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Abstract

The assumption of ergodicity is the cornerstone of conventional thermodynamics, connecting
the equilibrium properties of macroscopic systems to the chaotic nature of the underlying micro-
scopic dynamics, which eventuates in thermalization and the scrambling of information contained
in any generic initial condition. Themodern understanding of ergodicity in a quantummechanical
framework is encapsulated in the so-called eigenstate thermalization hypothesis, which asserts
that thermalization of an isolated quantum system is a manifestation of the random-like character
of individual eigenstates in the bulk of the spectrum of the system’s Hamiltonian. In this work,
we consider two major exceptions to the rule of generic thermalization in interacting many-body
quantum systems: many-body localization, and quantum spin glasses.
In the first part, we debate the possibility of localization in a system endowed with a non-Abelian
symmetry. We show that, in line with proposed theoretical arguments, such a system is probably
delocalized in the thermodynamic limit, but the ergodization length scale is anomalously large,
explaining the non-ergodic behavior observed in previous experimental and numerical works. A
crucial feature of this system is the quasi-tensor-network nature of its eigenstates, which is dictated
by the presence of nontrivial symmetry multiplets. As a consequence, ergodicity may only be
restored by extensively large cascades of resonating spins, explaining the system’s resistance to
delocalization.
In the second part, we study the effects of non-ergodic behavior in glassy systems in relation to the
possibility of speeding up classical algorithms via quantum resources, namely tunneling across
tall free energy barriers. First, we define a pseudo-tunneling event in classical diffusion Monte
Carlo (DMC) and characterize the corresponding tunneling rate. Our findings suggest that DMC
is very efficient at tunneling in stoquastic problems even in the presence of frustrated couplings,
asymptotically outperforming incoherent quantum tunneling. We also analyze in detail the impact
of importance sampling, finding that it does not alter the scaling. Next, we study the so-called
population transfer (PT) algorithm applied to the problem of energy matching in combinatorial
problems. After summarizing some known results on a simpler model, we take the quantum
random energy model as a testbed for a thorough, model-agnostic numerical characterization of
the algorithm, including parameter setting and quality assessment. From the accessible system
sizes, we observe no meaningful asymptotic speedup, but argue in favor of a better performance
in more realistic energy landscapes.
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Preface

What is thermodynamic equilibrium? An answer echoes in the words of Feynman’s: it
is “fast things” being far in the past and “slow things” far in the future. During this
Goldilocks period in the history of a system, macroscopic properties do not change in any
appreciable manner and they can be ascribed a well-defined, stable value. Even from such
an informal definition, the notion of equilibrium can be seen to crucially depend on the
choice of observational time scale over which the system is considered, as wemust specify
what we deem “slow” and what “fast” for our current purposes.

Classical thermodynamics in its entirety aims at describing equilibrium states and the
processes connecting them to one another. There is a good reason for this: they are far
simpler than the alternative. As a matter of fact, the theory ultimately owes its success to
the realization that systems at equilibrium require very little information to characterize to
a perfectly satisfactory degree, reducing the exorbitant dimensionality of the generic, out-
of-equilibrium many-body problem to a handful of state variables such as temperature,
volume and pressure. It is worth noting that the very fact that equilibrium systems exist at
all is a delightful property of our universe, no ascription of which to an anthropic principle
— the universe ought to appear equilibrated on human scales if it is to support human life
— can make any less wondrous.

Once thermodynamics was “figured out”, it was natural for scientists to start turning
their attention into the more exciting realm of out-of-equilibrium physics. This interest
was enhanced, in the condensed matter world, by the recent technological developments
in experimental physics, which made it possible to simulate a number of many-body
Hamiltonians in a scaled up and much better controlled environment. As conventional
thermodynamics does not work for non-equilibrium systems, novel tools need to be found
in this endeavor, which encompasses the bulk of present-day research in many-body
physics. Today, several communities are working in this very direction at the forefront of
a broad range of disciplines, including statistical and condensed matter physics, quantum
computation and information, computer science, and many more.

In this thesis, we explore some of the most interesting phenomena that have been
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recently observed out of thermodynamical equilibrium. In our selection of examples,
we have strived to convey the wide-ranging nature of the topic by focusing on both
the physical understanding of the systems considered as well as their relationship with
ongoing research in quantum computing.

We have structured the content as follows: in Chapter 1, functioning as an introduction,
we discuss the role of the ergodic hypothesis in statistical physics. Its violation, which can
occur in several different ways, is the raison d’être of this thesis. We then present a brief
history of classical spin glasses, which consititute the first andmost venerable class of such
theory-defying systems, and for which a good deal of understanding has been achieved
through the work of many starting from the late 1950s. Finally, we take the opportunity
to introduce the concept of quantum-enhanced optimization through quantum annealing,
which finds in spin glasses a natural class of target problems where to hopefully outspeed
classical computers.

In Chapter 2 we present the concept of many-body localization, which is a generic
mechanism of strong violation of ergodicity in a large class of interacting systems. In our
current understanding, this violation stems from the appearance of an extensive set of local
constants of the motion as a result of disorder-induced quantum dephasing. We discuss
how disordered systems with non-Abelian symmetry groups are not expected to undergo
many-body localization, and survey a paradigmatic case. We find that although symmetry
does appear to protect the system from full localization, non-ergodic phenomena are still
observed and expected to persist up to very large sizes, suggesting a new kind of non-
ergodic phase.

In Chapter 3 we aim to compare the expected performance of quantum annealers
against classical optimization in a “tunneling competition”. Quantumtunneling is believed
to be the empowering force of quantum annealers in finding low-lying states of glassy
systems. After an introduction to the path-integral and diffusionMonte Carlo algorithms,
we make use of the latter to classically simulate tunneling phenomena both in a one-
dimensional toymodel, where analytical considerations are easier, and inmany-body spin
problems. We find a generic scaling of the “classical tunneling time” which outperforms
incoherent quantum tunneling, and we comment on the consequences.

In Chapter 4 we again aim to compare classical and quantum algorithms, but with a
focus on energy matching in “golf-course” energy landscapes, where local-search heuris-
tics cannot generally outperform random or brute-force search. We numerically study
the so-called population transfer algorithm applied to a toy problem with uncorrelated
random energy levels. Although we find population transfer to outspeed random search
in an oracular sense, we find no evidence of quantum speedup when accounting for the
time required to implement an oracle call, at variance with previous results on a simpler
toy model (which we present at the start of the chapter).

This thesis is based on Refs. [213] (Ch. 2), [130, 202] (Ch. 3) and [203] (Ch. 4).



Notation

Numbers and units
We always adopt natural units in our equation, so ~ = :B = 2 = 1. When quoting experimental
figures and similar, we often make use of SI units (m, s, kg, etc.) instead.

Numerical uncertainty is denoted by round brakets after the last significant digits, e.g. 1.40(13)
means 1.40 ± 0.13.

Typeface
Variables, parameters and generic constants are denoted by italic letters or Greek symbols, e.g.
G, 
, 21. We reserve roman type for the Euler and imaginary number, e and i respectively.

Vectors (and covectors) tend to be denoted by normal italic variables; so, for instance, both the
one-dimensional and 3-dimensional Lebesguemeasures are denoted by dG rather than dG1 · · ·dG3,
unless it is convenient to draw the distinction. However, we sometimes reserve boldface type for
vectors in the Euclidean space, including operatorswhich transformunder the rotation group, such
as s8 = (BG8 , B

H

8
, BI
8
). This makes it simpler to separate the spatial and internal degrees of freedom

without a proliferation of abstract indices.

Standard variable names
We try to avoid confusion between the Hilbert space dimension, the spatial dimensionality and
the number of particles by consistently denoting the first one by � (or some variant thereof, such
as �!,(), the second one by 3, and the third one by = (in the general setting) or ! (in one dimension,
when it coincides with the number of lattice sites).

Binary operators
∧ is sometimes used to shorthand the binary minimum (meet), e.g. G0∧1 = min{G0 , G1}, unless it
denotes the wedge product of forms (the reader should have no trouble distinguishing the two
uses). Likewise, the join ∨ can be used for the binary maximum. This notation, which is not quite
standard, is always locally explained.

Wedecided to eschew the≡or :=notation for definitions, limiting ourselves to regular equalities
instead. We use ≈ for approximate numerical equality and ∼ for asymptotic (up to prefactors) or
order-of-magnitude equality.



Brackets
Angular brackets 〈·〉 always denote an ensemble average of some kind. Unfortunately — but in-
evitably in quantum statistical mechanics— the exact meaning is context-dependent. Usually they
refer to a thermal average, which in both classical and quantum mechanics means averaging over
the Gibbs distribution. More generally, in a quantum setting they can denote the expectation of an
operator on any (possibly nonthermal) state �, namely 〈$〉 = Tr[�$]. We also extend the notation
to non-observable quantities (such as the A-parameter or the entanglement entropy) whose mean
is taken over some set of states. The precise meaning will be clarified in context. In Dirac’s bra-ket
notation, 〈·|·〉 denotes instead the standard inner product and there can be no confusion.

Double brackets J·K are reserved for the disorder average, which is frequently used in the context
of glassy physics and MBL. We also adopt the double average notation 〈〈·〉〉 = J〈·〉K.

Functions
A function is said to belong to C=(X) if it is = times continuously differentiable in X.

We employ standard big-O notation:

5 (G) ∈ $(6(G)) if 5 (G) ≤ 26(G) for some 2 > 0 in a neighborhood of G = G0;
5 (G) ∈ Θ(6(G)) if 5 (G) ∈ $(6(G)) and 6(G) ∈ $( 5 (G));
5 (G) ∈ >(6(G)) if 5 (G)/6(G) → 0 as G → G0;
5 (G) ∈ $(6(G)) if 6(G) ∈ >( 5 (G));

The limit point is usually G0 = ∞ or G0 = 0, and always specified when not obvious.
All logarithms whose base is left unspecified are taken in the natural base.



Chapter1
�antum Dynamics and �antum
Algorithms

1.1 The ergodic hypothesis

It is unfortunate that present prejudice is towards ergodic
behaviour, so that its breakdown seems notable; ergodicity
is really much more remarkable than its failure.

R. G. Palmer [198]

1.1.1 Classical ergodicity

The zeroth law of thermodynamics asserts that two systems simultaneously in thermal
equilibrium with a third one must also be in thermal equilibrium with each other. The
notion of thermal equilibrium, in turn, is defined from the empirical conditions of absence
of heat flows between the systems. This allows one to define a temperature state function
), which labels the cosets of the “thermal equilibrium” equivalence relation and whose
gradient causes heat flows between proximal regions, e.g. via Fourier’s law

d2&

dCd� = −:∇), (1.1)

where : is a material-dependent heat conductivity and the left hand side represents
the heat exchange rate per unit surface. Plausibly, and in accord with our daily-life
observations, one then expects two systems at different temperatures to eventually reach
thermal consensus when placed in contact: a process called thermalization.
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The first attempt at a microscopic explanation of this process was the work of Boltz-
mann’s [51], building on previous results by Maxwell [171–173]. Boltzmann considered
an ideal gas and supposed that collisions between two particles happened with zero cor-
relation between the particles’ kinetic energies and positions (Stoßzahlansatz). With these
assumptions, he could prove that a certain state function, later known as the � function,
was nonincreasing in time, and in fact strictly decreasing until the attainment of its min-
imum value. This value corresponds to the ideal gas settling on a Maxwell–Boltzmann
(thermal) distribution of particle velocities, whose temperature is fully dictated by the
initial value of the energy.

Boltzmann was aware that neither his Ansatz nor the consequent �-theorem were
tenable in the strictest sense, for instance violating classic recurrence theorems, but it
could be argued (cf. [90]) that small deviations from it were so inconsequential, and large
deviations so rare, that they could not harm the general idea of the system eventually
reaching thermal equilibrium in every practical sense of the word.1

Inmodernnotation,weknowthat a classical systemcanbequite generallyparametrized
by a set of generalized coordinates and momenta, G = (@, ?) ∈ Ω ⊂ R2B ,2 living in a sym-
plectic manifold called the phase space. Systems are then described in terms of macrostates,
i.e. sets in the phase space characterized by specific values of a fixed collection of macro-
scopic properties (e.g. internal energy, volume, temperature, etc.). A macrostate is conve-
niently formalized as an ensemble, namely a probability distribution � : Ω→ R+0 with∫

Ω

�(@, ?)d@ ∧ d? = 1. (1.2)

The ensemble formalism provides us with a natural way of averaging microscopic func-
tions 5 over the phase space:

〈 5 〉 =
∫
Ω

�(@, ?) 5 (@, ?)d@ ∧ d?. (1.3)

The crucial link between thermodynamics andmechanics consists in interpreting each
macroscopic property �obs of a system as the ensemble average of some appropriate
microscopic function 5 defined on Ω,

�obs = 〈 5 〉 . (1.4)

This is achieved in two steps.
First, notice that, from a mechanical standpoint, the system under consideration must

be described by a particular instantaneous microstate (@(C), ?(C)) whose law of motion in

1This counter-objection was in a sense put on firmer grounds with the development of the information-
theoretical understanding of entropy, which was also pioneered by Boltzmann through his most famous
formula, ( = :B log |Ω| for a system with |Ω| equiprobable microstates.

2Here B is the number of coordinates, e.g. B = 3= for = free particles in 3 dimensions.
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the phase space is dictated by the Hamilton equations
d@
dC = ∇?�,

d?
dC = −∇@�

(1.5)

with appropriate initial conditions. It is important to point out that while the ensemble
description formalizes our inability to exactly pinpoint the particular trajectory (@(C), ?(C)),
at least in classical mechanics we do admit that such a trajectory exists. As a consequence,
whatever macroscopic property must simply reflect the value of some corresponding
microscopic function 5 = 5 (@, ?), averaged along the trajectory over the observation time:

�obs =
1
�o

∫ C0+�o

C0

5 (@(C), ?(C))dC. (1.6)

Here the experiment is defined to start at C0 and end at C0 + �o, and if the measurement
is to be well-defined, we should as well assume that the system is at equilibrium, that is
to say, any time scale characterizing a significant variation of 5 (@(C), ?(C)) must be either
much smaller or much larger than the experiment’s duration �o. If that is the case, wemay
as well drop all the extremely slow degrees of freedom from the Hamiltonian description
and take the �o →∞ limit in Eq. (1.6).

The second step is more delicate. While Eq. (1.6) provides an explicit connection
between theory and experiments, it is utterly useless from a practical standpoint, as it still
presupposes a knowledge of the exact microstate which is neither attainable nor desirable
for a many-body system. What we would rather have instead, is to link the value of �obs
to the ensemble representation introduced above, or in other words, to switch from a
mechanic to a thermodynamic description.

The missing link is provided by the ergodic hypothesis. In its basic form, it states that
infinite-time averages can be replaced by ensemble averages:

Definition 1.1.1. (Ergodic hypothesis) Given a Hamiltonian system, for any time C0, any
initial condition G(C0) = G0 and any measurable function 5 = 5 (@, ?), one has

lim
�o→∞

1
�o

∫ C0+�o

C0

5 (@(C), ?(C))dC = 〈 5 〉 (1.7)

for some ensemble � = �(@, ?) which is only determined by G0. Here 〈 5 〉 is defined by
Eq. (1.3) and the trajectory (@(C), ?(C)) is determined by integrating Eqs. (1.5) from the
initial condition.

The special ensemble verifying Eq. (1.7) should obviously describe the system at equi-
librium. Its explicit form can be derived from a reasonable assumption of unbiasedness.



4 Quantum Dynamics and Quantum Algorithms

Indeed, given some macroscopic information on the system and two microstates com-
patible with such information, one would be hard pressed to justify assigning different
likelihoods to the two. The only distribution that agrees with this principle is the (nor-
malized) indicator function of the set of compatible microstates.

When the only available information is the system’s energy, the corresponding pdf is
called themicrocanonical ensemble �mc. It assigns uniform probability to the “energy shell”

Ω(�, ��) = {G ∈ Ω | � − ��/2 ≤ �(G) ≤ � + ��/2} (1.8)

and zero elsewhere. The thickness �� is to be taken infinitesimally small, ��/� � 1.
The term ergodic, introduced by Boltzmann in the late 1870s, is nowadays used in the

theory of dynamical systems to describe a measure-preserving flow )C : Ω→ Ω on some
probability space (Ω,O , P)with the property that, for any C ∈ R and any - ∈ O ,

)−1
C (-) ⊂ - =⇒ P(-) ∈ {0, 1}. (1.9)

This means that no set other than the whole spaceΩ, up to null-sets, is left invariant by )C ,
and as a corollary, the flow causes P-almost every point to visit every single neighborhood
of the space. Closed orbits, including trivial ones, must add up to a zero-measure set. In
physical terms, there is no nontrivial constant of the motion other than energy.

In the Gibbsian formulation of statistical mechanics, ergodicity is assumed of the
Hamiltonian flow on the phase space, or rather on its shells Ω(�, ��), with respect to the
measure induced by the microcanonical ensemble.

From this assumption3 it is possible to derive Eq. (1.7) [44, 45, 259] (see also Refs.
[188, 246] for a historical overview and in-depth discussion), and indeed one may take it
as a slightly stronger definition of the ergodic hypothesis.

1.1.2 �antum ergodicity

The task of reformulating statistical mechanics in the quantum theory was commenced
very early in the history of quantum mechanics. The most important early attempt at a
rigorous formulation of a quantum concept of ergodicity must be recognized in von Neu-
mann’swork in the late 1920s [258]. He defined amicrocanonical ensemble by subdividing
the spectrum of the Hamiltonian operator, assumed to be discrete, into “slices” (shells)
which are macroscopically thin, �� � �, but still contain exponentially many states.

3Actually, the assumption may be relaxed to that of metric transitivity, i.e. the flow should eventually cause
any non-null measurable set of the phase space to overlap with any other. In formulas,

∀�, � : P(�), P(�) > 0, ∃C : P
(
)−1
C (�) ∩ �

)
> 0. (1.10)

Eq. (1.10) implies ergodicity in the sense of Eq. (1.9), or else we could find two distinct )C -invariant sets �
and �2 with nonzero measure, leading to a contradiction: 0 < P()−1

C
(�) ∩ �2) = P(� ∩ �2) = 0. The opposite

implication is not true in general, but it does hold for stationary flows.
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Then, the Hilbert spaceℋ associated to each shell is in turn partitioned into macrostates,
namely, orthogonal subspaces corresponding to the different values we can measure for a
prescribed set of macroscopic observables:

ℋ =

⊕
�

ℋ� , (1.11)

with ℋ� the common eigenspace of a set of commuting observables "1 , . . . , "< relative
to the respective eigenvalues <1 , . . . , << . If the dimensions of ℋ and ℋ� are � and ��,
respectively, the microcanonical probability associated to the macrostateℋ� is just ��/�.

Von Neumann proved the following result, which we state non-rigorously: for most
Hamiltonians and most macro-partitions {ℋ�}�, every initial state |#0〉 reproduces the
microcanonical distribution for most of the time during its evolution, in the sense that

E
[
‖%�#(C)‖2

]
=
��

�
, (1.12)

Var
[
‖%�#(C)‖2

]
<

1
��

(
��

�

)2

(1.13)

for an arbitrarily large fraction of times C, where |#(C)〉 = e−i�C |#0〉 and %� is the projector
ontoℋ� [114].

This theorem, which von Neumann called a “quantum ergodic theorem” (QET), is
clearly reminiscent of the ergodic hypothesis in classical mechanics. However, notice a
crucial difference. If we were to strictly parallel the classical formalism, the way to go
about defining quantum ergodicity would be to require the long-time average to equal
the ensemble average, as in Eq. (1.7). In a quantum context, the appropriate ensemble
for long-time averages is the diagonal ensemble: if |#0〉 =

∑
0 20 |�0〉 is a decomposition of

the initial state into eigenstates of � with �0 within the chosen energy shell (i.e. we are
considering an initial state with a well-defined energy density), then

|#(C)〉 〈#(C)| =
∑
01

202
∗
1e
−i(�0−�1)C |�0〉 〈�1 | , (1.14)

which implies ∫ T

0

dC
T |#(C)〉 〈#(C)| =

∑
01

202
∗
1

∫ T

0

dC
T e−i(�0−�1)C |�0〉 〈�1 |

→
∑
0

|20 |2 |�0〉 〈�0 | as T → ∞, (1.15)

where we used the assumption of nondegenerate level spacings to turn the time average of
the fluctuating phase factor into a �01 . The convergence must be intended in a weak sense,
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i.e., identity under tracing. On the other hand, the microcanonical ensemble corresponds
to the uniform distribution on the shell, namely

�mc =
1
�

∑
0

|�0〉 〈�0 | , (1.16)

with the sum running over an eigenbasis basis of ℋ . In order for Eqs. (1.15) and (1.16)
to coincide, it must be the case that |20 |2 = 1/� for all 0, an extremely nongeneric initial
condition.

We see therefore that the strict quantum analogue of the ergodic hypothesis must be
rejected. Indeed, von Neumann’s QET suggests that the time/ensemble average equiv-
alence ought to be pursued not on the level of probability distributions, but only on a
coarser scale — that of macrostates. More precisely, we can say that a microcanonical
description is appropriate for the system provided �mc and the diagonal ensemble assign
the same average values to all macroscopical observables, that is to say, to all macrostate
projectors %�: ∑

0

|20 |2 〈�0 |%� |�0〉 ≈
��

�
for all �, (1.17)

with the ≈ sign admitting fluctuations of the order of Eq. (1.13). Von Neumann’s QET
ensures that for typical Hamiltonians and macro-partitions, condition (1.17) holds for all
choices {20}0 of initial conditions. Moreover, it holds not only for the diagonal (i.e. long-
time average) ensemble, but even for the instantaneous ensemble |#(C)〉 〈#(C)|, for most
times C.

VonNeumann’s resultwent largelyunnoticedormisattributed for a long time, andafter
the 1950s, it started being misquoted and unjustly accused of triviality as a consequence
(see a discussion in Ref. [114]). In the meantime, thermalization in quantum systems
was typically modeled by the use of the mixed-state formalism and the idea of coupling
to an external bath. It was not until the 1990s that the idea of diagonal/microcanonical
equivalence resurfaced in the foundational works of Deutsch [84] and Srednicki [239].

As Deutsch pointed out, the heat-bath stratagem, while practically useful, is concep-
tually unsatisfactory as it still leaves the question unanswered on how the global system
(i.e., including the heat bath in the density matrix description) can achieve thermalization.
Deutsch considered instead isolated systems, showing how integrable Hamiltonians could
generically be made ergodic (in the sense of macro-equivalence of �mc and the diagonal
ensemble) by the addition of uncorrelated Gaussian noise (a GOE matrix; cf. Section 2.2)
with intensity larger than the level spacing, but still arbitrarily small in the thermodynamic
limit. The effect of the noise, Deutsch argued, is to create huge superpositions of states
such that when averaging a macro-observable over an eigenstate, an exponential number
� of similarly-distributed terms is summed together and quantum fluctuations are sup-
pressed as a consequence as ∼ 1/

√
�. This makes the diagonal ensemble equivalent to the

microcanonical one, i.e. the system becomes ergodic [84].
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Srednicki, attacking the problem from the perspective of chaos theory, used a similar
strategy by positing Berry’s random-wave conjecture [41], where eigenstatewave functions
essentially behave as uncorrelated Gaussian vectors. Working in momentum space for a
gas of hard spheres, he proved that with this assumption the single-particle momentum
distribution for an eigenstates sharply tends to the thermal one, implying thermalization
of generic initial conditions [239].

The modern understanding of eigenstate thermalization, which has taken the place of
ergodicity in quantum statistical mechanics, can be formulated as follows [215,240,241]:

Definition 1.1.2. (Eigenstate thermalization hypothesis) Let � be a Hamiltonian on =
particles with nondegenerate eigenvalues {�0}0 and respective eigenstates {|�0〉}0 . � is
said to obey the eigenstate thermalization hypothesis (ETH) in the interval ℐ ⊂ R if for every
�0 , �1 ∈ ℐ and every local4 observable $,

〈�0 |$ |�1〉 = �01O(�) + e−((�)/2 5 (�, $)'01 (1.18)

where � = �0+�1
2 , $ = �0 − �1 , O(�) is continuous in its argument, 5 (G, H) is continuous in

both arguments and $(=0), ((�) is the microcanonical entropy (natural logarithm of the
density of states) and '01 is a random variable with a Gaussian distribution of zero mean
and unit variance.

There is a lot of information packed in Eq. (1.18), so let us go through it. First off, notice
that the ETH implies the diagonal/microcanonical ensemble identity:∑

0

|20 |2 〈�0 |$ |�0〉 =
∑
0

|20 |2O(�0) ≈ O(�), (1.19)

where we took a state # =
∑
0 20 |�0〉 living in the energy shell centered at �, i.e. 20 = 0

whenever�0 ∉ Ω(�, ��). This allowsus to takeO(�)out of the sum,which thendisappears:∑
0 |20 |2 = 1. Incidentally, Eq. (1.19) shows that O(�) in Eq. (1.18) must in fact be the

microcanonical average of $:
O(�) = Tr

[
�mc(�)$

]
. (1.20)

The second term at the right-hand side of Eq. (1.18) can be understood by considering
the time-averaged deviation of the instantaneous quantum expectation of $ from the
microcanonical prediction: if we denote the long-time average with an overline,

$ = lim
T→∞

∫ T

0

dC
T $(C) (1.21)

4The precise meaning of “local” depends on the underlying geometry. For a lattice Hamiltonian, we can
simply take $ to be supported on a finite, $(=0) number of sites. In continuous space, the essential support
of $ should be bounded in diameter. In both cases, we could relax the constraint somewhat and turn a blind
eye to “exponentially-decaying tails”.
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with $(C) = 〈#(C)|$ |#(C)〉, we have(
$(C) − $

)2
=

∑
01

|2021 5 (�, $)'01 |2e−((�) , (1.22)

which is $(e−((�)) for a state living in the shellΩ(�, ��). Notice that for all energies in the
bulk of the spectrum we have ((�) ∼ =, so the fluctuations away from the microcanonical
value $ = O(�) are exponentially suppressed with the system size. This results in an
approximately one-valued relation between the matrix elements and the energy

It is worth stressing that ETH contains more than just the time/ensemble equivalence.
Indeed, while the latter is only concerned with averages of macroscopic observables, as in
Von Neumann’s QET (cf. Eq. (1.17)), the former is a statement about all bulk eigenstates of
the system, i.e. a microscopical hypothesis. Remarkably, it asserts that all eigenstates in a
sufficiently narrow energy window “look alike”, in the sense that no local measurement
can distinguish between them. This implies as well that a single eigenstate contains all the
information relevant for thermodynamics, as the thermal value of any local observable
is equivalent to the expectation value of that observable in any one eigenstate with the
appropriate energy density. This observation highlights a profound difference between
the concept of thermalization in classical versus quantum mechanics. In the words of
Ref. [215], according to ETH “every eigenstate of the Hamiltonian always implicitly con-
tains a thermal state. The coherence between the eigenstates initially hides it, but time
dynamics reveals it through dephasing.”

We shall make use of the ETH as a stringent test of ergodicity in Section 2.4.3; in
particular, see Fig. 2.13 for a concrete manifestation of the ETH (as well as its violation) for
two local observables probed in the eigenbasis of a spin Hamiltonian.

To conclude, we provide a formal definition of what it actually means for a quantum
system to thermalize. We already mentioned how the old approach to quantum statistical
mechanics, which defined thermalization by introducing an external heat reservoir, cannot
fully appease the theoretician. The main issue is that a quantum system considered in its
entirety should be regarded as isolated, as external couplings can always be incorporated
(in principle) into the system’s Hamiltonian, until everything is accounted for. But an
isolated system evolves unitarily, and if we take it to start from an initial pure state (as it is
always possible by enlarging the Hilbert space sufficiently), it will never become mixed.

The solution to this mathematical paradox is physical in nature. We do not need
to require the full system to be described by a thermal ensemble in order to observe
thermalization. We only need it to thermalize locally. This is expressed in the following
manner [192]:
Definition 1.1.3. (Local thermalization)A state |#0〉 undergoing time evolution under the
Hamiltonian �, |#(C)〉 = e−i�C |#0〉, is said to (locally) thermalize if for any bounded spatial
region �, the reduced density matrix

��(C) = Tr�2
[
|#(C)〉 〈#(C)|

]
(1.23)
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behaves, in the large-time and large-system size limit, as though it were traced from the
Gibbs distribution. In other words, if

lim
C ,=→∞

��(C) = lim
C ,=→∞

Tr�2
[

e−��

/

]
(1.24)

for all bounded5 sets �, where the limit is taken with C/= fixed and the = sign denotes
identity under tracing.

InEq. (1.24),/ = Tr[e−��] is thepartition function and � is an�-independent parameter
fixed by the conservation of energy:

lim
C ,=→∞

Tr
[

e−��

/
�

]
= 〈#0 |� |#0〉 . (1.25)

Notice that we are not requiring limC ,=→∞ �(C) to be a thermal state — which would be
impossible for a pure �(0). Indeed, the full density matrix does not even admit such a
limit in general. However, considering local restrictions enables us to make the notion of
infinite-time limit well-defined in the thermodynamic limit.6

Local thermalization is best pictured as the proper formalization of the old coupling-
to-a-heat-bath prescription. Rather than introducing an ad hoc external reservoir for the
local system to equilibrate with, the system itself acts as a reservoir for its own subsystems.
It is a nice and desirable property that in order for this to occur, a global temperature must
exist, determined by Eq. (1.25). Indeed, if two bounded sets �1 and �2 obeyed Eq. (1.24)
with different �’s, their union �1 ∪ �2 (still a bounded set) could not with any. At the end
of the day, the reservoir formalism of quantum statistical mechanics is thus rescued, and
the theoretician can rest easy.

1.1.3 Ergodicity breaking

So far, we have taken for granted that systems, whether classical or quantum, should
generically thermalize, a notion which we identified with the existence of an equilibrium
ensemble which attracts almost all initial conditions with a given average energy. Tomake
everything well-defined — let it not be forgotten — the thermodynamic limit (or at least
large enough system sizes) must be considered.

It is the main focus of this thesis to show how this assumption can be violated in
certain situations. In particular, in Chapter 2 we will go over the concept of Anderson

5We can relax the boundedness requirement for � so long as the ratio of |�|/|�2 | goes to zero in the
thermodynamic limit.

6The simultaneous C and = limit prescription is necessary because in finite systems equilibration cannot
strictly occur due to recurrences (similar to the phenomenon of Poincaré recurrence in classical dynamical
systems), so C →∞ followed by = →∞ is never well defined. Likewise, = →∞ followed by C →∞ does not
allot enough time for the system to possibly mix information to a satisfactory degree.
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localization andmany-body localization, where a quantum particle or amultitude of them
is prevented fromdiffusing by the presence of impurities. In this section, wemention other
mechanismswhereby a system can fail to achieve thermal equilibrium for an exponentially
(in the system size) long time. We essentially follow a presentation of the subject matter
by Palmer [198].

The simplest ergodicity-breaking mechanism we can mention is spontaneous symmetry
breaking (SSB). In certain circumstances, a Hamiltonian with a certain global symmetry
might have low-energy states which are not invariant under that symmetry. For instance,
we can have a nontrivial orbit of the symmetry group containing multiple (possibly in-
finitely many) ground states. A broken symmetry can partition the configuration space
into distinct, dynamically separate components. The prototypical example is the classi-
cal ferromagnetic Ising model in the low-temperature phase, whose two ground states,
corresponding to the upward and downward totally-polarized configurations, break the
Z2 symmetry of the Hamiltonian. They are dynamically separate in the sense that the
free energy barrier Δ� between them (which can be seen as a double-well potential, cf.
Section 3.3) goes to infinity in the large-size limit, preventing the system from switching
between the two, as would be required by the ergodic hypothesis. Indeed, if the system
is at equilibrium within component Γ at temperature ) = 1/�, the rate of escape can be
estimated at7

%esc(C)
C
∼ /(%Γ)

/(Γ) = e−�Δ� , (1.26)

which means that on average Cesc ∼ e�Δ�. The system remains trapped inside Γ if this time
is huge relative to the observational time scale �> ,

Cesc � �> , (1.27)

or equivalently, if the probability of escaping within the observational time scale is very
small, %esc(�>) ∼ �>e−�Δ� = �>/Cesc � 1. Clearly, if Δ� ∼ = any fixed value for �> will
indeed pale in comparison to Cesc ∈ $(e2=) as soon as = is moderately large (see Fig. 1.1).

For this reason, equilibrium statistical mechanics fails to describe the actual properties
of the system, for instance predicting zeromagnetization for the Ising ground state instead
of the physically correct " ∈ {±=}. This is equivalent to “getting the order wrong” when
taking both the limits = →∞ (to be taken first) and C →∞ (afterwards)— amistakewhich
students are commonlywarned against in any statistical physics course. The phenomenon
of trapping is also calledmetastabilitywhen Cesc and �> are of the same order of magnitude.

We can recognize from the Ising example two main features that allow us to talk about
the “splitting into components” of the configuration space:

a) the probability of escape from any component is “small” within the allotted obser-
vation time: %esc(�>) � 1;

7Obviously, this rate is only well-defined in the %esc(C) � 1 region, where %esc(C) increases roughly linearly
with time. Eventually, %esc(C)will tend to 1 in the (unphysical) C →∞ limit for any fixed =.
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Figure 1.1: The definition of ergodicity depends on the choice of observational time scale �> . When
this is large compared to the typical time Cesc taken by the system to escape a confined
region of the configuration space, the system is ergodic. A system with extensive free
energy barriers between its components has Cesc ∈ $(e2=), and as a result, it will always
be non-ergodic at large enough sizes, for any fixed �> .

b) the dynamics within each component is ergodic.

This prescription is general enough to not only capture the case of SSB, but also systems
where no symmetry breaking occurs. Palmer gives the example of theH2 molecule, whose
ortho- and para- isomers are not related by a global symmetry transformation, but still
define long-lived8 components of the configuration space.

Still, one may consider the above examples to be sort of trivial. Indeed, although the
strict application of the canonical prescriptions of statistical mechanics fail to provide a
proper description of the systems, it is not too hard to recognize where their limitations
arise and, more importantly, how to fix them. For instance, in the Ising case one may
simply add an arbitrarily small magnetic field to select either one of the ground states.
This perturbation is energetically insignificant in the thermodynamic limit, but has the
effect of propertly accounting for the trapping mechanism and hence giving the right
results using the canonical formalism.

In general, there are two ways of dealing with a restricted ensemble: the first one is
to only trace on the degrees of freedom pertaining to the component of interest when
calculating the partition function or other equilibrium quantities (the remaining degrees

8“In the low-density gas phase [ortho–para] conversion is extremely slow and accurate values are not
known as measurements are usually perturbed by walls or magnetic contaminants such as O2. Out-of-
equilibrium samples of H2 at NTP [normal temperature and pressure] will typically convert a percent or two
in a week’s time; properly stored samples of D2 at NTP have been known to show little change in the period
of one year.” [232]
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of freedom being treated as nondynamical parameters); the Born–Oppenheimer approx-
imation can be seen as a famous example. The second one is to modify the Hamiltonian
itself, which includes not only the addition of artificial external fields as in the example
above, but also other prescriptions such as imposing fixed boundary conditions or the
mean-field approximation.

Far less trivial instances of ergodicity breaking are however possible. First off, even
in the case of a few-component partition, there is no general rule on how to properly
restrict the ensemble. In many occasions, heuristics or a posteriori justifications are used
to guide the choice. Indeed, an ensemble restriction conceptually requires the injection
of additional information into the canonical formalism, which by itself is equivalent to
the Gibbs prescription of using the least possible biased estimator of a prior compatible with
energy conservation (cf. the comment after Definition 1.1.1). This additional information
has to be provided by the person operating the restriction. Again, in the Ising case it is
not hard to see that e.g. the addition of an external field is equivalent to minimizing bias
subject to the known average value of both energy and magnetization (i.e. the magnetic
field is “conjugate” to" the sameway the inverse temperature is to �). Lacking a clear-cut
or simple enough order parameter such as", the restriction process loses its transparency.

A particularly unwieldy scenario occurs when the number of components grows out
of control, e.g. exponentially with =. In this case, an order parameter (or at least some
parametrization of the component space) may still be possible to define, but one cannot
hope to be able to actually measure it. In such cases, the only sensible option is to treat
the component label as a random variable, with some given “disorder distribution”. The
physical properties of the system are then obtained by a double averaging process: both
over the restricted ensemble and over the disorder. This is the typical situation when
treating glasses, and we shall accordingly encounter this “two-level statistical mechanics”
(in Palmer’s words) in the next section.

Glasses are, generally speaking, systems where the dynamics undergoes a dramatic
slowdown despite the system not being in its thermally-equilibrated state quite yet. This
effectively freezes the systemout-of-equilibrium, up to extremely slow relaxationprocesses
called aging (see e.g. [163]). We are going to focus our attention on spin glasses, where the
frozen degrees of freedom are spins and the mechanism underpinning the dynamical
arrest is frustration. Other kinds of glassy systems include structural glasses [183], and
systems such as granular materials and colloids, which undergo a jamming transition at
high densities highly reminiscent of the glass transition [46].

With glassy physics already presenting a remarkably complex phenomenology at the
classical level, it should come as no surprise that introducing quantum effects can make
things even more interesting (and less clear). One could for instance study the jamming
transition [25] or the spin glass transition [189] in a quantum setting. In general, the
interplay of quantum mechanics and glassy physics is a rather new topic in physics, and
the subject of active research. We will shirk the endeavor of exploring this matter in more
detail, and content ourselves with presenting an introduction to classical spin glasses with
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a little historical context.

1.2 A brief history of spin glasses

Spin glasses, which have been deservedly described as “the most complex kind of con-
densed state encountered [. . .] in solid state physics” [105], made their appearance around
the 1950s.9 In those days, multiple experimental groups were interested in probing the
magnetic properties of metallic alloys in which a magnetic and a nonmagnetic component
are melted together. This typically involves embedding transition metals or ions—whose
electronic 3-shell is only partially filled and strongly interplays with the substrate’s con-
duction electrons — into inert, noble metals. Important examples include copper, silver
and gold doped with manganese, iron or chromium [27].

A relevant parameter is the concentration of magnetic impurities, namely their density
relative to that of the underlying paramagnetic matrix. Different concentrations often
result in very distinct physical properties. In the low-concentration regime (typically, less
than 0.1% dilution) magnetic impurities are essentially isolated and their only effect on
the sample is to scatter conduction electrons and thereby amplify the alloy’s electrical
resistivity at small temperatures, a mechanism called Kondo effect [7, 148, 254].

However, at moderate concentrations (e.g. 0.2–14% for Cu–Mn alloys [256]) the domi-
nant effect is the magnetic interaction between impurities. Interestingly, in most cases this
interaction is not governed by direct exchange betweenmagnetic dipoles, but is rather me-
diated by the band electron’s rearrangement as a consequence of the ion’s positive charge
(screening). An apt description of the resulting effective interaction between impurities
was first achieved by Ruderman and Kittel [221] and later perfected by Kasuya [141] and
Yosida [266], leading to the standard form of the RKKY exchange integral [86]

�(A) ∼ − �
�F
(3=�0)2

sin(2:FA − 3�/2)
(2:FA)3

(1.28)

for two impurities located at (large) distance A at a concentration 1/=, �0 being the direct
coupling of the atom to the conduction electrons and :F the Fermi wavenumber.

When 1/2:F is smaller than the typical distance 00 between ions, the sign of the
interaction alternates between positive and negative — a phenomenon closely resembling
Friedel oscillations in a Fermi gas in the presence of charged impurities [109]. In both
cases, the oscillating term comes from the sharpness of the Fermi surface and is therefore
screened out when the temperature is increased [102].

The position of ions in dilute alloys is highly irregular and can be approximated as a
random lattice. It is equivalent, but conceptually simpler, to treat the lattice as regular and
randomize the interactions (sign and amplitude) instead. This results in a typical frustrated

9See Ref. [21] and the following columns in the series for a fascinating debriefing on spin glass history.



14 Quantum Dynamics and Quantum Algorithms

spin Hamiltonian of the form

� =

∑
〈8 9〉

∑
0,1

�089B
0
8 B
1
9 +

∑
8

∑
0

ℎ08 B
0
8 , (1.29)

where 0, 1 ∈ {G1 , . . . , G3} and B0
8
is the 0-component of a classical spin variable located at

site 8 of the lattice; the notation 〈8 9〉 means that we only sum on neighboring sites in the
interaction lattice (meaning we are cutting off the ∼ 1/A3 interaction, which after all we
know to be screened at large distance by a ∼ e−
)A/:F term at temperature )).

The term frustration refers to the fact that a typical lattice site is interacting with
other sites both ferro- and antiferromagnetically, meaning that a single spin flip induces
an impredictable change in the overall energy. More importantly, the minimization (or
maximization) of the global energy cannot be performed by simply minimizing each
spin’s local energy, as would be the case for a purely ferromagnetic model; rather, any
spin assignment will inevitably “appease” certain interactions and “frustrate” others.
The central role of frustration in the physics of spin glasses was first pointed out by
Toulouse [252,255].

Once this general feature is acknowledged, it can be usefully abstracted out and rec-
ognized elsewhere. Situations where one is trying to minimize some target function with
many degrees of freedom, and which does not admit a trivial factorization in terms of lo-
cal optimizers, are ubiquitous not only in physics, but in computer science, biochemistry,
logistics, economics, etc. It is the realm of optimization problems.

A useful analogy is provided by the game of Go. In Go, a player is trying to maximize
his territory andminimize his opponent’s byplacing one stone at a timeon the intersections
of a grid, in alternating turns. When a “fight” arises in some area of the board, there exist
theoretical sequences of moves called jōseki that aim at locally optimizing the resulting
territory or influence. However, the board counts 19 × 19 intersections. Expert players
know that limiting oneself to jōseki fights is not a recipe for victory, because once the
board starts to get populated one has to account for the entirety of its structure, rather than
individual elements, and it may be convenient to sacrifice a local advantage in exchange
for a larger global benefit.

Likewise, frustrated Hamiltonians (or cost functions, as they are more generally called
in optimization theory) cannot be minimized bymeans of local “jōseki”. On the one hand,
this may sound discouraging as in the case of large (or even moderate-size) optimization
problemswe are not afforded a bird’s eye view of the “board” (configuration space), whose
cardinality increases exponentially in the problem size. On the other hand, unlike in Go
we almost never aim at perfect minimization, but content ourselves with approximate
solutions. While these are still very hard to achieve, they can oftentimes be reached even
by local algorithms.

Let us go back to our spin-glass Hamiltonian, Eq. (1.29). For definiteness, we specialize
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it to the form
� =

∑
〈8 9〉

�8 9B8B 9 , (1.30)

which is called the Edwards–Anderson model [89].10 The underlying lattice is regular and
3-dimensional.

How can we characterize the onset of a glassy phase in the model? A natural way is
to consider the canonical ensemble at a certain temperature ) and look for the presence of
magnetic ordering in the system, which can be measured by the average autocorrelation
function of the local magnetization:

@dyn = lim
T→∞

lim
=→∞

1
=

=−1∑
8=0
〈B8(0)B8(C)〉, (1.31)

with the overline denoting temporal average in the range C ∈ [0,T ] as in Eq. (1.21), angular
brakets the thermal average 〈$(B)〉 = /−1 ∑

B e−�(B)/)$(B) over the choice of initial config-
uration B(0) = B, and per the discussion of Section 1.1 the order of limits is fundamental in
ensuring a nontrivial result. A nonvanishing value of the quantity @dyn denotes that the
spins “prefer” on average to align in a particular direction, signaling magnetic ordering
for this choice of temperature and disorder {�8 9}8 9 . If the system were ergodic, @dyn could
be replaced by its equilibrated value

@EA =
1
=

=∑
8=1
〈B8〉2 (1.32)

(with the thermodynamic limit taken last), which is always zero as a consequence of the
B8 ↦→ −B8 symmetry of Hamiltonian (1.30). This is exactly the same phenomenon as the
vanishing of the magnetization-per-spin,

< =
1
=

=∑
8=1
〈B8〉 (1.33)

in ferromagnetic systems when care is not taken to restrict the ensemble average to the
appropriate component. A standard way to operate this restriction is to add a small,
uniform magnetic field ℎ to the system and take ℎ → 0 after all the other limits have been
performed. This results in a magnetization which is zero in the paramagnetic phase and
nonzero in the ferromagnetic one, making it a good order parameter.

Similar considerations apply to the case of spin glasses. At low temperature, the config-
uration space splits into a large number of Palmer components (traditionally called “pure

10Edwards and Anderson considered an isotropic model, but we can limit ourself to classical Ising spins
without losing much.
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states” in the spin glass literature, and “clusters” in optimization); in each pure state, the
low-lying spin configurations (i.e. those significantly contributing to the low-temperature
free energy) tend to have a “frozen core”, i.e. the value of B8 , for extensively many 8’s, will
be the same for most configurations [182], giving 〈B8〉2 > 0 within the component. In order
to get a sensible result for @EA, one must first restrict the thermal average to single compo-
nents, and later average over all the components weighted according to their individual
free energies.11 In this circumstance, we still have < = 0 as the frozen values of 〈B8〉 have
random signs for different 8’s, eventually summing up to zero (or rather, to $(

√
=), which

is then dominated by the 1/= prefactor). However, with this prescription the quantity @EA
defined in Eq. (1.32), known as the Edwards–Anderson order parameter, will take a nonzero
value, discriminating between the paramagnetic and spin-glass phases.

A physical interpretation of the EA order parameter is that it quantifies the reduction
in the magnetic susceptibility of the material compared to the paramagnetic value [105].
Let

"8 9 =
%<8

%ℎ 9
(1.34)

be the susceptibility tensor. We have

"88 = �
(
〈B2
8 〉 − 〈B8〉

2
)
= �

(
1 − 〈B8〉2

)
, (1.35)

which means that the “local susceptibility” is

"loc =
1
=

∑
8

"88 = �
(
1 − @EA

)
, (1.36)

where the first term � is the ordinary Curie susceptibility. This is equivalent, up to a
prefactor, to the experimentally measurable susceptibility " ∝ ∑

8 9 "8 9 , provided %(�8 9) =
%(−�8 9) (see next paragraph) and ℎ = 0. This also provides away to experimentallymeasure
the EA parameter.

In order to prove the existence of a SG phase one can try to estimate @EA and show
that it is nonzero in a certain region of parameters, while simultaneously < = 0.12 This
was first done by Edwards and Anderson with the Hamiltonian (1.30). Computing @EA
in this model for a generic choice of parameters {�8 9}8 9 is unfortunately impossible. A
general strategy for dealing with disordered systems is to assume that in a large enough
sample the disordered couplings {�8 9}8 9 can be modeled as i.i.d. random variables with a
given distribution %(�). Then, in the limit of very large system sizes we expect almost any

11Conceptually, fixing a component may be accomplished by setting up a small nonuniform magnetic field
ℎ = (ℎ0 , . . . , ℎ=−1) and letting ‖ℎ‖ → 0 at the end, in analogy with the FM case; in practice, however, unlike
in ferromagnets one is unable to determine the right choice of magnetic field because that requires the a priori
knowledge of all local magnetizations 〈B8〉, so different approaches are used instead [184].

12By the Cauchy–Schwartz inequality, @EA is trivially nonzero whenever < ≠ 0.
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choice of parameters to yield the same value for intensive observables — a feature known
as self-averaging. Moreover, we assume that the values of the {�8 9}8 9 are fixed, i.e. they do
not measurably change over the observational time scale. This is done in the spirit of the
Born–Oppenheimer approximation and will be taken as valid in all our examples where
disorder plays a role. We say that the random couplings are quenched (non-dynamical) as
opposed to annealed (dynamical).

In the above assumptions, we can get rid of the detailed parameter dependence by
performing a disorder average over the parameter choice, which we denote by double
brackets:

J 5 K =
∫ ©­«

∏
8 9

%(�8 9)d�8 9
ª®¬ 5

(
{�8 9}8 9

)
. (1.37)

The computation of the disorder-averaged 〈B8〉 or 〈B8〉2, as well as other self-averaging
quantities, proceeds through the calculation of the free energy,13

J 5 K = − 1
�=

Jlog/K, (1.38)

which in turn requires computing Jlog/K. The calculation is made possible by the famous
replica trick for the partition function:

log/ = lim
<→0

/< − 1
<

, (1.39)

where < is treated as an integer throughout the calculation to make the computation of
J/<K simpler — as it can now be regarded as the partition function of < noninteracting
replicas of the original system. The number of replicas < is then sent to 0 at the end with
a process of analytical continuation.

In the case of the EA model, the replica calculation can only be seen through in the
mean-field approximation, leading to results which have some qualitative agreement with
the experiments (and some disagreements as well). Similarly, the free energy can be
computed exactly if the model is genuinely mean-field, namely if the sum in Eq. (1.30) is
replaced by a sum over all spin pairs and the couplings �8 9 are appropriately rescaled to
keep the energy extensive (Sherrington–Kirkpatrick model [229]). In both cases, the existence
of a SG phase can be established, in the sense that < = 0, @EA ≠ 0, at low temperature.
However, some unphysical results such as a negative value of the entropy are present in
the theory as well.

13For instance, by adding a ℎ8 B8 term to the Hamiltonian and computing the corresponding free energy

(which can be done in the EA model), one simply has J〈B8〉K = =
dJ 5 K
dℎ8

����
ℎ=0

, where the disorder average passes

through the derivative as ℎ8 is disorder-independent.
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The problem of negative entropies was dealt with by Thouless, Anderson and Palmer
by an application of the so-called ‘Bethe method’ (today known as cavity method), leading
to the celebrated TAP equations [251]. Essentially, they improved the mean-field equation
for 〈B8〉 by an extra local-field term which is typically discarded during the approximation
process, being only $(1/=) in ferromagnetic models (but is in fact $(1) for spin glasses).

Alongwith the formulationof theTAPequations came the realizationof the importance
of “rugged energy landscapes” in determining the low-temperature properties of glassy
systems. Indeed, it was soon discovered that the failure of the mean-field calculation to
yield sensible results in the deep spin-glass phase of the SK model was due to the wrong
assumption that all “replicas” of the system introduced by formula (1.39) would behave
identically. More precisely, in the determination of the free energy of the SK model, one
introduces dummy integration variables {@
�}
<� in order to get rid of the biquadratic
part through the well-known Gaussian trick

e:2/2 =

∫ +∞

−∞

dG√
2�

e−G2/2+:G ; (1.40)

the 
, � indices run over the< replicas, as there is one biquadratic termper pair of replicas.
Upon substitution (1.40), one is left with a formula which is amenable to steepest descent
in the = variable, which fixes the values of the dummy variables to their optimum point.
The free energy ends up depending on the sum

∑

<� @

2

�, where @
� is now the optimum

value. Sherrington and Kirkpatrick, arguing from the indistinguishability of the replicas,
had assumed that @
� = @ for all 
 ≠ � (replica symmetry). This solution, however, despite
always being a stationary point for the integrand of the free energy, fails to be a maximum
point (as required by the steepest descent method) once ) is lowered past the so-called
de Almeida–Thouless instability line [75]. In other words, the solution can be improved by
a non-uniform choice of {@
�} coefficients, signaling a replica symmetry breaking (RSB) in the
system. The “0×0” symmetricmatrix14 (@
�) (with @

 = 0)must be interpreted as the true
spin-glass order parameter: the replica-symmetric ansatz corresponds to setting @
� = @

for all 
 ≠ �. In that case, @ coincides with the Edwards–Anderson parameter, giving us
the alternative interpretation of @EA as the average overlap between two distinct replicas.
In the paramagnetic phase, where replica symmetry holds, two independent replicas have
spins pointing in essentially uncorrelated directions, resulting in a subextensive overlap
(@EA = 0). At lower temperatures, pure states start to play a role andRSBmust be accounted
for.

An explicit formulation of the RSB solution for the SK model was worked out by
Parisi [185,200,201], who showed how to properly parametrize the (@
�)matrix to account
for the breaking of the index-permutation symmetry. This is done in a hierarchical fashion:

14The terminology is to be understood as the < → 0 analytic continuation of a parametrized space of <×<
matrices.
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Figure 1.2: (a) TheParisi spin-glass order parameter is an<×< symmetricmatrix (@
�) (analytically
continued to < → 0) with a hierarchical structure determined by parameters :1 , . . . , :A
(see main text). Here is an example with < = 12, :1 = 6, :2 = 3. Full RSB requires an
infinite numberofparameters. (b) Thehierarchical structure of (@
�) is themanifestation
of an underlying clustering of states, with the overlap between states only depending
on their graph distance.

at the simplest level, introduce a parameter :1 and use the following ansatz:

@
� =

{
@1 if b
/:1c = b�/:1c ,
@0 otherwise.

(1.41)

The free energy must then be optimized with respect to :1, subject to :1 , </:1 ∈ N. This is
called the 1-step replica symmetry breaking (1RSB) ansatz. More generally, one can introduce
several parameters :1 ≥ · · · ≥ :A and set @
� = @8 if b
/: 9c = b�/: 9c is satisfied for
9 ∈ {1, . . . , 8}. All the : 9 should be integers, as well as their consecutive ratios — this
corresponds to a partitioning of [<] into progressively larger “containers” (see Fig. 1.2a).

The A-step RSB ansatz is therefore characterized by a collection of A commensurate
integers, {:8}A8=1, and A + 1 values {@8}A8=0 for the replica–replica overlaps, which together
can be encoded in a function

@(G) = @8 if :8+1 ≤ G < :8 , (1.42)

with 1 ≤ G ≤ <. In the < → 0 limit, one has 0 ≤ G ≤ 1 instead, with a corresponding
inversion in the order relation of the :8’s. This can be generalized to the full replica
symmetry breaking ansatz, A → ∞, by trading Eq. (1.42) for a continuous function @ :
[0, 1] → [@min , @max] ⊂ [0, 1] functioning as an infinite-dimensional order parameter for
the SG transition.
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Thebreaking of replica symmetry is themathematicalmanifestation of a rugged energy
landscape. Indeed, one can thinkof theParisi ansatz for (@
�) as reproducing anunderlying
structure where configurations of similar energies organize themselves into clusters.15 In
the low-) solution, each replica independently probes different configurations, whichneed
not belong to the same cluster. Moreover, clusters themselves may contain subclusters in
a hierarchical fashion, so that the overlap between two configurations depends on how
many layers of clustering one has to traverse in order to connect them. This layered
structure is conveniently represented as a tree (Fig. 1.2b), where the distance between two
configurations (defined as 3(
, �) = 1 − @
�) only depends on the level of their nearest
common ancestor [85].

This high-level understanding of spin-glass energy landscapes in terms of clusters of
states has been extremely prolific. For instance, it underlies the idea that low-energy
states are to be found at the bottom of a large number of “valleys” separated from each
other by tall free-energy barriers, which in turn motivates and explains the success of
powerful algorithms such as simulated annealing and quantum annealing (which will
be described in the next section). As already mentioned, the most impressive feature of
spin glasses lies in their horizontal reach, with similar ideas echoing through all sorts of
different disciplines where optimization is at work. Computational techniques that are
useful for estimating low-temperature properties of spin glasses can also be applied to
these disciplines, and vice-versa.

In the next section, whichwraps up our introduction, we briefly discuss one of themost
important stochastic algorithms that have been devised for this very purpose — namely,
tackling optimization problems — in the novel framework of quantum computation. One
of the flagship goals of quantum computers is their ability to efficiently simulate complex
physical systems. This includes the potential of studying glassy problems, and solving
(or at least approximating) hard optimization problems of much larger sizes than what is
classically achievable. The comparison between classical and quantum algorithms will be
the topic of Chapters 3 and 4.

1.3 Computing with quantum mechanics

1.3.1 A foreword on quantum computation

The birth of quantum computation (QC) is traditionally16 dated back to Feynman’s re-
mark [103] on the inadequacy of using classical physics, which most of the technology
empowering traditional computers is based on, in order to simulate quantum systems.
The implications of a quantum computational machine were first discussed by Albert [13]

15Similar clustered phases are known to exist in optimization problems of the constraint satisfaction type
(CSPs), such as :-SAT and @-COL [33].

16Soviet physicist Manin had conceived of similar ideas in his earlier book [168] (cit. in Ref. [231]).
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and then more thoroughly by Deutsch [82], who formulated a theory of quantum Turing
machines.

The true potential of QC emerged with the discovery of algorithms that could out-
perform their classical counterparts either provably, such as Deutsch and Josza’s [83]
or Grover’s [116] algorithms, or practically, such as Shor’s algorithm [230] for factoring
integers.17

Presently, two routes have proved promising toward the implementation of useful QC,
already leading to the creation of extremely sophisticated (if rather impractical) machines.
These are the circuit model of QC and the quantum annealing paradigm, which will be
discussed in Section 1.3.2. The circuit (or gate) model may be considered the standard
model of quantum computation, for both historical and logical reasons. It is the most
natural translation of traditional electronic circuits into a quantum setting, where bits
are replaced by two-level quantum systems (qubits) and logic gates are implemented via
unitary operators. It is relatively straightforward to demonstrate that circuit-based QC
is universal, in the sense that any unitary transformation on any number of qubits can
be realized with arbitrary accuracy, given a small toolbox of simple gates [194]. The
physical realization of a quantum circuit can be accomplished in a number of different
ways, including optical systems, ion traps, and solid state technology. The current frontier
of research appears to be superconducting qubits, which can be arrayed on an integrated
circuit andmanipulated via tunable electromagnetic fields. Thedegree of quantumcontrol
achieved in systems of over 50 qubits of this type is so high already that results were
published claiming quantum supremacy in specific tasks [26], though the claims were
later challenged.

Althoughquantumsupremacy—meaning the complete obsolence of classical comput-
ers in performing certain useful tasks — is far from established, quantum computers and
quantum technologies in general (including quantum communication, quantum sensors,
quantum cryptography and more) are expected to evolve quite rapidly in the near future
and eventually enter our daily life in a revolution comparable to the advent of the internet
at the turn of the last century (see e.g. [79]). Even today, so-called noisy intermediate-scale
quantum (NISQ) devices are already starting to show the promise of near-term applica-
tions, if not for universal computation, at least as special-purpose machines (in particular
for the simulation of modest-size quantum systems) [211].

Obviously the topic of quantum computation, whether the theory or the history or even
just recent developments, is far toowide to be properly contained in this introduction. The
interested reader will find in Ref. [194] a classic textbook, and in Ref. [211] a good review
of the current state and expectations for NISQ computation. In the rest of the section,

17From a complexity-theory standpoint, the class BQP of problems efficiently solved by quantum computers
is known to be intermediate between P (problems solvable in polynomial time) and PSPACE (problems solvable
with polynomial memory). Unfortunately, it remains to be proven that PSPACE is actually larger than P. Even
assuming that P ≠ NP (problems admitting a poly-time verifiable certificate), the relation between NP and
BQP remains unclear. It is possible that neither class fully contains the other [194].



22 Quantum Dynamics and Quantum Algorithms

however, we find it useful to present and discuss the concept of quantum annealing, as
this will ensure a more thorough understanding of Chapter 3.

1.3.2 �antum annealing

Annealing is the process of heating up and then cooling down a sample (typically a metal)
in order to affect its structural properties in some specificway. The idea of cooling a system
slowly enough to let it accommodate into a lower-energy state than it would otherwise,
already used in practice e.g. to grow crystalline structures from a melted material, was
appropriated by theoreticians and applied to the context of computer simulations in the
1980s. The term simulated annealing (SA), in particular, is found in a paper by Kirkpatrick
and others [144], where they successfully applied it to the classic traveling salesman prob-
lem. It is worth mentioning that Kirkpatrick stumbled upon these ideas as a consequence
of his work on spin glasses, cf. Section 1.2.

In SA, one is interested in minimizing some Hamiltonian � encoding a complex opti-
mization problem. Although the idea at the basis of SA is general enough to be viewed as
a metaheuristic, one of its most basic formulations is in terms of a typical Markov-chain
Monte Carlo simulation: one initializes the system in a random configuration and runs
a stochastic (e.g. Glauber or Metropolis) dynamics at some “high” initial temperature )0,
which will cause the system to sample states according to the Gibbs distribution

%)0(G) =
e−�(G)/)0

/)0
. (1.43)

Then, the temperature is gradually decreased down to some final value )1 � )0, reducing
thermal fluctuations and concentrating the Gibbs measure on low-energy configurations.
Ideally, one would like the system to eventually reproduce the new thermal distribution
%)1(G), but in practice this can almost never be achieved. The reason should be clear by
now: since optimization problems possess rugged energy landscapes, their thermalization
requires prohibitively long times, meaning that the effective distribution observed from
the simulation will at best approximate a restricted ensemble during the available time
frame (see Section 1.1.3).

Therefore, lowering the temperature will cause the simulation to eventually “freeze”
into some pure state, similar towhat would happen by simply starting the simulation from
the “cold” temperature )1. The major difference is that while in the latter case the system
would immediately get stuckupon falling into the localminimumpoint closest to the initial
state, in SA the system is given the chance to first explore (at least in principle) the entirety
of the configuration space during its “hot” phase, and as its thermal energy is gradually
depleted, it will be more likely to settle into a configuration more closely matching the
global energy minimum, as relatively shallow local minima can be escaped at earlier
stages. This process of cascading of the distribution requires the annealing schedule to
be performed slowly enough, which introduces a tradeoff between the quality of the final
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solution and the time requiredby the simulation, as shouldbe expectedof anyoptimization
algorithm. With its combination of effectiveness and conceptual simplicity, SA remains
nowadays one of the most popular classical algorithms for general-purpose optimization,
and its applications are widespread both in the sciences and the industry [225].

Quantum annealing (QA)may be viewed as a variant of SAwhere quantum fluctuations
replace thermal ones as the driving mechanism for the dynamics. The basis of QA is the
adiabatic theorem [16, 53], a standard result in quantum mechanics stating that, roughly
speaking, a system prepared in the ground state of a Hamiltonian �0 which is then
changed in a continuous, time-dependent fashion, � = �(C), will naturally time-evolve
into the instantaneous ground state of�(C) throughout the evolution so long as this occurs
slowly enough.

In practice, the theorem admits several, inequivalent variants, so one should rather
talk about adiabatic theorems (cf. Ref. [11]). These variants can be more or less rigorous,
and assume more or fewer conditions on �(C), with ensuing adiabatic bounds of different
strengths. The most familiar and most quoted “adiabatic condition” [179] can be stated as
follows: consider a time-dependent Hamiltonian �(C), with the time variable ranging in
C ∈ [0,T ], and assume that its instantaneous spectrum {�0(C)}0 is nondegenerate for all
C. This implies in particular that the order relation between the eigenvalues is preserved
throughout the evolution,

�0(C) < �1(C) < · · · ∀C ∈ [0,T ]. (1.44)

Because of the nondegeneracy, we may unambiguously label |�0(C)〉 the unique instanta-
neous eigenstate with energy �0(C) at time C. We now focus on the ground state |�0(C)〉,
though the theorem could be applied to excited states as well. Define the instantaneous
ground gap

Δ(C) = �1(C) − �0(C), (1.45)

as well as the transition rate

'(C) = |〈�0(C)| ¤�(C)|�1(C)〉|, (1.46)

where ¤� = d�
dC .

The adiabatic theorem states that with high probability, the state resulting from time-
evolving |�0(C = 0)〉 up to C = T will be found to be |�0(T )〉 provided

max
0≤C≤T

[
'(C)
Δ2(C)

]
� 1. (1.47)

The qualifier “with high probability”means that the probability of the event nothappening
is upper bounded by the left-hand side of Eq. (1.47). An alternative formulation (which
also avoids some criticisms of the Messiah criterion (1.47) not working for Hamiltonians
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with externally-driven oscillations) was provided by Amin [18], who stated the following
adiabatic condition:

T � max
0≤B≤1

[
'(B)
Δ2(B)

]
, (1.48)

where all the quantities are now written in terms of the normalized time B = C/T and
the Hamiltonian is required to depend on C and T only through B (i.e. there is a single
time scale). The quantity & = T −1 maxB

[
'(B)/Δ2(B)

]
upper bounds the difference |1 −

〈�0(T )|#(T )〉| (with |#(T )〉 the final state), so the probability of observing the final state
in the ground state of the final Hamiltonian is at least 1 − &2.

It should be noted that neither condition (1.47) nor (1.48) are rigorous mathematical
statements. Rather, they are necessary relations that should hold between T and �(C)
in order for the evolution to be considered adiabatic. Nonetheless, the inverse-square
dependence on the gap of the adiabatic time has essentially earned the status of “folk
theorem” among physicists. More rigorous criteria exist providing rigorous upper bounds
on e.g. the distance between the final state and the ground state of �(T ) (in the sense of
operator norm of the difference between the respective density matrices), which tend to
provide looser bounds. For instance, if �(B) ∈ C2([0, 1]) and Δ(B) > 0, a sufficient adiabatic
condition is the following [11]:

T � max
0≤B≤1

[
‖ ¥�(B)‖
Δ2(B)

]
, max

0≤B≤1

[
‖ ¤�(B)‖2

Δ3(B)

]
, max

0≤B≤1

[
‖ ¤�(B)‖
Δ2(B)

]
, (1.49)

where obviously ¥� = d2�
dt2 . Notice the inverse cubic dependence on the ground gap.

Another theorem provides an inverse-square bound (corrected by a Θ
(
|logΔ|6


)
term

with 
 > 1) for sufficiently well-behaved Hamiltonians. This bound is close to optimal
as there is a lower bound on T which has the same scaling save for the logarithmic
correction, which isΘ

(
|logΔ|−1) [91]. Wewill not discuss the precise form of the adiabatic

bound any further. In Chapter 3, we will adopt the traditional assumption that adiabatic
evolution requires a time T ∼ 1/Δ2 to succeed with good probability. Logarithmic or even
polynomial corrections will not alter the gist of the discussion, as will be clearer shortly.

Now that we have established the content of the adiabatic theorem, we can formulate
the strategy underlying quantum annealing. Supposewe are dealingwith an optimization
problem, and that we are able to encode this problem as the Hamiltonian of some system.
We call it �p, the “problem Hamiltonian”. It is worth stressing that every ground state
of �p corresponds to a solution of the encoded problem. Typically, when we are dealing
with a discrete configuration space (combinatorial optimization), �p will be cast as a spin
Hamiltonian.18 For instance, let � : {0, 1}= → R+0 be the cost function of a combinatorial

18The hardness of the encoding will strongly depend on the locality structure of the problem, as the most
general optimization problems will result in completely nonlocal Hamiltonians, which are hardly possible to
construct. For now, we can suppose that we are somehow able to build �p in our laboratory.
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optimization problem defined on =-bit strings. The problem Hamiltonian will be of the
form

�p =
∑

B∈{0,1}=
�(B) |B〉 〈B | , (1.50)

where {|B〉}B∈{0,1}= is someorthonormal basis of theHilbert space. Being the basis onwhich
the problem Hamiltonian is diagonal, it is called the computational basis, and it represents
the classical configuration space (for this reason, its elements ought to be product states).
Typically, one identifies bits 0 and 1 with spin-1

2 states of definite I-component, |↑〉 and
|↓〉, and then the computational basis is given by the eigenstates of the I-component of the
total spin operator.

We can now initialize our spin system in the ground state of another spin Hamiltonian
�d. This should satisfy two crucial requirements: first, its ground state should be known
and easily prepared; second, it should not be an eigenstate of the problem Hamiltonian
as well (in particular, �d and �p should not commute). A typical choice of “driver
Hamiltonian” is a transverse field term,

�d = −Γ
!−1∑
8=0

BG8 ; (1.51)

in this way, we have [�p , �d] ≠ 0 and the initial state is simply the uniform superposition
of all basis states. For the second part of the algorithm, we perform an adiabatic evolution
of the initial state by slowly changing the Hamiltonian from �d to �p:

�(B) = �(B)�p + �(B)�d , (1.52)

where �(0) = �(1) = 0 and �(1) = �(0) = 1. The pair of continuous functions (�(B), �(B))
is the annealing schedule of the algorithm, and is arbitrary as long as the aforementioned
initial and final conditions are satisfied.

From the adiabatic theorem we know that, if the evolution is slow enough, the system
will have a large superposition with the ground state of the problem Hamiltonian �p,
meaning that a measuring protocol in the computational basis will provide with high
probability a solution to the encoded optimization problem. The process just described is
called the quantum adiabatic algorithm, first described in Ref. [100].

In realistic setups, one does not expect the system to start from an exact ground state,
much less to remain in one, due to the inevitable presence of thermal fluctuations andpara-
metric errors (including errors in the transverse field strength and in the implementation
of the annealing schedule). The nonzero-temperature version of the quantum adiabatic
algorithm is what we refer to as quantum annealing algorithm (although the terms are
often used interchangeably).

We can now see the analogies between QA and simulated annealing, described at the
beginning of this section. Both QA and SA are optimization algorithms (or heuristics)
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which exploit physical principles to explore the classical energy landscape. A typical, if
overly simplified, picture of the situation is to think of the configuration space as a rugged
environment of deep valleys or basins separated by tall cliffs or mountains. In SA, we
have in mind a particle pushed across this environment by a stochastic dynamics, while
in QA we have a quantum particle subject to the Schrödinger equation; in both cases, the
“landscape” itself should be regarded as some effective (semiclassical, in the case of QA)
potential, and the particle is trying to find a (hopefully global) minimum point where to
settle. To this end, SA relies on thermal fluctuations to help the particle climb the barriers,
whereas QA uses quantum fluctuations to tunnel through them.

Taking this picture seriously, perhaps too much so, one can estimate the rate at which
the stochastic and quantum walkers are able to overcome an energy barrier Δ� (or more
accurately, a free energy barrier Δ�). In the case of SA, the characteristic time of thermal
activation takes the Arrhenius form

�SA ∼ eΔ�/) , (1.53)

while for QA one can use the WKB estimate

�QA ∼ eF
√
<Δ�/2 (1.54)

for a barrier of width F [158]. As a result, one expects QA to outperform SA whenever
the energy landscape is characterized by “tall, thin barriers”, i.e. when the combination
F
√
Δ� is typically less than Δ� (assuming the remaining parameters can be neglected in

the economy of the argument). This kind of reasoning should be taken with a grain of salt,
offering at best a qualitative suggestion in support of QA. For instance, the Arrhenius and
WKB estimates for the characteristic time scales of the algorithms are strictly valid only
in the one-dimensional case, which could not be further removed from the =-dimensional
landscape of the actual optimization problem. The problem of directly comparing SAwith
QA is a complicated one and remains outstanding, nor do we have a clear-cut and general
understanding of which classes of problems we should expect to be better suited for one
as opposed to the other.

To date, Canadian company D-Wave Systems is the only manufacturer to have pro-
duced and marketed a quantum annealer (2 048 superconducting qubits as of the D-
Wave 2000Q, the latest public version), and although many studies have been performed
on it looking for quantum advantage (see e.g. [80]), this has so far proved an elusive
quest [166, 167]. As a general principle, a number of limitations of adiabatic quantum
computing (and a fortiori QA) must always be kept in mind. First off, unlike the circuit
model of QC, quantum annealers are not currently conceived as general-purpose ma-
chines, but rather as optimizers. Although there are theorems proving the universality of
adiabatic QC (indeed, it is equivalent to circuit-basedQCup to a polynomial overhead [9]),
the simulation of arbitrary quantum circuits by a quantum annealer is out of the scope
of a device like the D-Wave 2000Q. Secondly, the quantum control on annealers is not
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nearly on par with circuit-based quantum processors, mostly due to the relatively huge
number of qubits (over 2 00019 versus less than 100). In general, there are serious doubts
about the scalability of quantum annealers with respect to qubit fidelity, as the theory
of error correction for this kind of systems is still non-existent. Still, the development of
larger and (more importantly) less noisy annealers in the near future [176] is expected to
improve our understanding on these matters, and possibly usher in an era of quantum
advantage for such problems as the simulation of Hamiltonians with no “sign problem”
(see Section 3.2.1) [211].

19It should be noted that this is the number of physical units in the annealer, which is not the same as the
number of logical qubits that can be processed. A logical qubit requires several (say, 5–10) physical qubits to
represent, shrinking the representable configuration space. A similar unit reduction happens in circuit-based
models when applying error-correcting codes.
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Chapter2
Many-Body Localization and Symmetry

Ἁρμονίη ἀφανὴς φανερῆς κρείττων.

A concealed harmony is superior to a visible one.

Heraclitus of Ephesus
cit. in St. Hippolytus of Rome

Refutatio omnium heraesium IX, 9 [169]

2.1 Localized quantum systems

In Section 1.1 we discussed the fact that equilibrium statistical mechanics is ultimately
founded on the ergodic hypothesis, which is most aptly expressed in the quantum theory
by the eigenstate thermalization hypothesis (ETH), Eq. (1.18). We also saw how ergodicity
can be (trivially or nontrivially) violated in both classical and quantum systems in the
presence of conserved quantities or structural disorder. Classical spin glasses in particular
were discussed in some depth (Section 1.2), as they constitute the first and best understood
example of highly non-ergodic systems in statistical physics.

In this chapter, we turn our attention toward a different, purely quantum mechanism
of ergodicity breaking, many-body localization (MBL). Similar to glassy systems, it involves
the localization in space of some degree of freedom, but unlike structural and spin glasses,
MBL is not caused by kinematic constraints from “rugged” free energy landscapes, but
rather by the effect of quantum interference. More explicitly, recall that glassiness can
be construed as a form of extreme slowdown in a system which is trying to thermalize,
but prevented from doing as a consequence of vanishingly small escape rates from some
component of the configuration (orHilbert) space, inwhich the systemfinds itself trapped.
Given enough time, a stochastic (thermal or quantum) fluctuation would eventually allow
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any such (finite) system to attain its true Gibbs distribution, “melting” the glass.
In contrast, as we will see shortly, MBL should be viewed as a form of integrability

in the quantum sense. Namely, in an MBL system one can identify an extensive ($(=)
for an =-particle system) set of exactly conserved charges, which are crucially quasilocal
operators, i.e., whose support is exponentially bounded away from a particular point in
space. Similar to the case of ordinary integrability, the proliferation of conservation laws
constrains the dynamics to such a degree that the stationary state of such a system is
no longer thermal. This remains true even in the thermodynamic limit, where it can be
proven that the usual picture of “large system acting as a bath for itself” must fail in the
MBL phase. The system instead retains local information about a generic initial state for
an infinitely long time.

Another important feature setting the MBL regime apart from glasses is that the lo-
calization transition is not accompanied by any thermodynamic signature, such as the
appearance of a nonzero Edwards–Anderson parameter, as it would be the case for a
spin glass. Rather, it represents a dynamical phase transition whose presence can only be
assessed by looking at spectral or nonequilibrium properties of the system. In particular,
the ground state physics is hardly affected by the onset of MBL, which, unlike ordinary
quantum phase transitions, is manifested at high energy densities (or equivalently, high
temperatures).

In the following section, we give an introductory glance at the single-particle version
of MBL, first described by P. W. Anderson in his authoritative 1958 paper [19] and ap-
propriately called Anderson localization. In the same paper, Anderson suggested that this
phenomenon should survive the introduction of sufficiently weak interactions between
particles, though the problem remained open. Physicists had to wait almost half a century
for a full answer, which came in the form of a comparably foundational article by Basko,
Aleiner and Altshuler in 2006 [35]. This will be the matter of Section 2.1.2.

2.1.1 Anderson localization

The Anderson model is the ensemble of tight-binding Hamiltonians

� = −C
∑
〈8 9〉

(
2†8 2 9 + 2

†
9 28

)
+

∑
8

&82
†
8 28 , (2.1)

where the {28}8 operators are annihilation operators of fermionic character and {&8}8 are
quenched i.i.d. random variables, whose distribution is typically taken to be the uniform
one on some symmetric interval [−,/2,,/2]. Wemay always set C = 1 by an appropriate
choice of energy units. , then parametrizes the disorder strength. The Anderson model
can be defined on any graph, and the first sum is taken over its edge set. We will talk
about the Anderson model “in 3 dimensions” by taking the underlying graph to be the
square grid lattice with coordination number 23 (linear chain, square lattice, etc.).
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Figure 2.1: The Anderson model: fermions can hop to unoccupied neighboring sites with am-
plitude C, while experiencing a random on-site potential varying on a scale , . The
ratio,/C (disorder strength) controls the dynamical regime of the model: a small,/C
results in diffusive behavior for the particles, while for large disorder the particles are
exponentially localized. In 3 ≤ 2, the model is always localized.

Hamiltonian (2.1) is a model of free particles hopping on a lattice with on-site disorder
(Fig. 2.1). In the clean case,, = 0, it is known that the eigenstates of the system are simply
plane waves, and in particular, they are fully delocalized on the lattice. The same would
be true if the on-site potential were replaced by a periodic potential, with the creation of
Bloch states.

It was therefore surprising to learn that, in the one-dimensional case, the Anderson
Hamiltonian admits no extended1 eigenstates at any nonzero value of the disorder. Indeed,
it can be proven that any disorder, > 0 makes the spectrum of� entirely pure-point and
all the corresponding eigenfunctions exponentially bounded in spacewith probability one
(exponential spectral localization). Not only that, but a stronger, dynamical localization con-
dition can also be proven, ensuring that all spatial moments of any compactly supported
initial condition |#(C = 0)〉 (namely 〈#(C)| |G |? |#(C)〉 for all ? > 0) stay finite at all times
C ≥ 0 [124,243].

The situation ismore interesting inhigherdimensions. The two-dimensionalAnderson
model is something of a borderline case, corresponding to the critical dimension of the
scaling theory [6]. It has fully localized spectrum in the strict sense, but delocalization
can be induced by introducing perturbations such as a weak spin–orbit coupling [94]. We
discuss instead the three-dimensional model, which presents a perfectly clear example of

1To be clear, here and everywhere else (including Ch. 4) we use the terms “delocalized” and “extended”
interchangeably to denote a quantum state whose support over the real space is “large”, i.e., for which the
number of basis states required to approximate it to within some given precision diverges in the infinite-size
limit, when using the natural product basis determined by the lattice structure.
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localization–delocalization transition as described hereunder. We should point out that,
unlike in the 1D case, the following discussion mostly relies on heuristic evidence rather
than mathematical rigor.

In 3 = 3, Anderson localization (AL) is only observed for sufficiently large values of
the disorder, whereas in the low-disorder regime all the eigenfunctions are fully extended,
analogously to the cleanmodel. Moreover, the transition between fully extended and fully
localized phases occurs in a gradual manner as, is increased: at intermediate values of
the disorder, some eigenstates are localized while others are not. In particular, there is a
certain interval of energies � = �(,) ⊂ sp(�) in the spectrum such that eigenstates with
associated energies �0 ∈ � are delocalized, while the rest are localized. In the infinite-size
limit, the spectrum is dense and bounded,2 so the interval �(,) can be uniquely defined.
Its boundary %�, separating the two regions, is called the mobility edge.

The interval straddles the middle of the spectrum, so that the “easiest” eigenstates
to delocalize are, perhaps unsurprisingly, the infinite-temperature ones. The disorder
strength required for a nonemptymobility edge to appear is deterministic in the large-size
limit and represents a critical disorder,

,c = min{, | �(,) = ∅}. (2.2)

Its value, which is zero in 1D and 2D, has been estimated at,c ≈ 16.5 in 3D [186,233] and
grows with the dimensionality [245].

The appearance of a localizing phase at, = ,c is called the Anderson transition (AT)
or the metal–insulator transition (MIT).3 The latter term reflects the fact that the presence
of localized states in the spectrum has a profound dynamical impact on the system.
Namely, it entails the impossibility for a particle to traverse the system, and if the particle
is interpreted as a charge carrier, the DC conductivity (see Eq. (2.20) below) and other
diffusion-related coefficients must drop to zero as a consequence, making the system an
insulator.

Of course, a theory of free particles makes for an extremely lackluster description of
real materials. Still, the phenomenon of AL and the MIT in three dimensions seemed
too good of a lead to discount, and as a consequence of Anderson’s paper, a remarkable
amount of effort has been devoted to gaining amore thorough understanding of localizing
systems.

Theoretical progress, though significant, remained mostly confined to the single-
particle case (for a comprehensive review, see Ref. [150]). It was not until the 2000s
that the problem of interactions was finally incorporated. Since then, huge strides have
been made by the freshly born research community in many-body localization, including
some impressive experiments that have been since made possible by the quick progresses

2The spectrum of Hamiltonian (2.1) in any dimension 3 is almost surely contained in the interval [−23 −
,/2, 23 +,/2].

3One typically uses the term “Anderson transition” to underline the single-particle nature of the model.
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in cold-atom and trapped ion technology. We give a short summary in the next section,
and present a more systematic description of MBL in Section 2.2.

2.1.2 The e�ect of interactions

The exponential localization of all the single-particle states ceases to be enough proof of ab-
sence of quantum transport once interactions between the particles are turned on. Indeed,
the completely noninteracting nature of the Anderson model can be considered a saving
grace by the theoretician seeking to rescue standard thermodynamics, as the ergodicity
breaking present in the model can be attributed to such an unrealistic assumption.

For instance, it is well-known that thermally-activated phononic processes can induce
hopping between localization centers in insulators via a process called variable-range hop-
ping [190]. Including these processes into an otherwise fully AL model would inevitably
induce a small ($(e−2/)
 )) conductivity, eventually restoring ergodicity at any ) > 0.4
However, interactions between electrons are not limited to phonon-mediated processes,
so it is natural to ask what influence the various electronic exchanges have on localization.

This question was tackled Basko, Aleiner and Altshuler [35] in a pioneering work
(see also Ref. [115]), where they proved that a short-range, weakly-interacting model of
electrons which is fully AL in the noninteracting limit displays both an insulating and a
metallic phase depending on the disorder’s strength. Moreoever, the insulating phase has
stricly zero conductivity even at nonzero temperature, in contrast with ordinary insulators.
The stability of the two phases was proved to withstand loop corrections from all orders of
the Feynmandiagram expansion. The fact that different phases exist in different parameter
regimes proves in turn that the model must undergo a phase transition (or a crossover) in
between.

These works solidly established the existence of a many-body localized (MBL) phase
in isolated disordered systems with weak interactions, and spurred new interest in the
physics community to look into the properties of such a phase. Oganesyan andHuse [195]
followed upwith a numerical analysis of a disordered lattice model which aimed at show-
ing how finite-size spectral statistics could be used as a witness of MBL (see Section 2.2.1).
Of particular import in their work was an ingenious single-number diagnostics they de-
vised in the form of the “A-parameter”, namely the average ratio of two consecutive level
spacings, which was destined to become very popular in subsequent numerical work.
However, the noticeable finite-size effects due to small system sizes (! ≤ 16) prevented
them frommaking conclusive statements. Indeed, a similar study of level spacing statistics
had already been performed in a 2D system, and concluded that localized statistics could
only hold for the ground state, i.e., interaction would always delocalize the system at any
) > 0 [236]. It is nowadays believed that this need not be the case.

After Oganesyan and Huse’s work, many other litmus tests were designed to numer-
ically assess the presence of a MBL phase in small systems — typically spin chains with

4Note that the DC conductivity is instead nonzero even at ) = 0 for delocalized models.
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some form of quenched disorder. Indeed, despite the limitations of exact diagonalization
algorithms (often limited to ! ≤ 20 or even less for generic spin systems), a wealth of
information has nevertheless been unlocked by such methods, as well as different nu-
merical techniques such as the integration of the Lindblad equation (see e.g. [270] for a
recent example). As we will see shortly, the time evolution of MBL systems is charac-
terized by a slow propagation of entanglement, which makes it possible to apply certain
numerical strategies, such as DMRG [264], taking advantage of matrix product state (MPS)
representations of the quantum state [223] which are not generally available at nonzero
temperatures.

The resulting phenomenology obtained from this kind of studies, as well as an ex-
planatory framework in terms of emergent integrability, are going to be the subject of the
next section.

2.2 MBL detectors and LIOMs

In this section, an overview is proposed of the various ways used to detect and character-
ize the many-body localized phase. Next, the unifying theory of local integrals of motion
(LIOMs) is briefly presented. This constitutes the current reference frame for understand-
ing the physical origins of the localization phenomenon, and it will be taken as a sort of
“formal definition” of MBL. As we will see in Sections 2.3 and 2.4, this is not the only
possible mechanism of interference-induced localization: different forms of nonthermal
behavior are indeed observed in certain systems, which elude the LIOM description (at
least to some degree). It is still an open and exciting question whether these forms of weak
non-ergodicity can survive in the thermodynamic limit — thereby providing examples of
novel phases of matter — or if they constitute transient (albeit long-lived) regimes which
eventually give in to ergodicity.

2.2.1 Phenomenological characterizations of MBL

As is always the case for novel areas of study, research onMBL has first been aimed at col-
lecting and categorizing the disparate evidence and phenomenology exhibited by putative
MBL systems, whether by experimental or (for the most part) numerical investigation of
a number of candidates. This resulted in a large quantity of characterizations and “detec-
tors” of localization, all consistentwith the sameunderlying idea of a lack of thermalization
due to some hindrance in the transport dynamics of the system, which manifested itself
both directly (vanishing conductivities, anomalous correlators) and indirectly (violation
of ETH in eigenstates and nonthermal spectral statistics).

In this section, we explore some of the most important witnesses of MBL, without
delving too deeply into the specifics, as a way of quickly savoring the topic. The interested
reader is urged to look at more comprehensive reviews such as Refs. [4, 14, 192].
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Eigenvalue and eigenstate statistics

Random matrix theory (RMT) was first introduced to physics by Wigner in the 1950s to
explain the empirical distribution of the spacings between nuclear resonances [87, 265].
The idea of using randomness to reproduce deterministic, but chaotic, features of a theory
proved very fruitful, and soon found itsway intomany other areas of physics and beyond.5
While a full review of the history and successes of RMT is far out of scope, we briefly
recall the most relevant results for our current purposes. Readers looking for a deeper
understanding will find in Mehta’s book [177] the golden-standard reference text.

Ergodic many-body systems are known to be very well approximated by random
matrix ensembles, in the sense that their eigenvalues as well as eigenstates have the same
statistical properties of those of a Gaussian random matrix which is only constrained by
the symmetries of the system.6 This can be intuitively understood as a form of central limit
theorem, where large matrices whose entries are essentially identically distributed (and
whose moments are not fast-growing) eventually come to resemble Gaussian matrices in
their spectral features. Hamiltonians of ordinary many-body systems tend to be of this
type.

In particular, the random matrix ensemble that accurately describes time-reversal–
invariant systems is the Gaussian orthogonal ensemble (GOE), namely, the ensemble of
real symmetric7 � × � matrices " = ("01)01 characterized by the joint pdf for their
independent entries {"01}0≥1

%(") ∝ e−
1
4 Tr("2). (2.3)

It is not hard to show that this is equivalent to a matrix whose independent elements are
Gaussian distributed, with zeromean and variance 2 on themain diagonal, and zeromean
and unit variance above it.8

In the large-� limit, the eigenvalue distribution (i.e. density of states) � for a GOE
matrix tends with probability one to Wigner’s semicircle law,

�(�) ∼
√

4� − �2

2�� . (2.4)

Also, the distribution of level spacings, namely Δ0 = �0+1 − �0 (where �0 ≤ · · · ≤ ��−1 are
the eigenvalues of thematrix), approximately tends to theWigner surmise, more commonly

5Not unlike statistical physics, RMT takes full advantage of the phenomenon of “self-averaging”, which
underpins the almost paradoxical fact that a system with an overwhelmingly large number of degrees of
freedom is oftentimes easier to describe theoretically than a few-body problem.

6In particular, the Bohigas–Giannoni–Schmit conjecture [47] says that fluctuation laws of time-reversal–
invariant quantum systems admitting a chaotic semiclassical limit are well described by the GOE ensemble.

7The denomination “orthogonal” does not refer to the matrices themselves, but rather to the invariance
of the joint pdf (2.3) under orthogonal transformations. In other words, if a symmetric matrix " is GOE-
distributed, so is $)"$ for any orthogonal matrix $.

8In practice, a GOE matrix " is conveniently obtained by generating �2 i.i.d. variables with zero mean
and unit variance, arranging them into a matrix �, and then defining " = 1√

2

(
� + �)

)
.
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referred to as Wigner–Dyson distribution in the MBL community:

%WD(B) ∼
�B
2 e−

�B2
4 , (2.5)

with B = Δ/〈Δ〉 (〈Δ〉 = �−1 ∑�−1
0=0 Δ0).

The property %WD(B → 0) → 0 is called level repulsion, because it prevents two consec-
utive eigenvalues (energy levels, in the context of physics) from coming too close together.
In particular, a random matrix has zero probability of having degenerate energy levels.

This tells us that, perhaps unintuitively, the spectrum of a random matrix does not
resemble a collection of independent random variables, but rather, important correlations
exist between the eigenvalues. Indeed, the level spacings of a large set of i.i.d. randomvari-
ables (with a “reasonable enough” distribution, e.g. a Poisson point process) are described
by an exponential distribution

%P(B) = e−B , (2.6)

which has no level repulsion but rather level collision, with B = 0 being the most likely
value.

A straightforward way to distinguish between ergodic and non-ergodic systems is
therefore to compare their level spacing distributions. Indeed, it is known that for many
integrable systems, whose eigenvalues can typically be written as sums of independent
quantities (think of the transverse-field Ising model, where � =

∑
: &: for a set of uncorre-

lated quasiparticle energies {&:}:), the spectrum is equivalent to a random collection and
displays as a consequence Poisson level statistics.9 Likewise, it is possible to show that
the eigenvalues of the Anderson model, Eq. (2.1), become uncorrelated in the large-size
limit [187]. The same is expected to be true for MBL systems, which possess a hidden
integrability (Section 2.2.2).

A particularly expedient characterization of the level spacing spectrumwas introduced
by Oganesyan andHuse in their aforementionedwork [195]. A common problem that one
encounters when numerically computing the level spacing distribution %(B) is that it can
be prone to large finite-size effect due to its sensitive dependence on the local density of
states. This can be alleviated to a large extent by considering a two-point level statistics,
the “A-parameter”:

A= =
Δ=∧(=+1)
Δ=∨(=+1)

, (2.7)

with Δ= and Δ=+1 being two consecutive level spacings and Δ=∧(=+1) (Δ=∨(=+1)) denoting
the minimum (maximum) between the two.

9The Berry–Tabor conjecture is that this behavior holds true for all quantum systems whose classical coun-
terpart is integrable, provided they do not possess nontrivial symmetry sectors causing commensurabilities
in the spectrum [42,73].
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Figure 2.2: Typical behavior of the average level spacing ratio 〈A〉 for a localizing model — in this
case, the 3DAndersonmodel (2.1), which features a localization transition at the critical
value of the disorder strength,c ≈ 16.5. In the ergodic phase,, <,c, the A parameter
tends to the Wigner–Dyson value 〈A〉 ≈ 0.53 as the system size ! is increased; in the
localized phase,, >,c, it tends instead to the Poisson value 〈A〉 ≈ 0.39.

Its distribution can be “surmised” for the Wigner–Dyson case and computed exactly
for the Poissonian one [28]:

%WD(A) ≈
27
4

A + A2

(1 + A + A2)5/2
, (2.8)

%P(A) =
2

(1 + A)2 , (2.9)

with respective averages 〈A〉WD = 4 − 2
√

3 ≈ 0.5359 and 〈A〉P = 2 log 2 − 1 ≈ 0.3863. A
more accurate estimate for the RMT result is obtained by fitting numerical data for large
matrices, yielding 〈A〉WD = 0.5307(1) instead. These distributions and averages are rather
robust to finite-size effects, which makes them a useful detector for MBL. A typical MBL
systemwill have 〈A〉 flowing from the Poisson to theWigner–Dyson value as some control
parameter is swept across the localization–delocalization transition (Fig. 2.2).

We mention another possible indicator of non-ergodicity obtained by comparing con-
secutive eigenstates. If the ETH is satisfied, nearby eigenstates should “look alike”, result-
ing in a small value of the relative entropy

�(?0 ‖?0+1) = −
�−1∑
I=0

?0(I) log
?0(I)
?0+1(I)

(2.10)

between their amplitude distributions ?0(I) = |〈I |#0〉|2 in some fixed computational basis
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{|I〉}I . If �(?0 ‖?0+1) does not remain bounded as the system size in increased, the ETH
must be violated.

Entanglement in the eigenstates

Rather than comparing different eigenstates, one can instead look for a violation of the
ETH within single eigenstates as well. As mentioned in Section 1.1, the ETH predicts that
eigenstates at nonzero energy densities should be similar to random vectors in a Hilbert
space. Taken seriously, this prediction implies [196, 226] that their entanglement entropy10

should display a typical volumetric scaling with the subsystem size

(ee
� ∼ |�| (ergodic) (2.11)

where � q �c is any spatial bipartition of the system with |�| ≤ |�c |.
For a bounded subsystem �, local thermalization (see Definition 1.1.3) requires �� to be

equivalent to a Gibbs state ∝ e−��� with inverse temperature dictated by the eigenstate’s
energy. In this case, it is easy to see that the value of (ee

�
should reproduce the thermal

entropy:

(ee
� = −Tr�

[
e−��A

/�
log e−��A

/�

]
= � (〈��〉 − ��) = (th

� . (2.12)

As both 〈��〉 and �� are extensive in the size of �, we recover the volume law (2.11).11
Thevolumetric scaling of entanglementwas indeed found toholdgenerically in ergodic

many-body systems, at least in the bulk of the spectrum.12 In a lattice of linear size ! in 3
dimensions, the volume law can be written in the form (ee

!
∼ !3, which stays valid in the

Hamiltonian limit where the lattice spacing is sent to zero and |�| → ∞ while ! is fixed.
Here and later, the subscript ! of (ee

!
is meant to denote any given subset � whose linear

size grows proportionally to !, e.g. one half of the system.
Localized eigenstates, on the other hand, are found to obey an area law

(ee
� ∼ |%�| (localized), (2.13)

with the entropy proportional not to the size of the subsystem, but rather of its boundary.
An area law is indicative of short-range correlations: roughly speaking, if one conceives of

10The bipartite entanglement entropy of state � relative to the Hilbert space decompositionℋ = ℋ� ⊕ ℋ�
is defined as (ee

�
= −Tr�[�� log ��] = (ee

�
, with Tr�[·] the partial trace over a basis of ℋ� and �� = Tr�[�].

A spatial bipartition of a system Ω = � q � induces a natural bipartition of the Hilbert space whenℋ has a
tensor product structure.

11Notice that the relation (2.12) does not hold for the unbounded set �c, preventing us from erroneously
concluding that (ee

�c = (th
�c ∝ |�c |, which would be at odds with the mirror property of the entanglement

entropy (ee
�
= (ee

�c .
12We gloss over the recent topic of quantum scars [253], whereby a quantum system may contain a small

($(=)) number of anomalous, low-entanglement states in the middle of the spectrum. The physics behind
this form of weak ergodicity breaking is still unclear, and the matter of exciting research.
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(ee
�
as a quantifier for correlations across the border between � and its complementary, for

this number to be proportional to |%�| it is necessary that only degrees of freedom within
a bounded distance from the border are correlated, unlike the volumetric case where
correlations span the entire system. The Hamiltonian-limit–friendly version of Eq. (2.13)
is (ee

!
∼ !3−1. The area law for MBL eigenstates is entirely analogous to the one obeyed by

ground states of local Hamiltonians [61,118,238] (though gapless systems in 1D display a
logarithmic anomaly [149]).

The properties of the entanglement spectrum in MBL systems have been discussed as
well. This is defined as the set of eigenvalues {�B}B of the “entanglement Hamiltonian”
�ent = − log ��, and as such contains at least as much information as the entanglement
entropy alone, ( =

∑
B e−�B�B . The distribution %(�) of these eigenvalues (also called the

“entanglement density of states”) was found to present a markedly different structure in
localized and ergodic models [112,113].

�ench dynamics of entanglement

Even though entanglement is area-law bounded inMBL eigenstates, quantum information
still can travel across MBL systems, albeit very slowly.

Entanglement dynamics in a quantum system is usually studied in a prototypical
quantum quench setup: the system is prepared in a certain initial state |#0〉, and then
suddenly let evolve with the evolution operator *(C) = e−iC� , with � time-independent.
The initial state is usually required to be simple to describe/prepare, for instance being
the ground state of some known Hamiltonian �0. The quench protocol then coincides
with the nonadiabatic transformation

�(C) =
{
�0 C < 0
� C ≥ 0

. (2.14)

Obviously one wants [�0 , �] ≠ 0 to induce a nontrivial time evolution. We also assume
that the initial state is a product state, so that the initial entanglement is zero. This
framework is used in experimental, numerical and analytical settings alike, though in the
case of entanglement entropy, which is not observable, the first case can be ruled out.

In ergodic systems, the spreading of entanglement happens quickly (probably ballis-
tically in 1D [143]), and the entanglement entropy saturates to a thermal value (ee

�
→

B(�0)|�|, with B(�0) the microcanonical entropy density. This is to be expected (at least for
bounded �), as the final state is locally thermal and each degree of freedom can be in any
of eB(�0) different microstates.

On the contrary, it was shown [34, 261] that the half-system entanglement entropy
following a quench in the MBL phase in one dimension exhibits a slow growth

(ee
! [#(C)] ∼ log C , (2.15)
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(after a short period of rapid propagation of information within the localization length)
which eventually saturates (in finite systems) to an extensive, but subthermal value, (ee

!
→

2!/2, with 2 < B(�0). This saturation can be interpreted as a form of incomplete thermal-
ization, where additional conservation laws other than the conservation of energy force
the (local) steady state to be a generalized Gibbs ensemble [216] with multiple conserved
charges {& 9} 9=0,1,...,

|#(C)〉 〈#(C)| −→ �GGE ∝ e−
∑
9 �9& 9 (2.16)

with �0 = �, &0 = �, [& 9 , �] = 0 for all 9 and the values of �9 determined by the initial
condition.

Absence of transport

The historically prominent feature of many-body localization, as originally defined by
Basko et al., is the suppression of quantum transport of conserved charges through the
system, in analogy with the phenomenon of AL in noninteracting systems.

Suppose that & is a conserved local operator, that is to say,

& =

∑
8

@8 (2.17)

for some local density @8 . Familiar examples would include the energy � and the total
magnetization (I . For such &, one can define the corresponding current � from the
continuity equation, which will itself be a local operator, � = 1

V
∑
8 98 , with V the system

volume.
From linear response theory one then has a corresponding conductivity in terms of the

current–current autocorrelator, as expressed by the Kubo formula [165,219]

�($) = V
$
<

∫ ∞

0
dC 〈[�(C), �(0)]〉 e−i$C , (2.18)

where 〈·〉 is the thermal expectation, and only the real (dissipative) part of the conductivity
is considered. Eq. (2.18) be converted to a Lehmann representation by working in the
energy basis {|0〉}0 , which gives

�($) = �V
∑
01

e−��1
/

1 − e−$�

$
|〈0 |� |1〉|2��($ − �0 + �1). (2.19)

Here �� represents a Cauchy distribution of small width �, used to smoothen out the
density of states at finite size (� should be taken to 0 after the thermodynamic limit). The
DC conductivity is then defined as the $→ 0 limit of the above formula, namely

�dc = ��V
∑
01

e−��1
/
|〈0 |� |1〉|2��(�0 − �1). (2.20)
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Ergodic MBL

Level spacing
distribution

Wigner–Dyson
(level repulsion)

Poissonian
(level collision)

Average
A-parameter ≈ 0.5307 ≈ 0.3863

Eigenstate
entanglement entropy volume law area law

Post-quench
entanglement entropy

quick $(C) growth
up to thermal value

slow $(log C) growth
up to subthermal value

DC conductivity nonzero zero

Table 2.1: Summary of themain phenomenological differences between ergodic andMBL systems.

Just like in AL systems, many-body localization causes this coefficient to exactly vanish,
�dc = 0, even at nonzero temperatures (see the next section for a proof in terms of local
integrals of motion).

Although this was the original characterization of MBL, it is nowadays not considered
to be the best way to actually define the localized phase. For instance, as pointed out in
Ref. [192], a Floquet system without any local conserved charge & — and hence no notion
of DC transport —may still undergo a recognizable MBL phase transition. As we will see
in the next section, a general definition of MBL can be given, at least for the case of fully
localized spectrum, in terms of the existence of quasilocal conserved operators.

Summary

The observations of this section are summarized in Table 2.1.

2.2.2 The LIOM theory of MBL

The theoretical understanding of many-body localization has been much improved as a
consequence of its formulation, by now canonical, as a kind of emergent integrability,
described by the framework of (quasi)local integrals of motion (LIOMs).

The idea behind LIOMs is that in a localized system, local degrees of freedom should
be only weakly dressed by the interactions compared to the noninteracting regime [125,
228]. Concretely, consider a noninteracting system of qudits with local dimension @ (e.g.
@ = 2 for spins- 1

2 ). Upon diagonalization, the system’s Hamiltonian will be expressible
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in the form � =
∑
8 &8�

I
8
up to a constant shift, where �8 denotes a diagonal operator

labeling the state of the system in some computational basis (this can also be thought of
as an “occupation number”, where we allow up to @ − 1 particles per site). The set of
corresponding eigenvalues, {BI

8
}
8
, uniquely identifies the system’s eigenstates.

Now, if we introduce a slight perturbation of these degrees of freedom resulting from
local interactions, the mutually commuting operators {�I

8
}
8
determining the new good

quantum numbers for our system will be expressed generically as sums of multiary non-
diagonal terms in the �


8
’s (
 ∈ {G, H, I}):

�I8 = �I8 +
∑
91 92

∑

1
2

�
1
2
8 91 92

�
1
91
�
2
92
+

∑
91 92 93

∑

1
2
2

�
1
2
3
8 91 92 93

�
1
91
�
2
92
�
3
93
+ · · · (2.21)

with the couplings {�
1···
A
8 91···9A }


1 ,...,
A∈{G,H,I}
A≥2;91 ,..., 9A∈[=]

exponentially bounded in the spatial separations:

�
1···
A
8 91···9A ≤ e−

max: |8−9: |
�1 (2.22)

for some localization length �1.
A unitary change of basis (2.21) satisfying Eq. (2.22) is called quasilocal, and since the

{�I
8
}
8
are by definition conserved, they are referred to as (quasi)local integrals of motion

(LIOMs). One usually has in mind the @ = 2 case, where LIOMs are also called l-bits (as in
“localized bits”). Indeed, notice that despite the complicated form of Eq. (2.21), unitarity
implies that the l-bits must have eigenvalues ±1. The latter terminology has the advantage
of explicitly reminding one that the �I

8
operators are constructed out of physical “bits” by

means of a quasilocal change of basis. In fact, not all integrals of motion that happen to be
quasilocal can be obtained this way.13

Since all LIOMs commute with the Hamiltonian, this has to be diagonal in them:

� =

∑
91

�91�
I
91
+

∑
91 92

�91 92�
I
91
�I92 +

∑
91 92 93

�91 92 93�
I
91
�I92�

I
93
+ · · · (2.23)

for some set of {�91···9A }A≥1;91 ,..., 9A∈[=]whichmust also be exponentially localized in real space:

�91 ... 9A ≤ e−
max:,; | 9:−9; |

� . (2.24)

The existence of LIOMs was rigorously proved for a class of spin chains in one dimen-
sions under physically reasonable assumptions [128], and their costruction was carried
out perturbatively in the interaction strength [219].

The LIOM formalism is a powerful explanatory tool for almost all the properties of the
MBL phase discussed in the previous section, andmore. For instance, since the eigenstates

13See Ref. [66] for an explicit construction of local integrals of motion which are not l-bits.
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of (2.23) only differ by a quasilocal transformation from eigenstates of the
∑
8 �

I
8
operator,

which are spatially factorized, the only sites contributing to their entanglement entropy
are those within distance $(�1) from the boundary of the bipartition, resulting in an area
law.

Another example is the vanishing of the dc conductivity �dc, mentioned in Sec-
tion 2.2.1.14 Consider the case of a local current with density 98 , and suppose that each 98
is supported on a bounded set of diameter �. Assume that a set of LIOMs exists, and take
two eigenstates |0〉 and |1〉 such that �I |0〉 = �0 |0〉, �I |1〉 = �1 |1〉 for some distinguished
;-bit �, with �0 ≠ �1 . Then, if A � � we have that either [98 , �] = 0 or [98+A , �] = 0 due to the
locality of the involved operators. Therefore, the amplitudes

〈0 | 98 |1〉 =
〈0 |[98 , �]|1〉
�1 − �0

and 〈1 | 98+A |0〉 =
〈1 |[98+A , �]|0〉

�0 − �1
(2.25)

cannot both be nonzero. Therefore, when we rewrite Eq. (2.20) for our local current
� = 1

V
∑
8 98 ,

�dc =
��

V
∑
01

∑
8A

e−��1
/
〈0 | 98 |1〉 〈1 | 98+A |0〉 �(�0 − �1), (2.26)

we can see that the sumover A is actually restricted to A . �. Moreover, since the support of
98 can only contain a bounded number of LIOMs (roughly$(2�3 ) in 3 dimensions, for some
2), the state 98 |0〉 can only overlap nontrivially with a bounded number of eigenstates |1〉,
because if |0〉 and |1〉 differ by LIOMs supported outside of the support of 98 , the operator
cannot “fix” the discrepancy and 〈1 | 98 |0〉 = 0 as a consequence. Therefore, the sum over
1 is restricted as well. As a result, the number of energy levels contained in the sum
becomes a negligible fraction of the spectrum and the delta approximant �� — and hence
the conductivity — will vanish with probability one when taking the = → ∞ and � → 0
limits.15

A full discussion of the LIOM picture and its implications would take us far afield,
so we refer to Ref. [129] for a more complete discussion. For the rest of the chapter,
we are going to have to abandon (at least in part) the canonical understanding of many-
body localization exposed so far, as we explore the possibility of witnessing yet different
phenomena in the vast ocean of disordered interacting models.

2.3 Isotropic disordered models

We now introduce and motivate the principal topic of concern for the present chapter,
namely, the interplay of symmetry and localization. As we shall see, a certain clash arises

14The following argument is adapted from Ref. [219].
15The A = 0 term, which is never discarded by the delta function, does not contribute as 〈0 | 98 |0〉 = 0 for

time-reversal-invariant models.
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between the two notions whenever the symmetry in question is non-Abelian, as the non-
trivial structure of its faithful representations tries to imposes additional contraints to the
quantum states on top of the LIOM structure. The two sets of contraints turns out to be
incompatible, and a compromise must be reached.

In this section, we take a detailed look at the relatively simple and physically relevant
SU(2) symmetry. Many constructions and arguments presented for this case, in particular
regarding the “fusion” of local degrees of freedom into nonlocalmultiplets, can inprinciple
be generalized to more complex Lie groups such as SU(# ≥ 3), whose representation
theory is “only” complicated by the appearance of multiple Dynkin labels rather than just
the total spin.

The result of the aforementioned symmetry–localization competition is yet to be un-
covered in its full generality. In this view, Section 2.4 is a first step in the direction of
gathering insightful information in an exemplary model, including a proposal for the
physical mechanism underlying the observed phenomenology.

2.3.1 Motivation: the Hubbard model with local disorder

The quantum Heisenberg model is described by the Hamiltonian

� = −�
∑
〈8 9〉

s8 · s9 , (2.27)

where B

8
= �


8
/2 is the spin-1

2 operator acting on site 8, and we use the vector notation s8 =(
BG
8
, B
H

8
, BI
8

)
for the internal degrees of freedom. This Hamiltonian is characterized by an

isotropic two-body interaction, motivating the alternative name ‘XXX’ for the Heisenberg
model in contrast to its partially or fully anisotropic generalizations, the XXZ and XYZ
models. The sum is carried out over first-neighbor sites in some prescribed interaction
graph, determining the dimensionality of the system.

As the name suggests, the Heisenberg Hamiltonian has been used as a description of
(anti)ferromagnetic materials since the early days of quantum mechanics [121]. The spin
variables are meant to represent the effective magnetic moments of the atoms interacting
with each other through a short-range interaction. The exact nature of the interaction
itself is left unspecified, only retaining the assumption that whatever is happening at a
fundamental level, the interaction energy can ultimately be considered, to a satisfactory
degree of approximation, to only depend on the dipoles’ mutual orientation. This is in
fact what one means by “magnetic interaction” in this context. As a matter of fact, the
actual magnetic dipoles of the atoms are not the only— nor themain—underlying source
of magnetic interactions in typical (anti)ferromagnets. Other mechanisms include spin–
orbit coupling and, especially, the Coulomb interaction between shallow electrons (in turn
classified into direct exchange, superexchange, etc.) [27].

Let us briefly discuss the Heisenberg Hamiltonian in its one-dimensional version. This
model was provided an exact solution by Bethe [43], whose technique was later harnessed
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to great effect for tackling other 1D statistical models [37]. The constant �, the only
parameter of the fully isotropic model, determines the energy units and can be set to 1 as
far as the spectrum is concerned. Its sign, however, determines the low-energy physics of
the system. If � > 0, the system is ferromagnetic: dipoles tend to align at low temperature
so as to maximize the total spin, as can be seen by rewriting the Hamiltonian in the form

� = −�
∑
8

[
(s8 + s8+1)2 −

3
2

]
, (2.28)

which implies that� isminimized by any statewhich is obtained by recursively combining
all pairs of neighboring spins into maximal-spin multiplets, thereby creating a maximal-
spin state in turn.16 If the number of spins is =, the maximal spin is =/2 and there are = + 1
ground states. This degeneracy reflects the high degree of symmetry of�, as we are free to
change magnetization sector without affecting the energy. Excitations over a ground state
are created by lowering the value of the total spin by 1, creating a quasiparticle (magnon).

Taking � < 0 gives instead the antiferromagnetic Heisenberg model, which can be
shown to have a unique ground state living in the " = 0 eigenspace of the total mag-
netization. This can be thought of as a sea of free magnons, and elementary excitations
are now understood as creating a different kind of quasiparticle (a spinon pair). At higher
energy, bound states of magnons can also be created. [108]

As is typical for one-dimensional spin models, an alternative interpretation of the
Heisenberg model is obtained by fermionizing the Hamiltonian via a Jordan–Wigner
transformation. The procedure is described in detail in Appendix A. Upon substituting

B+8 = B
G
8 + iBH

8
= ei�

∑
9<8 2

†
9
2 9 28 BI8 =

1
2 − 2

†
8 28 ,

with the {28}8 operators satisfying the canonical anticommutation relations {28 , 2†9 } = �8 9
and {28 , 2 9} = 0, the Heisenberg Hamiltonian is revealed to be equivalent to a model of
interacting fermions:

� = −�
∑
8

[
1
2

(
2†8 28+1 + 2†8+128

)
+

(
2†8 28 −

1
2

) (
2†8+128+1 −

1
2

)]
, (2.29)

where for simplicity we quote the form valid for open boundary conditions. In this
Hamiltonian, one can recognize a nearest-neighbor hopping term

− �2
∑
8

(
2†8 28+1 + 2†8+128

)
,

16This combination or “fusion” procedure will be fully explained in Section 2.3.3.
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a two-body interaction term, also nearest-neighbor,

−�
∑
8

2†8 282
†
8+128+1

and an extra on-site potential which at this stage merely provides an energy shift if one
restricts oneself to a fixed (conserved) total number of fermions.

A glassy version of Eq. (2.27) is obtained by treating the spin–spin couplings as
quenched random variables, resulting in the random-bond Heisenberg model (RBHM)

� = −
∑
8 9

�8 9s8 · s9 . (2.30)

In view of Eq. (2.29), the one-dimensional version of this model can be interpreted as a
fermionicmodelwith quencheddisorder, thoughunlike typical case studies for disordered
fermionic systems, the randomness enters the kinetic as well as the interaction term,
making the dynamics nontrivial even in the absence of interaction. 17

Indeed, one can do the opposite and start from a more familiar fermionic system to
motivate the study of Eq. (2.30). Consider a chain inhabited by twodistinct, but identically-
behaving, fermionic species, canonically anticommuting with each other, where fermions
can hop between neighboring sites and interact when sitting on the same site. This is the
Hubbard model [92, 123] describing correlated electrons in a solid, where a single band
is considered and the Coulomb interaction is simplified down to a contact interaction.18
Unlike the familiar Hubbard model, we consider a disordered version of the system with
random on-site energies (i.e. a site-dependent chemical potential) {�8}8 :

� = − C
∑
B=↑,↓

∑
8

(
2†8 ,B28+1,B + 2†8+1,B28 ,B

)
+*

∑
8

=8↑=8↓ +
∑
8

�8
(
=8↑ + =8↓

)
, (2.32)

17In a single-particle system it is possible to compute the energy-dependent Lyapunov exponent �(�) in
terms of the density of state �(�) via the Herbert–Jones–Thouless formula [122,250]

�(�) =
∫

�(�′) log|� − �′ | d�′ + const. (2.31)

One then has 〈G |�〉 ∼ e−�(�)G for an eigenstate of energy �, whichmeans that 1/�(�) is a localization length. In
the randomhoppingmodel, one finds a nonzero�(�) (i.e.Anderson localization) through the entire spectrum,
except for �(� → 0) → 0. This signals the presence of arbitrarily wide eigenstates at low energy (i.e. there is
no dynamical localization, in the language of Section 2.1.1). There is a nice correspondence between a chain
of noninteracting quantum particles and a classical system of coupled strings. The emergence of a delocalized
state at �→ 0 corresponds to the presence of a massless (Goldstone) zero mode in the classical system.

18Although this was not the case in the 1960s, it is nowadays possible to simulate the Hubbard model in
cold atom systems [93, 139]. These provide a controlled, tunable and upscaled environment which is ideal
to test the rich predictions of the model, such as the metal–insulator transition or the BEC–BCS crossover.
In these cold atom experiments, the Hubbard Hamiltonian is typically realized using two hyperfine levels of
alcaline atoms such as 6Li or 40K trapped in a laser array.
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where 2†
8↑ and 2

†
8↓ create the two kinds of fermion at site 8 and =8 ,B = 2†8 ,B28 ,B . Notice that �

separately conserves both fermionic numbers #↑, #↓, i.e. there is a U(1) ⊗ U(1) symmetry
in place. In fact, the Hubbard model has a much larger symmetry group, which most
notably includes the non-Abelian “flavor” SU(2) generated by the operators

(
 =
∑
8

(
8 , 
 ∈ {G, H, I}, (2.33)

where
(
8 =

1
2

∑
B,B′

2†8 ,B (�

)B,B′ 28 ,B′ (2.34)

({�
}
∈{G,H,I} being the Pauli matrices). One can verify that (G , (H and (I form a Pauli
algebra.

By performing the inverse of the Jordan–Wigner transformation quoted above19, we
can make Eq. (2.32) into a spin model of two XX chains with parallel ZZ couplings and
local longitudinal fields:

� = − C
∑
8

(
�+8 �

−
8+1 + �

+
8+1�

−
8 + �

+
8 �
−
8+1 + �

+
8+1�

−
8

)
+*

∑
8

�I8 �
I
8 +

∑
8

&8
(
�I8 + �

I
8

)
(2.35)

(up to a constant shift20), with the spin operators21 �0
8
and �0

8
mutually commuting and

&8 = �8 +*/2. At this point, one recognizes that the interaction part (line two in Eq. (2.35))
is quadratic in �I

8
+ �I

8
. Namely, we have

�inter = �(C = 0) = *

2

∑
8

�2
8 +

∑
8

&8�8 (2.36)

(again, constants aside), with �8 = �I
8
+ �I

8
= =8↑ + =8↓ − 1 = =8 − 1, a shifted version of the

operator =8 counting the total number of fermions currently present on site 8 regardless

19One needs to be careful in this case to properly define the transformation so as to account for both
fermionic species. The string operators in particular need to be defined correctly. A convenient way to do
so is to imagine that 2†

8 ,B
creates a (spinless) fermion at site (8 , B), and order the resulting 2! sites such that

(1, ↑) < · · · < (!, ↑) < (1, ↓) < · · · < (!, ↓).
20One also needs to assume that #↑ and #↓ are both odd, if periodic boundary conditions are enforced.

More generally, one needs to replace the 8 = ! term of the sum in the kinetic part with

Δ�PBC = +C
[
(−1)#↑�+

!
�−1 + (−1)#↓�+

!
�−1 +H.c.

]
.

21We employ the � notation to prevent confusion with the standard Pauli matrices, which differ from spin
operators by a factor of two.
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of their species. Operator �8 can be referred to as “charge”, because it measures signed
deviations from a state with exactly one fermion per site, the lack of a fermion being
interpreted as a (−1)-charged “holon” and the excess of a fermion as a (+1)-charged
“doublon”.

In the assumption that the total number of particles equals the number of sites, i.e.
assuming half-filling, the energetic cost for two opposite-spin electrons to sit on the same
site is* plus a correction from the site-dependent chemical potential. In the clean model,
the correction is zero and creating a doublon is always disadvantageous at C/* = 0.
Therefore, the ground manifold H0 is comprised of the 2! degenerate states of uniform
charge {�8 = 0, ∀8}. This is used as the basis of a perturbation theory in the kinetic term.
We can do the same here as long as we assume that the local fields {&8}8 are contained
inside some bandwith , which is much smaller than * . The subspace H0 is no more,
strictly speaking, a ground manifold, but it is still separated from the rest of the Hilbert
space by an insurmountably large energy barrier, and we are justified in considering the
dynamics confined to this subspace.

Out of the four possible states of the 8-th site Hilbert space,

|∅8〉 , |↑8〉 , |↓8〉 , |(↑↓)8〉 ,

only |↑8〉 and |↓8〉 are retained to span the desired subspace. Here |↑8〉 represents a spin-up
fermion at site 8, i.e. |↑8〉 = 2†

8↑ |∅8〉, and similarly for the other symbols. In spin language,
these are equivalent — up to unimportant signs from the Jordan–Wigner transformation
— to

|(++)8〉 , |(+−)8〉 , |(−+)8〉 , |(−−)8〉 ,
where e.g. the second state is a simultanous eigenstate of �I

8
and �I

8
with respective eigen-

values + 1
2 and −1

2 .
On half-filled states, the interaction term Eq. (2.36) vanishes identically and the kinetic

term, as projected onto H0, acts as an $(C2/*2) hopping term by first displacing a fermion
to a neighboring site — creating a virtual holon–doublon pair — and later restoring the
zero-charge condition by moving the other fermion (necessarily of opposite spin, as the
virtual transition would otherwise be Pauli-prohibited) to the original site:

|∅8 (↑↓)8+1〉

|↑8 ↓8+1〉 |↓8 ↑8+1〉 .

|(↑↓)8 ∅8+1〉

(2.37)

Performing the standard Rayleigh–Schrödinger perturbation theory reveals that the
effective perturbation

�
(2)
eff = +

1
�0 − �0

����
H ⊥

0

+ (2.38)
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Figure 2.3: The distribution of random couplings {�8}8 in the effective Heisenberg Hamiltonian,
Eq. (2.39), stemming from a uniform distribution of local fields {&8}8 in the Hubbard
model, Eq. (2.32).

(with �0 and + the interaction and kinetic parts of the Hamiltonian, respectively, and
�0 =

∑
8 �8 the unperturbed ground-state energy) is indeed equivalent to a random-bond

Heisenberg model (up to a constant shift) acting on fictitious spins-1
2 :

�
(2)
eff =

∑
8

�8s8 · s8+1 , (2.39)

where
�8 =

2C2*
*2 − (&8 − &8+1)2

(2.40)

is the effective coupling computed from the aggregate second-order transition amplitude
of processes Eq. (2.37) (namely the kinetic exchange [20]) and {s8}8 are spin-like operators
defined by their action on H0:

|(+−)8〉 |(−+)8〉2BI
8

B−
8

B+
8

−2BI
8
.

TheHamiltonian (2.39) describes therefore thedynamics of !fictitious spins interacting
isotropically with their neighbors. Adopting the Eq. (2.29) view, they can also be thought
of as fermions hopping on a chain through a nonuniformhoppingmatrix and experiencing
a disordered two- and one-body potential (the disorder in the interaction at one site being
perfectly correlated to the one in the hopping about the same site, as they are both specified
by �8). Notice how the global SU(2) symmetry of the Hubbard model survives in �(2)eff .

A few words are in order concerning the distribution of the effective couplings �8 . First
off, notice from Eq. (2.40) that all couplings are positive, corresponding to an antiferromag-
netic model. The second observation is that the distribution of �8 is induced from that of
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{&8}8 in a nontrivial way. For instance, if the &8 are uniformly distributed in [−,/2,,/2],
the marginal22 distribution for the �8 couplings is (Fig. 2.3)

%(�) = C2*

,�2

[(
1 − C2

*�

)−1/2
− *
,

]
C2

*
< � ≤ C2*

*2 −,2 , (2.41)

whichdivergeswith exponent−1/2 at theminimumpossible coupling � → C2

* , correspond-
ing to the “resonant” condition &8 ≈ &8+1, and decays monotonously until the maximum
possible coupling � = C2*

*2−,2 , corresponding to |&8 − &8+1 | =, .
As we will see shortly, the most relevant feature of this distribution is that it is singular

and with compact support. In Section 2.4, we will consider a simpler pdf with the same
relevant features. One can therefore view our following numerical analysis as having in
mind this uniform-disorder, half-filled Hubbard model as a reference point.

2.3.2 Low-temperature thermodynamics

The antiferromagnetic Hamiltonian (2.30) was first considered by Bulaevskii et al. [59] as a
model for certain organic molecules, such as complex salts of tetracyanoquinodimethane
(TCNQ), whose spatial structure can be regarded as a one-dimensional electronic channel.
In this work, the authors assumed that the fermionic counterpart of the model could be
described as a Fermi–Landau liquidwith a singular density of states �(&) at energy density
& → 0. The assumption allowed them to explain the magnetic phenomenology observed
in TCNQ complexes at low temperature, in particular the singular "()) ∼ )−
 dependence
(0 < 
 < 1) of the magnetic susceptibility.

Bulaevskii et al.’s assumptions admittedly rested on rather shaky grounds and were
later challenged by Theodorou and Cohen [247], who went on to propose an alternative
approach. However, it was not until Dasgupta and Ma [74, 164] entered the stage that
the problem was seen to a satisfactory end. They devised a form of spin decimation,
later named strong-disorder renormalization group (SDRG), that enabled them to study
the low-energy properties of the RBHM by hierarchically simplifying the problem’s in-
teraction graph. As is typically the case in decimation algorithms, the relevant feature of
this simplification is that it reduced the number of degrees of freedom while preserving
the form of the Hamiltonian, allowing the authors to define a flow in model space as
parametrized by the underlying coupling distribution %(�). The fact that the flow admits
an attractor implies the presence of universal low-energy properties.

The SDRG step proceeds as follows. Suppose that the coupling constants �8 are in-
dependent and distributed according to a compactly-supported pdf %0(�), 0 ≤ � ≤ Ω0.
We are considering a system in the thermodynamic limit, so that %0(�) is not simply the

22Notice that as both �8 and �8+1 depend on &8+1, the correlation between them is nonzero, so joint distribu-
tions are not products of their marginals.
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underlying distribution of the realization of couplings {�8}8 , but in fact coincides with the
empirical distribution of couplings. In particular, we haveΩ0 = max8 �8 . Now focus on one
pair of neighboring spins, say 1 and 2, whose coupling has the maximal value, �1 = Ω0.
Due to the independence assumption, it will almost always be the case that the couplings,
�0 and �2 immediately to the left and right of the pair will be smaller than �2. Suppose in
fact that they are considerably smaller,

�0 , �2 � �1 = Ω0 , (2.42)

which will typically be the case if %0(�) is biased toward small �, as in Fig. 2.3. Then,
it is possible to treat the four-spin system {s0 , s1 , s2 , s3} perturbatively in �0∨2/Ω0, where
�0∨2 = max{�0 , �2}, by considering the 1–2 interaction as an (easily solved) unperturbed
system and the “wing” interactions 0–1 and 2–3 as perturbations. Expressing the ground-
state energy of the four-spin system to second order in perturbation theory, one finds that
the low-energy properties of � are encoded into an effective Hamiltonian �eff with one
fewer pair of spins, in the sense that � and �eff share the same low-energy spectrum up
to order $(�2

0∨2/Ω2
0). This amounts to a decimation step where spins 1 and 2 are frozen

in a singlet — thereby contributing only a constant term in � — while spins 0 and 3 are
directly linked via a new coupling

�′0 =
�0�2
2Ω0

. (2.43)

Notice that �′0 is (much) less than both �0/2 and �2/2, further biasing the coupling distribu-
tion toward small �. Moreover, after performing this decimation for all maximally-coupled
pairs, the value Ω0 is no longer allowed for any of the remaining couplings, shifting the
maximum down to a new value Ω < Ω0.

The precise change in the distribution of couplings is described by the following
equation:

G
%%

%G
−Ω %%

%Ω
= %(1,Ω)Ω2

∫ 1

0
dG1dG2%(G1 ,Ω)%(G2 ,Ω)�

(
G − G1G2

2

)
, (2.44)

whereΩ is the “runningmaximum” of the distribution’s support, G = �/Ω the value of the
coupling normalized in [0, 1] and %(G,Ω) the distribution of normalized couplings when
enough decimation has taken place so that the currentmaximum coupling isΩ. The initial
condition is obviously %(G,Ω0) = %0(Ω0G). Notice that Ω can be rightfully interpreted as
the global energy scale of the system. The SDRG procedure is then “integrating out” the
high-energy degrees of freedom similarly to the ordinary Wilson renormalization group.

As previously mentioned, the SDRG procedure is expected to provide a good approx-
imation of the low-energy physics as long as the initial pdf %0(�) is not too skewed toward
large couplings, which would make assumption (2.42) collapse. The good news is that
once the decimation has started, the situation can only get better as the newly introduced
couplings are small by construction. Moreover, Dasgupta andMamention that even in the
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clean model %0(�) = �(� −Ω0), the value of the ground-state energy computed from SDRG
agrees to within ∼ 2% with the exact result. One expects the disordered case to always
behave better than the clean one, as the latter maximally violates assumption (2.42).

Although Eq. (2.44) cannot be solved exactly, an approximate analytical treatment as
well as numerical analysis show that the effect of the RG flow is for %(G,Ω) to generically
develop a singularity at small arguments. This is consistent with our intuition that each
RG step can only populate the support of the new distribution up toΩ/2, which is a strict
upper bound for �′ as seen from Eq. (2.43). The universal attractor is approximately a
power law,

%(G,Ω) ≈ 

Ω
G−1+
 (2.45)

with a small 
 > 0. This can be verified to be the case if %0(�) is itself a power law, and is
numerically found to hold for other initial distributions as well. Notably, %0(�) need not
be singular for a singular pdf to develop.

So far, the SDRG was applied to the study of the ground energy, or in other words, the
zero temperature scenario. A finite-� generalization is possible by applying the same per-
turbative idea to the free energy � = log/()) instead of the Hamiltonian. The decimation
step is then slightlymodified, though the spirit of the procedure does not change. It is even
possible to include the effects of a nonzero magnetic field, though the resulting equations
are much more complicated and elude any analytical considerations. In this way, Das-
gupta and Ma were able to show through semianalytical and numerical arguments that
their theory predicts a quasi-power-law behavior for the specific heat, the magnetization
and the magnetic susceptibility:

� =
1
)

d2�

d)2 ∼ )
�2 , (2.46)

"I = 〈(I〉 ∼ )�" , (2.47)

" =
1
!

d"I

dℎI =
〈S2〉
3!) ∼ )

�B−1 (2.48)

with �2 , �B and �" only containing a weak logarithmic dependence on ).
In Section 2.4.2 we will describe a variant of Dasgupta and Ma’s SDRG technique used

to study high-energy eigenstates in the same model.

2.3.3 SU(2) symmetry

The random-bond Heisenberg model, Eq. (2.30), possesses an internal SU(2) symmetry
groupgenerated by the spin algebra {(
}
=G,H,I , where (
 =

∑
8 B



8
is the total spin operator.

We now explain in some detail what this entails for the eigenstates of the system. In the
next section, we present two arguments suggesting that one of the consequences—namely
the presence of symmetry multiplets — prevents the coexistence of such a symmetry with
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MBL. The arguments naturally extend to SU(#) for any# ≥ 2 and in fact to all non-Abelian
groups.

The SU(2) symmetry of the Hamiltonian manifests itself as the two independent con-
servation laws23

[�, (I] = 0, [�, S2] = 0, (2.49)

which means that we can choose a basis in the Hilbert space of simultaneous eigenstates
of �, (I and S2. The corresponding quantum numbers are the energy �, themagnetization
" and the spin (.

The fixed-((, ") subspace is in general multidimensional, corresponding to several,
linearly independent ways of arranging spins-1

2 into a spin-( multiplet. For instance, four
spins can be combined in the two following orthonormal ways:

|#1〉 =
|↑↓〉 − |↓↑〉√

2
⊗ |↑↓〉 − |↓↑〉√

2
, (2.50)

|#2〉 =
1√
3

[
|↑↑↓↓〉 − |↑↓〉 + |↓↑〉√

2
⊗ |↑↓〉 + |↓↑〉√

2
+ |↓↓↑↑〉

]
, (2.51)

both of which have ( = " = 0. The source of this degeneracy can be appreciated in full
generality by recalling the composition rule for su(2) representations [70],

Γ(B1) ⊗ Γ(B2) = Γ(|B1 − B2 |) ⊕ Γ(|B1 − B2 | + 1) ⊕ · · · ⊕ Γ(B1 + B2), (2.52)

where Γ(B) denotes the unique (up to isomorphisms) representation of SU(2) of spin B,
namely, whose dimension is 3 = 2B + 1. Every direct summand denotes a different block
in the block-diagonal form of the product representation at the left hand side, i.e. we
are decomposing the representation in orthogonal invariant subspaces which cannot be
further reduced.

Eq. (2.52) describes the fusion of two spins B1 and B2. When the total spin B12 is specified
among all its possible values |B1 − B2 |, . . . , B1 + B2, the result of the fusion is a spin multiplet,
i.e. a (2B12 + 1)-dimensional vector space on which the quadratic Casimir S2 acts as the
multiplication by B12(B12 + 1). If the total magnetization <12 is also specified, a single state
is picked out, which may be explicitly realized as the appropriate linear combination

|B12 , <12; B1 , B2〉 =
∑
<1 ,<2

CG[B1 <1 ⊗ B2 <2 → B12 <12] |B1 <1〉 |B2 <2〉 , (2.53)

where CG[ · ] denotes the Clebsch–Gordan coefficients, which are known exactly for su(2).
We also employ the fusion tree notation

23We follow the standard convention of conserving the I- rather than the G- or H-component.
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1⊕ 2⊕ 3⊕ 4

1 2

2⊕ 3

3

2⊕ 3⊕ 4

4

(a) A generic tree.

1⊕ 2⊕ 3⊕ 4

1

1⊕ 2

2 3

3⊕ 4

4

(b) A perfect binary tree.

Figure 2.4: Two possible fusion tree structures for four particles. Labeling either of these trees in
compliance with the su(2) fusion rules (2.52) produces orthonormal states via (2.53),
and there is a unitary change of basis switching between the two “templates”.

B1 B2

(B12 , <12)

to depict the state (2.53).
A many-particle multiplet can be obtained by combining several fusions, with an !-

particle multiplet requiring ! − 1 fusions. This can be accomplished in several different
ways, corresponding to the different ways of decomposing a product of ! elementary
representations in binary products. Every decomposition gives rise to a distinct geometry
for the fusion tree. For example, a four-spin state can be obtained via the fusion

Γ(1/2) ⊗
((
Γ(1/2) ⊗ Γ(1/2)

)
⊗ Γ(1/2)

)
(2.54)

(Fig. 2.4a) or (
Γ(1/2) ⊗ Γ(1/2)

)
⊗

(
Γ(1/2) ⊗ Γ(1/2)

)
(2.55)

(Fig. 2.4b) or in a number of other ways.
Since the tensor product is associative, all fusions must provide the same product

representation

Γ(1/2) ⊗ Γ(1/2) ⊗ Γ(1/2) ⊗ Γ(1/2) = Γ(0) ⊕ Γ(0) ⊕ Γ(1) ⊕ Γ(1) ⊕ Γ(1) ⊕ Γ(3) (2.56)

up to isomorphism, i.e. all multiplets encoded by trees with the same total spin and the
same number of leaves are unitarily equivalent.24

When the value of the total spin ( as well as the leaves are fixed, there is only a specific
number of ways one can assign spin values to the internal nodes (called partial or block

24Leaves in a fusion tree correspond to physical particles, which we always assume to be spins- 1
2 .
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(s,m)

s1 s2

s3 s4 s5 s6

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

(a) A tree basis state.

(1/2, µ1) (1/2, µ2) · · · (1/2, µ8)

(b) A computational basis state.

Figure 2.5: Basis state representation of a system of 8 spins-1/2 using (a) the tree basis or (b) the
computational basis. In (a), the quantum numbers (B, <; B1 , . . . , B6) describe the spin
values of the partial fusions plus the total spin and total magnetization of the system.
In (b), the quantum numbers (�1 , �2 , . . . , �8) describe the individual magnetizations of
the physical spins.

spins) consistently with the su(2) fusion rules (2.52). Such a labeling, plus the specification
of the total magnetization ", singles out a specific state through formula (2.53), and the
set of all such states forms an orthonormal basis of the ((, ") sector of the !-particle
Hilbert space. This implies that the number of labelings is precisely the dimension of that
sector, and in particular it cannot depend on the tree structure. In fact, the number can be
computed exactly (Appendix B):

�!,(," =
2(2( + 1)
! + 2( + 2

(
!

!/2 + (

)
. (2.57)

The lack of an "-dependence in �!,(," should be obvious from the fact that all magneti-
zation subsectors in an (-multiplet have the same dimension (namely, one). In particular,
if one is only interested in fixing the total spin but not the magnetization, the resulting
dimension is simply �!,( = (2( + 1)�!,(," . One can verify that

∑
( �!,( = 2! (the sum

runs from ( = 0 to ( = !/2 if ! is even, and from ( = 1/2 to ( = (! − 1)/2 if it is odd).
We call a basis built by fusing spins with a fixed ((, ") a tree basis. This is to be

contrasted to the computational basis parametrized by the !magnetizations of the physical
spins. Both bases are parametrized by ! numbers, but unlike the computational basis, the
quantum numbers of the tree basis correspond to nonlocal observables— the partial spins
plus the total spin and magnetization. See Fig. 2.5 for a pictorial representation.

The advantage of using a tree basis is that all states built off of it will be invariant under
the same SU(2) group as the Hamiltonian, which can be exploited in several ways. We
mention but two applications.

Thefirst one is numerical: bybuildinganSU(2)-invariantHamiltonian suchasEq. (2.61)
directly in the treebasis, it is possible to restrict oneself to agiven ((, ")- or(-sectorwithout
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the need to first instantiate the full-space matrix, cutting down the memory requirements
by a large factor. For instance, fixing ((, ") to some $(!0) value causes the space dimen-
sion to scale as�!,(," ∼ 2!/!3/2 for large !, to be comparedwith the scaling�!," ∼ 2!/

√
!

achieved by only fixing the magnetization (which is a very simple and standard restric-
tion). An important caveat is that it is not always easy to compute brakets of operators
between tree states. Indeed, since tree bases are nonlocal, all operators possessing a nat-
ural tensor product structure in the computational basis, e.g. the spin operators, will not
be expressible by means of Kronecker products of smaller operators. Luckily, symmetry
considerations plus some heavy-duty algebra make it possible to compute brakets of 1-
and 2-spin operators on the tree basis via an efficient recursive formula (see Suppl. Mat.
of [212]).

The second one is the observation that the Hamiltonian’s eigenstates are expected to
be well approximated by tree states, at least in the strong-disorder regime. Wewill explain
exactly what we mean by that in Section 2.4.2, when discussing a generalization of SDRG
to the high-energy region of the spectrum. Under this assumption, eigenstates must have
a much smaller participation ratio with respect to some tree basis than the computational
basis. This will enable us to upper bound the entanglement entropy of the eigenstates
much more effectively.

2.3.4 Symmetry and localization

We now discuss whether a SU(2)-symmetric Hamiltonian may display conventional MBL
phases, or more accurately, whether the LIOM framework presented in Section 2.2 can
coexist with SU(2) multiplets. The analogous question for Abelian symmetries was an-
swered in the positive when it was established that a Z2-symmetric Hamiltonian such as
the disordered transverse-field Ising model [126], as well as some non-free-fermion aug-
mentations of it through next-to-nearest neighbor interactions [204] or a nearest-neighbor
transverse perturbation [145], can localize while preserving the spin-flip symmetry. At the
same time, all these models were shown to exhibit spin-glass ordering at low temperature
and strong disorder: as the relative strength of the spin–spin interaction is increased, the
Z2 symmetry is broken in the eigenstates without spoiling localization — an example of
MBL-to-MBL dynamical transition.

A different picture emerges when considering non-Abelian symmetries such as SU(2).
It was argued by Potter and Vasseur that it is impossible for a quantum state to display
any kind of non-Abelian symmetry while also admitting LIOMs [209]. The reason for this
is that non-Abelian symmetries come with nontrivial irreducible representations, namely
multiplets. Assume that LIOMs exist alongside a symmetry group �, acting on the
Hilbert spaceV⊗! via the appropriate product representation (hereV is assumed to be a
nontrivial single-particle representation space, e.g. the fundamental representation of su(2)
for spin-1

2 particles). Compatibility means that LIOMs and group generators commute
with each other; this implies that it is possible to find a system of eigenstates which are
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simultaneously labeled by a given set of LIOMs {�8}#8=1 and form a multiplet under the
action of the symmetry group. Alternatively, symmetry multiplets can be labeled by the
constant values taken by the LIOMs on them:

|#〉 = |�1 , . . . , �# ; 5 〉 ∈ V�1 ,...,�# , (2.58)

where V�1 ,...,�# is a representation space of dimension � and 5 spans the multiplet’s
degeneracy, 5 ∈ {1, . . . , �}.

Given such a state |#〉, and provided � > 1, it is possible to act on it via a symmetry
transformationwhich will transform it into a distinct state (i.e. act on the quantum number
5 ) without changing its energy or any of the LIOMs. Moreover, the symmetry action is
local. This can be proven by the following argument: suppose there exists a reference
eigenstate |#0〉 which is symmetry-invariant, i.e. living in a � = 1 singlet. Then, changing
the value of a single LIOM, say �0 ↦→ �′0 , will in general define a � > 1 multiplet, whose
states will only differ from |#0〉 on the support of the 0-th LIOM, which is exponentially
localized by definition. Therefore, whatever the symmetry does on the states of this
multiplet, it can only change them within that support, i.e. the symmetry acts locally on
the eigenstates.

The above argument entails that in the simultaneouspresence ofmultiplets andLIOMs,
local degeneracies are bound to emerge. In particular, as the number of LIOMs is extensive,
we expect an exponential number of them. This generically prevents a putative localized
state from being stable. The conclusion is that non-Abelian symmetries must either break
or be broken by localization. Notice that Abelian symmetries are safe from this argument
as then 3 = 1 always.

An alternative argument proceeds from considering the bipartite entanglement en-
tropy ofmultiplet states [212]. Consider two separate spin chainswhich are joined together
by switching on a local coupling at C = 0. Assuming SU(2) symmetry, each eigenstate of
the disconnected system is a product of two states belonging to two separate multiplets,

|#(C < 0)〉 = |#!〉 ⊗ |#'〉 , |#!/'〉 ∈ V!/' , (2.59)

of respective spins B! and B'. With no loss of generality, we can suppose that B! ≥ B'.
After switching on the coupling (which is assumed to respect the global symmetry), the
new eigenstates must transform as a new multiplet with some definite value ( of the total
spin, B! − B' ≤ ( ≤ B! + B', and magnetization ". We can think of |#(C < 0)〉 as a pair of
fusion trees which are later conjoined at the top level into a single tree at C = 0.25

The generic fusion of two multiplets is a state with $(B') nonzero coefficients, so one
should expect an $(log B') value for the half-chain entanglement entropy. Since a typical

25In general, a fixed-((, ") eigenstate will be obtained by joining several different combinations of left-
and right-multiplets. However, considering more than one left–right pair can only increase the entanglement
entropy. As we are interested in lower-bounding the entropy, we can restrict ourselves to the simplest case of
a single multiplet pair.
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eigenstate has B' ∈ $(!1/2), this implies a generic $(log !) scaling of the entanglement
entropy, violating the area law predicted by the LIOM scenario. Notice that, in the
assumption that fusion trees are true eigenstates of the system, the partially-fused spins
(i.e. the spins labeling the internal nodes of the trees) are an extensive set of exact constants
of the motion, playing a role similar to LIOMs in actual MBL systems. The difference is
that, while many partial spins have a small spatial support — namely, the ones located
close to the leaves—weneed some highly nonlocal spins aswell in order to form thewhole
tree. For instance, the top spin (the one “trivially conserved” by the global symmetry) has
a support spanning the entire chain. In fact, we show in Appendix C.2 that the average
support size of a partial spin in a random fusion tree is $(log !).

It is worth pointing out that the outlined arguments are both referring to situations
where the eigenstates under considerations retain the full symmetry of the system (or at
least a non-Abelian subgroup thereof). In general, the presence of a non-Abelian symmetry
group � for the Hamiltonian only means that it is possible—not mandatory— to choose a
�-symmetric eigenbasis. However, less symmetric eigenstates may be constructed as well,
to which the above arguments do not apply.

For example, consider a pair of uncoupled Anderson chains, with identical disorder
on the corresponding sites:

� = −C
∑
8 ,B

(
2†8 ,B28+1,B + 2†8+1,B28 ,B

)
+

∑
8 ,B

&82
†
8 ,B28 ,B , (2.60)

where B is a label for the two chains, say B ∈ {↑, ↓}. The model Eq. (2.60) has an SU(2)
“flavor” symmetry that mixes the two kinds of fermions, just as seen for the Hubbard
model Eq. (2.32) (fromwhich Eq. (2.60) is obtained by setting* = 0). However, it is clearly
possible to construct eigenstates by just taking the product of two eigenstates of the two
different chains, both of which are known to be Anderson localized for any value of the
disorder. In this way, “trivially localized” eigenstates of the model can be exhibited in
spite of the SU(2) invariance.

A less trivial case of localized states in SU(2) symmetric models can be found in the
interacting Hubbard model, which in fact admits exponentially large invariant subspaces
within which the dynamics is Anderson localized [127]. In both cases, no contradiction
with our stated arguments obtains, as the eigenstates undergoing localization are always
contained in a sector of the Hilbert space where the non-Abelian symmetry, due to the
presence of a globalZ2 (28 ,↑↔ 28 ,↓)which is incompatiblewith the full rotational symmetry,
is broken down to an Abelian U(1).

From the two arguments presented above, not to mention experimental [224] and
numerical [210, 268] evidence for the existence of non-ergodic behavior in the disordered
Hubbard model, Eq. (2.32), we conclude that highly symmetric systems must fail to fully
localize. That said, it is not clear what kind of phenomenology we should expect as
a consequence of this failure. Do these systems eventually thermalize, or is it possible
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that some exotic phase emerges, characterized by strongly subthermal (yet non-area-law)
eigenstate entropy and slow dynamics? In order to shed some light on the nature of
systemswith symmetry-enforceddegeneracy and seek at least a partial answer to the above
questions, we now delve into a thorough investigation of the random-bond Heisenberg
model.

2.4 Case study: the random-bond Heisenberg model

Wewill see that all ourfindingspoint toward the existence in thismodel of a broad, peculiar
non-ergodic regime in which the system’s eigenstates are well described by eigenstates
which obey neither ETH nor the usual LIOMpicture. The system is expected to eventually
thermalize through the emergence of multispin resonances, but at such length and time
scales as to be practically inaccessibly by cold-atom experiments. The proposed picture
for the regime, including the crossover to ETH, is illustrated in Fig. 2.6.

2.4.1 Preliminary definitions and remarks

The model we study is the one-dimensional random-bond Heisenberg model (RBHM),
described by the Hamiltonian

� =

∑
8

�8s8 · s8+1. (2.61)

The couplings �8 are quenched randomvariables identically and independently distributed
on [−1, 1] according to the probability distribution

%(�) = 
 �H (1 − |� |)
2|� |1−
 , (2.62)

(with �H the Heaviside theta function) which we average over using double brackets:

J-K =
∫ (∏

8

%(�8)d�8

)
-(�1 , . . . , �!). (2.63)

As discussed in Section 2.3.2 (cf. in particular Eq. (2.45)), a distribution of the form
Eq. (2.62) emerges in a naturalwaywhen considering the effective low-temperature regime.
A noteworthy difference between our choice of distribution and the Dasgupta–Ma univer-
sal attractor is that our pdf is symmetric around � = 0 rather than purely antiferromagnetic;
in more generality, we could use a parameter 0 ≤ � ≤ 1 to tune the fraction of AFM-to-FM
couplings in the system. However, since we are interested in the properties of highly
excited eigenstates in the middle of the many-body band, where entropy completely dom-
inates energy, we do not expect these properties to exhibit a significant dependence on the
choice of �,26 so our choice falls on the unbiased value � = 0.5.

26It is known that not even the ground state properties depend strongly on the value of �, except for the
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Figure 2.6: (a) A cartoon of the ground state of a random antiferromagnetic Heisenberg chain; (b)
Strong-disorder renormalization group aims to construct approximate eigenstates. It
yields a tree state, characterized by its geometry and the choice of total block spins at
each node (see main text). The Heisenberg Hamiltonian, written in this basis, gives
rise to processes which can change the spins along the fusion path connecting two
neighboring spins, to one of the block spins; (c) A schematic dynamical phase diagram
of the random Heisenberg model. There are three regimes: (I) at short length scales,
! < !1(
), the SDRG tree states are accurate approximations to the eigenstates; (II) at
intermediate length scales, !1(
) < ! < !erg(
), there are resonances but the system
remains non-ergodic; (III) above some large length scale ! > !erg(
), the resonances
proliferate and the system becomes thermalizing (see Section 2.4.4 for a definition of
these scales).



The random-bond Heisenberg model 61

The parameter 
 > 0, which determines the power-law tail behavior of %(|� |), also
controls the strength of the quenched disorder in the following sense: one can see from
Eq. (2.62) that the ratio of two neighboring couplings in the system has a typical value

|�1∨2 |
|�1∧2 |

����
med

= 21/
 , (2.64)

where �1∨2 (�1∧2) is the maximum (minimum) between �1 and �2 and -med is the median of
-.

The ratio (2.64) increases exponentially when 
→ 0+. Therefore, at small 
 it becomes
more and more likely to find exchange constants in the system that are much larger than
the two neighboring ones. This is exactly the “strong disorder” condition that enables
SDRG, as we discuss below.

Another quantity of interest is the smallest coupling � (in absolute value) in the whole
system, representing the “weakest link”. We find that

min
8
|�8 | ∼

Γ(1/
)

!1/
 . (2.65)

For 
 = 0.3 and ! ≈ 20, this coupling can be as small as 10−3J�K.
Throughout the paper it will be helpful to contrast our findings to the properties of

the random field XXZ model, which has been studied extensively in the literature (see
Refs. [2, 14, 199] for recent reviews):
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Themodel (2.66) can bemapped, via Jordan–Wigner transformation (AppendixA), onto an
interacting fermionic problem with C representing the hopping amplitude,* the nearest-
neighbor interaction, and ℎ8 the random on-site potential with a variance that we denote
by, . In the following, for concreteness, we will assume that C ∼ * , such that the disorder
strength is described by a single dimensionless parameter !, = ,/C. Then, the XXZ
model is known to have a diffusive–subdiffusive dynamical transition at !, ≈ 0.55 [270]
and an MBL–thermal transition at !, ≈ 3.5 [162].

In the limit of strong disorder,, � C, the parameter !, can be interpreted as a typical
distance between (rare) pairs of “resonant” sites in the model that happen to have close
enough values of the magnetic field to enable resonant spin exchange (or, equivalently,
hopping in the fermionicmodel). A resonance between spins 1 and 2 appears, for example,
if |ℎ1 − ℎ2 | . C. Starting at a very large disorder these resonant sites are typically well
separated by distances of $(!, ), and one can show that they will not mix at any order of
perturbation theory [128,129]. By “mixing” wemean that the resonant pairs can exchange

extremal points � ∈ {0, 1} [263].
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energy and become strongly entangled in the eigenstates. The fact that resonances are rare
and isolated at !, ≥ 3.5 is intimately related to the low, area-law entanglement scaling
of eigenstates, and the existence of a complete set of LIOMs [125, 219, 227, 228, 260]. As
the disorder strength is decreased, the resonant pairs of spins eventually become mixed,
forming a connected network; then, LIOMs are destroyed, becoming nonlocal, and the
system exits the MBL phase.

What is the proper quantitativemeasure of disorder strength in an SU(2) symmetric spin
chain? The estimate (2.64) for the typical ratio of the neighboring couplings in aHeisenberg
chain suggests that the disorder experienced by the system becomes exponentially large
in 1/
. Therefore, naïvely one could expect that, similar to the case of the random field
XXZ chain, where !, ∝ , , a length scale ! ∝ e1/
 (the inverse of the typical ratio of
neighboring couplings) would determine the density of rare resonances. However, as we
show in Section 2.4.4, another measure of disorder is in fact important. Specifically, one
can introduce a length scale !1(
)with a meaning similar to that of !, in the XXZ model,
Eq. (2.66): !1(
) defines a typical distance between local resonances in the system. This
length scale diverges when 
 goes to zero but, in contrast to the typical ratio of couplings,
Eq. (2.64), only polynomially in 1/
. Our numerical findings below are consistent with
!1(
) ∝ 
−0.4.

If the usual MBL scenario applied here, some !c ∈ $(!0) would exist such that, if
!1(
) ≥ !c the resonances would not proliferate and the novel non-ergodic phase would
be stable. Instead, the entanglement pattern of eigenstates, aswell as the nonlocal nature of
some integrals ofmotion induced by SU(2), lead to the eventual proliferation of resonances
at any disorder strength, and so for any value of !1(
), provided the system is sufficiently
large. Thus, another scale marking the crossover from the localized to the ergodic phase
emerges. We denote this length scale, where ergodicity is restored, by !erg(
). Below,
we provide strong evidence for the delocalization scenario described above. In systems
with relatively weak disorder, the length scale !erg(
) manifests itself e.g. in the level
statistics and ETH violation for matrix elements of local observables that we study via
exact diagonalization (see Section 2.4.3 for details). At stronger disorder, no tendency
towards ergodicity restoration can be observed in ED studies due to size limitations.
However, a detailed analysis of the resonant processes (see Section 2.4.4) allows us to
estimate !erg(
) in this case as well.

2.4.2 SDRG for excited states

In this section, we qualitatively describe the SDRG approach to disordered Heisenberg
chains—redirecting the interested reader to the relevant literature—anddiscuss theprop-
erties of the tree states it yields. We emphasize that such states differ from conventional
MBL states in two crucial aspects: first, they have a parametrically larger entanglement
entropy, and second, one cannot define a complete set of LIOMs for them.

A very large typical ratio of two neighboring couplings found for small 
, Eq. (2.64),
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Figure 2.7: Amultiplet of eigenstates predicted by the SDRG for a system of 12 spins- 1
2 . The leaves

of the tree represent the physical spins. The tree describes the way these spins are
fused into larger block spins over the course of the SDRG. The numbers in the nodes
indicate the resulting partial spins. The value in the top node (marked red) is the total
spin ( of the system (( = 1 in the present example). ( is an exact integral of motion.
(2(+ 1) different states in the multiplet can be distinguished by additionally specifying
the projection of the spin in the top node to the I-axis.

suggests that the properties of the system can be described using the SDRG framework.
The idea of SDRG is to identify a local “grain” in the system that is strongly coupled
inside, but, due to strong disorder, only weakly coupled to the rest of the system. The
state of the grain is then approximated by one of the eigenstates of its Hamiltonian, with
the rest of the system decoupled. If one is looking for the ground state, the eigenstate of
the grain is chosen to be its ground state. Alternatively, if one is interested in constructing
a random highly excited eigenstate that is effectively at infinite temperature — as we are
in the present discussion — some eigenstate of the grain is randomly chosen. Then, the
effective Hamiltonian of the system in which the grain is in the chosen eigenstate (or, more
generally, a multiplet of states if symmetries dictate degeneracies in the spectrum of the
grain’s Hamiltonian) is calculated by perturbation theory in the grain–system coupling.

One can then iterate this procedure, assuming that the disorder in the effective Hamil-
tonian remains strong. This is indeed the case for, e.g., ground states of random antifer-
romagnetic (AFM) Heisenberg chains [106]. Then, a repeated application of the SDRG
rules results in an approximate wave function of the whole system, obtained by “patching
together” the wave functions of the grains.

An in-depth discussion of the SDRG rules for excited states of theHeisenberg chain can
be found in Refs. [8, 213], to which we refer for the details. Qualitatively, for this system a
grain is a pair of neighboring spins coupled by a strong bond; its eigenstates (which come
in SU(2)multiplets) are labeled by the total spin of the grain. The SDRGprocedure replaces
such spin pairs by effective (typically larger) spins, i.e. it assigns some total spin to larger
and larger blocks of spatially contiguous spins in the system. The resulting approximation
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for an eigenstate (more precisely, for a degenerate symmetry-enforcedmultiplet27) is a kind
of a tree tensor network, illustrated in Fig. 2.7. The nodes of the tree represent the block
spins identified in the SDRG process. The structure of the tree reflects the order in which
the elementary spins of the system should be fused to give an (approximate) eigenstate.

The fusion of spins in the course of the SDRGmust be supplemented by a perturbative
account of the interaction of merging spins with the rest of the system. In the present
setting of an infinite-temperature SDRG, where spins typically fuse into non-singlet states,
a first-order perturbation theory (that simply amounts to the projection of the fusing spins
onto the direction of the total spin) suffices inmost cases. The resulting renormalization of
couplings is weaker than the one that occurs in the low-temperature SDRG for AFM spin
chains,where the spins always fuse into singlets, and therefore a second-order perturbative
treatment is required to find new renormalized couplings (see Appendix A in [213]). Still,
the distribution of couplings developed in the course of SDRG turns out to be broad (see
Ref. [8] and below).

As mentioned in Section 2.3.4, within the SDRG approximation the values of the
block spins label the eigenstates of the Hamiltonian and bear similarity to the LIOMs of
the conventional MBL phase. An eigenstate of the Hamiltonian is also an eigenstate of a
sequence of these operators, just as an eigenstate of anMBLHamiltonian is simultaneously
an eigenstate of each LIOM. However, there are two major differences between these
quantum numbers and LIOMs.

First, in the MBL phase the eigenstates of � are at the same time eigenstates of a fixed
set of LIOMs. Total spins of the blocks in our problem would form conserved operators
if different eigenstates were represented by geometrically identical trees, which differ only
in the values of the block spins. In reality, the order in which spins are merged over the
course of SDRG depends not only on the particular disorder realization, but also on the
eigenstate of the grain, which is randomly picked at any given step of the SDRG. Thus,
the values of the block spins, in general, cannot be promoted from labels of a particular
eigenstate to operators acting in the full Hilbert space. The structure of larger blocks
depends on the history of choosing total spins at the earlier steps of SDRG.

Second, LIOMs in an MBL system are quasilocal, exponentially localized in space
operators [126,227,228]. In contrast, the block spins of the strongly disorderedHeisenberg
chain have a hierarchical structure. While some of them (living near the bottom of the
tree) can be expressed in terms of an $(!0) number of the original spin operators s8 , the
other ones, found at the higher levels of the tree, are highly nonlocal in terms of the
original spins. Thus, SU(2) symmetry forces some integrals of motion to become nonlocal.
Therefore, SDRG (in the regime of its validity) describes a non-ergodic phase of a new
kind, with a partial, rather than complete set of LIOMs. Our goal is to investigate the

27As most properties of the states comprising a multiplet are actually independent of the particular state
and depend on the multiplet alone, throughout our discussion we often refer to SDRG trees as specifying a
single quantum state. One may assume, for example, that in each multiplet we focus on the state with " = 0
(1/2) if the length of the system is even (odd).
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stability of this putative phase.
The peculiar non-ergodic character of tree eigenstates manifests itself in the scaling of

entanglement entropy. For simplicity, we will consider the entanglement entropy of an
eigenstate with respect to the a cut in the middle of the chain,

Sent(!/2) = −Tr(�!/2 log2 �!/2), (2.67)

where �!/2 is the reduced density matrix of half-chain in the chosen eigenstate and the
trace is taken over the degrees of freedom in the other half of the system. A bound for the
entanglement entropy depends on the tree structure describing a given state, in particular,
on the tree height ℎ (the number of levels between the very top node of the tree and the
physical spins). We find, via numerical simulations, that typical states produced by the
SDRG procedure have a logarithmic height, ℎ ∝ log !. It is then possible to show (see
Appendix B in Ref. [213]) that the entanglement entropy of a single typical28 tree satisfies

21 log2 ! . Sent(!/2) < 22 log2
2 !, (2.68)

where 21 and 22 are numerical constants of order unity that depend on the statistical
properties of the tree. Thus, the entanglement of tree states scales faster than the area
law found in MBL, but significantly slower compared to the thermal entanglement for an
infinite-temperature state, Sth(!/2) ≈ !/2 (measured in bits).

The upper bound on the entanglement entropy in Eq. (2.68) can also be generalized to
the case when the state in question is not a single tree state but rather a linear combination
of =T tree states:

Sent(!/2) < 22 log2
2 ! + log2 =T. (2.69)

Although this bound might seem weak, it has an important implication, which will be
used below: if the system’s eigenstates become ergodic, they must be represented by an
exponentially large number of tree states.

Validity of SDRG and (in)stability of the tree states

The SDRG is a heuristic real-space renormalization procedure relying on strong disorder.
The tree states generated by SDRG are not exact eigenstates of the Heisenberg spin chain,
but how accurate are they? Historically, at each step of SDRG one checks that the disorder
in the effective Hamiltonian remains strong, such that strong couplings can be found; one
can then check for the absence of resonances involving a small number of spins, to make
sure that the neglected processes do not destroy the tree structure. While for the analysis
of ground states this is often sufficient, it is unclear whether such tests can guarantee the
accuracy of SDRG for the excited states.

28The upper bound on the entanglement entropy in Eq. (2.68) holds in fact for all the states described by
trees of logarithmic depth.
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Below we will check the validity of SDRG for excited states using several approaches.
First, wewill compare SDRGtree states to the exact eigenstates for systemsizesup to ! = 26,
obtained numerically. We will use a number of measures, such as level statistics, and the
eigenstate thermalization hypothesis (ETH) and its breakdown. Second, to describe large
system sizes, we will develop an approach to account for many-body processes that are
usually neglected in SDRG, and to test their relevance. We introduce this approach
qualitatively now, and we will apply it in what follows.

Suppose that SDRG yielded some tree state |Ψ0
RG〉, specified by the tree geometry and

the choice of partial spins in each node. Instead of considering the effective Hamiltonian
at every step, we can write the original Hamiltonian exactly in the basis of tree states with
the geometry identical to that of |Ψ0

RG〉. The first key observation is that the selection rules
imposed by symmetry facilitate the analysis of the relevant processes; more specifically,
the block spins along the fusion path of two contiguous physical spins can only change by
Δ( = 0,±1.29 The second observation is that, given that the typical spins of larger blocks
grow (as the square root of the block size30), the tree states connected to |Ψ0

RG〉 by the
Hamiltonian are expected to have the same geometrical structure. This is because for large
spins, strong bonds remain strong when a value of some spins is changed by Δ( � (.

We search for resonances between different tree states and characterize their properties.
Solving the full eigenvalue problem for large ! is hopelessly complicated; thus, we focus on
low-order resonances. Effectively, we check whether the Hamiltonian hybridizes a given
tree state with its neighbor, say |Ψ1

RG〉 (a neighbor is a state such that 〈Ψ1
RG |� |Ψ

0
RG〉 ≠ 0).

As long as the probability of finding resonances is sufficiently low, we expect the true
eigenstates to be localized in the tree basis. This corresponds to a non-ergodic phase (or
regime, if it only occurs for sufficiently small system sizes). Alternatively, if there are
many resonances which proliferate, it is natural to expect the SDRG to break down and
the system to become ergodic.

It is instructive to draw parallels with the conventional MBL phase of the strongly
disorderedXXZspin chain in a randommagnetic field. The caricature ofMBLeigenstates is
just product states with awell-defined BI

8
projection for each spin. While corrections to this

picture certainly exist (e.g. LIOMs are not strictly equal to BI
8
operators) we know that MBL

is stable, if the disorder is sufficiently strong. Our aim is to understand whether for SU(2)-
symmetric chains tree states, with their built-in correlations and unusual entanglement
properties, can be stable, representing a dynamical phase distinct from both MBL and
ergodic phase.

Below we will use the above approach to reveal a broad non-ergodic regime where
tree states are indeed stable. We will also provide evidence that trees eventually become
unstable above a certain (
-dependent) system size for all values of 
 that we study. We

29Additionally, spins should be non-negative, and the 0→ 0 transition is forbidden, as is well-known from
optics. These rules all follow from the fusion of spins, Eq. (2.52).

30This is for purely entropic reasons. At infinite temperature, the probability to pick a given spin ( is
proportional to �!,( , which is maximal at ( ∈ $(

√
!).
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! full " = 0 ratio to full ( = " = 0 ratio to full

10 1 024 252 24.61% 42 4.10%
12 4 096 924 22.52% 132 3.22%
14 16 384 3 432 20.95% 429 2.62%
16 65 536 12 870 19.64% 1 430 2.18%
18 262 144 48 620 18.55% 4 862 1.85%
20 1 048 576 184 756 17.62% 16 796 1.60%
22 4 194 304 705 432 16.82% 58 786 1.40%
24 16 777 216 2 704 156 16.12% 208 012 1.24%
26 67 108 864 10 400 600 15.50% 742 900 1.11%

Table 2.2: Direct comparison of the Hilbert space dimension of a system of ! spins- 1
2 , without

restriction and restricted to the " = 0 and ((, ") = (0, 0) sectors. The general formulas
are respectively given by �! = 2!, �!," =

(
!

!/2+"
)
and Eq. (2.57). See also Fig. B.1 and

the surrounding discussion for further comparison.

therefore propose the picture that, while for finite systems the dynamics is non-ergodic at
strong disorder, ETH should be recovered in the thermodynamic limit (see Fig. 2.6).

2.4.3 Exact diagonalization

We now present our numerical results from exact diagonalization. The code was imple-
mented in collaboration with Rajat K. Panda under the supervision of Antonello Scardic-
chio at ICTP, and run on a CINECA supercomputing cluster. Large sizes (! = 26) were
made accessible by a powerful combination of parallelization and the dimensional reduc-
tion from constructing the Hamiltonian within the fully SU(2)-symmetric ((, ") = (0, 0)
sector of the Hilbert space31 (see Table 2.2). However, we omit large-! data when the
statistics is insufficient for the analysis. In particular, for ! = 26 we could only accumulate
about ten disorder realizations, therefore that system size is expunged from almost all
data.32 All the other system sizes have at least hundreds of samples per data point.

The SRDG and resonance-counting procedures, including the following stability anal-
ysis of tree states up to ! = 20, were implemented and run by Ivan Protopopov under the
supervision of Dmitry Abanin.

31The ((, ") = (1, 0) sector was also probed, with qualitatively identical results.
32The memory requirement for mid-spectrum diagonalization at large Hilbert dimensions 3 is very de-

manding, scaling approximately as 5 (3) ∼ 031 with 0 = 3.4 × 10−8 GiB, 1 = 1.9. The actual memory usage
totaled roughly seven terabytes for an ! = 26 instance.
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Probing the stability of tree states

To analyze the accuracy of the SDRG procedure, we first study the participation ratios
of exact eigenstates of the system Eq. (2.61)) in the tree basis generated by SDRG. More
precisely, for a given disorder realization {�8}8 , we first run the SDRG to generate a single
tree state |Ψ0

RG〉 with a total spin (. A complete basis of states in the sector with a given
total spin ( (and total magnetization ") can be built out of |Ψ0

RG〉 by fixing the geometry
of the underlying tree, but allowing the block spins in the tree (apart from the top one,
() to take all possible values consistent with the angular momentum addition rules. We
denote the basis obtained in this manner by

{|Ψ0
RG〉}0=0,...,�!,(,"−1 , (2.70)

where ! is the length of the chain and �!,(," is the dimension of the sector, given by
Eq. (2.57).

The state with an index 0 = 0 is the original SDRG state, |Ψ0
RG〉. In general, due to the

correlations between the geometric structure of the tree and the values of the block spins
discussed in Section 2.4.2, many of the states in the basis (with indices 0 > 0) would not
be approximate eigenstates constructed by the SDRG. We expect, however, that at strong
disorder the geometry of the tree that corresponds to the state |Ψ0

RG〉 is also appropriate
for a number of other SDRG states that do not differ too much from |Ψ0

RG〉 in the values of
the block spins. In that case, a significant fraction of |Ψ0>0

RG 〉 are in fact “SDRG eigenstates”.
We then perform an exact diagonalization of the Hamiltonian in the basis (2.70). 33

Among all the eigenstates of the Hamiltonian we focus on a single one, denoted by |�〉,
that has maximum overlap with a given |Ψ0

RG〉. The quality of |Ψ0
RG〉 as an approximation

to |�〉 can be quantified by the inverse participation ratio (IPR) of the state |�〉 in the SDRG
basis (2.70):

�� =

�!,(,"−1∑
0=0

��〈� |Ψ0
RG〉

��4 , (2.71)

and by its inverse #� = 1/��, which can be viewed as the number of tree states |Ψ0
RG〉 (of a

given geometry) that one needs in order to represent the eigenstate |�〉. Thus, small values
of #� ∼ 1 indicate that the SDRG is accurate, while a very large #� � 1 signals instability
of the tree states.

Computing the participation ratio #� for 103 disorder realizations {�8}8 (and a single
random SDRG state |Ψ0

RG〉 per realization), we investigate the statistical properties of this
quantity. We performed numerical simulations for the disorder parameter 
 ranging from

 = 1.2 (weak disorder) to 
 = 0.3 (strong disorder). The results are summarized in
Figs. 2.8 and 2.9. Figure 2.8 shows examples of the distribution of log10 #� for different
system sizes and two different disorder strengths. We observe that in short systems,

33Explicit expressions for thematrix elements of the operators s8 ·s9 in a tree basis were derived in Ref. [212].
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Figure 2.8: Statistics of log10 #� for 
 = 1 (left panel) and 
 = 0.3 (right panel). Different curves
correspond to different system sizes, ! = 10, ! = 16 and ! = 20 (see legend).

! = 10, |Ψ0
RG〉 is very close to an exact eigenstate even for weak disorder, 
 = 1, in the sense

that #� ∼ 1. Upon increasing the system size #� grows, signaling that approximating the
eigenstate |�〉 with a tree state |Ψ0

RG〉 becomes less accurate.
The evolution of the typical value of #� (defined as eJlog#�K) with the system size is

illustrated in the top panel of Fig. 2.9. Interestingly, even in the weak disorder regime,

 = 1, and for the largest system size ! = 20, the typical #� ≈ 25 remains small compared
to the dimension of the Hilbert space �!,(," . The latter depends on the spin sector (,
which is chosen at random in the present analysis. The SDRG procedure we use generates
states with different ( in accordance with their probability in the infinite temperature
ensemble, %(() ∝ (2( + 1)�!,(," . For ! = 20 the most frequently encountered value of (
is 3, corresponding to the Hilbert space dimension �20,3,0 = 38 760. Moreover, for 90% of
the SDRG states ( ≤ 5 and �20,(," ≥ 10 659. The length dependence of the typical Hilbert
space fraction occupied by the energy eigenstate |�〉 in the tree basis, eJlog(#�/�!,(," )K, is
shown in the bottom panel of Fig. 2.9.

It is instructive to compare the above findings to the behavior of the IPR in the product
state basis for the conventional MBL phase. Viewing MBL as a kind of Anderson localiza-
tion in the Hilbert space, one might naïvely expect that in the MBL regime the eigenstates
would exhibit system-size independent IPR, #� & 1. It is known [14,36,77,162], however,
that in reality MBL eigenstates are rather fractal when viewed in the product-state basis:
the participation ratio #� scales as #� ∝ 3� ∝ 2�! with an exponent that depends on
disorder strength. The fractal behavior stems from perturbative corrections, and reso-
nances discussed at the end of Section 2.4.1 (or, equivalently, it is due to the fact that local
integrals of motion have support over more than one lattice site). In the strong disorder
limit, � ∝ C/, = 1/!, � 1. The MBL transition is thus marked not by the emergence
of the growth of #� with the system size, but rather by a jump of the exponent � to its
thermodynamic value, � = 1 (at infinite temperature).
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Figure 2.9: Typical number #� of tree states participating in the eigenstate |�〉 (top) and the typical
value of the fraction#�/�!,(," (bottom) versus the system length for different strengths
of disorder (see legend). The dashed lines in the top panel represent the exponential
fits #� ∝ 2!/!̃1(
).
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The behavior shown in Fig. 2.9 for the Heisenberg chain is qualitatively similar. At
strong disorder, 
 ≤ 0.8, the dependence #�(!) for the available system sizes can be
approximated by an exponential fit, #� ∝ 2!/!̃1(
) (see dashed lines in the top panel
of Fig. 2.9; the corresponding values of the fitting parameter !̃1(
) are indicated in the
legend). The length !̃1(
) grows as the disorder strength is increased. By analogywith the
conventional MBL, we can expect the length scale !̃1(
) to characterize the density 1/!̃1(
)
of the rare resonant local degrees of freedom in the system — see also the discussion at
the end of Section 2.4.4.

At weaker disorder, 
 ∈ {1, 1.2} the naïve exponential fit would produce a very small
!̃1(
) < 2.5. Moreover, the slope d(log#�)/d! of the corresponding lines shows a clear
increase as the system size grows. Accordingly, the fraction #�/�!,(," (bottom panel of
Fig. 2.9) displays a tendency towards saturation, suggesting that, ultimately, the scaling of
#� in long systems becomes ergodic, #� ∝ 2!.

In view of the results above, it may be tempting to conclude that the strongly dis-
ordered Heisenberg spin chains do indeed display a non-ergodic, non-MBL phase with
unusual tree-like eigenstates that are only slightly dressed by perturbative corrections
and occasional resonances (similar to how in the conventional MBL phase the eigenstates
are perturbatively dressed product states). At weaker disorder, one would then expect a
transition into an ergodic phase. However, the crucial question concerns the ultimate fate
of the putative non-ergodic behavior in the thermodynamic limit. In particular, does the
observed fractal scaling#� ∝ 2!/!̃1(
) persist, or does it eventually cross over to the ergodic
scaling, as for the weakly disordered case? In order to answer these questions, we will
now subject the hypothetical non-ergodic phase to several stringent tests.

Level statistics

Our main goal in this section is to further characterize the non-ergodic behavior found
above and its dependence on the system size. We will employ the standard diagnostics
of ergodicity and its breakdown: the level statistics in the center of the many-body band.
We use a standard shift-and-invert technique in order to extract about 50 eigenstates per
realization (fewer for ! ≤ 12 and ! = 26) from the infinite-temperature region of the
spectrum, namely, around the target energy

�middle = Tr
[
�)=∞�

]
=

Tr�
�!,(,"

, (2.72)

which is easily computed for any given instance. At least 1 000 disorder realizations were
sampled for most values of (!, 
).

From now on, unless otherwise specified, we are going to focus on the ( = " = 0
sector of the Hilbert space and ! even, with dimension �!,0,0 = �!/2 (�= being the =-th
Catalan number). The data for ( ∈ {1, 2} did not show any qualitative differences.



72 Many-Body Localization and Symmetry

Figure 2.10: Level statistics for the Heisenberg chain. Each curve in the figure was produced using
at least 50 eigenstates from the middle of spectrum and 1 000 disorder realizations.
The dashed lines are theWigner–Dyson (WD) and Poissonian distributions. (Left) For
a fixed length ! = 22 and varying 
. (Right) For a fixed 
 = 1.3 and varying length !.
The tendency towards the WD statistics is evident both at growing ! and 
. However,
for smaller values of 
, %(A) remains close to the Poisson one up to largest available
system sizes.
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A ≈ 0.53 and A ≈ 0.39 represent the WD and Poisson values, respectively. Error bars
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) = A∞ + 21/
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2 , which returns A∞ = 0.53(1)
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 ∈
{1.9, 1.6, 1.3, 1, 0.8, 0.6, 0.45}. The dashed line is a fit of the form !∗(
) = 2 
−� with
� = 1.40(13) for the first 4 points.
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We characterize the level statistics by the A-parameter, defined as in Eq. (2.7). Its distri-
bution and dependence on the system size and disorder strength are shown in Figs. 2.10
and 2.11. The distribution of A= changes qualitatively as 
 is decreased at a fixed !: for
the largest 
 = 1.6 (very weak disorder), it is described by the standard Wigner–Dyson
distribution, while for small 
 = 0.3 (strongest disorder considered) one observes the
Poissonian distribution, with virtually no level repulsion. This supports the existence of
a non-ergodic regime at accessible system sizes. For 
 ∈ [0.6, 1], the level statistics is
intermediate between the Wigner–Dyson and Poissonian distributions. We also illustrate
the dependence of the distribution %(A) on the system size for weak disorder 
 = 1.3. It is
evident that the distribution flows towards Wigner–Dyson, albeit relatively slowly.

Further, we study the flow of the disorder- and eigenstate-averaged value, 〈〈A〉〉,34 with
the system size, in an attempt to extract some relevant length scales. 〈〈A〉〉 is illustrated
in Fig. 2.11 as a function of ! for different values of 
. For weak disorder, 
 ≥ 0.8, the
dependence of 〈〈A〉〉 on ! is not monotonic. Our data show a tendency towards the Poisson
statistics for small system sizes, ! < !∗(
), but for ! > !∗(
) the value of 〈〈A〉〉 starts growing,
moving towards the Wigner–Dyson (WD) value. Upon decreasing 
 to the value of 0.8,
the length scale !∗(
) increases, while its value A∗(
) = A [!∗(
)] decreases. The ultimate
flow of 〈〈A〉〉 towards the WD value is consistent with the expectation that at weak disorder
the system becomes ergodic for modest system sizes. One can estimate the scale where the
system becomes ergodic, !erg, by extrapolating the 〈〈A(!)〉〉 dependence until the crossing
with the WD line. The length scale extracted in this way is larger than the maximum
system sizes accessible numerically for 
 < 1. The extrapolation procedure suffers from a
large uncertainty. Therefore, we choose instead to characterize the delocalization crossover
by the length !∗(
), and we expect that !erg(
) ∝ !∗(
).

The data at stronger disorder, 
 ∈ [0.3, 0.6], shows at least prima facie a qualitatively
different behavior. For the strongest disorder, 
 = 0.3, the parameter 〈〈A〉〉 slowly increases
for small !, in a stark contrast with the behavior found for 
 ≥ 0.8. Interestingly, at small
! this parameter is below the Poisson value of 〈〈A〉〉P ≈ 0.39. We attribute this to strong
disorder leading to the appearance of very small couplings in a typical disorder realization
(smaller than the level spacing at small !). The chain is then effectively broken into smaller,
almost noninteracting, spin chains. This leads to level clustering and the A-parameter
becomes sub-Poissonian. However, since the level spacing decreases exponentially with
the system size, while the weakest coupling only decreases as a power law (see Eq. (2.65)),
the level clustering is eventually washed out and for ! > 18 the parameter 〈〈A〉〉 rapidly
approaches the standard Poisson value. For disorder strength 
 = 0.45, 0.6, 〈〈A〉〉 is initially
slightly above the Poisson value, but it decreases as the system size is increased; no flow
towards WD is seen. For the system sizes analyzed, it is evident that ergodicity has not
developed and a single SDRG tree state provides a good approximation to the eigenstates,

34With slight abuse of notation, we denote by 〈·〉 the arithmetic mean over the roughly 50 eigenstates of a
given disorder realization, which tends to the actual thermal average when ! → ∞ (notice, however, that A=
is not an observable).
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as discussed previously.
The exact diagonalization results for strong disorder values, 
 ∈ [0.3, 0.6], may be

consistent with two scenarios. One scenario is that (much like in the usual MBL) the
system experiences a phase transition at some critical disorder strength. Another scenario
is that, even at strong disorder, the system would eventually flow to ergodicity, similar to
whatwe found forweaker disorder values. Assuming that this second scenario is realized,
in large enough systems the curves for 
 ∈ {0.45, 0.6}would first develop a minimum and
then flow to the WD value at yet larger system sizes. The corresponding scale !∗ can be
heuristically extracted by extrapolating35 the ED data shown in Fig. 2.11. The dependence
of the length !∗ on disorder, as extracted by the analysis outlined above, is illustrated in
Fig. 2.12(c). It is consistent with a power-law scaling, !∗(
) ∝ 
−1.4. We note that the
curves 〈〈A(!)〉〉 for 
 ≥ 0.6 (including extrapolated data for 
 ∈ {0.45, 0.6}) can be roughly
collapsed (in the vicinity of ! = !∗) into a single one by simultaneously rescaling A → A/A∗
and !→ !/!∗, as in Fig. 2.12(a).

To sum up, the length !∗ beyond which the spectral parameter starts flowing towards
the WD value (but the system of size !∗ is still non-ergodic, because A∗ is closer to the
Poisson value), grows rapidly with the increase of disorder. Although the trend is clear,
we are extrapolating significantly away from the accessible system sizes, ! ≤ 26. Thus, the
law governing !∗(
) which we propose should be taken with a grain of salt. In the next
part of our analysis, we proceed to test the eigenstate thermalization hypothesis.

Eigenstate thermalization hypothesis and its breakdown

We now characterize the eigenstates of random-bond Heisenberg chains by testing the the
Eigenstate Thermalization Hypothesis (ETH) and its breakdown. The ETHwas discussed
in some detail in Section 1.1.2. For our current purposes, we focus on its formulation in
terms of the expectation values of local observables $̂, Eq. (1.18), whichwe repropose here
for convenience (see the original discussion for an explanation of the various terms):

〈0 |$̂ |1〉 = $̄(�)�01 + 4−S(�)/2 5 (�,Δ�)'01 . (2.73)

We focus our attention on the following two local observables:

$̂max = s8★ · s8★+1 , (2.74)

$̂rand = s9★ · s9★+1 , (2.75)

where (8★, 8★ + 1) is the maximally-coupled spin pair,

|�8★ | = max
8
|�8 | (2.76)

35The extrapolation is performed and the value of !∗ is extracted by fitting the available data for ! ≥ 14
onto a quadratic function, A(!) = A∗ + 0(! − !∗)2, with fitting parameters A∗, !∗ and 0.
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and (9★, 9★+ 1) its antipodal pair, 9★ = (8★+ !/2) mod !. Since couplings are independent,
the latter pair is coupled by an interaction �9★ of typical (or “random”) strength, hence the
name $̂rand.

Let us discuss our expectations for the averages of these operators over eigenstates,
depending on whether SDRG is accurate. First, suppose that |0〉 is exactly an SDRG tree
state. Then the spins (8★, 8★+1) are going to be paired in either a ( = 0 or a ( = 1 state, and
the value of 〈0 |$̂max |0〉 is going to be either −3/4 or 1/4, respectively. Even for 〈0 |$̂rand |0〉,
these two values are going to be likely, although in many cases the pair (9★, 9★+ 1)will not
be coupled directly by the SDRG procedure, but rather at a higher level, resulting in some
intermediate value. However, in the ergodic regime — when SDRG breaks down — local
thermalization implies that the local state of any pair of spins will be a uniform (at ) = ∞)
mixture of the four possible above-mentioned states, resulting in a thermal average of zero
for both observables.

The distributions of the expectation values of $̂max/rand over eigenstates at system size
! = 20 are shown in Fig. 2.13. It is clear that the system is perfectly compliant with
the ETH at sufficiently high values of 
, whereas at smaller values of 
 the behavior is
consistent with the eigenstates being close to tree states. This phenomenology, which
we interpret as a finite-size crossover between ergodic and non-ergodic structure of the
system’s eigenstates, is compatible with the behavior of the level statistics observed in the
previous section.

In order to validate our interpretation, we characterize the finite-size flow to ergodicity
by looking at the percentage of eigenstates whose corresponding values of $̂max/rand falls
within some fixed window centered at zero. Fig. 2.14 confirms that the “ergodic fraction”
of infinite-) eigenstates is increasing with ! for both $̂max and $̂rand, though much more
slowly for strong disorder. In particular, at 
 = 0.6 ETH is still strongly violated even at
! = 26.

Entanglement entropy

Another witness of the non-ergodic behavior can be found in the scaling of the half-chain
entanglement entropy with the system size, which is known to obey an area law for
MBL systems, and a volume law for ergodic ones (cf. Section 2.2). More precisely, in a
thermalizing system generic eigenstates are expected to be similar to random states; their
entanglement entropy equals the thermodynamic one, yielding the expression valid for
states in the middle of the band: Sent(!/2) = !/2 + >(!), when measured in bits [17, 197].

The numerical results are reported in Fig. 2.15. The median entanglement entropy
of the infinite-temperature eigenstates exhibits linear scaling for all considered values of

, but the linear coefficient observed at ! ≤ 20 deviates substantially from the ergodic
prediction at strong disorder (although significant curvature is present). This is once
more consistent with the results of the foregoing sections.
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〈Ô
m
ax
〉

〈Ô
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Figure 2.13: Heat maps for the distributions of 〈0 |$̂max |0〉 (left) and 〈0 |$̂rand |0〉 (right) over several
(& 25 000) eigenstates. Here ( = 0, ! = 22 and 
 ∈ {0.3, 0.6, 1.3} (top to bottom).The
concentration of the H-marginals around 0 denotes increasingly ergodic behavior (see
the comments in the text).
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In summary, the ED data show a clear trend towards ETH for moderate-to-weak
disorder (namely 
 & 0.6) while indicating a novel non-ergodic regime for the case of
strong disorder. To determine the behavior of the system in the thermodynamic limit,
which is totally inaccessible to ED, we have to resort to a completely different approach,
as presented in the next section.

2.4.4 Resonance counting

As we showed in the previous section, at strong disorder finite-size random Heisenberg
chains exhibit a non-ergodic regime in which their eigenstates are well approximated by
tree states. Here, to determine the eventual fate of these systems in the thermodynamic
limit !→∞, we develop an approach to analyze resonances between different tree states.
We are able to capture long-range, multi-spin processes, which are beyond the scope of
conventional SDRG. We obtain the asymptotic behavior of the resonance number, as well
as their spatial structure. We will find that the resonance density grows for all studied
disorder strengths, leading to an eventual delocalization at very large length scales, which
we estimate. Beyond this length scale, the system presumably becomes ergodic.

Given a tree state generated by SDRG, we can construct a complete basis, Eq. (2.70),
in the Hilbert space (with fixed total spin of the system) by allowing the values of the
block spins identified by SDRG to take all possible values consistent with su(2) fusions.
The Hamiltonian (2.61), written in this basis, will then connect the initial SDRG state to a
certain number of other tree states. We will consider the eigenvalue problem in this basis.
Localization in this problem corresponds to true eigenstates being close to the tree states;
in contrast, delocalization signals the breakdown of the SDRG approximation, suggesting
ergodicity. The criteria for delocalization will be studied below.

Connectivity of the hopping problem

First, we investigate the connectivity of this eigenvalue problem. That is, we analyze how
many matrix elements of the Hamiltonian between a given tree state and other ones are
nonzero. The SU(2) symmetry of the model imposes stringent constraints on the matrix
elements of the Hamiltonian [212]. Specifically, let us consider one of the terms in the
Hamiltonian, �8s8 · s8+1. It can be shown that the action of such an operator on a tree state
can only affect the block spins that lie on the fusion path connecting spins 8 and 8 + 1, see
Fig. 2.6(c).

Moreover, each of the block spins on the path may only change by Δ( = 0 or ±1. It
then follows that the number of states connected to a given one by the operator �8s8 · s8+1
is given by:

 8 ,8+1 ≈ 3;8 ,8+1 (2.77)

where ;8 ,8+1 is the length of the fusion path of physical spins 8 and 8 + 1. The ≈ sign is from
the slight overcounting due to neglecting additional constraints (see Footnote 29 above in
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is in good agreement with the result (2.81) for the random fusion ensemble, � =
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this chapter). Sufficiently far from the bottom of the tree, the typical values of the block
spins are large and the extra constraints cannot alter the scaling in Eq. (2.77) by more than
a prefactor. Taking into account that the Hamiltonian (2.61) is just a sum of local terms
of the form discussed above, we conclude that the total connectivity in the Hilbert space
induced by the Hamiltonian (2.61) is:

 ≈
!∑
8=1

3;8 ,8+1 . (2.78)

We are now left with the task of computing the distribution %(;) of these lengths ;8 ,8+1 for
SDRG trees.

The SDRG fuses spins that are most strongly coupled. Neglecting the correlations
between the (renormalized) couplings at any step of SDRG, as well as the dependence of
those on the couplings at earlier stages of SDRG, we can assume that the pair of spins to
be fused is just randomly chosen among all possibilities (with the only requirement that
the fusing spins be nearest neighbors so that locality is respected). In such an ensemble
of random fusion trees the distribution %(;) can be computed analytically. As we show in
Appendix C.1, it turns out that %(;) decays exponentially with ;, and in the limit !→∞ it
becomes:

%(;) = 3
4

(
2
3

) ;
(2.79)

(the normalization is the correct one considering ; ≥ 2, so
∑
;≥2 %(;) = 1). With this

distribution %(;), the sum (2.78) is dominated by the maximum ;M over the ! terms. To
leading order in !, the value of ;M is essentially deterministic and can be estimated from
the condition !%(;M) ∼ 1.36

This yields

;M = max
8=1,...,!

;8 ,8+1 ∼
log !

log(3/2) . (2.80)

Plugging back into  ∼ 3;M we find
 ∼ !� , (2.81)

with � = log 3/log(3/2) ≈ 2.71. The power-law scaling (2.81) and the value of the exponent
� are in a good agreement with the numerical simulations of the SDRG trees (with the full
set of SDRG rules taken into account), see Fig. 2.16.

36This follows from the distribution of the largest of ! i.i.d. random variables with distribution Eq. (2.79),
which is given by

%M(G) =
3!
4

(
2
3

)G (
1 −

(
2
3

)G−1
)!−1

.
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Local resonances

Ournext goal is tofind resonances among the ∝ !� “hopping”processes generatedby the
HeisenbergHamiltonian for a given tree state. Wewill first focus on investigating relatively
small system sizes, ! . 30, comparable to those accessible by exact diagonalization.

To study the number of resonances, we first use the SDRG procedure to generate a
random tree state |Ψ0

RG〉 and identify its resonant neighbors — that is, those states |Ψ0
RG〉

for which the ratio ����� 〈Ψ0
RG |� |Ψ

0
RG〉

�0 − �0

����� (2.82)

is larger than one.37 These resonances invalidate the perturbative expansion around the
infinite-disorder eigenstates (the SDRG states). Their proliferation signals the instability
of tree states, strongly suggesting that ergodicity is restored. The SDRG is essentially a
local optimization procedure that aims to construct basis states free of such resonances.
Based on the results presented above, we expect that, at strong disorder and in relatively
short systems, these resonances should be few in number, because SDRG is accurate.

The average number of resonant neighbors 〈〈 res〉〉 of an SDRG tree state is shown in
Fig. 2.17. We observe that for relatively small systems this number scales linearly with the
system size !. As expected, the slope of this linear growth becomes smaller for stronger
disorder.

The condition 〈〈 res〉〉 = 1 defines an important (disorder-dependent) length scale in the
problem, !1(
), at which resonances start appearing. Naïvely, this length scale plays the
same role as the length scale !, introduced in Section 2.4.1 to characterize the resonances
in a random-field XXZ chain. We found that the scale !1(
) grows at stronger disorder,
crudely following a power-law dependence, !1(
) ∝ 
−0.4.

Fig. 2.17 shows that at relatively strong disorder values, 
 ≤ 0.6, the average number
of resonant neighbors for an SDRG tree state is 1 or less for all system sizes available in
ED. This agrees with the observation that such chains display a non-ergodic behavior in
all of the ED studies of the previous sections, with eigenstates being well approximated
by tree states.

In particular, the lownumber of resonances is in agreementwith the slow growth of#�

(the participation ratio of eigenstates in the tree basis) discussed below Eq. (2.71). Drawing
parallels to the conventional MBL systems, it is tempting to identify the length scale !̃1(
)
that controls the exponential growth of #� with the system size with !1(
). However, the
comparison of the values of !1(
) and !̃1(
) reveals that the latter is several times shorter.
We attribute this difference to the effect of the second-order perturbative corrections that
contribute to the spreading of the exact eigenstate |�〉 over SDRG tree state. Such higher-
order contributions lie beyond the first-order resonance counting that underlies the scale

37This widespread localization criterion is on the same line as the one proposed by Edwards and Thouless
for the Anderson model [88].
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!1(
). The corrections are expected to be more significant at weak disorder; in accordance
with this intuition, we found a more significant difference between !1(
) and !̃1(
) for
such disorder strengths.

Longer systems and proliferation of resonances

Does the linear scaling of 〈〈 res〉〉 with the system size discussed in the previous section
persist in the thermodynamic limit? Such behavior would bear a close resemblance to
the strongly disordered XXZ model. It would imply that the resonant neighbors can be
attributed to the existence of local subsystems with resonating levels which, if sufficiently
separated in space, would remain isolated and not cross-talk (in the sense that no signif-
icant entanglement would exist in the eigenstates between such “local” resonances). If
true, this would be a strong argument in favor of the SDRG tree states surviving in an
infinitely long system, up to dressing corrections from local and isolated resonances. We
now perform a detailed resonance analysis in large systems, up to ! ≈ 2 × 103, finding
that Heisenberg chains actually behave qualitatively differently compared to plain-vanilla
MBL systems: the number of resonances grows faster than linearly with the system size.

The probability for an SDRG tree state to have no resonant neighbors vanishes in
sufficiently long systems (see top panel in Fig. 2.18). Past that length scale, a typical tree
state has a large number of resonances attached to it. The bottom panel in Fig 2.18 shows
(in log–log scale) the dependence of the typical number of resonant neighbors (in the sense
of exp

(
〈〈log res〉〉

)
for an SDRG tree state. The dashed lines represent power-law fits of the

form

exp
(
〈〈log res〉〉

)
∝

(
!

!1(
)

)1+�
, (2.83)

with the scale !1(
) determined from the the short-scale behavior of  res, see the previous
section. The anomalous exponent � is approximately disorder-independent, � ≈ 0.37.
The details of the numerical procedure employed to find and characterize resonances are
given in Appendix C of Ref. [213].

The power-law scaling of the number of resonant neighbors,  res ∝ !1+�, implies that,
in stark contrast to the random-field XXZ model, the density of the resonating degrees of
freedom growswith the system size. Accordingly, at least some of the resonant transitions
must originate not from the rearrangement of a few local spins, but rather involve a
growing number of spins. To support this conclusion, we analyze the structure of typical
resonances. The left panel of Fig. 2.19 shows the average number of block spins, #bs,
that are changed in the course of a resonant transition. We observe that #bs grows (albeit
rather slowly) with the length of the chain. The decrease of #bs with increasing disorder
can be understood as follows: at weak disorder, the possibility to change a block spin in
a resonant manner is often accompanied by an “instability” (with respect to resonances)
of the block spins higher up in the hierarchy. Therefore, increasingly nonlocal resonant
neighbors appear and contribute to the increase of the average #bs. On the other hand, at
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Figure 2.18: (Top) Theprobability%( res = 0) for an SDRG tree states to haveno resonant neighbors,
as a function of the system size, and for different values of disorder 
 (see legend). Note
the logarithmic scale along the horizontal axis. While short systems are essentially
free of resonances even for a relatively weak disorder, the probability %( res = 0)
becomes vanishingly small in long systems. (Bottom) Typical number of resonant
neighbors for an SDRG tree state in long systems, ! ≤ 212. The solid lines correspond
to the numerical results for 
 = 0.3, 0.6, while the dashed lines are power-law fits,
 res = [!/!1(
)]1+�. The scale !1(
)where the average number of resonant neighbors
for an SDRG tree state equals 1 was defined previously in the main text.
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Figure 2.19: (Left) Average number of the block spins changing their value in a single resonant
transition. (Right) Typical number of adjacent physical spins involved in a resonance
(see main text).
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Figure 2.20: Characteristic energy scale for typical resonances, as a function of system size, shown
for different disorder strengths. See main text for the definition of +typ.
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strong disorder an “instability” of a single block spin is more likely to remain “localized”
and not to “propagate” upwards in the tree, resulting in a smaller #bs.

The size of a typical resonance in real space also grows as the system size is increased
(see the right panel of Fig. 2.19). A physical spin is affected by a resonant transition if one or
more spins on a fusion path rooted at that physical spin changes its state. The physical size
of a resonance is then defined as the total number of leaves within the causal cone below
the highest changed spin. A more detailed explanation is provided in Appendix C.2, as
well as a proof that the resonance size is $(log !) in the random fusion ensemble.

We observe that at moderate system sizes the typical spatial size of a resonance at
strong disorder exceeds that at weak disorder. This is in accord with our intuition: at
strong disorder a large number of spins need to rearrange collectively in order for a
transition to be resonant. In terms of the SDRG, this means that many SDRG steps can be
performed before the resonances start to play any role. On the other hand, in sufficiently
long systems we see the opposite tendency: weakly disordered chains typically exhibit
resonances of larger size. This is the manifestation of the propagation of an “instability”
of block spins upwards in the tree, as discussed above.

The growing length scale characterizing the resonances is accompanied by a corre-
sponding (decreasing) energy scale, namely the typical matrix element+typ for a resonant
transition. Its system size dependence is shown in Fig. 2.20. In the following and final
part of our investigation, we are going to use +typ to estimate the energy scale associated
with the crossover to ergodicity.

Breakdown of SDRG and delocalization

The results presented in the previous section (most importantly, the power-law growth of
the resonance density) strongly suggest that even in the strongly disordered chains with

 ≤ 0.6, where the ED studies of Section 2.4.3 reveal little (if any) signs of ergodicity, the
resonant transitions missed by SDRG eventually proliferate. In this section, we estimate
the corresponding thermalization scale !erg(
).

Given an SDRG tree state and a set of resonant transitions associated with it, one can
identify a set of block spins that can be changed via at least one resonant process. We
refer to those block spins as resonant, or unstable ones. For a chain of ! spins there are
2!−1 nodes in the SDRG tree (! physical spins plus !−1 block spins). At each stage of the
SDRG procedure some number !RG of the block spins play the role of effective “physical
spins” of the system. For example, in the initial state of the SDRG we have !RG = ! and
the SDRG spins are just the physical ones. The final stage corresponds to !RG = 1, with
the top node of the SDRG tree being the only remaining spin. The ratio !/!RG is nothing
but the average size of the spin clusters in the system.

At any given moment during the SDRG, only the unstable block spins that are among
the !RG spins currently comprising the system are relevant for potential delocalization.
The others either have not formed yet, or have already been decimated; they are not
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Figure 2.21: Evolution of the number (left) and density (right) of the resonant blocks spins in the
course of SDRG. The horizontal axes shows the ratio of the current system size to the
initial length of the system (so the RG runs “leftwards”).

expected to contribute directly to the physics at the current energy scale. It is thus natural
to ask how the number and density of the resonant block spins evolve over the course of
the renormalization process.

This is illustrated in Fig. 2.21, that shows the dependence of the number (left panel) and
the density (right panel) of unstable block spins for two different values of 
 and several
values of the physical chain length !. These quantities are plotted as a function of the
running RG length !RG, normalized by !. For not too small !RG/!, we observe that for a
fixed disorder strength the density of resonant spins exhibits a universal (!-independent)
behavior, �res(!RG/!, !) = �res(!RG/!). The density �res(!RG/!) is higher at weaker disor-
der and grows throughout the SDRG. In contrast, at small !RG/! (corresponding to the
final stages of SDRG in a finite chain) a rather pronounced dependence on ! is observed.38

Next, let us denote by �max = �max(
, !) the maximum density of unstable spins
developed during SDRG process. Small �max means that �res remains small at all steps
of SDRG. We then expect the resonances to be of little importance for our system. On
the contrary, �max ∼ 1 indicates that at some stage the SDRG inevitably runs into a state
where almost all spins participate in resonances. Then, the basic assumptions of SDRG
are violated and we expect it to break down — this means that block spins are no longer
well-defined, and start resonating. Presumably, this signals the onset of ergodicity.

It is natural to assume that there exists a critical value �max,c < 1 at which the SDRG
falls apart, i.e. where the system crosses over from non-ergodic to ergodic behavior. We

38Notice that this size-dependent drop in the resonance density should be expected, as the decimationmust
eventually overtake the resonance proliferation in a finite chain. In the thermodynamic limit, one can expect
(and it is indeed suggested by the universal behavior of the curves in Fig. 2.21) that the density of resonances
will continue to grow for arbitrarily small values of !RG/!.
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Figure 2.22: (a)Maximumdensity �max of resonant spins developed during the SDRG (cf. Fig. 2.21)
as a function of system size. The condition �max(
, !) = �max,c defines the ergodization
length scale !erg(
) and the corresponding energy scale �erg(
) = +typ

[
!erg(
)

]
. (b)–

(c) Estimates for the ergodization length and energy scales obtained by fixing the
critical density at �max,c = 0.25.

can then identify the length of the system at which �max = �max,c with the ergodicity scale:

�max
[

, !erg(
)

]
= �max,c. (2.84)

The scale !erg(
), along with the corresponding typical matrix element for resonant tran-
sitions +typ, gives an estimate for the ergodicity time and energy scales:

�erg = �
−1
erg , �erg = +typ(!erg). (2.85)

Figure 2.22 shows the dependence of �max(!) for different disorder strengths. Es-
timating !erg(
) requires fixing the critical density �max,c. While we have no general
theory for �max,c, we observe (see Fig. 2.22) that a value �max,c ∈ [0.2, 0.25] (similar
to the critical density of resonances in the random XXZ model) results in an estimate
50 . !erg(
 = 0.6) . 100 that is essentially consistent with the intuition developed in the
ED studies of Section 2.4.3, with

!erg(
 = 0.6) ≈ 2!∗(
 = 0.6) ≈ 50.

Thus, for the purpose of an estimate, we choose �max,c = 0.25. In any event, we find it
unlikely that a different choice of �max,c would alter the asymptotic scaling of the estimated
!erg, provided 0 < �max,c < 1. The resulting values for the length and energy scales at
which thermalization starts to occur are shown in Fig. 2.22.
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It is evident that at strong disorder, 
 = 0.3, resonances start to proliferate only at
very large length scales !erg ≈ 300 and ridiculously long time scales, far beyond the
limitations of present-day synthetic platforms, where ergodicity and its breakdown are
actively investigated (see Ref. [2] for a review). Thus, in experiments, strongly disordered,
SU(2)-symmetric systems are expected to display the novel non-ergodic regime described
above.

Systems of size ! � !erg will be slowly thermalizing, and presumably exhibit slow
diffusive transport at low frequencies. An interesting open question concerns the even-
tual fate of the integrals of motion obtained in the first steps of the SDRG (when the
typical cluster size is much smaller than !erg). Such nearly-conserved operators arise due
to strongly coupled clusters of spins, and therefore destroying them would typically in-
volve a relaxation process with a large characteristic energy Δ�. In very large systems,
slow thermalizing processes will eventually destroy the conservation of these operators.
However, since thermalization processes typically occur on a much smaller energy scale,
�erg � Δ�, we expect that the decay time of such operators will be parametrically large
in Δ�/�erg. An instructive example is that of a narrow-bandwidth thermal bath with
energy scale �0; there, the relaxation of excitations with energy $ � �0 is exponentially
slow in $/�0 [3]. We expect that the integrals of motion obtained within SDRG before its
breakdown will be similarly long-lived. Thus, our proposed picture is that the dynamical
properties of strongly disordered Heisenberg chains are going to be captured by SDRG at
frequencies $ & �erg (in particular, they would have nontrivial noise properties, described
in Ref. [8]). At lower frequencies, $ . �erg, the system will undergo a crossover to regular
diffusive behavior.

2.4.5 Conclusions

To sum up, the goal of this Section 2.4 was to investigate the effects of continuous non-
Abelian symmetries on dynamical properties of disordered systems. We have considered a
concrete example of disordered Heisenberg spin chains, with eigenstates characterized by
an SU(2) symmetry. To describe the properties of this model, we combined state-of-the-art
exact diagonalization studies with a new approach that allows us to include long-range
resonances into the strong-disorder renormalization group.

Wehave found that in a broad range of disorder strengths and system sizes, Heisenberg
chains exhibit a new kind of non-ergodic behavior. In this regime, the highly excited
eigenstates have a scaling of entanglement entropy that is intermediate between the area
law characteristic of MBL states and the volume law found in thermalizing systems. This
behavior stems from the tree tensor network structure of the eigenstates obtained within
SDRG. Simultaneously, in this regime the system exhibits a different kind of integrability,
with integrals of motions having a varying degree of locality: some of them act on a small
number of neighboring spins, while others act on larger and larger spin clusters.

Furthermore, we found that for weak disorder the behavior crosses over from non-



90 Many-Body Localization and Symmetry

ergodic to ergodic as the system size is increased. For stronger disorder, all system sizes
accessible numerically exhibited non-ergodic behavior. To address the eventual fate of
the non-ergodic phase in this case, we have extended the SDRG approach, characterizing
resonances that endanger the stability of tree states. Our results strongly suggest eventual
delocalization and ergodicity, albeit at very large system sizes; delocalization occurs via
unconventional, multi-spin processes, which is yet another unique feature of disordered
systems with non-Abelian symmetries. A possible line of future research is to describe
the transition between non-ergodic and ergodic regimes as a function of system size. A
promising starting point seems to be to formulate an effective model in terms of resonant
degrees of freedom, with parameters extracted using the methods described above.

Another interesting direction is to better understand dynamical signatures of the new
non-ergodic regime uncovered here. One natural experiment would be to probe the
dynamics of the most local integrals of motion (e.g. the total spin of a pair of strongly
coupled physical spins), and to observe that, for system sizes ! < !erg, it is conserved
to a good precision and for arbitrarily large times. Another interesting open question
concerns spin transport in #-species disordered Hubbard models [210, 224]. In case of a
SU(# = 2)flavor symmetry, ourwork suggests that a sufficiently large system should show
thermalizing behavior. Further work is required to establish the details of the dynamics
(e.g. diffusion vs. subdiffusion).

More broadly, this work sets the stage for future discovery of new non-ergodic regimes
and true dynamical phases that survive in thermodynamic limit. The approach introduced
here can be naturally extended to other symmetry groups, for example SU(#) spins for
any # > 2. Evenmore generally, it would be interesting to investigate the stability of other
tree tensor network structures with intermediate entanglement scaling, as possible good
approximation of eigenstates in physical systems.



Chapter3
Simulating �antum Tunneling

If we cannot pass over the mountain, let’s go under it.

The Lord of the Rings: The Fellowship of the Ring
Screenplay by P. Jackson. 2001

3.1 �antum annealing and energy barriers

In Section 1.3.2, we described the Quantum Annealing (QA) algorithm in some detail. In
particular, it was pointed out that one of the main reasons why QA may be expected to
outperform classical algorithms on certain kinds of problems is its ability to make use of
tunneling, a quantum effect with no analogue in classical physics. In turn, this suggests
that the classes of problems where QA should be expected to shine are precisely those
characterized by energy landscapes featuring an abundance of low-lying states separated
by large barriers hindering classical local search. It was also noted that spin glasses
represent the perfect candidate as they present these very characteristics.

While the general idea seems attractive enough, it is not so straightforward to actually
demonstrate or even convincingly test a model for quantum speedup. This is a general
truism in classical-vs-quantum comparisons, as they either rely on exact diagonalization,
which is by nature very limited in the maximum system size one can probe, or they have
to concede some ground in accepting poorly-controlled approximation schemes or rather
noisy data. The latter case is the more interesting for our current discussion, whereas the
former was encountered in Chapter 2 and will appear again in Chapter 4.

In particular, we are going to devote this chapter to the effort of using QuantumMonte
Carlo (QMC) methods — as defined in the following sections — to benchmark the QA
algorithm. In order to set up a fair comparison, it is fitting to only consider general purpose



92 Simulating Quantum Tunneling

classical algorithm, i.e. ones that are not specifically tailored for the problem at hand,
just like vanilla QA is general-purpose and makes no explicit use of properties of the
problem Hamiltonian. For this reason, we make no claims of optimality when discussing
the application of these algorithms to the specific problems we are going to analyze, and
one should in fact expect custom algorithms to exist that outperform both QA and QMC
in finding (or approximating) the ground-state energy of the models under examination.
That being said, if such amazing algorithmswere so easy to devise there would be no need
for this discussion!

3.2 �antum Monte Carlo methods

The term “Monte Carlo” encompasses a number of different classical methods whose
common ingredient is stochasticity.1 They typically operate by setting up a temporal chain
of random variables with update rules which are probabilistic in nature, and so chosen
as to guarantee that the distribution of the random variables converge to a desirable
ensemble (e.g. the thermal distribution for a given inverse temperature �). In this way,
the value of observables and other physical quantities of interest may be estimated by
repeatedly sampling the system after this convergence has occured. It is worth pointing
out that at variancewithmolecular dynamics, where one directly integrates the differential
equations describing the system’s evolution, in the Monte Carlo realm there is no obvious
correspondence between the number of simulation steps and the physical time coordinate.

The main advantage of Monte Carlo methods is that they possess a favorable scaling of
complexity with respect to the system’s dimension: roughly speaking, as long as efficient
update rules can be found the precision of the algorithm will always scale like $(1/

√
#B),

with #B the number of (sufficiently uncorrelated and equilibrated) samples, regardless
of the dimensionality 3, whereas molecular dynamics will require Θ(1/�3) grid points in
order to achieve a fixed precision �.

“Quantum” Monte Carlo (QMC) is simply the application of Monte Carlo methods
to quantum systems, which can be accomplished in a variety of ways. We describe
two families of QMCmethods which are used ubiquitously in computational physics: the
Path-integralMonte Carlo (PIMC) and the DiffusionMonte Carlo (DMC) algorithms [248].

3.2.1 Path-integral Monte Carlo

The PIMC algorithm is based on a standard quantum-to-classical mapping which turns
the system’s Hamiltonian into a classical one, amenable to the standard Monte Carlo
toolkit. This is accomplished via a Suzuki–Trotter expansion, which effectively trades
the “quantumness” of the problem in exchange for an extra effective dimension. More

1Thenamewas coinedbyMetropolis in reference to theMonteCarlo casino inMonaco, anotherwell-known
den of stochasticity. See Ref. [180] for a historical overview.
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precisely, let the system be described by a quantumHamiltonian of the form� = �cl+�qu,
with the classical part diagonal on some computational basis,

〈Ĩ |�cl |I〉 = �(I)� Ĩ ,I (3.1)

and �qu an off-diagonal term.
The goal of PIMC is to sample the equilibrium properties of the system by estimating

the partition function
/(�) =

∑
I

〈I |e−�� |I〉 (3.2)

or some similar object involving the computational-basis propagator.
By using the Lie–Suzuki–Trotter formula for two noncommuting operators � and �,2

e�+� =
(
e�/ e�/ 

) 
+ $

(
1
 

)
, (3.3)

and then interfixing  − 1 resolutions of the identity,

〈I |* −1 · · ·*1*0 |I0〉

= 〈I |* −1

(∑
I −1

|I −1〉 〈I −1 |
)
· · ·*1

(∑
I1

|I1〉 〈I1 |
)
*0 |I0〉 , (3.4)

the imaginary-time propagator can be expanded as follows:

〈Ĩ |e−�� |I〉 =
∑

z

 −1∏
:=0
〈I:+1 |e−��/ |I:〉

≈
∑

z
e−�

∑ −1
:=0

�(I8 )
 

 −1∏
:=0
〈I:+1 |e−��qu/ |I:〉

=

∑
z

e−��eff(z) , (3.5)

where I0 = I, I = Ĩ , z = (I1 , . . . , I −1) and we assumed that it is possible to cast the
infinitesimal off-diagonal propagator (transfer matrix) in the form

〈I:+1 |e−��qu/ |I:〉 = e−�)(I: ,I:+1)/ (3.6)

2More precisely, for any pair of operators (�, �) and any  ∈ Nwe have



e�+� −
(
e�/ e�/ 

) 



 ≤ ‖[�, �]‖2 e‖�‖+‖�‖ ,

where ‖ · ‖ is any operator norm [244].
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so that it may be recombined with the classical part to define the effective (classical)
Hamiltonian

�eff(z) =
1
 

 −1∑
:=0

[
�(I:) + )(I: , I:+1)

]
. (3.7)

The index : labels imaginary time slices which are coupled together by the transverse term
).

Observation. Notice that the procedure outlined above is the same one typically used to
derive the path-integral formulation of quantum mechanics. In that case, one usually has in
mind a system of = particles moving in the 3-dimension Euclidean space E3 and subject to
some (e.g. 2-body) potential + . In other words, one takes

�cl =
∑
8<8′

+(G8 , G8+1), �qu =

=∑
8=1

?2
8

2<8

(in first quantization formalism, with G8 and ?8 the canonical position and momentum oper-
ators for the 8-th particle). After Trotterization, one is able to write the effective Hamiltonian
as

�eff =
1
 

 −1∑
:=0

[
=∑
8=1

(
G8 ,: − G8 ,:+1

�/ 

)2

+
∑
8<8′

+(G8 ,: , G8′ ,:)
]

(3.8)

(where G8 ,: is the position of the 8-th particle in the :-th time slice) and perform the  → ∞
limit to obtain the standard path-integral representation of the imaginary-time propagator:

〈®G′ |e−�� | ®G〉 =
∫
D®�(�)e−S [®�(�)] , (3.9)

where ®G = (G1 , . . . , G=) and ®G′ = (G′1 , . . . , G′=)describe the initial and final states in terms ofwell-
defined particle positions (here G1, etc. are numbers, not operators), the integral is performed
over the space of paths in configuration space ®� : [0, �] → (E3)= with ®�(0) = ®G, ®�(�) = ®G′ and

S [®�(�)] =
∫ �

0
d�

[
=∑
8=1

1
2<8

(
d�8
d�

)2

+
∑
8<8′

+(�8(�), �8′(�))
]

(3.10)

is the classical action of the =-particle system. This explains the terminology “path-integral”
Monte Carlo.

Coming back to our PIMC algorithm, we can see that the original problem has been
reduced to an equivalent classical problem up to a “Trotter error” $(�2/ ). Notice, in
particular, that the number of time slices  needed to achieve a certain precision depends
on the value of �, or fromamorepictorial point of view, the inverse temperature determines
the “length”onehas to ascribe to the imaginary timedimension for afixedTrotterprecision.
For this reason, the PIMC algorithm described above only works at finite temperature, as
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for ) = 0 there is no good way of discretizing the infinite extra dimension. That being
said, ground-state properties can still be studied in gapped systems by adjusting the
temperature to be appreciably smaller than the gap, in which case the contribution from
the excited states will be negligible.

The partition function Eq. (3.2) is obtained from Eq. (3.5) simply by setting I0 =

I and summing over it, which amounts to switching from open to periodic boundary
conditions for �eff. The summands e−��eff(z), which are positive, are then interpreted as
(non-normalized) Gibbs weights for the paths {z}.

Take notice of the crucial assumption contained in Eq. (3.6): as this condition needs to
hold for any (I: , I:+1), and in particular for I: ≠ I:+1, and as we must assume �/ � 1
in order to have a small Trotter error, we can expand the left-hand side and see that the )
matrix is only well-defined if

〈Ĩ |�qu |I〉 ≤ 0 for all Ĩ ≠ I. (3.11)

If any off-diagonal matrix element of the quantum term is positive, we cannot proceed
with the Suzuki–Trotter expansion: we have a sign problem. In some cases, we may be
able to find a clever basis change so that condition (3.11) becomes fulfilled for the new
basis. However, this is not possible in general. Moreover, even when such a basis change
is available, it is only fruitful if the new basis is simple enough to be used as a new
computational basis (e.g. it should be a product basis), otherwise the task of computing
the weights e−��eff(z) might incur a prohibitive slowdown.

In the event that Eq. (3.11) holds for some known, simple basis {|I〉}, Hamiltonian
� = �cl+�qu is said to be stoquastic [56]. In this case, it is computationally easy to evaluate
the Gibbs weights (which are guaranteed to be nonnegative) and hence implement the
usual Metropolis algorithm [181] to reach the equilibrium distribution.

An important property of stoquastic Hamiltonians is that their ground state wave
function can always be taken to be real and nonnegative [56, 57], as follows from the
Perron–Frobenius theorem [40]. One is naturally lead to wonder whether stoquastic
ground states, which avoid the sign problem as well as other interference effects, may
always be efficiently approximated by classical algorithms. Although this seems to be true
in several cases, to the point that it can well-nigh be granted the status of “folk theorem”
among the community, it is known that it does not in fact hold in full generality. For one,
Hastings showed how PIMC with local updates can fail to efficiently simulate systems
living on topologically nontrivial spaces, leading to exponential slowdowns even in the
presence of polynomial gaps [119]. This proves that QA is strictly superior to PIMC at
least on this class of problems. As we will show in Section 3.3, topological obstructions
hampering PIMCmay be eluded by the diffusionMonte Carlo algorithm presented below.
Nonetheless, examples of cost Hamiltonians which are solvable in polynomial time by QA
but take exponential time with DMC were also explicitly constructed [58, 135], showing
that not even DMC is capable of fully simulating adiabatic stoquastic dynamics. We will
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further discuss the value of classically simulating quantum annealing in the introduction
of Section 3.3, as well as in the general conclusions to this chapter.

3.2.2 Di�usion Monte Carlo

The DMC algorithm belongs to the family of so-called projective (PQMC) methods, i.e.
it aims at estimating the ground-state wave function of a system by evolving a generic
quantum state |#〉 in imaginary time and thereby projecting out its ground component:

e−�� |#〉 =
�−1∑
0=0

e−��0 20 |�0〉 = e−��020 |�0〉
(
1 + 21

20
e−�(�1−�0) |�1〉 + · · ·

)
∼ e−��020 |�0〉 for �→∞, (3.12)

where we assumed that the state |#〉 = ∑
0 20 |�0〉 has a nonzero projection 20 = 〈�0 |#〉 on

the ground state |�0〉, and there is no ground state degeneracy, �1 > �0.
Notice that we must take some care with this procedure in order to obtain meaningful

results. Indeed, the imaginary time evolution operator is not unitary,(
e−��

)†
≠

(
e−��

)−1
, (3.13)

and therefore it is not bound to preserve norms. A naïve application of Eq. (3.12) would
generally lead to an exponential decay (or increment) in the norm of |#〉, which would
render it useless for computation. For this reason, a renormalization procedure will have
to be included in the evolution process.

Other than this detail, we can use the same idea as PIMC in order to approximate the
evolution operator on a classical machine: discretize the (imaginary) time interval in  
steps, use the Trotter formula to factorize the small-time evolution

e−��/ ≈ e−��cl/ e−��qu/ (3.14)

and inject resolutions of the identity between every step. This will again lead to a twofold
evolution step, where the quantum part provides a kinetic term and the classical part
a potential. We first describe the simplest scenario — a one-particle system in a fixed
external potential — before switching to the many-body case.

A single particle can be described by its amplitude distribution in real space, namely
its wave function #(G) = 〈G |#〉, with G = (G1 , . . . , G3) in 3 dimensions. In the absence of
any potential (�cl = 0), the Schrödinger equation in imaginary time is just describing the
free diffusion of this particle:

%#(G, �)
%�

=
1

2<∇
2#(G, �) (3.15)
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for a particle of mass <. If one considers the particle initially localized in space, #(G, 0) =
�(G − G0), the corresponding solution of Eq. (3.15) (its Green function) is the well-known
heat kernel

�qu(G, G0 , �) =
(
<

2��

)3/2
e−

<
2� (G−G0)2 , (3.16)

as can be easily shown by solving the equation in momentum space. As usual, we can use
the Green function as a real-space propagator to generate the solution of Eq. (3.15) for any
initial condition:

#(G, �) =
∫

dG′�qu(G, G′, �)#(G′, 0). (3.17)

On the other hand, the action of the classical part is diagonal in real space, �cl = +(G),
so it simply acts as a multiplication operator,

(
e−��cl#

)
(G, �) = e−�+(G)#(G, �). In other

words, we have the propagator

�cl(G, G0 , �) = �(G − G0)e−�+(G). (3.18)

The factorization property Eq. (3.14) implies that as long as �� = �/ is small, the full
propagator corresponding to � = �cl + �qu is well approximated (i.e. to order $(��2)) by
the concatenation

�(G, G′, ��) ≈ �qu(G, G′, ��)�cl(G, G′, ��). (3.19)

In order to compute#(G, �) =
∫

dG′�(G, G′, �)#(G, 0), theDMCalgorithm implements a
classical stochastic dynamics on a population of “walkers”, whose distribution at time � is
described by#(G, �). This basically consists in switching from a Fokker–Planck description
of the system (i.e. in terms of the deterministic evolution of a probability distribution) to a
Langevin description (in terms of the stochastic evolution of a particle).

More precisely, we start the simulation by initializing#w walkers, i.e. points in configu-
ration space, according to a certain initial profile#(G, 0). Typical choices for the population
size range within #w ≈ 102 − 104, with larger numbers resulting in a smaller systematic
errors. Now consider an individual walker. In the single-particle setting, we can regard
this as a classical particle in real space. The free diffusion described by the quantum part
of the propagator can be implemented by randomly displacing thewalker from its original
position G0 such that the new position G is distributed according to �qu(G, G0 , ��) (seen
as a probability distribution for the variable G). This corresponds to a step in a random
spatial direction whose length is a Gaussian random variable with variance ��.

The classical part of the propagator ought to operate a reweighting procedure accord-
ing to the local value of the potential+(G). In other words, the Langevin dynamics should
awardwalkers for staying in low-potential regions, and penalize them for wandering off to
higher grounds. In principle, one could simply try to kill the walker with a probability de-
termined by the classicalweightF(G) ∝ e−��+(G). However, thiswould decimate thewalker
population far too quickly (indeed exponentially so), making the simulation impossible.
This effect is the manifestation, at the walker level, of our previous observation that the
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imaginary time evolver is not unitary. There is a standard [248] procedure to obviate this
difficulty. We can introduce a branching rule whereby walkers can be duplicated as well as
deleted, in such a way that the average replication rate reproduces the correct weight.

A way to achieve this is the following: in between diffusion steps, the weight F(G) for
the walker is computed. Then, a uniform random number A ∈ [0, 1] is drawn. Finally, the
walker is replaced by bF(G) + Ac copies of itself in the same spatial location.3 One also has
to properly select the normalization for the weight F(G). This is equivalent to choosing a
“reference energy” �T so that the weight has the form

F(G) = e−��(+(G)−�T). (3.20)

For a proper execution, �T should have the effect of fixing the average reproduction rate to
about 1, so as to avoid both an exponential decay and an exponential growth of the walker
population. In practice, in order to keep the number of walker under control, �T must be
adjusted after every step. One preemptively fixes a target number of walkers #w,target and
every instantaneous deviation from it is negatively fed back to �T, e.g. via the update rule

�T ↦→ �T + 
 log
(
#w,target

#w(�)

)
(3.21)

for some 
 > 0. In alternative, it may be preferable to allow for small drifts from the
target by using the instantaneous deviation, namely replacing #w,target with #w(� − ��)
in Eq. (3.21). We can see from Eq. (3.12) that the ideal value for �T, canceling out any
exponential behavior of the state’s norm, coincides with the ground energy �0. Therefore,
the stabilized value of the regulator can be used as an estimate for the ground energy.

Overall, the master equation for the walker distribution reads like a diffusion equation
with an additional source term:

%#(G, �)
%�

=
1

2<∇
2#(G, �) − [+(G) − �T]#(G, �). (3.22)

The methods described so far can be applied to many-body systems without much
modification. The real-space basis {|G〉}G will be traded for a computational basis {|I〉}I ,
e.g. the standard �I basis for a spin system, with the potential part acting diagonally on
the many-body state. Walkers will correspond to computational basis states, moving in
an abstract (e.g. the Boolean hypercube for spins-1

2 ) as opposed to real space. The only
nontrivial adjustment concerns the diffusion part of the propagator, whose corresponding
transfer matrix needs to be computed for the specific model as in Eq. (3.6). For the Ising
model, for example, one obtains the following expression:

�qu(I, I′, ��) =
sinh(��Γ)A cosh(��Γ)=−A

exp(=��Γ) , (3.23)

3This is equivalent to allowing a walker to survive with probability F(G), plus creating a new one with
probability F(G) − 1 should the weight exceed 1, plus another one with probability F(G) − 2 should it exceed
2, etc. [107]. It is usually wise to restrict the maximum number of allowed copies per generation.
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where A = |I − I′ |H is the Hamming distance (minimum number of spin flips) between
the configurations, and Γ the transverse field intensity. This is properly normalized as∑�−1
I=0 �qu(I, I′, ��) = 1 for all I′ ∈ {0, 1}= .4
As alluded to previously, the goal of DMC is to approximate the ground-state wave

function#gs(I) = 〈I |�0〉. Using the formal analogybetween the imaginary-timeSchrödinger
equation and a diffusion equation, the wave function #(I, �) of a system is interpreted as
the probability distribution of a population of walkers evolving under a specific Langevin
dynamics. However, this analogy only makes sense insofar as the wave function can be
treated as a probability distribution. This cannot be done in general, as #(I, �) need not
be nonnegative (we can however always assume that it is real).

That said, as we mentioned toward the end of the previous section, the ground state
of stoquastic Hamiltonians (cf. Eq. (3.11)) can always be taken to be nonnegative,

#gs(I) ≥ 0 ∀I, (3.24)

and hence treated as a probability (rather than amplitude) distribution.

Importance sampling

Unless the potential+(I) is particularly well-behaved, the weight factor F(I) = e−�(+(I)−�T)

will vary with I regardless of the regulator �T. This means that, although one is free to fix
the average replication rate, the distribution of bF(I) + Ac will in general cause the walker
population to fluctuate considerably.

A ubiquitous approach to sampling irregular functions throughMonte Carlo methods
is importance sampling. It consists in using a function which approximates the desired
distribution as a “guide” for the sampling process. In the case of DMC, we introduce a
guiding wave function (GWF) ΨG(I) that we expect to decently approximate the ground
state,ΨG(I) ≈ #gs(I). We then shift our aim toward sampling the product

�(I, �) = ΨG(I)#(I, �). (3.25)

Let us go back to the single-particle case for the sake of simplicity. The addition of a
GWF in Eq. (3.22) leads to the appearance of an extra drift term in the master equation
(which we write in one dimension to keep the notation lighter):

%�(G, �)
%�

=
1

2<
%2�(G, �)

%G2 + 1
<

%

%G

[
!′G(G)�(G, �)

]
− [�L(G) − �T] �(G, �), (3.26)

with the local energy �L(G) defined by

�L(G) = +(G) −
1

2<ΨG(G)
d2ΨG(G)

dG2 , (3.27)

4To see this, call ? = sinh(��Γ)/e��Γ and notice that �qu(I, I′, ��) = ?A (1 − ?)=−A with A = |I − I′ |H. The
sum over I can be written as a sum over the Hamming distance A times a binomial coefficient

(=
A

)
, which

makes the general terms into a binomial distribution.
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the effective potential by
!G(G) = − log|ΨG(G)| (3.28)

and we used the notation !′G =
d!G
dG . Notice how Eq. (3.26) reduces to Eq. (3.22) when

ΨG(G) = 1 (no importance sampling).
As is clear from Eq. (3.26), the effect of a nontrivial GWF is twofold: first, it adds a

deterministic drift �G = �� !′G(G) on top of the diffusion process, which pushes walkers
toward regions of larger |ΨG(G)|, thus facilitating the convergence process. Secondly, it
reshapes the local potential felt by the walkers from +(G) into �L(G). The local energy is a
constant functionwhenever the GWF is an exact eigenfunction of the original Hamiltonian
(indeed it is the eigenvalue corresponding to ΨG). In this case, there is no reweighting
during the evolution, and the walker population is constant at all times. In a realistic case,
the GWF will not be an eigenfunction, but it should be close (in some functional norm)
to the exact ground state. This means that �L(G) will be “almost a constant”, i.e. much
better behaved than the naked potential +(G), resulting in much smaller fluctuations in
the walker population and a proportionally stabler algorithm.

Therefore, in order forDMC to be effective one needs to be able to produce a satisfactory
ansatz for the ground state. This is typically obtained variationally, i.e. by writing a
candidate wave function with some free parameters and then minimizing its energy with
respect to them. We are going to see a couple of simple examples in the course of the next
section, but generally speaking, the problem of finding good variational approximants
to many-body ground states is extremely complex, and a major subject of research in
condensed matter, nuclear physics, quantum chemistry, and more.

3.3 Simulating tunneling events on classical machines

In this section, we try to apply quantum Monte Carlo methods, specifically DMC, to
problems which we expect to be efficiently tackled by QA, on account of their energy
landscapes containing tunneling paths. We begin by contextualizing and motivating this
investigation in Section 3.3.1, before proceeding to the study of a single-particle model
on the real line — the quartic double well model — which will serve as a testing ground
for our methods (Section 3.3.2). Despite its conceptual simplicity, this model can be seen
as a mean-field approximation to a large class of many-body systems characterized by
a single relevant parameter which can switch between two different equilibrium values
when activated over, or tunneling through, a tall barrier. Examples include the total
magnetization in 1D spin models and reaction coordinates in chemistry. Moreover, this
very simplicity will allow us to present a semiclassical theory explaining the observed
phenomenology (Section 3.3.3). Afterwards, we will tackle two many-body spin systems
on a lattice, namely the familiar Ising model in a transverse field (Section 3.3.4) and the
so-called “shamrock model” (Section 3.3.5). Specific attention will be given in all cases to
the role of importance sampling in the performance of the algorithm. Wewill comment on



Simulating tunneling events on classical machines 101

the systematic error introduced by using a finite walker population, and the complexity
requirements that stem therefrom, in Section 3.3.6. Finally, wewill present our conclusions
in Section 3.3.7.

The work presented in Sections 3.3.2 and 3.3.3 was performed in collaboration with
Giuliano Giudici, and that in Sections 3.3.4 through 3.3.6 was carried out by Estelle M. In-
ack. The project as a whole was conceived and supervised by Sebastiano Pilati.

3.3.1 Previous results and motivation

As we saw in Section 1.3.2, quantum annealers are special purpose adiabatic quantum
computers designed to solve complex optimization problems. Compared to alternative
classical optimization algorithms, chiefly simulated annealing, they can additionally ex-
ploit quantum tunneling to cross energy barriers and reach lower energy solutions. Their
dominant bottlenecks are the small energy gaps associated to avoided level crossings,
which typically occur in disordered systems when two well-separated competing states
are connected by a tunneling process. This scenario frequently happens in the glassy
phases that characterize typical hard optimization problems.

The task of classically simulating the real-time dynamics of quantum annealers, e.g.
to identify classes of problems where they might outperform classical optimization meth-
ods, is only possible for relatively small systems (say, around 30 spins). Quantum Monte
Carlo (QMC) simulations, making use of algorithms such as those described in Section 3.2,
have emerged as a useful alternative tool to simulate the quantum annealers’ behavior in
configurations where the sign problem does not occur [12, 49, 104, 120, 170, 175, 242]. This
is the case, for instance, of the devices currently commercialized by D-Wave systems (see
e.g. Refs. [48,49,137,157,218]). In particular, PIMC [65] and projective QMC (PQMC) [107]
algorithms have been adopted, beside other techniques such as the stochastic series ex-
pansion algorithm [160,161].

Tunneling events similar to those characterizing the quantum annealers’ dynamics also
occur during QMC simulations [50, 80]. In various problems characterized by a double-
well energy landscape, the tunneling rate of nonzero-temperature PIMC simulations was
found to scale with the system size, or with the height of the energy barrier, as the square
of the first energy gap [55, 133, 174]. This is the same scaling predicted by the theory of
incoherent quantum tunneling [262], and it is also the scaling of the inverse of the annealing
time required by a coherent quantum annealer to avoid diabatic transitions [100].

Refs. [133, 136, 174] explained these results using a semiclassical theory of instantons
in PIMC simulations. In the case of PQMC, we find in Sections 3.3.2–3.3.5 the tunneling
rate to scale linearly with the gap, providing a quadratic speedup compared to the ex-
pected behavior of a quantum annealer.5 Furthermore, the PQMC algorithms displays

5A linear scalingwas identified also for PIMC simulations performedwith open boundary conditions in the
inverse-temperature direction [133,174]. However, significant deviations have later been discussed [136]. Fur-
thermore, the computational cost of zero-temperature simulations based on open-boundary PIMC algorithms
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this speedup even in the so-called shamrock model (Section 3.3.5), where frustrated in-
teractions cause an exponential slowdown of the finite-temperature PIMC dynamics [22].
These findings suggest that PQMC simulations constitute a relevant benchmark for phys-
ical quantum annealers and a competitive quantum-inspired classical optimization algo-
rithm [71, 131, 135]. In fact, they have recently been employed to obtain better solutions
in optimization problems relevant for medical research, specifically, for pulse-sequence
optimization in magnetic resonance fingerprinting [156]. This further highlights the im-
portance of exhaustively characterizing their tunneling dynamics.

The tunneling-time studies mentioned above have considered PQMC algorithms im-
plementedwithout a guidingwave function (GWF). The GWF, usually a variational ansatz
that closely approximates the ground state, guides the PQMC simulation towards the rel-
evant regions of the configuration space. This improves the algorithm’s accuracy and
efficiency [107]. In fact, without a sufficiently accurate GWF, the computational cost of
PQMC simulations increases exponentially with the system size [52, 193]. In principle,
one might expect the GWF to significantly impact the tunneling dynamics, since it alters
both the sampling algorithm and the probability distribution sampled at equilibrium. In
this section, we analyze whether the GWF does indeed affect the tunneling time in PQMC
simulations, and if it does, to what extent. As test beds, we consider a one-dimensional
continuous-space Hamiltonian describing a quantum particle in a double well, the ferro-
magnetic quantum Ising chain, and the shamrockmodel. Notice that, in the ferromagnetic
phase, also the Ising-type models can be described by an effective double-well potential,
with the two polarized states with opposite magnetizations representing the two compet-
ing potential minima. We consider different kinds of GWFs, including a Boltzmann-type
ansatz that mimics the equilibrium distribution of a classical statistical ensemble and, for
the continuous-spacemodel, the numerically exact representation of the ground state. For
the quantum Ising chain, we also consider an ansatz that mimics the structure of a gener-
ative artificial neural network [62], specifically an unrestricted Boltzmann machine [132]
or, in a different jargon, a shadow wave function [214, 257]. Remarkably, for all GWFs we
consider, we find the same linear scaling (to leading exponential order) of the tunneling
rate with the gap as previously found in PQMC simulation performed without GWF. The
choice of the GWF only affects the prefactor. We also provide a semiclassical theory based
on the Wentzel–Kramers–Brillouin (WKB) approximation, valid for PQMC simulations of
the double well with exact GWF, that explains the observed linear scaling.

has not been analyzed in detail.
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Figure 3.1: Profile of the quartic double-well potential Eq. (3.30) (dotted blue line), shifted for better
comparison with the wave functions of the ground state Ψ0(G) and of the first excited
stateΨ1(G) (orange and green solid lines, respectively).

3.3.2 DMC tunneling in a quartic double-well potential

In this section, we consider a quantum particle in one spatial dimension, described by the
following continuous-space Hamiltonian:

�̂ = −1
2

d2

dG2 ++(G), (3.29)

with the quartic double-well potential

+(G) = G4

6
− G2. (3.30)

The profile of +(G) is visualized in Fig. 3.1, together with the corresponding ground-state
wave functionΨ0(G) and the first excited stateΨ1(G). Units are chosen so that ~/< = @ = 1,
where ~ is the reduced Planck constant, < is the particle mass and @ = 1

2
√
+′′(Gℓ ,r) fixes

the curvature at the bottom of the well. Here Gℓ ,r = ∓
√
6/2 are the minimum points

of +(G). The dimensionless parameter 6 controls the height of the barrier separating
the two wells, Δ+ = +(0) − +(Gℓ ) ∝ 6, and the distance between the minimum points,
Gr − Gℓ ∝

√
6. For large 6, the barrier height increases relative to the wells’ separation

and the energy spectrum becomes doubly degenerate, corresponding to the two wells
being asymptotically independent. For large but finite 6, the two wells are connected by
tunneling processes. These processes lift the degeneracies, leading to small tunneling gaps
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between the energy levels. An approximate expression for the first energy gap Δ = �1−�0
between the ground state energy �0 and the first excited level �1, valid in the large-6
regime, can be determined via the WKB semiclassical theory, which gives [110]

Δ ∼ 8
√
6

�
exp

(
−

26
3

)
. (3.31)

In an isolated double well, a quantum particle initially prepared in one of the two states

#ℓ ,r(G) =
Ψ0(G) ±Ψ1(G)√

2
, (3.32)

which are localized in the left and right wells, respectively, performs coherent Rabi os-
cillations between the two states at a rate proportional to Δ. As a reference, it is worth
mentioning that, instead, a quantum particle coupled to a thermal bath and subjected
to a double-well potential would undergo incoherent tunneling at a rate proportional to
Δ2 [262].

Tunneling time in DMC simulations

Our goal is to analyze the relation between theDMC tunneling time �, defined as the imag-
inary time required by the walkers to leak from one well to the other, and the physical
tunneling time of the real-time dynamics. More precisely, we are interested in the scaling
relation between � and the inverse energy gap Δ−1. We measure � with a protocol analo-
gous to the one adopted in Refs. [133, 174] for PIMC simulations. All walkers are initially
set at the bottom of the left well G = Gℓ . The DMC simulation is run until a percentage ? of
the instantaneouswalker population overcomes a given position threshold in the rightwell
Gthr ≥ 0. The final imaginary time is recorded, and the process is repeated approximately
300 times to accumulate statistics. The fluctuations of the final imaginary times turn out to
be approximately normally distributed, andwe take the average and its standard deviation
as the definition of � and of its error bar, respectively. In the simulations reported here,
the threshold is set at Gthr = Gr/2 and the walker percentage at ? = 25%. A careful analysis
shows that the asymptotic scaling of � is independent of this specific choice of ? and Gthr
up to a constant prefactor. Furthermore, the chosen target walker population #w ≈ 104

is large enough, and the chosen time step small enough (e.g. �� = 0.007 for 1/Δ > 70), to
eliminate any significant systematic error on �.

First, the DMC algorithm is run without a guiding wave function (GWF). We measure
the tunneling time � for different barrier heights, tuned by varying the parameter 6. In
Fig. 3.2, � is plotted as a function of the inverse energy gap Δ−1, which we compute for
the different 6 values using a standard finite-difference method [68]. The discretization is
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Figure 3.2: DMC tunneling time � for the quartic double-well potential (3.30) as a function of the
inverse energy gap Δ−1. Three different DMC protocols are shown: the simple DMC
algorithm without a GWF (red circles), the DMC algorithm guided by a Boltzmann
ansatz (green empty squares), and the one guided by the numerically-exact represen-
tation of the ground state Ψ0(G) (blue empty diamonds). The dashed line represents
the scaling � ∝ Δ−1. Here and in all plots, if not visible, the error bars are smaller than
the symbol size.

fine enough to ensure that there is no sizable finite-precision effect. In the large-6 regime,
corresponding to large Δ−1, the tunneling times approach the scaling law

� ∝ Δ−1. (3.33)

We are going to find that the same relation holds for the Ising-type models considered in
Section 3.3.4.

Next, we runDMCsimulationswith aGWF. First, we consider asGWF the approximate
“Boltzmann-type” ansatz6

ΨG(G) = exp
[
−�+(G)

]
. (3.34)

The fictitious inverse temperature � is fixed by minimizing the variational energy estimate

�G(�) =
〈ΨG |� |ΨG〉
〈ΨG |ΨG〉

. (3.35)

6Notice that ΨG(G) does not need to be normalized to one, as it only enters the master equation (3.26)
through ratios.
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Second, we consider a numerical representation of the exact ground-state wave function,
i.e., we set ΨG(G) = Ψ0(G). The ground-state wave function Ψ0(G) is obtained via the
same finite-difference technique used for the gaps. Notice that this ansatz represents the
optimal GWF for equilibrium simulations.7

In Fig. 3.2, the tunneling times obtained with these two GWFs are compared with the
results obtained without any. Remarkably, for large 6 (tall barrier), the very same linear
relation between � and Δ−1 is approached. By fitting the three datasets in the large-6
regime with the function �(Δ) = 
Δ−1 , where 
 and 1 are the fitting parameters, we obtain
the values reported in Table 3.1. In all three cases, the exponent 1 is consistent with
the linear relation corresponding to 1 = 1. The choice of GWF only affects the prefactor

, though for this model the variations are small enough to be masked by statistical
uncertainties. These findings indicate that the GWF does not affect the leading scaling
relation between tunneling time and inverse energy gap. This is a surprising results,
given that introducing the GWF affects both the sampling algorithm and the equilibrium
probability distribution of the DMC simulation. A rough explanation can be conjectured
by considering the competition between the two effects originating from the introduction
of the GWF. The first is due to the deterministic drift, which pushes walkers away from the
potential barrier, inhibiting inter-well crossings. The second is the smoothing out of the
weight reduction that occurs when walkers encounter a bump in the potential; this effect
reduces the probability of those walkers being eliminated from the population, enhancing
tunneling. Our numerical results indicate that these two effects tend to compensate exactly.
A more formal explanation of the relation � ∼ Δ−1 is proposed in the next subsection.

The double-well potential (3.30) is characterized by a specific functional relation be-
tween the barrier’s height and width, specifically

height
width =

+(0) −+(Gr)
Gr − Gℓ

=

√
6

32 . (3.36)

However, we expect our findings to hold formore generic choices of double-well potentials
as well. In order to verify this, we introduce an adjustable parameter that allows us to vary
the width of the barrier independently of its height. Similarly to Ref. [174], we consider
the potential

*(G) = (|G | − G0)4+
6

− (|G | − G0)2+ , (3.37)

where 5 (G)+ ≡ max{0, 5 (G)} and G0 ≥ 0. This potential features a plateau of width 2G0
around the origin, and reduces to +(G) for G0 = 0. In our study, the barrier height is kept

7One could argue that using the ground state as a GWF for DMC makes as much sense as sketching out a
suspect’s identikit by tracing over a high-resolution photograph. While it is true that in realistic settings one
never does have access to the exact ground state — nor would he need DMC if he did —, now we are only
interested in understanding the tunneling dynamics. By benchmarking against the best possible GWF, we
can upper bound the performance gain from all the others.
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DMC 
 1

No GWF 109(11) 0.99(2)
Boltzmann 98(16) 1.01(3)
Exact GWF 112(8) 0.99(1)

Table 3.1: Fitting parameters 
 and 1, describing the small-gap behavior of the DMC tunneling
time � in the double-well potential (3.30) according to the fitting function �(Δ) = 
Δ−1 .
For each protocol, the five rightmost data points shown in Fig. 3.2 are included in the fit.

constant by fixing 6 to some value (we use 6 = 8), while G0 is increased in the interval
G0 ∈ [0, 2]. This has the effect of reducing the gap Δ as well as the tunneling rate �−1.
The GWF chosen for this study is the numerically exact ground-state wave function. Once
again, a linear relation is found between � and Δ−1, and fitting the dataset with the power
law �(Δ) = 
Δ−1 in the small-gap regime yields the values 
 = 23(1) and 1 = 0.993(7) for
the parameters, confirming the generality of relation (3.33).

3.3.3 Semiclassical theory of the DMC tunneling dynamics

We now present a semiclassical theory to explain and generalize our findings. As men-
tioned above, the DMC algorithmwith GWF is described by Eq. (3.26), containing both the
usual drift and diffusion terms aswell as an additional norm-nonpreserving term from the
branching process. When the GWF coincides with the exact ground-state wave function,
ΨG(G) = Ψ0(G), the branching rate becomes a constant and can be set to zero by a suitable
choice of �T. This results in the standard Fokker–Planck equation

%�(G, C)
%C

=
1
2
%2�(G, C)
%G2 + %

%G

[
!′G(G)�(G, C)

]
. (3.38)

This equation describes the stochastic dynamics of a classical particle with distribution
�(G, C) subject to the effective potential !G(G) defined in Eq. (3.28) (with ΨG = Ψ0). The
tunneling time corresponding to this dynamics can then be identified (to exponential accu-
racy) with the activation time needed for this classical ensemble to overcome the effective
barrier Δ!G ≡ !G(0) − !G(Gmin), with initial conditions �(G, 0) = �(G − Gℓ ) (the normaliza-
tion can be set to one since the norm of �(G, C) is conserved). Here, Gmin indicates the (left)
minimum point of !G(G), in general different from Gℓ , while G = 0 is its local maximum
point, as follows from the parity ofΨ0(G). The computation of the classical activation over
a potential barrier is known as Kramers problem [140,151]. The corresponding activation
time reads

�act =
2�√

!′′G(Gmin)
��!′′G(0)�� exp

(
2Δ!G

)
. (3.39)
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The large-6 scaling of �act is dominated by the exponential function in Eq. (3.39), so we
focus on that term alone. Substituting Eq. (3.28) into Eq. (3.39), one obtains

�act ∼
(
Ψ0(0)
Ψ0(Gmin)

)−2

∼ Ψ0(0)−2. (3.40)

Here, we used the fact thatΨ0(Gmin) cannot be exponentially small in 6 if the ground-state
wave function is to be normalized to unity (notice that, by definition, Ψ0(G) achieves its
global maximum at Gmin, and its amplitude is exponentially small outside of a region
of width $(√6)). The value of Ψ0(0) can be estimated using WKB theory, which gives
Ψ0(0) ∼ exp(−6/3) [191]. Substituting this into Eq. (3.40), and combining with the WKB
estimate of the gap, Eq. (3.31), we finally get

� ∼ �act ∼
1
Δ
, (3.41)

where the symbol ∼ denotes asymptotic equal scaling for 6 → ∞, up to subexponential
corrections.
The above argument can actually be generalized to double-well–type potentials other than
the quartic doublewell defined inEq. (3.30). In fact, Eq. (3.40) can bederived fromEq. (3.38)
under quite general assumptions on +(G), as long as a sufficiently accurate approximant
of the ground-state wave function is available to use as a GWF, such that the effect of
branching may be neglected. Moreover, for a generic double-well potential the ground
gap in the large-barrier limit can be expressed as [110,155]:

Δ ∝ #r(0)#′r(0), (3.42)

where #r(G) is the ground-state wave function of a singlewell, as defined in Eq. (3.32). The
above relation holds in the only hypothesis that #r(G) is asymptotically localized on G > 0,
such that the condition ∫ 0

−∞

[
#r(G)#r(−G) − #r(G)2

]
dG � 1 (3.43)

is fulfilled at large 6. We can now resort to WKB theory, which gives the following
expression for #r(G) (to exponential accuracy):

#r(G) = exp
(
−

∫ 0

G

dG′
√

2(+(G′) − �0)
)
, (3.44)

where �0 is the ground-state energy and 0 is the (positive) classical turning point, defined
by +(0) = �0. This implies that, up to subexponential corrections, Δ ∝ #r(0)2 ∝ Ψ0(0)2.
Upon substitution into Eq. (3.40), this leads to the scaling relation (3.41). Therefore, in the
assumption that the WKB approximation works well in a neighborhood of the origin (e.g.
assuming that the turning points do not approach 0 in the infinite-barrier limit), we see
that the DMC tunneling time generically exhibits a Δ−1 scaling regardless of the specific
form of the potential.



Simulating tunneling events on classical machines 109

3.3.4 The ferromagnetic quantum Ising chain

We now consider interacting spin models on a lattice. Our DMC simulations for discrete-
basismodels arebasedon the continuous-timeGreen functionMonteCarlo algorithm[237],
exhaustively described in Ref. [39].

In this sectionwe present the results for the one-dimensional ferromagnetic transverse-
field Ising model (TFIM) defined by the following Hamiltonian:

� = −�
!−1∑
8=0

�I8 �
I
8+1 − Γ

!∑
8=1

�G8 , (3.45)

with a ferromagnetic coupling � > 0. Periodic boundary conditions are considered,
�I
!
= �I0 .
At zero temperature this model undergoes a quantum phase transition from a param-

agnetic phase for Γ > � to a ferromagnetic phase for Γ < �. In the Γ → 0 limit quantum
fluctuations are suppressed and one has two degenerate (classical) states with all spins up
|↑↑ . . . ↑〉 or all spins down |↓↓ . . . ↓〉. In order to flip from one state to the other, the system
must overcome a free energy barrier separating the two minima, with the magnetization
playing the role of a one-dimensional reaction coordinate which parametrizes a symmet-
ric double-well profile of the kind described in the previous sections. For small Γ > 0,
in the thermodynamic limit there are still two degenerate ground states with opposite
magnetizations, but in a finite chain the degeneracy is lifted by an exponentially small (in
the system size) energy gap due to the quantum tunneling coupling the two states. This
closing-gap scenario resembles the Landau–Zener avoided level crossings one typically
encounters in adiabatic quantum optimization. There, the small gaps are associated to
tunneling processes between competing solutions. In order to avoid diabatic transitions
to the first excited state, the total annealing time has to scale as 1/Δ2. These small gaps
represent the bottleneck of adiabatic quantum computing, since for hard optimization
problems they often close exponentially fast with the problem size [33, 99, 146, 158, 267].

We define the DMC quantum tunneling time � analogously to the one-dimensional
case, except we now stop the clock as soon as ? = 25% of the walkers (which are up/down
configurations of the Ising chain), initialized with fully positive magnetization, come
to have a negative magnetization (majority of spins pointing down), meaning that they
have crossed the free energy barrier. This definition is analogous to the one employed in
Refs. [22,133,174] in the case of PIMCsimulations,where a certainpercentageof imaginary-
time slices, instead of walkers, is considered. The simulation is repeated approximately
250 times for larger systems and small Γ and approximately 2 500 for smaller systems and
larger values of Γ. As in the double-well case, we then take the average value to define �
and its standard deviation to define the error bar.

The DMC tunneling times for the ferromagnetic Ising chain are shown in Fig. 3.3, as a
function of the number of spins ! and for different values of Γ. For large ! the data display
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Figure 3.3: DMC tunneling time � for the ferromagnetic Ising chain (open symbols) as a function of
the number of spins !, for different values of the transverse field Γwith � = 1. The closed
symbols represent the inverse gap values 1/Δ obtained with exact diagonalization and
rescaled by a parameter 
(Γ) ∼ 1 (see legend). The thin dashed curves represent
exponential fits for the tunneling time � in the large-! regime. Here and in the other
graphs the error bars are smaller than the symbol size if not visible.

an exponential growth, quite similar to the dependence of the inverse gap 1/Δ, which
we obtain via exact diagonalization of the Hamiltonian matrix. In fact, by multiplying
the inverse gap 1/Δ by an appropriate numerical prefactor 
 we obtain precise matching
between the two datasets. The coefficient 
 turns out to be a number of order 1. We also
consider different definitions of DMC tunneling time, using percentages of walkers that
have to cross the barrier between 10% and 25%, obtaining again results which follow the
1/Δ scaling but with a slightly different value of the prefactor 
.

The inverse-gap scaling displayed by the DMC tunneling times is similar to the result
found in Ref. [133] using modified PIMC simulations performed using open boundary
conditions in imaginary time. This is not surprising, since such modified PIMC method
had been originally introduced as a computational tool to study ground-state proper-
ties [72,222]. However, it is usually employed in combinationwith guidingwave functions
that accurately describe the ground state, so that the convergence to the zero-temperature
limit as a function of the total path length is quite rapid. How this algorithm converges
to the ground state in the absence of a GWF has not been analyzed in detail yet. It is
also worth stressing that in the PIMC formalism the tunneling time is defined by counting
the number of Monte Carlo sweeps (a sweep corresponds to one Monte Carlo step per
spin) and, therefore, it does not bear the significance of imaginary time as in the DMC
method employed in this article. In Ref. [133], finite-temperature PIMC simulations (with
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periodic boundary conditions) have also been performed, finding that the PIMC tunneling
times scale as 1/Δ2. This behavior was found in ferromagnetic Ising models (which are
characterized by a one-dimensional reaction coordinate) and it was later confirmed in
one-dimensional and two-dimensional continuous-space models as well [174], showing
that it persists even when the reaction coordinate is multidimensional.

Considered together, the above findings suggest that QMC algorithms are either as
efficient as (in the case of finite-temperature PIMC) or quadratically faster than (in the case
of PIMCwith open boundary conditions in imaginary time, andDMC) quantumannealers
in tunneling through free energy barriers and therefore, if one assumes that incoherent
quantum tunneling is the empowering resource of QAs, also in solving optimization
problems.

TFIM with importance sampling

In this section we consider two types of GWF. The first one is the Boltzmann ansatz:

ΨG(I) = exp
[
−��cl(I)

]
, (3.46)

which is modeled on the Boltzmann distribution of a classical Ising system with Hamilto-
nian function �cl(I) = 〈I |�cl |I〉, where �cl = −�

∑
8 �

I
8
�I
8+1. The fictitious temperature � is

fixed byminimizing the variational energy 〈ΨG |� |ΨG〉
〈ΨG |ΨG〉 using the stochastic gradient descent

method [237].
The second GWF is based on a stochastic generative neural network, specifically an

unrestricted Boltzmann machine (uRBM) [132]; it is defined as

ΨG(I) =
∑
ℎ

) (I, ℎ) (3.47)

where

)(I, ℎ) = exp

[
!−1∑
8=0
( 1I8I8+1 +  2ℎ8ℎ8+1 +  3I8ℎ8)

]
. (3.48)

The wave function amplitude ΨG(I) in each physical, or visible, spin configuration I =

(I0 , . . . , I!−1) is obtained by integrating over all configurations of the ! hidden units ℎ =
(ℎ0 , . . . , ℎ!−1), which take the values ℎ8 ∈ {±1} for 8 ∈ {0, . . . , ! − 1}. Periodic boundary
conditions are considered both in the visible and in the hidden layers, I! = I0 and ℎ! = ℎ0.
The three coupling constants  1,  2, and  3 fix the interaction strengths between nearest-
neighbor visible–visible and hidden–hidden pairs, and between visible–hidden pairs with
the same index, respectively. We determine them via variational optimization using the
stochastic reconfiguration method.

The analysis reported in Ref. [132] indicated that optimized uRBM GWFs are suffi-
ciently accurate to considerably reduce the computational cost of DMC simulations of the
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Figure 3.4: Tunneling times � of the DMC algorithm implemented without GWF (blue hexagons),
with the uRBM GWF (3.47) (red triangles), and with the Boltzmann GWF (3.46) (green
diamonds), as a function of the inverse energy gap Δ−1, for the quantum Ising chain at
Γ = 0.6. The dashed lines represent the fitting function �(Δ) = 
Δ−1 , valid in the large
Δ−1 regime. In all three cases, the fitted exponent is 1 ≈ 1 (see Table 3.2).

quantum Ising chain — possibly down to a polynomial scaling with system size. Unlike
the restricted Boltzmannmachine originally introduced as a variational ansatz in Ref. [62],
the uRBM includes intra-layer interactions. In general, this implies that one cannot ana-
lytically trace out the hidden spin configurations.8 In order to use uRBMs as GWFs, we
employ the extended DMC algorithm described in Ref. [132]. It includes a certain num-
ber of additional single-spin Metropolis updates of the hidden spins at every DMC time
step. This number has to be made large enough to eliminate spurious correlations among
successive walker configuration, which in turn affect the finite-#w bias. It is quite im-
portant to test if and how the possible residual statistical correlations between successive
hidden-spin configurations affect the tunneling dynamics.

The tunneling time simulations are performed in the ferromagnetic phase, where the
TFIM is characterized by a double-well potential profile. This time we use ? = 10% for
the percentage of walkers required to reach negative magnetization. The measurement is
repeated about 1 000 times to determine � and its standard error. We choose #w in the
range 5 000− 10 000, which is found to be sufficient to eliminate any systematic error on �.

8As shown in Ref. [69], the uRBM can be mapped to a constrained matrix product state. In one dimension,
this representation allows for an analytical treatment of the hidden degrees of freedom. However, we aim at
a general framework that could be applied irrespectively of the dimensionality and the interaction range.
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PQMC 
 1

No GWF 0.7(2) 0.97(3)
uRBM 0.32(9) 1.00(2)
Boltzmann 0.28(5) 0.96(3)

Table 3.2: Fitting parameters 
 and 1, describing the small-gap behavior of the DMC tunneling
time � in the ferromagnetic quantum Ising chain (3.45), according to the fitting function
�(Δ) = 
Δ−1 . The error bars also take into account the fluctuations due to choosing
different fitting windows.

The tunneling time � obtained with either the Boltzmann or the uRBM GWF as a
function of the system size ! is qualitatively identical to that without any GWF, see Fig. 3.3.
In the large-size regime, where the energy gap Δ is small, the exponential growth of �
closely matches the scaling of the inverse energy gap 
Δ−1, where 
 is an appropriate
prefactor.

The tunneling times obtained with the three methods are plotted in Fig. 3.4 as a
function of the inverse energy gap Δ−1 for comparison. In all three cases, � appears to
scale asymptotically linearly with the inverse gap. By fitting the three datasets in the large
Δ−1 regimewith the scaling law �(Δ) = 
Δ−1 , we obtain the values of the fitting parameters

 and 1 reported in Table 3.2. In all cases, the exponent is consistent with the linear scaling
1 = 1.

3.3.5 The shamrock model

The results for the ferromagnetic Ising chainpresented in theprevious section indicate that,
in an effective double-well system, QMC simulations can efficiently simulate incoherent
quantum tunneling and they might therefore be as fast as, or even faster than quantum
annealers in solving complex optimization problems. In order to understand if this finding
is valid in amore general setup, the authors of Ref. [22] considered a frustrated spinmodel,
described by the Hamiltonian

� = −�
 −1∑
8=0

28+1∑
9=28

�I2 �
I
9 + (� − &)

 −1∑
8=0

�I28�
I
28+1 − Γ

2 ∑
8=0

�G8 . (3.49)

The ! = 2 + 1 spins are arranged in a clover-shaped bouquet of  rings (see Fig. 3.5), mo-
tivating the authors’ name shamrock model for Eq. (3.49). The first term in the Hamiltonian
describes ferromagnetic interactions between the central spin and the outer ! − 1 spins;
the second term couples the two outer spins of each ring through an anti-ferromagnetic
interaction which is slightly smaller in modulus than the FM one, 0 < & � �; and the third
term describes a transverse field of intensity Γ, inducing the quantum dynamics.
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Figure 3.5: The “shamrock ” model of ! frustrated spins in a transverse field, Eq. (3.49). It consists
of  = (! − 1)/2 leaves, each having three spins, one of which is shared among all. The
solid dark-green lines represent FM interactions (of strength �) between the central spin
and all the others. The dashed light-green lines indicate AFM interactions (of strength
� − &) between the outer spins of each leaf. The overall effect is to create 2 tunneling
paths between the degenerate classical ground states.

We investigate the DMC tunneling time in this model using the same protocol as in
Section 3.3.4, both without importance sampling and with the Boltzmann GWF. Notice
that the classical energy function in Eq. (3.46) now includes the first two terms of Eq. (3.49).

In Fig. 3.6 the tunneling times obtained with the two methods are compared with each
other, with the scaling of incoherent quantum tunneling, and with the scaling found in
the finite-temperature PIMC simulations of Ref. [22]. In the large 1/Δ regime, the DMC
data with GWF are well described by the usual fitting function �(Δ) = 
Δ−1 , where the
fitting parameters are found to be 
 = 0.32(7) and 1 = 1.04(3) for the Bolzmann-GWF case.
A similar fit, with 1 = 0.98(2), applies to the no-GWF data. These results indicate that
even in a frustrated model such as the shamrock, the DMC tunneling times asymptotically
scale with the inverse gap (independently of the chosen GWF), confirming the quadratic
speedup compared to incoherent quantum tunneling.

In contrast, we can see that thePIMCresults display a faster growthof �with the system
size, very accurately described by the scaling law �PIMC ∝ 2 /Δ2, far outpacing both DMC
and incoherent quantum tunneling. This pathological slowdownof PIMC simulationswas
anticipated by the perturbation theory of Ref. [22], which predicts that in frustratedmodels
where two competing ground states are connected by a number of homotopy-inequivalent
pathswhichgrowswith systemsize, incoherent quantum tunneling candisplay aquantum
speedup if many inter-path transitions are inhibited by topological obstructions (related
to the obstructions discussed in Ref. [119]). The shamrock model was indeed introduced
as an example of this scenario, with the PIMC simulations confirming the theoretical
prediction even beyond the perturbative regime.
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Figure 3.6: Tunneling time � in the shamrock model as a functions of the system size !. The DMC
results obtained with the Boltzmann GWF (green diamonds) and without GWF (blue
pentagons) are compared with the scaling of the incoherent quantum tunneling time
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time � ∼ 2 /Δ2 [22], where  is the number of leaves in the shamrock. The values of
the gap Δ are obtained from exact diagonalization. The model parameters are Γ = 0.5,
� = 6, and & = 0.2.
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3.3.6 Finite-population bias

As explained in Section 3.3.1, the ground-state energy obtained via DMC simulations is
subject to two sources of possible systematic bias, originating from the finite time step
�� (Trotter error) and from the finite random-walker number #w. The convergence to
the �� → 0 limit is well-controlled,9 and all results presented in this paper have been
performed using sufficiently small �� to make its systematic effect negligible compared to
the statistical uncertainty. In this section, we focus on the bias resulting from the finite
value of #w. We limit our discussion to the worst-case scenario, i.e., without importance
sampling. We will comment about the role of importance sampling with regard to the
systematic error in the conclusions.

We consider the ferromagnetic quantum Ising chain defined in Eq. (3.45). Its ground-
state energy per site can be exactly determined via a Jordan–Wigner transformation (Ap-
pendix A), obtaining [205]

�0
!
= − �

�

(
1 + Γ

�

)
E(�) , (3.51)

where E(G) is the complete elliptic integral of the second kind and

�2 =
4Γ�
(� + Γ)2

. (3.52)

This formula is valid in the thermodynamic limit. The results presented in this section
have been obtained using sufficiently large system sizes so that finite-size effects are not
relevant.

In the main panel of Fig. 3.7a we plot the relative error 4rel = |� − �0 | /|�0 | of the DMC
result � with respect to the theoretical value as a function of the transverse field intensity,
for different system sizes. These data correspond to a fixed random walker population
#w = 20 000. In the paramagnetic phase Γ > �, as well as in the Γ→ 0 limit, the systematic
bias due to finite #w is negligible. However, in the ferromagnetic phase 0 < Γ < � a
systematic bias is observable, and this bias increases with the system size !. Notice how
the maximum point of 4rel slightly shifts toward lower values of Γ as ! is increased. This is
a typical finite-size effect where the transition point of a critical model is slightly offset at
finite values of ! compared to its true position. In the inset of Fig. 3.7a the relative error is
shown as a function of the (inverse) number of walkers 1/#w for a chain of ! = 60 spins.
As expected, in the infinite #w limit the hardest point in the phase diagram to simulate is

9The Trotter error using the simplest factorization, Eq. (3.14), is known to scale as $(��), as results from
compounding 1/�� steps with $(��2) error each. Faster convergence can be attained by means of more
sophisticated factorizations, e.g. the symmetric one

e−��(�+�) = e−���/2e−���e−���/2 + $
(
��3

)
, (3.50)

resulting in an $
(
��2) overall error. It is possibly to go even further [134], but it is seldom useful in practice.



Simulating tunneling events on classical machines 117

e
re

l

Γ/J

N=20

N=40

N=60

N=80

N=100
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  0.5  1  1.5  2  2.5

e
re

l 
10

4
/Nw

Γ=0.5

Γ=0.7

Γ=0.9

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  0.5  1  1.5  2

(a)

100

1000

10
4

10
5

10
6

 10  20  30  40  50  60  70  80  90  100

N
w

N

0.5%

1%

2%

(b)

Figure 3.7: (a) Relative error 4rel = |� − �0 | /|�0 | of the DMC result � with respect to the infinite-
size theoretical value �0 (Eq. (3.51)) as a function of the transverse field intensity Γ,
for different system sizes !. The average number of random walkers is #w = 20 000.
Inset: 4rel as a function of the inverse number of walkers 1/#w for different transverse
field intensities Γ. The size of the spin chain is ! = 60. (b) Walker population needed
to achieve 0.5%, 1%, and 2% relative error as a function of the system size # . The
transverse field intensity is Γ = 0.95�.

to the left of the critical point, where quantum fluctuations are largest and demand for a
very large walker population in order to capture the ground state properties of the system
with a reasonable precision.

From Fig. 3.7a we can also see that, unsurprisingly, the number of walkers required
to achieve a given relative error increases as the system size gets larger. This dependence
is plotted in Fig. 3.7b. In the large-! limit, the data are well described by an exponential
fitting function, suggesting that the computational complexity ofDMCwithout importance
sampling is exponential in the system size.

3.3.7 Conclusions

We implemented a projective QMCmethod for quantum Ising models based on the DMC
algorithm — in which the transition matrix is defined using a Trotter approximation of
the Green’s function — and we investigated the characteristic time of tunneling events
in problems characterized by an effective double-well energy landscape. We found that
the DMC tunneling time increases with the system size as the inverse of the gap, that is,
more favorably than the incoherent tunneling time, in all models we considered. These
included a continuous-space double-well model, the ferromagnetic quantum Ising chain
and the more challenging shamrock model with frustrated couplings. This scaling is
to be contrasted with previous studies based on finite-temperature PIMC simulations,
where topological obstructions in the shamrockmodel were found to cause a considerable
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(exponential in the system size) slowdown of the PIMC tunneling time.
We have also investigated howguidingwave functions affect the tunneling dynamics of

DMC simulations, using two approximate variational ansatzes as well as the numerically-
exact ground-state wave function (for the 1D model). Remarkably, for all GWFs we
find a linear relation between tunneling rate and ground energy gap in the asymptotic
regime of large tunneling times, corresponding to a high potential barrier in the double
well, or to large system sizes in the spin models. The semiclassical theory we provided
explains this linear relation in the case of double-well–type potentials when the exact
ground-state wave function is chosen as GWF. It is worth stressing that this linear relation
represents a quadratic speedup compared to the expected tunneling rate of a physical
quantum annealer. The proof we presented relies on the local validity of the semiclassical
approximation for the ground-state wave function. It is an interesting challenge to try
to formulate a more general derivation which does not invoke WKB theory, or to instead
exhibit a counterexample where a violation of the 1/Δ scaling may be observed.

Analyzing if and to what extent QMC algorithms can efficiently simulate quantum
tunneling is of critical importance to understand if quantum annealing devices can out-
perform classical optimization methods. At first glance, the exponential memory require-
ment found in Section 3.3.6 for fixed-precisionmeasurements is enough tomake large-size
DMC simulations unfeasible. The situation changes, however, when a physically moti-
vated ansatz is available for the importance sampling of the ground-state wave function.
Indeed, it is known that the use of GWFs can drastically improve the complexity scaling of
the algorithm, to the point that it was suggested in the case of an Ising chain that the com-
putational cost may possibly change from exponential to polynomial when good GWFs
are used [132]. Our findings indicate that projective QMC simulations performed with
accurate GWFs may allow one to efficiently simulate both the equilibrium ground-state
properties as well as the tunneling dynamics of quantum annealers. Therefore, they may
be used as a relevant benchmark in the development of novel quantum annealing devices,
and they represent a promising quantum-inspired optimization algorithm.

Clearly, more challenging models should be addressed to further benchmark the ef-
ficiency of the DMC tunneling dynamics. Relevant test beds could be Ising spin glasses
in higher dimensions, where one expects accurate variational ansatzes to be less easily
available. Suitable candidates are restricted [62, 178] and unrestricted Boltzmann ma-
chines [38, 132], both of which have been shown to be amenable to be used as GWFs in
projective QMC simulations [207]. Deeper neural network ansatzes, e.g. the deep convo-
lutional neural networks of Ref. [67] or the recurrent neural networks of Ref. [63], might
also be adopted.



Chapter4
Population Transfer

Πολλοὶ γάρ εἰσιν κλητοί, ὀλίγοι δὲ ἐκλεκτοί.

For many are called, but few are chosen.

Matthew 22:14 (DRA)

4.1 Energy matching and the population transfer algorithm

In this chapter we return to the class of combinatorial optimization problems and the pos-
sibility of exploiting quantum effects in order to devisemore efficient strategies for tackling
them. However, we introduce a twist: rather than trying to find low-cost assignments ex
novo, we are now interested in the computational problem of finding assignments with
similar cost to another one, which is given beforehand.

Recall that a combinatorial optimization problem (COP) is defined by a real-valued
cost function (or Hamiltonian) �p defined on some =-variable set D ⊂ X= , where X has
finite cardinality. In particular, without loss of generality we may consider X = {0, 1},
so that the cost function is defined on (a subset of) the Boolean hypercube of all possible
=-bit words I. The objective is to minimize �p over its domain D.1 In other words, in
optimization we want to find an explicit assignment I0 such that �p(I) ≤ �p(I0) for all
I ∈ D. Such a I0 is called a solution to the optimization problem. Given a COP, there is
a family of associated decision problems asking whether, for a given �0, there exists any
I0 ∈ D such that �p(I0) ≤ �0. If each of them is in the NP class (i.e. if the cost function is
polynomially-computable) the optimization problem is said to belong to NPO [1, 29].

1In many settings, one wants instead to maximize some target function � (e.g. fitness in the context of a
genetic algorithm), but this is of course equivalent to minimizing the cost function −�.
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The solution of optimization problems is generally a very hard problem, and approx-
imation algorithms are typically employed to find not a strict solution of the problem, but
rather an element of D whose cost is guaranteed to be closer to the optimal one than a
givenmultiplicative error (i.e. an approximate solution). In some cases, this can substantially
decrease the complexity of the original problem: in particular, optimization problems in
theAPX class (a subset of NPO) admit polynomial-time approximation algorithms for some
fixed multiplicative error, in the sense that there is a 2 > 0 such that it only takes time
$(poly(=)) to produce an assignment whose cost is at most (1 + 2) times the optimal cost.
For some problems, including the Traveling Salesman Problem in Euclidean space [23],
this even holds for any fixed 2 (PTAS class).

However, a result known as the PCP theorem [24] implies that it is impossible (unless
P = NP) to efficiently find approximate solutions to MAX-3-SAT with a better multiplicative
error than the one valid for random assignments. In other words, problems such as MAX-

:-SAT (: ≥ 3) are hard to solve even approximately.
In this chapter, we consider the situation where one already has in his hands an

(approximate) solution of a hard optimization problem, and is interested in the problem
of finding another one. More precisely, we define the following computational primitive:

Definition 4.1.1. (Energy matching) The (6(=), �p , I0)-energy matching problem consists of
the following:

given: a cost function �p : {0, 1}= → R over = binary variables and an =-bit string
I0 ∈ {0, 1}= with �p(I0) = �;

find: an =-bit string I ≠ I0 such that �(1 − 6(=)) ≤ �p(I) ≤ �(1 + 6(=)).

In Def. 4.1.1, � is the target energy and 6(=) defines the approximation one is willing
to accept in the solution. For genuine matching, one wants 6(=) =→∞−→ 0. If one defines an
“energy shell” around � of width 2Δ�,

Ω(�, 2Δ�) =
{
I
�� � − Δ� ≤ �p(I) ≤ � + Δ�

}
(cf. Eq. (1.8)), then the target states for the energy matching problem are the states in the
“punctured” energy shell, I ∈ Ω= = Ω(�, 26(=)) \ {I0}.

The name “energy matching” is clearly motivated by physics, where �p is a “problem
Hamiltonian” in the same spirit of the QA algorithm (cf. Section 1.3.2). However, its
scope and usefulness are not confined to physics — indeed, they are completely general.
Consider any optimization problem, and suppose you have an algorithm that is able to
provide you with a solution2 to said problem. In a realistic setting, it is often the case
that a single solution is not enough. One may find that the purported solution has some

2Here and for the rest of the paragraph, we use “solution” as a shorthand for “approximate solution”.
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undesirable property, e.g. itmay violate some constraints thatwere not dutifully embedded
in the cost function, making it unviable. If the approximation scheme that generated the
solution is extremely costly, or if it is biased in a way that will have it always output the
same solution or slight variations thereof (e.g. if it is completely deterministic, so that it
always produces the same output given identical inputs), the need may arise to find new,
fundamentally different solutions. This is nothing but the problem of energy matching.

The requirement to produce sufficiently distinct solutions from the initial one can be
defined in a rigorous way by augmenting the energy requirement with a lower bound on
theHamming distance (minimumnumber of bit flips) between the initial and final solutions:

Definition 4.1.2. (Energy matching with distance bound) The (6(=), 3(=), �p , I0)-energy
matching problem is the (6(=), �p , I0)-energy matching problem (Definition 4.1.1) subject
to the additional constraint

|I − I0 |H > 3(=) (4.1)

on the set of acceptable solutions,3 where |I |H is the Hammingweight (number of nonzero
bits) of =-bit string I and I − I0 represents bit-wise subtraction modulo 2 (namely, the
XOR⊗= operator).

The lower bound on the distance, introduced to exclude “trivial solutions” which are
only slight perturbations of the initial state, makes it harder for a local-search heuristic to
solve the problem, as a volumewhich is exponentially large in 3(=)must now be explored.
For example, it is known [31] that the decision version of the energy matching problem
for a ground state of MAX-:-SAT is NP-complete when 3(=) = =/3.

The population transfer (PT) algorithm is a proposed strategy to solve the energymatch-
ing problem exploiting the properties of quantum mechanics. The term “population
transfer”, used since the 1980s in the quantum optics community to refer to the pumping
of photons from one energy level to another (see e.g. [64]), was first applied to the specific
scenario described hereafter by the authors of Ref. [234], although the algorithm itself was
proposed some time earlier by Baldwin and Laumann [31].

It is conceptually very simple: suppose that the cost function can be encoded into a
spin Hamiltonian �p, diagonal in the �I basis, and that an external transverse driver is
available to build the full Hamiltonian

� = �p({�I8 }) − Γ
=∑
8=1

�G8 . (4.2)

This is reminiscent of the standard QA setup described in Section 1.3.2 (cf. Eq. (1.52)),
except that there is no annealing schedule involved. Rather, a quantum quench protocol
is considered, as in Eq. (2.14). More precisely, we have the following:

3Notice that Definition 4.1.1 corresponds to the particular case 3(=) = 0.
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|z0〉 e−itfinH(Γ) |ψ〉 |z〉
Figure 4.1: Schematic representation of the population transfer (PT) algorithm described in Defi-

nition 4.1.3. The circuit is iterated until a state |I〉 turns up satisfying the (6(=), 3(=))-
energy matching conditions.

Definition 4.1.3. (Population transfer) The (Γ, Cfin)-population transfer algorithm applied
to the (6(=), 3(=), �p , I0)-energy matching problem proceeds as follows:

1) prepare4 the state |I0〉 and the Hamiltonian (4.2) with the prescribed value of Γ; call
�I0 = 〈I0 |�p |I0〉;

2) evolve the system according to the propagator generated by �, obtaining the state
|#(Cfin)〉 = e−i�Cfin |I0〉;

3) perform a projective measurement (readoff) in the computational basis and thereby
obtain a bit string I with probability

?(I) = |〈I |#(Cfin)〉 |2;

4) iterate steps 2 and 3 until the energy �I = 〈I |�p |I〉 satisfies the matching condition

|�I − �I0 | ≤ 6(=)|�I0 |
while simultaneously

|I − I0 |H > 3(=).

See Fig. 4.1 for a graphical representation of steps 1–3 of the algorithm.
As one may glean from Def. 4.1.3, the efficacy of PT on solving the energy matching

problem critically depends on the choice of the two user-defined parameters Γ and Cfin
characterizing the transfer dynamics. In particular, the transverse field should be suffi-
ciently strong to promote PT, but not so strong as to excite the initial state way out of
the target shell Ω= ; likewise, Cfin should be taken large enough for transfer to occur, but
minimally so in order not to waste computation time. The problem of finding good values
for Γ and Cfin will become clearer in the course of the chapter. In particular, one of the main
goals of Section 4.3will be to study how this choice of parameters can bemade properly for
a specific model. Before attacking this problem, however, we present a simpler case where
analytical calculations can be carried quite far, yielding precise answers in the large-=
regime.

4Notice that the state |I0〉 is, at least in principle, exactly known (as it is a computational-basis state) and
easy to prepare. In particular, there is no cloning involved in running steps 2 and 3 of the algorithm multiple
times until the desired solution is found.
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4.2 PT in the impurity band model

We start our discussion of PT with the model studied by Smelyanskiy et al. [234], which
the authors call the impurity band model. The problemHamiltonian�p is taken to act as the
zero operator on most of the Hilbert basis, except for a “small” (but still exponential-in-=)
number of states, which are instead assigned an extensive energy �I = −= + &I , where the
uniformly random fluctuations &I ∈ [−,/2,,/2] are independent and bounded within
a sub-extensive interval,, = >(=).

4.2.1 Model definition and motivation

We now proceed to give a more precise definition of the model.

Notation. We use 0, 1, . . . ∈ [�] − 1 = {0, . . . , � − 1} to label the computational basis, where
� = 2= . Then I0 = 0=−1 · · · 0100 denotes the =-bit string representing integer 0 in binary.
I, I′, . . . are used for generic =-bit strings when integer labeling does not matter. We switch
to upper case (�, �, . . .) for the labeling of impurity band states. These indices vary within
ℳ ⊂ [�] − 1. We reserve 8 , 9 , . . . for spatial indexing, running over [=] − 1.

We omit the range of variability of indices whenever they are implied to run over their
entire domain. Therefore

∑
0 means

∑�−1
0=0 ,

∑
� means

∑
�∈ℳ , etc.

Definition 4.2.1. (Impurity bandmodel) The (�,,)-impurity band model (IBM), 0 ≤ � ≤ 1,
is defined as the ensemble of Hamiltonians, diagonal on the I-basis {|I0〉}0 , with action

�p |I〉 = ℰ(I) |I〉 , (4.3)

where

ℰ(I0) =
{ − = + &I0 if 0 ∈ ℳ ,

0 else,
(4.4)

ℳ is a uniformly random subset of [�] − 1 with cardinality

|ℳ| = " = b2�=c (4.5)

and &I� is a quenched random variable uniformly picked from the interval [−,/2,,/2]
for each � ∈ ℳ.

This peculiar choice for ℰ(I) is meant to replicate the features of typical “golf-course”
energy landscapes, with most states lying on a constant-energy-density plateau and a few
low- and high-lying states interspersed in a quasi-random fashion among the rest.

Obviously, in order for this to hold we need, � =. Moreover, for technical reasons
to be mentioned later, we will always consider the regime � � 1. Therefore, the impurity
band (IB)ℳ is going to be both narrow and sparse.
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Definition 4.2.2. (Quantum impurity band model) The (�,,, Γ)-quantum impurity band
model (QIBM) is obtained by equipping the (�,,)-IBM with the transverse driver

�d = −Γ
∑
8

�G8 , (4.6)

where �G
8
acts as the Pauli-X operator on qubit 8 and the identity elsewhere. The driver

can also be written in term of the global spin’s G-component, �d = −2Γ(G .

As we are only interested in the low-energy dynamics, i.e. the dynamics restricted to
the impurity band ℳ, we are going to switch to a simpler, effective description of the
system. To this end, we make use of the following, easy-to-check property of the resolvent
�(�) = (� − �d)−1:

�(�)�p |#〉 = |#〉 (4.7)

where � |#〉 = � |#〉. Pre-multiplying this by
√
�p and defining the (non-normalized!)

projected state |Ψ〉 =
√
�p |#〉, simple algebra leads us to the matrix identity

(�p +Λ) |Ψ〉 = � |Ψ〉 , (4.8)

where Λ =
√
�p�d�(�)

√
�p.

Now, projecting onto the IB through 〈I� | andusing the fact that�p (and therefore
√
�p)

annihilates all states outside the IB, so thatwe can insert a resolution of the identity between
�(�) and

√
�p and simplify it from

∑
0 |I0〉 〈I0 | to

∑
� |I�〉 〈I� |, we get the following “non-

linear eigenvalue equation” for |Ψ〉:∑
�

ℋ��(�)Ψ� = �Ψ� , (4.9)

where {
ℋ��(�) = ���ℰ(I�) +

√
ℰ(I�)ℰ(I�)2��(�),

2��(�) = − 〈I� |�d�(�)|I�〉 .
(4.10)

Notice that the 2��(�) coefficient is a property of the driver alone, and does not depend
on �p. However, deriving Eq. (4.9) from (4.8) required us to use the “projector” property
of �p, which is very nongeneric. Indeed, the IBM was chosen by the authors specifically
so that this simplification would be available. For a model such as the QREM, where there
is no clear-cut distinction between “band states” and “plateau states”, Eq. (4.9) could only
be interpreted as an approximation.
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4.2.2 Semiclassical treatment and perturbation theory

The computation of 2��(�) can be carried out in the semiclassical (WKB) approximation.
We only sketch the starting point, and refer to Ref. [234] for the full calculation. The WKB
result improves on simpler perturbative estimations obtained via the forward-scattering
approximation [159] by an exponential prefactor.

First, notice that the 2��(�) coefficient only depends on the Hamming distance A =
|I� − I� |H. This can be seen by explicitly writing the coefficient in the G-basis,

2��(�) =
∑
G,G′
〈I� |G〉 〈G |�d(� − �d)−1 |G′〉 〈G′ |I�〉

=
−Γ
2=

∑
G

(−1)G·(I�−I�)(= − 2|G |H)
� + Γ(= − 2|G |H)

=
1

2=
=−A∑
<=0

A∑
;=0

(
= − A
<

) (
A

;

)
(−1);

1 + �
Γ(=−2(;+<))

, (4.11)

where in the second passage we used the overlap 〈G |I〉 = (−1)G·I2−=/2 (with the dot
product notation G · I = ∑

8 G8I8) and the diagonal action of the driver on the G-basis,
〈G | 5 (�d)|G′〉 = 5 (−Γ(= − 2|G |H)) �GG′; in the last passage, we split G into its = − A bits
at the positions where I� and I� agree plus the A bits where they disagree, and then
populated these substrings in all possible ways with < and ; ‘1’s, respectively, so that
(−1)G·(I�−I�) = (−1); and |G |H = ; + <.

Then, rewrite Eq. (4.10) in the form

2(�, A) = 〈I0 |1 +
�

� + 2Γ(G |I(A)〉 , (4.12)

where without loss of generality we braket between |I0〉 = |0 · · · 0〉 and any state |I(A)〉
with exactly A spin-downs, e.g. |I2A−1〉 = |0=−A1A〉. Now, since the result must be the same
regardless of the positioning of the A spin-downs, it is also equal to the average over such
choices. But the (normalized) average state is���(=2 − A; =2 )〉

=
1√(
=
A

) ∑
|I |H=A

|I〉 , (4.13)

namely the simultaneous eigenstate of (I and S2 with respective eigenvalues " = =
2 − A

and ((( + 1) = =
2
(
=
2 + 1

)
. This leads us to rewriting Eq. (4.12) as

2(�, A) = �A,0 −
�√(
=
A

)�=/2−A,=/2(�), (4.14)



126 Population Transfer

with the Green function defined between maximal-spin states:

�",=/2(�) =
〈(
"; =2

) ��� 1
� + 2Γ(G

��� (=2 ; =2

)〉
. (4.15)

As the spin is extensively large, a WKB treatment is justified, starting from the substi-
tution

�",=/2(�) ∼ exp
[
i
∫ "

0
?(:, �)d:

]
, (4.16)

with the appropriate semiclassical momentum ?(:, �). After tedious calculations, one
reaches the following expression for 2(�, A), valid in the vicinity of A = =/2:5

2(�, A) ∝ 1√(
=
A

) e−�(Γ) sin)(�, A), (4.17)

where �(Γ) ∼ 1/(4Γ2) at large Γ.
The next step of the authors of Ref. [234] is to treat both the IB width, and the off-

diagonal propagator coefficients 2�≠�(�, A) as perturbations to the zero-order Hamiltonian

�
(0)
��
(�) = ���=(2(�, 0) − 1). (4.18)

This is justified by choosing, � =, as well as noticing that the off-diagonal propagator
coefficients 2�≠� are suppressedwith respect to 2�� byanexponentially small factor

(
=
A

)−1/2.
The first perturbative correction is then given by the so-called downfolded Hamiltonian

Δ(1)��� = ���&I� + (1 − ���)
√

2+(A) sin)(A) (4.19)

where &I is the energy of I relative to the IB center (cf. Eq. (4.4)), A = |I� − I� |H and +(A)
is a complicated function of A representing the off-diagonal WKBmatrix element between
states |I�〉 and |I�〉, up to an oscillating factor sin)(A) also computed via WKB theory.

The final step is to calculate the pdf of the off-diagonal elements, or rather their squares(
Δ(1)��≠�

)2, as induced by the random distribution of distances between IB states. The
reason for focusing on the squares is that our ultimate goal is to find the distribution of
the time required to achieve population transfer from an initial state |I〉, and this can be
estimated using the Fermi golden rule, which notoriously involves the squared matrix
elements of the perturbation Δ(1)�.

When squaring the off-diagonal part of Eq. (4.19), the oscillatory term can be shown
to merely provide a factor 1/2 under disorder average, while an application of (a variant

5Technically, one must also ensure that the value of Γ is sufficiently far from one of the resonant points
Γ? ≈ =/(= − 2?) (? ∈ {0, . . . , =}\{=/2}) so that the IB center does not coincide with one of the unperturbed
levels of �d. In that case, the classical and driver parts are resonant and perturbation theory breaks down.
At large enough =, the resonant regions are exponentially thin and Γ can always be taken to be nonresonant.
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of) the central limit theorem leads to the determination of the distribution of+(A)2, which
turns out to be fat-tailed: in particular, by writing +2 = +2

typF with +typ the typical6 value
of the matrix element, F is distributed according to7

?(F) = 1
F2

√
� logF

. (4.20)

We can then see that the ensemble Eq. (4.19) consists of"×"matriceswith$(+typ) off-
diagonal Lévy-distributed entries and an $(,) uniformly random diagonal. Following
the authors, we refer to it as the preferred-basis Lévy matrix (PBLM) ensemble. It is
reminiscent of the so-called Rosenzweig–Porter (RP) ensemble [220], where all entries
are Gaussian-distributed, like in the GOE, but off-diagonal elements have parametrically
smaller variances. TheRP ensemble is known to display three different regimes depending
on the ratio of these variances, which suggests something similar might be expected of
the PT dynamics of the IBM. It is worthwhile to state the facts with a higher degree of
precision.

Definition 4.2.3. (Rosenzweig–Porter model) The �-RPM is the ensemble of real sym-
metric � × � Hamiltonians whose diagonal entries �00 are i.i.d. random variables taken
from the standard normal distributionN(0, 1), and whose upper-triangle entries �0>1 are
i.i.d. random variables taken from N(0, �−�/2) (i.e. normal variables with zero mean and
variance �−�).

This model has received some recent attention due to its close relationship with the
Anderson model on regular random graphs (RRG), which in turn is linked to the idea of
MBL as a form of Anderson localization in the Fock space. The following result has been
established numerically by Kravtsov et al. [153] and later given more rigorous foundations
by Facoetti, Vivo and Biroli [96].8

Theorem 4.2.1. (Spectral regimes in the RPM) All eigenstates of the �-RPM are:

• localized on a single site, in the sense that

|#(:)0 |
2
= �0,00(:) + $(�−1) for some 00(:), (4.21)

if � ≥ 2;

6As the typical Hamming distance between states is A ∼ =/2, for large = the typical value of+(A) coincides
with the most likely value, +typ ∼ +(=/2).

7The following form for ?(F) is only valid for � � 1, motivating the choice of taking the sparse-band
regime.

8In both cases, the authors actually work with a generalized version of the RPM where diagonal elements
may have a non-Gaussian distribution.
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• non-ergodic extended (NEE), namely spread over $(�
) sites with 
 = 2 − � ∈ (0, 1), i.e.

|#(:)0 |
2
∼

{
�−
 if 0 ∈ V: ⊂ [�] − 1 with |V: | ∼ �


>(�−1) otherwise,
(4.22)

if 1 < � < 2;

• completely delocalized, i.e.

|#(:)0 |
2
∼ �−1 for all 0, (4.23)

if 0 ≤ � ≤ 1.

Moreover, it is known that the structure of the RP spectrum in the NEE regime consists
of multiple distinct minibands of states. Each miniband is polynomially (in �) narrower
than the full spectralwidth and contains stateswhose supports overlap considerably, while
being essentially nonoverlapping with those of the states from other minibands. We can
think of theminibands as “communities” of eigenstates, each living for themost part on the
same territorywhich is disjoint from that of all other communities.9 The ergodic transition
happenswhen all the communitiesmerge together into a single country, whereas the onset
of the fully-localized regime corresponds to each community shrinking down to a single
household.

One can show numerically that a similar phenomenon occurs in the PBLM ensemble
depending on the control parameter,/("+typ) = �"�/2−1, where� is an$("0) constant
and we chose the following parametrization of, :

,

+typ
= "�/2. (4.24)

With this definition of �, the three regimes are actually determined by the same conditions
of Theorem 4.2.1. As we will discuss in the next section, this has a profound consequence
on the PT dynamics of the model.

4.2.3 PT time and quantum speedup

Smelyanskiy et al. follow up with an approximate treatment of the downfolded dynamics
by treating the PT problem as a Fano–Anderson model, where an initial discrete state is
allowed to decay into a band. This can only be done in the extended phase � < 2, where a
“continuum” band exists for the initial state to decay into. In the � ≥ 2 regime, the initial
state is isolated from the rest of the Hilbert space and no decay occurs.

9Note however that in the IBM these territories are really collections of isolated points; in more realistic
models with spatially correlated potentials, the territories are generally comprised of collections of connected
clusters in the Boolean cube.
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The Fano–Anderson model is the simplest Hamiltonian one can write for this kind of
systems: a diagonal part containing the unperturbed energies of all available states, plus a
minimal coupling between the initial state and the decay states. The energies of the decay
states are augmented by a small imaginary part to smoothen out finite-size effects, and the
coupling coefficients between initial and decay states are given by the downfolded matrix
elements Eq. (4.19), i.e. they are perturbatively determined.

This model can be solved for the initial state’s wave function, whose rate of decay is
known to be determined (to leading order in Δ(1)�) by the imaginary part of the self-
energy:

#�(I� , C) =
∫ ∞

−∞

dI
�

Σ′′
�
(I)e−iIC(

I − Σ′
�
(I) − &�

)2 +
(
Σ′′
�
(I)

)2

∼ exp
[
− i

(
&� + Σ′�(&�)

)
C − Σ′′�(&�)C

]
, (4.25)

where the self-energy is defined by

Σ�(I) = Σ′�(I) − iΣ′′�(I) =
∑

�∈ℳ\{�}

(
Δ(1)���

)2

I − &� + i� (4.26)

with � much larger than the level spacing but much smaller than the decay rate Σ′′
�
(&�) (a

condition to be verified self-consistently).
Using the Plemelj–Sokhotski theorem and plugging in Eq. (4.19),

Σ′′�(&�) = �
∑

�∈ℳ\{�}

(
Δ(1)���

)2
��(&� − &�)

= 2�
=∑
A=1

+2(A) sin2 )(A) ©­«
∑

�∈ℳ\{�}
��(&� − &�)�A,|I�−I� |H

ª®¬ , (4.27)

with �� the zero-mean Cauchy distribution of width �. In the last step, the self-energy
was split into its = different channels corresponding to all possible distances from � to the
other available states.

The parenthesized expression, which is just the density ��� (A) of IB states at a given
distance A from |I�〉, can be approximated as ��� (A) ≈ ?(&�)"�(A), with

"�(A) =
∑
�

�A,|I�−I� |H ∼
(
=

A

)
(4.28)

the number of IB states at distance A from |I�〉, whose fluctuations we can neglect when
taking the disorder average. Finally, combining with Eq. (4.20) and the fact that weakly-
correlated Lévy random variables sum to a stable-distributed variable, one finds that the
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decay rate �−1 = 2Σ′′0 (&0) can be written as

1
�

3
=

�+2
typ

,/" (�"G + 1") (4.29)

with
1" ∼

√
log", �" ∼

1√
log"

(4.30)

and G distributed according to

?(G) =
∫ +∞

−∞

dC
2� exp

[
−iCG − 2i

�
C log |C | − |C |

]
, (4.31)

which is the so-called stable distributionwith stability, skewness, scale and location param-
eters (
, �, B , ℓ ) = (1, 1, 1, 0), respectively. It is also named the Landau distribution, as it
was first used by him to describe the energy loss of particles across a thick medium [154].
This distribution asymptotically behaves as ?(G) ∼ 2/�G2 (G � 1).

The reason why the decay rate has such heavy tails is that its value is essentially
determined by the distance between the initial state and its closest resonance, for which
the matrix element

(
Δ(1)�01

)2 is maximal. When the distance is anomalously smaller than
the typical value 3 = =/2, the decay rate will be correspondingly higher — a typical large
deviation effect giving rise to Lévy-type distributions.

The authors then go on to improve this approximation scheme using a cavity method
in the spirit of the Abou-Chacra–Anderson–Thouless equations [5] (though with added
complications from nonlinearities in the self-energy), again finding a stable distribution
for �−1, but with the difference that the log" in Eqs. (4.30) is to be replaced with logΩ,
where Ω is the number of states in the miniband where I� lives (as opposed to the full
impurity band). This number can be estimated to be

Ω ∼ "2−� , (4.32)

so in particular Ω � " in the NEE phase; the logarithmic dependence means that �Ω is
merely rescaled by a prefactor

√
2 − �.

We are finally ready to give an estimate of the typical PT time. Notice that the Landau
distribution has infinitemean, so ameaningfulway to define typicalitymust use a different
statistics; the easiest way is to use the mode (the scaling would not change by using the
median instead). The mode is obtained by simply setting G = 0 in Eq. (4.29), which yields

�typ =
1
�

(
,

+typ

)
1

+typ"1"
∼ 1
+typ

√
Ω logΩ

, (4.33)

where Eqs. (4.24), (4.30) and (4.32) were used in the last passage. The value of +typ
can be obtained by the WKB calculation for the downfolded Hamiltonian, revealing an
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asymptotic scaling +typ ∼ 2−=/2e−=�(Γ) up to subexponential corrections. This means that,
to exponential leading order in =, we have

CPT = �typ ∼
√

2=
Ω

e2�(Γ)= . (4.34)

The expression under square root corresponds to the classical time Ccl = 2=/Ω required to
search a database of 2= entries for any ofΩmarked items. Its square root is then equivalent
to the time complexity of a Grover search [116] on the same database. We can see that
the PT time is augmented by an additional factor e2�(Γ)= , which means that the quantum
speedup is not quite quadratic but rather has a “gain exponent” of

� =
log Ccl

log CPT
∼ 2

1 − 4�(Γ)
[1−(2−�)�] log 2

∼ 2
(
1 + 1

��Γ
2

)
(4.35)

compared to the classical time, in the sense that CPT ∼ C1/�cl . The rightmost expression in
Eq. (4.35) is valid in the large-Γ limit, with the constant �� ≈ log 2. Recall that � is the
(small) parameter determining the size of the IB, Eq. (4.5), while � parametrizes its width,
Eq. (4.24). Remarkably, the gain exponent can bemade arbitrarily close to the Grover value
2 by simply increasing the transverse field.

The main advantage of using PT over Grover is that the latter algorithm requires fine-
tuning of the external field with exponential accuracy, when initializing the system in the
standard fully-symmetrized state of the computational basis (i.e. the ground state of the
transverse driver). The reason is that the success of the analog Grover algorithm [101,217]
hinges on projecting the time-evolved state on the desired solution manifold after a Rabi
oscillation from the initial state. This manifold is exponentially small compared to the
entire Hilbert space, and one must be comparatively precise in the determination of the
measurement time (or equivalently, of the transverse field) in order to achieve the desired
resonance. On the contrary, population transfer relies on a multi-channel process where
numerous virtual paths with 1 ≤ A ≤ = contribute non-negligibly to the final probability
(this is the case because the growth of"�(A)with A exactly compensates the simultaneous
decrease of +(A)). This allows PT to be very robust against errors in Γ, which does not
need to be fine-tuned but merely “large”.

4.3 PT in the random energy model

In this section, we tackle a slightly different toy model with a more realistic density of
states, the quantum random energy model. It can be thought of as a Gaussian version of
the QIBM described in the previous section, with the difference that there is no clear-cut
divide between “impurity” and “plateau” states. Instead, a continuous system of levels



132 Population Transfer

connects the low- and high-temperature regions of the spectrum. Even this seemingly
minor modification makes it nontrivial to apply the formalism of the previous section to
this case, although the model remains somewhat analytically tractable, to the point that
several [31,32,98,235] theoretical treatments have been proposed, and results claimed, for
the model. It is now accepted that the system undergoes a form of localization with a
nontrivial mobility edge. Moreover, there are strong indications for the existence of a NEE
phase between the localized and ergodic regions.

Despite this, a clear picture of the actual implications of the dynamical properties of
the system in connection with PT is not quite available. Our purpose in this section is
to try and shed some light on this topic at least in the small-size regime, where exact
diagonalization is possible. As we will see, this kind of study has little to say about the
asymptotic regime, which is instead the typical playground for theoretical calculations,
but on the flipside, it can orient our realistic expectations about implementing the PT
algorithm in NISQ devices.

4.3.1 Model definition and previous results

We define the random energy model (REM) by the �I-diagonal Hamiltonian

�REM =

2=−1∑
I=0

�I |I〉 〈I | (4.36)

where the 2= energies �I are i.i.d. Gaussian random variables distributed according to
?(�) =

√
1/�= exp(−�2/=). The classical random energymodel was introduced in Ref. [81]

byDerrida in order to provide a simplifiedmodel that exhibits someof the glassy physics of
the Sherrington–Kirkpatrick spin glass [229]. Being a collection of states with uncorrelated
energies, the number of states at a given energy is given in the thermodynamic limit by

�(�) = 2=√
�=

e−�2/= , (4.37)

The REM is the prototypical example of a model with “golf-course” energy landscape,
where the typical energy density is & = �/= = 0 (the flat “plateau”) while states with finite
energy densities 0 < |& | ≤

√
log 2 are randomly scattered inside the plateau, and typically

separated by an extensive distance (3 ∈ $(=)) from one another. In this sense, the classical
random energy model exhibits energy clustering [33, 182], albeit of a degenerate kind as
each “cluster” is composed of a single state. In the large-= and large-time limit, its local
dynamics is exactly captured by Bouchaud’s trap model [30,54,111]. A discussion of more
realistic potentials with correlated landscapes is given in Appendix D.

The quantum random energy model (QREM) is the transverse-field model obtained by
taking the REM Hamiltonian as the problem Hamiltonian (�REM = �p in Eq. (4.2)). The
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QREM Hamiltonian is formally equivalent to the Anderson model (2.1) with a Gaussian-
distributed disordered local potential and nearest-neighbor hopping defined over the
Boolean hypercube of connectivity =, where the �I-diagonal term �REM plays the role
of the random local potential and the transverse field is the kinetic term. The number
of sites on this fictitious lattice is equal to � = 2= . Unlike the standard approach to the
Anderson model, where the hopping coefficient is kept fixed and the transition is induced
by the disorder-strength parameter, , in our approach it is more useful to keep the energy
scale of the local potential fixed, and induce transitions by controlling the kinetic energy
parameter Γ ∼ 1/, . This allows one to study the dynamics of the PT protocol through
the methods of Anderson localization.

The dynamical phase diagram of the QREM has been the object of study of several
previous works. In Refs. [32, 159] the mobility edge for the Anderson transition was
estimated as Γ2(&) ∼ |& | using the forward scattering approximation. This is generally
believed to be correct near Γ = 0 but possibly unreliable at larger Γ as it is involves a
perturbative calculation of the Green’s function with Γ as a small parameter. In Ref. [98] it
was argued that at low enough energies and at least in an interval of Γ, the Rosenzweig–
Porter model (RPM), Def. 4.2.3, should provide an effective model of the QREM. Through
this mapping one finds that the QREM should exhibit all of the three dynamical phases of
the RPM, i.e. localized, extended non-ergodic and extended ergodic (see Theorem 4.2.1).
The two transitions between these phases are respectively called the Anderson and the
ergodic transitions. In Ref. [235] the authors derive an estimate of the ergodic transition
that coincides with the one in Ref. [98], but argue that the NEE phase is layered in an
alternating sequence of two distinct subphases. The different estimates for the three phase
transitions for the QREM are summarized in Fig. 4.2.

As for the population transfer protocol, following the analysis of Ref. [234] on the
impurity band model, as laid out in the previous section, one would expect a polynomial
speedup over random search, although a more recent work by the same authors [235]
provides a precautionary statement against naïvely drawing that conclusion. In a different
work on the quantum ?-spin model [31], the PT dynamics is computed through the
Schrieffer–Wolff perturbation theory in Γ. Their analysis (extrapolated to the QREM by
taking the standard limit ? →∞) claims that no speedup is expected on the QREM.

4.3.2 �ench dynamics in the non-ergodic phase

In this section we study the dynamics of the PT protocol described above in the following
steps:

1) We detect the transition from a localized to an extended phase using the volume
scaling of the Shannon entropy of the energy eigenfunctions in the computational
basis. We observe non-ergodicity for a significant interval of Γ values.

2) Wedefine a criterion for estimating the timescale Csat of the PT-induceddelocalization



PT in the QREM 135

process by observing the saturation of the Shannon entropy of the time-evolvedwave
function. We study the volume scaling of the saturated entropy and compare it with
the scaling of entropy of the energy eigenfunctions.

3) We study the distribution of the saturation times Csat over the disorder.

Entropy of the energy eigenstates

Multiple ways of detecting the NEE phase have been proposed in the literature (see e.g.
Refs. [15,96,98,152,153,208]). We found that the easiest way of detecting theAnderson and
the ergodic transitions numerically is the scaling analysis of the Shannon entropy of the
energy eigenstates |#0〉 of the QREMHamiltonian in Eq. (4.2). Given any such eigenstate,
its Shannon entropy (in the computational basis {|I〉}I) is

([#0] = −
∑
I

|〈I |#0〉|2 log |〈I |#0〉|2 , (4.38)

and one defines the scaling dimension10 
st through its asymptotic behavior

([#0] ∼ 
st log�. (4.39)

Since 0 ≤ ( ≤ log�, the exponent 
st must lie between zero and one. Note that exp(()
defines the size of the “typical set” that includes the sites I that thewave function associates
with higher probabilities |#I |2, also called the “support set” of the wave function in the
physics literature [76, 78]. An exponent 
st indicates that the number of states in the
support set of the wave functions scales as�
st in the large� limit. In the localized regime
the energy eigenfunctions decay exponentially away from their localization center so that
most of the amplitude is concentrated in a region of size $(�0), while in the ergodic
extended regime they are roughly uniformly extended over the whole system (of size
$(�)). This means that the possible values of 
st can be used to identify the dynamical
phases in the following way:


st = 0 localized phase
0 < 
st < 1 non-ergodic extended phase

st = 1 ergodic extended phase.

(4.40)

Thus, in order to assign a point (&, Γ) in the phase diagram to one of the three dynamical
phases, we do as follows. For each system size = = 8, . . . , 18 we generate a large number
of disorder realizations �� of the classical REM model of Eq. (4.36). Then, we create the

10Note that in the multifractal literature (see e.g. Ref. [95]), this scaling dimension 
st coincides with the
fractal dimension 
1, also known as the “information dimension”. However, we will make no use of this
connection in the present work.
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Figure 4.3: Behavior of the scaling dimension of the eigenstate entropy 
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dynamical entropy 
dyn (green squares). Inset: linear fit of the dynamical entropy for
fixed values of the transverse field (from bottom to top, Γ = 0.05, 0.16, 0.2, 0.4).

QREM realization��(Γ) by adding a transverse-field termwith the given value of Γ andwe
use the shift-invert method to extract the energy eigenstate |#0〉 of the QREMHamiltonian
whose energy is closest to � = &=. We compute the Shannon entropy of the eigenstate |#0〉
in the �I basis (Eq. (4.38)) and take the average of the disorder. Thus, we obtain the typical
values (� for systems of volumes � = 28 , 29 , . . . , 218. Finally, through Eq. (4.39) one can
see that a linear fit of (� vs log� (for large enough �) will produce the 
st associated to
the phase-diagram point (&, Γ). The results for an energy density & = 0.27 and 0 ≤ Γ ≤ 1
are shown in Fig. 4.3, where one notes that 
st (indicated by the red circles) increases
continuously from zero to one as Γ is increased from zero.

Dynamical entropy

Since Anderson’s seminal paper [19], the Anderson transition was defined by two quali-
tatively different dynamical behaviors that can occur in a quantum system as an initially
localized state is left to evolve under coherent evolution.

In this section we study numerically this delocalization process in the QREM, with
an emphasis on the NEE phase. In analogy with what we did in the previous section,
we will be focusing on the dynamical value of the Shannon entropy of the wave function
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|#(C)〉 = exp(−8�C) |I0〉, that is

((C) = −
∑
I

|〈I |#(C)〉|2 log |〈I |#(C)〉|2. (4.41)

At time C = 0 thewave function is fully concentrated on the initial state and its entropy is
therefore ( = 0. The entropy then increases as the quantum dynamics populates resonant
states, up to an (eventual) stable value (sat.

For our purposes, an instance is considered to have “saturated” once the distribution of
the instantaneous values of the entropy becomes in a sense indistinguishable from Gaus-
sian noise around a stablemean. More precisely, suppose that the entropy is being sampled
at times C ∈ {C1 < C2 < · · · < CM}. Now call ([C 9 : C"] =

(
((C 9), ((C 9+1), . . . , ((C")

)
the se-

quence of entropy snapshots after time C 9 for a certain instance. We say that the instance
“saturates at time C�” if C� is the smallest time such that the values ((C�−1), ((C�−2), . . . , ((C�−:)
are all less likely than a given probability threshold to have been sampled from a normal
distribution with compatible average and variance (the arbitrary parameter : > 1 is used
to rule out genuinely random large deviations from the mean).

In other words, for a given small ? > 0 we compute a corresponding threshold � =√
2 erf−1(1 − ?), such that a standard Gaussian variable has probability ? of being larger

than � in absolute value. Then, we look for the smallest � such that

)(C 9) =
��((C 9) − 〈([C� : C"]〉

��
stdev

(
([C� : C"]

) > � (4.42)

for all 9 ∈ {� − :, . . . , � − 1}, where 〈-〉 represents the arithmetic mean of process - =

(G1 , . . . , G ) and stdev(-) =
√

 
 −1

〈[
(- − 〈-〉)2

]〉
. We take : = 4 (3 for = ∈ {10, 11}),

? = 1% and require that the number of samples between C� and C" be sufficiently large (at
least 15 samples).

The above condition allows us in principle to define C� as the saturation time. However,
due to the finite sampling rate, thiswill result in an “aliased” distribution for the saturation
time, with the loss of precision associated to constraining C� to belong to the set of sam-
pled times {C 9}"9=1. In order to ameliorate this effect we introduce a simple interpolation
procedure.

Suppose that C� is the smallest sampled timewhere the aforementioned conditionholds.
Then by assumption )(C�) ≤ � < )(C�−1). Assuming that function ) is continuous, wemay
approximate its unsampled behavior between C� and C�−1 through a linear function11, and
define the saturation time Csat through the condition

)(Csat) = �, (4.43)

11We actually use a linear-in-log(C) function as our sampled times are logarithmically spaced.
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Figure 4.4: Typical behavior of the Shannon entropy ((C) of the wave function (Eq. (4.41)) in the
PT dynamics for a single instance with = = 18. ( starts at zero and increases with
C, up to a point of saturation (sat = ((Csat) (orange line), where it settles with small
(indiscernible in the plot) random fluctuations, which we model as a Gaussian process.
Inset: instantaneous value of the discrepancy )(C), see Eq. (4.42), in a limited range
of times. Highlighted in red are the points C�−4 , . . . , C� , which define the saturation
condition as explained in the text. Note the genuinely random large deviation at
C ≈ 120, which is correctly ignored by having : > 1.

with the solution obviously satisfying C�−1 < Csat ≤ C� . This will give us a more natural
distribution for the saturation time, as Csat is now unconstrained.

Fig. 4.4 portrays the typical time dependence of ((C) and provides a visualization of
the definition of Csat in terms of the function )(C).

Fractal delocalization of the wave function

In analogy with the previous section, we use the saturation values of the Shannon entropy
(sat to measure the size of the region of the lattice that the wave function delocalizes over
under unitary evolution. In the ergodic phase one expects that for large C, ((C) ∼ log� as
the wave function eventually populates all available volume, while in a strongly localized
phase (e.g. the localized phase of the Anderson model in finite dimensions, where the
RAGE theorem holds [10]), ((C) ∼ $(�0) since the wave function is trapped for all times in
a finite region of space surrounding the initial position. According to Ref. [234], in theNEE
phase the initial state should delocalize over the common support (i.e. the intersection of
the roughly-similar supports) of the energy eigenstates belonging to an energy miniband,
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states that we previously saw have fractal supports. The intersection of fractal sets is
commonly a fractal set itself [97] even though it may be characterized by a smaller scaling
dimension than the one obtained from the original sets.

We define a scaling dimension 
dyn for the saturation values of the Shannon entropy
of the wave function, in a way analogous to the static 
st of the previous section:

(�(C∞) ∼ 
dyn log� (4.44)

where (� is the median entropy of the time-evolved wave function for a system of volume
� and we sample at a large time C∞ such that C∞ � Csat for every instance.

For large enough values of the transverse field, the median saturated entropy (sat is
nicely fit by a law of the form (�(C∞) = 
dyn log� + �0 + �−1/� (cf. [153]), where the
finite-size deviation coefficient �−1 is always comfortably small.

However, as can be appreciated from the inset of Fig. 4.3 (Γ = 0.16, square orange
markers), the small-Γ data are affected by larger finite-size effects in that they take longer
to reach the asymptotic regime. These effects are not well captured by a continuous
ansatz, but are better described as a sudden change of regime. Combined with the small
value of the scaling dimension in that regime, this requires special care in extracting a
useful estimate of 
dyn. We chose to restrict our fitting procedure to the = ≥ 14 data for
0.12 ≤ Γ ≤ 0.20, whereas for Γ < 0.12 the data is essentially too flat to detect a regime
change and all sizes can be fitted. In both cases, we use a function 
dyn log� + �0 for the
fit.

With these provisions, 
dyn can be computed and compared to 
st, as shown in Fig. 4.3.
The dynamical exponent has a behavior qualitatively identical to the static one, albeit
shifted in the Γ axis, and it can be seen to satisfy


dyn ≤ 
st. (4.45)

This stands in agreement with our above intuition that the support of the time-evolved
wave function essentially consists of the intersection ofmultiple eigenstate supports, them-
selves scaling in size with fractal exponent 
st.

Decay times for delocalization

We now study the distribution of saturation times for the PT process. Fig. 4.5a shows the
histograms of the saturation times separated by system size =. Note that they exhibit a peak
with a long right tail. We can use a (truncated) complementary cumulative distribution
function (CCDF)

�(C) =
∫ ∞

Cpeak+C
?(Csat)dCsat (4.46)

to study the right tail of the distributions. Cpeak is the position of the peak of ?(Csat)
estimated through a Gaussian smoothing of the data. We approximate �(C) using the
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Figure 4.5: (a) Distributions of the saturation time at the NEE point (Γ = 0.4). The data was
smoothed through integration against a Gaussian kernel of width � = 2. (b) Right tails
of the distributions, as described by the empirical CCDF, Eq. (4.47). Dashed lines show
the exponential fits, Eq. (4.48). Inset: exponent �= , as defined in Eq. (4.48), describing
the decay rate of the distribution of Csat at large values of its argument. The dashed line
represents the power-law fit �= ∼ 0=−1 , with 1 = 7.4(2).

empirical CCDF �4(C) obtained from the raw data {C(8)sat}
#s
8=1

�4(C) =
1
#s

#s∑
8=1

Θ

(
C
(8)
sat − C − Cpeak

)
(4.47)

where Θ is the Heaviside step function. We find that �4(C) is well-approximated by a
two-parameter exponential functional form (Fig. 4.5b)

�=(Csat) ≈ exp
(
− �=Csat − �=

)
(4.48)

where (Fig. 4.5b, inset)
�= ∼ 0=−1 (4.49)

so
�=(Csat) ∼ exp

(
− 0 Csat

=1

)
(4.50)

which means that the probability density ?=(Csat) for large values of Csat is

?=(Csat) ∼ 0=−1 exp
(
− 0 Csat

=1

)
(4.51)
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Figure 4.6: Box plot of the distributions in Fig. 4.5a. Boxes subsume the middle half of the data.
The black bar in the middle of each box is the median, with its bootstrapped error
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Ghigh = @3 + 3

2 (@3 − @1), where @1 and @3 are the first and third quartile, respectively. The
dashed line depicts a shifted exponential fit of the median times, with �t = 0.04(2).

that is, even though the probability distributions ?= have thin (i.e.exponentially-decaying)
right tails at all finite sizes =, their decay coefficients get increasingly smaller with = so the
tails get fatter with increasing =.

Fig. 4.6 shows a tentative finite-size scaling of themedian saturation time. An exponen-
tial ansatz with three parameters is shown (dashed line). This choice of parametrization
will be motivated in Section 4.3.4.

4.3.3 PT quality: spread and spillage

In this section we start to analyze the PT dynamics as a solution-mining algorithm. In
order to benchmark its performancewe need to study quantitatively how the time-evolved
wave function

|#∞〉 = e−i�C∞ |I0〉 (C∞ � Csat) (4.52)

populates the target subspace Ω= . In an ideal situation, one would like that 1) the wave
function should be completely contained in the target subspace, and 2) it should be uni-
formly spread, that is

|#∞(I)|2 =
{

1/|Ω= | if I ∈ Ω=

0 otherwise,
(4.53)
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as this would provide an effective way of finding all target solutions efficiently by re-
peatedly sampling the distribution ?[#∞] = {|#∞(I)|2}I — a principle known as “fair
sampling” [269]. This is of course an ideal limit, and is never achieved in practice. Nev-
ertheless, we can use the displacement from this ideal case as a yardstick for PT success.
We will first consider the following two quantities:

a) the total probability !Ω[#∞] = ‖%⊥Ω |#∞〉‖2 of finding a state outside of the target
subspace (amplitude spillage), and

b) the degree of uniformity of the wave function’s intensity distribution with respect
to the Hamming distance, which we measure by means of a functional *Ω[#∞]
described in detail in Appendix E. This functional satisfies *0 ≤ *Ω[#] ≤ 1 for all
distributions ?[#], taking its minimal value*0 ≈ 0.6065 when the restriction of ?[#]
to Ω is completely uniform and its maximal value 1 when it is atomic.

In Fig. 4.7 we show the behavior of these two quantities in three points of the phase
diagram that we take as exemplary points for the localized (Γ = 0.05), NEE (Γ = 0.4) and
ergodic behavior (Γ = 1). All points are associated to the same energy density & = 0.27.
As a first sanity check, note that

a) the localized case has the least amount of spillage, but is also the most inhomoge-
neously spread;

b) the spread of the wave function component in the target subspace (as measured by
the*Ω functional) is essentially the same in the NEE and in the ergodic case.

In order to see why this is the case, we plot the total probability inside the target
subspace resolved by the fractional Hamming distance G = |I − I0 |H/= from the initial
state I0 (Fig. 4.8); namely, the distribution

?Ω[#∞](G) =
∑
I∈Ω
|#(I)|2� |I−I0 |H ,=G . (4.54)

We can make several observations about these results. In the localized case the amplitude
is progressively more concentrated on the initial state I0 as = is increased. The PT protocol
in this phase will not be able to efficiently find target states that are more than 3 = G=

spin flips away from I0, for large enough 0 < G < 1. In the ergodic case, on the other
hand, we see a roughly Gaussian distribution of amplitudes over the fractional Hamming
distance. This is an effect of the geometry of the Boolean hypercube, where most states
are approximately =/2 spin flips away from the initial state I0. The distributions seem
to be essentially independent of = (within the statistical errors due to the finite sampling
of the disorder). Finally, in the NEE case we see the same overall Gaussian shape of the
distributions, but in this case they are larger than the ergodic case, and more importantly,
they flow favourably (in the sense of PT) with increasing =. This is due to the fact that the
amplitude is dynamically biased toward the target subspace, unlike in the ergodic case.
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(b) Γ = 0.40 (NEE).

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.4

0.8

1.2

1.6

2.0

p Ω
(x

)

n = 10

n = 12

n = 14

n = 16

n = 18

(c) Γ = 1.00 (ergodic).

Figure 4.8: Probability distributions of finding a resonance via PT as a function of its fractional
distance G = 3/= from the initial state, at energy density & = 0.27 and different values
of the transverse field

4.3.4 �antum advantage

Thus farwe have learned some facts about the PT protocol in theQREM, but its application
to quantum computing is practically relevant only insofar as it can be cast as a quantum
algorithm that is able to outperform all classical algorithms at some specific computational
task, a situation described as quantum advantage (or speedup if time is the relevant quan-
tity). In order to show quantum advantage in the energy matching problem described in
Section 4.1, one would like to compare the running time of the PT algorithm against an
optimal classical algorithm designed to find all states at a given energy. This is generally
a significantly understudied problem. Some very specific models have provably efficient
algorithms that sample the Gibbs distribution for a given temperature (e.g. the planar Ising
spin glass [249]), so that if one is able to compute the Legendre transform between energy
� and temperature ) then in the large = limit one could obtain all states at a given energy
by sampling the Gibbs state of the associated temperature )�. Failing that, one is reduced
to using a general-purpose stochastic local search algorithm such as simulated annealing
(cf. Section 1.3.2).

Unfortunately, such comparison is not very useful in the case of the REM due to its
trap-model dynamics: its local dynamics is made up of a sequence of thermally-activated
events where the system is excited out of a low-energy state to the flat plateau (the classical
stateswith & = 0), followed by a randomwalk on the plateau until it falls again into another
(random) low-energy state with a random energy �. If � lies inside the target energy shell,
then we have found a target state of the energy matching problem and we are done. If
not, we need to wait for the system to be thermally excited out of this state and the search
process starts anew. Even assuming one can speed up the excitation events so that they
only take$(1) time, there seems to be noway to avoid having to perform a randomwalk on
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the plateau in order to find a new low-energy state. Due to the flatness of the plateau and
the random relative positions between states of non-typical energy density, this stochastic
local search can ultimately be seen as a global random search.

In view of these considerations, we adopt the following benchmark metric. For a
given realization of the REM Hamiltonian �p, we define two “oracles”, Oqu and Ocl,
that take as input an initial bit string I0 and attempt to produce a target string I′ ∈ Ω= .
The first is a quantum oracle that applies a PT evolution to |I0〉 for a time C = Csat, with
some =-independent driver strength Γ, and then measures the final state |#(C)〉 in the
computational basis. The second oracle is a classical procedure that discards the initial
string I0 and simply samples a new one I ∈ {0, 1}= at random, with uniform probability
?(I) = 1/2= . The probability of success for one call of each oracle is

%qu =
∑
I∈Ω=

|〈I |#(C)〉|2 , (4.55)

%cl =
|Ω= |
2= . (4.56)

We define the gain

� =
%qu

%cl
(4.57)

as the ratio of these two probabilities. The gain is a random variable due its dependence
on both the problem instance �p (which determines the set Ω=) and the choice of initial
string I0 (which determines |#(C)〉).

For each size = = 8, . . . , 20 we sampled a number of disorder realizations of the REM
Hamiltonian �p and for each of them we selected the string I0 with an associated energy
closest to � = 0.27 =. The probability %cl can be computed by simple inspection of the
random energies in the realization�p, while to compute %qu we simulated the PT protocol
numerically. We performed a finite-size scaling of the data thus obtained (Fig. 4.9) using
the ansatz

�(=, Γ) = (�e
= + �)�̃
(
Γ̃(=)

)
(4.58)

where the effective Γ̃(=) is given by

Γ̃(=) = Γ − Γ∞ +
�

=1/� . (4.59)

Given the available data, fitting three parameters results in a poor estimate for the uncer-
tainties on � and �. Therefore, we prefer to fix one of them while keeping the other one
free. Observing that the gain peaks approximately in correspondence of the Anderson
transition, we chose to utilize the same value of � describing the finite-size shift of the
mobility edge, which is known to be 0.3 ≤ � ≤ 0.5 [32]. We use � = 0.4 so that 1/� = 2.512.

12We remark that even if we leave � as a free parameter in the fit, we obtain a value of approximately
1/� = 2.53.
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Figure 4.9: Curve collapse of the median gain for system sizes = = 14 through 20.

We obtain the following values for the fitting parameters:


 0.084(5)
A 5.3(8)
B −0.27(13) × 101

C 2.58(12) × 101

Γ∞ 0.242(1)

This means that

a) the median gain peaks at a size-dependent value of Γpeak(=) that for = → ∞ is in
quite good agreement with the estimate of the Anderson transition’s mobility edge
(Γ2 ≈ 0.27 following the forward scattering approximation). The thermodynamic-
limit position of the peak Γ∞ is shifted by a finite-size effect ΔΓ∞(=) = −�=−1/�.
This shift was already observed in Ref. [32] in the finite-size scaling analysis of the
mobility edge of the QREM using the forward-scattering approximation, as well as
other quantum phase transitions in disordered transverse-field models [189].

b) the height of the peak scales like �peak ∼ e
= with 
 > 0. This is a query-complexity
asymptotic advantage of the quantum PT oracle over the random search oracle.
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Figure 4.10: Peak median gain for = = 13, 14, . . . , 20, fitted with a shifted exponential �e
= + �
with parameters � = 5.3(8), 
 = 0.084(5), � = −27(13) × 10−1. Inset: position of the
peak median gain for = = 14, 16, 18, 20. The scaling Ansatz Eq. (4.59) suggests a value
Γpeak ≈ 0.24 in the thermodynamic limit.

Non-oracular advantage

In order to assess the absolute (i.e. non-oracular) advantage of the PT protocol over stochas-
tic random search one has to compute the full runtime of both algorithms by multiplying
the number of oracle calls by the time required to implement a single oracle call. Equiva-
lently, one can study the quantity

 =
%qu

Cqu

Ccl
%cl

= �
Ccl
Cqu

, (4.60)

where Cqu , Ccl are the times needed to implement one call to the quantum and classical
oracles, respectively. For the classical oracle, a random search requires a time Ccl ∈ $(=) as
one only needs to generate = random bits (linear time for a classical probabilistic Turing
machine). For the quantum oracle, Cqu is the saturation time Csat we studied in Section 4.3.2.
Therefore  (=) = :=�(=)/Csat(=)with : an$(=0) prefactor. We consider a setupwhere, for
fixed Γ = 0.4 (that represents a good choice of parameter setting without being optimally
tuned)we evolve the initial state according to the PT protocol for a time C = Csat(=) and then
we sample the wave function in the computational basis. Quantum advantage is decided
by the competition of the gain � and the saturation time Csat.

Unfortunately, the data at finite sizes = = 10 − 20 show only a weak dependence on
= so that the functional form of these two quantities is hard do extract conclusively. On
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physical grounds, we expect an exponential scaling of both � and Csat, so we fit through
functions of the form

5 (=) = 0e�= + 1, 0, 1, � ∈ R. (4.61)

The values of the � exponents control the rate of divergence of the leading terms of
these quantities in the limit = → ∞. We use the notation �t and �g for the time and gain
exponent, respectively. We obtain the values

�g = 0.09(4),
�t = 0.04(2).

Thus we have the following approximate scaling

 = :
= �(=)
Csat(=)

∼ exp
[
(�g − �t)=

]
≈ exp[0.05(4)=] . (4.62)

While this would imply an asymptotic speedup in the = → ∞, the prefactor of = at the
exponent is very small (in fact, statistically compatible with zero) and we believe that the
most reasonable interpretation of these results is that the PT protocol and random search
scale approximately in the same way, at least at the sizes we have been able to study.

Indeed, for such a small value of �� = �g−�t, the linear factor := from Ccl will affect the
behavior of  on a significant range of pre-asymptotic system sizes, = . 1/��, regardless
of its true asymptotic scaling. However, this does not seem to make much of a difference
for the system sizes we can observe: if we plot the median values of the  value directly
(instead of fitting the exponential scaling of � and Csat separately as in Eq. (4.62)), then the
corrections to the exponential terms coming from the parameters 0, 1 in Eq. (4.61) and the
linear term Ccl = := still cancel out any significant difference between � and Csat, and the
slope of  turns out to be extremely small (see Fig. 4.11)

Our conclusion is that in the QREM, the PT protocol and random search scale approxi-
mately in the sameway for problem sizes = ≤ 20. The small curvature of both the time and
gain data suggests that going tomoderately larger sizes, as in some of the largest numerical
analysis currently available in the many-body localization literature [206], is unlikely to
improve our analysis by a significant degree. Any eventual asymptotic advantage would
be detectable only at unachievably larger sizes.

4.4 Conclusions

In this chapter, the application of quantum computing to a useful computational primitive
called energy matching, as defined in Section 4.1, was surveyed in detail.

In Section 4.2 we have reviewed one of the first andmost thorough theoretical analyses
of the population transfer (PT) algorithm, which considers energy matching in a toy “im-
purity band” Hamiltonian [234]. We have described how a semiclassical approximation,
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Figure 4.11: Distributions of the value of  , as defined in Eq. (4.60). For an explanation of the box
plot, see Fig. 4.6.

perturbative in the IB width as well as the driver strength, leads one to consider a random
ensemble of “preferred-basis Lévy matrices”, a fat-tailed analogue of the Rosenzweig–
Porter model. A Fano–Anderson treatment of the PT process leads to an estimate of the
decay rate, which is itself a fat-tailed random variable whose distribution can be estimated
by means of a self-consistent nonlinear equation whose solution can be obtained via the
cavity method. The resulting estimate for the typical PT time indicates a quasi-Grover
speedup, i.e. quadratic over classical random search up to an anomalous exponent that is
vanishing as ∼ 1/Γ2 in the transverse field.

In Section 4.3 we have studied numerically (up to system sizes of = = 20 quantum
spins) the PT dynamics in the quantum random energy model [203]. We summarize our
methods, findings and conclusions hereunder.

For a horizontal line in the (&, Γ) phase diagram of the model, corresponding to fixed
energy density & = 0.27, we computed the scaling of the support size of both the energy
eigenfunctions, and the wave functions obtained at the end of the delocalization process
induced by the system’s coherent dynamics applied to a localized initial state. For increas-
ing values of Γ, we observed in both cases a continuous crossover of the scaling dimension

 from a localized (
 = 0) toward an ergodic regime (
 = 1), which indicates the presence
of a non-ergodic extended phase.

We further studied the timescale Csat required for the PT delocalization process to
complete, as a function of the system size =. Over the disorder, this time follows a
unimodal distribution with a long right tail that gets fatter with increasing =. The median
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value of Csat shows an exponential dependence of on the system size, Csat ∼ exp(�=).
We computed the probabilities %qu , %cl of obtaining a state in the target microcanonical

shell (containing the states with the same energy density as the initial state), using respec-
tively the saturated PT dynamics for a given value of Γ, and random search. The ratio
� = %qu/%cl (“gain”) of these probabilities corresponds to a query-complexity comparison
between a single use of a black box that performs the PT protocol to completion, and then
samples the resulting wave function in the �I basis, and a single use of a black box that
samples classical states uniformly at random. We observe that the gain grows with = in
the regime of sizes that is accessible to our numerics for all values of Γ we considered —
i.e. the quantum PT oracle increasingly outperforms random search — with a peak that
appears in proximity of the critical point of the Anderson transition.

However, if we compare the actual (i.e. non-oracular) runtime of the two algorithms by
dividing the probability of success of the black boxes by the time required to implement
one call to the black box, we find that the scaling of the gain %qu/%cl and the scaling of the
inverse times ratio Ccl/Cqu roughly cancel out: at the system sizes considered in this work,
PT and random search seem to scale with = in approximately in the same way.

We believe that the final considerations we can extract out of the above results are
twofold, one concerning the choice of parameters for the PT protocol and another concern-
ing the overall efficiency of the PT protocol as a quantum algorithm for energy matching.
For what concerns the parameter setting, the fact that the optimal choice of Γ seems to
coincide with the critical point of the localization–delocalization transition of the QREM
suggests that the parameter setting problem for Γ can be reduced to finding the mobility
edge for the Anderson transition. This is a problem that has undergone extensive studies
in the literature on many-body localization. Our conjecture is that this optimality result
should generically hold true for any other combinatorial optimization problem to which
PT can be applied. For the second PT parameter, the final evolution time Cfin, the situation
is less clear. The choice of an optimal time is hard to do on a case-by-case basis, as we
found no obvious property of a REM instance that correlates with its saturation time Csat.
At this point we are only able to suggest that exploratory runs should be made using
randomly generated instances in order to estimate a fixed percentile of the distribution of
Csat (say, its median), so that one is guaranteed that for that choice of Cfin, a finite fraction of
instances will have reached saturation and the optimal performance of PT protocol will be
reached with finite probability. Clearly, more work will be necessary in order to elucidate
this point before PT can be ready for practical applications.

The second point concerns the efficiency of PT for energy matching: according to our
findings, PT does not show significant quantum advantage on the QREM at the sizes that
are likely to be accessible to near-term quantum technologies. This observation is true of
the entire NEE phase. This leaves the door open for a few potential scenarios that we are
unable to resolve at the moment:

1) PT never exhibits asymptotic advantage in the QREM, for any energy density what-
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soever. Thiswould confirm the asymptotic results obtained by the authors of Ref. [31]
by keeping the leading-order term of the Schrieffer–Wolff perturbation theory in the
small parameter Γ.

2) PT shows asymptotic advantage, but only for a restricted interval of energy densities
in the NEE phase. In general, one would expect these energies to be neither too
close to the edges of the spectrum nor to the center. Currently, there is not to
our knowledge a way of detecting these “good” energies from finite-size data (all
approaches consider asymptotic studies in =), except for exhaustive search.

3) PT has a (perhaps even “quasi-Grover”, as in the QIBM) quantum advantage in the
QREM, but the system sizes we can access are simply too pre-asymptotic: the scaling
we are seeing at these system sizes is not representative of the one emerging in the
= →∞ limit.

We believe that this question will not be resolved at the sizes = = 20 − 30 that seem to be
the current limit of numerical methods, or will likely be achieved in the next few years. In
order to decide among the scenarios above it seems reasonable to us that better numerical
methods need to be developed in order to approximate the effective coherent dynamics
of the QREM in a fixed energy shell so that much larger system sizes can be investigated.
Downfolding techniques like the ones developed in Ref. [234] are likely to prove useful,
when paired with a robust way of estimating the error of the effective propagator for fixed
time C and finite size =.

One interesting line of future research involves the experimental realization of the PT
protocol on quantum hardware. While unfeasible in our case due to the nonlocal nature
of the REM Hamiltonian, this is in principle achievable on other finite-connectivity com-
binatorial models such as those discussed in Appendix D. Indeed, beyond the QREM, we
believe it would be interesting to study the PT dynamics in models with correlated disor-
der. In these cases the expectation is that the scaling of the gain will be worse compared
to the QREM, as the comparison must be made with classical algorithms or heuristics
that can exploit the correlated energy landscape and therefore outperform random search.
However, the inverse time ratio Ccl/Cqu in Eq. (4.60) is likely to scale more favorably: the
runtime Ccl for these probabilistic algorithms to produce one candidate solution for the
energy matching problem will likely grow exponentially with the system size — as is ex-
pected to happen for essentially any “hard” optimization problem—unlike what happens
in random search, where one such attempt only requires the generation of = random bits,
Ccl = :=. These local models are particularly attractive as they can be simulated directly
on quantum hardware for much larger system sizes than the ones accessible to numeric
methods, possibly solving the question of the asymptotic behavior of PT. Digital quantum
computers are limited by the fact that they can execute programs only in the form of quan-
tum circuits: the simulation of continuous-time processes on digital quantum hardware
almost always requires the discretization of the real-time unitary propagator e.g. via a
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Trotter decomposition (cf. Section 3.2.1), even in case of time-independent Hamiltonians
such as the ones used in the PT protocol. This significantly limits the final time that can
be reached by the simulation, as the elimination of Trotter errors necessitates the use of
quantum circuits of non-negligible depth. Analog quantum computing technology, on the
other hand, natively implements continuous-time quantum evolution, and at this point
seems to be tantalizingly close to being able to simulate the PT protocol. However, cur-
rently available quantum annealers such as the D-Wave machine were not designed with
PT in mind. Consequently, their annealing schedule — while more complicated than PT
— is currently too rigid and cannot accomodate long intervals where the transverse field
is kept constant, that are instead a necessary element of PT. We believe that the devel-
opement of high-coherence analog quantum computing hardware with a broader range
of applicability will greatly benefit the study of population transfer protocols for energy
matching.

Finally, there remains the unexplored option of using the PT dynamics for a hybrid
“PT-assisted stochastic search”, where quantum PT moves are alternated with classical
stocastic search (e.g. some form of simulated annealing) either for the purpose of energy
matching or for combinatorial optimization, as mentioned e.g. in Ref. [142]. This is an
interesting approach that might boost the performance of these classical algorithms in
specific conditions.



Closing remarks

Several and variegate topics were presented in the scope of this thesis, starting from a
general introduction to ergodic theory in Chapter 1, including a discussion of blatantly
non-ergodic systems such as spin glasses and their link to the theory of optimization,
proceeding in Chapter 2 to an overview of howquantum systems localize as a consequence
of disorder, and how symmetry plays a crucial role in this localization phenomenon, and
finally discussing in Chapters 3 and 4 how stochastic and quantum dynamics can be used
to our advantage in the solution of optimization problems.

The underlying motif of this work has been the violation of the ergodic hypothesis
which rests at the basis of equilibrium statistical mechanics. Despite the great beauty
and dignity of the theory, none of the fascinating topics that were investigated in these
pages would have been possible to appreciate without venturing outside the safe haven of
equilibrium. A famous brocard attributed to Niels Bohr states that the opposite of a fact is
a falsehood, but the opposite of a profound truth may well be another profound truth. It
is a testament to the theory that removing the cornerstone of its edifice does not provoke
its collapse, but rather uncovers a whole new world of even more remarkable character.
What we analyzed or just mentioned throughout these chapters offers a glimpse into this
novel world of out-of-equilibrium physics.

In these closing remarks, I will take a final look at the main topics of interest that were
touched on during my studies. As the conclusions specific to each work were already
presented at the end of the respective chapters, I will instead nowmaintain a more broad-
brush view and comment with greater liberty on the general context.

Let us first consider Chapter 2, where the interplay between disorder and symmetry
was considered. Our current understanding of generic ergodicity violation in interacting
quantum systems (that is, excluding the rather separate realm of Bethe-integrable sys-
tems) is essentially limited to many-body localization, which is in turn recapitulated in
the theory of quasilocal integrals of motion. This theory successfully predicts the most
salient characteristics of MBL systems, including the entanglement properties of eigen-
states and time-evolved product states as well as the lack of transport of local charges.
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The theory is however incomplete. For instance, the LIOM description assumes that the
entirety of the spectrum is localized, and is unable to offer a good explanation of the delo-
calization transition and the appearance of mobility edges. Currently, our understanding
of the MBL–ergodic transition is limited to phenomenological models attempting to cap-
ture what are deemed the most relevant features of the transition, e.g. the appearance
of Griffiths regions in approaching the MBL phase. With the apparent inadequacy of
perturbation theory, numerical and renormalization groupmethods have been attempted,
but a proper understanding has not been reached yet. A related question concerns the
transport properties in the ergodic side of the transition, with many results suggesting the
existence of broad subdiffusive regimes. In this regard as well, an explanatory theory is
still missing.

The problem of subdiffusion, and in general the characterization of the dynamics, is
therefore a very interesting direction to pursue in our study of isotropic disorderedmodels.
The analysis of Section 2.4, albeit thorough, was limited to spectral properties, which in
a sense concern the infinite-time behavior of the system. As stressed multiple times in
Chapter 1, this does not tell the whole story for a non-ergodic system, whose approach
to the diagonal ensemble is pathologically slow. Studying the finite-time behavior of
simple initial states would surely provide new insights into the problem, although one
must keep in mind the usual limitations of numerical simulations, which are by force
constrained to relatively short times and small sizes. That said, features such as the post-
quench evolution of the entanglement entropy and local observables should be usefully
characterizable even through exact diagonalization methods, especially with the efficient
Hilbert-space reduction andmassive parallelization boasted by our code base. In addition,
the low entanglement present in the system at high disordermakes it potentially amenable
to DMRG techniques (although these cannot easily be adapted to nonlocal bases such as
the tree basis). As mentioned in Section 2.4.5, other non-Abelian symmetries such as
SU(# ≥ 3) could be considered as well. This would require a new code base and classifies
therefore as a longer-term goal.

Ultimately, the importance of a study building on these ideas lies in its potential to
uncover a whole new class of non-ergodic systems, including (but not necessarily limited
to) disordered systems with non-Abelian symmetries. As we found in our analysis, the
crucial feature of this kind of systems appears to be the approximate tree tensor structure of
their eigenstates, which is enforced by the representation theory of the symmetry group.
Namely, trees are generated by the application of fusion rules between representation
spaces—apurely algebraic diktat. Eigenstates are constrained to be linear combinations of
tree states, and in the strongly-disordered limit, as we argued from SDRG considerations,
these linear combinations are approximately trivial (i.e. tree states are already almost
eigenstates of the Hamiltonian). Since trees have logaritmic-in-! entanglement, the area
lawofMBLmust beviolatedas a consequence anddisorder,while still impedingergodicity,
is unable to fully localize the system, resulting in a different kind of non-ergodic phase.

The fusion of representation spaces is not a special feature of SU(2), but can be ex-
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tended to any semisimple Lie algebras. In general, the Clebsch–Gordan coefficients will be
replaced by different numbers, and the partial fusions will be labeled by several Dynkin
labels instead of just the spin, but this does not spoil the reasoning. In fact, one might
conceive of cases where tree states arise for reasons other than the representation of a
symmetry group. An example could be a model of non-Abelian anyons, which has no
symmetry group but rather a quantum group. The question is open for the posterity.

Let us move on to Chapters 3 and 4. The topic of quantum supremacy, with its promise
to bring about a new technological revolution of tremendous impact, is of central interest
in today’s industrial research. Big competitors such as Microsoft, IBM, Intel, Google
and Amazon have all been reserving generous budgets for research and development in
quantum computing, and in some cases opened the arena to the larger public via cloud
services for remotely accessing their exotic and otherwise unaffordable hardware. With
the theory barely one or two scores young, and the practice even younger, the expectations
for quantum computing are much brighter than its present-day achievements, despite
existing disagreements on realistic time frames for their actualization. Currently, a lot of
effort is being devoted to the all-important task of creating universal standards for the
practicing “quantum computerist”, as well as developing the equally fundamental theory
of quantum compilation. On the practical side, the first assembly specifications and
software development kits for quantum operating systems have been published already.

In this fast-paced context of excitement and discovery, optimism for the future remains
a fundamental ingredient, at least until convincing evidence is presented that quantum
computers will indeed scale quickly and robustly enough to prove themselves useful in
real-word applications. As it stands, classical algorithms possess a substantial advantage
over quantum ones due to their head start of several decades, and have so far been
quick to quell excesses of optimism whenever a quantum speedup was alleged, even
in rather ad hoc tasks designed to their detriment. Even neglecting highly specialized
algorithms, general-purposemetaheuristics such as simulated annealing appear to remain
competitive despite the looming presence of quantum annealers currently marketed or in
the making. Likewise, quantum routines such as population transfer have yet to be
convincingly performed even in proof-of-concept setups, much less shown to outperform
classical protocols or at least augment them (in the guise of “quantum subroutines” for
hybrid classical/quantum algorithms).

One may argue that at least in some cases, such as Grover’s algorithms, or Shor’s
algorithm if P ≠ NP, a speedup exists provably. But even in the presence of a rock-solid
asymptotic speedup, a practical speedup is only achieved when the problem size is large
enough for the asymptotic term to take over. In the current regime, prefactors are extremely
important and may be as large as ∼ 1011 in favor of classical computers, as Neven pointed
out recently.13 It is therefore a moot point, as of today, to argue from asymptotic scalings.
One of the only tasks where current-day quantum computers seem to be excelling is

13During the Google Quantum Summer Symposium 2020.



156 Closing remarks

random number generation, something which classical computation should be expected
to have a hard time replicating due to the fundamentally “true random” character of the
quantum theory, which has no analogue in classical mechanics.

In conclusion, while justifiably sharing a good part of the optimism for the prospects
of quantum computation in the near future, we must balance it with a healthy dose of
cautiousness. We have tried to do so in this thesis by recognizing the limitations of
quantum algorithms as well as the merits of their classical competitors. This “apophatic”
approach to near-term quantum computation is less easily heralded in headlines and grant
proposals, but makes just as important a part of the research effort as its opposite, if not
more so. That said, what we have found serves not as a roadblock, but as a reminder to
keep our expectations realistic. While diffusion Monte Carlo does display huge potential
in tackling certain “rugged landscape” problems, it has to contend with hard complexity
barriers by requiring very large walker populations for accurate predictions, generally
exponentially so in the system size. Furthermore, DMC is incapable of dealing with non-
stoquastic Hamiltonians — a limitation not shared by quantum annealers. It is not hard
to envision future quantum machines leaving DMC and other stochastic algorithms far
behind in certain classes of problems. Likewise, although population transfer may not
live up to expectations in the random energy model, we have good reason to be optimistic
about correlated models, where, as explained in Section 4.4, the oracular advantage of PT
may be harder to strip out than in REM.
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AppendixA
The Jordan–Wigner transformation

The Jordan–Wigner transformation [138] is a standard tool in statistical physics that con-
verts a one-dimensional fermionic model into a spin model, or vice-versa. This allows
physicists to map different models into each other and thereby amplifies the import and
scope of analytical and numerical methods which may only be available for one of the two
cases. For example, fermions are notoriously harder to implement in computer simula-
tions due to the lack of a tensor product structure in their matrix representations, so it is
convenient to transform them into spins beforehand, whose representation space is easily
constructed via ordinary Kronecker products.

Consider the fermionic algebra generated by the annihilation operators {28}!−1
8=0 , acting

on the local basis as

28 |08〉 = 0, 28 |18〉 = |08〉 (A.1)

and obeying the canonical anticommutation relations

{28 , 2 9} = 0, {28 , 2†9 } = �8 9 , (A.2)

where {0, 1} = 01 + 10. We call =8 = 2†8 28 = =
†
8
the 8-th number operator.

From the elementary property

[28 , = 9] = 282†9 2 9 − 2
†
9 2 928 = 282

†
9 2 9 + 2

†
9 282 9 = {28 , 2

†
9 }2 9 = �8 928 (A.3)

and its conjugate
[2†8 , = 9] = −[28 , = 9]

† = −�8 92†8 (A.4)

we see that all numbers operators commute with each other:

[=8 , = 9] = 2†8 [28 , = 9] + [2
†
8 , = 9]28 = 0. (A.5)
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We define the Jordan–Wigner transformation

B+8 = ei)8 28 (A.6a)

BI8 =
1
2 − =8 , (A.6b)

where

)8 = �
8−1∑
;=1

=; , (A.7)

and demonstrate that the B0
8
operators define a Pauli algebra:

[BI8 , B
±
9 ] = ±�8 9B

±
8 , [B+8 , B

−
9 ] = 2�8 9BI8 , (A.8)

where B−
8
=

(
B+
8

)†.
Notice that for the first identity we only have to consider one sign, as the other follows

trivially from conjugating the equation. We have

[BI8 , B
+
9 ] = [−=8 , e

i) 9 2 9] = ei) 9 [2 9 , =8] = �8 9ei)8 28 = �8 9B
+
8 , (A.9)

where we have used the number commutativity Eq. (A.5) to take ei) 9 out of the brackets.
As for the other commutator, we first note the property

e±i�=; = 1 − 2=; , (A.10)

which can be verified by applying both sides to the basis states. Combined with Eq. (A.3),
this gives

e−i) 9 28 =

{
28e−i) 9 if 8 ≥ 9
−28e−i) 9 if 8 < 9.

(A.11)

The first line is obvious from the fact that ) 9 does not contain 8, so the whole exponential
commutes with 28 . For the second line, one needs to notice that 28 = −28(1 − 2=8), as can
be checked directly from the properties of the fermionic operators. Clearly, an analogous
result holds for 2†

9
ei)8 by conjugation of the above.

The calculation of the commutator is now very simple:

[B+8 , B
−
9 ] = ei)8 282

†
9 e
−i) 9 − 2†9 e

−i) 9ei)8 28

= ei)8 282
†
9 e
−i) 9 − 2†9 e

i)8e−i) 9 28

=

{
ei)8 {28 , 2†9 }e

−i) 9 = 0 if 8 ≠ 9

282
†
8
− 2†

8
28 = 1 − 2=8 = 2BI

8
if 8 = 9

= 2�8 9BI8 , (A.12)
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where in the 8 ≠ 9 case I used that if 8 ≠ 9 then one among {ei)8 , e−i) 9 } commutes with
{2†

9
, 28}, respectively, while the other anticommutes, producing an overall minus sign.
This proves that the operators B±

8
and BI

8
, as defined in Eq. (A.6), are indeed a family of

spin operators commuting like Pauli operators on the same site and trivially on different
sites. In view of Eq. (A.6b) the local number-basis states {|08〉 , |18〉} can be interpreted
after the mapping as the spin states {|↑8〉 , |↓8〉}, respectively. In the new basis, the spin
operators assume (locally) their habitual Pauli form,

BG =
1
2

(
0 1
1 0

)
, BH =

1
2

(
0 −i
i 0

)
, BI =

1
2

(
1 0
0 −1

)
,

B+ =

(
0 1
0 0

)
, B− =

(
0 0
1 0

)
.

Although from glancing at the local states one may think that nothing has been ac-
complished other than a simple relabeling of the basis, the effect of the transformation is
immediately clarified by considering many-particle states. Recall that the basis we started
with had a fermionic character. In particular, the appropriate anticommutation relations
between particles could not be represented in terms of simple Kronecker products between
elementary matrices, which is instead the case for {B0

8
}
8;0 .

This conversion between anticommuting and commuting behavior was accomplished
by attaching to the ladder operators 28 and 2†8 an appropriate string operator

ei)8 = ei=0ei=1 · · · ei=8−1 , (A.13)

whose action can be interpreted as correcting the sign discrepancies that arise as a con-
sequence of swapping consecutive particles instead of anticommuting them. The string
operator is, of course, highly nonlocal, having one end attached to the edge of the chain
and the other deep in the bulk, and therefore the Jordan–Wigner transformation in gen-
eral turns a local theory of fermions into a nonlocal theory of spins. However, due to
the involutory property of the building blocks ei=0 , string operators have the very for-
tunate feature of combining into local phases when the Hamiltonian is one-dimensional
and nearest-neighbor (with the possible exception of edge terms depending on the chosen
boundary conditions).

Unfortunately, the presence of string operators does mean that models in higher di-
mensions cannot in general be Jordan–Wigner transformed without spoiling the locality
of the Hamiltonian. That said, the transformation may still be viable in some simple non-
tree geometries: in Section 2.3.1, for instance, a two-fermion chain (which can be seen as
a single-fermion model on a ladder geometry) is successfully transformed by accurately
choosing the definition of the string operators.
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As a final note, we exhibit the inverse transformation. Using Eq. (A.10) and the fact
that ei)8 factorizes due to Eq. (A.5), we can express the string operator in terms of spins
and directly invert Eq. (A.6):

28 =

(
8−1∏
;=1

2BI
;

)
B+8 (A.14a)

=8 =
1
2 − B

I
8 . (A.14b)



AppendixB
Dimension of spin multiplets

In this appendix we prove Eq. (2.57), as stated in Section 2.3.3:

�!,(," =
2(2( + 1)
! + 2( + 2

(
!

!
2 + (

)
, (B.1)

where�!,(," is the dimension of the fixed-((, ") subspace of theHilbert space of ! spins-1
2

(�!,(," does not depend on ").
Recall that irreducible representations of the su(2) algebra are classified according

to the eigenvalue B(B + 1) taken by the quadratic Casimir operator s2 on them, where
the “spin” B ∈ {0, 1

2 , 1,
3
2 , . . . } is a non-negative half-integer. The unique representation

corresponding to a given value B is (2B + 1)-dimensional, and we denote it by Γ(B).
Representations form a product algebra with the outer operations

Γ(B1) ⊕ Γ(B2) : (�, �) ↦→ Γ(B1)(�) ⊕ Γ(B2)(�),
Γ(B1) ⊗ Γ(B2) : (�, �) ↦→ Γ(B1)(�) ⊗ Γ(B2)(�),

where in both cases � and � are su(2) elements, Γ(B:)(·) their representatives matrices and
⊕, ⊗ on the right-hand sides the direct sum and product of matrices, explicitly given by

� ⊕ � =
(
� O
O �

)
and

©­­«
011 · · · 01A
...

. . .
...

0A1 · · · 0AA

ª®®¬ ⊗ � =
©­­«
011� · · · 01A�
...

. . .
...

0A1� · · · 0AA�

ª®®¬ .
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It is well-known (see e.g. [70]) that the combination of two irreducible representations
of su(2) splits into irreducible direct summands according to the Clebsch–Gordan series

Γ(B1) ⊗ Γ(B2) = Γ(|B1 − B2 |) ⊕ Γ(|B1 − B2 | + 1) ⊕ · · · ⊕ Γ(B1 + B2),

and in particular

Γ(() ⊗ Γ(1/2) =
{
Γ(( − 1/2) ⊕ Γ(( + 1/2) if ( ≠ 0
Γ(1/2) otherwise.

In other words, whenever we add a new spin-1
2 particle to an (-multiplet, two new ones

are generated in its place, unless ( = 0. This can be visualized as a branching process with
a boundary:

(

0 1
2 1 3

2 2 5
2

1

2

3

4

5

!

1

1 1

2 1

2 3 1

5 4 1

The labels in the circles count how many distinct (!, () multiplets are created by
combining ! spins-1

2 into a total spin (, or in other words, the degeneracy of the fixed-
(!, (, ") subspace (for each" ∈ {−(,−( + 1, . . . , (}). For example, from the above figure
we can immediately tell that

Γ(1/2)⊗4 = 2Γ(0) + 3Γ(1) + Γ(2), (B.2)

with the integer coefficients of Γ(() quantifying how many orthogonal spin-( states with
a given magnetization " one can construct out of four spins-1

2 .
The values of the labels correspond to the number of possible paths from the “origin”

(!, () =
(
1, 1

2
)
to the elected (!, () site in the “boundary-restricted Pascal triangle” [147]

depicted above. We now show that this number is given by Eq. (B.1) using a version of the
standard method of images.
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Proof. Consider the origin (!, () =
(
1, 1

2
)
as a “source of trajectories” and imagine that

there were no boundary. We denote the weight carried by these unrestricted trajectories
by %!,( and assign unit weight to the origin, %1,1/2 = 1. The splitting rule

%!,( = %!−1,(−1/2 + %!−1,(+1/2 (! ≥ 2) (B.3)

(with %1,( understood to be zero for all ( ≠ 1
2 ) would then result in the ordinary Pascal

triangle,

%!,( =

(
! − 1
!
2 − (

)
. (B.4)

Now add a source of “anti-trajectories” at site
(
1,− 3

2
)
, i.e. a node with a weight %̄1,−3/2 =

−1 and splitting with the same rules as %!,(. This obviously generates an “anti-Pascal
triangle”,

%̄!,( = −
(
! − 1

!
2 − ( − 2

)
. (B.5)

With these prescriptions, we see that a trajectory and an anti-trajectory with opposite
weight meet at (!, () =

(
3,− 1

2
)
, giving a zero total weight on that site. The same holds

for all sites lying on the midway line ( = −1
2 between the source and the anti-source.

This means that we have created a boundary at ( = −1
2 , ensuring that the sites on the

( = 0 line receive no contributions from nodes to their left. But then, summing the
weights of the trajectories and those of the anti-trajectories gives us the correct weight of
the boundary-restricted Pascal triangle at any site (!, (), ( ≥ 0. We therefore obtain

�!,(," = %!,( + %̄!,( =
(
! − 1
!
2 − (

)
−

(
! − 1

!
2 − ( − 2

)
. (B.6)

In order to complete the proof, we recall two trivial properties of the binomial coeffi-
cient:

1)
(
=

:

)
=
=

:

(
= − 1
: − 1

)
; (B.7)

2)
(
=

:

)
=
= + 1 − :

:

(
=

: − 1

)
. (B.8)

First, we conveniently rewrite the first term of Eq. (B.6) as(
! − 1
!
2 − (

)
=

(
! − 1

!
2 + ( − 1

)
, (B.9)

Then, using property (2) twice on the second term of the same equation, we have(
! − 1

!
2 − ( − 2

)
=

(
! − 1

!
2 + ( + 1

)
=
(! − 2( − 2)(! − 2()
(! + 2( + 2)(! + 2()

(
! − 1

!
2 + ( − 1

)
. (B.10)



166 Appendix B. Dimension of spin multiplets

Finally, subtracting Eq. (B.10) from Eq. (B.9) we get

�!,(," =
4(2( + 1)!

(! + 2( + 2)(! + 2()

(
! − 1

!
2 + ( − 1

)
=

2(2( + 1)
! + 2( + 2

!
!
2 + (

(
! − 1

!
2 + ( − 1

)
, (B.11)

and by applying property (1) to the right-hand side we recognize Eq. (B.1).

As a final remark, one can show that the following asymptotic behavior holds for large
! and fixed 
: (

!


! + B

)
=

e!�(
)−� log 

1−
√

2�
(1 − 
)!

[
1 + $

(
1
!

)]
, (B.12)

with �(
) = −
 log 
 − (1 − 
) log(1 − 
). Applied to our formula (
 = 1/2), this gives us
the asymptotic estimate

�!,(," =
4(2( + 1)√

2�
2!

!3/2

[
1 + $

(
1
!

)]
, (B.13)

to be compared with the fixed-" sector dimension

�!," =

(
!

!
2 +"

)
=

√
2
�

2!

!1/2

[
1 + $

(
1
!

)]
, (B.14)

with an asymptotic gain
�!,(,"

�!,"
∼ 2(2( + 1)

!
(B.15)

at large !. For a numerical comparison, see Table 2.2 in the main text.
As a word of caution, notice that only knowing the Hilbert space dimension is not

enough to draw conclusions about the effective memory requirement for e.g. storing1 an
operator acting on that space, because one has to account for the sparsity (fraction of
zero-valued matrix elements) of the corresponding representative matrix as well. Local
operators are (by definition) very sparse on the canonical basis, while they are not guar-
anteed to be sparse on a generic basis. In the case of a tree basis, the operators do remain
sparse, but with a higher density of nonzero elements.

For the random-bond Heisenberg model studied in Section 2.4, the memory require-
ment stays favorable for the tree basis on all considered system sizes ! ≤ 26, but the

1The true memory bottleneck actually does not come from storing the matrix in RAM, but rather from
the LU factorization (or equivalent) required for its diagonalization, which is required when searching for
mid-spectrum eigenstates as the less memory-heavy iterative solvers (such as the Lanczos algorithms) fail
to converge in regions of the spectrum with extremely small level spacing, which make the problem ill-
conditioned (see also Ref. [206]). While a precise estimate of the memory complexity of the algorithm is very
hard to give, one expects it to depend on the number of nonzero elements of the matrix in question, so a
sparsity analysis remains appropriate.
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Figure B.1: Comparison between the representative matrices of a random-bondHeisenberg model
(Eq. (2.30)) on ! particles when restricted to the ((, ") = (0, 0) sector of the Hilbert
space via a tree basis construction (blue circles) and when instantiated in the canonical
basis with only the " = 0 states retained (orange squares). (Left) The total number
of matrix elements, obtained by squaring the Hilbert space dimensions �!,(," and
�!," respectively. The lines are the squares of the asymptotic results (B.13) and (B.14).
(Middle) The fraction of nonzero matrix elements of the models. The lines represent
exponential fits 5 (!) = 
e−�!, with fitted exponents �tree = 0.447(5) and �canon =

0.596(2). (Right) The actual number of nonzeromatrix elements. The lines are obtained
by combining the ones in the left and middle figures.

memory gain for storing the Hamiltonian in the ((, ") = (0, 0) sector with a tree basis
is only about 50% at ! = 20, compared to storing a canonical-basis matrix restricted to
the " = 0 sector (i.e. without spin restriction), see Fig. B.1. Asymptotic analysis suggests
that the canonical "-restricted basis actually becomes preferable around ! ≈ 28. How-
ever, this analysis assumes that one is able to directly instantiate the spin operators in the
"-restricted basis, which is not standardly done in the canonical case.2

In conclusion, for all practical purposes, the tree basis construction appears to always
outperform (memory-wise) the canonical one in the range of interest.

2The simplest way to "-restrict a canonical matrix is to first instantiate the full operator, which is done in
terms of Kronecker products, and then “masking out” the rows and columns corresponding to states with
the wrong magnetization. Building the full operator requires a prohibitive amount of memory compared to
the restricted one.
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AppendixC
Statistical properties of fusion trees

In this appendix, we study the properties of random fusion trees. Unlike the actual SDRG
trees introduced in Section 2.4.2, these are obtained by fusing neighboring spins together
at random, ignoring the values of the (bare or renormalized) couplings between them.
In other words, only the information about their spatial arrangement is retained, while
the coupling structure is “disorder-averaged” away. This simplification is instrumental in
allowing us to reach some analytical results.

C.1 Distribution of nearest-neighbor graph distances

We want to prove the claim (2.79) in the main text,

%(;) = 3
4

(
2
3

) ;
, for !→∞, (C.1)

where %(;) is the distribution of the random variable ;8 ,8+1, namely the graph distance of
two neighboring spins in a generic SDRG tree.

To this end, we consider the ensemble of trees constructed by taking a chain of !
spins and fusing them all together, two neighbors at a time. After each fusion, the chain
effectively shrinks by one site, and the neighbor structure gets updated accordingly. This
is an approximation of the SDRG procedure where we completely neglect the detailed
structure of the � couplings.

More precisely, let a tree be described by a sequence of fusions (81 , . . . , 8!−1), where 8:
means that we are fusing, at the :-th step, the pair (8: , 8: + 1) (with periodic boundary
conditions). In order to emulate the SDRG algorithm, we sample the sequence of fusions
uniformly randomly among the !! possible (!− 1)-permutations of (1, . . . , !). This results
in a biased distribution on the set of all binary trees, with “taller” trees being less likely.
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Now take a generic pair (8 , 8 + 1) in a given tree, and suppose that their common
block-spin descendant was created at the (: + 1)-th step of the tree construction. All the
fusions taking place after that step are irrelevant for determining ;8 ,8+1, whereas each of
the : previous ones may contribute either 0 or 1 to such distance. In fact, the distance
contributed by the 9-th fusion is a Bernoulli random variable with success probability
? 9 =

2
!−9 , because the distance between 8 and (8 + 1) only increases if either one of their

descendants is pickedout of the !−9 possible spins at that step. Moreover, the contributions
are uncorrelated since all free indices are sampled with equal probability regardless of the
previous history of the tree construction.

Therefore we have
;8 ,8+1 = ;

(:) = 2 + G1 + G2 + ... + G: (C.2)
where

G 9 =

{
1 with probability ? 9 =

2
!−9

0 ” ” 1 − ? 9
(C.3)

and the (:) superscript serves as a reminder that our random variable is now being
conditioned on :.

Let us compute the cumulant generating function for ;(:) − 2:

〈e−B(;(:)−2)〉 =
:∏
9=1
(1 − ? 9 + ? 9e−B), (C.4)

the logarithm of which is

log〈e−B(;(:)−2)〉 =
:∑
9=1

log
(
1 + 1

!

2
1 − 9/! (e

−B − 1)
)
. (C.5)

By defining G = 9/!, 
 = :/!, and taking !→∞, we have

log〈e−B(;(:)−2)〉 ∼
∫ 


0
dG 2

1 − G (e
−B − 1)

= 2(1 − e−B) log(1 − 
) (C.6)

up to $(1/!) terms.
Now notice that (: + 1), in our ensemble, is uniformly distributed between 1 and !− 1,

as it corresponds to the position of index 8 in the tuple (81 , . . . , 8!−1). We can then get rid
of the :-conditioning by averaging over 
 ∈ [0, 1]. This gives

〈e−B(;−2)〉 =

∫ 1

0
d
(1 − 
)2(1−e−B )

=
1

3 − 2e−B , (C.7)
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and by expanding the denominator in a geometric series, we get

〈e−B;〉 = 1
3

[
e−2B + 2

3e−3B +
(

2
3

)2

e−4B + . . .
]
. (C.8)

Inverting the Laplace transform results in Eq. (2.79).

C.2 Size of the block spins

We now set out to determine the average size of the support of a randomly chosen block-
spin operator for a random SDRG tree state. This amounts to estimating the number of
leaves which connect to a node picked uniformly randomly from the set of non-leaf nodes
in a generic fusion tree.

To this end, it is convenient to introduce an alternative (but equivalent) construction
for our random ensemble. Consider a single node, and start by attaching two children
nodes to it, one to the left and one to the right. We can see this as a “splitting” step for
the original node. Now pick with equal probability either one of the resulting leaves and
perform the same kind of splitting. Iterate the procedure for a total of (! − 1) times, such
that the final number of leaves is !. The leaves are spacially ordered by the order relation
induced in an obvious way by the distinction of left- and right-children. In this way we
obtain a binary tree whose geometry is compatible with an SDRG tree. We can call this
the “fission tree” ensemble.

We are now going to prove by induction that the fission tree and fusion tree ensembles
are equivalent 1.

Suppose that the above claim holds after the (: − 1)-th splitting, that is to say, for the
ensembles of :-leaved fission and fusion trees. Now, when constructing a fusion tree on
(: + 1) leaves, after the first fusion we are left with an effective :-leaved tree. In order to
prove the claim it is then enough to show that the first fusion does not spoil the ensemble
equivalence. By definition of the fusion tree ensemble, it is the case that each one of the
initial (: + 1) leaf pairs has the same probability of being fused at the first step, which
means that every one of the : effective leaves after the first step has the same likelihood
of being the one resulting from the fusion. Therefore, upon reversing the “time direction”
we see that if we allow all the : leaves to split with the same probability, both fission and
fusion trees on (: + 1) leaves are sampled with the same distribution, and the inductive
step is completed. It also holds trivially that the two ensembles coincide when : = 1,
providing the basis of the induction.

In light of this, it is possible to assign to each node of a tree the step at which it was
split. For instance, the root will always be labeled by 1, and the maximum label will be

1I am grateful to user Misha Lavrov for suggesting this proof as part of a reply to a question on the
math.stackexchange.com website.

https://math.stackexchange.com
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!−1 (note that, similarly to the case of the “fusion labeling” in Appendix C.1, this labeling
is not uniquely defined). Now fix : ∈ {1, . . . , ! − 1} and consider the node labeled by :.
Introduce the variable C to measure the number of fissions occurring after the :-th one,
C ∈ {0, . . . , ! − : − 1}, and call #(C) the total number of leaves which affect the state of the
initial node at “time” C. Since every fission can only increment # by 1 at time (C + 1) if one
of the #(C) leaves is picked for the fission, we have the stochastic recursion equation

# (:)(C + 1) = # (:)(C) + �[?(:)(C)], (C.9)

where �[?] is a Bernoulli variable with success probability ?, and ?(:)(C) = #(C)
:+C+1 . The

initial condition must be set to # (:)(0) = 2.
This equation is hard to treat due to the #(C)-dependence hidden inside ?:(C), but it is

linear, and therefore easily solved in the expectation values:

# (:)(C + 1) = # (:)(C)
(
1 + 1

: + C + 1

)
, (C.10)

where we used �[?] = ?. By iterating and simplifying the product on the right hand side,
and then looking at the final time, we get

# (:) = # (:)(! − : − 1) = 2!
: + 1 . (C.11)

This is the average number of ancestors of a node that was split at the :-th fission
step. In order to answer our initial question — what is the average number of ancestor
elementary spins of a random non-leaf node—, we simply take the average on all possible
values of :. This yields

# =
1
!

!−1∑
:=1

# (:) = 2
(
log ! + � − 1

)
+ $

(
1
!

)
(C.12)

(with � ≈ 0.5772 the Euler–Mascheroni constant), showing that the block spins have on
average unbounded support in space.



AppendixD
Correlated cost functions

Both the impurity bandmodel and the randomenergymodel studied inChapter 4 have the
undesirable properties of being very unrealistic ensembles when it comes to optimization
problems. In real-world applications, including the “optimization” of physical systems
(namely, finding low-lying states of a Hamiltonian), cost functions are typically character-
ized by some locality structure, in the sense that the cost function can be written as a sum
of terms that involve a bounded number of degrees of freedom. In this appendix, we take
a quick look at this kind of more realistic cost functions or “potentials” in the context of
the PT algorithm.

More specifically, suppose that a problem (physically, a system) is comprised of =
elementary and discrete constituents. These can be = variables of a constraint satisfaction
problem, = particles, etc. Without loss of generality, we can suppose they are binary
variables (spins- 1

2 ) I = (I0 , . . . , I=−1), with the computer scientist’s notation I8 ∈ {0, 1}.
We call a bit-valued function of such variables a clause, � : {0, 1}: → {0, 1}. The number
: of variables nontrivially involved in the clause is called its arity or locality. We say that a
clause is satisfied by a bit string � if �(�) = 0, and violated otherwise.

We say that a cost function (Hamiltonian) �p is :-local if it can be written in the form

�p =

<−1∑
�=0

F��� (D.1)

with the arities of all clauses {��}� upper bounded by :. Here F� are constant real
weights, which we can take to be positive (if F� < 0 we can simply negate �� ↦→ 1 − ��

and disregard the additive constant F�). We can also assume that the ground level of �p
is zero.

The interaction structure of Eq. (D.1) can be represented as a “factor graph”, i.e. a
bipartite simple graph with one node per each clause and variable (=+< total), and edges
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z0
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Figure D.1: A graphical representation of a Hamiltonian of the form Eq. (D.1), with = = 5, < = 4.
Here, clauses �1 , �2 and �3 are binary, while �0 is ternary, so we say that � is 3-local.

connecting variables with all clauses in which they participate (Fig. D.1). For a :-local
Hamiltonian, each clause node has degree less than or equal to :.

When a cost function is sufficiently local, say : ∈ >(=), the energy levels that it generates
are correlated, i.e. the two-level probability %(�p(I), �p(I′)) fails to factorize in general.
Intuitively, this is because the locality of the clauses implies that single bit-flips cannot
change the total cost by too much, so one expects that nearby (in Hamming space) config-
urations will have similar costs. This feature is totally absent from the (highly nonlocal)
QIBM and QREM — indeed, the lack of correlation is precisely why they were defined in
the first place. There is a rather illuminatingway of introducing correlations in the QREM,
by regarding it as a limiting case of a :-local Hamiltonian with : ∈ >(=) ∩ $(=0).

Namely, consider the ?-spin model (the name ? rather than : is standard in this case)

�(?) =
∑
�

���81 . . . �8? (D.2)

with the index � = {81 , . . . , 8?} running over all possible ?-subsets of {0, . . . , = − 1} (i.e.
we require 81 < · · · < 8?), and by convention we use “spin” variables �8 = 1 − 2I8 ∈ {±1}.
The couplings �� are chosen randomly from a zero-centered Gaussian distribution with
variance ?!/2=?−1; since �(?) is the sum of Θ(=?) terms, this ensures that the spectrum
is asymptotically almost surely contained in [−�0 , �0] with �0 ∈ Θ(=) (extensivity of
the energy bandwidth). Then, if ? → ∞ while ? � =, it is possible to show [81] that
the energy levels of �(?) become uncorrelated, i.e. the Hamiltonian tends to the random
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energy model.1
Consider however the Hamiltonian (D.2) for a finite value of ?. In this case, the model

contains nontrivial correlations between the energy levels, as can be seen by computing
their covariance.2 It is not hard to calculate this quantity for the chosenGaussian ensemble
(the (?) superscript is omitted for convenience):

E[�(�)�(�̃)] =
∑
��′
E[�� ��′] �81 · · · �8? �̃8′1 · · · �̃8′?

=
?!

2=?−1

∑
�

�81 · · · �8? �̃81 · · · �̃8?

=
=

2

(
1
=

∑
8

�8 �̃8

)?
=
=

2

(
1 − 2

=
|� − �̃ |H

)?
∼ =2 e−G��̃/� (G��̃ � 1). (D.4)

In the first passage we used the fact that E[�� ��′] = ?!
2=?−1 ���′, and in the second one we

recognized that the sum over �, once transformed into a sum over all ?-ples (81 , . . . , 8?) (this
can be done by absorbing the ?! prefactor), actually factorizes into ? identical sums; then,
we recast the overlap @��̃ =

∑
8 �8 �̃8 between the bit strings in terms of their Hamming

distance, @��̃ = = − |� − �̃ |H, and finally we defined the fractional Hamming distance
G��̃ =

1
= |� − �̃ |H and took the small-G��̃ limit, which allows us to define the correlation

length � = 2/?. Notice how � decreases with ? and correctly vanishes in the REM (? = ∞).
Similar considerations can be extended to some problem classes of interest in optimiza-

tion theory. In particular, we consider a class of problems defined by a local cost function
of the form

�(�) =
<−1∑
0=0

�0(�) (D.5)

defined on the Boolean =-hypercube. This is a simplified version of Eq. (D.1) with all
weights set to one. Typical examples include constrainst satisfaction problems (CSPs) —

1The reason for the ?!/2 factor in the variance of �� is precisely to make the variance of the marginal energy
distribution ?(�) asymptotic to =/2, which is the standard choice for the REM.

2Recall that the linear correlation coefficient between variables - and . is defined as the ratio between their
covariance and the product of their standard deviations:

A(-,.) = E[-.] − E[-]E[.]√
Var[-]Var[.]

. (D.3)
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where each clause represents a single constraint on a set of variables — in which all
constraints have the same importance.

Unlike computer scientists, who tend to focus on worst-case scenario instances for the
definition of the complexity of a problem class such as (D.5), statistical physicists are more
interested in average or typical properties of problem ensembles, defined by specifying a
probability distribution over the problem class. In analogy with the ?-spin model, we
define an ensemble by picking every clause �0 independently with the same distribution
%(�). This makes the evaluation �0(�) a random variable for each 0 with respect to the
disorder distribution, for any fixed � (i.e. � is not itself a random variable — only the
evaluated clause).

For simplicity, we ask that %(�) be unbiased and isotropic. Unbiasedness means that the
distribution should not favor any bit string over any other:

P[�(�) = 1] = ?0 ∀� ∈ {0, 1}= . (D.6)

Then obviously

E[�(�)] = <?0 (D.7)

for any bit string �. The second requirement, isotropy, is a statement about the two-point
function. Fix a pair of bit strings (�, �̃), and call

�(�, �̃) = P[�(�) = �(�̃) = 1] (D.8)

the probability that a random clause is simultaneously violated by both of them. We
demand that this probability only depend on the Hamming distance between the two
strings:

�(�, �̃) = ?0?1(G��̃), (D.9)

where the fractional Hamming distance G��̃ was defined previously. We included a ?0
prefactor for convenience: in this way, by elementary probability theory, ?1(G) represents
the probability that a clause is violated by some fixed bit string �̃, conditioned on the fact
that it is already violated by some other fixed bit string �, where G��̃ = G.

The problem ensemble we have defined includes models such as the random versions
ofMAX-:-SAT andMAX-:-XORSAT,which are characterizedby cost functionswhose clauses
involve uniformly random :-subsets of the literal space. In the former, a clause is violated
if all the involved variables have value 0; in the other, if an even number of them have
value 0. The underlying problem classes are both NP-hard.

We are now ready to derive a general formula for the correlation. We first compute the
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two-point function

E[�(�)�(�̃)] =
<−1∑
0=0

<−1∑
1=0
E[�0(�)�1(�̃)]

=

<−1∑
0=0

<−1∑
1=0
P[�0(�) = �1(�̃) = 1]

=

<−1∑
0=0

<−1∑
1=0

[
�01?0?1(G��̃) + (1 − �01)?2

0
]

= <?0?1(G��̃) + <(< − 1)?2
0 , (D.10)

(where we used clause independence and the definition of ?1(G) to write the third line)
and subtract the disconnected part E[�(�)]E[�(�̃)] = <2?2

0 (see Eq. (D.7)) to obtain the
covariance:

Cov[�(�), �(�̃)] = <?0(?1(G��̃) − ?0). (D.11)

Finally, we normalize by the variance (obtained by setting G��̃ = 0 in Eq. (D.11)) to obtain
the correlation coefficient:

A(�, �̃) = Cov[�(�), �(�̃)]
Var[�(�)] =

?1(G��̃) − ?0

?1(0) − ?0
. (D.12)

We thus see that for our problem class Eq. (D.5), the correlation coefficient (and hence
the correlation length) is fully determined by the knowledge of the quantity ?0 and the
function ?1(G), defined respectively in Eqs. (D.6) and (D.9).

Examples

a) In random MAX-:-SAT, the probability of violating a random clause is given by the
probability that none of the : literals agrees with the assignment, which is

?SAT

0 =
1
2:
. (D.13)

When conditioning on G = G��̃, the probability to violate � with �̃, given that �
violates it, amounts to the probability that all literals in � have been assigned equal
value in � and �̃ (otherwise, at least one variable in �̃ would agree with at the
corresponding clause literal, satisfying the clause). From a dual perspective, the
probability that all : literals in clause � are picked from the (1− G)= variables which
are common to � and �̃ is

?SAT

1 (G) =
((1−G)=

:

)(
=
:

) ∼ (1 − G): (= � 1). (D.14)



178 Appendix D. Correlated cost functions

0 1
-1

0

1

X
O
R
SAT

SAT

k = 3

k = 4

k
=

3

k
=

4

x

r(
x
)

Figure D.2: Linear correlation coefficient A(G) = Cov[�(�)�(�̃)] /Var[�(�)] between energy levels
in random MAX-:-SAT (blue lines) and random MAX-:-XORSAT (red lines) as a function
of the fractional Hamming distance G between � and �̃ (the only relevant variable due
to the assumptions of clause unbiasedness and isotropy). The results are plotted for
: = 3 (full lines) and : = 4 (dashed lines).

Therefore, using Eq. (D.12), we find that the energy density correlation is

ASAT(G) = (1 − G)
: − 2−:

1 − 2−:
. (D.15)

The correlation length is �SAT = 1/:.

b) In random MAX-:-XORSAT, where clauses are satisfied or violated based on their
parity, the probability of violating a random clause is always

?XORSAT

0 =
1
2 (D.16)

regardless of :. Upon conditioning, a similar reasoning as the one above leads to
the conclusion that in order for �̃ to violate a �-violated clause, the number of clause
literals which do not agree between the two assignments must be an even number.
The corresponding probability can be written as

?XORSAT

1 (G) =
(
=

G=

)−1 ∑
B even

(
:

B

) (
= − :
G= − B

)
∼ 1

2

[
1 + (1 − 2G):

]
,

(D.17)
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where we used the identity∑
B even

(
:

B

)
@B =

1
2

[
(1 − @): + (1 + @):

]
. (D.18)

As a result, from Eq. (D.12) the correlation simply reads

AXORSAT(G) = (1 − 2G): . (D.19)

The correlation length is �XORSAT = 2/:.

The correlation coefficients for the two ensembles are displayed in Fig. D.2.
We conclude bypointing out that the existence of local correlations in realistic problems

such as CSPs is precisely what accounts for the possibility of creating successful classical
algorithms to solve them. In general, problemswithout a recognizable structure cannot be
tackled by anything short of random or brute-force search, because there is no heuristic or
insight toguideour efforts. On the contrary,whenproblemsadmit a “good” representation
e.g. in terms of factor graphs, several heuristics are available, often resulting in muchmore
efficient algorithms [117]. As a consequence, in a realistic setting we expect comparisons
between population transfer and “classical optimality” to be more difficult to draw. We
refer to Section 4.4 for further discussion.
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AppendixE
Uniformity in Hamming space

In Section 4.3.3, one of the proposed ways to assess the effectiveness of PT is to understand
to what extent sampling of the resonant space is performed “fairly”, i.e. without bitstring
bias. This corresponds to asking how uniformly the wavefunction is spreading over the
microcanonical shell Ω as a consequence of time evolution. Here, “uniformly” means
that the probability distribution ought to explore the entire space Ω, and not remain
concentrated in some corner—e.g. the vicinity of the initial state.

It is well-known that the Shannon entropy ([?] is maximized, with respect to all pdfs
defined on a given domain, precisely when ? is the uniform distribution on that domain,
so one may think of using ( as a proxy for well-spreadness. However, ( is in all respects
insensitive to the spatial structure of ?: roughly speaking, it only counts on how many
states ? is supported, but without care for their mutual Hamming distance.

What we would like to measure instead, is how efficiently PT populates states which
are far apart in Hamming distance. To this end, we introduce the “repulsive potential”

*Ω[#] =
∑
8 , 9∈Ω |#8 |2 |# 9 |2D8 9

,Ω[#]2
, (E.1)

where ,Ω[#] =
∑
8∈Ω |#8 |2 is the total probability of sampling a bitstring inside Ω and

D8 9 = D(|8 − 9 |H) is a symmetric, positive-definite “two-body term” which decreases with
the Hamming distance |8 − 9 |H between 8 and 9. We take it to be

D8 9 = e−
1A89
= , (E.2)

where A8 9 = |8 − 9 |H and 1 is an arbitrary positive parameter which we fix to 1.
From a physical perspective, *Ω is akin to an electrostatic potential for the “charge

distribution” ?8 =,−1
Ω
|#8 |2 defined onΩ. The denominator ensures that this distribution

is properly normalized, so that *Ω does not depend on the behavior of |# |2 outside the
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resonant space in the sense that a uniform spillage |#8 |2 ↦→ �|#8 |2 ,∀8 ∈ Ω (with arbitrary
�) does not change the value of*Ω.

It is easy to see that *Ω is maximized when all the “charge” is clumped together, ?8 =
�8 ,I0 , which corresponds to the fully localized case, Γ = 0. Then*Ω achieves its maximum,
* loc
Ω
= 1. Indeed, trying to spread the probability to another site, ?8 = (1 − �)�8 ,I0 + ��8 ,I1 ,

results in a lower potential*Ω = 1 − 2�(1 − �)(1 − DI0 ,I1) < 1.
On the opposite end, when ?8 is uniform onΩwe expect the functional to be minimal.

Indeed, call*0 its value,
*0 =

1
|Ω|2

∑
8 , 9∈Ω

D8 9 , (E.3)

and consider an arbitrary perturbation of the uniform distribution, ?8 = ?0 + �?8 , where
?0 = 1/|Ω| and the perturbation is nonspilling,

�,Ω =

∑
8∈Ω

�?8 = 0. (E.4)

This is generic as nonzero values of �,Ω can be decomposed into uniform spillage, which
does not affect *Ω, composed with a nonspilling perturbation, namely �?8 =

�,Ω

|Ω| + �?′
8

where �?′
8
is nonspilling.

The functional is now written in the form

*Ω[#] = *0 +
2
|Ω|

∑
8 , 9∈Ω

�?8D8 9 +
∑
8 , 9∈Ω

�?8�? 9D8 9 . (E.5)

We now observe that, on average, theΩ space represents the Hamming cube uniformly
(in distribution), namely, we can operate the substitution∑

8 , 9∈Ω
=
|Ω|2
�2

∑
8 , 9

(E.6)

when we are interested in the average properties of *Ω (here and throughout, an un-
specified summation domain always refers to the entire Hamming cube {0, . . . , � − 1}).
This is because the REM has totally uncorrelated energy levels, so the two-point indicator
factorizes: E

[
"Ω(8)"Ω(9)

]
= E ["Ω(8)]E

[
"Ω(9)

]
= |Ω|2/�2.

Therefore, when we rewrite the sum in the second term at the r.h.s. of Eq. (E.5) as∑
8 , 9∈Ω

�?8D8 9 =
∑
8∈Ω

�?8
∑
9∈Ω

D8 9 , (E.7)

we recognize that the inner sum
∑
9∈Ω D8 9 =

|Ω|
�

∑
9 D8 9 (equality in expectation values) does

not actually depend on 8, since
∑
9 D8 9 =

∑=
A=0

(
=
A

)
D(A). As a consequence, the whole term

vanishes due to Eq. (E.4).
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This, along with the fact that the third term at the r.h.s. of Eq. (E.5) is a quadratic form
of the positive definite matrix Eq. (E.2) 1, implies that *Ω[#] ≥ *0, with equality only in
the uniform case �?8 = 0.

This indicates that *Ω can be used as a measure of uniformity of the wavefunction
intensity distribution. We conclude by estimating the specific value of *0 expected of a
totally extended system.

From Eqs. (E.3) and (E.6), we have

*0 =
1
�2

∑
8 , 9

e−
1A89
= =

1
�

=∑
A=0

e−
1A
= =

(
1 + e−1/=

2

)=
∼ e−1/2 , (E.8)

in good accord with both the NEE and ergodic curves in Fig. 4.7.

1The spectrum of
(
D8 9

)
8 9
can be computed analytically using general properties of “exponential distance

matrices” [60], showing that the minimum eigenvalue is (1 − e−1/=)= > 0.
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