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We present a new, semianalytic framework for estimating the level of residuals present in cosmic
microwave background (CMB) maps derived from multifrequency CMB data and forecasting their impact
on cosmological parameters. The data are assumed to contain non-negligible signals of astrophysical and/or
Galactic origin, which we clean using a parametric component separation technique. We account for
discrepancies between the foreground model assumed during the separation procedure and the true one,
allowing for differences in scaling laws and/or their spatial variations. Our estimates and their uncertainties
include both systematic and statistical effects and are averaged over the instrumental noise and CMB signal
realizations. The framework can be further extended to account self-consistently for existing uncertainties
in the foreground models. We demonstrate and validate the framework on simple study cases which aim at
estimating the tensor-to-scalar ratio, r. The proposed approach is computationally efficient permitting an
investigation of hundreds of setups and foreground models on a single CPU.
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I. INTRODUCTION

Forecasting performance of current and future cosmic
microwave background (CMB) experiments is a neces-
sary step in conception, design and optimization of their
hardware as well as operations. Ideally, a forecasting
procedure should be both reliable and efficient, permitting
scrutiny of broad swaths of parameter space in order to
quickly zoom in on a limited subset of the most promising
configurations. This subset should be small enough to
facilitate their further, more detailed investigation, typically
employing numerical simulations, which while permitting
a higher level of realism and detail are significantly more
time and resource consuming.
Reliable forecasting for high precision CMB experi-

ments is difficult due to the presence of the non-CMB
signals, which unavoidably contribute to the measurements
registered by the CMB instruments. Indeed, the multi-
frequency observations from the Planck and WMAP
satellites indicate that foreground emissions originating
from our Galaxy or extra-Galactic sources represent a
major contaminant, e.g., [1–3], which current and future
CMB polarization experiments will have to deal explicitly
with. Methods employed for this purpose will thus have to
ensure precision matching sensitivity envisaged for these
forthcoming efforts and set by very ambitious science
goals, which the CMB community worldwide is preparing

to address. These goals include a detection and a charac-
terization of the B-mode signal over a broad range of
angular scales with a special emphasis on its large angular
scale part, which is thought to be generated by primordial
gravity waves present in the early Universe. The key
parameter in this latter case is the so-called tensor-to-scalar
ratio, r, and for concreteness in the following we will couch
our presentation as targeting constraints on this parameter.
The approach we introduce is however fully general and
generalization to other parameters is straightforward.
The standard CMB forecasting tools are ill adapted to

tackle cases with non-negligible foreground contributions.
Their impact is therefore often either modeled or assessed
by some simplified means either in respect to estimating the
residuals or their impact on the detection of r, e.g., [3–10].
Alternately, the issue is investigated with the help of
numerical simulations, which are typically computationally
heavy and thus only allow for a limited number of studied
cases [11–13].
Against this background, Errard et al. (2011) [14] have

proposed a semianalytic framework, which attempts to
propagate strictly statistical uncertainties incurred as a
result of a component separation procedure to the final
estimate of r. Their component separation of choice is a
maximum-likelihood parametric component separation
approach [15–17], which assumes a parametrization of
the frequency scalings for each considered sky component.
Though self-consistent this approach is only capable of
dealing with the statistical uncertainties and therefore its
conclusions are limited in their validity and the results
should be interpreted with caution. Specifically, this
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approach requires that the parametrization assumed for the
frequency scaling of the sky components is sufficiently
flexible and general such that the actual frequency scaling
laws of the true sky signals are included as its special case.
Nonetheless, the framework has proven to be helpful in
enabling studies of numerous experimental setups in a
uniform fashion [18,19], providing useful insights and
intuitions and informing multiple instrument designs.
In this work we develop a framework capable of

accounting for differences between these two sky signal
models. As in [14], we assume that the components are
separated with the help of the parametric component
separation technique and we estimate by semianalytic
means both the bias and statistical uncertainty, which are
both present whenever the two sky models do not match.
This can be either due to differences in the frequency
scaling laws for some of the components or their spatial
variability. The framework also permits incorporating the
uncertainty related to our ignorance of the foreground
signals and/or shortcomings of our models.
The bias and statistical uncertainties are then propagated

to the second step of the procedure, where their impact on r
is calculated. The new approach is equivalent to that of
Errard et al. (2011) [14], if the sky model and the true sky
are consistent, and in this sense it extends and completes
this earlier work.
We present the formalism in Sec. II and demonstrate and

validate it in Sec. III. We leave a thorough investigation of
different experimental setups and foreground models for
future work. For convenience, we define symbols most
commonly used in this paper in Table I.

II. FRAMEWORK

A. Data model

Theoutline of our approach is as follows.Our input data are
assumed to consist of a set ofmultifrequencymaps. These are
collated together in a single data vector,d, and are assumed to
be a linear combination of sky component amplitudes in
corresponding sky pixels. Collecting these together in a
single sky component vector, ŝ, we can therefore write

d ¼ d̂þ n≡ Â ŝþn; ð1Þ

where d̂ denotes the true sky (noiseless) signal, matrix Â
stands for the true mixing matrix of our data, and n is noise.
We therefore have for a specific pixel, p,

dp ¼ d̂p þ np ≡ Âpŝp þ np; ð2Þ

where dp stands for a vector of sky signal amplitudes
measured at all observed frequencies in pixel p. Similarly,
for a channel, k,

dðkÞ ¼ d̂ðkÞ þ nðkÞ ≡ ÂðkÞŝðkÞ þ nðkÞ; ð3Þ

where dðkÞ is a single frequency map of the observed sky in a
frequency band defined by k.
We assume hereafter that the actual mixing matrix, Â, is

not available to us and instead we have to rely on some
model of it to represent the available data. We denote this
assumed mixing matrix as A and the corresponding
component vector as s. Our assumed data model therefore
states that

dp ¼ ApðβÞsp þ np; ð4Þ

where β denotes parameters used to parametrize the mixing
matrix in order to reduce the number of unknowns.
Hereafter, we allow for a pixel dependence of the model

mixing matrix, A. This could be either due to allowing for
different values of the same physical parameters in different
subsets of pixels or due to adopting different physical laws
and parametrizations in different pixels. In any case,
hereafter, a parameter that is allowed to have a different
value in two different pixels is treated as two different
parameters rather than as a single parameter, which is
pixel dependent. This perspective will be helpful in the
following.
Note that, whenever sky variability of the scaling

parameters is considered later on, we will assign different
parameters to subsets of all pixels and make an implicit
assumption hereafter that these are composed of a rather
large number of pixels, covering well-behaved, singly
connected, compact sky patches. Though the formalism
is applicable more generally, its implementation and the
interpretation of its results are both aided by this
assumption.
We emphasize that in the presented formalism no

assumption is made about the true sky signals and mixing
matrices. However, these are obviously needed for any
specific application of the formalism in order to define the
statistical properties of the data and play a crucial role in
determining the resulting forecasts.

B. Data likelihood

Following our data model we can write the standard
likelihood function for the data given our model, Eq. (4).
This reads up to an irrelevant constant as

Smap ¼
X
p

ðdp −ApðβÞspÞtN−1
p ðdp −ApðβÞspÞ; ð5Þ

where here and in the following we define S as equal to
−2 lnL up to some constant. We note that in the above
expression the noise covariance is explicitly assumed to be
uncorrelated between pixels. This is clearly not always the
case and may need to be taken into account (see, e.g.,
a relevant discussion in [13]). Mathematically, the for-
malism presented hereafter can be easily generalized to
permit correlations between pixels; however, in actual
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implementation treating full pixel-pixel covariance matri-
ces becomes quickly prohibitively expensive. As our goal
here is to provide a quick performance-forecasting tool, we
will thus neglect the potential presence of such correlations.
If the multifrequency maps do not conform with our

assumed model, i.e., A ≠ Â, this likelihood is obviously
incorrect as there is no value of β for which dp −ApðβÞsp
could be merely a noise. However, this is the likelihood we
would have adopted for component separation in the
absence of any other information about the true sky. If
discrepancies between the assumed and true sky signal
models are present, we expect that relying on this like-
lihood will lead in general to both systematic and statistical
uncertainties in the derived results and in particular to
systematic and statistical foreground residuals in the
separated CMB map. In the approach proposed here we
aim at estimating both these residuals and evaluating their
impact on a value of the tensor-to-scalar ratio parameter, r,
derived from the separated CMB map.
The proposed procedure involves two main steps:

component separation and parameter estimation, which
we describe in detail in the following.

C. Parametric component separation

1. Spectral parameters

Following [14,17] we invoke the spectral likelihood,
which we will use to determine the spectral parameters of
the scaling relations,

Sspec ¼ −
X
p

ðApN−1
p dpÞtðAt

pN−1
p ApÞ−1ApN−1

p dp: ð6Þ

This is a profile likelihood obtained by maximizing the map
likelihood in Eq. (5) with respect to the sky signal, s. As
such it peaks at exactly the same values as the full
likelihood. Sspec can be maximized case by case for any
given data, what indeed is implicitly or explicitly done in
the parametric component separation codes, e.g. [16], or,
instead, first averaged over the statistical ensemble of
plausible input data and then maximized over the spectral
parameters to yield both their average estimate and error on
them. In the simplest case the statistical ensemble can
merely include realizations of the noise. However, more
generally, instead of a single true model of the foreground
signals we may prefer to consider a family of models
defined by their stochastic properties. This can be either
due to our imperfect understanding of the foreground

physics or due to the actual complexity of the foreground,
which may be easier to sum up by statistical means [20,21].
The formalism presented here lends itself straightforwardly
to this kind of extension. Nonetheless, we leave their
exploitation to future work and in this paper we focus
on the spectral likelihood averaged over a statistical
ensemble of the noise realizations, which is then given by

hSspeci ¼ −tr
X
p

fðN−1
p − PpÞðd̂pd̂

t
p þ NpÞg: ð7Þ

Here, the dependence on the spectral parameters is confined
to the projection operator, Pp,

Pp ≡N−1
p −N−1

p ApðAt
pN−1

p ApÞ−1At
pN−1

p : ð8Þ

This likelihood can be maximized very efficiently numeri-
cally, given that in most applications the number of
unknown spectral parameters is rather limited and capital-
izing on the analytical derivatives of the likelihood as
derived in Appendix A. In the approach proposed here,
these maximum-likelihood values define the average values
of the spectral parameters as could be derived from the
actual data while the curvature of the likelihood computed
at its peak quantifies the uncertainty expected due to the
instrumental noise. Denoting the latter as Σ, we have

ðΣ−1Þββ0 ≡
� ∂2S
∂β∂β0

�
: ð9Þ

We note that the proposed procedure can always be applied,
whether the assumed and true sky models match or not.
When the true mixing matrix, Â, agrees with the assumed
one, AðβÞ, for some values of the parameters, β, then the
estimated values agree with these and the estimator is
unbiased. In this case, only the statistical residual, related to
the statistical scatter of the determined values of β due to
the instrumental noise, is present in the cleaned CMB map,
which, if properly accounted for, will merely increase the
statistical uncertainty of subsequently estimated cosmo-
logical parameters, without biasing their values [14].
When the assumed and true mixing matrices do not

perfectly coincide for any values of the parameters for some
or all pixels, be it due to the inconsistency of the scaling
laws or their spatial variability or both, there is a systematic
residual unavoidably present in the estimated CMB map,
which in turn may lead to biases in the estimated values of
the cosmological parameters. We note that in such cases

TABLE I. Notations.

Symbols d ŝ n, N d̂ Â p k β A s m̄p

rp, rcmbðβÞ,
Cres
l

f̂p, Fpk,
F fore

l

Definition Set of observed
multifrequency

maps

True sky
noiseless
signal

Noise,
covariance

True sky
component
amplitudes

True
mixing
matrix

Sky
pixel

Frequency
channel

Spectral
parameters

Model
mixing
matrix

Model sky
component
amplitudes

Noiseless
estimates of the
components

Noiseless
residuals

Foreground
signal
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there are in general no “true” values of the spectral
parameters and their estimated, “effective” values depend
not only on the assumed and true mixing matrices but also
instrument characteristics such as observational frequency
bands, etc.
The statistical error matrix, Σ, can be computed semi-

analytically using Eq. (A5), or numerically. Indeed, many
maximization routines construct a numerical approxima-
tion to the curvature matrix as part of the procedure. We
have found that in our test cases both approaches produced
results in very good agreement. We note that in the absence
of calibration errors and assuming that the spectral depend-
ence of the CMB component is known completely, neither
the estimated spectral parameter values nor their uncer-
tainties depend on the CMB signal present in the data. This
observation is analogous to the one pointed out in [14] and
is elaborated on in Appendix A.

2. Residuals

Given Ap computed for some value of β, we can express
noiseless estimates of the components as [22]

m̄p ¼ ðAt
pN−1

p ApÞ−1At
pN−1

p d̂p ≡WpðβÞd̂p: ð10Þ

The noiseless residuals in the estimates then read as

rp ¼ m̄p − ŝp ¼ WpðβÞd̂p − ŝp: ð11Þ

Hereafter, we assume that the CMB corresponds to the
zeroth element of any multicomponent vector and split the
multicomponent vectors and the mixing matrices into CMB
and foreground parts as follows:

Â≡ ½Âcmb; Âfore�; A≡ ½Acmb;Afore�; ŝp ≡
�
ŝcmb

ŝfore

�
:

ð12Þ

We can now represent d̂p as

d̂p ¼ Âcmb
p ŝcmb

p þ Âfore
p ŝforep ≡ Âcmb

p ŝcmb
p þ f̂p; ð13Þ

where f̂ denotes a true noise-free contribution of the
foregrounds to all single-frequency maps. As we assume
throughout that the CMB scaling is the same in the model
and true sky, we have

½WpÂ
cmb�

00
¼ 1: ð14Þ

This emphasizes the fact that all of the CMB signal will
remain in the estimated CMB component, which however
will be contaminated by contributions from the other, non-
CMB signals.
Indeed, on rewriting Eq. (11) and specializing it for the

CMB component residual only we have

rcmb
p ¼

X
k

W0k
p ðβÞf̂ðkÞp ≡X

k

W0k
p ðβÞFpk ð15Þ

which, as expected, is explicitly free of the CMB signal.
Here, we have introduced a foreground matrix, F, the kth
column of which defines the total foreground contribution
to the kth frequency channel.
We can now perform a Taylor expansion of the residuals

with respect to the scaling parameters but around their
estimated, maximum-likelihood values, β̄, obtaining,

rcmb
p ðβÞ≃X

k

W0k
p ðβ̄ÞFpk þ

X
k;β

δβ
∂W0k

p

∂β
����
β̄

Fpk

þ
X
k;β;β0

δβδβ0
∂2W0k

p

∂β∂β0
����
β̄

Fpk; ð16Þ

where we need to go up to the second order to have a
consistent, up to the second order, approximation of the
data covariance matrix, E, in Eq. (38). On introducing
pixel-domain objects, a vector y, two-dimensional Yð1Þ, and
three dimensional Yð2Þ arrays, defined as

yp ≡
X
k

W0k
p ðβ̄ÞFpk;

Yð1Þ
pβ ≡X

k

∂W0k
p

∂β
����
β̄

Fpk;

Yð2Þ
pββ0 ≡

X
k

∂2W0k
p

∂β∂β0
����
β̄

Fpk; ð17Þ

we can rewrite this last expression as

rcmbðβÞ≡ y þ
X
β

δβYð1Þ
β þ

X
β;β0

δβδβ0Yð2Þ
ββ0 ; ð18Þ

where for shortness we use Yð1Þ
β and Yð2Þ

ββ0 to denote pixel-

domain vectors given by the elements of the arrays, Yð1Þ

and Yð2Þ for which the spectral parameter indices, β and β,
β0, are fixed.
We point out that δβ is explicitly pixel independent. This

is so thanks to the way we define the total spectral
parameter set as discussed following Eq. (4), where every
parameter appears as many times in the parameter set for as
many independent values as it is allowed to take. Clearly,
not all the parameters defined in this way will in general be
relevant for all pixels. This is encoded in the multidimen-
sional arrays, Yð1Þ and Yð2Þ, which will have all entries
corresponding to such pixels set to zero.
Equation (18) is a generalization of Eq. (10) of Errard

et al. (2011) and Eq. (24) of Stivoli et al. (2010) [22]. The
generalization concerns two aspects:
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(i) First, it includes the bias in the estimated component
maps due to the residual foregrounds, which does
not disappear when averaged over the statistical
ensemble of noise and foreground realizations. This
is given by y.

(ii) Second, this equation has been derived in a way that
did not invoke any assumptions about the pixel
dependence of the true sky mixing matrix, Âp,
which can be therefore arbitrary.

Though this expression is derived in the pixel domain we
can rewrite it in the harmonic domain owing to the fact that
δβ are pixel independent,

~rcmbðβÞ≡ ~y þ
X
β

δβ ~Yð1Þ
β þ

X
β;β0

δβδβ0 ~Yð2Þ
ββ0 ; ð19Þ

where we use a tilde to denote vectors of harmonic
multipoles. For definiteness they are arranged in such a
way that the multipoles with the same l are ordered
consecutively with m increasing from −l to l and are
followed by the modes with l0 ¼ lþ 1. So the relations
between the multipole numbers, ðl; mÞ, of a multipole and
its position, j, in the harmonic vector are as follows:

j ¼ l2 þ lþm;

l ¼ round½ð−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4j

p
Þ=2�;

m ¼ j − lðlþ 2Þ; ð20Þ
where j goes from 0 to ðlmax þ 1Þ2 − 1 and the function
round rounds a real number to the closest integer.
We note that going from the pixel-domain vectors, y,

Yð1Þ
β , Yð2Þ

ββ0 , to their harmonic domain counterparts, ~y, ~Yð1Þ
β ,

~Yð2Þ
ββ0 , is only straightforward if the pixel-domain vectors

correspond to the full-sky maps. This obviously is rarely
the case in practice, as even for the full-sky observations,
the parts most affected by the foregrounds, i.e., the Galactic
plane and point sources, need to be typically masked out
and are not used for the component separation. In the spirit
of the Fisher approaches we however ignore this difficulty
hereafter, assuming that this is possible and merely comes
at the cost of the increased statistical uncertainty due to a
lesser number of available modes and some rough cutoff
scale at low l. In practice, as mentioned earlier [see the
discussion after Eq. (4)], this implies that the adopted
mixing matrix instead of being permitted to change freely
from pixel to pixel is taken to be the same for sufficiently
large and regular sky patches.
For future convenience, we can write Eq. (19) for each

harmonic mode, jð¼ l2 þ lþmÞ, Eqs. (20), as

~rcmb
j ðβÞ≡ ~yj þ ~Yð1Þ

j δþ δt ~Yð2Þ
j δ; ð21Þ

where ~Yð1Þ
j and ~Yð2Þ

j stand for a vector and a matrix

respectively made of elements of ~Yð1Þ
jβ and ~Yð2Þ

jββ0 for the

given j and δ is a vector of uncertainties on spectral
parameters, β, around the estimated values of the param-
eters. We therefore have

hδδti ¼ Σ and hδi ¼ 0: ð22Þ

Using these two last equations we can now rewrite an
expression for the typical level of the residuals in the power
spectrum domain. Indeed, we have (see Appendix B for
details)

Cres
l ≃⊗lð~y; ~yÞ þ⊗lð~y; ~zÞ þ⊗lð~z; ~yÞ

þ tr½Σ⊗lð ~Yð1Þ; ~Yð1ÞÞ�; ð23Þ

where ~z is defined as

~zj ≡ tr½ ~Yð2Þ
j Σ�; ð24Þ

and can be computed as the harmonic representation of the
pixel-domain object, z, defined as

zp ¼ tr½Yð2Þ
p Σ� ¼

X
β;β0

X
k

∂2W0k
p

∂β∂β0
����
β̄

FpkΣβ0β

¼
X
k

Fpk

�X
β;β0

�∂2W0k
p

∂β∂β0
����
β̄

Σβ0β

	�
: ð25Þ

In addition, we have also introduced the symbol ⊗ to
denote a power spectrum of two sets of harmonic coef-
ficients provided as input parameters, i.e.,

⊗lð ~X; ~ZÞ≡ 1

2lþ 1

Xl
m¼−l

~X†
j
~Zj; j¼ l2þlþm: ð26Þ

We note that whenever ~X and ~Z are multidimensional
arrays of spectral coefficients indexed by j, then the
outcome of the operations is a matrix containing lth
multipole of all the (cross) spectra of all these coefficients.
Equation (23) permits computation of the power spectra

of the typical residual in the presence of (1) spatial
variability of the spectral indices, in both the model and
the actual sky; (2) discrepancies in the spatial and fre-
quency behavior between the two; and (3) inhomogeneity
of the measurement noise, which is however assumed to be
uncorrelated between pixels. The inputs required for this
are the relevant auto- and cross spectra of ~y, ~Yð1Þ, and ~z.
These spectra, in general, do not have any simple physical
interpretation as they conflate all the different pixel-
dependent effects together. However, if the assumed sky
model is pixel independent and the noise is white, all the
spectra can be directly related to the spectra of the
combined foreground signals as measured in different
frequency bands, Appendix D, i.e.,
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F fore
l ≡⊗lð ~F; ~FÞ; ð27Þ

where ~F is a harmonic representation of F defined in
Eq. (13) and therefore it is a matrix of as many columns as
the assumed frequency bands, with each column represent-
ing a combined foreground signal in each frequency band.
Consequently, F fore

l is then a matrix containing multipole l
of all auto- and cross spectra between foreground signals in
all the frequency bands. Furthermore, if the true sky
frequency scaling is also pixel independent, then the latter
spectra can be related straightforwardly to those of the sky
components at some fiducial frequency, as it was the case
in [18].
We can also compute a dispersion around the average

spectrum of the residual, Appendix B, which can be
approximated as follows:

VarðCres
l Þ≃ 2½trðΣ⊗lð ~Yð1Þ; ~Yð1ÞÞÞ�2

þ 2⊗lð~y; ~Yð1ÞÞΣ⊗lð ~Yð1Þ; ~yÞ: ð28Þ

3. Noise

The instrumental noise present in the cleaned CMBmap,
ncmb, is given by

ncmb
p ¼

X
k

W0k
p ðβ̄Þnpk; ð29Þ

where npk denotes the noise of the kth frequency map.
Given that we assume that the noise of each single
frequency map is Gaussian and uncorrelated between pixels
and that its pixel covariance is given by Np, the variance of
the CMB map noise can be expressed as

σ2cmb;p ≡ ½ðAtN−1AÞ−1�CMBXCMB

¼
X
k;k0

W0k
p ðβ̄ÞW0k0

p ðβ̄ÞNp;kk0 : ð30Þ

The CMB map noise will be inhomogeneous and its
variance pixel dependent, whenever the noise of the
single-frequency maps is inhomogeneous and/or the
assumed scaling laws are pixel dependent. In this latter
case the coefficient of the matrix W will depend on the
pixel, giving rise to the CMB map noise inhomogeneity
even if the single-frequency maps noise is homogeneous.
As mentioned earlier the formalism as developed until now
is capable of handling the cases of both these kinds.
Nevertheless, the noise inhomogeneity potentially leads
to two problems. On the technical level, the noise which is
inhomogeneous in the pixel domain results in correlations
of the noise in the harmonic domain, which therefore
usually cannot be described in a compact, computationally
manageable manner. In particular, the noise power spec-
trum no longer provides a sufficient description of the noise

properties in the harmonic domain. This is however in
practice a necessary assumption for the forecasting
approach as presented here. We discuss this issue in the
next section.
There is also another, more fundamental problem related

to the noise inhomogeneities, which is pertinent to the
robustness of the performance forecasts in the presence of
the foregrounds and is not specific to this particular
approach but is applicable to any forecasts based on the
pixel-domain parametric approach and its applications. The
constraints on the spectral parameters are tight whenever
the foreground signal is high, or the noise level is low or
both. The wildly inhomogeneous noise patterns are thus
likely to lead to very different constraints depending on the
fortuitous overlap of the densely observed sky areas with
high foreground areas or lack thereof. Consequently, the
predicted levels of both systematic and statistical residuals
will not only vary wildly but also will depend on the details
of modeling, which can be difficult to control. As such they
may not be particularly illuminating and useful in the
performance forecasting, whatever is the specific way of
obtaining those. Indeed, though such coincidental align-
ments may happen in the analysis of an actual data sets, it is
likely that if the constraints on spectral parameters are
found to be dominated by a handful of pixels, in which the
foreground levels happen to be high and the instrumental
noise low, the best way forward could be to isolate these
pixels in the analysis by for instance assigning to them a
new set of parameters. Obviously, this effect is also present
when the noise is homogeneous; however the noise
fluctuations tend to amplify its role. In the former case,
the effect is thought to be minimized by usually an implicit
assumption that the foregrounds in the observed sky area
are typical and that the area is large enough to include a
range of typical foreground features.
The observational strategies of the CMB experiments,

including those of the satellite missions [23,24], however,
commonly lead to inhomogeneous distributions of the
observations over the covered sky area. Therefore, estimat-
ing the effects of the inhomogeneities on the forecasts is of
clear importance. One way of proceeding here could be to
derive the constraints on spectral parameters not tied up to
specific foreground templates but averaging over plausible
foreground morphologies. However, as mentioned earlier
this is something that can be readily incorporated in the
proposed formalism; we leave an exploration of this aspect
of the approach for future work.
Instead, for the time being we make an implicit

assumption that both the noise inhomogeneities and fre-
quency scaling laws change only slowly with the position
on the sky and across the observed sky; the noise power
spectrum is expected to provide a description of the noise of
the CMB map, which is sufficient for the estimation of the
cosmological parameters based on this map. We calculate
this spectrum as
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Cnoise
l ¼ 1

npix

X
p

σ2p;cmb; ð31Þ

with the pixel variance as given by Eq. (30). So the only
effect due to the noise inhomogeneity or spatial dependence
of the scaling laws, which is taken into account here, is an
increased noise level.
In the case of the homogeneous noise and a single

scaling law assumed for the entire observed patch, as used
in the specific examples studied later on, this can be
rewritten as

Cnoise
l ¼ ½ðATN−1

l AÞ−1�CMBXCMB ð32Þ

where matrices Nl are the harmonic space counterparts of
Np and describe the noise spectra of single frequency maps
accounting for their resolution,

Nij
l ≡ ðwiÞ−1 exp

�
lðlþ 1Þ FWHM2

i

8 log 2

	
δji ð33Þ

with ðwiÞ−1 the sensitivity of the frequency channel i in
ðμKRJ − radÞ2. We note that the beam effects appearing
explicitly in this equation are included in there by hand as they
are not fully consistent with the formalism presented earlier,
which assumes no pixel-domain correlations. Indeed, the
latter requirement implies that no beam-deconvolution pro-
cedure of any sort can be applied to the single-frequencymaps
prior to the component separation and instead the latter would
have to be performed instead on the maps smoothed to the
largest experimental beam. However, once the spectral
parameter estimation is done, and thus the constraints on
themare set using only the underpixelized data, both the noise
and the residuals can be extrapolated to higher multipoles as
long as the number of frequency channels with a resolution
high enough is sufficient to ensure that thematrix on the rhs of
Eq. (32) is invertible.

D. Parameter estimation

As before, to estimate the parameters, we proceed as we
would have done it if we did not know that our maps are
potentially systematically biased. We therefore start off
from the standard Gaussian likelihood, which accounts
only for the presence of the noise, the CMB signal and
the statistical foreground residual in the recovered CMB
map, assuming that they all are Gaussian with the total
covariance given by C, i.e.,

Spar ≡ −2 lnLpar ¼ atC−1aþ ln detC: ð34Þ

Here, a is a harmonic representation of the available CMB
map. In our case this is the map obtained from the
component separation procedure, and which therefore
may include in addition to the CMB signal, the

measurement noise, the statistical residual and also the
systematic bias. This latter is however ignored in the
assumed data covariance matrix, C, which as in [14]
includes only the first three of these contributions: the
CMB signal, the noise and the statistical foreground
residual. The explicit form of C is given later on. The
cosmological parameters we are after here enter only in the
expression for the CMB covariance. The parameter like-
lihood averaged over the instrumental noise and CMB
signal realizations is given by

hSpari ¼ trC−1Eþ ln detC; ð35Þ

where E≡ haati is the correlation matrix of the data. The
values of the cosmological parameters, which maximize
Eq. (35), are those for which the likelihood gradient
vanishes. This reads, e.g., [25]

hSpar
;i i ¼ tr½C−1C;i − C−1C;iC−1E�: ð36Þ

Given that the harmonic coefficients of the CMB map, a,
can be represented as

aj ¼ acmb
j þ anoisej þ ~rcmb

j

¼ acmb
j þ anoisej þ ~yj þ ~Yð1Þ

j δþ δt ~Yð2Þ
j δ; ð37Þ

we can write up to the second order in δ,

Ejj0 ≡Djj0 þ ~yj ~y�j0 þ ~yjtr½ ~Yð2Þ�
j0 Σ�

þ tr½ ~Yð2Þ
j Σ�~y�j0 þ ~Yð1Þt

j Σ ~Yð1Þ�
j0

¼ Djj0 þ ~yj ~y�j0 þ ~yj ~z�j0 þ ~zj ~y�j0 þ ~Yð1Þ
j Σ ~Yð1Þ;†

j0 ; ð38Þ

where the cross terms vanish given that halmi ¼ 0 for both
the noise and CMB, and hδβi ¼ halmδβi ¼ 0 by definition.
Here,

Djj0 ≡ hacmb
j acmb;†

j0 i þ hanoisej anoise;†j0 i
¼ Ccmb

l δjj0 þ Cnoise
l δjj0 ≡ Clδjj0 ð39Þ

is the CMB plus noise only covariance, which is assumed
hereafter to be diagonal in the harmonic space, correspond-
ing therefore to the assumption of the stationary pixel-
domain noise.
We can rewrite the expression for the true data covari-

ance, Eq. (38), in the matrix form as

E ¼ Dþ ~y ~y† þ ~z~y† þ ~y ~z† þ ~Yð1ÞΣ ~Yð1Þ†: ð40Þ

In contrast, the assumed covariance, C, will be like the
above but with the terms due to the bias omitted, i.e.,
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C ¼ Dþ ~Yð1ÞΣ ~Yð1Þ†: ð41Þ

This last expression resembles the one derived in [14],
Eq. (B5); however it extends it by accounting correctly for
the possible presence of multiple foreground components.
We can now use Eqs. (41) and (38) to calculate the
ensemble averages of derivatives of the likelihood given
by Eq. (34). The full expressions are quite lengthy and are
collected in Appendix C.
We note that though a computation of the explicit form of

the covariance matrices, C and E, Eqs. (41) and (40),
respectively, requires knowledge of all the harmonic modes
of the foreground components, for the calculation of the
ensemble averaged likelihood and its derivatives, we need
only various cross spectra of pixel-domain objects defined
by ~y, ~z and columns of ~Yð1Þ. This is a general observation,
which stems merely from the assumptions about the
diagonality of the CMB signal and noise covariance
matrices in the harmonic domain, and thus their stationarity
in the pixel domain, and does not involve any specific
assumptions about the foregrounds themselves. This can be
intuitively understood, as whenever the CMB signal and
noise are both stationary in the pixel domain the constraints
on the cosmological parameters parametrizing the CMB
spectrum can only depend on foreground properties aver-
aged over the observed patch such as their power spectra,
and not on their morphology or phase-dependent informa-
tion. This is the case, whatever the actual statistics of the
foreground templates are. If the noise is inhomogeneous and
anisotropic in the pixel domain, it will give preference to
some selected modes over others and the results of the
parameter estimation will depend on both the power and
morphology of the foregrounds, making the forecasting
dependent on subtle details of the modeling, many of which
are still poorly known at this time. This is similar to the case
discussed earlier in the context of the component separation.
Unlike in that latter case now the assumption of the pixel-
domain noise stationarity not only makes our forecasts less
detail dependent but it is in fact necessary in order to
facilitate the analytic calculations, which in turn are essen-
tial for the numerical efficiency of the proposed approach.
Hereafter, we will thus employ the noise spectra as given

in Eq. (31), accepting that some of the information is lost in
this process. Our forecast will therefore be pessimistic in
some sense but more reliable. The information is not lost
only when the noise of the recovered CMB map is
homogeneous, which is equivalent to the case of the
homogeneous noise in the frequency maps and global
scalings laws, and where our assumptions are automatically
fulfilled.
We note that more general noise power spectra than the

white noise cases can be studied using this formalism, for
instance, the spectra with excess power at the low-l
end of the spectrum, devised to mimic the potential effects
of time-domain noise correlations and/or time-domain

filtering. As no noise correlations are included in our
component separation step this will not be a fully consistent
approach; however, as the pixel-stationary noise correla-
tions are expected to have a bigger impact on the cosmo-
logical parameter estimation than the component separation
step, such ad hoc adjustments can be expected to provide
useful and meaningful insights.
This part of our algorithm now proceeds as follows: for

the given foreground models, true and assumed, and the
noise power spectrum, we maximize Eq. (35) using its first
derivatives, Eq. (36), to find the maximum-likelihood-like
values of the cosmological parameters, which can be
however biased by the presence of the residual foregrounds.
We then use the ensemble average Hessian of the likelihood
in Eq. (35), with the true data matrix set to E, to assign
uncertainties to these estimates.
The proposed procedure is well defined in full-sky or

nearly full-sky coverage cases. If only a limited sky area is
available, the procedure can be adapted to produce some
meaningful estimates. This involves the usual steps of
introducing a low-l cutoff corresponding to the largest
mode, which can be still well constrained by the cut-sky
data, and of multiplying the derived, full-sky Hessian by
the observed sky fraction, fsky, to reflect the overall loss of
the independent modes in the available data. Were we
projecting out all the sky modes potentially contaminated
by the foreground residuals, what would correspond to
Σ → ∞, this later step would suffice. However, in our case
Σ is finite and in fact hoped to be small so the spectral
parameters are well determined. Moreover, as it is esti-
mated on the component separation step, it already incor-
porates the information about the observed sky fraction, as
roughly Σ ∝ 1=npix ∝ 1=fsky. To account for that, as an
input to the cosmological parameter estimation procedure,
we use the rescaled matrix of spectral parameter errors,
Σ0 ≡ fskyΣ. This rescaled error matrix roughly reflects the
full-sky errors and we use it in our algorithm to compute the
bias and the Hessian for this case as described earlier. Once
this is done we then rescale the Hessian by fsky, so the
statistical errors on the cosmological parameters are ampli-
fied by

ffiffiffiffiffiffiffiffi
fsky

p
.

E. Algorithm

The approach proposed here involves three main steps,
STEP I: Estimation of the spectral parameters, used to

parametrize the frequency scaling laws of the compo-
nents and their uncertainty.

STEP II: Estimation of the cross spectra of the pixel-domain
objects, y, Yð1Þ, Yð2Þ, z, characterizing the systematic
and statistical residuals.

STEP III: Estimation of the cosmological parameters and
their uncertainty.

As the products computed on each of these steps provide
the inputs for the next ones, the necessary initial inputs
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consist of those required for the first step computations. In
general these are
(1) the multifrequency, noiseless true sky signal maps,

d̂, split into its CMB, ŝ, and foreground, f̂, parts;
(2) the noise covariance matrices for the frequency

channels, N;
(3) assumed, parametrizable scaling laws for all con-

sidered sky components, A.
These are in principle sufficient to perform all the steps of
the proposed approach. If available, the algorithm proceeds
as follows.
STEP I: The best-fit spectra parameters are found by a direct

maximization of the ensemble average likelihood in
Eq. (7). This is implemented using a minimization
routine from the PYTHON’s SCIPY library implementing
the truncated Newton constrained (TNC) solver. It
capitalizes on the analytic derivatives of the likelihood
with respect to the spectral parameters given by Eq. (A4).
The statistical uncertainty is then computed using
Eq. (A5).

STEP II: Given the best-fit values of the spectral parameters
and their statistical uncertainty estimated on STEP I, we
first estimate the pixel-domain objects, y, Yð1Þ, Yð2Þ, z,
using Eqs. (17) and (25), and calculate their spherical
harmonic decomposition and cross spectra as needed.

STEP III: The forecasted values of the cosmological param-
eters are then computed by directly maximizing the
likelihood in Eq. (35) with the first derivative computed
with the help of Eqs. (C13), (C18) and (C20). The
likelihood itself is calculated using Eqs. (C8)–(C12),
These computations use the cross spectra computed in
STEP II and are performed, as before, with help of a
SCIPY minimization routine implementing the TNC
solver. However, this is now only performed after a
rough grid-based search needed to ensure a reasonable
starting point. The statistical uncertainty is then com-
puted numerically as the curvature of the ensemble
average cosmological parameter likelihood, which is an
output of the routine.

Alternately, whenever the number of sought-after
cosmological parameters is very limited, typically ≲2,
the proposed formalism permits a full investigation of
the likelihood function by a direct evaluation of Eq. (35)
on a grid of the parameters and using the analytic results
from Appendix C, Eqs. (C8)–(C12).

We note that in many cases of interest not all these
calculations have to be actually performed and instead
can be supplemented by some additional or alternative
inputs. For instance, if neither the frequency scaling laws
for the assumed sky model nor the pixel-domain noise
depend on the pixel position on the sky, then sufficient
information about the foregrounds can be provided by the
foreground component-component covariance matrix and
the component-component cross spectra (Appendix D). In
such a case, the cross spectra of y, Yð1Þ, Yð2Þ, z are directly

related to those, simplifying and accelerating the calcu-
lations required in STEP II. Also, the estimation of the
spectral parameters, STEP I, can be then performed using
only the component-component covariance matrix of the
foregrounds as the input.
A simplified flowchart of the method is shown in Fig. 1.

III. VALIDATION AND DEMONSTRATION

We validate our approach using simulated, multifre-
quency data sets of a putative CMB observation. Below we
describe in turn: the assumed experimental setup, the
assumed foreground models, and the adopted validation
methodology.

A. Setup

1. Observation

We assume here a nearly full-sky observation, which has
produced a set of multifrequency maps of 70% of the entire
sky suitable for cosmological component separation. The
frequency bands and their assumed resolutions and sensi-
tivities are all listed in Table II and have been selected
following loosely the example of a contemporary satellite
mission concept [26]. Top-hat band passes are used
throughout with their widths set to 30% of the central
frequency for each band. We assume the duration of the
observation to be 3 years, the noise to be white in the map
domain, with the homogeneous sky coverage, and no
correlation between the maps at different frequencies
included. In the following analyses we always include
harmonic modes with l ranging from 2 to 500, with the
high-end cutoff set by the assumed resolutions. We empha-
size that our goal here is to demonstrate and validate the
proposed method and not to provide a performance
evaluation of any specific instrument, which is left to future
work.

FIG. 1. A flow chart of the main steps of the proposed approach
and of its validation pipeline implemented in this work.
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The noise spectrum, Cnoise
l , characterizing the noise of

the final recovered CMB map, is computed using Eqs. (32)
and (33) with the parameters listed in Table II.

2. Sky models

We adopt, as the true sky model, a model composed of
two diffuse foreground components, one dustlike and the
other synchrotronlike. We represent them as templates at
150GHz and scale them following the scaling laws as
described below to all the frequencies of interest. For the
templates we used the so-called COMMANDER dust and
synchrotron maps, scaled to 150GHz using Planck’s
fiducial scaling laws, as included and described in
Planck’s latest polarized data release [27]. For simplicity,
but also in agreement with recent findings of [28], hereafter
we restrict ourselves to the case with no spatial variability
of the scaling laws. We consider only 70% of the sky,
leaving out the Galactic plane as well as some other high

foreground regions as defined by the sky mask provided by
the Planck Collaboration [27].
We model the dust frequency scaling law as a sum of

multiple greybody terms, each computed with a different
set of greybody parameters: the power law index, βd, and
temperature, Td. Similarly, we model synchrotron fre-
quency scaling as a sum of power laws with different
power law indices, βs. Though these models are very
simple, they allow us to investigate a range of different
cases from the simple scaling law models, involving only a
single term, to progressively more complex ones based on
two and more terms. Specifically, in the following we will
focus on three cases of the true sky scaling laws: one
involving only one term, with the parameters set to be
Td ¼ 19.6 K, βd ¼ 1.59, and βs ¼ −3.1, and two more
complex scalings based on combinations of two and four
terms respectively for both dust and synchrotron. The
effective scalings are shown in Fig. 2, where the top panels
show the absolute scaling laws and the bottom ones the

TABLE II. Instrument specifications.

Frequency (GHz) 40 50 60 70 80 90 100 120 140 165 200 235 280 340 400

Sensitivity (μK-arcmin) 42 26 20 15 12 19 12 10 7 7 5 6 19 10 19
FWHM (arcmin) 108 86 72 63 55 49 43 36 31 26 22 18 37 31 26

FIG. 2. Frequency scaling laws used in this work to demonstrate our method. The top panels show the scaling laws for dust (left)
and synchrotron (right), for three different cases involving mixtures of 1, 2 and 4 greybodies for dust and power laws for synchrotron.
The bottom panels show the same lines but relative to the single-term case. Shaded areas show a rough, 1-σ uncertainty on these scaling
laws consistent with the Planck data [29].
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laws relative to the single-term case. Clearly, the two-term
scaling leads to the departures of up to ∼0.5% in the dust
scaling within the considered range of frequencies, while
the four-term cases admit deviations as big as ∼1% for both
the dust and synchrotron. The specific parameters used for
the calculations of all the terms have been tuned to ensure
that the adopted scaling laws are consistent with the Planck
constraints [29], but also to allow us to validate and
demonstrate our method in qualitatively different regimes.
We discuss this in more detail in the next section.
In contrast, while performing the component separation

step on the simulated data sets, we always assume single-
term-only scalings for both dust and synchrotron, fixing the
dust temperature, Td, to the actual value for the first term,
i.e., Td ¼ 19.6 K, and let the data determine values of the
two spectral indices, βd and βs.

B. Validation procedure

We validate our approach using simulations. These
assume the foreground model described above. Each
foreground template is scaled to each considered frequency
band using one of the three scaling laws and integrated over
the frequency band passes. These are coadded with 500
simulated CMB maps produced as a random realization of
the Gaussian process with power spectra defined by the
standard cosmological model with parameters set to the
best-fit Planck values. All the signal maps are downgraded
to Nside ¼ 32. We thus obtain three sets of 500 simulated,
single-frequency maps, each set implementing a different
foreground scaling law. In addition, for each set we
generate 500 independent realizations of the instrumental
noise, which combined together with the signal maps create
mock data sets. These noise realizations are drawn for each
frequency band separately and modeled as a Gaussian
process with variance as given in Table II and zero mean.
There are no other systematic effects included in the
simulations.
As part of the validation procedure, we analyze each of

the simulations as we would the actual data, performing
first the pixel-domain, maximum-likelihood, parametric
component separation followed by the pixel-domain,
maximum-likelihood cosmological parameter fitting. At
the conclusion of each of these two steps we compare the
simulated results with the corresponding results obtained
with the proposed method. Specific comparisons, per-
formed on each step of the proposed algorithm, are as
follows (cf. Fig. 1).
STEP I: We estimate the best-fit spectral parameters for the

mock data by explicitly maximizing the spectral like-
lihood in Eq. (6). We do so for each of the three sets of
the 500 simulations. We then compare the results with
the expected distribution of the measured spectral
parameters derived semianalytically using Eqs. (7)
and (9) and assuming a Gaussian approximation.

STEP II: To validate this step we compute power spectra of
the foreground residuals left over in the CMBmaps after
the component separation step. We note that these are
higher level objects, which are neither explicitly derived
on this step of the processing nor needed for the
subsequent stages of the procedure. However, they
combine the same information as the direct products
and have well-defined physical interpretation. They
therefore provide a meaningful and intuitive comparison
metric.

We implement this comparison as follows. For the
simulated data, we first compute the cleaned CMB map
using the expression in Eq. (10) and assuming the
spectral parameters as derived in STEP I. The map
domain residual is then derived by subtracting from
this map the true CMB map used to simulate the input
data. We then calculate the power spectrum of the
residuals and compare it with the semianalytic results
derived via Eqs. (23) and (28).

STEP III: We estimate the best-fit value of the tensor-to-
scalar ratio parameter, r, by explicitly maximizing the
full cosmological parameter likelihood, Eq. (34); we bin
the results and compare the histogram with the Gaussian
distribution with an average and dispersion derived
using the approach proposed in Sec. II D. In addition,
we explicitly compute the averaged likelihood as a
function of r, using Eq. (35). In both these latter cases
the computations are performed directly in the harmonic
domain using the harmonic space representation of the
cleaned CMBmaps obtained in STEP II. This is donewith
the help of a standard spherical harmonic transform and
thus neglects the effects due to cut sky. This is expected
to lead to some power loss at the low-l end and thus may
affect the level of bias in the estimated values of r. This
should be taken care of in the actual forecasting process;
however it is irrelevant for the formalism’s demonstra-
tion purposes.
Due to computational-time limitation we perform the

end-to-end analysis of the actual simulation on under-
pixelized maps with HEALPIX nside ¼ 32. This is what
restricts the analysis presented hereafter to lmax ¼ 64 as the
semianalytic approach can be easily applied for much
higher cutoffs.

C. Results

We present here results obtained for each of the three
steps defined earlier. They are visualized in Figs. 3, 4,
and 5.
In Fig. 3 we show the spectral laws parameters and their

1, 2, 3σ confidence levels, shown as contours, obtained as a
Gaussian approximation to our spectral likelihood, Eq. (7).
This likelihood is averaged over possible noise realizations.
The thick points show the results of the simulations and
therefore each point shows the values of the spectral
parameters derived by a direct maximization of the spectral
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likelihood, Eq. (6). We note that each set of the mock
multifrequency data contains different realizations of the
noise and the CMB signal; however as discussed earlier on,
the latter does not impact the spectral parameter estimation
[see Eq. (15)], and the scatter of the spectral parameter
values from the simulations seen in the figure is driven only
by the noise. Overall, we see very good agreement between
the semianalytic contours and the overall distribution of the
results derived from the simulations, which as expected
cover the areas delineated by the contours aggregating
around the expected peaks of the likelihood. More quanti-
tatively, the average spectral parameters derived from the
simulations are the dashed lines and show good agreement
with the semianalytic values.
We note that the position of the peak of the likelihood is

different for each of the cases. Indeed, only in the case of
the single-term model do the true and assumed sky agree
and the recovered values of the spectral parameters agree
with those used in the sky simulations. For the multiterm
scaling laws, the assumed model does not provide an
accurate description of the true scaling laws and the derived
values of the spectral parameters do not carry any more
physical meaning. Rather, they are some effective values
that lead to the scaling laws matching the true ones most
accurately.
In Fig. 4 we show the comparison performed after

STEP II. The grey lines show power spectra of the fore-
ground residuals computed for each of the 500 realizations
of the noise and the thick dashed lines show their average.

FIG. 3. Constraints on spectral parameters, power-law indices
for dust, βd, and synchrotron, βs, forecasted for the assumed
multifrequency observation using the approach presented here.
These are shown as solid ovals corresponding to 1, 2, and 3σ
contours of the spectral parameter likelihood and computed for
the three different foreground models as discussed in the text and
shown in Fig. 2. Each model’s results are shown in different
colors as indicated in the legend. The filled circles show the
results of a direct maximization of the spectral likelihood
performed for 500 independent realizations of the considered
data set. The thin dashed lines show the position of the likelihood
peaks as determined by the semianalytic approach. These are
virtually indistinguishable from the average values derived from
simulations.

FIG. 4. Foreground residuals present in the cleaned CMB maps after the parametric component separation. The panels correspond to
the three different scaling laws considered in this work. The results shown in orange are obtained using the semianalytic method
proposed in this work with the solid orange lines showing the ensemble-averaged residuals and the shaded orange areas depicting the 2σ
scatter. The grey lines show the residuals computed case by case for each of the simulations and the thick, dashed lines show their
averages. The theoretical B-mode spectra showing the primordial (r ¼ 10−3; dark blue line), lensing (dashed black line), and total (thick
black line) are also shown for reference. The three models represent cases with dominant statistical residuals (left), dominant systematic
residuals (right), and comparable statistical and systematic residuals (middle). For comparison the red-shaded band shows the total, dust
plus synchrotron, foreground signal at 150 GHz. Only the low-l residuals are shown here.
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The solid orange lines depict the average residual spectra
and the orange shaded areas show 2σ uncertainty computed
with the help of the proposed method. We see a very good
overall agreement for all three choices of the scaling laws.
The residuals shown in the left panel are merely due to

the statistical scatter in the estimates of the spectral
parameters and this case corresponds to those studied in
[14]. Though in this case no bias is expected on the map
level, this is not so on the power spectrum level. Indeed, the
average power spectrum of the residuals does not vanish as
shown in the figure for both semianalytic and simulated
results.
In the middle and right panels, given the mismatch of

scaling laws the residuals are due to both the systematic and
the statistical errors. In the middle panel, both of these
errors are comparable and non-negligible, while in the right
panel, the systematic contribution is by far dominant. These
results show that the systematic residuals due to the
mismatch in the scaling laws can quickly dominate over
the statistical residuals even for rather minor levels of the
mismatch (0.5% and 1% in the cases shown in the middle
and right panels) at least as long as the freedom of
introducing more spectral parameters is not capitalized on.
The residuals may potentially affect the values of the

cosmological parameters determined from the CMB maps
cleaned with the parametric component separation
approach. This is not the case for the statistical residuals
as in the case shown in the left panel of Fig. 4. This is
because our parameter likelihood, Eq. (34), is written in the

map domain, where the foreground residual averaged over
the ensemble of the noise realization vanishes, and because
it accounts for the extra statistical uncertainty. In this case
we thus expect only the extra uncertainty but no bias for the
estimated cosmological parameters. This would not have
been the case were our likelihood written in the power
spectrum domain. The bias of the cosmological parameters
is expected in our approach once the systematic foreground
residuals are present. In such cases, the cosmological
parameter estimates will be affected by both biases and
extra uncertainty.
Figure 5 demonstrates all these general considerations in

the context of the determination of parameter r. In this
figure, the smooth orange lines show the predictions
obtained from our semianalytic approach, while the histo-
grams are obtained by performing simplified maximum-
likelihood parameter fitting applied to the CMB maps
contaminated with the foreground residuals. Again we find
very good qualitative and quantitative agreement in all
three cases. The peak values of the likelihoods and histo-
grams shift progressively away from the true value, taken
here to be r ¼ 10−3, when the scaling laws mismatch and
therefore the systematic residual is getting bigger. The case
shown in the left panel and thus affected only by the
statistical residual does not lead to any bias in r. In the
intermediate case (middle panel), the bias is marginal and
negligible when compared to the statistical scatter; how-
ever, in the case shown in the right panel the bias is already
statistically important. However, even in this case the bias

FIG. 5. Forecasted constraints on the tensor-to-scalar ratio parameter, r, derived from foreground-cleaned CMB maps derived for the
multifrequency observation studied here. The orange solid lines show the likelihoods on r averaged over the statistical ensemble of noise
and CMB realizations estimated using Eq. (35). The black, thick, dashed lines show the results of the Gaussian approximation with the
average and variance computed semianalytically as described in this work. The histograms show results of an end-to-end analysis of the
putative, simulated data sets involving random realizations of the instrumental noise and CMB signal and the foreground contributions
as used in the semianalytic approach. The results in the left panel show no bias in the estimated value of r. The bias in the middle panel
though formally nonzero is negligible as compared to the statistical error. In contrast, the bias seen in the rightmost panel is significant as
compared to the true value of r and the estimated statistical uncertainty. These results demonstrate an excellent agreement between our
semianalytic approach and the full computation with the Gaussian approximation being, however, more permissive as far as low values
of r are concerned.
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on r is not as large as the one that may have been expected
from the level of the residuals in the power spectrum
domain as seen in Fig. 4. This merely reflects the fact that
power spectra of the foregrounds and CMB signals are
sufficiently different that the effects of the former are
minimized in the parameter-fitting procedure. Last but not
least, we note that the Gaussian approximation tends to
underestimate the actual significance of the detection due to
the long tail for values of r going to 0.
With regard to the methodology, in the studied cases we

have found that the terms containing either vectors z or
Yð2Þ, Eqs. (25) and (17), and which thus arise due to our
inclusion of the second order terms in the expansion of the
residuals with respect to the spectral parameter deviations,
Eq. (18), tend to be subdominant and can probably be
safely discarded, which would simplify the numerical
implementation. On the other hand, neglecting the
off-diagonal terms in the covariance matrices, C and E,
Eqs. (41) and (40), is more consequential as it can
potentially cause misestimation of the bias in the estimated
parameters by as much as 100%. At the same time, this will
not however lead to a spurious bias if such is absent in the
cleaned CMB map.

IV. CONCLUSIONS AND PROSPECTS

In this work we have proposed a semianalytic approach
suitable for realistic forecasting of constraints, which can
be set on the cosmological parameters by multifrequency
CMB experiments in the presence of complex foreground
contaminations. The derived constraints are averaged over
the instrumental noise and CMB realizations and consist of
the estimates of the most likely values of the parameters as
well as of their dispersion.
The method assumes that the foregrounds are cleaned

using a pixel-based, parametric, maximum-likelihood com-
ponent separation approach; however it does not require
that the parametric model assumed for the separation
process match the true one for any set of parameter values.
If the mismatch is indeed present, the estimated scaling
laws will differ from the actual sky ones in a systematic
way. This leads to foreground residuals, both systematic
and statistical, which will be present in the cleaned CMB
map. In our approach we first estimate both these residuals
and subsequently incorporate them in the pixel-based
cosmological parameter likelihood, which we use to set
constraints on cosmological parameters. The constraints
derived in this way therefore include both biases as well as
statistical uncertainty. In this sense our method generalizes
previous efforts of the similar kind [14,18,19]. We have
validated the method in the case of pixel-independent
scaling laws and white pixel-domain noise; however, the
presented algebraic framework is flexible enough to allow
for spatial variation of the foreground scaling for both the
true and modeled signals as well as some other real life
effects. Furthermore, we also note that the proposed

formalism permits incorporating any uncertainties in the
foreground modeling in the final forecasts. This could be a
potentially very handy feature if broad families of the
foreground models need to be investigated. We leave
detailed studies of those cases for future work.
In the cases studied in this work, we have found that even

a rather minor mismatch, say of ∼1%, between the true and
assumed scaling laws over a broad range of frequencies
can lead to substantial biases of the estimated value of the
tensor-to-ratio parameter, r, if its true value is as low as
10−3. This emphasizes two things: (1) importance of
accurate and realistic modeling of the underlying fore-
ground signals in ensuring that the obtained forecasts are
realistic; (2) importance of suitably chosen, parametric
scaling models. In this work, for demonstration purposes,
we have adopted rather simple models in both these
instances. In particular, we have employed a simple,
two-parameter scaling model for the separation stage and
thus have not explored all the constraining power of the
considered observation, which allows for a significantly
larger number of spectral parameters. For these reasons the
results shown here should not be seen as a fair evaluation of
the performance of the assumed instrumental setup but
rather merely as indicative of more qualitative effects and
dependences than one may expect in such circumstances.
Again we leave exhaustive explorations of this kind to
future work.
Our approach, though clearly more involved and com-

plex than that of [14,18,19], retains the speed and efficiency
of these previous, simplified techniques, while permitting
us to attain a higher level of realism. Indeed, all the
numerical computations scale linearly with the high-l
cutoff, lmax, allowing the calculation to be conducted
efficiently even for high-resolution experimental setups.
Consequently, the method is very well suited for optimi-
zations of experimental setups and forecasting their per-
formance, in particular whenever a large parameter space of
experimental characteristics needs to be considered.
Equally importantly, this approach also allows for a direct
exploration of a large number of viable foreground models,
thus enabling investigations of the robustness of the
predictions with respect to details of the foreground
modeling—a key feature given our present ignorance about
the polarized foreground emissions in the microwave band
and the impact of the assumed foreground models on the
derived predictions. In all these aspects, the proposed
approach is complementary to a more thorough but also
more resource demanding, full-fledged, end-to-end analy-
sis of the realistic simulations.
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APPENDIX A: SPECTRAL LIKELIHOOD
DERIVATIVES

We calculate here the first derivative of the likelihood
averaged over the statistical ensemble of noise. Without
losing the generality, for the derivation’s sake, we assume
only one pixel, and thus drop subscript p and take the noise
covariance, N, to be the identity. We then present the fully
general expressions only at the very end.

We start from Eq, (6) and rewrite it as

Sspec ¼ tr½ð1 − PÞddt�: ðA1Þ

Consequently all we need to do is to compute P;β and P;ββ0 .
On defining, M≡ ðAtAÞ−1, these can be written as

P;β ¼ −AMAt
;βPþ transpose; ðA2Þ

and

P;ββ0 ¼ −PA;β0MAt
;βPþAMAt

;β0AMAt
;βP −AMAt

;ββ0P

þAMAt
;βAMAt

;β0PþAMAt
;βPA;β0MAt þ transpose: ðA3Þ

We can now combine all these terms to form the derivatives of the spectral likelihood, obtaining,�∂Sspec

∂β
�

¼
X
p

tr½N−1
p ApðAt

pN−1
p ApÞ−1At

p;βPphdpdt
pi�; ðA4Þ

and

�∂2Sspec

∂β∂β0
�

¼
X
p

trf½PpAp;β0 ðAt
pN−1

p ApÞ−1At
p;βPp þ N−1

p ApðAt
pN−1

p ApÞ−1At
p;ββ0Pp

−N−1
p ApðAt

pN−1
p ApÞ−1At

p;β0N
−1
p ApðAt

pN−1
p ApÞ−1At

p;βPp

−N−1
p ApðAt

pN−1
p ApÞ−1At

p;βN
−1
p ApðAt

pN−1
p ApÞ−1At

p;β0Pp

−N−1
p ApðAt

pN−1
p ApÞ−1At

p;βPpAp;β0 ðAt
pN−1

p ApÞ−1At
pN−1

p �hdpdt
pig; ðA5Þ

where we have used the fact that the trace of a product of a
symmetric matrix and an arbitrary matrix is the same as that
of the symmetric matrix and the transpose of the arbitrary
matrix. We note that these equations agree with Eqs. (4) and
(A9) of [14]. We also note that as in the case studied in this
latter work neither derivative depends on the specific CMB
sky signal included in the data, d̂p ¼ Â ŝ, as long as the
CMB frequency scaling is assumed to be known. This can
be seen on observing that the sky signal, ŝ, in the
expressions for the first and second derivative of the
likelihood is processed either by the operator,

Ap;βAt
pN−1

p ApÞ−1At
pN−1

p Âp; ðA6Þ
or the projection operator, Pp. However, by assumption we
haveAi0 ¼ Âi0 ¼ 1, where subscript 0 denotes the column
corresponding to the CMB and we have adopted the
thermodynamical units, so therefore [see also Eq (14)],

½ðAt
pN−1

p ApÞ−1At
pN−1

p Âp�i0 ¼ δi0: ðA7Þ
Moreover, given that ½Ap;β�0i ¼ 0,

½Ap;βðAt
pN−1

p ApÞ−1At
pN−1

p Â�0i ¼ 0 ðA8Þ

and the operator removes the entire CMB signal present in
the input data vector, ŝp. Similarly, the projection operator,
Pp, projects out the CMB signal in its entirety as

½PpÂ�i0 ¼ ½N−1
p �ij½Âp −ApðAt

pN−1
p ApÞ−1ApN−1

p Âp�j0
¼ ½N−1

p �ijðÂj0 −Aj0Þ ¼ 0: ðA9Þ

Consequently, the CMB signal affects neither the best-fit
values of the spectral parameters, β, nor their uncertainties.

APPENDIX B: RESIDUALS’ POWER SPECTRUM
AND ITS VARIANCE

We calculate the power spectrum of the residuals up to
the second order in δβ. From Eq. (21) we get

FORECASTING PERFORMANCE OF CMB EXPERIMENTS IN … PHYSICAL REVIEW D 94, 083526 (2016)

083526-15



Cres
l ≃ 1

2lþ 1

X
m

h~rcmb;†
j ~rcmb

j i

¼ 1

2lþ 1

X
m

½~y†j ~yj þ tr½Σ ~Yð1Þ†
j

~Yð1Þ
j � þ ~y†j tr½ ~Yð2Þ

j Σ� þ tr½ ~Yð2Þ†
j Σ�~yj�

¼ 1

2lþ 1

�X
m

~y†j ~yj þ tr½Σ
X
m

~Yð1Þ†
j

~Yð1Þ
j � þ

X
m

ð~y†j ~zj þ ~z†j ~yjÞ
�
; ðB1Þ

where j ¼ l2 þ lþm. From this, Eq. (23) follows.
To calculate the expression for the variance we first compute (here j and j0 correspond to the same multipole, l, and two

different values of m)

X
m;m0

h~rcmb†
j ~rcmb

j ~rcmb†
j0 ~rcmb

j0 i ¼
X
m;m0

½tr½ ~Yð1Þ
j Σ ~Yð1Þ†

j �tr½ ~Yð1Þ
j0 Σ ~Yð1Þ†

j0 � þ 2tr½ ~Yð1Þ†
j Σ ~Yð1Þ

j0 �tr½ ~Yð1Þ†
j0 Σ ~Yð1Þ

j �

þ ~y†j ~yj ~y
†
j0 ~yj0 þ ~y†j ~yjtr½Σ ~Yð1Þ†

j0
~Yð1Þ
j0 � þ ~y†j ~yj0 tr½Σ ~Yð1Þ†

j0
~Yð1Þ
j �

þ ~y†j0 ~yjtr½Σ ~Yð1Þ†
j

~Yð1Þ
j0 � þ ~y†j0 ~yj0 tr½Σ ~Yð1Þ†

j
~Yð1Þ
j � þ ~y†j ~yj ~y

†
j0 tr½ ~Yð2Þ

j0 Σ�
þ ~y†j ~yj ~yj0 tr½ ~Yð2Þ

j0 Σ� þ ~y†j0 ~yj0 ~y
†
j tr½ ~Yð2Þ

j Σ� þ ~y†j0 ~yj0 ~yjtr½ ~Yð2Þ
j Σ��; ðB2Þ

where we have retained contributions the lowest order in δ separately for the terms related to the bias and the bias-free ones.
From this we now have

VarðCres
l Þ ¼ 1

ð2lþ 1Þ2
X
m;m0

h~rcmb†
j ~rcmb

j ~rcmb†
j0 ~rcmb

j0 i − ðCres
l Þ2

¼ 1

ð2lþ 1Þ2


2

�X
m

trð ~Yð1Þ
j Σ ~Yð1Þ†

j Þ
�
2

þ
X
m;m0

½~y†j ~yj0 tr½Σ ~Yð1Þ†
j0

~Yð1Þ
j � þ ~y†j0 ~yjtr½Σ ~Yð1Þ†

j
~Yð1Þ
j0 ��

�
; ðB3Þ

which is equivalent to Eq. (28).

APPENDIX C: COSMOLOGICAL
PARAMETER LIKELIHOOD

Here, we derive explicit equations for the calculation
of first order derivatives of the cosmological parameter
likelihood. We note that the same types of calculations
are in principle involved in the computation of the
matrix of the second derivatives of the likelihood.
Importantly, also these derivatives can be expressed
solely via cross spectra of the pixel-domain objects
defined in Sec. II C 2. However, the number of
terms of the analytic expression grows rapidly and we
have found that in practice computing this matrix
numerically is more efficient and thus more useful,
while ensuring precision sufficient for the purpose.
For this reason we do not include explicitly the corre-
sponding derivations.

1. Preliminaries

Let us first compute the inverse of the covariance matrix,
C. This can be done with the help of the Sherman-
Morrison-Woodbury formula (e.g., [32]),

C−1 ¼ D−1 −D−1 ~Yð1ÞðΣ−1 þ ~Yð1Þ†D−1 ~Yð1ÞÞ−1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡U

~Yð1Þ†D−1;

ðC1Þ
where U is a square, real, symmetric matrix of rank nβ. On
noting that

½ ~Yð1Þ†D−1 ~Yð1Þ�ββ0 ¼
X
j;j0

~Yð1Þ†
jβ ðD−1Þjj0 ~Yð1Þ

j0β0

¼
X
l

C−1
l ð2lþ 1Þ⊗lð ~Yð1Þ

β ; ~Yð1Þ
β0 Þ; ðC2Þ
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where j ¼ l2 þ lþm, the inverse of U can be expressed
as

U−1 ¼ Σ−1 þ ~Yð1Þ†D−1 ~Yð1Þ

¼ Σ−1 þ
X
l

C−1
l ð2lþ 1Þ⊗lð ~Yð1Þ; ~Yð1ÞÞ: ðC3Þ

Typically, this matrix will be dense and its inversion has
to be then calculated numerically. However, given the
typically limited number of spectral parameters, this does
not pose any computational problems and matrix U can be
readily derived.
We can now write down the explicit expression for

ðC−1Þjj0 , which is given by

ðC−1Þjj0 ¼ C−1
l δjj0 −

X
j00 ;j000
β;β0

C−1
l δjj00 ~Y

ð1Þ
j00βUββ0

~Yð1Þ†
j000β0C

−1
l0 δj000j0

¼ C−1
l δjj0 − C−1

l C−1
l0
X
β;β0

~Yð1Þ
jβ Uββ0 ~Y

ð1Þ†
j0β0 ; ðC4Þ

where l is related to j and l0 to j0. Given this we can
write

ðC−1Þ2jj0 ¼ C−2
l δjj0 − 2C−3

l δjj0
X
β;β0

~Yð1Þ
jβ Uββ0 ~Y

ð1Þ†
j0β0

þ C−2
l C−2

l0
X
β;β0
α;α0

~Yð1Þ
jβ

~Yð1Þ
jα Uββ0Uαα0 ~Y

ð1Þ†
j0β0

~Yð1Þ†
j0α0 ;

ðC5Þ

which will be found useful later on.
Similarly, for an arbitrary harmonic space vector, ~x, we

have on using Eq. (C4),

ðC−1 ~xÞj ¼ ≡C−1
l

�
~xj −

X
β

~Yð1Þ
jβ uβ½ ~x�

	
; ðC6Þ

where

uβ½ ~x�≡
X
β0
Uββ0

X
l0

2l0 þ 1

Cl0
⊗l0 ð ~Yð1Þ

β0 ; ~xÞ: ðC7Þ

2. Likelihood

The “χ2-term” of the likelihood can be represented as
follows [Eq. (35)]:

trC−1E ¼ trC−1Ĉþ trC−1ðE − ĈÞ; ðC8Þ

where Ĉ stands for the true signal covariance matrix. We
can write the first term on the rhs of this equation as

trC−1Ĉ ¼
X
j;j0

ðC−1Þjj0Ĉj0j ¼
X
j;j0

�
C−1
l δjj0 − C−1

l C−1
l0
X
β;β0

~Yð1Þ
jβ Uββ0

~Yð1Þ†
j0β0

	�
Ĉl0δjj0 þ

X
β;β0

~Yð1Þ
jβ Σββ0

~Yð1Þ†
j0β0

	

¼
X
l

�
ð2lþ 1Þ Ĉl

Cl
ð1 − C−1

l tr½U⊗lð ~Yð1Þ; ~Yð1ÞÞ�Þ þ ð2lþ 1Þ
Cl

tr½Σ⊗lð ~Yð1Þ; ~Yð1ÞÞ�
�

−
X
l;l0

ð2lþ 1Þ
Cl

ð2l0 þ 1Þ
Cl0

tr½U⊗l0 ð ~Yð1Þ; ~Yð1ÞÞΣ⊗lð ~Yð1Þ; ~Yð1ÞÞ�; ðC9Þ

where for computational reasons it is better to first perform the sum over l and l0 before calculating traces. In particular the
last term becomes then linear in lmax. Similarly, we can now write the second term of the χ2,

trC−1ðE − ĈÞ ¼
X
j;j0

ðC−1Þjj0 ð~yj0 ~y†j þ ~zj0 ~y
†
j þ ~yj0 ~z

†
jÞ ¼

X
l

ð2lþ 1Þ
Cl

ð⊗lð~y; ~yÞ þ⊗lð~z; ~yÞ þ⊗lð~y; ~zÞÞ

−
X
l;l0

ð2lþ 1Þ
Cl

ð2l0 þ 1Þ
Cl0

tr½Uð⊗l0 ð ~Yð1Þ; ~yÞ⊗lð~y; ~Yð1ÞÞ þ⊗l0 ð ~Yð1Þ; ~yÞ⊗lð~z; ~Yð1ÞÞ

þ⊗l0 ð ~Yð1Þ; ~zÞ⊗lð~y; ~Yð1ÞÞÞ�; ðC10Þ

and again in a numerical implementation it is better to first perform sums over the multipoles and only later take the
traces.
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The determinant of the assumed covariance matrix, C,
can then be efficiently calculated by noting that

det

��
D − ~Yð1Þ

~Yð1Þ† Σ−1

�	
¼ det D detðΣ−1 þ ~Yð1Þ†D−1 ~Yð1ÞÞ

¼ detΣ−1 detðDþ ~Yð1ÞΣ ~Yð1Þ†Þ;
ðC11Þ

and thus

detC ¼ detD
detΣ
detU

: ðC12Þ

Given that D is diagonal and U and Σ small, the compu-
tation of the determinant of the covariance does not pose
typically any problem. Note that as these two latter matrices
are typically dense their determinants need to be calculated
numerically using standard techniques.

3. First derivatives of the likelihood

We can now compute the likelihood gradient. From
Eq. (36) we can write

hSpar
;i i¼ tr½C−1C;i−C−1C;iC−1E�

¼ tr½C−1C;i−C−1C;iC−1Ĉ�− tr½C−1C;iC−1ðE− ĈÞ�;
ðC13Þ

where the second part contains all the extra corrections
from the model mismatches, while the former vanishes
when the true and estimated parameters are the same,
i.e., Ĉ ¼ C.
We compute each of these two terms separately below.

a. tr½C−1C;i − C−1C;iC−1Ĉ�
We first observe that

Ĉ −C ¼ D̂ −D; ðC14Þ

where D̂ stands for D computed for the true values of the
cosmological parameters. Hence, we can represent Ĉ as

Ĉ ¼ Cþ D̂ −D≡Cþ ΔD; ðC15Þ

where

ΔDjj0 ¼ ðĈl − ClÞδjj0 ≡ ΔCcmb
l δjj0 : ðC16Þ

On using Eq. (C15) we can rewrite the complete term as

tr½C−1C;i −C−1C;iC−1Ĉ� ¼ −tr½C−1C;iC−1ΔD�; ðC17Þ

and then,

tr½C−1C;iC−1ΔD� ¼
X

j;j0;j00;j000
ðC−1Þjj0 ðC;iÞj0j00 ðC−1Þj00j000ΔDj000j ¼

X
j;j0

ðC−1Þ2jj0
∂Ccmb

l0

∂pi
ΔCcmb

l

¼
X
j;j0

�
C−2
l δjj0 − 2C−3

l δjj0
X
β;β0

~Yð1Þ
jβ Uββ0

~Yð1Þ†
j0β0 þ C−2

l C−2
l0
X
β;β0
α;α0

~Yð1Þ
jβ

~Yð1Þ
jα Uββ0Uαα0

~Yð1Þ†
j0β0

~Yð1Þ†
j0α0

	 ∂Ccmb
l0

∂pi
ΔCl;

¼
X
l

∂Ccmb
l

∂pi
ΔCl

ð2lþ 1Þ
C2
l

− tr



U
X
l

�
2ð2lþ 1Þ

C3
l

∂Ccmb
l

∂pi
ΔCl⊗lð ~Yð1Þ; ~Yð1ÞÞ

��

þ tr



U
X
l

�ð2lþ 1Þ
C2
l

∂Ccmb
l

∂pi
⊗lð ~Yð1Þ†; ~Yð1ÞÞ

�
U
X
l

�ð2lþ 1Þ
C2
l

ΔCl⊗lð ~Yð1Þ; ~Yð1Þ†Þ
��

ðC18Þ

where pi is the parameter we estimate and we have used Eq. (C5) derived earlier and the fact that U is positive and
symmetric. We note that the expression on the right-hand side above is manifestly real as it should be.

b. tr½C−1C;iC−1ðE − ĈÞ�
On using Eq. (40) and the fact that the covariance, C, is symmetric and real, we can rewrite this term as follows:

tr½C−1C;iC−1ðE − ĈÞ� ¼ trfC;i½ðC−1 ~yÞðC−1 ~yÞ† þ ðC−1 ~yÞðC−1 ~zÞ† þ ðC−1 ~zÞðC−1 ~yÞ†�g

¼
X
j


∂Cl

∂pi
½ðC−1 ~yÞjðC−1 ~yÞ†j þ ðC−1 ~zÞjðC−1 ~yÞ†j þ ðC−1 ~yÞjðC−1 ~zÞ†j �

�
; ðC19Þ

where as usual j ¼ l2 þ lþm. Therefore, on using Eq. (C6),
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tr½C−1C;iC−1ðE − ĈÞ� ¼
X
l



2lþ 1

C2
l

∂Cl

∂pi

�
⊗lð~y; ~yÞ − 2ℜ

X
β

⊗lð~y; ~Yð1Þ
β Þ ~uβ½~y� þ

X
β;β0

⊗lð ~Yð1Þ
β ; ~Yð1Þ

β0 Þ ~u†
β½~y� ~uβ0 ½~y�

þ 2ℜ

�
⊗lð~y; ~zÞ −

X
β

⊗lð~y; ~Yð1Þ
β Þ ~uβ½~z� −

X
β

⊗lð~z; ~Yð1Þ
β Þ ~uβ½~y�

þ
X
β;β0

⊗lð ~Yð1Þ
β ; ~Yð1Þ

β0 Þ ~u†
β½~y� ~uβ0 ½~z�

	�
: ðC20Þ

APPENDIX D: SPECIAL CASE: HOMOGENEOUS
NOISE AND PIXEL-INDEPENDENT

SCALING LAWS

Let us assume that the noise of the frequency maps is
homogeneous and that we use global scaling laws for all
considered components and all considered pixels. Then,
matrixW0k

p ðβÞ and its derivatives with respect to the spectra
parameters are all the same for all considered pixels, p. We
can then drop the pixel subscripts and introduce the
following pixel-independent objects,

wk ≡W0kðβ̄Þ;

∂Wkβ ≡ ∂W0k

∂β
����
β̄

;

vk ≡
X
β;β0

∂2W0k

∂β∂β0
����
β̄

Σβ0β; ðD1Þ

so then we can rewrite Eqs. (17) and (25) as

~y ¼ ~Fw

~Yð1Þ ¼ ~F∂W
~z ¼ ~Fv: ðD2Þ

Subsequently, we can relate all the cross-correlations
appearing in the earlier equations to the cross-correlation
matrix of the foreground signal in different frequency
bands, F fore

l , defined in Eq. (27),

⊗lð~y; ~yÞ ¼ wtF fore
l w;

⊗lð ~Yð1Þ; ~Yð1ÞÞ ¼ ∂WtF fore
l ∂W;

⊗lð~y; ~zÞ ¼ wtF fore
l v;

⊗lð ~Yð1Þ; ~yÞ ¼ ∂WtF fore
l w;

⊗lð ~Yð1Þ; ~zÞ ¼ ∂WtF fore
l v: ðD3Þ
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