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Part I

Linked rings under confinement
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Introduction

During last decades, the improvement of nanotechnologies led to the possibility of performing

experiments at a single molecule level in a variety of conditions. This allowed us to investigate

biomolecules on a scale that was not previously accessible to experiments, while studied in

physical theoretical models for years.

Indeed, traditional experimental techniques were based on bulk measurements, where re-

sults were averaged over molecules and time [1]. Single-molecule experiments (SME) instead

combine manipulation techniques (such as AFM, LOTs, MTs and BFP [2–8]) and visual-

ization techniques (fluorescence techniques, as SMF [9–11]) in order to detect and follow

single biomolecules in real time. In addition, the development in microscale manufacturing

methods enabled also the study of single biomolecules in narrow confinement conditions [12],

a typical scenario in biology that has a central interest in present studies. Indeed, using

optical tweezers it is possible to trap DNA-filaments into channels and slits with nanometric

dimensions [13], probing then the physical properties with high accuracy.

These progresses gave the possibility to procede in parallel with experiments and physical

modeling, validating existing theories and also elaborating new models. A good example of

this fruitful combination are the single-molecule pulling experiments, that measure force as

a function of the molecular extension [14]. These experiments demonstrated that the elastic

response of double-stranded DNA was described by the worm-like chain model, introduced

in polymer theory in 1949 [15].

This is just one of the possible examples of the boost that SME gave to the understanding

of the physics of single chains. Over the years, the static, dynamical and mechanical properties

of single linear chains have been well characterized, in various conditions such as in response

to stimuli like electrical fields, convergent fluxes, and in both bulk and confinement [16–19].

Understanding the single chain case is obviously the first step to achieve in order to
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describe more complicated systems, made of more than one chain constrained in narrow vol-

umes and mutually entangled. This condition is typical of many biological systems, such

as catenanes inside bacteria or chromosomes into eukaryotic nuclei [20–22]. Here the inter-

play between confinement and entanglement is a key feature in determining structural and

functional properties [23–25].

Given the biological relevance and the physical interest in such systems, polymer physicists

were motivated in studying entangled chains under confinement, starting from the simplest

case of single knotted chains, a step further the single linear chain. Intra-chain entanglement

has been explored both theoretically and experimentally, firstly revealing the physical prop-

erties of knotted chains in bulk and secondly showing that the different properties of knotted

and unknotted polymers can be significantly enhanced by spatial confinement [26–37]. These

findings have explained the role of knots in many biological processes, such as transcription

and replication [24,38–42] or protein folding [43–46].

Even more representative of biological systems is the case of inter-chain entanglement

(linking) in confinement, with more chains entangled together. This is the natural step further

after the characterization of single knotted chains. Nowadays using SME also systems made of

two or more entangled chains can be experimentally studied [47], and this is an unprecedented

chance to explore the physical laws underling very complicated biological systems. Think

for example to the case of chromosomes inside eukaryotic nuclei and to the importance of

having a good knowledge of their properties. But, despite the biological relevance and the

experimental feasibility, and in contrast with the intra-chain entanglement case, the case of

linked chains under confinement remained unexplored.

We then decided to address this study, starting from the simplest case of two linked

rings under channel confinement, asking ourselves if our findings could be framed in existing

theories about single molecules, or in a more general picture. We provided a description of

the metric and topological observables of the system, investigating both the equilibrium and

the kinetic aspects, using molecular dynamics simulations.

More in details, this first part of the thesis is organized as follows.

In chapter 2 I provide a primer on links, which sets a reference for concepts and meth-

ods used in subsequent chapters. In particular, I give the definition of links and describe

their topological properties. Afterwards, I introduce the computational technique used to
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detect and localize the physically linked portion of a link, presenting also the first application

of the method to the case of a pair of linked rings in bulk. This is indeed a reference for the

interpretation of my results for linked rings in confinement.

In Chapter 3 I first overview a set of key theoretical results for single linear chains un-

der channel confinement, preliminary for the interpretation of the results for confined linked

rings. Then, I illustrate the study of the equilibrium metric and topological properties of two

linked rings under channel confinement. I describe the model and the methods and present

the results. The most surprising results regard the properties of the length of the physically

linked portion of the system, studied upon entering the weak confinement regime. The linked

portion length is independent on chain length, while, at fixed chain length, it increases mono-

tonically with channel diameter. Moreover, even when confinement is strong enough to pull

apart and segregate unlinked rings, the linked portion stays much larger than in the highly

stretched limit.

These findings were totally unexpected and are in contrast with the intra-chain entangle-

ment case. They shed light on the physics of confined linked chains for the first time, revealing

the interesting consequences of the balance between the topological linking constraint and

the confinement constraint. I finally frame them together in a theoretical interpretation and

give an idea of possible biological applications.

In Chapter 4 I extend the study of the previous chapter to the case of slit confinement

and to the characterization of the kinetic evolution of the system. I start presenting some

concepts of polymer kinetics used in the chapter. Then, I illustrate the methods and the

obtained results. At the state of the art, little is known on the effect that mutual entan-

glement has on the kinetics of chains under confinement and we discovered that the kinetic

properties of the linked portion are really sensitive to confinement dimensionality. The most

impressive results regards the diffusion of the linked portion along the rings’ contour. At the

maximum considered confinement, the renewal time of the topological constraint along the

chain countour is nearly an order of magnitude larger for channels than for slits, indicating a

stronger effect of the channel geometry on topological kinetic properties. I compare also the

renewal time with the system unlinking time, measured once a cut of the chains is made. I

show that the mechanism of unlinking is qualitatively different from the one governing the
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stochastic contour displacement of the linked portion.

The presented results give a first significative contribution to the characterization of the

kinetics of linked polymers in confinement and can have a significative biological relevance,

whose implications are here suggested.

The above results are collected in the following articles, on which this thesis is based:

• G. Amici, M. Caraglio, E. Orlandini, C. Micheletti, Topologically Linked Chains in

Confinement, ACS Macro Lett. 8, 442 (2019).

• G. Amici, M. Caraglio, E. Orlandini, C. Micheletti, Effect of Dimensionality and degree

of Confinement on the Dynamics of Linked rings, in preparation.
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Links

2.1 Definition of link

In everyday life we experience links: for example when we use the chain of a bicycle, or

we wear a bracelet, that are made of small rings linked together (figure 2.1). This familiar

images help us in the definition of links, some examples of which are given in figure 2.2. In

figure we see quasi-planar geometrical representations of links, that actually are objects in

3D represented through their 2D projections. Looking at the figure, we can thus intuitively

define a link as a set of closed curves entangled together. Each closed curve is a component of

the link and the number of components is called multiplicity, m [48]. For example in figure 2.2

the so-called unlink or trivial link, the Hopf link and the Star of David have 2 components.

Hopf, Star of David are traditional names used for links. A rigorous notation is the

one introduced by Rolfsen [49], in which links are grouped according to their multiplicity

and their crossing number, C, the minimal number of crossings over all possible projections

and geometrical representations of the link. The complete notation is Cms , where m is the

multiplicity and the subscript s is an enumerative index distinguishing between links with

Figure 2.1: Example of links in everyday life.



8 Chapter 2. Links

Figure 2.2: Examples of links and associated notation.

same C and m but different topology. According to the Rolfsen notation, for example the

unlink is denoted as 021, while the Hopf link is denoted as 221.

Note that the links represented in figure 2.2 are intuitively perceived as topologically

distinct. But in general, to distinguish between link topologies could be not an easy task:

for example looking at snapshots of linked molecules from an experiment, or looking at the

conformations of linked chains obtained in a simulation. A practical example is provided in

figure 2.3c: could you say, at a first sight, that the links in figure have the same topology?

We are facing the issue to associate a geometrical representation of a link to its topological

state. In order to do this, in principle we could rearrange the link geometry until we reach

its simplest quasi-planar representation (the one with the minimum number of crossings) and

then classify it looking at the tabulated links. But this method is hardly feasible in practice.

And in any case, we need to find a tool that is not associated with the visual comparison

with tabulated links, especially in cases in which one has to classified a lot of conformations

(both in experiments and in numerical studies).

To tackle the problem, mathematicians have identified the so-called topological invariants

of a link. They are quantities that are independent on the link geometric realization, i.e.

for which there is no succession of singular geometrical transformations that turn the link

into another with different topology. This set of transformations is denoted as Reidemeister

moves: the only possible succession of planar moves that change the geometric realization
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Figure 2.3: Computing the linking number.

without altering the topology of the link [48].

2.2 Topological invariants: linking number and polynomials

An intuitive topological invariant is the linking number [48]. The linking number is an

invariant of the oriented link, that is, it is defined once the orientation on the components is

chosen. This means that there is a preferred direction to travel along each path. Orientation

is indicated with an arrow and oriented diagrams have two types of crossings, positive and

negative, as shown in figure 2.3a.

In order to calculate the linking number one proceeds as follows: assign an orientation to

the projection of the link and then count +1 or −1 for the two types of possible crossings

(figure 2.3a). The linking number is given by the sum of the +1s and -1s over all crossings

divided by two. In figure 2.3 there are some examples: in panel b there are two links

with different topology and different linking number; in panel c there are instead different

geometrical realizations of the same link, whose linking number remains invariant.

But there are some problematic issues: some link topologies share the same linking num-

ber. For example the so-called Whitehead link has linking number 0 as the unlink. Thus, the
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Figure 2.4: Alexander rule. The matrix has one row for each crossing, and one column for
each arc.

linking number is useful and intuitive, but its degeneracy for the simplest link types poses the

necessity for more powerful invariants, such as the multivariable Alexander polynomial [50].

2.2.1 Multivariable Alexander polynomial

The multivariable Alexander polynomial (MVA) is associated to a link, with the polynomial

order equal to the number of components of the link. In this thesis I use an algorithm that

calculates the MVA in section 2.3.2.

The MVA is calculated from the Alexander matrix of a link projection, built according

to the following points [51] (illustrated in figure 2.4):

• Assign an orientation to the link projection and establish the sign of each crossing,

following for instance the right-hand rule (panel a);

• Label all the arcs in the projection with a progressive numbering index n, in such a way

that the n-arc starts at the n-crossing. For example in panel b there are two components

x and y, one crossing and three arcs: n = a, b, c;

• The Alexander matrix has dimension given by the number of crossings x number of arcs

and its entries are calculated with the rule in figure 2.4c.

In figure 2.5 there is an example of matrix calculation.

If the Alexander matrix is denoted as M , the MVA is calculating then considering the

determinant of a minor of the matrix M j
i , with the i − th row and j − th column of M

removed:
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Figure 2.5: Figure from [51]. Example of Alexander matrix.

MVA = (−1)i+j
det(M i

j)

wi(xj − 1)

∏
k

x
rot(k)−µ(k)

2
k (2.1)

xj is the variable associated to the component of the link at which the arc of the j − th

column belongs;

wj =
∑m

l=1±xl ;

µ(k) is the numbers of times the k − th component is the over strand in a crossing;

rot(k) is the rotation number of the k − th component (i.e how many times the tangent

vector to the k− th component rotates in the counter clockwise direction as we travel around

it once).

2.3 Physical links

Until now I have described the conventional topological features of links, in this section I

focus instead on the physical properties of linked chains.

The physical properties of a molecule are significantly influenced by the presence of en-

tanglement. For example it is important to classify the topology of a linked molecule, but

also to quantify the localization of its entangled region, because this influences the physical

response of the molecule to external conditions and stimuli.

In this section I refer in particular to the Hopf link, since in chapters 3 and 4 I illustrate

precisely the case of two chains linked in the Hopf topology.
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Figure 2.6: Links with same topology but different degree of localization of the entangled
region.

Figure 2.7: Linked portion for the Hopf Link. The linked portion is the shortest portion
that, upon closure, has the same topology of the original link; its length is given by the sum
of the constitutive sub-arcs, γ1 and γ2.

2.3.1 Linked portion

In figure 2.6 there is an example of two links of the same topology but with different degree

of entanglement. We would like an unsupervised method that algorithmically can establish

the degree of entanglement of a link.

The degree of entanglement can be quantified identifying the so-called linked portion of

the system, introduced in ref. [52]. The linked portion is a topological feature peculiar of

linked chains, and can be defined as the portion of the component chains where the physical

entanglement resides. An example is given in figure 2.7: here from the two component rings,

the linked region is identified by two smaller sub-arcs, labeled as γ1 and γ2.

According to definition given in [52], the requirement for the choice of the sub-arc pair

γ1 and γ2 is that they have to form the pair with the smallest total arc-length that has the

same topology of the entire link. And here a problem arises: γ1 and γ2 are a system of open

curves, but mathematically the topological entanglement of two curves is defined only if they

are both closed. By definition they are actually unlinked and their topological state cannot
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be established using topological invariants. Thus, there are no mathematical instruments for

quantifying the physical entanglement among open chains.

The problem was solved in [52] introducing the concept of physical link : a physical link

is made of open entangled curves and its topological state is the one of the mathematical

link obtained closing its component chains in a proper way. The concept of physical link can

be used then as a tool for the definition of the linked portion of a topological link (see next

section).

2.3.2 Identification of the linked portion

In this section I illustrate the algorithm for the location of the linked portion of a link, de-

veloped in [52].

Algorithm

Given a link with components Γ1 and Γ2 we want to identify its linked portion. To do

that, in principle one should start to consider the whole ensemble of sub-arc pair γ1 and γ2

(see figure 2.7). Since this is very computationally demanding, one can adopt a stochastic

top-down search scheme based on a bisection method (illustrated in figure 2.8):

• Start from the curves (Γ1,Γ2) with topology τ and length L(Γ1,Γ2);

• Generate the set of sub-arcs {γ12} = {(γ1, γ2)} with length λ′(γ1, γ2). At the beginning

λ′ = 2k with k = maxj
{
j|2j < L(Γ1,Γ2)

}
, while in next iterations k → k − 1 and

λ′ → λ′ ± 2k (bisection rule);

• At each step, for every pair (γ1, γ2) of the set {γ12} one should verify if it has topology

τ ′ = τ , closing properly the two curves (see below in Closure procedure), calculating

the MVA and then keeping a pair only if its length is smaller than the previous ones.

This is very expensive: to save computational cost not all the pairs are analyzed and a

self-learning procedure is considered. Given a pair (γ1, γ2): if τ ′ = τ , the pair is chosen

as temporary linked portion and one moves to the next step (without analyzing the rest

of the set) setting k → k − 1 and λ′ → λ′ − 2k (i.e. the sub-arc length is reduced); if

not, the pair is assigned to a new set {γ12} that contains all the pair of a certain length
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Figure 2.8: Linked portion search algorithm.

with τ ′ 6= τ ; if no pairs is compatible with τ , one sets k → k − 1 and λ′ → λ′ + 2k (the

sub-arc length is increased) and moves to next step;

• At the next step the previous {γ12} is used in a self-iterative manner to discard the

pairs that are not compatibles with τ (without calculating their MVA);

• The iteration procedure stops when k = 0.

Closure procedure

The detection of the linked portion requires the transformation of a pair of open chains

(γ1, γ2) into closed curves. The closure procedure is sketched in figure 2.9. Given two open

chains (γ1, γ2) one first computes their centre of mass. Then draws two segments starting

from the extremities of γ1 and pointing away from the centre of mass of γ2. The transfor-

mation of γ1 into a loop is then performed by joining the ends of these segments along the

surface of a sphere with radius very large compared to the extension of the pair (red dashed

arc). This is repeated for γ2. In order to minimize the additional entanglement that may
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Figure 2.9: Closure procedure.

arise during closure, the segments pointing away from the centre of mass of the other chain

are chosen to be very long compared to the radius of gyration of the chains.

This scheme is named closure at infinity. After the closure the two chains (γ1, γ2) are

turned into the components of a proper link, whose topology is established with the two-

variable Alexander polynomial.

2.3.3 Properties of the linked portion in bulk

The study of the linked portion of an entangled polymer system is a very recent problem.

The concept of linked portion has been introduced in ref. [52], where also the first systematic

method to find location and length of the linked portion has been presented (section 2.3.2).

Contextually to its introduction, the first application of the method is given in the article,

for linked chains in bulk.

In particular, Caraglio et al in ref. [52] considered a pair of linked rings of equal length,

tied in the Hopf and Solomon topologies. They investigated the physical properties of the

length of linked portion of the considered systems, varying the ring length N . The linked

portion length is defined as the sum of the length of its constitutive arcs γ1 and γ2 (see figure

2.7).

In figure 2.10 there are the curves of the average linked portion length as a function of N .

The data points are interpolated by the dotted lines that correspond to power scaling

laws:

`LK ∼ Nα [52] (2.2)

with α = 0.36± 0.05 and α = 0.54± 0.05 respectively for the Hopf and Solomon link.

The fact that in both cases α is well below 1, is a strong indication that, even discounting

finite size corrections, the average length of the linked region grows sublinearly with N . This
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Figure 2.10: Figure adapted from [52]. Average contour length of the linked portions as a
function of the total contour length 2N , for Hopf (red circles) and Solomon (green diamonds)
links. For each set of data the dotted curve corresponds to power law fits.

implies that the average inter-chain entanglement of linked rings in bulk is weakly localised

in asymptotical long chains.

The study of unconstrained linked chains is an important reference for the interpretation

of the confined case, of interest in this thesis. The results presented in this section have been

indeed fundamental for the theoretical interpretation of the problem studied in chapter 3,

about a pair of confined linked rings tied in the Hopf topology.
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Topologically Linked Chains in Confinement

This chapter is based on the article Topologically Linked Chains in Confinement [53], pub-

lished on April 2019 in ACS Macro Letters.

3.1 Background concepts for linear chains under channel con-

finement

In this section I will overview a set of key theoretical results for single linear chains under

channel confinement. These results for open and hence unlinked chains are preliminary for

the interpretation of our results for linked rings.

Linear semiflexible chains in channel confinement exhibit various scaling properties depend-

ing on the interplay of the relevant scales in the problem, namely, the channel width, D, the

persistence length, lp, and the thickness of the chain, σ [54–58]. In particular, for D > lp

(the case of interest in this thesis) a polymer will only feel moderately the effect of confine-

ment and its properties are describable in terms of the so-called De Gennes and Extended

De Gennes scaling regimes (figure 3.1). A detailed description of these regimes is provided

in the next sections.

3.1.1 De Gennes regime

De Gennes developed the classic model of a linear semiflexible polymer under confinement in

1977 [54,55], considering the case of a single chain of length L = σN (N number of beads, σ

bead size) confined in a channel of diameter D, where lp << D << L.

According to De Gennes model, confinement causes the chain to organize itself in a

sequence of self-excluding isometric blobs, each of size equal to the channel diameter D (as
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sketched in figure 3.1a). This means that the characteristic size, the gyration radius, of the

portion of chain contained in every blob is equal to D:

R0
blob ∼ D (3.1)

The contour length of the portion of chain in a blob is defined as Lb = σNb. The key

ansatz introduced by De Gennes is that chain portions within blobs are not affected by

confinement, so that each blob behaves as a self-avoiding walk in bulk. One can then derive

the following scaling law for R0
blob:

R0
blob ∼ L

3/5
b (3.2)

where the (approximate) scaling exponent for the self-avoiding walk in bulk is used [54],

ν = 3/5.

The self-excluding blobs do not overlap and distribute along the channel in a sequential

array, so the longitudinal span of the whole chain, R0
‖, is given by the size of the blob, R0

blob,

times the number of blobs, L/Lb :

R0
‖ ∼ D

L

Lb
∼ L

D2/3
(3.3)

Figure 3.1: Sketches of a linear chain under channel confinement, in the De Gennes (isometric
blobs) and Extended De Gennes regime (anisometrc blobs). Image adapted from [19].
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3.1.2 Extended De Gennes regime

In 2008 Odijk established the threshold value for D above which the De Gennes regime holds:

he argued that the De Gennes regime is defined for D larger than D∗∗ =
l2p
σ [19, 56, 57].

Moreover, Odijk predicted the existence of a further scaling regime for D < D∗∗, holding in

the range 2lp < D <
l2p
σ .

Indeed, the threshold value D∗∗ =
l2p
σ corresponds to the critical size above which the

self-excluded volume effects become significant. This is established heuristically by noting

that at D∗∗, ideal and self-excluding chains have comparable size: l
1/2
p L∗∗1/2 = (lpσ)1/5L∗∗3/5,

with D∗∗ = l
1/2
p L∗∗1/2 being the scaling law for a portion of chain in a blob that behaves as

an ideal polymer (with exponent ν = 1/2) [19,56,57,59].

Thus, below D∗∗ =
l2p
σ excluded-volume interactions maintain the linear ordering of the

blobs, but are not strong enough to drive the blob statistics to that of a self-avoiding polymer.

The system is not describable anymore in terms of the De Gennes regime. According to

Odijk, below D∗∗ the blobs become anisometric, with transverse size D and longitudinal size

H, figure 3.1b, in contrast with the isometric ones of the De Gennes regime.

In the Odijk picture, excluded volume interactions weakly affect the blob statistics in this

new regime, consequently the blob extension H scales with the blob contour length as an

ideal chain [57]:

H ∼ l1/2p L
1/2
b (3.4)

In ref. [56,57] the latter equation is used in conjunction with the fact that, at the crossover

between the ideal and the self-avoiding chain limits, one has that z = σL2
b/D

2H ∼ 1, where

the ratio z is the so-called chain interaction parameter [15]. Thus, one finds that:

Lb ∼
l
1/3
p D4/3

σ2/3
(3.5)

And, substituting equation 3.5 in 3.4:

H ∼ D2/3 (3.6)

Finally, despite the profound differences, the chain longitudinal size R0
‖ is given by the

same scaling law of De Gennes regime:
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R0
‖ ∼ H

L

Lb
∼ L

D2/3
(3.7)

This regime has been called extended De Gennes regime.

The theoretical results illustrated in this section and in section 3.1.1 have been derived for

single linear chains and there is no extension for circular chains, neither isolated nor linked.

3.2 Background concepts for ring chains under channel con-

finement

The case of circular chains under channel confinement has been investigated by numerical and

experimental studies [60–69]. These studies have highlighted an unexpected effect for the

case of two unlinked polymers under channel confinement: the so-called entropic segregation

effect.

Entropic segregation occurs when two chains are confined together in a channel of diameter

D < Rbulk, with Rbulk chain size in bulk, both for circular and linear chains [64–69]. In this

condition, when a polymer is overlapped with a second one it loses conformational entropy

and feels an effective repulsive force. This leads to the spatial separation of the two, with

the repulsive force that increases with chain length and reducing the confining dimension:

frepulsion ∝ N/D [66, 69].

An example of entropic segregation is given in figure 3.2, for the case of two rings in a

channel of diameter D.
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Figure 3.2: Figure from [66]. Two overlapping rings under channel confinement experience
entropic segregation.

Chain topology determines a difference in terms of the strength of the entropic repulsion.

Indeed, ring polymers experience a stronger entropic repulsion than linear ones with same

length and in the same confinement conditions. This occurs due to the additional self-

constraining effect of the rings. Indeed, considering a ring topology instead of a linear chain

has been argued to be equivalent to reducing the confinement size to D/
√

2, and so the

repulsive entropic force becomes larger [60, 66] (see figure 3.3). This is an interesting effect

of the interplay between topology and segregation.

Figure 3.3: Figure adapted from [60]. (a) A ring chain is mapped into a ”parallel connection”
of two linear subchains, trapped in an ”imaginary” tube with effective diameter D/

√
2. (b)

The same mapping for two unlinked rings.
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Entropic segregation has been indicated as the mechanism that drives the spatial segrega-

tion of bacterial catenanes after cellular replication [64,69] (see figure 3.4). Bacteria have only

one circular chromosome that is duplicated in two identical molecules during the replication

phase of the cell cycle. The daughter chromosomes are topologically linked and are referred

to as catenases. Only at the end of the replication they become unlinked, thank to the action

of the topoisomerase enzyme. After they are unlinked, they segregate in opposite sides of the

cell, allowing the cell division into two new-born cells. Numerical studies modeled this bio-

logical process and showed that entropic segregation is responsible for the spatial separation

of the unlinked daughter chromosomes.

In this chapter I study a pair of topologically linked rings confined in a channel, that can not

be separated for construction. We ask if the segregation forces have a role also in this case

and how the entropic repulsion deals with inter-chain topological entanglement.

Figure 3.4: Figure adapted from [64]. Entropic segregation drives the spatial separation of
bacterial chromosomes.

3.3 Model and methods

We considered a pair of equally long semiflexible rings of N beads tied in the Hopf link

topology and confined inside a cylindrical channel of diameter D and axis corresponding to
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the x Cartesian axis (see figure 3.5). The length of the rings and channel diameters are,

respectively, varied in the 120 ≤ N ≤ 720 and 11σ ≤ D ≤ 72σ range, where σ is the nominal

diameter of the beads.

Figure 3.5: Typical conformation of two Hopf-linked semiflexible rings of N = 120 beads
inside a channel of diameter D. The longitudinal span, s, overlap, q, and the linked portion,
`LK are highlighted.

The system is studied with Langevin molecular dynamics simulations, with the chain

potential energy given by:

U = ULJ + UFENE + Ubend, (3.8)

where

ULJ =

N∑
i,j>i

4ε

[(
σ

di,j

)12

−
(
σ

di,j

)6

+
1

4

]
θ(21/6σ − di,j) (3.9)

UFENE = −
N−1∑
i

15ε

(
R0

σ

)2

ln

[
1−

(
di,i+1

R0

)2
]

(3.10)

Ubend =
N−1∑
i=2

ε

(
lp
σ

)(
1−

~bi−1 ·~bi
|~bi−1| · |~bi|

)
(3.11)

(3.12)

In the above expression, di,j = |~ri − ~rj | represents the distance between two beads i and
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j , ~bi = ~ri+1 − ~ri is the bond vector connecting two consecutive beads of the chain and θ is

the Heaviside function: θ(x) = 0 if x < 0 and θ(x) = 1 if x ≥ 0 . ε is the characteristic unit

of energy of the system, set equal to the thermal energy kbT , and lp is the persistence length

of the chains, chosen equal to 5σ.

ULJ is a truncated and shifted Lennard-Jones potential describing the excluded volume

interaction between any pair of beads, including consecutive ones: two beads repel if their

distance is less than 21/6σ, which corresponds to the minimum of the potential. The UFENE

potential enforces the connectivity of the chain, so that two consecutive particles cannot

distance more than R0 = 1.5. Ubend is the bending energy, which penalizing consecutive bond

vectors that are not parallel.

In addition, the chain is subject to the excluded volume interaction with the channel

walls. This interaction is described with a truncated and shifted Lennard-Jones potential

too:

Uwall =
N∑
i,j>i

4ε

[(
σ

δi,j

)12

−
(
σ

δi,j

)6

+
1

4

]
θ(21/6σ − δi,j) (3.13)

where δi = D
2 −∆i and ∆i is the distance of the ith bead from the channel axis.

The dynamical evolution of the chain (initially prepared in a stretched conformation lying

along the channel axis), follows the equation:

m~̈ri = −γ~̇ri −∇iUi + ~ηi (3.14)

where m is the bead mass, γ is the friction coefficient and η is a Gaussian noise acting

on each bead. η has zero mean and is delta-correlated, satisfying the fluctuation-dissipation

relation:

〈ηi,a(t)〉 = 0 (3.15)〈
ηi,a(t)ηj,b(t

′)
〉

= 2KbTγδi,jδα,βδ(t− t′) (3.16)

where α, β and i, j respectively represent the Cartesian coordinates and the particle in-

dices, δi,j is the Kronecher delta and δ(t− t′) is the Dirac delta.
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We use m/γ = 2τLJ [70], being τLJ = σ
√
m/ε =

√
m/KbT the characteristic simulation

time. The dynamical equation is integrated numerically using the LAMMPS simulation

package, setting as customary KbT = m = σ = 1 [70, 71]. The integration timestep was set

to dt = 0.005τLJ and the length of the simulated trajectories is 106 − 107τLJ .

Averages values of metric and topological observables were computed over hundreds of

uncorrelated conformers for each (N,D) values.

3.4 Results

3.4.1 Equilibrium metric properties

The first set of results is shown in figure 3.6 and regards the D-dependence of the longitudinal

overlap of the linked rings, q, for various chain lengths. The overlap is defined as the projec-

tion on the channel axis of the region in which the two rings are superposed (see the sketch in

figure 3.5). Its measure is given by the difference between the longitudinal coordinate of the

rightmost bead of the ring on the left and the longitudinal coordinate of the leftmost bead

of the ring on the right.

Figure 3.6: Average overlap of Hopf-linked rings as a function of D and for various chain
lengths.
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Figure 3.7: Time evolution of the overlap, q, in trajectories started from configurations where
the rings in the link are compenetrated (red) or pulled tout (blue). The equilibrium values of
the overlap are reached independently the initial degree of compenetration within a timespan
comparable to the system autocorrelation time. Data are for N = 720 and D = 13σ, 20σ, 40σ.

In figure 3.6 we can see that for D & 50σ the curves for the overlap are already levelled

to their asymptotic bulk values (which depend on N) at the smaller ring lengths, and that

in general the curves for all N are well separated. In this weak confinement regime, the

N -dependent overlap is thus well spread out at fixed D.

For D < 25σ, instead, this N -dependence is entirely lost. All curves are practically

superposed despite the sixfold length variation, from N = 120 to N = 720. This is not due

to the system being trapped in metastable states preventing equilibration. We checked this

by performing different simulations starting from configurations where the linked rings are

compenetrated or pulled tout (see figure 3.7). We did this for a representative value of N ,

720, and for three values of D (13, 20, 40). We verified then that the equilibrium values for

the overlap are reached independently the initial degree of compenetration.

The significance and unexpectedness of this N -independent regime is aptly conveyed by

figure 3.8a, where we contrast the overlap of linked and unlinked rings placed inside channels

that are not infinitely extended but bounded by transverse walls. For each N and D, the

wall spacing is set equal to the average span, s, of linked rings in infinitely extended channels

(figure 3.8c). This setup creates the simplest conditions for an equal footing comparison of

linked and unlinked rings: it weakly perturbs the former while constraining the latter to

having approximately the same longitudinal footprint.

The comparison of the curves in figure 3.8a shows that the overlap at fixed D < 25σ

is practically N -independent for linked rings but decreases appreciably with N for unlinked
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Figure 3.8: (a) Average overlap of linked and unlinked ones in finite capped cylinders of
diameter D, as a function of D. (b) Average overlap as a function on N . (c) Average span
of N beads Hopf-linked rings as a function of D, in infinitely extended channels. Error bars,
often smaller than data point symbols, represent 95% confidence intervals.

ones, see also figure 3.9b. For Hopf links the typical overlap variation across 120 ≤ N ≤ 720

is only about 10% and, in addition, q is never close to the smallest possible value found in

highly stretched links, qmin ≈ σ, see figure 3.7a. For unlinked rings, instead, as N is increases

from 120 to 720 at fixed D, the overlap has a six-fold reduction so that, for longest rings,

N = 720, it is typically smaller than one bead size. This is a characteristic signature of

spatial segregation (illustrated in section 3.2), see also figure 3.9, and is consistent with the

length-dependent increase of entropic segregation previously reported for confined separable

rings [60,66].

Altogether, the results of figure 3.8 make the following two key points. First, even when

confinement is strong enough that longer and longer unlinked rings are more easily pulled

apart by entropic forces, linked rings maintain a length-independent degree of intermin-

gling. This is equivalent to saying that the topological linking constraint balances the length-

dependent segregation forces in a manner that yields a surprising N -independent value of the

overlap. Second, even when D ∼ lp, the overlap is never as small as the one of fully-tightened

links.
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Figure 3.9: Normalised distributions of the (a) signed overlap, qs, and (b) proper overlap,
q, for linked and unlinked rings of N = 360 beads and inside capped channels with diameter
D = 15σ. qs is defined as the signed difference between the longitudinal coordinate of the
rightmost bead of the ring on the left and the longitudinal coordinate of the leftmost bead of
the ring on the right. Negative values of qs therefore correspond to configurations that do not
overlap but leave a gap, of size |qs|, between them. The standard, proper overlap, q, is taken
equal to qs if the latter is positive and equal to zero otherwise. The peak at q = 0 in panel (b)
shows that in most of the sampled configurations the two unlinked rings are fully segregated.

3.4.2 Equilibrium topological properties

To clarify the mechanisms underpinning these results, we examined the portion of the link

where the inter-chain entanglement resides. We thus identify the linked portion (see chapter

2).

Examining the length of the linked portion, `LK , i.e. the summed length of its constitutive

arcs, opens a totally new way to probe inter-molecular entanglement in spatial confinement.

Indeed, `LK is an explicit measure of the total amount of contour length that is actually

sequestered by inter-chain entanglement and, although nowadays is not yet accessible in
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Figure 3.10: The average length of the linked portion is practically independent of N for
D < 25σ and follows closely a D0.5 power law (dashed line). Error bars, often smaller than data
point symbols, represent 95% confidence intervals. Two representative snapshots at different
levels of confinement are shown in the insets.

microfluidic experiments, it directly affects experimentally measurable quantities such as the

longitudinal span and overlap of the chains.

The `LK dependence on N and D is shown in figure 3.10. Although `LK is related to the

overlap, as we can see in figure 3.11, it provides a more direct and stringent indication of the

asymptotic independence of inter-chain entanglement on N for sufficiently high confinement.

It is important to stress that in the considered range of D, the rings are still only weakly

elongated by channel confinement and, in fact, the size of the linked portion, like the overlap,

is far from the minimal value of the highly stretched case [52]. The collapse of the curves in

figure 3.10 is thus unrelated to the expected insensitivity of `LK on N in tightly pulled links,

which would be independent on D too. As a matter of fact, a fit of the data (dashed line in

figure 3.10) shows that the limiting `LK(D) curve has a simple power law dependence on D:

`LK ∝ D0.5 . (3.17)

3.4.3 Comparison with confined knotted rings

At this point it is interesting to do the comparison with the topological properties at equilib-

rium of intra-chain entanglement (knotting). The case of knots under channel confinement

has been largely studied. We found that the inter-chain entanglement properties, in figure
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Figure 3.11: Relationship between the average length of the linked portion, `LK , and the
overlap, q, for linked rings of N = 120, 240 and 360 beads in channels of widths D ranging
from 11σ to 24σ. Error bars, often smaller than data point symbols, represent 95% confidence
intervals.

3.10, contrast with those previously established for intra-chain entanglement in at least two

ways. First, at all levels of channel confinement, the average length of the knotted portion

(defined as the shortest portion of the ring that, once circularised with a suitably-chosen aux-

iliary arc has the same topology of the entire ring [72]), varies significantly with N due to the

slowly decaying tails of the probability distribution of knot lengths (see figure 3.12) [30,73–75].

Secondly the different confinement compliance of the unknotted and knotted portions create

a non-monotonic dependence of knot length on D [30, 31, 34], while the length of the linked

portion varies monotonically with D (figure 3.12) .
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Figure 3.12: Figure adapted from [30]. Top panel: average lengths of trefoil knots occurring
in confined linear and circular chains. Bottom panel: distribution of knot lengths for open and
closed chains for three different values of D.

3.5 Theoretical interpretation

In summary, we observed two notable properties for the pair of linked rings under channel con-

finement. First, upon entering the weak confinement regime, the length of the linked portion,

`LK , becomes independent of chain length. Second, at fixed N , `LK varies approximately as

D0.5.

An interpretation of these properties is given in this section.

In section 3.1 I have reviewed some important results about existing theories for linear

polymers under confinement. There is no extension of them for the linked case, but they are

useful in order to build an interpretative framework for our case of study.

In particular, we surmise that the collapse of the curves of the linked portion length in

figure 3.10 and the observed scaling `LK ∼ D0.5 can be rationalised in terms of the anisometric

blob regime. Indeed, the range of channel widths of interest here is 11σ . D . 25σ where, for
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Figure 3.13: The observed average length of the linked portion, `LK , and the theoretical
estimate of the blob size, Lb, are shown as a function of D for Hopf-linked links of N = 360.
Error bars are smaller than data point symbols.

increasing N , one observes well-defined limiting curves for `LK(D) and q(D), see figures 3.10

and 3.6. This range overlaps well with the interval 2
√

2lp < D <
√

2l2p/σ where, according to

the earlier works presented in section 3.1.2, the mesoscopic metric properties are describable in

terms of anisometric blobs. Respect to the bound definition given in section 3.1.2, we actually

added a factor
√

2, following the results reviewed in section 3.2. This factor accounts indeed

for the effective reduction of channel section experienced by ring chains compared to linear

ones [60] .

The estimated contour length of the anisometric blobs, Lb, is given by equation 3.5, which

is shown as a function of D in figure 3.13 along with the semi-length of the linked portion. At

all D’s the semi-length of the linked portion is appreciably smaller than Lb, implying that the

entangled region of each ring is entirely contained within one anisometric blob. Though this

result is plausible a posteriori, it could not have been established a priori given the heretofore

lack of systematic results for channel-confined linked rings.

It also explains, again a posteriori, why increasing N has no impact on the length of the

overlapping or physically-linked region seen in figures 3.6 and 3.10. Since the linked region

is entirely contained within only two juxtaposed anisometric blobs, one per each component

of the Hopf link, it is practically screened from the other blobs. Consequently, as the latter

grow in number with increasing N , there is no substantial effect on `LK .

The above argument can be used to predict the observed D-dependence of `LK when used
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in conjuction with the fact [52] that `LK of unconstrained Hopf-linked rings with lp = 5σ

scales as

`LK(N,D =∞) ∼ Nα (3.18)

with α = 0.36± 0.05 (more details in section 2.3.3).

Indeed, the previous observations, imply that the entanglement properties of the link

ought to be equivalent to those of two unconstrained Hopf-linked rings with the same persis-

tence length lp = 5σ but with contour length equal to the blob one, N = Lb. Using equation

3.18 for N = Lb, one has `LK ∼ (Lb)
α, that, after substituting equation 3.5, yields

`LK ∼ D0.48±0.02 , (3.19)

which matches the phenomenological relationship of eq. 3.17 and figure 3.10.

3.6 Conclusions

In conclusion, the observed insensitivity of `LK on N and its specific power law dependence

on D can be transparently accounted for by the localization of the linked portion inside a

single anisometric blob for each ring.

This latter property could be relevant for the action of topisomerases that unlink newly-

replicated chromosomes inside bacterial cells. New daughter chromosomes are inevitably

created in a catenated state and their topological constraint must be removed by topoiso-

merases via DNA-strand passages catalysed at specific points, likely corresponding to hooked

DNA juxtapositions [20,23,24]. Based on our results it appears plausible that DNA confine-

ment inside the prolate bacterial cells helps to localize the linked region in a small portion

of the entire genome. This would favour hooked geometries in correspondence of essential

juxtapositions and would also cluster the latter together, thus assisting topoisomerase ac-

tion. For a crude estimate of this effect one can consider double-stranded DNA filaments,

for which lp ∼ 50nm and σ ∼ 2.5nm, inside a channel with diameter equal to the typical E.

coli transverse size, D ∼ 500nm. From equation 3.5, the estimated length of the blob size

is Lb ∼ 5µm, which is much smaller than the mm-long bacterial DNA, and so would also

be the physically-linked region contained inside it. We believe that models of these systems
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Figure 3.14: Comparison of the average overlap of unlinked rings and of Hopf- and Solomon-
linked ones confined in equally-long capped cylinders of diameter D. Error bars, often smaller
than data point symbols, represent 95% confidence intervals.

would be worth addressing in future studies particularly for the additional effects that the

confinement along the longitudinal direction of the channel could introduce on top of the

radial one.

More in general, it would be important to study how the geometry and dimensionality

of the confining compartments affects the physical properties of linked chains. This aspect

could be relevant in order to model different kinds of biological systems.

Another fundamental aspect to consider is also the study of the kinetics of the confined

linked chains. In fact, biological processes cannot be comprehensively studied regardless of

their time evolution.

Further promising extensions are suggested by the results of figure 3.14 for topological

links more complex than the Hopf link. The graph compares the D-dependent overlap profiles

of Solomon links with the unlinked and Hopf-linked pairs. The results show that the difference

respect to the equivalent unlinked case is much stronger than for the Hopf link. It would

therefore be interesting to study systematically the effect of increased topological complexity

on the size of the linked portion at same channel width.

Finally, note that the properties predicted here for topologically linked rings under con-

finement ought to be detectable with current experimental setups. A possible model system

would be DNA rings confined and linked inside narrow chambers [13,76]. Similarly to recent

advanced circular-to-linear unfolding experiments [12], flourescence kymographs or ultrathin
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nanopore membranes [77] could then be used to probe the expected length-independent size

of the catenated region and its undoing after the chains are made separable by an irradiation-

induced double-strand cut [12] or, again, by topoisomerase action as in ref [76].
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Effect of Dimensionality and degree of Con-

finement on the Equilibrium and Kinetics of

Linked rings

This chapter is based on the draft of the article Effect of Dimensionality and degree of Con-

finement on the Dynamics of Linked rings, authors G. Amici, M. Caraglio, E. Orlandini, C.

Micheletti.

In the previous chapter I gave a description at equilibrium of the metric and topological

properties of a pair of linked rings under channel confinement. In this chapter I further

investigate the physical properties of that system.

In particular, two very important issues remained open and totally unexplored. First, the

effect of the dimensionality of the confining geometry on the equilibrium properties. Second,

the characterization of the kinetics of the confined system.

To address these issues we considered two linked rings confined into channels (1-D confine-

ment) or slits (2-D confinement), investigating then the equilibrium and kinetic properties.

4.1 Background concepts of polymer kinetics

In this section I present some concepts of polymer kinetics that I use in this chapter.

Relaxation time
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Linked rings

An important observable for polymer kinetics is the polymer relaxation time. Its definition

is given in the Rouse model [15].

The Rouse model describes the dynamics of polymers pictured as chains of beads con-

nected by harmonic springs and subject to the stochastic motion arising from random colli-

sions with the surrounding medium. The model neglects otherwise important contributions

arising from the subtle interplay between monomer motion and the surrounding medium

(hydrodynamic effects).

The description of the polymer kinetics is provided by the spectrum of Rouse times, τp,

with p = 0, 1...N − 1, that characterize the normal collective modes of the polymer (being

N the number of monomers). According to this model, the first mode, with p = 1, is the

relaxation time of the polymer, τr, i.e. the longest relaxation time of the chain.

Autocorrelation function

The Rouse model provides the theoretical definition of the relaxation time for the kinetic

evolution of a polymer. The study of the kinetics of a simulated polymer, for which one has

access to conformations collected according to a discrete time step, poses the necessity of a

practical estimate for the relaxation time. In this context, the estimate of the relaxation time

sets the time threshold above which polymer conformations can be considered uncorrelated.

The relaxation time for a simulated system is usually calculated from the autocorrelation

function of the gyration radius [78]:

C(t) =
〈(Rg(t)− 〈Rg〉)(Rg(0)− 〈Rg〉)〉

σ2
, (4.1)

where σ is the standard deviation.

The autocorrelation function C(t) typically decays exponentially and, in general, with

more than one characteristic time τ .

An unique estimate for the relaxation time of the polymer can be obtained integrating

C(t) and bypassing the multiplicity of characteristic decay times.

Using the integral criteria, the estimated relaxation time is defined as:

τr =

∫ ∞
0

dtC(t) (4.2)
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Practically, C(t) is summed in the limited range above which it is larger than 0.

Mean square displacement, diffusion coefficient and self-diffusion time

Another relevant observable for the kinetics of a polymer is the diffusion coefficient DN .

It can be determined from the mean square displacement (MSD) of the center of mass of

the chain:

MSD(τ) =
〈
(~rCM (t+ τ)− ~rCM (t))2

〉
t

(4.3)

where ~rCM (t) is the coordinate of the center of mass at time t and the MSD is calculated

referring to a time lag τ .

The MSD for a polymer of length N satisfies the following relation:

MSD(τ) = 2dDNτ (4.4)

where d is the space dimensionality.

The diffusion coefficient of the chain, DN , is proportional to the diffusion coefficient of a

single monomer, D0: DN ∝ D0/N .

D0 = KbT/γ, where γ is the friction coefficient that appears in the Langevin equation

(section 3.3). In our study the Langevin equation is integrated using LAMMPS [71]. Here

the friction coefficient is defined as γ = m/damp, where damp is a coefficient that has the

dimension of a time. Adopting the choice proposed by Kremer and Grest in ref. [70], damp

is set equal to:

damp = 2σ
√
m/kbT (4.5)

In reduced units where m = kbT = σ = 1 one has damp = 2, D0 = 2 and DN = 2/N .

Finally:

MSD(τ) =
4dτ

N
(4.6)

For example, for channel confinement d = 1:
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Figure 4.1: Typical conformations of two Hopf-linked semiflexible rings inside a channel of
diameter D and slits of width D.

MSD(τ) =
4τ

N
(4.7)

while for slits d = 2:

MSD(τ) =
8τ

N
(4.8)

Finally, the self-diffusion time, τsd, is defined as the time at which the MSD of the

polymer is equal to its square size, provided by the gyration radius:

MSD(τsd) = R2
g (4.9)

And so:

τsd =
NR2

g

4d
(4.10)

4.2 Model and methods

We considered the same system of chapter 3, a pair of equally long semiflexible rings of N

beads tied in the Hopf link topology. This time we confined them in channels of diameter

D or in slits of width D (figure 4.1). The ring length is fixed equal to N = 360, while D is

varied in the 10.4σ ≤ D ≤ 40σ range.

Again, the system is studied with Langevin molecular dynamics simulations, using the

LAMMPS simulation package (for details see section 3.3) with integration timestep dt =

0.005τLJ . The typical duration of the simulated trajectories at each value of D was ∼ 107τLJ .



4.3. Results 41

4.3 Results

4.3.1 Equilibrium metric properties

We started by measuring the equilibrium metric properties of the system, comparing them

between channels and slits.

In the previous chapter we considered the overlap and the span of the linked rings, mea-

sured along the privileged direction corresponding to the channel axis, which has no analog

for slits. A more useful quantity to measure in the present case, for an equal comparison

of channels and slits, is the gyration tensor. In particular, we looked at both the overall

gyration radius and its longitudinal component (Rg and Rg||). The latter is defined along

the axis for channels (corresponding to the x cartesian axis) and lying on the plane for slits

(corresponding to the xy cartesian plane).

The results for the gyration radius and its longitudinal component are shown in figure

4.2 (respectively in panel a and b). First of all, in both panels for small D the gyration

radius is larger in the channel case. This is because in slits the system can spread freely in

two directions, while in channels the linked rings are elongated along the axis. For larger D

instead, the confinement effect is weaker in both cases and the distance between the curves

is reduced.

Note that the intersection of the curves for Rg|| in panel b follows from the different

dimensionality of the longitudinal gyration radius in channels and slits, which implies that in

bulk Rgslit|| /Rgchannel|| =
√

2. Consistent with this, we observe Rgslit|| > Rgchannel|| in the large

D limit of figure 4.2b.

However, the ratio of the longitudinal gyration radius at the maximum value of D, 40σ,

is smaller than
√

2 (it is about ∼ 1.1). This means that at the maximum D we are far from

the bulk case, despite 40σ >> lp.

Finally, another interesting feature of figure 4.2 regards the relative variation of both Rg

and Rg|| from the minimum to the maximum D. This is about 30% for channels, and only

3% in slits: an interesting effect of confinement dimensionality.
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Figure 4.2: (a) Gyration radius, Rg, of the system confined into channels (blue) and slits
(red) as a function of D. (b) Longitudinal component of the gyration radius, Rg||. Error bars
are smaller than point data symbols.

4.3.2 Equilibrium topological properties

Next, we studied the linked portion of the system at equilibrium, investigating the effect of

the different confinement dimensionality on the region in which the entanglement resides. We

measured the linked portion length, lLK , and we compared the trends for channels and slits

varying D. The result is shown in figure 4.3. Again, we observed the effect of a stronger

constraint in channels. Indeed the linked portion length, in the considered range of D, is

always smaller for channels than for slits. In particular, at small D, lLK is about half for

channels. This means that the linked region is more localised in channels than in slits.

4.3.3 Kinetic evolution of metric properties

After having explored the equilibrium properties, we moved to the kinetic ones, starting from

the metric relaxation time of the whole system (see section 4.1). We measured the relaxation

time from the autocorrelation function of the longitudinal component of the gyration radius,

τRg|| .

In figure 4.4 we can see the relaxation time as a function of D, for channels and slits. There

are opposite trends for the two confining geometries: increasing for channels and decreasing

for slits. Moreover, for small D the relaxation time is larger for slits than channels, while at

large D it is the opposite.

We asked if this opposite trend was a general kinetic consequence of the different confining

dimensionality, in which case it ought to hold for confined unlinked rings too, or if it was
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Figure 4.3: Linked portion length of the system confined into channels (blue) and slits (red)
as a function of D. Error bars are smaller than point data symbols.

due to the presence of the topological constraint. We compared then the relaxation time of

the pair of linked rings, each of length N=360, with the relaxation time for a circular chain

of length N=720, in the same confinement conditions. The curves for the circular chain are

provided in figure 4.4 in dotted lines.

The relaxation time trends are the same for the pair of linked rings and the circular

chain. We conclude that the increasing or decreasing trend of the relaxation time is a general

consequence of 1-D and 2-D confinement. The presence of the topological constraint does

not change that behaviour. Its effect regards instead the magnitude of τRg|| : it determines a

systematic reduction of τRg|| for all types of confinement.

4.3.4 Kinetic evolution of topological properties

Motion in space of the linked portion

The measure of τRg|| give us information about the overall kinetics of the system, but we

were also interested in the internal kinetics of the linked portion, that has never been studied

until now. In particular, we aimed to understand how the linked portion moves in space and

along the rings’ contour.

We studied the motion of the linked portion in space by measuring the mean square

displacement of its central beads, MSDLK . In figure 4.5 there are the cases of minimum and

maximum D, for channels (panel a) and slits (panel b). First, we note that MSDLK is larger
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Figure 4.4: Relaxation times for channel (magenta) and slits (orange) for the Hopf link with
rings of length N=360, compared with the relaxation times of a circular chain of N=720 in
dotted lines.

in slits, consistently with the larger dimensionality. More interestingly, in particular at the

minimum value of D, the curve in channels has two different slopes, at small and large times.

This is not observed in slits instead.

To understand this feature, we compare the curves for channels at small times with the

expected trend for the MSD of the center of mass of an isolated ring with N=360 (whose

definition is given in 4.1):

MSD(t) =
4

N
t =

t

90
(4.11)

The relative curves (for minimum and maximum D) are provided in figure 4.5a in black

dotted lines.

The good agreement with the expected trend for an isolated ring suggests that there

are two regimes for MSDLK in channels: the linked portion beads initially diffuse like they

belonged to an isolated ring, and only after a certain time, because of the topological con-

straint, follow the center of mass of the entire system. In slits, instead, we surmise that the

first regime is so fast that it is not resolved, and MSDLK soon follows the expected trend

for center of mass of the whole system.
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Figure 4.5: (a) MSDLK as function of time in channels (blue) at minimum and maximum
channel diameter. (b) MSDLK as function of time in slits (red) at minimum and maximum
slit width.

Motion along the chain of the linked portion

We next investigated the motion of the linked portion along the rings’ contour.

In order to do this, we studied the diffusion of the linked portion central beads along the

chains. In figure 4.6 there is the diffusion coefficient as a function of D for channels and

slits. We see that it is always larger in slits. In particular, at small D it is almost an order

of magnitude larger. This indicates a slower motion of the linked portion beads along the

contour in channels compared to slits.

This observation suggests that the two confining geometries determine different responses

for the diffusion of the linked portion along the contour. This is clear looking at the self-

diffusion time, τsd, in figure 4.7, defined as the time required by the linked portion to diffuse

over a contour distance equal to its average size 〈`LK〉 (at fixed D). Indeed, first of all the

self-diffusion time shows pronounced differences at small D between channels and slits, with

τsd larger in channels. Second, and more interesting, changing the confining dimensionality

has a strong effect on the relative variation of the self-diffusion time from the minimum to the

maximum D. Indeed, at the minimum D in channels τsd is twice the value at the maximum
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Figure 4.6: Diffusion coefficient of the linked portion length beads along the ring contour,
for channel (blue) and slits (red). Error bars are smaller than point data symbols.

D (from more than 15000 at 10.4σ to 8000τLJ at 40σ). In slits instead τsd has a smaller

excursion, and overall the curve explores a limited time range: from 10000 to 8000τLJ . These

results indicate that in channels the variation of the degree of confinement has stronger impact

on the contour diffusivity.

To further investigate the effect of the confining dimensionality on the diffusion of the

linked portion along the rings’ contour, we measured the linked portion renewal time: the

time required by the linked portion to reach a diametrically opposite point along the ring.

τrenewal is then defined as the time at which the mean squared displacement of the linked

portion central bead along the contour is equal to the semi-length of the rings, Nsemi = 180.

Results in figure 4.8 show significative differences in the relative variation from the minimum

to the maximum D between channels and slits. There is a variation of about an order of

magnitude in channels, while in slits τrenewal is practically constant upon varying D. This

indicates that the entangled region is very persistent in small channels compared to larger

ones and that this is a special property of channel confinement, that has no analog in slits.

At this point is interesting to do a comparison of the timescales involved in the internal

kinetics of the linked portion, captured by the measure of τrenewal, and in the kinetics of

the entire system, captured by τRg|| (figure 4.4). For both confinement dimensions and at all

explored values of D, τrenewal is at least one order of magnitude larger than τRg|| . The relative
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Figure 4.7: Self-diffusion time of the linked portion length beads along the ring contour, for
channel (blue) and slits (red). Error bars are smaller than point data symbols.

difference is largest for the narrowest channel, where it is more than two orders of magnitude.

This clarifies that the timescales of fluctuations of overall metric properties, as captured by

Rg||, are largely decoupled from the internal (contour) evolution of the linked portion that

evolves much more slowly. Besides the theoretical implications, this has practical ones too,

as it indicates that the experimental profiling of equivalent overall metric features, such as

the span, are not good of the linked portion dynamics, which is much more persistent and

has a qualitatively different dependence on D.

Unlinking time

We wonder if the renewal time could be a proxy for the system unlinking time, i.e. the

time needed for the untying of the two components of the system if we cut ones of the ring

bonds at the diametrically opposite point away from the linked portion. Doing this means

changing the nature of the entanglement from topological or permanent to geometrical or

transient. The results for τunlinking is shown in dotted lines in figure 4.8. We found that the

unlinking time is much smaller than the renewal time and is also much less sensitive both

of the confining dimensionality and of the degree of confinement. Once the cut is made, the

geometrical linked chains come untied very fast. From this, we establish two conclusions.

First, the sensitivity of the renewal time on the dimensionality and degree of confinement is

largely due to the closed, ring nature of the chains. Second, because this timescale largely
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Figure 4.8: Renewal time (full lines) and unlinking time (dotted lines) of the linked portion,
for channel (blue) and slits (red). Error bars are smaller than point data symbols.

exceeds the one of unlinking at all values of D, one has that the mechanism of unlinking

is qualitatively different from the one governing the stochastic contour displacement of the

linked portion.

4.4 Conclusions

In conclusion, we characterized the metric and topological properties of a system made of two

linked rings under channel and slit confinement, both at equilibrium and out of equilibrium.

The study of the system at equilibrium has shown that the different confining dimension-

ality results in a more elongated system in the channel case, and in a more localised linked

portion, whose length is twice as in slits at fixed D. For both the metric and topological

properties these are the natural consequences of the passage from 1D to 2D confinement.

The study of the kinetic properties provided interesting and unexpected features, in par-

ticular regarding the diffusion along the rings’ contour of the linked portion. Indeed we found

that its diffusion properties are strongly dependent on the confining dimension and the degree

of confinement. We showed that the diffusion along the contour is much slower in channels

compared to slits, and in particular that the renewal time required to the linked portion to

diffuse to the diametrically opposite portion of the ring is nearly an order of magnitude larger

for channels than for slits. This suggests then that in channels the beads in the linked portion

tend not to leave their position along the chain, and so that the linked portion constitutive
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beads are persistent and does not change rapidly, in comparison with the timescales involved

in the fluctuations of the overall system, captured by the whole system relaxation time. In-

deed, we found that the internal dynamics of the linked region is largely decoupled from the

fluctuations of overall metric properties.

We also compared the linked portion renewal time with the unlinking time of the system.

This measure allowed us to investigate the change in the nature of the entanglement from

permanent to transient, thus providing a first quantitative insight into how folded linear

polymers can negotiate topological constraints. We discovered that the unlinking kinetics of

the linear chains is qualitatively different from the renewal kinetics of topological constraints

in channels. The disengagement mechanism of the linear system can be extremely faster than

the linked portion renewal time, especially when the effective dimensionality of the entangled

chains is small.

These observations taken together show that the interplay between confinement and link-

ing results in different kinetic properties, depending on the geometry of confinement. In

particular, channel geometry induces very peculiar properties, resulting in a persistence of

the beads at the entangled region between the two rings.

This could have a significative biological relevance. In fact, the emergence and time evo-

lution of linking between fluctuating filaments is a ubiquitous phenomenon in nature. It is

observed in biological systems such as interlocked DNA rings in kinetoplasts [79], domain-

swapped protein complexes [80], intermingling of neighbouring chromosomes [81] and cate-

nanes in bacteria [20].

According to our findings, the confinement of entangled biomolecules can determine dif-

ferent physical properties according to the type of compartments in which they are contained.

This could make the difference in the biological processes in which they are involved. Also

the topology of the chains can be determinant in the kinetics of such mechanisms. Having

a ring or a linear topology, i.e permanent or transient entanglement, may lead to different

kinetic properties and consequences on the biological processes. For example, our study could

be extended in order to model catenanes in bacteria such as E. Coli. In chapter 3 we saw

that in bacteria the two daughter ring chromosomes are linked in the Hopf topology until

the topoisomerasis unlinked them, doing cuts in specific genomic sequences. The topological

constraint is thus transformed into a transient one, allowing the chromosome separation.

In conclusion, the results we obtained here could have the potential capability to shed light
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on the kinetic mechanisms underlying the biological processes in which entangled biomolecules

are involved. Our work give a first significative contribution to the characterization of the

kinetics of linked polymers in confinement, and it needs to be extended and further explored,

in order to fully understand the physical behaviour of inter-locked molecular systems.
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Introduction

The eukaryotic genome is contained in the cell nucleus and consists of long filaments of

chromatin fibers, the latter resulting from the association of DNA with specific organizing

proteins. The compaction of chromatin fibers inside the nucleus is impressive: for example

human DNA is 2 meter long, and it is contained into a 10µm-sized nucleus [82]. This level

of compaction is achieved thanks to the peculiarities which determines how the genome

folds. This structure evolves during the cell cycle, going from the mitotic initial shape to the

interphase shape, and facilitating the biological processes in which the genome is involved.

The development of experimental tecniques that probe chromatin structure (such as

FISH [83], Hi-C [84], high-resolution microscopy [85], GAM [86]) revealed a hierarchical

organization for chromatin during interphase, made of domains into domains of increasing

size [83–95]. From TADS to A/B compartments to chromosome territories.

In the last years, a huge amount of experimental information about this hierarchical

structure have been collected, and many of the observed structural features were explained by

relatively simple physical models. These models propose different mechanisms of chromatin

folding, starting from minimal physical assumptions and try to capture various aspects of

chromatin phenomenology.

For example it has been clarified the importance of a passive mechanism of chromatin

folding in the formation of chromosome territories [96,97]. It was shown that the positioning

and contacts of the initial mitotic state are crucial in determining the final interphase or-

ganization, without the intervention of any kind of active process. Chromosomes territories

emerge indeed as a consequence of the memory of the initial mitotic shape, with chromosomes

relaxing in distinct positions in the nucleus reminiscent of their mitotic spatial separation.

On the other hand, also active mechanisms (ATP-dependent) of chromatin folding have

been proposed, such as the loop extrusion mechanism, accredited for the formation of TADs
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in interphase [98–101] and also for the compaction of mitotic chromosomes [102, 103]. The

loop extrusion process consists in the formation of loops of chromatin fibers mediated by

proteins, that leads to the organization in larger structural units.

Moreover, there are also phase separation models (such as block copolymer models) able

to reproduce instead chromatin organization in A/B compartments, in which chromatin fibers

fold according to an attractive interaction among fibers of the same type (A or B) [21,99,104].

Thus, the proposed models of chromatin folding are ad-hoc models able to reproduce

different structural features. So far, people have investigated the role that each folding

mechanism plays in chromosome organization, but a systematic study of their combination

and relative relevance is still missing. Indeed, it is a priori not clear what is the impact of

the different folding mechanisms when they act simultaneously or at different temporal steps

during the cell cycle.

In order to have a chromosome model capable to comprehensively reproduce experimental

features, it is important to understand the consequences of this interplay. The study of the

time ordering in which the different mechanisms act could be a new and fundamental key of

interpretation for chromatin folding.

In this work, we study a model for human chromosome 19, starting from a mitotic confor-

mation and simulating then the effect of loop extrusion and/or phase separation, introducing

them at different moments during the simulation. We want to compare the final structures,

with reference to the structural features from experiments, in order to see which of the

explored time orderings of folding mechanisms better reproduce the actual chromatin orga-

nization. This would allow us to speculate on what happens during the folding process in

vivo.

More in details, this second part of the thesis is organized as follows.

In chapter 6 I the describe the chromatin structure captured by experiments. In particu-

lar, I illustrate the organization in TADs, A/B compartments and chromosome territories

during interphase, and the compact structure of mitotic chromosomes. Then, I illustrate the

physical models capable to reproduce the presented structural features, describing passive

and active folding processes.

In chapter 7 I describe our ongoing work. I present the model and the methods and then
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move to the obtained preliminary results. Finally, I illustrate the planned future steps and

the perspectives of the study.

The presented study is realized with M. Di Stefano, A. Rosa and C. Micheletti.
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Chromatin organization and folding processes

In this chapter I describe the spatial organization of chromatin inside eukaryotic nuclei,

illustrating the structural features that emerged from experiments. Then, I present also the

physical models that better succeeded in reproduce these experimental findings, proposing

ad-hoc mechanisms of chromatin folding. These models allow us to do hypotheses on what

happens during the folding in vivo, simplifying the problem and thus shedding light on the

physical mechanisms that underlie the biological process.

6.1 Chromatin interphase organization

Genome inside eukaryotic cells is arranged in a spatial organization on more levels. At

the root of this organization is the DNA double helix. The double helix is then wrapped

around proteins, called histones, that are involved in the folding of DNA in a more compact

structure: the chromatin fibre (figure 6.1). Chromatin fibers make up discrete functional

units, the chromosomes.

The shape of the chromatin fibers is dynamic and evolves during cell life: from cell birth

to the time in which the cell divides itself into two daughter cells. The sequence of events

from the birth to the cellular division is known as cell cycle [82] and it is divided into two

main phases (for somatic cells): the phase of growth, called interphase, that covers about

90% of the entire cycle, and the phase of division, called mitotic phase. In the mitotic phase

chromosomes come in compact structures (figure 6.2b), while during interphase chromatin

fibers are in a diffuse state (figure 6.2a).

Experiments revealed different scales of spatial organization of chromatin during inter-

phase [105]. At the nuclear scale (1−10µm) fluorescence in situ hybridization (FISH) showed

that the chromosomes are well distinguishable, each of them occupying a compact region of

the nucleus, termed chromosome territory [83,95]. Other experimental tecniques [85,86], and
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Figure 6.1: Different levels of DNA organization. (a) Two DNA strands wrap themselves
around a common axis and form a double helix. (b) Interaction with histones packs DNA into
a succession of bonded beads, the nucleosomes. (c) Nucleosome succession forms chromatin
fibers.

Figure 6.2: (a) Chromatin fibers inside the eukaryotic nucleus during interphase. (b) Con-
densed mitotic chromosome.
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in particular the use of chromosome conformation capture techniques in their high-throughput

version, the Hi-C tecnique, provided a multiscale knowledge of genome architecture between

the small limit (chromatin fibers) and large limit (chromosome territories) [84,87–91].

6.1.1 TADs

The study of Hi-C data reveals different levels of organization for chromatin. Indeed, with

the Hi-C tecnique one can probe the structure of whole chromosomes and generate matri-

ces of physical contacts among chromatin sequences of fixed size (see figure 6.3 for more

details). This can be done for two different chromosomes (inter-chromosomal) or within a

single chromosome (intra-chromosomal). The resulting contact matrices are represented as

two-dimensional maps with genomic positions along the two axes (see figure 6.4). The size

of the probed chromatin sequences, measured in kilo base pairs, kbp (the unit of measure for

genomic distance), defines the resolution of the map. Using maps with different resolutions,

one can study chromatin organization at different scales.

In particular, from Hi-C intra-chromosomal maps emerges that, on the scale of a few kbp

up to about 1Mbp, chromosomes are organized into self-interacting regions, called topologically-

associating domains, TADs (figure 6.4) [93,94]. These domains show a high level of interaction

among chromatin sequences within the domain, while inter-domain interactions are depleted.

TADs constitute regulatory regions where loci and their associated regulatory elements

interact frequently with each other, and are isolated from the rest of the genome. Moreover,

the organization of the genome in TADs seems to be a general property, well conserved across

tissues within the same species [107] and even between different species [108]. They are also

stable during cellular division: they are disrupted in the mitotic phase of the cell cycle and

then quickly re-established [109].

All these findings about the genome organization into TADs suggest that these domains

represent not only structural building blocks, but also functional units that promote biolog-

ical processes. Indeed, inside TADs there are long-range interactions that ensure the phys-

ical proximity of genomic sequences involved in regulatory interactions (such as promoter-

enhancer interactions) [106]. These interactions are mediated by the presence of two kinds of

proteins, named cohesin and CTCF [93, 106, 110]. Cohesin and CTCF promote the contact

among distant genomic sequences through the formation of chromatin loops (figure 6.5). In
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Figure 6.3: Figure adapted from [84]. Overview of Hi-C. With the Hi-C technique one can
identify chromatin sequences that are in physical contact in a cell population. In order to
detect them, the DNA of every cell is cross-linked with a molecule (the formaldehyde) that
mediates the formation of chromatin links between any pair of genomic sequences in close
enough spatial proximity to be cross-linked. The pair is then fragmented and isolated, in
order to sequence it. A catalogue of interacting fragments with known base pair sequences is
made, and the interacting pairs of chromatin fragments are assigned each at its position along
the DNA chromatin sequence. So, from a Hi-C experiment one obtains a list of DNA-DNA
contacts, which is called a ”Hi-C library”. The Hi-C library is used then to calculate the
number of observed contacts between any pair of sequences with fixed size within a single
chromosome or between two different chromosomes (averaging over the cell population). The
inferred data are organized in a contact matrix, where the entries are the average number of
contacts observed between pairs of loci. The contact maps is usually visualized as a heat map.
Once obtained this map, and knowing the linear sequence of bases of a certain chromosome,
one can track it back the 3D structure.

Figure 6.4: Hi-C intra-chromosomal maps show different levels of chromatin organization:
from compartments to topologically associated domains.
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Figure 6.5: Figure from [106]. A schematic rendering of a 2.1 Mb region on human chromo-
some 20, in which there are loops anchored by convergent CTCF-binding sites.

particular, cohesin can topologically entrap DNA and slide along it and over small DNA-

bound proteins and nucleosomes [111–113]. Experiments also showed a rich presence of

cohesins at TAD boundaries [93]. CTCF is also enriched at TAD boundaries, and was found

that the disruption of CTCF binding sites alters TAD structure [93,94,101,114–116].

6.1.2 Compartments

At a larger scale, from Hi-C maps emerges that the next level of chromatin organization after

TADs is into compartments, with size of few Mbp [84,92] . These compartments appear as a

”plaid pattern” on Hi-C maps (figure 6.4) and are characterized by the fact that elements of

a compartment are rich of intra-compartment contacts, while inter-compartment interactions

are depleted. They have been identified by using principal component analysis on Hi-C

intra-chromosomal maps [84].

By comparing the identified compartments with known epigenetic features, it was found

that the spatial organization of chromatin into compartments is strongly correlated to the

chromatin state in the transcription process [117]. In particular, there are two types of

compartments, identified as A and B. Compartment type A is associated to euchromatin

(transcriptionally active) and B to eterochromatin (transcriptionally inactive).

The correlation of the genome compartment organization with the transcriptional state

of chromatin is another signature feature of the fact that the chromatin 3D arrangement is

closely linked to biological functionality. In this perspective, TADs and compartments are
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Figure 6.6: Figure from [83]. Chromosome territories during interphase capture with FISH.

not separated structural units, but are functional domains that in a concerted way promote

the same biological processes, acting on different aspects and at different levels.

6.1.3 Chromosome territories

The last level of organization of chromatin during interphase, at the nucleus scale, is con-

stituted by chromosome territories, revealed experimentally using the FISH tecnique, that

probes chromosome position in the nucleus with fluorescence microscopy [83, 95] (see figure

6.6).

Each chromosome occupies a distinct region in the nucleus, with average diameter of

∼ 1µm. Their position inside the nucleus is non-random, with gene rich chromosomes sys-

tematically closer to the nuclear center and gene poor chromosomes closer instead to the

nucleus periphery [118]. This suggests a correlation between the location of loci in the nu-

cleus and the gene expression.

Boundaries of the territories are not sharp but there is a chromosome intermingling which

allows the formation of long-range interactions, depending on the physical proximity of the

chromosomes [119]. Thus, sequences at regions of intermingling are more likely to interact

than those within territories. Moreover, some of the long-range inter-chromosomal interac-

tions are found to be maintained also after the cellular division, in new-born cells. This

feature suggests the presence of some molecular mechanism that establishes and maintains

the chromosomes’ positions [120].
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Figure 6.7: Figure from [121]. Mitotic chromosomes of H.magnipapillata captured with
FISH.

6.2 Chromatin mitotic organization

During the mitotic phase chromosome are organized into highly condensed structures, well

separated one from the other. At the nuclear scale, experimental tecniques such as light

microscopy, electron microscopy, tomography, and mechanical measurements were able to

capture images of these compact structures (see for example figure 6.7). The experimental

observations suggest that this compaction is achieved via formation of loops along chromo-

somes [103,121–125].

The use of the Hi-C tecnique allows us to have information on the mitotic structure on

a smaller scale. Hi-C intra-chromosomal maps for mitotic chromosomes show that physical

contacts between chromatin sequences are localised along the map diagonal. An evident

sign of the linear ordered chromosome structure. See for example the interesting comparison

between the same region of a human chromosome in the interphase and mitotic phase in

figure 6.8. Finally, also the study of Hi-C data supported the picture according which mitotic

chromosomes are made a series of closely packed chromatin loops [103].

6.3 Folding processes

6.3.1 Loop extrusion model

The loop extrusion folding process is the mechanism accredited for the formation of TADs

in interphase chromosomes and for the compaction of mitotic chromosomes into loops (with

different ingredients and molecular players).

According to the loop extrusion model, the folding of chromatin fibers proceeds like this

(figure 6.9): there are active motors, the so-called loop extrusion factors, that attach to
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Figure 6.8: Figure from [103]. Hi-C maps for a region of human chromosome 14 during
interphase and mitotic phase.

the chromatin fiber and start progressively enlarging a DNA loop bidirectionally (two-sided

extrusion), until they either fall off, bump into each other, or bump into extrusion barriers.

Various groups proposed models based on loop extrusion, in which coarse-grained molec-

ular dynamics simulations are used to study chromosome folding [98–102]. Among these, the

Mirny group proposed a characterization of the loop estrusion process in terms of the ratio

of two relevant length scales of the system [102]. These are the loop extrusion factor (LEF)

processivity, λ, i.e the average size of a loop bounded by LEFs, and the average separation

between two extruders, d (see figure 6.10). The ratio λ/d defines two regimes:

• For λ/d << 1 the LEFs are sparse, the loops are formed by single LEFs and separated

by gaps (figure 6.10a). In this sparse regime the chromosome is in a poorly compacted

state.

• For λ/d >> 1 there is instead a dense regime where the chromosome is compacted into

an array of consecutive loops, each having multiple LEFs at its base (figure 6.10b).

Polymer simulations in the sparse regime, performed with LEFs and with the introduction

of extrusion barriers that define the loop sizes, are able to reproduce the organization into

TADs in interphase chromosomes (figure 6.9) [98]. The proposed molecular candidates for
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Figure 6.9: Figure from [98]. Sketch of the loop extrusion mechanism in interphase and
simulated intra-chromosomal contact map obtained via loop extrusion. The simulated maps
obtained through loop extrusion reproduce chromosome interphase organization into TADs.

Figure 6.10: Figure adapted from [102]. Sketch of the loop extrusion sparse (a) and dense
regime (b).
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the extrusion factors are cohesins, and at the boundaries are supposed to be CTCF-binding

sites linked to the relative proteine, and dispose in convergent orientation. The idea is that

they oppose loop extrusion unidirectionally.

Polymer simulations in the dense regime reproduce instead a linear arrangement for chro-

mosomes, with the formation of bottle-brush polymer conformations [102, 103]. These are

the characteristic features of the chromosome mitotic shape. Experimental evidences suggest

that the extruding motors that mediates the formation of mitotic chromosomes are condensin

proteins [122, 126, 127]. Indeed, condensins can generate compaction without crosslinking of

topologically distinct chromosomes, binding to two nearby points and then slide to generate

a progressively larger loop [128]. This loop extrusion process creates an array of consecutive

loops in individual chromosomes.

Finally, note that the initially proposed bidirectional mechanism of loop extrusion has

been recently extended to include the combined action of two and one-sided extruders, to

take into account experimental evidence that in vitro the yeast condensin can extrude loops

asymmetrically, and the possibility that two extruding motors can surpass each other to form

Z-loops [127].

6.3.2 Phase separation and block copolymer model

The process of folding accredited for compartment organization in interphase is the phase

separation process, modeled with the so-called block copolymer model [21,99,104].

In block copolymer models chromatin, represented as a bead and spring chain, is divided

into A and B blocks made of consecutive monomers that have the same local properties

(monomer size and fiber flexibility) but interact differently. The different interaction between

the blocks leads to the spatial segregation of A and B-type chromatin, reproducing then the

compartment organization.

An example of block copolymer model is given in ref. [99]. Mirny et al positioned A

and B blocks randomly and chose the sizes of blocks to yield the autocorrelation length of

the compartment profile inferred from experimental Hi-C data. Then the spatial segregation

of A and B-type chromatin was induced by a weak B-B attraction, that constitutes the

”compartmental interaction”.

They folded the system via molecular dynamics simulation and found that the model is

able to reproduce compartments seen from Hi-C maps.
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Figure 6.11: Figure from [99]. Loop extrusion factors (LEFs) removal leads to stronger and
fragmented compartmentalization and loss of TADs.

They also used the phase separation model in conjunction with loop extrusion and found

that loop extrusion interferes with compartmental segregation. Indeed, the simulations

showed that depletion of loop extrusion factors reduced TADs and revealed finer compart-

ments, while the increase of the number of loop extrusion factors strengthened large TADs

and reduced compartmentalization (figure 6.11).

6.3.3 Chromosome memory and conservation of local topological states

Rosa and Everaers [96] proposed a model for chromosome territories based on the maintenance

of the local topological state of chromosomes from the mitotic phase to the interphase [97].

Indeed, at the beginning of interphase each chromosome evolves from its initial mitotic confor-

mation and starts swelling inside the nucleus. Rosa and Everaers argued that the relaxation

time to reach the complete mixing of all chromosomes, starting from the fully unmixed state,

exceeds 100 years for mammalians. Since the typical duration of a cell cycle is about 1 day,

it is clear that chromosomes never fully relax. As a consequence, the spatial structures of

chromosomes remain effectively stuck into territorial-like conformations, retaining the topo-

logical ”memory” of the initial mitotic state. This mechanism explains then the chromatin

organization into territories.
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This was demonstrated doing a modeling of entire chromosomes of different species (and

so of different lengths): human, Drosophila and yeast. In each case, they used a bead and

spring model to simulate the equilibration of more copies of the same chromosome, that were

inside simulation boxes that ensure a density equal to that of the chromatin in the nucleus.

The studied systems consist of semi-diluite solutions of linear chains, subject to topological

entanglement: the chains cannot cross each other and their movements are severely restricted

by the topological constraints. The effect of these constraints is to slow the chain dynamics

beyond a density dependent entanglement length, le, and a characteristic entanglement time,

τe [96, 130], whose values depend on chain stiffness and on the contour length density of the

polymer solution.

The initial mitotic state was reproduced with linear or ring-shaped helical structures and

the system was then equilibrated via molecular dynamics simulations.

The length of the simulations covered the longest cell-cycle life-time among the considered

species (i.e. the one for the longest chromosome, the human one). This time is actually

sufficient to mix and equilibrate the shorter yeast chromosomes, and indeed in this case they

found that apparently there was no territorial organization, while the much longer Drosophila

and human chromosomes remained confined to distinct territories (figure 6.12).

Moreover, their model was able to reproduce the experimental scaling behavior of the

contact probability as a function of the genomic distance, P (`), in interphase chromosomes.
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Figure 6.12: Figure from [96]. Initial and final configurations of human Chr4 (a), of
Drosophila Chr2L (b) and of yeast Chr6 and Chr14 (c) shown together with the spherical
nucleus (black circle) of 10 mm in diameter and the corresponding simulation boxes.





71

Ongoing work

In this chapter I study a semi-diluite solution of chromatin fibers, modeled as coarse-grained

semiflexible chains. In particular I consider more copies of the same human chromosome, the

chromosome 19, first studying the folding of this system in the mitotic conformation. Our

aim is to simulate a model that reproduces the mitotic arrangement and contacts, using loop

extrusion. Once obtained a mitotic conformation that fits the experimental evidences, we are

interested in study on which degree the existent chromatin physical contacts are predictive

of the interphase structure, letting the system folding using the mechanisms illustrated in

chapter 6, with different time orderings. The comparison of the final simulated chromatin

structures would allow us to understand which of the explored time orderings of folding

mechanisms better reproduce the actual chromatin organization, in comparison to the exper-

imental findings. We surmise that this would allow us to speculate on what happens during

the folding process in vivo.

7.1 Model and methods

We simulated six copies of human chromosome 19 of length Lc = 59.13Mpb as semi-flexible

chains of Nbeads with thickness σ = 30nm and persistence length lp = 5σ [96, 129]. Accord-

ingly with the mapping in ref. [96], each bead spans 3000bp and, hence, to account for the

total contour length Lc = 59.13Mpb of human chromosome 19, the number of beads Nbeads

was set equal to 19710.

The six copies are placed in a random, but non-overlapping manner inside a cubic sim-

ulation box such that the nuclear density is ρ = 0.012bp/nm3, which matches the typical

genomic density in human cells [96]. We prepared the six chain copies in a mitotic-like ar-

rangement, as shown in figure 7.1. In particular, each chain was prepared in an elongated
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Figure 7.1: Initial mitotic-like arrangement, made of 6 copies of model human chromosome
19.

solenoidal-like configuration according to the procedure introduced by Rosa et al in [96], with

loops of ∼ 50kpb each and departing radially from a central axis.

The system is studied with Langevin molecular dynamics simulations, with chain poten-

tial energy given by equation 3.8 and the dynamical evolution of each chain following equation

3.14. The equation of motion is integrated numerically using the LAMMPS simulation pack-

age [70,71]. The integration timestep was set to dt = 0.012τLJ .

Finally, the obtained semi-diluite solution of linear polymers is characterized by an en-

tanglement length le = 40σ and entanglement time τe = 1600τLJ , having adopted the choice

proposed in refs [96,130] (see also section 6.3.3).

7.1.1 Extrusion dynamics

Each initial conformation in figure 7.1 is subjected to a dynamics of loop extrusion with a

number of extruding factors NEF = 100, in order to create 100 intra-chromosomal loops

in each of the 6 chromosome chains. This means that there are NEF input target loops,

disposed in random positions along the chains. The length of the loops is chosen equal to

lloop = Nbeads/NEF for three of the copies (colored in pink tones in figure 7.1), while is

randomly defined for the others (colored in blue tones in figure 7.1).
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The loop extrusion dynamics is bidirectional: at each extrusion step the loopn (i, j) with

i < j gains one bead backward of the first bead (i→ i−1) and one bead forward of the second

bead (j → j + 1) in the loop. The extrusion becomes unidirectional when one of the target

loop ends is reached, either forward or backward. Finally, the extrusion is stopped when the

target loop is formed at both ends. We chose to extrude a pair of beads every 0.01τe. The

total duration of the extrusion process is given by the number of bead pairs of the longest

loop multiplied for the loop extrusion simulation timestep, corresponding to 0.01τe.

Before being able to run the simulations, we largely tested the algorithm implemented for

the extrusion dynamics.

7.2 Preliminary results

In this section I describe the first preliminary results of the study.

We started from the six copies of chromosome 19 in the mitotic conformation in figure

7.1. To remove any excessive intra-chain strain of the orderly designed mitotic arrangement,

the model chromosomes of figure 7.1 were briefly evolved with an unbiased MD protocol of

105 MD timesteps. The resulting relaxed mitotic configuration is shown in figure 7.2a. This

mitotic arrangement was further evolved for a much longer simulation time, corresponding to

108 MD timesteps, to obtain the decondensed arrangement shown in figure 7.2c. I will refer

to the two different configurations as condensed or decondensed. We did this because we are

interested in seeing the effect of the initial relaxation on the final structure, once simulated

the effect of loop extrusion and/or phase separation, in different time ordering.

As a first thing we simulated the effect of loop extrusion on the two initial configurations.

In both cases, we used 100 extruders and the final extruded configurations are shown in figure

7.2b and d, respectively for the condensed and decondensed initial configurations. The three

chromosomes in blue tones correspond to the set with random loop length, while the three

ones in pink tones to the set with constant loop length.

We checked the validity of our protocol for the loop extrusion by measuring the final

cartesian distance between the pairs of target beads at the base of the loops. As we can see

from figure 7.3 this distance is progressively reduced, until every pair of target beads reach
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Figure 7.2: The system in the starting and final extruded configurations. (a) Condensed
starting configuration, (b) condensed final configuration, (c) decondensed starting configura-
tion, (d) decondensed final configuration.

a distance smaller than 2σ ∼ 60nm (this is the chosen cutoff distance between target beads

for a fully extruded loop).

7.2.1 Gyration radius

We analyzed then the physical properties of the obtained extruded chromosomes starting by

measuring the average gyration radius for the two sets of chromosome copies, with random

loop length and constant loop length, along the extrusion process. The results are provided

in figure 7.4 for the condensed and decondensed initial cases (panel a and b). First, at fixed

chromosome set, the gyration radius is larger in the decondensed case. This is due to the

different compaction of the initial configurations. Second, it is interesting to see what do

the chromosome structures behave under loop extrusion. Do they get compact or expanded?

From the results in figure 7.4, we see that it depends on the initial relaxation of the designed

mitotic arrangement. Indeed, the system has an initial expansion in case a that then is

progressively reduced, while in case b the gyration radius has a decreasing trend. We will

further investigate this aspect in the continuation of the work. Finally, we observe that the



7.2. Preliminary results 75

Figure 7.3: Example of distance between two target beads at the base of a loop as a function
of the extrusion timesteps.

Figure 7.4: Average gyration radius for the two sets of chromosome copies, with random loop
length (blue) and constant loop length (purple), (a) for the condensed and (b) decondensed
initial configurations.
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trend of the gyration radius is not affected by the different loop length choice for the two sets

(random chosen loop length for the set in blue and constant loop length for the set in purple

in figure 7.4).

7.2.2 Contact matrix

Next, we built the simulated intra-chromosomal contact maps. We measured the physical

contacts among intervals of length 300kbp. According to our model, using this resolution

corresponds to probe chromosome intervals of 100 beads, with 197 intervals spanning the

whole chromosome.

Two intervals of 300kbp are defined to be in contact if their cartesian distance is larger

than the threshold value 5σ, that corresponds to 5 chain beads. We finally obtained the

average number of contacts by averaging over the chromosome copies, separately considering

the set of three chromosomes with random or constant loop length.

In figure 7.5 there are the contact maps at 300kbp resolution, after extrusion from the

condensed initial case (panel a and b, respectively for the set of chromosome copies with

random and constant loop length) and the decondensed initial case (panel c and d). The

maps show that the physical contacts are mostly limited along the map diagonal. This is

typical of the linear organization of the mitotic chromosomes [103, 122]. Finally, we do not

report appreciable differences between the cases of random and constant loop length.

7.3 Future work and perspectives

I presented our ongoing study of the modeling of human chromosome 19 via coarse grained

molecular dynamics simulations.

We studied the effect of the loop extrusion process on mitotic-like initial conformations,

and we found that the intra-chromosomal contact maps show that the physical contacts

among chromosome sequences are mostly localised at the matrix diagonal. Thus, we were

able to reproduce the mitotic-like chromosome arrangement.

The next step of this study consists in the introduction of the phase separation folding

process, using a block-copolymer model in order to induce a compartmental interaction. We

will do this starting at different levels of the simulation: first, from the initial condensed and

decondensed mitotic structures and second, from the final extruded configurations in figure
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Figure 7.5: Simulated contact maps after loop extrusion, at resolution 300 kb. (a) Contact
map for the set of three chromosomes with random loop length, having an initial condensed
configuration; (b) the same for the set of three chromosomes with constant loop length. (c)
Contact map for the set of three chromosomes with random loop length, having an initial
decondensed configuration; (d) the same for the set of three chromosomes with constant loop
length.
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7.2b and d. These two protocols will allow us to explore the effect of different combinations

of folding processes. Respectively: first, only phase separation process, and second, phase

separation acting after loop extrusion.

The long term goal is to understand which combination of folding processes would allow

us to better reproduce the experimental chromatin structural features, studying also to which

extent the formation of the known chromatin interphase structures is pre-conditioned by the

pre-existent mitotic physical contacts.
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