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ABSTRACT
Biomolecular force fields have been traditionally derived based on a mixture of reference quantum chemistry data and experimental infor-
mation obtained on small fragments. However, the possibility to run extensive molecular dynamics simulations on larger systems achieving
ergodic sampling is paving the way to directly using such simulations along with solution experiments obtained on macromolecular systems.
Recently, a number of methods have been introduced to automatize this approach. Here, we review these methods, highlight their relationship
with machine learning methods, and discuss the open challenges in the field.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0011346., s

I. INTRODUCTION

Classical molecular dynamics (MD) simulations at the atom-
istic scale offer a unique opportunity to model the conformational
dynamics of biomolecular systems. Being able to reveal mecha-
nisms at spatial and temporal scales that are difficult to observe
experimentally, MD simulations are often seen as a computa-
tional microscope.1 In the past years, they have been applied to
study problems ranging from protein folding2 and aggregation3 to
RNA–protein interactions,4,5 transmembrane proteins dynamics,6

and full viruses,7 bacteria,8 or organelles.9 The capability of MD
simulations to reproduce and predict experimental results is lim-
ited by the statistical errors arising from the finite length of sim-
ulations and by the systematic errors resulting from the inaccu-
racies of the underlying models. Interactions are often modeled
using empirically parameterized force fields that allow timescales
of the order of the microsecond to be routinely simulated. Impor-
tantly, the two sources of error mentioned above are deeply inter-
twined because only systematic errors that are larger than statistical
errors can be detected by comparison with the reference exper-
imental results. Indeed, in the past 20 years, the use of special
purpose hardware,10 optimized software,11,12 and enhanced sam-
pling methods13,14 has significantly reduced the statistical errors,
thereby allowing force field inaccuracies to be detected and largely
alleviated. In spite of this, empirical force fields are still far from
perfect and, in some cases, are poorly predictive. For instance,

it is not trivial to have force fields capable of simultaneously
describing correctly folded, disordered, single-chain proteins or
protein complexes,15,16 to correctly predict the RNA structure
from sequence-only information across a wide range of structural
motifs,17 or to reproduce experimental kinetics in ligand–receptor
systems.18

Solution experiments are optimally suited for validation of
force fields since they provide information about transiently pop-
ulated structures as well, and they have traditionally been used in
this sense. Nevertheless, several approaches have enabled solution
experiments to be used directly during force-field fitting, together
with available quantum chemistry data. The aim of this perspec-
tive is to review these approaches, highlight their relationship with
machine learning methods, and discuss the open challenges in the
field.

II. EMPIRICAL FORCE FIELDS: BOTTOM
UP OR TOP DOWN?

We will use here as paradigmatic examples some of the force
fields that are most used for simulating biomolecular systems,
namely, AMBER,19 CHARMM,20 OPLS,21 and GROMOS.22 All the
mentioned force fields share a common functional form, includ-
ing bond stretching, angle potentials, torsional potentials, Lennard-
Jones, and electrostatic interactions,

J. Chem. Phys. 152, 230902 (2020); doi: 10.1063/5.0011346 152, 230902-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0011346
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0011346
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0011346&domain=pdf&date_stamp=2020-June-17
https://doi.org/10.1063/5.0011346
https://orcid.org/0000-0002-4373-9310
https://orcid.org/0000-0003-2721-4888
https://orcid.org/0000-0001-9216-5782
mailto:bussi@sissa.it
https://doi.org/10.1063/5.0011346


The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

TABLE I. Collection of commonly used force fields and the method used in their original version for obtaining the respective parameter sets (reference to the original paper is
reported for each force field family). A more detailed table is reported in the supplementary material.

AMBER19 CHARMM20 OPLS21 GROMOS22

Bond Experiments Experiments + ab initio AMBER parameters Experiments
Bend Experiments Experiments + ab initio AMBER parameters Experiments
Torsion Experiments + ab initio Experiments + ab initio AMBER parameters Ab initio

LJ Monte Carlo liquid simulations Experiments + ab initio Experiments + ab initio Experiments+ OPLS parameters + Monte Carlo liquid simulations

Charges Ab initio Experiments + ab initio Experiments + ab initio Experiments+ Monte Carlo liquid simulations
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The parameters (kb; r0; ka; a0; Vn; δ; σ; ε; q) are derived from small
fragments in advance and depend on the atom type and its chem-
ical environment. Polarizable force fields (such as AMOEBA23 and a
variant of CHARMM24), reactive force fields (such as ReaxFF25), and
semi-empirical methods (such as density-functional tight binding
DFTB26) have different functional forms, but similar considerations
can be applied. The parameters in Eq. (1) are derived with a vari-
ety of different procedures that depend on the specific force field
and are summarized in Table I. In particular, some of the parame-
ters are typically derived from quantum chemistry calculations per-
formed at a varying level of accuracy in a bottom up spirit. Other
parameters are instead derived from experimental data, either using
spectroscopy experiments, databases of crystallographic structures,
or other gas-phase or solution-phase experiments, in a top down
spirit.

One of the factors impacting the reliability of a force field
is the accuracy of the employed reference data. For instance, a
force field fitted purely on quantum chemistry data cannot provide
results that are more accurate than the reference method. However,
this limit can be surpassed if multiple sources of data are com-
bined. As an additional and perhaps even more important source
of error, one should take into account that the reference data used
in force-field fitting, either computational or experimental ones, are
obtained by studying systems that are necessarily not identical to
those that one wants to simulate later (see Fig. 1). For instance,
torsional parameters and partial charges in the AMBER force field
are traditionally obtained using quantum chemistry calculations in
small fragments of up to a few dozen atoms, typically including
a couple of aminoacids, but are later used to simulate oligopep-
tides or full protein domains. Similarly, Lennard-Jones parameters
in the OPLS force field are obtained from vaporization calorime-
try of pure organic liquids such as tetrahydrofuran, pyridine, or
benzene, but then applied to cases where the analyzed compounds
are only portions of a sugar, nucleobase, or aminoacid, respectively.

These parameters have not been changed in more recent OPLS ver-
sions. The reliability of a force field when used in a context differ-
ent from the one in which it was parameterized depends on the
transferability of the functional form in Eq. (1) (see Fig. 2). Given
the very large gap between the size and complexity of the systems
used for parameter fitting and the systems to which force fields are
applied, it appears almost a miracle that current force fields are,
for instance, capable of correctly identifying the folded state of a
protein.2

It is interesting to look at a few anecdotal examples to better
understand how this is possible. The traditional AMBER force field
for nucleic acids has been used for several years before it was realized
that sufficiently long simulations could lead to a transition to exper-
imentally unobserved rotamers in the α and γ torsions of the DNA
backbone.27,28 Following this empirical observation, a joint effort
of several groups leads to the parmbsc0 reparameterization of the

FIG. 1. Traditional procedure used for force-field parameterization. Parameters
are obtained from calculations or experiments on small molecules or fragments.
Simulations are then validated for their capability to maintain the native structure
of a macromolecule or against solution experiments. Since fitting and validation
are done on different types of systems, there is a large risk associated with
extrapolation.
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FIG. 2. Typical errors observed when fitting a function and extrapolating. The hori-
zontal axis represents a configurational coordinate (e.g., a dihedral angle), and the
vertical axis represents an observable that is used for fitting (e.g., the energy of
the system). The true function is shown as a solid line, and the available reference
data are shown as gray points. Lines fitted on the reference data using polynomi-
als of increasing order (order 1, 2, and 6) are shown in colors. Data are collected
on a narrow (left panel) or wide (right panel) range of configurations. The simple
model (order 1) represents a force field with too few parameters or with an incor-
rect functional form. When fitted on a narrow range of configurations (left panel), it
reproduces well the true function. However, it fails the extrapolation to the right part
of the graph. When fitted on a wide range of configurations (right panel), the intrin-
sic limited transferability of the model emerges from the error observed on the fitted
points. The complex model (order 2) represents a force field with more parameters
and a more physical functional form since also the reference curve is an order two
polynomial. When fitted on a narrow range of configurations (left panel), it can lead
to significant overfitting. Conversely, when fitted on a wide range of configurations
(right panel), it reproduces well the true function on the entire range of configu-
rations. The highest order polynomial (order 6) overfits the reference data in both
cases.

DNA backbone,28 where the parameters corresponding to these two
torsional angles were fitted against quantum chemistry calculations.
A similar episode occurred later with the χOL3 corrections, derived
to counteract the occurrence of ladder-like structures in the RNA.29

In the CHARMM force field for proteins, one of the most important
additions after its initial development has been the introduction of
empirical corrections maps (CMAPs)30 that deviate from the func-
tional form of Eq. (1) by the presence of coupling terms between
consecutive torsional angles. These corrections were fitted on quan-
tum chemistry data but also required a heuristic adjustment to fix
the typical values of torsional angles in α-helical and β-sheet regions.
As a further example, empirical adjustments of the AMBER and
CHARMM force fields were performed, respectively, in Ref. 31 and
in Refs. 32 and 33, where solution data on short oligopeptides were
used to optimize backbone dihedrals so as to reproduce helix–coil
transitions.

A general trend that can be seen is that the experimental data
on macromolecular systems (e.g., nucleic acids duplexes or protein
domains) are typically used for validation, whereas the parameters
are fitted on either theoretical or experimental information avail-
able for much smaller systems. Nonetheless, the observation of fail-
ures in macromolecular systems is the only way to detect which
precise parameters should be corrected. The last three mentioned
works,31–33 instead, report direct fitting of parameters on simulations
of short oligomers.

III. RECENT APPROACHES FOR FITTING FORCE-FIELD
PARAMETERS ON EXPERIMENTAL DATA

A number of approaches have been introduced to allow fit-
ting force fields directly on experimental data taken on macro-
molecular systems rather than on small fragments, all of them fol-
lowing a flowchart similar to the one illustrated in Fig. 3. Since
solution experiments often report results that are averaged over an
ensemble of copies of the same molecule, these methods are typi-
cally designed to enforce ensemble averages rather than instanta-
neous values. Norgaard et al.34 introduced an approach where a
force field is iteratively refined until agreement with the experiment
is obtained. At each iteration, a simulation is performed, and the
force-field parameters are optimized by assigning new weights to
the visited conformations. Thus, through such a reweighting pro-
cedure, one can predict what result would be obtained using these
slightly modified parameters. At some point, when the refined force
field and the initial one become too different, it is necessary to
iterate the procedure performing a new simulation. The method
was applied to the refinement of a coarse-grained model of a pro-
tein and fitted against paramagnetic relaxation enhancement experi-
ments. The same method was later used to choose the parameters of
an implicit-solvent model against reference all-atom simulations.35

FIG. 3. Schematic representation of a force-field fitting procedure using experimen-
tal data on macromolecular systems. Initial parameters are tuned based on both
quantum chemistry data and experimental data on small systems (e.g., individual
residues). Molecular dynamics simulations are then performed on macromolec-
ular systems. Reweighting is used to optimize force-field parameters in order to
maximize the agreement with a set of available data including experiments on
macromolecular systems. In principle, this second stage might also include quan-
tum chemistry data and experimental data on small systems. Even when not
explicitly used at this stage, the initial set of quantum chemistry and experimental
data is still playing a role for all the parameters that are not further adjusted. Even
on the adjusted parameters, the information about the initial force field remains
present if regularization terms are included.
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Li and Brüschweiler36 showed how to refine an all-atom protein
force field using chemical shifts and full-length protein simulations.
A common trait of all these methods is that even small changes in
force-field parameters can make the resulting ensemble very differ-
ent from the original one, making the reweighting procedure less
accurate. In Ref. 36, a local reweighting procedure was introduced
to alleviate this issue. This procedure is based on the heuristic obser-
vation that the ensemble of conformations accessible to a residue
is maximally affected by the parameters used for that residue and,
to a lesser extent, by the parameters used for the other (possibly
identical) residues. Since this is an approximation, a subsequent sim-
ulation performed with the corrected force field was necessary to
validate the modification. References 37 and 38 used a similar auto-
matic procedure to optimize water models. Interestingly, they real-
ized that a straightforward fitting procedure might lead to overfitting
and showed how a regularization term can be included in order to
alleviate this issue. Finally, Cesari et al.39 introduced a procedure
to refine atomistic force fields where heterogeneous systems and
types of experimental data are used to refine the AMBER RNA force
field. Enhanced sampling techniques are employed by the authors to
ergodically sample the conformational space for a number of RNA
tetramers and hairpin loops, and a regularization term is used in the
fitting scheme to maintain the refined force field close to the initial
one. The weight of the regularization term is chosen with a cross-
validation procedure aimed at maximizing the transferability of the
parameters.

It is important to recognize the difference between the men-
tioned approaches, which are meant to generate transferable force-
field parameters, and methods meant to improve the agreement with
the experiment for a specific system for which data are available
(Fig. 4).40 This second class includes a variety of approaches such as
Bayesian schemes41,42 and methods based on the maximum entropy

FIG. 4. Difference between maximum entropy and force-field fitting procedures.
When using the maximum entropy principle to enforce agreement between sim-
ulation and experiment, one free parameter is used for each data point. As a
consequence, different chemically equivalent units might be treated differently.
This does not allow the corrections to be transferred to other molecules, for which
new experimental data would be required. When using force-field fitting proce-
dures, instead, all chemically equivalent units are treated in the same manner.
This allows the derived parameters to be generalized to other molecules where
the same units are used as building blocks.

principle.43,44 In the maximum entropy formalism, the number of
free parameters is equal to the number of experimental data points.
For instance, in a homogeneous polymer, each of the monomers will
feel a different correction that makes its structure as compatible as
possible with experiments. Since the number of parameters is very
high, regularization methods can be used and tuned with a cross-
validation procedure (see, e.g., Ref. 45). In addition, if a polymer
of a different length needs to be simulated, new experimental data
should be obtained. In force-field fitting procedures, the chemical
structure of the investigated molecule is a priori used to reduce the
number of parameters. For instance, in a homogeneous polymer,
each of the monomers will feel the same correction (although per-
haps terminal monomers might be treated differently46). On the one
hand, this allows us to encode a large amount of information in the
specific choice of the functional form employed. This type of infor-
mation is similar to the one that is included when atoms are classified
in types in order to obtain their parameters.47 On the other hand,
it significantly reduces the number of parameters, potentially mak-
ing the resulting force field transferable. Reference 48 used a hybrid
approach where maximum entropy restraints were used but kept by
construction constant across chemically equivalent parts of the sys-
tem. For a recent comparison of approaches taken from both classes,
see Ref. 49.

Besides the discussed systematic approaches that report
methodological improvements aimed at optimizing parameters
based on the experimental data, a number of recently developed
force fields include terms that were manually adjusted based on
the result of MD simulations on systems of different complexity
and their capability to reproduce experimental data. For instance,
Refs. 15 and 31–33 reported optimizations of parameters based on
the solution properties of oligopeptides. The atomic radii of the
AMBER ff15ipq force field were chosen so as to provide correct
salt-bridge interactions.50 Finally, two recent variants of the AMBER
RNA force field contain corrections on hydrogen bonds obtained by
scanning a series of parameters and minimizing the discrepancy with
the solution experiment for RNA oligomers.46,51

IV. THE MACHINE LEARNING LESSON:
HOW TO AVOID OVERFITTING

Overfitting is a ubiquitous problem when fitting procedures
are done in a blind manner. The prototypical cases are machine
learning and related algorithms where functions of arbitrary com-
plexity, supported by no or little physical understanding, are used to
fit empirical data. The machine learning community has thus devel-
oped a number of tools that can be used to avoid or at least alleviate
this issue.

Many different machine learning techniques exist and are typ-
ically based on a common framework.52 The basic ingredient is a
dataset made up of a set of independent variables (X, samples) and
a set of dependent variables (Y, labels). Next, a set of models is pro-
posed to map X into Y with best accuracy. A model is defined by
a set of parameters plus a set of hyperparameters. This splitting is
guided by computational convenience such that inference can be
approached in a multi-level fashion: typically, model parameters are
found by solving an optimization problem at fixed hyperparame-
ters, which, on the other hand, are preferably scanned over a discrete
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scale. This double approach is more easily understood when another
basic ingredient of machine learning is introduced, that is, the cost
function. The cost function is used to estimate the performance of
a model, and while it is usually a continuous function of the model
parameters, it can have a non-trivial dependence on the hyperpa-
rameters. For example, the set of hyperparameters can include the
architecture of the model, the optimization algorithm used to find
the optimal model parameters, the functional form of the cost func-
tion itself, etc. Similar choices also need to be taken in force-field
fitting, as discussed in detail in Sec. V.

Since the sets of parameters and hyperparameters defining
models are fitted against a finite set of examples {X,Y}, overfit-
ting can easily occur. In the limit of fitting on an infinite amount of
data, the only limitation of a model wuld be determined by its com-
plexity. In this limit, a too simple model would underfit the data,
leading to a bias in the result. This bias can be decreased by increas-
ing the model complexity. Since, in general, we deal with datasets of
finite size, increasing the complexity of the model would result in a
large contribution to the error (variance) due to the sampling. A too
complex model would overfit the data, thus having a seriously low
performance on new independent data.

The search for the model with the optimal tradeoff between
bias and variance (i.e., between under- and over-fitting) follows
two directions. One is to split the dataset into a training set and a
cross-validation set, prior to analysis. Model parameters are fitted

FIG. 5. Cross validation can be used to decrease overfitting and allow more gen-
eralizable force-field improvements. (a) In n-fold cross validation, the dataset is
randomly split into n blocks of equal size. A single block of data is left out, and
the parameters are trained on the remaining n − 1 blocks. This is repeated once
for each block, yielding multiple sets of trained parameters λ(1), . . . , λ(n). The
error E(k)

CV obtained with parameters λ(k) in reproducing the k-th block is then
computed, and the average over the n results is the cross-validation error (ECV ).
Leave-one-out cross validation is a special case where each block contains a sin-
gle data point, whereas in leave-p-out cross validation, all possible subsets of p
data are left out. (b) Hyperparameters controlling model complexity (such as reg-
ularization coefficients) are then chosen so as to minimize the cross-validation
error.

against data in the training set, and afterward, the optimized model
is validated against the validation set data not included in the train-
ing procedure. This procedure is usually referred to as cross vali-
dation (Fig. 5), and depending on how the cross-validation set is
built, it can be referred to as leave-one-out, leave-p-out, or n-fold
cross validation. The other is to reduce the risk of overfitting by
means of regularization techniques, the most common consisting in
adding terms to the cost function that prevent the model param-
eters from reaching values extremely adapted to the dataset. This
comes at the cost of increasing the number of hyperparameters (e.g.,
the relative size of training and cross-validation sets, their compo-
sition, coefficients of regularization terms, etc.) that continue to be
affected by risk of overfitting. Even if a close solution to this prob-
lem is not established yet, overfitting should be taken into account
for each level of inference (for both parameters and hyperparam-
eters). The most straightforward way to deal with this multi-level
risk of overfitting is to a priori split the dataset into three sub-
sets: in addition to the standard training and cross-validation sub-
sets, an independent test set is introduced. The training set is used
to fit the optimal values of parameters at fixed hyperparameters;
optimal hyperparameters are then fitted against the cross-validation
set. Eventually, the performance of the model defined by the opti-
mal parameters and hyperparameters is evaluated on the test set. A
more robust approach consists in nested cross validation,53 in which
parameters and hyperparameters are optimized on a single dataset,
but the criterion used to optimize model parameters (training) is
different from the optimization criterion used for hyperparame-
ters (model selection). Validation of the selected optimized model
against new data that, importantly, has not been used to adjust nei-
ther parameters nor hyperparameters is a best practice in this case
as well.

V. OVERFITTING IN FORCE FIELD DEVELOPMENT
Force-field fitting procedures can be interpreted as machine

learning methods where the parameters are the optimized coeffi-
cients and data and labels are a mixture of information obtained
from both quantum chemistry calculations and various experimen-
tal techniques. One should thus pay attention to overfitting. When-
ever overfitting occurs, transferability of the force field to a different
case might be compromised. As already discussed, if parameters are
only fitted on small systems, their transferability to larger systems
might be limited. The other phenomenon that can be observed in
reweighting methods is the subtle overfitting on the analyzed tra-
jectory. In particular, if parameters are derived to match experi-
mental data by reweighting a trajectory that is not sufficiently long,
they might not work correctly on another trajectory obtained using
the same force field but with different initial conditions. In addi-
tion, since reweighting schemes can only modulate the weight of
states that have been explored but cannot predict the population
of states that have not been observed (see, e.g., Ref. 54 for a com-
parison of restraining and reweighting when used to implement the
maximum entropy principle), the only way to detect these prob-
lems is to keep the target force field as close as possible to the
original one with some form of regularization and to then per-
form a new simulation once parameters have been optimized (see
Fig. 6).
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FIG. 6. Free-energy landscapes when using reweighting and iterative simulations.
The native state, compatible with experimental information, is in the middle (N).
Two metastable non-native states that, based on experimental information, are
supposed to have a low population are also shown (U1 and U2). In the original
force field (panel a), the N state is sampled, but the most stable state is U1. During
the reweighting procedure, the force field learns how to improve the agreement
with experiments by disfavoring U1. However, since U2 was never observed in
this simulation, there is nothing that prevents it to be stable when using the refined
force field. Once a simulation is performed with the refined force field (panel b),
state U2 appears with large population, leading to disagreement with the experi-
ment. In principle, if a reweighting is performed using only the second simulation,
state U1 might appear again with an incorrect population. Only a reweighting
where both simulations are combined, and thus all the possible states can be
observed, is capable of generating a force field that correctly sets N as the global
free-energy minimum and U1 and U2 as metastable states with low population
(panel c).

Every other decision taken in the path should be included in
the list of hyperparameters. Coefficients controlling regularization
terms used in the optimization, which control the relative weight of
the initial force field and of experimental data, are naturally con-
sidered as hyperparameters. The functional form of the force field
itself is a hyperparameter. The analogs of these hyperparameters in
the training of the neural network are regularization terms or early
stopping criteria and network architecture, respectively.55 In force-
field fitting, a number of additional hyperparameters might be used
whose control might be more or less explicit. For instance, the so-
called forward models used to calculate experimental observables
from MD trajectories contain a number of parameters. If the training
is done to reproduce the energetics of quantum chemistry calcula-
tions, the set of structures used for fitting and their relative weights

FIG. 7. Schematic representation of a training/final-validation procedure. Force-
field fitting can be based on a combination of quantum chemistry data, experimen-
tal data on small systems, and experimental data on macromolecular systems. All
data can be used in parameter fitting, and cross validation (see Fig. 5) can be used
to help the choice of hyperparameters. To this end, it is necessary that a separate
set of data, either theoretical or experimental, is left out until the very end of the
procedure to validate the transferability of the model. This separate data should
not be used to take any decision during the fitting procedure, or the information
leak might make the final validation not truly independent.

are to be considered as hyperparameters. Even the precise quantum
methods used to compute the total energy might contain a number
of hidden parameters (e.g., the possibility to use either the implicit or
explicit solvent or the specific method used to solve the many-body
Schrödinger equation).

If hyperparameters are chosen a priori based on some inde-
pendent intuition or information, for instance, the fact that a given
quantum chemistry method is more accurate than another one, then
this extra information will be encoded in the final result, improv-
ing the quality of the resulting model. However, if hyperparameters
are optimized by monitoring the performance of the force field on
a specific system, then this system will implicitly become part of the
training set. Thus, the resulting model should be validated against
a separate system (Fig. 7). A practical example would be if differ-
ent variants of a force field are derived using three different quan-
tum chemistry methods, then the best method is chosen checking
the stability of the native structure of a specific system using all
the derived variants. Unless there are other independent evidences
that the selected quantum chemistry method is better than the other
ones, this choice should be considered as fitted on the specific system
and should be then validated on an independent one. Therefore, as a
final remark, all the decisions taken in the process should be critically
evaluated in this respect.

VI. CRITICAL ISSUES AND OPEN CHALLENGES
The recent works done in adjusting force-field parameters

including experimental data suggest that this is a promising field
that will lead to important improvements in the future. There
are, however, a number of critical issues that one should carefully
consider.
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First, we suggest that all input data should be considered at
the same time, irrespectively of being obtained from experiment or
from quantum chemistry calculations. Both experimental and quan-
tum chemistry data can indeed be equivalently used for training
or for validation. Importantly, one should consider that different
data have different relative errors and different information content.
Data that provide limited information during fitting will also provide
less stringent validations. Particularly valuable are data obtained on
systems as close as possible to those that one is interested in simu-
lating. Less weight instead should be given to the data obtained in
very different conditions (e.g., without solvent) or on systems that
are too simple to be considered as representative (e.g., individual
aminoacids or nucleotides). As an exception to this general rule, one
should consider that different types of data typically give access to
the energetics in different portions of the conformational space. For
instance, solution experiments on macromolecular systems are valu-
able in providing the relative stability of structures that can be dis-
tinguished using some probe. Quantum chemistry calculations are
instead valuable when states are difficult to be distinguished in the
experiment or when probing rarely visited states (such as transition
states).

Reference data should be obtained in conditions as realistic
as possible. One should carefully consider the conditions in which
experiments are carried out and prefer experiments performed in
conditions that can be reproduced in MD simulations. Ideally, spe-
cific experiments might be designed and performed in order to facil-
itate force field development, such as solution experiments on sys-
tems small enough to allow ergodic sampling but large enough to
provide transferable information. When instead basing the fits on
quantum chemistry calculations, one should consider the impor-
tance of the solvent. Additionally, errors in the experimental data
should be taken into account. Very important are also errors in the
forward models used to connect structures obtained in MD simula-
tions with experiments since these errors are often larger than those
of the raw data. Errors in the quantum chemistry calculations should
be quantified as well.

Taking inspiration from the machine learning community, it
is fundamental to understand how to avoid overfitting. In particu-
lar, overfitting on specific systems should be avoided, and this can
be achieved by including as heterogeneous as possible systems in
the dataset. Similarly, overfitting should be avoided on specific tra-
jectories. To this end, separate validation simulations can be run or
robust estimates of the statistical errors can be pursued. Regulariza-
tion terms can be used to tune model complexity, thus reducing the
impact of overfitting. Validation should be made on data that are
obtained in an as independent as possible manner.

Finally, the current functional form [Eq. (1)] might be too lim-
ited to be usable on a wide range of cases. Increasing the complexity
of the model might help in this respect. Complexity can be intro-
duced by physical insight (e.g., explicitly polarizable force fields23,24

or modified Lennard-Jones potentials56) or by blind learning of non-
linear models (e.g., neural network potentials57,58). Nonetheless, one
should keep in mind that whenever complexity is increased, overfit-
ting has more chance to appear. In this respect, for a fixed number
of parameters, the more physical the functional form, the less it will
tend to overfit. Interestingly, neural networks are now routinely used
to fit bottom up potentials where the training data can be gener-
ated by computational methods and can then be easily made very

abundant.57–60 These approaches are however typically designed to
be trained on very small systems or chemical groups, and their
applicability to macromolecular systems has not been shown yet. It is
thus still to be seen if neural network potentials can be used fruitfully
when force fields are directly fitted on experimental data.

SUPPLEMENTARY MATERIAL

See the supplementary material for a table reporting more
details about the methods used to obtain parameters in the most
common biomolecular force field.
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