shows the FOM, the U-ROM and the H-SUP-ROM lift coefficients histories : (a) the full range is

shown (b) the last 2 s Cl is shown.

(a) (b)

Figure 4.32: The graph of the L2 relative errors for the lift coefficients curve versus number of modes used in the online stage
in both cases of the U-ROM and the H-SUP-ROM models. The curves correspond to the case run with the parameter value

Uin “ 7.75 m{s. The error is computed between the lift coefficients curve obtained by the FOM solver and the one
reconstructed from both the U-ROM and the H-SUP-ROM models for the time range r0, 8s s : (a) shows the error curve for

the U-ROM model, where Nr is the number of modes used in the online stage for all variables (by construction of the U-ROM
it is not possible to choose different number of online modes for the reduced variables). Figure (b) depicts the case of the

H-SUP-ROM model, where one can see the error values varying the number of modes used for the pure velocity with different
fixed settings for the three other variables (the pressure, the supremizers and the eddy viscosity). The error values in both

graphs are in percentages.

(a) (b)

Figure 4.33: The graph of the peaks relative errors for the lift coefficients curves for varied values of the number of modes
used in the online stage in both cases of the U-ROM and the H-SUP-ROM models. The curves correspond to the case run
with the parameter value Uin “ 7.75 m{s. The error is computed between the peaks values of the lift coefficients curve

obtained by the FOM solver and the ones reconstructed from both the U-ROM and the H-SUP-ROM models for the time
range r0, 8s s : (a) shows the error curve for the U-ROM model, where Nr is the number of modes used in the online stage for

all variables (by construction of the U-ROM it is not possible to choose different number of online modes for the reduced
variables). Figure (b) depicts the case of the H-SUP-ROM model. The error values in both graphs are in percentages.
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After having shown the results of a cross validation test for both the U-ROM and the H-SUP-
ROM, now we proceed by testing the two other turbulent ROMs addressed in section 3.3
on the same problem and for the same cross validation test. These ROMs are named as
the SU-PPE-ROM and the H-PPE-ROM. Both ROMs are based on the use of the Poisson
equation for pressure at the reduced order level for the stabilization of the pressure field. The
two ROMs can be used just for the reduction of unsteady flows, where due to the formulation
of the boundary conditions they can not be extended to the steady case. The difference
between these two ROMs lies in the fact that the SU-PPE-ROM is an intrusive ROM while
the H-PPE-ROM is a hybrid one. The H-PPE-ROM employs an equivalent procedure to the
H-SUP-ROM when it comes to the approximation of the eddy viscosity field.

As mentioned above, we will perform a cross validation test for the SU-PPE-ROM and the
H-PPE-ROM which is identical to the one conducted for the U-ROM and the H-SUP-ROM.
Therefore, the online parameter value is still U˚in “ 7.75 m{s. The SU-PPE-ROM is applied
with the use of the penalty method for the treatment of the non-homogeneous boundary
conditions. On the contrary, this time the lifting function method will be utilized to enforce
the boundary conditions for the hybrid ROM (the H-PPE-ROM in this case). The lifting
function chosen in this case corresponds to the solution of a potential flow problem with the
inlet velocity being fixed at Uin “ 1 m{s. The problem is solved by running an iterative steady
solver and when the solver completes the iterative procedure, the velocity field obtained at the
end is considered as the additional lifting mode/function which will be added to the velocity
POD modes. The next step involves the homogenization of the velocity snapshots using
this lifting function, this gives new 2000 velocity snapshots which will be stored. The POD
method is then applied on the latter velocity snapshots resulting at the end in the velocity
POD modes. All the reduced matrices, vectors and tensors which appear in the dynamical
systems of both ROMs in Equation 3.66 and Equation 3.63 are computed and stored. The
initial velocity, pressure and eddy viscosity reduced vectors are set in the exact way as in the
previous test.

The first results shown are those of the lift coefficient Cl for the same range considered in the
previous test, that is r0, 8s s. Figure 4.34 depict the lift coefficients curves obtained by both
PPE ROMs and the FOM. It can be appreciated from the last figure that the SU-PPE-ROM
has done a better job in matching the FOM for the time history of the Cl signal compared to
the U-ROM in Figure 4.31. However, it can also be seen that the H-PPE-ROM has given
slightly better fitting of the FOM Cl. It has to be mentioned that the number of modes
used in the online stage for both ROMs represents in effect the best combination in terms of
accuracy measured by the error εCL in Equation 4.7. In Figure 4.34, the number of velocity
and pressure modes is equal to 9 for the SU-PPE-ROM, while the number of velocity, pressure
and eddy viscosity modes is equal to 15 in the case of the H-PPE-ROM. The results from
a quantitative perspective show that the SU-PPE-ROM has an error εCL “ 5.0525 % for
the time range r0, 4s s and εCL “ 12.4255 % for the full time range. On the other hand, the
H-PPE-ROM corresponding errors are 2.2445 % and 4.3678 %. In order to better assess the
accuracy of both models, one has to consider doing a convergence analysis for the online
truncation modes, and also to investigate the errors committed in the approximation of the
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(a) (b)

Figure 4.34: Lift coefficients curves for the cross validation test done for the parameter value Uin “ 7.75 m{s for the time
range r0, 8s s, the figure shows the FOM, the SU-PPE-ROM and the H-PPE-ROM lift coefficients histories : (a) the full range

is shown (b) the last 2 s Cl is shown.

peaks of the Cl curve.

The SU-PPE-ROM has given significantly better results in terms of accuracy and stability
compared to the U-ROM. Nevertheless, the constraint of having temporal coefficients shared
between velocity and eddy viscosity could be problematic in specific settings. For example,
if 20 and 12 modes are needed for an accurate reconstruction of the velocity and the eddy
viscosity fields, respectively, then this formulation would restrict the ROM solver to use 8
additional unnecessary eddy viscosity modes for the solution of the reduced DAE. This is
likely to cause stability problems in solving the DAE.

The convergence analysis is presented in Figure 4.35, where one can see that the error values
for the SU-PPE-ROM reaches a minimum when Nu “ Np “ 9 which is the case depicted in
Figure 4.34, for a total number of degrees of freedom of 18. The error has a similar behavior
when compared to the one depicted in Figure 4.32 for the U-ROM, where it can be seen that
there are two minima for the error curve occurring at truncation values of 9 and 14 for the
velocity and the pressure modes, and the error values remain consistently above 10 %. As for
the H-PPE-ROM, it has achieved small error values when the number of the velocity modes
grows up to 13´ 15 modes. The values of the error are lower than 10 % for several truncation
settings, for example it is around 8 % when 13 modes are employed for all reduced variables.
It has to be remarked that in the H-PPE-ROM, the Nu variable includes already the lifting
function added for the treatment of the boundary conditions at the reduced order level.

The results in Figure 4.36 report the peaks error for the PPE ROMs for different settings of
the online modes. Again, here it can be observed that compared to the U-ROM, the SU-PPE
ROM has achieved better results which speaks to the necessity of having a separate set of
reduced coefficients for the pressure field. The values of the peaks errors (for the SU-PPE
ROM) have reached as low as 2 % for certain choices of the online truncation. The last figure
illustrates also that the H-PPE-ROM has been successful in recovering the peaks of the Cl
time signal with errors lower than 2 % for online truncations with Nu “ 13, 14, 15. Another
important result is the one reported in Figure 4.37 and Figure 4.38, where one can see the time
evolution of the L2 error for both ROMs in question. It can be appreciated from the previous
figures that the H-PPE-ROM outperforms the SU-PPE-ROM for the error committed in the
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(a) (b)

Figure 4.35: The graph of the L2 relative errors for the lift coefficients curve versus number of modes used in the online stage
in both cases of the SU-PPE-ROM and the H-PPE-ROM models. The curves correspond to the case run with the parameter
value Uin “ 7.75 m{s. The error is computed between the lift coefficients curve obtained by the FOM solver and the one

reconstructed from both the U-ROM and the H-PPE-ROM models for the time range r0, 8s s : (a) shows the error curve for
the SU-PPE-ROM model, where Nu is the number of modes used in the online stage for both the velocity and the eddy

viscosity, while Np is the number of modes used for the pressure field. Figure (b) depicts the case of the H-PPE-ROM model,
where one can see the error values varying the number of modes used for the velocity (including the lifting velocity mode) with
different fixed settings for the two other variables (the pressure and the eddy viscosity). The error values in both graphs are in

percentages.

(a) (b)

Figure 4.36: The graph of the peaks relative errors for the lift coefficients curves for varied values of the number of modes
used in the online stage in both cases of the SU-PPE-ROM and the H-PPE-ROM models. The curves correspond to the case
run with the parameter value Uin “ 7.75 m{s. The error is computed between the peaks values of the lift coefficients curve
obtained by the FOM solver and the ones reconstructed from both the SU-PPE-ROM and the H-PPE-ROM models for the
time range r0, 8s s : (a) shows the error curve for the U-ROM model, where Nu is the number of modes used in the online
stage for both the velocity and the eddy viscosity, while Np is the number of modes used for the pressure field. Figure (b)

depicts the case of the H-PPE-ROM model. The error values in both graphs are in percentages.

approximation of the pressure field. In fact, in the case of the SU-PPE-ROM, the error values
at the end of the time integration are above 10 % for all the different truncations. On the
other hand, the corresponding error value for the H-PPE-ROM reaches values of 4´ 7 % at
the final time of the reduced simulations for certain choices of the online modes. It can be also
deduced that the H-PPE-ROM has performed better in that regard than the H-SUP-ROM
(see the corresponding figure in 4.30), where it can be noticed that the pressure error growth
in the case of PPE-based hybrid ROM is more suppressed. The justification of that could
be that the use of the Poisson equation for pressure at the reduced level has introduced a
higher level of consistency between the ROM formulation and the FOM one. In fact, the
FOM constructs a pressure equation from the momentum and the continuity equation as
explained in section 2.2. This procedure is mimicked by the H-PPE-ROM. Nonetheless, we
have to mention that in general the FOM solution algorithm differs from the ROM one, in
that the FOM one is based on an iterative segregated approach, while the ROM one uses a
coupled approach.
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(a) (b)

Figure 4.37: The time evolution of the L2 relative errors of the velocity reduced approximations for both the SU-PPE-ROM
and the H-PPE-ROM models. The curves correspond to the case run with the parameter value Uin “ 7.75 m{s : (a) shows the
error curve for the SU-PPE-ROM model. Figure (b) depicts the case of the H-PPE-ROM model. The error values in both

graphs are in percentages.

(a) (b)

Figure 4.38: The time evolution of the L2 relative errors of the pressure reduced approximations for both the SU-PPE-ROM
and the H-PPE-ROM models. The curves correspond to the case run with the parameter value Uin “ 7.75 m{s : (a) shows the
error curve for the SU-PPE-ROM model. Figure (b) depicts the case of the H-PPE-ROM model. The error values in both

graphs are in percentages.

To summarize the results given by the four ROMs tested in the current problem, we report
Table 4.4 which compares the performance of all the ROMs in terms of the accuracy and
the efficiency. In the table SU stands for the speed up, where here it is calculated as
SU “

toff
tonline

, with toff being the wall time needed to run the full order simulations and
export the snapshots, and tonline is the corresponding online time. In the cross validation test
considered for Uin “ 7.75 m{s, the value of toff is 1540.766 s. This corresponds to the wall
time of running the simulations in parallel on 6 processors, along with the time needed to
reconstruct the fields. We recall that the results reported in the table are for the best choices
of the online modes for the error εCL in the full time integration range r0, 8s s.

The ROM εCL maxn εn,peak SU DoF
The U-ROM 16.7095 % 12.67 % 31.80 Nr “ 14

The SU-PPE-ROM 12.4255 % 4.995 % 30.16 Nu “ Np “ 9
The H-SUP-ROM 3.5792 % 3.498 % 9.34 Nu “ 20, Np “ NS “ Nνt “ 10
The H-PPE-ROM 4.3678 % 1.59 % 12.86 Nu “ Np “ Nνt “ 15

Table 4.4: Summary of the accuracy and the efficiency results for the ROMs considered in the problem of the flow around the
cylinder.

The cross validation test for U˚in “ 7.75 m{s is now concluded. The objective of the next test
is to measure the accuracy of the hybrid ROM (in this case the H-SUP-ROM was chosen)
for higher Reynolds number and also for longer time extrapolation intervals. Therefore, we
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(a) (b)

Figure 4.39: Lift coefficients curves for the cross validation test done for the parameter value Uin “ 11.75 m{s for the time
range r0, 10s s, the figure shows the FOM and the H-SUP-ROM lift coefficients histories : (a) the full range is shown (b) the

last 3 s history of Cl is shown.

choose the inlet parameter online sample to be U˚in “ 11.75 m{s, the time range for which the
ROM will be run is r0, 10s s. This time interval has 27 solution cycles which is almost double
the number of solution cycles contained in the r0, 8s s considered in the previous case. The
results include the time history of the lift coefficient Cl in addition to its corresponding L2

relative error named εCL and also the peaks error and the reduced approximation of the time
period.

As in the first test, the FOM simulator was run enough time to reach the periodic regime.
Then the simulation was extended for other 10 s starting from a phase which is equivalent to
the one set for the offline samples. The additional 10 seconds were simulated with time step
equal to 0.00025 s. The formulation and the reduction strategy of the H-SUP-ROM are the
same as the ones set in the first numerical test in this section. The Cl H-SUP-ROM curve is
reproduced using 12 modes for the velocity and 10 modes for each of pressure, supremizers
and eddy viscosity. Figure 4.39 shows the results for the Cl curves over all the whole time
range considered in part (a), while the figure in (b) depicts the lift curves just for the last 3
seconds. These figures clearly suggest that the H-SUP-ROM has been successful in dealing
with such high value of the Reynolds number which is equal to 1.75ˆ105. They also prove the
ability of the hybrid ROM in tackling the issue of long-time integration, as they indicate that
qualitatively speaking the matching between the FOM and the H-SUP-ROM was not harmed
even in the last solution cycles. The value of the error εCL (as defined in Equation 4.7) is
1.9486 %. The peaks of the FOM Cl curve were recovered with maximum error of 2.0526 %
for all the 55 peaks present in the curve. Finally, the average time period computed in by
the FOM solver is about 0.3641 s, while the average time period approximated by the hybrid
ROM is about 0.3642 s. One may conclude that the 0.2 % relative error in the approximation
of the time period is mainly caused by amplitude inaccuracies rather than being a result of
incorrect frequency reconstructions.

After having tested the accuracy and the reliability of the hybrid ROM proposed in this
thesis, it remains to verify that the hybrid ROM meets one important objective which is
the versatility of the ROM framework. This feature of the ROM is measured in terms of its
applicability for different turbulent full order closure models without having to readapt itself
each time the turbulence FOM modeling is changed. For the sake of testing this feature, we
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Figure 4.40: The lift coefficient curves obtained using both k ´ ε and SST k ´ ω turbulence models and the H-SUP-ROM
ones. The case considered is a non-parametrized one with Uin “ 10 m{s corresponding to Re “ 105. The plot is for the time
range t P r6, 8s, the H-SUP-ROM achieved relative L2 errors (over the range t P r0, 8s) which are less than 5 % in both cases.

have done a final test in which we generated FOM snapshots from two different turbulence
closure models which are the the SST k ´ ω and the k ´ ε models. The case under study is
still the cylinder case but without parameters, therefore, the goal of the reduction is just to
reproduce the time snapshots and extrapolate in time. The Reynolds number in this case is
Re “ 105, the FOM simulation were carried out for both turbulence models till the regime
solution is fully developed. Then the acquirement of snapshots was done with time rate of
1.2 s and 1.6 s for k ´ ε and SST k ´ ω models, respectively. The hybrid ROM chosen is
the H-SUP-ROM with the penalty method for the treatment of the boundary conditions.
The H-SUP-ROM was run for 8 seconds for both turbulence models. The resulted FOM
lift coefficient for both closure models and the corresponding ROM ones are depicted in
Figure 4.40. It is evident from the graph that the H-SUP-ROM proves sensitive to the specific
turbulence model used in the FOM solver, although no additional PDEs for the turbulent
quantities are solved at the reduced level. The value of the errors defined in Equation 4.7
for both turbulence models are below 5 % and the reduced approximation of time period is
accurate in both cases with relative errors below 1 %.

4.4 Concluding Remarks

In this chapter we have presented the results of the application of various POD-Galerkin
ROMs on different CFD problems. These POD-Galerkin ROMs have been developed in this
thesis for the goal of reducing problems discretized by the finite volumes method. In addition,
a number of these ROMs was specifically constructed for the reduction of turbulent flows. The
results shown in this chapter had been presented in the following works [137, 73, 72, 74].
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The applications considered in this chapter included a problem in uncertainty quantification
and two turbulent problems. The uncertainty quantification (UQ) problem is the classical
problem of the flow past an airfoil in steady state and parametrized settings. In this problem,
we applied the SUP-ROM developed in section 2.6 together with the non-intrusive polynomial
chaos expansion (PCE) algorithm. We have shown that the SUP-ROM could be used as an
input evaluator for the PCE. This use of the SUP-ROM offers significant level of reduction of
the computational cost associated with PCE computations.

In the second and third sections, we have considered two turbulent problems. The first one
is the steady problem of the backward step, while the second one is the flow past a circular
cylinder. In these problems, we applied the hybrid ROMs developed in this thesis. The hybrid
ROMs have given accurate results for the reconstruction of the fluid dynamic fields and other
outputs of interest such as the lift coefficient. In addition, they provided acceptable levels of
speed up which speaks for their efficiency. Finally, the hybrid ROMs proved being sensitive
to the FOM results obtained by the use of different turbulence closure models. The latter
result accomplishes one of the important goals set in this thesis.



Chapter 5

Conclusions and Outlook
This chapter presents the conclusions which are drawn from the results of the work done in
this thesis. It also gives an idea of possible future extensions which could enhance or complete
the work presented in this thesis.
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5.1 Concluding remarks

This manuscript has dealt with reduced order models for parametrized flows in the finite
volume setting. The work presented in this thesis has two main goals:

• The development of ROMs techniques specifically tailored for finite volumes discretization
schemes. This is particularly relevant since the FVM is widespread to simulate industrial
problems.

• The implementation of ROMs designed for the reduction of turbulent flow problems.
As these types of flows are ubiquitous in real-world applications, there is in fact an
increasing demand to simulate them efficiently.

In the following, we summarize the methodologies developed during the preparation of this
work:

• In chapter 2, we have developed several reduced order methods for the reduction of the
steady and unsteady NSE. These ROMs are based on POD-Galerkin projection approach
using different strategies. The first ROM exploits only the momentum equations and it
assumes that the same set of coefficients for the reduced velocity and pressure solutions.
The second ROM utilizes a pressure Poisson equation (PPE), which is derived by taking
the divergence of the momentum equation and then exploiting the free divergence
constraint on the velocity. The latter ROM assumes two different sets of coefficients
for the reduced velocity and pressure solutions, and computes them exploiting both
the momentum and the pressure equations at the reduced order level. The third ROM
presented in this work employs the supremizer stabilization method [16], which consists
in the enrichment of the velocity POD space in order to fulfill a reduced version of the
inf-sup condition.

• In order to treat non-homogeneous Dirichlet conditions at the inlet boundary, we
employed two different methods, the lifting function method and the penalty method.
The lifting function method introduces a framework in which the non-homogeneity is
transferred from the velocity fields to one or more velocity lifting functions. These
lifting functions are considered as additional velocity modes which are added to the
velocity POD space. Such fields can be obtained by various approaches and the suitable
choice is problem dependent. In this work, the lifting modes are computed by solving a
potential flow problem. We used also a penalty method which add a constraint to the
momentum equation in order to fulfill the Dirichlet condition at the boundary.

• We have developed specific method in order to ensure an efficient offline/online decoupling
for the computation of forces acting on body surfaces. The employed approach consists
in the precomputation of a set of reduced matrices which are then employed together
with velocity and pressure reduced solutions for the goal of computing the reduced
forces. This last procedure does not involve any access to the original FOM mesh.
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• The turbulence modeling at both the FOM and the ROM levels is addressed in chapter 3.
In section 3.1, we give an idea about RANS turbulence modeling used in this work
which is based on the employment of the Boussinesq assumption. The ROM developed
to mimic the RANS equations complemented by eddy viscosity models (EVMs) merges
classical projection-based methods with data-driven techniques. The goal was to develop
a unified approach which could reduce turbulent RANS problems regardless of the
EVM used by the FOM. Making use of the observation that all EVMs are based on
the eddy viscosity field, the offline phase of the turbulent ROM includes the reduction
of such field. At the online stage, the reduced coefficients of the eddy viscosity are
obtained through radial basis functions (RBF) interpolation based on other reduced flow
variables or time-parameter values. The hybrid ROM proposed in section 3.2 is based
on the supremizer stabilization method. We also proposed in section 3.3 other turbulent
ROMs. In section 3.3, an extension to the uniform ROM (proposed in section 2.4) to
turbulent flows is presented. Also, we extended the PPE-ROM (proposed in section 2.5)
by two different ways. The first one assumes that the reduced eddy viscosity and the
reduced velocity solutions are the same. In the second approach, we proposed a hybrid
ROM which is based on the PPE approach with separate reduced solutions for velocity,
pressure and eddy viscosity.

After having summarized the methodologies followed in this thesis, we proceed to the conclu-
sions which can be drawn from the numerical tests conducted in chapter 4. We report the
summary of the numerical tests and the conclusions in the following points:

• In chapter 4, we applied the ROMs developed in this thesis on various problems. The
first one proposed in section 4.1 is an uncertainty quantification (UQ) problem. The
considered physical problem is the two dimensional flow past an airfoil section. Both
the magnitude of the inlet velocity and the angle of attack of the airfoil are variable and
have been the parameters considered. The objective of applying the ROM techniques on
such a problem was that of evaluating possible reductions of non-intrusive polynomial
chaos expansion (PCE) algorithm in UQ. The PCE requires to operate on specific input
results which are usually computed by the full order solver. However, we tried to assess
whether the PCE results could be affected, if one feeds the PCE with the ROM results
instead of the FOM ones. We have shown that the SUP-ROM (developed in section 2.6)
has given accurate results when used as the input evaluator for the PCE algorithm.
These last results demonstrate that POD-Galerkin ROMs are a reliable surrogate input
source for UQ algorithms and that they could be used for offering further reduction of
the computational cost.

• In section 4.2, we considered the turbulent flow over a backward facing step. The
parameterization is based on the Reynolds number (Re “ Op104q) through variations of
the inlet velocity. The solutions of the hybrid ROM based on the supremizer stabilization
method (the H-SUP-ROM) have been compared to those obtained with both the FOM
and the U-ROM (described in section 3.3). The results confirm that the H-SUP-ROM
is able to reduce the turbulent problem with good accuracy even when different EVMs
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are employed at the FOM stage. On the contrary, the U-ROM which leads to good
reduction of the velocity, has failed to provide satisfactory results for the pressure field.

• In section 4.3, we considered the unsteady of the turbulent flow around the circular
cylinder. Also in this case the parameterization is based on the Reynolds number
(Re “ Op105q) changing the inlet velocity. The interest was in reproducing the fluid
dynamics fields associated with the final periodic regime, along with other outputs of
interest such as the lift coefficient time history. As in the steady problem, we considered
both the H-SUP-ROM and the U-ROM for the reduction of the problem. The results
shown in this case include the fluid dynamic fields, the time evolution of the L2 relative
error of the velocity and the pressure fields, the lift coefficient curve and its corresponding
L2 relative error over time as a function of the number of modes and the graph of the
lift peaks relative errors as a function of the number of modes. These results have
suggested that the H-SUP-ROM provides accurate results, and that it outperforms the
U-ROM in several aspects. Moreover, the H-SUP-ROM proved capable of obtaining
stable solutions, as the error with respect to the FOM solution does not significantly
grow over time across several solution cycles. Finally, the comparison with FOM results
generated with different turbulence models confirmed that the H-SUP-ROM is sensitive
with respect to the EVM used at the FOM level.

• A further investigation was aimed at evaluating the accuracy gains obtained by means of
the turbulence treatment. In fact, the H-SUP-ROM and the U-ROM differ in two aspects
which are the pressure treatment and the turbulence treatment. Thus, we developed two
PPE-ROMs with and without hybrid turbulence treatment, namely the SU-PPE-ROM
and the H-PPE-ROM, respectively. This allowed for an evaluation of how much error
in the reconstruction of the FOM fields is due to the pressure reconstruction technique
used, and how much error is instead dependent on the eddy viscosity coefficients reduced
approximation. The lift coefficients results for the unsteady cylinder case indicate
that consistent performance improvement is already obtained when the SU-PPE-ROM
is introduced to properly treat the pressure at the reduced level. An even further
improvement is then achieved when the hybrid turbulence treatment is introduced. This
is especially true when several solution cycles are simulated. A final comparison has
been carried out between the solutions of H-SUP-ROM and H-PPE-ROM, which share
the same turbulence model but are based on different pressure treatments. The results
suggest that H-PPE-ROM is slightly more accurate than the H-SUP-ROM. This could
be attributed to the fact the pressure Poisson equation employed in the H-PPE-ROM
mimics the one used by the FOM FV solver introducing a higher level of consistency
between the solvers.

5.2 Outlooks and Perspectives

Finally, we suggest some possible future extensions of the work carried out in this thesis.



5.2. Outlooks and Perspectives 95

• In this work, we have used data-driven techniques for the approximation of the eddy
viscosity in the proposed turbulent ROMs. In particular, we have resorted to RBF
to interpolate the eddy viscosity coefficients based on time-parameter or the reduced
velocity coefficients. When the interpolation variable is the time-parameter, possible
alternatives to RBF could be Dynamic Mode Decomposition (DMD) which is designed
to study the time evolution of a system and would allow for time extrapolation. On
the other hand, in cases when the reduced eddy viscosity vector interpolation based on
the velocity vector, it would be particularly interesting to employ the Artificial Neural
Networks (ANNs) [29] which is particularly suited for multi-dimensional input-output
maps.

• The applications of the POD-Galerkin ROMs proposed in this thesis is particularly
intriguing in physical problems which show significant qualitative changes of behavior
depending on parameter values. In particular, we are currently working on the problem
of the aerodynamic flow past an airfoil section, in which hysteresis occurs due to angle
of attack variations across the stall region. Capturing this phenomenon not only at the
FOM level but also at the reduced order model is of significant value.

• A possible way to improve the reduced order models developed in this work could be
that of reproducing at the reduced level the segregated approaches like SIMPLE or
PIMPLE used in OpenFOAM solvers instead of the fully coupled approach currently
used.
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