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1. Introduction

The duality between spaces and algebras of functions on spaces is the basis of noncom-
mutative geometry. One gives up the commutativity of the algebras of functions while
replacing them by appropriate classes of noncommutative associative algebras which are
considered as “algebras of functions” on (virtual) “noncommutative spaces”.

For instance, one may consider noncommutative associative algebras generated by
coordinate functions that satisfy relations other than the commutation between them,
thus generalizing the polynomial algebras and thereby defining noncommutative vector
spaces.

There is also a duality between groups and Hopf algebras, where structures on the
algebra of the quantum space represent the corresponding group structures. More precisely,
the coproduct, counit and antipode of a quantum group will represent the product, unit
and inverse operation in a usual group.

This duality can be extended to groupoids and corresponding Hopf algebroids.
Similarly, the quantisation of a space with a group action leads to the notion of a

coaction of a Hopf algebra. In order to quantise a principal bundle one needs additional
structures on the corresponding algebras and this leads to the notion of Hopf-Galois
extension.

Finally, motivated by the idea of quantisation of groups, one can also consider the
duality between 2-groups and quantum 2-groups. We know that a 2-group is a monoidal
category, such that all morphisms are invertible and all objects are weakly invertible. So
there is a corresponding quantisation on the 2-structure, which we call a Hopf 2-algebra.

This thesis is divided into three parts: quantum principal bundles, gauge groups of
Galois objects and coherent Hopf 2-algebras.

1.1. Principal fibrations over noncommutative spheres. In the papers [13] and [14]
noncommutative finite-dimensional Euclidean spaces and noncommutative products of
them were defined. These “spaces” were given in the general framework of the theory
of regular algebras, which are a natural noncommutative generalization of the algebras
of polynomials. Noncommutative spheres and noncommutative product of spheres were
also defined. These are examples of noncommutative spherical manifolds related to the
vanishing of suitable Connes–Chern classes of projections or unitaries in the sense of the
work [11] and [10].

In this part we go one step further and consider actions of (classical) groups on
noncommutative spheres and quotients thereof. In particular we present examples of
noncommutative four-spheres that are base spaces of SU(2)-principal bundles with non-
commutative seven-spheres as total spaces. This means that the noncommutative algebra
of coordinate functions on the four-sphere is identified as a subalgebra of invariant elements
for an action of the classical group SU(2) on the noncommutative algebra of coordinate
functions on the seven-sphere. Conditions for these to qualify as noncommutative principal
bundles are satisfied. The four-sphere algebra is generated by the entries of a projection
which yields a noncommutative vector bundle over the sphere. Under suitable conditions
the components of the Connes–Chern character of the projection vanish except for the
second (the top) one. The latter is then a nonzero Hochschild cycle that plays the role of
the volume form for the noncommutative four-sphere.

This part is organized as follows. In Section 8 we recall from [13] and [14] some results
on the quadratic algebras which we will need and some of the solutions for noncommutative
spheres S7

R that we will use later on (here R is a matrix of deformation parameters). In
Section 9, out of the functions on the seven-sphere S7

R we construct a projection in a
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matrix algebra over these functions, whose entries are invariant for a right action of SU(2)
and thus generate a subalgebra that we identify as the coordinate algebra of a four-sphere
S4
R. We also show that this algebra inclusion is a noncommutative principal bundle with

classical structure group SU(2). Sections 9.3 and 9.4 relate Connes–Chern characters of
idempotents and unitaries to Hochschild cycles and noncommutative volume forms on a
four-sphere S4

R. In Section 9.5 the ∗-structure on the algebra of functions of S4
R is related

to the vanishing of a component of the Connes–Chern character of the projection (and of
a related unitary), a fact that puts some restrictions on the possible deformation matrices
R, but makes the spheres examples of noncommutative spherical manifolds [11], [10]. We
also exhibit explicit families of noncommutative four-sphere algebras.

1.2. On the gauge group of Galois objects. The study of groupoids on one hand
and gauge theories on the other hand is important in different areas of mathematics and
physics. In particular these subjects meet in the notion of the gauge groupoid associated to
a principal bundle. In view of the considerable amount of recent work on noncommutative
principal bundles it is desiderable to come up with a noncommutative version of groupoids
and their relations to noncommutative principal bundles, for which one needs to have a
better understanding of bialgebroids.

In this part, we will consider the Ehresmann–Schauenburg bialgebroid associated with
a noncommutative principal bundle as a quantization of the classical gauge groupoid.
Classically, bisections of the gauge groupoid are closely related to gauge transformations.
Here we show that under some conditions on the base space algebra of the noncommutative
principal bundle, the gauge group of the principal bundle is group isomorphic to the group
of bisections of the corresponding Ehresmann–Schauenburg bialgebroid.

For a bialgebroid there is a notion of coproduct and counit but in general not of an
antipode. An antipode can be defined for the Ehresmann–Schauenburg bialgebroid of a
Galois object which (the bialgebroid that is) is then a Hopf algebra. Now, with H a Hopf
algebra, a H-Galois object is a noncommutative principal bundle over a point in a sense:
a H-Hopf–Galois extension of the ground field C. In contrast to the classical situation
where a bundle over a point is trivial, for the isomorphism classes of noncommutative
principal bundles over a point this need not be the case. Notable examples are the group
Hopf algebras C[G], whose corresponding principal bundles are C[G]-graded algebras and
are classified by the cohomology group H2(G,C×), and Taft algebras TN , the equivalence
classes of TN -Galois objects are in bijective correspondence with the abelian group C.

Thus the central part is dedicated to the Ehresmann–Schauenburg bialgebroid of
a Galois object and to the study of the corresponding groups of bisections, be they
algebra maps from the bialgebroid to the ground field (and thus characters) or more
general transformations. These are in bijective correspondence with the group of gauge
transformations of the Galois object. We study in particular the case of Galois objects for
H a general cocommutative Hopf algebra and in particular a group Hopf algebra. A nice
class of examples comes from Galois objects and corresponding Ehresmann–Schauenburg
bialgebroids for the Taft algebras TN , an example that we work out in full detail.

Automorphisms of a (usual) groupoid with natural transformations form a strict 2-group
or, equivalently, a crossed module. The crossed module involves the product of bisections
and the composition of automorphisms, together with the action of automorphisms on
bisections by conjugation. Bisections are the 2-arrows from the identity morphisms
to automorphisms, and the composition of bisections can be viewed as the horizontal
composition of 2-arrows. This construction is extended to the Ehresmann–Schauenburg
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bialgebroid of a Hopf–Galois extension by constructing a crossed module for the bisections
and the automorphisms of the bialgebroid.

This part is organised as follows: In Section 11 we recall all the relevant concepts
and notation on gauge groups that we need. In Section 12, we first have Ehresmann–
Schauenburg bialgebroids and the group of their bisections, then we show that when
the base algebra belongs to the centre of the total space algebra, the gauge group of a
noncommutative principal bundle is group isomorphic to the group of bisections of the
corresponding Ehresmann–Schauenburg bialgebroid. In Section 13 we consider Galois
objects, which can be viewed as noncommutative principal bundles over a point. Several
examples are studied here, such as Galois objects for a cocommutative Hopf algebra,
in particular group Hopf algebras, regular Galois objects (Hopf algebras as self-Galois
objects) and Galois objects of Taft algebras. In Section 14, we study the crossed module
structure in terms of the bisection and the automorphism groups of an Ehresmann–
Schauenburg bialgebroid. When restricting to a Hopf algebra, we show that characters
and automorphisms also form a crossed module structure, and this can generate the
representation theory of 2-groups (or crossed modules) on Hopf algebras. We work out in
detail this construction for the Taft algebras.

1.3. On Coherent Hopf 2-algebras. The study of higher group theory and quantum
group theory is becoming more and more important in various branches of mathematics
and physics, such as topological field theory and quantum gravity. In this part, the main
idea of constructing a coherent quantum 2-group (or coherent Hopf 2-algebra) is to make
a quantization on the 2-arrows corresponding to a 2-category.

In [25] and [15], the researchers constructed a strict quantum 2-group, while here we
construct a generalization of them. The quantum groups corresponding to the objects and
morphisms are not necessarily coassociative, and thus there will be a corresponding coher-
ence condition. For noncoassociative quantum groups, Hopf coquasigroups [20] usually
offer some new properties and interesting examples, such as functions on Cayley algebras,
hence we are motivated to build the coherent Hopf 2-algebra by Hopf coquasigroups.
Moreover, the nonassociativity of Cayley algebras are controlled by a 3-cocycle coboundary
corresponding to a 2-cochain. This fact will play an important role in satisfying the
coherence condition of a coherent Hopf 2-algebra. We choose a special quantization for
the 2-structure, such that by definition a coherent Hopf 2-algebra will be composed of
two Hopf coquasigroups, which correspond to the “quantum” object and morphisms.

For a coherent 2-group, since all the morphisms are invertible, there is a groupoid
structure based on of the composition of morphisms. Therefore, a quantum groupoid or
Hopf algebroid will naturally exist in the coherent Hopf 2-algebra. These facts result in
two different structures for the quantum 2-arrows. On one hand, it is a Hopf coquasigroup,
which corresponds to the ‘horizontal’ coproduct (or tensor coproduct); on the other hand
it is also a Hopf algebroid, which corresponds to the ‘vertical’ coproduct (or morphism
cocomposition). These two kinds of coproducts also satisfy the interchange law. Moreover,
the antipode of the Hopf coquasigroup preserves the coproduct of the Hopf algebroid
while the antipode of the Hopf algebroid is a coalgebra map, which contradicts the usual
property that the antipode is an anti-coalgebra map. The coherence condition will be
described by a coassociator, which satisfies the “3-cocycle” condition. When we consider
Hopf algebras instead of Hopf coquasigroups with trivial coassociator, we will get a strict
Hopf 2-algebra.

For a strict 2-group, there is an equivalent definition, called the crossed module of
group. In the “quantum case” [15], the researchers construct a crossed comodule of Hopf
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algebra as a strict quantum 2-group. Here we show that under some conditions, a crossed
comodule of Hopf algebra is a strict Hopf 2-algebra with trivial coassociator. Several
examples are also shown here, which can be characterised by the corresponding bialgebra
morphisms.

We also produce a generalisation for crossed comodules of Hopf algebras, i.e. crossed
comodules of Hopf coquasigroups, by replacing the pair of Hopf algebras with a special
pair of Hopf coquasigroups. We show that if a Hopf coquasigroup is quasi-coassociative,
one can construct a special crossed comodule of a Hopf coquasigroup and furthermore
a coassociator, using which one can construct a coherent Hopf 2-algebra. An example
is a Hopf coquasigroup which consists of functions on unit Cayley algebra basis. This
Hopf coquasigroup is quasi coassociative and we will give all the structure maps precisely.
Finally, we show that the coassociator is indeed controlled by a 3-coboundary cocycle
corresponding to a 2-cochain.

In Section 15 coherent Hopf 2-algebras are defined and several of their properties are
studied. Section 16 is devoted to a generalisation of crossed comodules of Hopf algebras,
which is shown to be a strict Hopf 2-algebra under some conditions. In Section 17, we
will first give the definition of quasi-coassociative Hopf coquasigroup, and then construct
a crossed comodule of a Hopf coquasigroup and futhermore a coherent Hopf 2-algebra. In
Section 18, the finite dimensional coherent Hopf 2-algebra is discussed, and through an
investigation into the dual pairing, we make clear why quasi-coassociative coquasigroups
are the quantization of quasiassociative quasigroups; we also consider an example built by
functions on a Cayley algebra basis.
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Before we talk about quantum principal bundles, gauge groupoids and coherent 2-Hopf
algebras, it will be necessary to introduce principal bundles, groupoids and coherent
2-groups, which we will do from Section 2 to 4. From Section 5 to 7 we will then recall all
the relevant concepts and notation on Hopf algebras, Hopf coquasigroups, noncommutative
principal bundles (Hopf–Galois extensions) and Hopf algebroids that we need.

2. Classical principal bundles and examples

We start with the definition of principal fiber bundle associated to a group G in the
category of topological spaces.

Recall that a fiber bundle over a topological space M is a triple (P, F,M), which consists
of three topological spaces P, F and M , together with a surjective map π : P → M ,
such that for all x ∈ M , the fiber π−1(x) is homeomorphic to F . Moreover, the bundle
map is locally trivial, i.e. for all x ∈ M , there is an open neighborhood U of x and a
homeomorphic map f : U × F → π−1(U) with p1 = π ◦ f , where p1 is the projection on
the first factor U .

Definition 2.1. A principal G-bundle over M is a fiber bundle (P,M,G, π), which
consists of two topological spaces P and M , and a topological group G, together with a
bundle map π : P → M and a continuous right G-action ρ : P × G → P over M , such
that:

• The canonical map

χ : P ×G→ P ×M P, (p, g) 7→ (p, pg), (2.1)

is a homeomorphism, where P ×M P is the subspace of P × P :

P ×M P = {(p, q) ∈ P × P | π(p) = π(q)}.
A principal G-bundle (P,G,M, π) is trivial, if there is a G-equivariant diffeomorphism

between P and M ×G.
Let (P,M,G, π) and (P ′,M,G, π′) be two principal G-bundles over M , then a morphism

between them is a G-equivariant continuous map from P to P ′.
It is known that there is a bijective correspondence between the isomorphism class of

principal G-bundles over M and the homotopy classes of continuous maps from X to
BG, where BG is the classifying space of the Lie group G. As a result, every principal
G-bundle over a point is isomorphic to each other.

Example 2.2. Recall that there are only four kinds of finite dimensional division algebras
over R, that is: the real numbers R, the complex numbers C, the quaternions H and the
octonions O with dimensions 1, 2, 4 and 8 respectively. We know the real and complex
numbers are commutative and associative. The quaternions are associative but not
commutative. The octonions are not commutative or associative. Now we can construct
four different fiber bundles in terms of the division algebras, which we can also call Hopf
fibrations:

S0 ↪→ S1 → S1,

S1 ↪→ S3 → S2

S3 ↪→ S7 → S4

S7 ↪→ S15 → S8.

The simplest one is S0 ↪→ S1 → S1. Considering S1 as the unit complex numbers and
S0 as the unit real numbers (which are ±1), the bundle map π : S1 → S1 is given by
π(z) := z2 for any z ∈ S1. The right action of S0 is the multiplication of ±1 on S1.
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The rest of the fibrations can be constructed in the same way, here we only consider
the fibration S1 ↪→ S3 → S2:

The sphere S3 can be views as the set of elements (x, y) ∈ C2, such that ‖x‖2 +‖y‖2 = 1.
When considering S1 as the unit complex numbers, there is a right action of S1 on S3 by
multiplication on the right, i.e. ρ : ((x, y), w) 7→ (xw, yw), where (x, y) ∈ S3 and w ∈ S1.
The bundle map π : S3 → S2 is given by

π(x, y) := (2xy∗, ‖x‖2 − ‖y‖2) ∈ S4 = {(z, r) ∈ H× R|zz∗ + r2 = 1}. (2.2)

First we can see that the projection is invariant under the group action, and

(2xy∗)(2xy∗)∗ + (‖x‖2 − ‖y‖2)2 = ‖x‖4 + ‖y‖4 + 2‖x‖2‖y‖2 = 1.

Thus we get a well defined principal U(1)-bundle. Similarly, S3 ↪→ S7 → S4 is a principal
SU(2)-bundle, when we replace complex numbers by quaternions. However, the Hopf
fibration S7 ↪→ S15 → S8 is only a fiber bundle, but not a principal bundle, since by the
non-associativity of octonions, the diagonal action of S7 on S15 (i.e. (x, y) / g = (xg, yg))
can not preserve the fiber over S8.

But in this case we can still construct an action of S7 on S15 by charts:

(x, y) / w := ((xy−1)(yw), yw), (2.3)

for any (x, y) ∈ S15 with y 6= 0 and w ∈ S7, where S7 can be viewed as unit octonions.
Similarly, we can define

(x, y) / w := (xw, (yx−1)(xw)), (2.4)

for any (x, y) ∈ S15 with x 6= 0 and w ∈ S7. We can see that this action is invariant under
the projection π : S15 → S8. Indeed,

((xy−1)(yw))((xy−1)(yw))∗ = xx∗, (yw)(yw)∗ = yy∗

and

((xy−1)(yw))(yw)∗ = xy∗,

since the subalgebra of octonions generated by any two elements is associative. However,
this action is not associative, i.e. ((x, y) / w) / z 6= (x, y) / (wz).

3. Groupoids

In this section we will first recall the definition of groupoids and then talk about the
gauge or Ehresmann groupoid as an example.

A groupoid is a small category with all the morphisms invertible. More precisely, we
have the following definition:

Definition 3.1. A groupoid (G0, G1, s, t, id) consists of two sets G0 (objects) and G1

(morphisms), and three maps s, t : G1 → G0 (called respectively the source and target
map) and id : G0 → G1 (called the identity map). Moreover, for any two morphisms
f, g with s(f) = t(g), there is a binary operation (called the composition of morphisms)
◦ : G1

s ×t G1 → G1, where G1
s ×t G1 is the pullback of the morphisms s and t, i.e.

G1
s ×t G1 := {(f, g) ∈ G1 ×G1 | s(f) = t(g)},

such that the following conditions are satisfied:

(1)

s(g ◦ h) = s(h), t(g ◦ h) = t(g).

for any (g, h) ∈ G1
s ×t G1.
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(2) (g ◦ h) ◦ k = g ◦ (h ◦ k), for any (g, h), (h, k) ∈ G1
s ×t G1.

(3) s(ida) = t(ida) = a, for any a ∈ G0, where we denote the image of id by ida.
(4) For any g ∈ G1, we have

g ◦ ids(g) = g = idt(g) ◦ g.

(5) For each g ∈ G1, there is an inverse g∗ ∈ G1, such that

s(g) = t(g∗), t(g) = s(g∗).

Moreover, g ◦ g∗ = idt(g) and g∗ ◦ g = ids(g).

It is well known that a group is a groupoid, which consists of only one object.

Example 3.2. Here we give as an example the gauge groupoid associated to a principal
bundle and examine the corresponding group of bisections; we shall mostly follow the
book [27]. Let π : P →M be a principal bundle over the manifold M with (Lie) structure
group G. Consider the diagonal action of G on P ×P given by (u, v)g := (ug, vg); denote
by [u, v] the orbit of (u, v) and by Ω = P ×GP the collection of orbits. Then (M,Ω, s, t, id)
is a groupoid (called the gauge or Ehresmann groupoid of the principal bundle), with Ω
being the morphisms and M being the objects, and the source and target projections
given by

s([u, v]) := π(v), t([u, v]) := π(u). (3.1)

The identity map id : M → P ×G P is given by

m 7→ idm := [u, u] (3.2)

for m ∈ M and u any element in π−1(m). And the partial multiplication [u, v′] · [v, w],
defined when π(v′) = π(v) is given by

[u, v] · [v′, w] = [u,wg], (3.3)

for the unique g ∈ G such that v = v′g. 1 One can always choose representatives such
that v = v′ and the multiplication is then simply [u, v] · [v, w] = [u,w]. The inverse is

[u, v]−1 = [v, u]. (3.4)

A bisection of the gauge groupoid Ω is a map σ : M → Ω, which is right-inverse to the
source projection, s ◦ σ = idM , and is such that t ◦ σ : M →M is a diffeomorphism. The
collection of bisections, denoted B(Ω), form a group: given two bisections σ1 and σ2, their
multiplication is defined by

σ1 ∗ σ2(m) := σ1

(
(t ◦ σ2)(m)

)
σ2(m), for m ∈M. (3.5)

The identity is the object inclusion m 7→ idm, simply denoted id, with inverse given by

σ−1(m) =
(
σ
(
(t ◦ σ)−1(m)

))−1

; (3.6)

here (t ◦ σ)−1 is a diffeomorphism of M , while the outer inversion is the one in (3.4).
The subset BP/G(Ω) of ‘vertical’ bisections, that is those bisections that are right-inverse

to the target projection as well, t ◦ σ = idM , form a subgroup of B(Ω).
It is a classical result [27] that there is a group isomorphism between B(Ω) and the

group of principal (G-equivariant) bundle automorphisms of the principal bundle,

AutG(P ) := {ϕ : P → P ; ϕ(pg) = ϕ(p)g} , (3.7)

1Here one is really using the classical translation map t : P ×M P → G, (ug, u) 7→ g.
12



while BP/G(Ω) is group isomorphic to the group of gauge transformations, that is the
subgroup of principal bundle automorphisms which are vertical (project to the identity
on the base space):

AutP/G(P ) := {ϕ : P → P ; ϕ(pg) = ϕ(p)g , π(ϕ(p)) = π(p)}. (3.8)

4. Quasigroups and 2-groups

In this section we will first talk about quasigroups, then we will introduce (coherent)
2-groups.

4.1. Quasigroups.

Definition 4.1. A quasigroup is a set G with a product and identity, for each element g
there is a inverse g−1 ∈ G, such that g−1(gh) = h and (hg−1)g = h for any h ∈ G.

For a quasigroup, the multiplicative associator β : G3 → G is defined by

g(hk) = β(g, h, k)(gh)k, (4.1)

for any g, h, k ∈ G.
The group of associative elements N(G) is given by

N(G) = {a ∈ G|(ag)h = a(gh), g(ah) = (ga)h, (gh)a = g(ha), ∀g, h ∈ G},

which sometimes called the ‘nucleus’ [20]. A quasigroup is called quasiassociative, if β has
its image in N(G) and uN(G)u−1 ⊆ N(G).

It is clear that any element in N(G) can pass through the brackets of a product. For
example, (g(hx))k = (gh)(xk) for any g, h, k ∈ G and x ∈ N(G). Therefore, we have the
following proposition, and hereafter we use mn

I : G×G× · · · ×G→ G to denote an n-th
iterated product on G (with index I to distinguish different kinds of iterated products).

Proposition 4.2. Let N(G) be the associative elements of a quasigroup G, and let
mn
I ,m

n
J : G×G× · · · ×G→ G be both n-th iterated products on G. If

mn
I (g1, g2, · · · , 1, · · · , gn) = mn

J(g1, g2, · · · , 1, · · · , gn), (4.2)

for any g1, g2, · · · gn ∈ G with 1 is inserted into the m-th position (1 ≤ m ≤ n+ 1). Then

mn
I (g1, g2, · · · , x, · · · , gn) = mn

J(g1, g2, · · · , x, · · · , gn),

for any x ∈ N(G) inserted into the m-th position.

Proof. We can prove this proposition inductively. For n = 2, this is obvious by the
definition of N(G). Now we consider the case for n ≥ 3. We can see both sides of equation
(4.2) are equal to mn−1

K (g1, g2, · · · , gn) for an (n − 1)-th iterated product mn−1
K . Let

mn−1
K (g1, g2, · · · , gn) = mp

K′(g1, · · · , gp)mq
K′′(gp+1, · · · , gn) for some iterated coproducts

mp
K′ and mq

K′′ with p+ q = n− 2. Assume this proposition is correct for n = N − 1. We
have two cases for the n-th iterated products mn

I ,m
n
J :

The first case is mn
I (g1, g2, · · · , h, · · · , gn) = mi′

I′(g1, · · · , h, · · · , gi′+1)mi′′

I′′(gi′+2, · · · , gn)

and mn
J(g1, g2, · · · , h, · · · , gn) = mj′

J ′(g1, · · · , h, · · · , gj′+1)mj′′

J ′′(gj′+2, · · · , gn), with i′+i′′ =
j′ + j′′ = n − 1 (h is inserted into the m-th position and m + 1 ≤ i′, j′). Here i′ has
to be equal to j′, otherwise we can’t get equation (4.2). Thus, mi′′

I′′(gi′+2, · · · , gn) =

mj′′

J ′′(gj′+2, · · · , gn). Moreover, mi′′

I′′ = mj′′

J ′′ = mq
K′′ . Then we can use the hypotheses for mi′

I′

and mj′

J ′ with i′ = j′ ≤ n. It is similar to consider the case mn
I/J(g1, g2, · · · , h, · · · , gn) =
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mi′

I′/J ′(g1, · · · gi′+1)m
i′′

I′′/J ′′(gi′+2, · · · , h, · · · , gn) (h is inserted into the m-th position and

m+ 1 > i′, j′).
The second case ismn

I (g1, g2, · · · , h, · · · , gn) = mi′

I′(g1, · · · , h, · · · , gi′+1)mi′′

I′′(gi′+2, · · · , gn),

and mn
J(g1, g2, · · · , h, · · · , gn) = mj′

J ′(g1, · · · gj′+1)mj′′

J ′′(gj′+2, · · · , h, · · · , gn). Since (4.2) is
equal tomn−1

K (g1, g2, · · · , gn), we have i′+1 = m = p+1, i.e. mn
I (g1, g2, · · · , gi′ , h, gi′+1 · · · , gn) =

mi′

I′(g1, · · · , h)mi′′

I′′(gi′+1, · · · , gn) = mi′

I′(g1, · · · , gp, h)mi′′

K′′(gp+1, · · · , gn). Similarly, mn
J =

mn
J(g1, g2, · · · , h, · · · , gn) = mp

K′(g1, · · · gp)mq+1
J ′′ (h, · · · , gn). Define two iterated products

mp+1
G := m ◦ (mp

K′ × idG) and mq+1
H := m ◦ (idG × mq

K′′). By the hypotheses we have

mp+1
G (g1 · · · , gp, x) = mp+1

I′ (g1 · · · , gp, x) and mq+1
H (x, g1, · · · , gq) = mq+1

J ′′ (x, g1, · · · , gq).
Therefore, we have

mn
I (g1, g2, · · · , x, · · · , gn) =mp+1

I′ (g1 · · · , gp, x)mi′′

K′′(gp+1, · · · , gn)

=mp+1
G (g1 · · · , gp, x)mi′′

K′′(gp+1, · · · , gn)

=mp
K′(g1 · · · , gp)mq+1

H (x, gp+1, · · · , gn)

=mp
K′(g1 · · · , gp)mq+1

J ′′ (x, gp+1, · · · , gn)

=mn
J(g1, g2, · · · , x, · · · , gn),

for any x ∈ N(G), where the 3rd step uses x ∈ N(G). �

Proposition 4.2 will be useful in the proof of Theorem 4.8. In [20] we have the following:

Lemma 4.3. Let G be a quasigroup. If it is quasiassociative, then we have the following
3-cocycle condition:

(gβ(h, k, l)g−1)β(g, hk, l)β(g, h, k) = β(g, h, kl)β(gh, k, l) (4.3)

for any g, h, k, l ∈ G.

Proof. Multiply both sides by ((gh)k)l, we have on one hand

(gβ(h, k, l)g−1)β(g, hk, l)β(g, h, k)(((gh)k)l)

=(gβ(h, k, l)g−1)β(g, hk, l)
((
β(g, h, k)((gh)k)

)
l
)

= (gβ(h, k, l)g−1)β(g, hk, l)((g(hk))l)

=(gβ(h, k, l)g−1)(g((hk)l)) = g
(
β(h, k, l)((hk)l)

)
= g(h(kl))

On the other hand,

β(g, h, kl)β(gh, k, l)(((gh)k)l) = β(g, h, kl)((gh)(kl)) = g(h(kl)).

�

4.2. Coherent 2-groups. We know from [37] that a coherent 2-group is a monoidal
category, in which every object is weakly invertible and every morphism is invertible.
More precisely, we have the following definition:

Definition 4.4. A coherent 2-group is a monoidal category (G,⊗, I, α, r, l), where ⊗ :
G⊗G→ G is the multiplication functor, I is the unit, α : ⊗◦(⊗× idG) =⇒ ⊗◦(idG×⊗)
is the associator, rg : g ⊗ I → g and lg : I ⊗ g → g are the right and left unitor (α, r and
l are natural equivalence), such that the following diagrams commute.:
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(1)

(g⊗h)⊗(k⊗l) αg,h,k⊗l
,,

((g⊗h)⊗k)⊗l

αg⊗h,k,l 22

αg,h,k ⊗ idl %%

g⊗(h⊗(k⊗l))

(g⊗(h⊗k))⊗l αg,h⊗k,l
// g⊗((h⊗k)⊗l)

idg ⊗ αh,k,l

99

(2)

(g⊗I)⊗h

rg ⊗ idh $$

αg,I,h // g⊗(I⊗h)

idg ⊗ lhzz
g⊗h

(3) Moreover, there is an additional functor ι : G → G, and there are two natural
equivalences ig : g ⊗ ι(g) → I and eg : ι(g) ⊗ g → I, such that the following
diagram commutes:

(g⊗ι(g))⊗g

αg,ι(g),g
��

ig ⊗ idg // I⊗g
lg // g

idg
��

g⊗(ι(g)⊗g)
idg ⊗ eg // g⊗I

rg // g

A strict 2-group is a coherent 2-group, such that all the natural transformations α, l, r, i
and e are identity.

There are several equivalent definitions of strict 2-group, one is called the “crossed
module”:

Definition 4.5. A crossed module (M,N, φ, γ) consists of two groups M , N together
with a group morphism φ : M → N and a group morphism γ : N → Aut(M) such that,
denoting γn : M →M for every n ∈ N , the following conditions are satisfied:

(1) φ(γn(m)) = nφ(m)n−1, for any n ∈ N and m ∈M ;

(2) γφ(m)(m
′) = mm′m−1, for any m,m′ ∈M .

Theorem 4.6. There is a bijective correspondence between a strict 2-group and a crossed
module.

Proof. Given a strict 2-group (G,⊗, I), we know both the set of objects G0 and morphism
G1 are groups with the tensor product as group multiplications, and with I and idI as units.
Let s, t : G1 → G0 be the source and target of morphisms in G. Let H := ker(s) ⊆ G1,
then H is a subgroup of G1. Define γ : G0 → Aut(H) by

γg(ψ) := idg ⊗ ψ ⊗ idg−1 , (4.4)

where g ∈ G0 and ψ ∈ H with s(ψ) = I, t(ψ) = h ∈ G0. We can see γg(ψ) : I → ghg−1

is a well defined morphism with its source as I, where we use gg′ to denote the tensor
product g ⊗ g′ of any objects g and g′. Therefore, γ : G0 → Aut(H) is a well defined
group action. With the target map t : G1 → G0, we can check (H,G0, t, γ) is a crossed
module. First we can see

t(γg(ψ)) = ghg−1 = gt(ψ)g−1.

15



Let ψ : I → h and ψ′ : I → h′ be two morphisms, we have

γt(ψ)(ψ
′) =idh ⊗ ψ′ ⊗ idh−1 = (idh ⊗ ψ′ ⊗ idh−1) ◦ (ψ ⊗ idI ⊗ ψ−1)

=(idh ◦ ψ)⊗ (ψ′ ◦ idI)⊗ (idh−1 ◦ ψ−1) = ψ ⊗ ψ′ ⊗ ψ−1,

where the third step uses the interchange law between the tensor product and morphism
composition. So we get a crossed module (H,G0, t, γ).

Once we have a crossed module (M,N, φ, γ), we can construct a group M nN , with
multiplication:

(m,n) • (m′, n′) := (mγn(m′), nn′),

for any m,m′ ∈M and n, n′ ∈ N . We can see that the multiplication is associative with
unit (1M , 1N). The inverse is given by

(m,n)−1 = (γn−1(m−1), n−1).

Define two group morphisms s, t : M nN → N by

s(m,n) := n, t(m,n) := φ(m)n. (4.5)

Define the identity morphism by id : N →M nN

id(n) := (1M , n). (4.6)

There is a composition product ◦ : M nN s ×tM nN →M nN :

(m′, φ(m)n) ◦ (m,n) := (m′m,n).

The inverse of the composition product (m,n)∗ is given by

(m,n)∗ := (m−1, φ(m)n).

Clearly, (N,M nN, s, t, id) is a groupoid. The interchange law of products can be checked
as follows: On one hand we have

((m′1, φ(m1)n1) ◦ (m1, n1)) • ((m′2, φ(m2)n2) ◦ (m2, n2)) (4.7)

=(m′1m1, n1) • (m′2m2, n2) = (m′1m1γn1(m′2m2), n1n2). (4.8)

On the other hand, by using the axioms of crossed module we have

((m′1, φ(m1)n1) • (m′2, φ(m2)n2)) ◦ ((m1, n1) • (m2, n2))

=(m′1γφ(m1)n1(m′2), φ(m1)n1φ(m2)n2) ◦ (m1γn1(m2), n1n2)

=(m′1γφ(m1)n1(m′2)m1γn1(m2), n1n2) = (m′1γφ(m1)(γn1(m′2))m1γn1(m2), n1n2)

=(m′1m1(γn1(m′2))m−1
1 m1γn1(m2), n1n2) = (m′1m1γn1(m′2)γn1(m2), n1n2)

=(m′1m1γn1(m′2m2), n1n2),

where the second step is well defined since

φ(m1γn1(m2))n1n2 =φ(m1)φ(γn1(m2))n1n2 = φ(m1)n1φ(m2)n−1
1 n1n2

=φ(m1)n1φ(m2)n2.

As a result, we have strict 2-group, with objects N (with the group multiplication as the
tensor product on objects), morphisms M nN , tensor product • (for morphisms) and
morphism composition ◦. Now we briefly check the correspondence is bijective.

On one hand, given a strict 2-group, we can see H nG0 is isomorphic to G1. Indeed,
for any morphism ψ : g → g′, (ψ ⊗ idg−1 , g) belongs to H nG0. For any two morphisms
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ψ1 : g1 → g′1 and ψ2 : g2 → g′2 we know ψ1 ⊗ ψ2 is a morphism from g1 ⊗ g2 to g′1 ⊗ g′2.
We can see

(ψ1 ⊗ idg−1
1
, g1) • (ψ2 ⊗ idg−1

2
, g2) =(ψ1 ⊗ idg−1

1
⊗ idg1 ⊗ ψ2 ⊗ idg−1

2
⊗ idg−1

1
, g1 ⊗ g2)

=(ψ1 ⊗ ψ2 ⊗ idg−1
2
⊗ idg−1

1
, g1 ⊗ g2).

We can also see the correspondence ψ 7→ (ψ⊗idg−1 , g) is bijective: Assume (ψ⊗idg−1 , g) =
(idI , I), then the source of ψ is I, so ψ = ψ ⊗ idI = idI , and any (ψ, g) ∈ H nG0 has a
preimage ψ ⊗ idg ∈ G1.

On the other hand, given a crossed module (M,N, φ, γ), since s(m,n) = n, we get
ker(s) ⊆M nN is isomorphic to M . �

In general the objects of a coherent 2-group can be any unital set with a binary operation.
However, in this paper we are interested in a more restricted case where the objects of
the corresponding monoidal category form a quasigroup, such that l, r, i, e are identity
natural transformations. We can see that if we make more requirements on the associator
α, then this kind of coherent 2-group satisfies the following property:

Proposition 4.7. Let (G,⊗, I, α, r, l, ι, i, e) be a coherent 2-group. Assume G0 is a
quasigroup (with the tensor product as the group multiplication), and that l, r, i, e are
identity natural transformations, and assume in addition that the associator α satisfies
the following:

α1,g,h = αg,1,h = αg,h,1 = idgh (4.9)

αg,g−1,h = αg−1,g,h = idh = αh,g,g−1 = αh,g−1,g (4.10)

for any g, h ∈ G0, then we have the following properties:

(i) The morphisms and their compositions form a groupoid.
(ii) The identity map from the objects to the morphisms preserves the tensor product,

i.e. idg ⊗ idh = idg⊗h, for any objects g, h.
(iii) The source and target maps of morphisms also preserve the tensor product.
(iv) The composition and tensor product of morphisms satisfy the interchange rule:

(φ1 ⊗ φ2) ◦ (ψ1 ⊗ ψ2) = (φ1 ◦ ψ1)⊗ (φ2 ◦ ψ2), (4.11)

for any composable pair of morphisms φ1, ψ1 and φ2, ψ2.
(v) The morphisms and their tensor product form a quasigroup.

Proof. The first four of properties are direct results of the definition of a coherent 2-group.
For (v), let φ : g → h and ψ : k → l be two morphisms. We know the inverse of φ (in

the sense of the tensor product) is φ−1 := ι(φ) : g−1 → h−1. By the naturality of α we
have

ψ = αh,h−1,l ◦ ((φ⊗ φ−1)⊗ ψ) = (φ⊗ (φ−1 ⊗ ψ)) ◦ αg,g−1,k = φ⊗ (φ−1 ⊗ ψ),

where in the first and last steps we use (4.10) and the natural transformation i being
trivial. Similarly, we also have ψ = (ψ ⊗ φ)⊗ φ−1. By the same method, we can check
(id1 ⊗ φ)⊗ ψ = φ⊗ ψ = φ⊗ (ψ ⊗ id1). Indeed,

(id1 ⊗ φ)⊗ ψ = α1,h,l ◦ ((id1 ⊗ φ)⊗ ψ) = (id1 ⊗ (φ⊗ ψ)) ◦ α1,g,k = φ⊗ ψ,
where we also use that the natural transformations l, r are trivial. Thus the morphisms
with their tensor product form a quasigroup.

�
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Theorem 4.8. If G is a quasiassociative quasigroup, then we can construct a coherent
2-group.

Proof. Define H := N(G) nG, then H is a quasigroup with the product given by:

(n, g)⊗ (m,h) := (n(gmg−1), gh).

The inverse corresponding to this product is given by

(n, g)−1 := (g−1n−1g, g−1),

which is well defined since G is quasiassociative. Before we check if H is a quasigroup, we
can see that the adjoint action Ad : G→ Aut(N(G)) given by Adg(m) := gmg−1 is well
defined, since on one hand

((gh)m(gh)−1)g = ((gh)m(gh)−1)((gh)h−1) = (((gh)m(gh)−1)(gh))h−1 = ((gh)m)h−1,

and on the other hand

(g(hmh−1)g−1)g = g(hmh−1) = ((gh)h−1)(hmh−1) = (gh)(h−1(hmh−1))

=(gh)(mh−1) = ((gh)m)h−1,

therefore we have

Adgh(m) = (gh)m(gh)−1 = g(hmh−1)g−1 = Adg ◦ Adh(m),

for any g, h ∈ G and m ∈ N(G). Now we can see H is a quasigroup:

((n, g)⊗ (m,h))⊗ (m,h)−1 = (n(gmg−1), gh)⊗ (h−1m−1h, h−1)

=((n(gmg−1))(Adgh(Adh−1(m−1))), (gh)h−1) = ((n(gmg−1))(gm−1g−1), g)

=(n, g),

for any (n, g), (m,h) ∈ H. Similarly, we have (n, g)−1 ⊗ ((n, g)⊗ (m,h)) = (m,h).
To construct a coherent 2-group, we also need the objects to be G and ⊗ : G×G→ G

to be the multiplication of G. The source and target maps s, t : H → G are given by

s(n, g) := g t(n, g) := ng.

The identity morphism id : G→ H is given by

id(g) := (1, g).

The composition ◦ : Hs ×t H → H, is given by

(n,mg) ◦ (m, g) := (nm, g).

The composition inverse is given by

(n, g)∗ := (n−1, ng).

Thus we get a groupoid with the corresponding composition, inverse, source and target
maps. Moreover, the maps s, t and id preserve the tensor product. Indeed, by using that
G is quasiassociative we have

t((n, g)⊗ (m,h)) = t(n(gmg−1), gh) = (n(gmg−1))gh = n((gmg−1)(gh))

=n(((gmg−1)g)h) = n((gm)h) = n(g(mh)) = (ng)(mh) = t(n, g)⊗ t(m,h).

The interchange law of products can be also proved as in Theorem 4.6.
The associator α : G×G×G→ H is given by

αg,h,k := (β(g, h, k), (gh)k),

18



this is well defined since the image of β belongs to N(G), and the source and target of αg,h,k
are (gh)k and g(hk). Because G is a quasigroup, we have αg,g−1,h = αh,g−1,g = (1, h) = idh
and α1,g,h = αg,1,h = αg,h,1 = idgh for any g, h ∈ G. We can also see that α is a natural
transformation. Indeed, let (l, g), (m,h) and (n, k) belong to H, we can see on one hand

αlg,mh,nk ◦ (((l, g)⊗ (m,h))⊗ (n, k))

=(β(lg,mh, nk), ((lg)(mh))(nk)) ◦ ((l(Adg(m)))(Adgh(n)), (gh)k)

=(β(lg,mh, nk)
(

(l(Adg(m)))(Adgh(n))
)
, (gh)k)

and on the other hand

((l, g)⊗ ((m,h)⊗ (n, k))) ◦ αg,h,k
=(lAdg

(
mAdh(n)

)
, g(hk)) ◦ (β(g, h, k), (gh)k)

=(
(
lAdg

(
mAdh(n)

))
β(g, h, k), (gh)k).

Since

β(lg,mh, nk)
(

(l(Adg(m)))(Adgh(n))
)

(gh)k

=(lg)((mh)(nk))

=
(
lAdg

(
mAdh(n)

))
β(g, h, k)(gh)k

we get

β(lg,mh, nk)
(

(l(Adg(m)))(Adgh(n))
)

=
(
lAdg

(
mAdh(n)

))
β(g, h, k),

therefore,

αlg,mh,nk ◦ (((l, g)⊗ (m,h))⊗ (n, k)) = ((l, g)⊗ ((m,h)⊗ (n, k))) ◦ αg,h,k.
The pentagon for being a coherent 2-group is satisfied by Lemma 4.3. Indeed, let
g, h, k, l ∈ G, on one hand we have

αg,h,kl ◦ αgh,k,l = (β(g, h, kl), (gh)(kl)) ◦ (β(gh, k, l), ((gh)k)l)

=(β(g, h, kl)β(gh, k, l), ((gh)k)l)

On the other hand,

(idg ⊗ αh,k,l) ◦ αg,hk,l ◦ (αg,h,k ⊗ idl)
=(gβ(h, k, l)g−1, g((hk)l)) ◦

(
β(g, hk, l), (g(hk))l

)
◦ (β(g, h, k), ((gh)k)l)

=((gβ(h, k, l)g−1)β(g, hk, l)β(g, h, k), ((gh)k)l),

by using Lemma 4.3 we get the pentagon. Thus we get a coherent 2-group, where the
natural transformations l, r, e, i are identity. �
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5. Algebras, coalgebras and all that

First we recall some material about Hopf algebras, Hopf coquasigroups and corresponding
modules and comodules. We also review the more general notions of rings and corings
over an algebra as well as the associated notion of a Hopf algebroid. We then move onto
Hopf–Galois extensions, as noncommutative principal bundles.

To be definite we work over the field C of complex numbers but in the following this
could be substituted by any field k. Algebras are assumed to be unital and associative
with morphisms of algebras taken to be unital.

Definition 5.1. A bialgebra is an algebra H with two algebra maps ∆H : H → H ⊗H
(called the coproduct) and ε : H → C (called the counit), such that

(idH ⊗∆H) ◦∆H = (∆H ⊗ idH) ◦∆, (idH ⊗ εH) ◦∆H = idH = (εH ⊗ idH) ◦∆H ,
(5.1)

where the algebra multiplication on H ⊗H is given by (h⊗ g) · (h′⊗ g′) := (hh′⊗ gg′) for
any h⊗ g, h′ ⊗ g′ ∈ H ⊗H. Moreover, if there is a linear map S : H → H ⊗H (called
the antipode), such that

mH ◦ (S ⊗ idH) ◦∆H = 1HεH = mH ◦ (idH ⊗ S) ◦∆H , (5.2)

where mH is the product on H, then H is called a Hopf algebra. Let H and G be two
Hopf algebras, a Hopf algebra morphism from H to G is an algebra map ψ : H → G, such
that

(ψ ⊗ ψ) ◦∆H = ∆G ◦ ψ, εG ◦ ψ = εH . (5.3)

In the following context, we will always use Sweedler index notation to denote the
image of a coproduct, i.e.

∆H(h) = h(1) ⊗ h(2). (5.4)

For the coproduct of a bialgebra ∆ : H → H ⊗H we use the Sweedler notation ∆(h) =
h(1) ⊗ h(2) (sum understood), and its iterations: ∆n = (idH ⊗∆H) ◦∆n−1

H : h 7→ h(1) ⊗
h(2) ⊗ · · · ⊗ h(n+1) . However, this n-th iterated coproduct is not unique, if the coproduct
is not coassociative.

In order to give a coherent Hopf 2-algebra in the last part, which is a weaker version of
a Hopf 2-algebra, we need a more general algebra structure which is a Hopf coquasigroup
[20].

Definition 5.2. A Hopf coquasigroup H is an unital associative algebra, equiped with
counital algebra homomorphisms ∆ : H → H ⊗ H, ε : H → C, and a linear map
SH : H → H such that

(mH⊗idH)(SH⊗idH⊗idH)(idH⊗∆)∆ = 1⊗idH = (mH⊗idH)(idH⊗SH⊗idH)(idH⊗∆)∆,
(5.5)

(idH⊗mH)(idH⊗SH⊗idH)(∆⊗idH)∆ = idH⊗1 = (idH⊗mH)(idH⊗idH⊗SH)(∆⊗idH)∆.
(5.6)

A morphism between two Hopf coquasigroups is an algebra map f : H → G, such that
for any h ∈ H, f(h)(1) ⊗ f(h)(2) = f(h(1))⊗ f(h(2)) and εG(f(h)) = εH(h).

Remark 5.3. Hopf coquasigroup are a generalisation of Hopf algebras, for which the
coproduct is not necessarily coassociative. As a result, we cannot use Sweedler index notion
in the same way as for Hopf algebras (but we still use h(1)⊗h(2) as the image of a coproduct),
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so in general we don’t have: h(1)(1) ⊗ h(1)(2) ⊗ h(2) = h(1) ⊗ h(2) ⊗ h(3) = h(1) ⊗ h(2)(1) ⊗ h(2)(2).
It is given in [20] that the linear map SH (which we likewise call the ‘antipode’) of H has
similar property as the antipode of a Hopf algebra. That is:

• h(1)SH(h(2)) = ε(h) = SH(h(1))h(2),
• SH(hh′) = SH(h′)SH(h),
• SH(h)(1) ⊗ SH(h)(2) = SH(h(2))⊗ SH(h(1)),

for any h, h′ ∈ H.

Given a Hopf coquasigroup H, define a linear map β : H → H ⊗H ⊗H by

β(h) := h(1)(1)SH(h(2))(1)(1) ⊗ h(1)(2)(1)SH(h(2))(1)(2) ⊗ h(1)(2)(2)SH(h(2))(2) (5.7)

for any h ∈ H. We can see that

β ∗ ((∆⊗ idH) ◦∆) = (idH ⊗∆) ◦∆, (5.8)

where we denote by ∗ the convolution product in the dual vector space H ′ := Hom(H,C),
(f ∗ g)(h) := f(h(1))g(h(2)). More precisely, (5.8) can be written as

h(1)(1)(1)SH(h(1)(2))(1)(1)h(2)(1)(1) ⊗ h(1)(1)(2)(1)SH(h(1)(2))(1)(2)h(2)(1)(2) ⊗ h(1)(1)(2)(2)SH(h(1)(2))(2)h(2)(2)

=h(1) ⊗ h(2)(1) ⊗ h(2)(2),

which can be derived from the definition of a Hopf coquasigroup. For any h ∈ H we will
always denote the image of β by

β(h) = h1̂ ⊗ h2̂ ⊗ h3̂.

A Hopf coquasigroup H is coassociative if and only if β(h) = ε(h)1H ⊗ 1H ⊗ 1H if and
only if H is a Hopf algebra.

Given a Hopf coquasigroup H, a left H-comodule is a vector space V carrying a left
H-coaction, that is a C-linear map δV : V → H ⊗ V such that

(idH ⊗ δV ) ◦ δV = (∆⊗ idV ) ◦ δV , (ε⊗ idV ) ◦ δV = idV . (5.9)

In Sweedler notation, v 7→ δV (v) = v(−1) ⊗ v(0), and the left H-comodule properties read

v(−1)
(1) ⊗ v(−1)

(2) ⊗ v(0) = v(−1) ⊗ v(0)(−1) ⊗ v(0)(0) ,

ε(v(−1)) v(0) = v ,

for all v ∈ V . The C-vector space tensor product V ⊗ W of two H-comodules is a
H-comodule with the left tensor product H-coaction

δV⊗W : V ⊗W −→ H ⊗ V ⊗W, v ⊗ w 7−→ v(−1)w(−1) ⊗ v(0) ⊗ w(0). (5.10)

A H-comodule map ψ : V → W between two H-comodules is a C-linear map ψ : V → W
which is H-equivariant (or H-colinear), that is, δW ◦ ψ = (idH ⊗ ψ) ◦ δV .

In particular, a left H-comodule algebra is an algebra A, which is a left H-comodule such
that the multiplication and unit of A are morphisms of H-comodules. This is equivalent
to requiring the coaction δ : A → H ⊗ A to be a morphism of unital algebras (where
H ⊗ A has the usual tensor product algebra structure). Corresponding morphisms are
H-comodule maps which are also algebra maps.

In the same way, a left H-comodule coalgebra is a coalgebra C, which is a left H-
comodule and such that the coproduct and the counit of C are morphisms of H-comodules.
Explicitly, this means that, for each c ∈ C,

c(−1) ⊗ c(0)
(1) ⊗ c(0)

(2) = c(1)
(−1)c(2)

(−1) ⊗ c(1)
(0) ⊗ c(2)

(0) ,

εC(c) = c(−1)εC(c(0)) .
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Corresponding morphisms are H-comodule maps which are also coalgebra maps.
Clearly, there are right H-comodule versions of the above ones. Here we use lower

Sweedler notation to denote the image of a right coaction δV : V → V ⊗H, i.e. δV (v) =
v(0) ⊗ v(1). More precisely, with a Hopf coquasigroup H, a right H-comodule is a vector
space V carrying a right H-coaction, that is, a C-linear map δV : V → V ⊗H such that

(idV ⊗∆) ◦ δV = (δV ⊗ idH) ◦ δV , (idV ⊗ ε) ◦ δV = idV . (5.11)

In Sweedler notation, v 7→ δV (v) = v(0) ⊗ v(1), and the right H-comodule properties read,

v(0) ⊗ (v(1))(1) ⊗ (v(1))(2) = (v(0))(0) ⊗ (v(0))(1) ⊗ v(1) =: v(0) ⊗ v(1) ⊗ v(2) ,

v(0) ε(v(1)) = v ,

for all v ∈ V . The C-vector space tensor product V ⊗ W of two H-comodules is a
H-comodule with the right tensor product H-coaction

δV⊗W : V ⊗W −→ V ⊗W ⊗H , v ⊗ w 7−→ v(0) ⊗ w(0) ⊗ v(1)w(1) . (5.12)

A H-comodule map ψ : V → W between two H-comodules is a C-linear map ψ : V → W
which is H-equivariant (or H-colinear), that is, δW ◦ ψ = (ψ ⊗ idH) ◦ δV .

Similarly, a right H-comodule algebra is an algebra A which is a right H-comodule such
that the comodule map δV : V → V ⊗H is an algebra map. Corresponding morphisms
are H-comodule maps which are also algebra maps.

A right H-comodule coalgebra is a coalgebra C which is a right H-comodule such that
the coproduct and the counit of C are morphisms of H-comodules. Explicitly, this means
that, for each c ∈ C,

(c(1))(0) ⊗ (c(2))(0) ⊗ (c(1))(1)(c(2))(1) = (c(0))(1) ⊗ (c(0))(2) ⊗ c(1) ,

ε(c(0))c(1) = ε(c)1H .

Corresponding morphisms are H-comodule maps which are also coalgebra maps. Clearly,
the comodule and the comodule algebra of a Hopf algebra can be given in the same way.

Next, let H be a bialgebra and let A be a right H-comodule algebra. An (A,H)-
relative Hopf module V is a right H-comodule with a compatible left A-module structure.
That is the left action .V : A ⊗ V → V is a morphism of H-comodules such that
δV ◦ .V = (.V ⊗ idH) ◦ δA⊗V . Explicitly, for all a ∈ A and v ∈ V ,

(a .V v)(0) ⊗ (a .V v)(1) = a(0) .V v(0) ⊗ a(1)v(1) . (5.13)

A morphism of (A,H)-relative Hopf modules is a morphism of right H-comodules which
is also a morphism of left A-modules. In a similar way one can consider the case for the
algebra A to be acting on the right, or with left and right A-actions.

Definition 5.4. A coassociative pair (A,B, φ) consists of a Hopf coquasigroup B and a
Hopf algebra A, together with a Hopf coquasigroup morphism φ : B → A, such that

φ(b(1)(1))⊗ b(1)(2) ⊗ b(2) = φ(b(1))⊗ b(2)(1) ⊗ b(2)(2)

b(1)(1) ⊗ φ(b(1)(2))⊗ b(2) = b(1) ⊗ φ(b(2)(1))⊗ b(2)(2)

b(1)(1) ⊗ b(1)(2) ⊗ φ(b(2)) = b(1) ⊗ b(2)(1) ⊗ φ(b(2)(2)).

(5.14)

Clearly, for any morphism φ between two Hopf algebras B and A, (A,B, φ) is a
coassociative pair.

Remark 5.5. A coassociative pair can be viewed as a quantisation of a group and quasigroup,
such that there is a quasigroup morphism which maps the group into the associative
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elements of the quasigroup. More precisely, let H be a group, G be a quasigroup, and
φ : H → G be a morphism of quasigroup, such that the φ(H) ⊆ N(G). So we have

(φ(h)g)g′ = φ(h)(gg′)

(gφ(h))g′ = g(φ(h)g′)

(φ(h)g)g′ = φ(h)(gg′).

due to relations (5.14). Since the image of φ belongs to the associative elements of G,
φ(h) can pass through brackets. In other words, let mI and mJ be two iterated products,
such that mI(G⊗G · · · ⊗G⊗ 1⊗G⊗ · · · ⊗G) = mJ(G⊗G · · · ⊗G⊗ 1⊗G⊗ · · · ⊗G)
(where 1 is inserted into the m-th position), then mI(G⊗G · · · ⊗G⊗ φ(h)⊗G⊗ · · · ⊗
G) = mJ(G ⊗ G · · · ⊗ G ⊗ φ(h) ⊗ G ⊗ · · · ⊗ G) (where 1 is replaced by φ(h)). For
example, assume the 4th iterated products mI ,mJ : G ⊗ G ⊗ G ⊗ G → G given by
mI(g ⊗ g′ ⊗ g′′ ⊗ g′′′) := (g(g′g′′))g′′′ and mI(g ⊗ g′ ⊗ g′′ ⊗ g′′′) := (gg′)(g′′g′′′), then we
have (g(g′φ(h)))g′′ = (gg′)(φ(h)g′′) for any g, g′, g′′ ∈ G and h ∈ H.

We know for a Hopf coquasigroup, the n-th iterated coproducts ∆n are not always
equal when n ≥ 2 (n can be equal to 0, in which case ∆0 is identity map). However, given
a coassociative pair (A,B, φ), there is an interesting property due to Remark 5.5 and
Proposition 4.2:

Proposition 5.6. Let (A,B, φ) be a coassociative pair of a Hopf algebra A and a Hopf
coquasigroup B, and let ∆n

I , ∆n
J both n-th iterated coproducts on B. Let ∆n

I (b) = bI1 ⊗
bI2 ⊗ · · · ⊗ bIn+1 and ∆n

J(b) = bJ1 ⊗ bJ2 ⊗ · · · ⊗ bJn+1. If

bI1 ⊗ bI2 ⊗ · · · ⊗ εB(bIm)⊗ · · · ⊗ bIn+1 = bJ1 ⊗ bJ2 ⊗ · · · ⊗ εB(bJm)⊗ · · · ⊗ bJn+1 (5.15)

for 1 ≤ m ≤ n+ 1, then we have

bI1 ⊗ bI2 ⊗ · · · ⊗ φ(bIm)⊗ · · · ⊗ bIn+1 = bJ1 ⊗ bJ2 ⊗ · · · ⊗ φ(bJm)⊗ · · · ⊗ bJn+1 .

Proof. We can prove this proposition inductively. For n = 2, this is obvious by the
definition of a coassociative pair. Now we consider the case for n ≥ 3. We can see both
sides of equation (5.15) are equal to the image of an (n− 1)-th iterated coproduct ∆n−1

K ,
which can be written as ∆n−1

K = (∆p
K′ ⊗∆q

K′′) ◦∆ for some iterated coproducts ∆p
K′ , ∆q

K′′

with p+ q = n− 2. Assume this proposition is correct for n = N − 1. We have two cases
for the index of Im and Jm:

The first case is that the first index of Im and Jm are the same (where the first index
means the first Sweedler index on the left, for example the first index of b(2)(2)(1) is 2).
When m ≤ (p + 2), the first indices of Im and Jm have to be 1. In this case, we can
see ∆n

I = (∆p+1
I1
⊗∆q

K′′) ◦∆ and ∆n
J = (∆p+1

J1
⊗∆q

K′′) ◦∆, for some (p + 1)-th iterated

coproducts ∆p+1
I1

and ∆p+1
J1

. Then we can apply the hypotheses for the terms, whose first
indices are 1. For m ≥ p+ 3, the situation is the similar.

The second case is that the first indices of Im and Jm are different. Assume the first index
of Im is 1 and Jm is 2. In this case m has to be equal to p+2, and ∆n

I = (∆p+1
E ⊗∆q

K′′)◦∆ and

∆n
J = (∆p

K′⊗∆q+1
F )◦∆ for some iterated (p+1)-th coproduct ∆p+1

E with (id⊗pB ⊗εB)◦∆p+1
E =

∆p
K′ and iterated (q + 1)-th coproduct ∆q+1

F with (εB ⊗ id⊗qB ) ◦ ∆q+1
F = ∆q

K′′ . Define

∆p+1
G := (∆p

K′ ⊗ idB) ◦∆ and ∆q+1
H := (idB⊗∆q

K′′) ◦∆ (notice that ∆p+1
E is not necessarily
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equal to ∆p+1
G and ∆p+1

F is not necessarily equal to ∆p+1
H ), then we can see

bI1 ⊗ bI2 ⊗ · · · ⊗ φ(bIm)⊗ bIm+1 ⊗ · · · ⊗ bIn+1

=b(1)E1
⊗ b(1)E2

⊗ · · · ⊗ φ(b(1)Ep+2
)⊗ b(2)K′′1

⊗ · · · ⊗ b(2)K′′q+1

=b(1)G1
⊗ b(1)G2

⊗ · · · ⊗ φ(b(1)Gp+2
)⊗ b(2)K′′1

⊗ · · · ⊗ b(2)K′′q+1

=b(1)(1)K′1
⊗ b(1)(1)K′2

⊗ · · · ⊗ b(1)(1)K′p+1
⊗ φ(b(1)(2))⊗ b(2)K′′1

⊗ · · · ⊗ b(2)K′′q+1

=b(1)K′1
⊗ b(1)K′2

⊗ · · · ⊗ b(1)K′p+1
⊗ φ(b(2)(1))⊗ b(2)(2)K′′1

⊗ · · · ⊗ b(2)(2)K′′q+1

=b(1)K′1
⊗ b(1)K′2

⊗ · · · ⊗ b(1)K′p+1
⊗ φ(b(2)H1

)⊗ b(2)H2
⊗ · · · ⊗ b(2)Hq+2

=b(1)K′1
⊗ b(1)K′2

⊗ · · · ⊗ b(1)K′p+1
⊗ φ(b(2)F1

)⊗ b(2)F2
⊗ · · · ⊗ b(2)Fq+2

=bJ1 ⊗ bJ2 ⊗ · · · ⊗ φ(bJm)⊗ bJm+1 ⊗ · · · ⊗ bJn+1 ,

where b(1)E1
⊗ b(1)E2

⊗ · · · ⊗ φ(b(1)Ep+2
) := ∆p+1

E (b(1)) and similar for the rest. The 2nd and
6th steps use the hypotheses for n ≤ N − 1, and the 4th step uses the definition of a
coassociate pair.

�

From this proposition, we can make a generalisation by using the proposition twice: If

bI1 ⊗ bI2 ⊗ · · · ⊗ εB(bIm)⊗ · · · ⊗ εB(bIm′ )⊗ · · · ⊗ bIn+1

=bJ1 ⊗ bJ2 ⊗ · · · ⊗ εB(bJm)⊗ · · · ⊗ εB(bJm′ )⊗ · · · ⊗ bJn+1

for 1 ≤ m < m′ ≤ n+ 1. Then we have

bI1 ⊗ bI2 ⊗ · · · ⊗ φ(bIm)⊗ · · · ⊗ φ(bIm′ )⊗ · · · ⊗ bIn+1

=bJ1 ⊗ bJ2 ⊗ · · · ⊗ φ(bJm)⊗ · · · ⊗ φ(bJm′ )⊗ · · · ⊗ bJn+1 .

There is a dual version of the Hopf coquasigroup, which is the Hopf quasigroup [20]:

Definition 5.7. A Hopf quasigroup A is a coassociative coalgebra with a coproduct
∆ : A→ A⊗ A and counit ε : A→ k, together with a unital and possibly nonassociative
algebra structure, such that the coproduct and counit are algebra maps. Moreover, there
is an linear map (the antipode) SA : A→ A such that:

m(idA⊗m)(SA⊗ idA⊗ idA)(∆⊗ idA) = ε⊗ idA = m(idA⊗m)(idA⊗SA⊗ idA)(∆⊗ idA)
(5.16)

m(m⊗ idA)(idA⊗SA⊗ idA)(idA⊗∆) = idA⊗ ε = m(m⊗ idA)(idA⊗ idA⊗SA)(idA⊗∆).
(5.17)

A Hopf quasigroup is a Hopf algebra if and only if it is associative.

6. Hopf algebroids

In the following, we will give an introduction to Hopf algebroids. (There are different
kinds of Hopf algebroids, here we mainly follow the definition in [8]).

For an algebra B a B-ring is a triple (A, µ, η). Here A is a B-bimodule with B-bimodule
maps µ : A⊗B A→ A and η : B → A, satisfying the following associativity condition:

µ ◦ (µ⊗B idA) = µ ◦ (idA ⊗B µ) (6.1)

and unit condition,

µ ◦ (η ⊗B idA) = A = µ ◦ (idA ⊗B η). (6.2)
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A morphism of B-rings f : (A, µ, η)→ (A′, µ′, η′) is a B-bimodule map f : A→ A′, such
that f ◦ µ = µ′ ◦ (f ⊗B f) and f ◦ η = η′. Here for any B-bimodule M , the balanced
tensor product M ⊗B M is given by

M ⊗B M := M ⊗M/〈m⊗ bm′ −mb⊗m′〉m,m′∈M, b∈B.

From [8, Lemma 2.2] there is a bijective correspondence between B-rings (A, µ, η) and
algebra morphisms η : B → A. Starting with a B-ring (A, µ, η), one obtains a multipli-
cation map A ⊗ A → A by composing the canonical surjection A ⊗ A → A ⊗B A with
the map µ. Conversely, starting with an algebra map η : B → A, a B-bilinear associative
multiplication µ : A ⊗B A → A is obtained from the universality of the coequaliser
A⊗ A→ A⊗B A which identifies an element ar ⊗ a′ with a⊗ ra′.

Dually, for an algebra B a B-coring is a triple (C,∆, ε). Here C is a B-bimodule with
B-bimodule maps ∆ : C → C⊗BC and ε : C → B, satisfying the following coassociativity
and counit conditions,

(∆⊗B idC) ◦∆ = (idC ⊗B ∆) ◦∆, (ε⊗B idC) ◦∆ = idC = (idC ⊗B ε) ◦∆. (6.3)

A morphism of B-corings f : (C,∆, ε)→ (C ′,∆′, ε′) is a B-bimodule map f : C → C ′,
such that ∆′ ◦ f = (f ⊗B f) ◦∆ and ε′ ◦ f = ε.

Definition 6.1. Given an algebra B, a left B-bialgebroid L consists of an (B ⊗Bop)-ring
together with a B-coring structures on the same vector space L with mutual compatibility
conditions. From what said above, a (B ⊗ Bop)-ring L is the same as an algebra map
η : B ⊗Bop → L. Equivalently, one may consider the restrictions

s := η( · ⊗B 1B) : B → L and t := η(1B ⊗B · ) : Bop → L

which are algebra maps with commuting ranges in L, called the source and the target
map of the (B ⊗Bop)-ring L. Thus a (B ⊗Bop)-ring is the same as a triple (L, s, t) with
L an algebra and s : B → L and t : Bop → L both algebra maps with commuting range.

Thus, for a left B-bialgebroid L the compatibility conditions are required to be

(i) The bimodule structures in the B-coring (L,∆, ε) are related to those of the
B ⊗Bop-ring (L, s, t) via

b . a / b′ := s(b)t(b′)a for b, b′ ∈ B, a ∈ L. (6.4)

(ii) Considering L as a B-bimodule as in (6.4), the coproduct ∆ corestricts to an
algebra map from L to

L ×B L :=
{ ∑

j
aj ⊗B a′j |

∑
j
ajt(b)⊗B a′j =

∑
j
aj ⊗B a′js(b), for all b ∈ B

}
,

(6.5)
where L ×B L is an algebra via component-wise multiplication.

(iii) The counit ε : L → B is a left character on the B-ring (L, s, t), that is it satisfies
the properties, for b ∈ B and a, a′ ∈ L,
(1) ε(1L) = 1B, (unitality)
(2) ε(s(b)a) = bε(a), (left B-linearity)
(3) ε(as(ε(a′))) = ε(aa′) = ε(at(ε(a′))), (associativity) .

Similarly, we have the definition of right bialgebroid:

Definition 6.2. Given an algebra B, a right B-bialgebroid R consists of an (B⊗Bop)-ring
together with a B-coring structures on the same vector space R with mutual compatibility
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conditions. From what is said above, a (B ⊗Bop)-ring R is the same as an algebra map
η : B ⊗Bop → R. Equivalently, one may consider the restrictions

s := η( · ⊗B 1B) : B → R and t := η(1B ⊗B · ) : Bop → R
which are algebra maps with commuting ranges in R, called the source and the target
map of the (B ⊗Bop)-ring R. Thus a (B ⊗Bop)-ring is the same as a triple (R, s, t) with
R an algebra and s : B → R and t : Bop → R both algebra maps with commuting ranges.

Thus, for a right B-bialgebroid R the compatibility conditions are required to be

(i) The bimodule structures in the B-coring (R,∆, ε) are related to those of the
B ⊗Bop-ring (R, s, t) via

b . a / b′ := as(b′)t(b) for b, b′ ∈ B, a ∈ R. (6.6)

(ii) Considering R as a B-bimodule as in (6.6), the coproduct ∆ corestricts to an
algebra map from R to

R×B R :=
{ ∑

j
aj ⊗B a′j |

∑
j
s(b)aj ⊗B a′j =

∑
j
aj ⊗B t(b)a′j, for all b ∈ B

}
,

(6.7)
where R×B R is an algebra via component-wise multiplication.

(iii) The counit ε : R → B is a right character on the B-ring (R, s, t), that is it satisfies
the properties, for b ∈ B and a, a′ ∈ R,
(1) ε(1R) = 1B, (unitality)
(2) ε(as(b)) = ε(a)b, (right B-linearity)
(3) ε(s(ε(a))a′) = ε(aa′) = ε(t(ε(a))a′), (associativity) .

Remark 6.3. Consider a left B-bialgebroid L with sL, tL the corresponding source and
target maps. If the images of sL and tL belong to the centre of H (which implies B
is a commutative algebra, since the source map is injective), we can construct a right
bialgebroid with the same underlying k-algebra L and B-coring structure on L, but a new
source and target map sR := tL, tR := sL. Indeed, they have the same bimodule structure
on L, since r . b / r′ = sL(r)tL(r′)b = btR(r)sR(r′). With the same bimodule structure and
the same coproduct and counit, one can get the same B-coring. By using the assumption
that the images of sL and tL belong to the centre of H, we can find that all the conditions
for being a right bialgebroid can be satisfied. Similarly, under the same assumption, a right
bialgebroid can induce a left bialgebroid. Since the image of B belongs to the center of H,
we can also see ε is an algebra map, indeed, ε(bb′) = ε(bs(ε(b′))) = ε(s(ε(b′))b) = ε(b)ε(b′).

To make a proper definition of ‘quantum’ groupoid, a left or right bialgebroid is not
sufficient, since we still need to have the antipode, which plays the role of the inverse of
‘quantum groupoid’. Its inclusion allows us to define a Hopf algebroid [8] like so:

Definition 6.4. Given two algebras B and C, a Hopf algebroid (HL,HR, S) consists of a
left B-bialgebroid (HL, sL, tL,∆L, εL) and a right C-bialgebroid (HR, sR, tR,∆R, εR), such
that their underlying algebra H is the same. The antipode S : H → H is a linear map.
Let µL : H ⊗sL H → H be the B-ring (H, sL) product induced by sL (where the tensor
product ⊗sL means: hsL(b)⊗sL h′ = h⊗sL sL(b)h), and µR : H ⊗sR H → H be the C-ring
(H, sR) product induced by sR, such that all the structures above satisfy the following
axioms:

(i) sL ◦ εL ◦ tR = tR, tL ◦ εL ◦ sR = sR, sR ◦ εR ◦ tL = tL, tR ◦ εR ◦ sL = sL.
(ii) (∆L⊗C idH) ◦∆R = (idH ⊗B ∆R) ◦∆L and (∆R⊗B idH) ◦∆L = (idH ⊗C ∆L) ◦∆R.

(iii) For b ∈ B, c ∈ C and h ∈ H, S(tL(b)htR(c)) = sR(c)S(h)sL(b).
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(iv) µL ◦ (S ⊗B idH) ◦∆L = sR ◦ εR and µR ◦ (idH ⊗C S) ◦∆R = sL ◦ εL.

Remark 6.5. We can see axiom (i) makes the coproduct ∆L (∆R resp.) into a C-bimodule
map (B-bimodule map resp.), so that (ii) is well defined. The axiom (ii) makes H both a
HL-HR bicomodule and a HR-HL bicomodule, since the regular coactions ∆L and ∆R

commute.
In order to make sure axiom (iv) is well defined, we need axiom (iii), where S ⊗B H :

H ⊗B H → H ⊗sL H maps the tensor product ⊗B into a different tensor product ⊗sL , so
that µL makes sense.

Remark 6.6. In particular, given a Hopf algebroid as above (HL,HR, S) such that

(1) B = C;
(2) sL = rR and tL = sR, with their images belong to the center of H;
(3) the coproduct and counit of HL coincide with the coproduct and counit of HR;

with the help of Remark 6.3, we know that the left and right bialgebroid structures are
compatible with each other. In other words, the right bialgebroid HR is constructed from
HL as in Remark 6.3. Therefore, axioms (i) and (ii) are satisfied automatically. The
axiom (iii) asserts that S ◦ sL = tL, and S ◦ tL = sL. We use ∆ and ε to denote the
coproduct and counit for both HL and HR, s to denote sL = tR, and t to denote tL = sR.
So (iv) can be written as:

µL ◦ (S ⊗B idH) ◦∆ = t ◦ ε, (6.8)

and

µR ◦ (idH ⊗B S) ◦∆ = s ◦ ε. (6.9)

A Hopf algebroid of this kind is denoted by (H, s, t,∆, ε, S).

From now on we will only consider the left bialgebroids, Hopf algebroids whose underlying
algebra B is commutative and the images of whose source and target maps belongs to the
center. With the help of Remark 6.6 we have the definition of central Hopf algebroids,
which is a simplification of the Hopf algebroid of Definition 6.4.

Definition 6.7. A central Hopf algebroid is a left bialgebroid (H, s, t,∆, ε) over an algebra
B, the images of whose source and target maps belong to the center of H, together with
a linear map S : H → H, such that:

(1) For any h ∈ H and b, b′ ∈ B,

S(t(b)hs(b′)) = t(b′)S(h)s(b). (6.10)

(2) µL ◦ (S ⊗B idH) ◦∆ = t ◦ ε and µR ◦ (idH ⊗B S) ◦∆ = s ◦ ε,
where µL : H⊗sH → H is the B-ring (H, s) product induced by s, and µR : H⊗tH → H

is the B-ring (H, t) product induced by t.

Let C be a B-coring. We denote by ? : BHomB(C,B) × BHomB(C,B) → A the
convolution product (f ? g)(c) := f(c(1))g(c(2)), where c(1) ⊗B c(2) is the image of the
coproduct of the coring, and BHomB(C,B) is the vector space of B-bimodule maps. In
[6] we know BHomB(C,B) is a B-ring with unit ε : C → B.

In the following we will use lower Sweedler notation for the coproduct of a Hopf
coquasigroup (include Hopf algebra) and upper notation for a Hopf algebroid. Whenever
we say Hopf algebroid, we mean central Hopf algebroid.

We finish this part with an additional notion that we shall use in Section 14.1.
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Definition 6.8. Let (L,∆, ε, s, t) be a left bialgebroid over the algebra B. An auto-
morphism of the bialgebroid L is a pair (Φ, ϕ) of algebra automorphisms, Φ : L → L,
ϕ : B → B such that:

(i) Φ ◦ s = s ◦ ϕ;
(ii) Φ ◦ t = t ◦ ϕ;
(iii) (Φ⊗B Φ) ◦∆ = ∆ ◦ Φ;
(iv) ε ◦ Φ = ϕ ◦ ε.

In fact, the map ϕ is uniquely determined by Φ via ϕ = ε ◦ Φ ◦ s and one can just say
that Φ is a bialgebroid automorphism. Automorphisms of a bialgebroid L form a group by
composition that we simply denote Aut(L). The automorphisms for a right bialgebroid
are given similarly.

Remark 6.9. Here the pair of algebra maps (Φ, ϕ) can be viewed as a bialgebroid map
(cf. [34], §4.1) between two copies of L with different source and target map (and so
B-bimodule structure). If s, t are the source and target maps on L, one defines new source
and target maps on L by s′ := s ◦ϕ and t′ := t ◦ϕ with the new bimodule structure given
by b .ϕ c /ϕ b̃ := s′(b)t′(b̃)a, for any b, b̃ ∈ B and a ∈ L (see (6.4)). Therefore we get a new
left bialgebroid with product, unit, coproduct and counit unchanged.

Clearly, from conditions (i) and (ii) Φ is a B-bimodule map: Φ(b . c / b̃) = b .ϕ Φ(c) /ϕ b̃.
Condition (iii) is well defined once conditions (i) and (ii) are satisfied (the balanced tensor
product in (iii) is induced by s′ and t′). Conditions (iii) and (iv) imply Φ is a coring map,
therefore (Φ, ϕ) is an isomorphism between the original and the new bialgebroids.

7. Hopf–Galois extensions

In this section we will briefly recall Hopf–Galois extensions, as noncommutative principal
bundles. These are H-comodule algebras A with a canonically defined map χ : A⊗B A→
A⊗H which is required to be invertible.

Definition 7.1. Let H be a Hopf algebra and let A be a H-comodule algebra with
coaction δA. Consider the subalgebra B := AcoH =

{
b ∈ A | δA(b) = b ⊗ 1H

}
⊆ A

of coinvariant elements and the corresponding balanced tensor product A ⊗B A. The
extension B ⊆ A is called a H-Hopf–Galois extension if the canonical Galois map

χ := (m⊗ id) ◦ (id⊗B δA) : A⊗B A −→ A⊗H , a′ ⊗B a 7→ a′a (0) ⊗ a (1) (7.1)

is bijective.

We can see that this bijective canonical map is dual to the canonical map of a principal
bundle (see Definition 2.1), which is why we call Hopf Galois extensions noncommutative
principal bundles.

Remark 7.2. In the following, we shall always implicitly assume that for the Hopf Galois
extension B ⊆ A, the algebra A is faithfully flat as a left B-module. This means that
taking the tensor product ⊗BA with a sequence of right B-modules produces an exact
sequence if and only if the original sequence is exact. Finite-rank, free or projective
modules are examples of faithfully flat modules.

The canonical map χ is a morphism of relative Hopf modules for A-bimodules and right
H-comodules (cf. [1]). Both A ⊗B A and A ⊗H are A-bimodules. The left A-module
structures are the left multiplication on the first factors while the right A-actions are:

(a⊗B a′)a′′ := a⊗B a′a′′ and (a⊗ h)a′ := aa′(0) ⊗ ha′(1) .
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As for the H-comodule structure, the natural right tensor product H-coaction as in (5.12):

δA⊗A : A⊗ A→ A⊗ A⊗H, a⊗ a′ 7→ a(0) ⊗ a′(0) ⊗ a(1)a
′
(1) (7.2)

for all a, a′ ∈ A, descends to the quotient A ⊗B A because B ⊆ A is the subalgebra of
H-coinvariants. Similarly, A⊗H is endowed with the tensor product coaction, where one
regards the Hopf algebra H as a right H-comodule with the right adjoint H-coaction

Ad : h 7−→ h(2) ⊗ S(h(1))h(3) . (7.3)

The right H-coaction on A⊗H is then given, for all a ∈ A, h ∈ H by

δA⊗H(a⊗ h) = a(0) ⊗ h(2) ⊗ a(1) S(h(1))h(3) ∈ A⊗H ⊗H . (7.4)

Since the canonical Galois map χ is left A-linear, its inverse is determined by the
restriction τ := χ−1

|1A⊗H
, named the translation map,

τ = χ−1
|1A⊗H

: H → A⊗B A , h 7→ h<1> ⊗B h<2> .

The translation map enjoys a number of properties that we list here for later use. Firstly,
it was shown in [5, Prop. 3.6] that,

(id⊗B δA) ◦ τ = (τ ⊗ id) ◦∆ , (τ ⊗ S) ◦ flip ◦∆ = (id⊗ flip) ◦ (δA ⊗B id) ◦ τ .
On an element h ∈ H these respectively read

h<1> ⊗B h<2>
(0) ⊗ h<2>

(1) = h(1)
<1> ⊗B h(1)

<2> ⊗ h(2) , (7.5)

h<1>
(0) ⊗B h<2> ⊗ h<1>

(1) = h(2)
<1> ⊗B h(2)

<2> ⊗ S(h(1)) . (7.6)

Furthermore, from [6, Lemma 34.4], for any a ∈ A and h, k ∈ H, we have the following:

h<1>h<2>
(0) ⊗ h<2>

(1) = 1A ⊗ h , (7.7)

h<1>h<2> = ε(h)1A , (7.8)

(hk)<1> ⊗B (hk)<2> = k<1>h<1> ⊗B h<2>k<2> , (7.9)

h(1)
<1> ⊗B h(1)

<2>h(2)
<1> ⊗B h(2)

<2> = h<1> ⊗B 1A ⊗B h<2> , (7.10)

a(0)a(1)
<1> ⊗B a(1)

<2> = 1A ⊗B a , (7.11)

for any h, k ∈ H and a ∈ A. Here we also give a proof:

Proof. For (7.7), applying χ ◦ τ on the right hand side we can get the result directly.
Applying χ on both sides of (7.11), we get

χ(a(0)a(1)
<1> ⊗B a(1)

<2>) = a(0)a(1)
<1>a(1)

<2>
(0) ⊗ a(1)

<2>
(1)

= a(0) ⊗ a(1) = χ(1⊗B a),

where the second step uses (7.7). Since χ is bijective, we get (7.11). By applying idA⊗ εH
on (7.7) we can get (7.8). By applying χ⊗ idH on the left hand side of (7.5) we get

χ(h<1> ⊗B h<2>
(0))⊗ h<2>

(1) = h<1>h<2>
(0) ⊗ h<2>

(1) ⊗ h<2>
(2)

= 1⊗ h(1) ⊗ h(2)

= h(1)
<1>h(1)

<2>
(0) ⊗ h(1)

<2>
(1) ⊗ h(2)

= χ(h(1)
<1> ⊗B h(1)

<2>)⊗ h(2),

where the 1st and 3rd steps use (7.7), therefore we get (7.5). By applying idA ⊗B χ−1 on
both sides of (7.5) we get

h<1> ⊗B h<2>
(0)h

<2>
(1)

<1> ⊗B h<2>
(1)

<2> = h(1)
<1> ⊗B h(1)

<2>h(2)
<1> ⊗B h(2)

<2>.
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Then by using (7.11) on the left hand side we can get (7.10). Applying the canonical
map to both sides of (7.9), the left hand side is equal to 1⊗ gh, while the right hand side
is equal to

h<1>g<1>g<2>
(0)h

<2>
(0) ⊗ g<2>

(1)h
<2>

(1) = 1⊗ gh,
where (7.7) is used here. There are other H-comodule structures on A⊗B A and A⊗H,
which are: for A ⊗B A the coaction is given by δ′(a ⊗B a′) := a(0) ⊗ a′ ⊗ a(1), for any
a ⊗B a′ ∈ A ⊗B A. For A ⊗ H the corresponding H-comodule coaction is given by
δ′′(a⊗ h) := a(0) ⊗ h(2) ⊗ a(1)S(h(1)), for any a⊗ h ∈ A⊗H. It was given in [2] that the
canonical map χ is a right H-comodule map (so is χ−1) for this comodule structure. So
for (7.6), we have

h<1>
(0) ⊗B h<2> ⊗ h<1>

(1) = δ′ ◦ χ−1(1⊗ h)

= (χ−1 ⊗ idH) ◦ δ′′(1⊗ h)

= χ−1(1⊗ h(2))⊗ S(h(1))

= h(2)
<1> ⊗B h(2)

<2> ⊗ S(h(1)).

�

Two H-Hopf–Galois extensions A,A′ of a fixed algebra B are isomorphic provided there
exists an isomorphism of H-comodule algebras A→ A′. This is the algebraic counterpart
for noncommutative principal bundles of the geometric notion of isomorphisms of principal
G-bundles with a fixed base space. As in the geometric case this notion is relevant in the
classification of noncommutative principal bundles, (cf. [19]).

For structure Hopf algebras H which are cosemisimple and have bijective antipodes,
Theorem I of [33] grants additional nice properties. In particular, the surjectivity of the
canonical map implies its bijectivity. Moreover, in order to prove the surjectivity of χ, it
is enough to prove that for any generator h of H, the element 1 ⊗ h is in the image of
the canonical map. Indeed, if χ(gk ⊗B g′k) = 1⊗ g and χ(hl ⊗B h′l) = 1⊗ h for g, h ∈ H,
then χ(gkhl ⊗B h′lg′k) = gkhlχ(1⊗B h′lg′k) = 1⊗ hg, using the fact that the canonical map
restricted to 1⊗B A is a homomorphism. Extension to all of A⊗B A then follows from
left A-linearity of χ. It is also easy to write down an explicit expression for the inverse of
the canonical map. Indeed, one has χ−1(1⊗ hg) = gkhl ⊗B h′lg′k in the above notation so
that the general form of the inverse follows again from left A-linearity.

In the following we are also interested in Galois objects: given a Hopf algebra H,
a H-Galois object is a H-Hopf–Galois extension of C. These can be thought of a
noncommutative principal bundle over a point. It is well known (cf. [19]) that the set
GalH(C) of isomorphic classes of H-Galois objects need not be trivial. This is in contrast
to the fact that any (usual) fibre bundle over a point is trivial.
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Part 1. Principal fibrations over noncommutative spheres

In this part we use Einstein convention of summing over repeated up-down indices. An
algebra is always an associative algebra and a graded algebra is meant to be N-graded.

8. A family of quadratic algebras

8.1. General definitions and properties. In [13] and [14] there were considered com-
plex algebras AR generated by two sets of hermitian elements x = (x1, x2) = (xλ1 , x

α
2 ),

with λ ∈ {1, . . . , N1} and α ∈ {1, . . . , N2}, subject to relations

xλ1x
µ
1 = xµ1x

λ
1 , xα2x

β
2 = xβ2x

α
2 ,

xλ1x
α
2 = Rλα

βµ x
β
2x

µ
1 , xα2x

λ
1 = R

λα

βµ x
µ
1x

β
2 (8.1)

for a ‘matrix’ (Rλα
βµ). Here R

λα

βµ ∈ C is the complex conjugates of the Rλα
βµ ∈ C. The class

of relevant matrices R was defined by a series of conditions that we recall momentarily.
The quadratic complex algebra AR is a graded algebra AR = ⊕n∈N(AR)n which is

connected, that is (AR)0 = C1l. Moreover, the quadratic relations (8.1) of AR imply that
there is a unique structure of ∗-algebra on AR for which the xλ1 (λ ∈ {1, . . . , N1}) and the
xα2 (α ∈ {1, . . . , N2}) are hermitian, xλ1 = (xλ1)∗ and xα2 = (xα2 )∗. This structure is graded
in the sense that one has f ∗ ∈ (AR)n ⇔ f ∈ (AR)n and AR is the quadratic ∗-algebra
generated by the hermitian elements xλ1 and xα2 with the relations (8.1).

The xλ1x
µ
1 for λ ≤ µ and the xα2x

β
2 for α ≤ β are linearly independent in (AR)2 and

generate (AR)2 together with the xλ1x
α
2 . It is also natural to assume that the xα2x

λ
1 are

independent which implies the equations

R
λα

βµR
µβ
γν = δλν δ

α
γ (8.2)

which in turn imply that the xλ1x
α
2 are also independent. Finally this implies in particular

that the xλ1x
a
1 with λ ≤ µ, the xα2x

β
2 with α ≤ β and the xν1x

γ
2 define a basis of (AR)2

while by definition the elements xλ1 and the xα2 form a basis of (AR)1.
The classical (commutative) solution is given by

(R0)λαβµ = δλµδ
α
β

and AR0 is the coordinate algebra over the product RN1 × RN2 . Thus, the algebra AR is
though to define by duality the noncommutative product of RN1 ×R RN2 , that is AR is
the algebra of coordinate functions on the noncommutative vector space RN1 ×R RN2 .

If we collect together the coordinates, defining the xa for a ∈ {1, 2, . . . , N1 + N2} by
xλ = xλ1 and xα+N1 = xα2 , the relations (8.1) with (8.2) can be written in the form

xaxb = Ra b
c d x

cxd . (8.3)

The Rab
cd are the matrix elements of an endomorphism R of (AR)1 ⊗ (AR)1. It follows

from (8.2) that the R matrix is involutive, that is

R2 = I ⊗ I (8.4)

where I is the identity mapping of (AR)1 onto itself. One next imposes that the matrix
R satisfies the Yang-Baxter equation

(R⊗ I)(I ⊗R)(R⊗ I) = (I ⊗R)(R⊗ I)(I ⊗R), (8.5)

which then breaks in a series of conditions on the starting matrix Rλα
βµ in (8.1). By [13]

we have the following property:
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Proposition 8.1. The Yang-Baxter equation (8.5) for R is equivalent to the following

Rλα
γρR

ρβ
δµ = Rλβ

δρR
ρα
γµ for indices (a, b, c) = (λαβ)

R
λα

γρR
ρβ

δµ = R
λβ

δρR
ρα

γµ for indices (a, b, c) = (αβλ)

R
λα

γρR
ρβ
δµ = Rλβ

δρR
ρα

γµ for indices (a, b, c) = (αλβ)

(8.6)

and 

Rλα
γνR

µγ
βρ = Rµα

γρR
λγ
βν for indices (a, b, c) = (λµα)

R
λα

γνR
µγ

βρ = R
µα

γρR
λγ

βν for indices (a, b, c) = (αλµ)

Rλα
γνR

µγ

βρ = R
µα

γρR
λγ
βν for indices (a, b, c) = (λαµ)

(8.7)

for the matrices Rλα
βµ and R

λα

βµ.

Finally, additional conditions on the matrix Rλα
βµ comes by requiring that both quadratic

elements (x1)2 =
∑N1

λ=0(xλ1)2 and (x2)2 =
∑N2

α=0(xα2 )2 of AR be central.

Lemma 8.2. If R satisfies the reality condition (8.2), together with the requirement that
the quadratic elements (x1)2 and (x2)2 be central, then we have the symmetry conditions:

Rλβ
αµ = Rµα

βλ = R
µβ

αλ = (R−1)βµλα. (8.8)

Moreover, the quadratic conditions

Rλβ
αρR

ρδ
γµ = Rλδ

γρR
ρβ
αµ and Rλβ

γνR
µγ
αρ = Rµβ

γρR
λγ
αν (8.9)

are equivalent (under (8.8)) to the cubic relations of the Yang–Baxter equations.

Proof. Assume (x1)2 =
∑N1

λ=0(xλ1)2 belongs to the center, then we have

N1∑
λ=0

(xλ1)2xγ2 =

N1∑
λ=0

xλ1x
λ
1x

γ
2 =

N1∑
λ=0

xλ1R
λγ
βνx

β
2x

ν
1 =

N1∑
λ=0

Rλγ
βνR

λβ
αµx

α
2x

µ
1x

ν
1,

thus we can conclude
N1∑
λ=0

Rλγ
βνR

λβ
αµ = δγαδµν . (8.10)

Similarly, by assuming (x2)2 belongs to the center we also have

N2∑
α=0

Rλα
βρR

ρα
γµ = δλµδβγ. (8.11)

From the reality condition (8.2) we know R
µβ

αλ = (R−1)βµλα, by (8.10) and (8.11) we get

Rλβ
αµ = Rµα

βλ = (R−1)βµλα by considering the ‘transposition’ in the indices λ, µ (and α, β
resp.). Moreover, with the help of (8.8) we can clearly replace (8.6) and (8.7) by (8.9).

�

The general solution of these equations was given in [14] as follows. By setting

R̂λα
µβ = Rλα

βµ
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for the endomorphism R̂ = (R̂λα
µβ) of RN1 ⊗ RN2 one has the representation

R̂ =
∑
r

Ar ⊗Br + i
∑
a

Ca ⊗Da (8.12)

with the Ar real symmetric N1×N1 matrices and the Br real symmetric N2×N2 matrices,
both set taken to be linearly independent; and the Ca real anti-symmetric N1×N1 matrices
and the Da real anti-symmetric N2 × N2 matrices (again both set taken to be linearly
independent). Furthermore, they are such that

[Ar, As] = 0, [Ar, Ca] = 0, [Ca, Cb] = 0 (8.13)

[Br, Bs] = 0, [Br, Da] = 0, [Da, Db] = 0 (8.14)

for r, s ∈ {1, . . . , p} and a, b ∈ {1, . . . , q}, with normalization condition∑
r,s

ArAs ⊗BrBs +
∑
a,b

CaCb ⊗DaDb = 1lN1 ⊗ 1lN2 , (8.15)

a translation of the condition in (8.4)

With the quadratic elements (x1)2 =
∑N1

λ=1(xλ1)2 and (x2)2 =
∑N2

α=1(xα2 )2 of AR being
central, one may consider the quotient algebra

AR/
(
(x1)2 − 1l, (x2)2 − 1l

)
which defines by duality the noncommutative product SN1−1 ×R SN2−1 of the classical
spheres SN1−1 and SN2−1. Indeed, for R = R0, the above quotient is the restriction to
SN1−1 × SN2−1 of the polynomial functions on RN1+N2 .

Furthermore, with the central quadratic element x2 =
∑N1+N2

a=1 (xa)2 = (x1)
2 + (x2)

2,
one may also consider the quotient of AR

AR/
(
x2 − 1l

)
.

This defines (by duality) the noncommutative (N1 +N2 − 1)-sphere SN1+N2−1
R shown in

[14] to be a noncommutative spherical manifold in the sense of [11] and [10].

8.2. Some quaternionic geometry. When N1 = N2 = 4, explicit solutions for the
matrix Rλα

βµ were given in [13] and [14] by using results on the geometry of quaternions.

The space of quaternions H is identified with R4 in the usual way:

H 3 q = x0e0 + x1e1 + x2e2 + x3e3 7−→ x = (xµ) = (x0, x1, x2, x3) ∈ R4. (8.16)

Here e0 = 1 and the imaginary units ea obey the multiplication rule of the algebra H:

eaeb = −δab +
3∑
c=1

εabcec.

From this it follows an identification of the unit quaternions U1(H) = {q ∈ H | qq̄ = 1}
with the euclidean three-sphere S3 = {x ∈ R4 ; ||x||2 =

∑
µ(xµ)2 = 1}.

With the identification (8.16), left and right multiplication of quaternions are represented
by matrices acting on R4:

Lq′q := q′q → E+
q′ (x) and Rq′q := qq′ → E−q′ (x).

For q a unit quaternion, both E+
q and E−q are orthogonal matrices. In fact the unit

quaternions form a subgroup of the multiplicative group H∗ of non vanishing quaternions.
When restricting to these, one has then the identification

U1(H) ' SU(2),
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that is E+
q and E−q , for q ∈ U1(H), are commuting SU(2) actions (each in the ‘defining

representation’) on R4, or together an action of SU(2)L×SU(2)R on R4, with L/R denoting
left/right action. This action is the adjoint one, an action of SO(4) = SU(2)L×SU(2)R/Z2.

Let us denote E±a = E±ea for the imaginary units. By definition one has that

E+
a E

−
b = E−b E

+
a , E±a E

±
b = −δab1l±

3∑
c=1

εabcE
±
c .

In the following, it will turn out to be more convenient to change a sign to the ‘right’
matrices: we shall rather use matrices J+

a := E+
a and J−a := −E−a . For these one has

J+
a J
−
b = J−b J

+
a , J±a J

±
b = −δab1l +

3∑
c=1

εabcJ
±
c ,

that is the matrices J±a are two copies of the quaternionic imaginary units. Indeed for
these 4× 4 real matrices J±a one can explicitly compute

(J±a )µν = ∓(δ0µδaν − δaµδ0ν) +
3∑

b,c=1

εabcδbµδcν . (8.17)

With the identification U1(H) ' SU(2), when acting on R4, the matrices J±a are a
representation of the Lie algebra su(2) of SU(2), or taken together a representation of
su(2)L ⊕ su(2)R. For the standard positive definite scalar product on R4, the six matrices
J±a are readily checked to be antisymmetric, tJ±a = −J±a , and one finds in addition that

−1
4

tr(J±a J
±
b ) = δab.

Then, the matrices (J±1 , J
±
2 , J

±
3 ) are canonically an orthonormal basis of Λ2

±R4∗ ' R3

considered as an oriented three-dimensional euclidean space with the orientation of this
basis; mapping J±a → J∓a amounts to exchange the orientation. On the other hand, the
nine matrices J+

a J
−
b are an orthonormal basis for the space of symmetric trace-less 4× 4

matrices.

8.3. Noncommutative quaternionic tori and spheres. Referring to the above, we
have explicit solutions for the deformation matrix in (8.12). Firstly, with any vector
u = (u1, u2, u3) ∈ R3 we get antisymmetric matrices

J+
u := u1J+

1 + u2J+
2 + u3J+

3 or J−u := u1J−1 + u2J−2 + u3J−3 .

With this notation, consider the matrix

Rλα
βµ = u0 δλµδ

α
β + i (J+

v )λµ (J+
u )αβ . (8.18)

Clearly, all the commutation relation (8.13) and (8.14) are satisfied. Thus, with this
matrix, we define AR as the ∗-algebra generated by the hermitian elements xλ1 and xα2 ,
λ, α ∈ {0, 1, 2, 3}, with relations

xλ1x
µ
1 = xµ1x

λ
1 , xα2x

β
2 = xβ2x

α
2 , xλ1x

α
2 = Rλα

βµx
β
2x

µ
1 (8.19)

But using the action of SO(3) one can always rotate v to a fixed direction û, and in this
case the resulting matrix R has parameters u0 ∈ R and u ∈ R3 constrained to

(u0)2 + u2 = 1,

that is they make up a three-dimensional sphere S3. There is in fact a residual ‘gauge’
freedom in that one can use a rotation around the direction û to remove one component

34



of the vector u. Thus if û1 and û2 are two orthogonal unit vectors (say in the canonical
basis), we get families of noncommutative spaces determined by the matrices

Rλα
βµ = u0δλµδ

α
β + i (J+

1 )λµ (u1J+
1 + u2J+

2 )αβ , (8.20)

and parameters constrained by a two-dimensional sphere P1(C) = S3/S1 = S2 being

(u0)2 + (u1)2 + (u2)2 = 1.

These constructions lead to natural quaternionic generalisations of the toric four-
dimensional noncommutative spaces described in [11] for which the space of deformation
parameter is P1(R) = S1/Z2 = S1.

Indeed, in parallel to the complex case were there is an action of the classical torus
T2, there is now an action of the classical quaternionic torus T 2

H = U1(H) × U1(H) =
S3 × S3 = SU(2)× SU(2) by ∗-automorphisms of the algebra AR given as follows.

In view of the commutations of the J−a with the J+
b for a, b ∈ {1, 2, 3}, the mappings

x1 7→ J−a x1, x2 7→ J−b x2 for a, b ∈ {1, 2, 3} leave the relations (8.19) of AR invariant and
thus define ∗-automorphisms of the ∗-algebra AR. By setting q = q0 + qaea ∈ H∗ 7→
q01l+qaJ−a with obvious conventions, one has from last section (right quaternionic) actions
x1 7→ (q0

11l + qa1J
−
a )x1 and x2 7→ (q0

21l + qa2J
−
a )x2 of the multiplicative group H∗ × H∗ as

automorphisms of the ∗-algebra AR,
This induces an action of U1(H)× U1(H) on AR by restriction to the q ∈ U1(H) which

passes to the quotient by the ideal generated by the two central elements (x1)2 =
∑

λ(xλ1)2,
(x2)2 =

∑
α(xα2 )2 and defines an action of the classical quaternionic torus U1(H)× U1(H)

by ∗-automorphisms of the coordinate algebra

A((T 2
H)R) = AR/

(
(x1)2 − 1l, (x2)2 − 1l

)
of the “noncommutative” quaternionic torus (T 2

H)R. The action also passes to the quotient
by the ideal generated by the central element (x1)2 + (x2)2 and defines an action of the
classical quaternionic torus U1(H)×U1(H) by ∗-automorphisms of the coordinate algebra

A(S7
R) = AR/

(
(x1)2 + (x2)2 − 1l

)
of a noncommutative seven-sphere S7

R. As we shall see in what follows, when restricting to
the diagonal action of U1(H) ⊂ U1(H)×U1(H) on A(S7

R) will result into a SU(2)-principal
bundles S7

R → S4
R on a noncommutative four-sphere.

9. Principal fibrations

We are going to define natural SU(2)-principal bundles S7
R → S4

R in the ‘dual’ sense of
a coordinate algebra A(S4

R) on a four-sphere that is identified as the invariant subalgebra
of the coordinate algebra A(S7

R) on a seven-sphere, for an action of the group SU(2).

9.1. A canonical projection. In parallel with (8.16) consider the two quaternions

x1 = xµ1eµ, x2 = xα2 eα,

with commutation relations among their components governed by a matrix Rλα
βµ as in

(8.1). Then, when restricting to the sphere S7
R the vector-valued function

|ψ〉 =

(
x2

x1

)
(9.1)

has norm

〈ψ, ψ〉 = ||x1||2 + ||x2||2 = 1l
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and thus we get a projection

p = |ψ〉 〈ψ| =
(
x2x

∗
2 x2x

∗
1

x1x
∗
2 x1x

∗
1

)
, (9.2)

that is p = p∗ = p2. Define coordinate functions Y = Y 0e0 + Y kek and Y 4 by

Y 4 = ||x2||2 − ||x1||2 and 1
2
Y = x2x

∗
1 (9.3)

so that the projection (9.2) is written as

p = |ψ〉 〈ψ| = 1
2

(
1 + Y 4 Y
Y ∗ 1− Y 4

)
. (9.4)

The condition p2 = p leads to

Y Y ∗ + (Y 4)2 = 1 and Y ∗Y + (Y 4)2 = 1 (9.5)

Y Y 4 = Y 4Y and Y ∗Y 4 = Y 4Y ∗. (9.6)

Thus the coordinate function Y 4 is central while comparing the first two conditions requires
Y Y ∗ = Y ∗Y and that this is a (central) multiple of the identity. A direct computation
translates these to the conditions

−(Y 0∗Y k − Y k∗Y 0) + εkmnY
m∗Y n = 0, (9.7)

Y 0Y k∗ − Y kY 0∗ + εkmnY
mY n∗ = 0 (9.8)

for k, r,m = 1, 2, 3 and totally antisymmetric tensor εkrm, together with
3∑

µ=0

(Y µ∗Y µ − Y µY µ∗) = 0. (9.9)

Then condition (9.5) reduces to a four-sphere relation

3∑
µ=0

Y µ∗Y µ + (Y 4)2 = 1 =
3∑

µ=0

Y µY µ∗ + (Y 4)2. (9.10)

Being Y 4 central, these relations also give that both
∑3

µ=0 Y
µ∗Y µ and

∑3
µ=0 Y

µY µ∗ are

central as well. In view of the relations (9.10), the elements Y µ generate the ∗-algebra
A(S4

R) of a four-sphere S4
R. This four-sphere S4

R is the suspension (by the central element
Y 4), of a three-sphere S3

R obtained by reducing (9.10) to

3∑
µ=0

Y µ∗Y µ = 1 =
3∑

µ=0

Y µY µ∗. (9.11)

Remark 9.1. Up to the change Y 0 7→ −Y 0, the relations (9.7)-(9.8) are the same as the
relations (2.4)-(2.6) of [10].

Clearly, the coordinate function Y 4 is hermitian. On the other hand, as we shall see,
the coordinate functions Y µ∗, µ = 0, 1, 2, 3, while not hermitian, are not independent
from the Y µ’s with the explicit dependence determined by the matrix Rλα

βµ. In fact the
commutation relations (9.7)-(9.8) are not additional relations but they are determined by
the Rλα

βµ which gives the commutation relations among the starting x’s.

Lemma 9.2. With the definitions in (9.3) it holds that

1
2
Y 0 =

3∑
µ=0

xµ2x
µ
1 ,

1
2
Y k = xk2x

0
1 − x0

2x
k
1 − εknmxn2xm1 (9.12)

36



and

1
2
Y 0∗ =

3∑
µ=0

xµ1x
µ
2 ,

1
2
Y k∗ = x0

1x
k
2 − xk1x0

2 + εknmx
n
1x

m
2 . (9.13)

Proof. A direct computation. �

9.2. Noncommutative SU(2)-principal bundles. As mentioned, due to the relations
(9.10), the elements Y µ generate the ∗-algebra A(S4

R) of a four-sphere S4
R. The algebra

inclusion A(S4
R) ↪→ A(S7

R) is a principal SU(2) bundle in the following sense.
With |ψ〉 the vector-valued function in (9.1), let the action of a unit quaternion

w ∈ U1(H) ' SU(2) on S7
R be obtained from the following action on the generators:

αw(|ψ〉) = |ψ〉w =

(
x2w
x1w

)
. (9.14)

Clearly, the projection p and then the algebra A(S4
R) are invariant for this action.

On the other hand, in general the action (9.14) does not preserve the commutation
relations of the S7

R and thus not results into an action by ∗-automorphisms of the coordinate
algebra A(S7

R). Let us assume this is the case, that is the action preserves the commutation
relations and postpone to later on the study of deformations that meet this condition.

Dually we can also apply the general theory of Section 7 to construct a noncommutative
principal bundle A(S4

R) ⊆ A(S7
R) with Hopf algebra A(SU(2)). In order to make the

coaction clear, we will use complex coordinate to construct the Hopf Galois extension.
We know the Hopf algebra A(SU(2)) is an unital complex ∗-algebra generated by

ω1, ω1, ω2, ω2 subject to the relation ω1ω1 +ω2ω2 = 1. The coproduct, counit and antipode
is given by:

∆ :

(
ω1 ω2

−ω2 ω1

)
7→
(
ω1 ω2

−ω2 ω1

)
⊗
(
ω1 ω2

−ω2 ω1

)
,

with counit ε(ω1) = ε(ω1) = 1, ε(ω2) = ε(ω2) = 0 and antipode S(ω1) = ω1, S(ω2) =
−ω2.

For the coordinate xµ1 and xµ2 , we define

z1 := x0
1 + x1

1e1, z2 := x2
1 + x3

1e1, z3 := x0
2 + x1

2e1, z4 := x2
2 + x3

2e1. (9.15)

Or equivalently, x1 = z1 + z2e2 and x2 = z3 + z4e2, where e1, e2 and e3 are Quaternion
basis, with e1e2 = e3.

The coaction δ : A(S7
R)→ A(S7

R)⊗A(SU(2)) is given by:

δ : (z1, z2, z3, z4) 7→ (z1, z2, z3, z4)⊗


ω1 ω2 0 0
−ω2 ω1 0 0

0 0 ω1 ω2

0 0 −ω2 ω1

 . (9.16)

By exchanging the coordinate we can see that the algebra generated by A(S4
R) can also

be written as

A(S4
R) = C[1, z1z3 + z2z4,−z1z4 + z2z3, z1z1 + z2z2], (9.17)

i.e. A(S4
R) is generated by α := 2(z1z3 +z2z4), β := 2(−z1z4 +z2z3) and γ := z1z1 +z2z2−

z3z3 + z4z4. By direct computation we can see A(S4
R) is the coinvariant subalgebra of the

coaction δ. Moreover, we have

α = Y 0∗ − Y 1∗e1, β = −Y 2∗ − Y 3∗e1, γ = −Y 4. (9.18)
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Proposition 9.1. Let the action of SU(2) in (9.14) be by ∗-automorphisms of the coordi-
nate algebra A(S7

R) and let H = A(SU(2)). Then the canonical map

χ : A(S7
R)⊗A(S4

R) A(S7
R)→ A(S7

R)⊗H, χ(p′ ⊗ p) = p′δ(p)

is bijective.

Proof. With |ψ〉 as in (9.1), one has that

χ
(
〈ψ| ⊗A(S4

R) |ψ〉
)

= 〈ψ| δ(|ψ〉) = 〈ψ, ψ〉 ⊗ w = 1l⊗ w.

Since A(SU(2)) is cosemisimple, surjectivity is equivalent to bijectivity (as described in
the Section 7). More precisely, we can check on the generators that

χ(z1 ⊗A(S4
R) z1 + z2 ⊗A(S4

R) z2 + z3 ⊗A(S4
R) z3 + z4 ⊗A(S4

R) z4) = 1⊗ ω1.

χ(z1 ⊗A(S4
R) z2 − z2 ⊗A(S4

R) z1 + z3 ⊗A(S4
R) z4 − z4 ⊗A(S4

R) z3) = 1⊗ ω2.

χ(z2 ⊗A(S4
R) z1 − z1 ⊗A(S4

R) z2 + z4 ⊗A(S4
R) z3 − z3 ⊗A(S4

R) z4) = −1⊗ ω2.

χ(z2 ⊗A(S4
R) z2 + z1 ⊗A(S4

R) z1 + z4 ⊗A(S4
R) z4 + z3 ⊗A(S4

R) z3) = 1⊗ ω1.

�

Notice that the Hopf Galois extension we construct above is associated with a ∗-
structure. In other words, both the Hopf algebra H = A(SU(2)) and the comodule
algebra A = A(S7

R) are ∗-algebras, such that the coproduct, counit and coaction preserve

the ∗-structure, i.e. (∗⊗∗)◦∆ = ∆◦∗, ε(h∗) = ε(h) for any h ∈ H, and (∗⊗∗)◦ δ = δ ◦∗.

9.3. Connes–Chern characters. Let A be a unital algebra over C and let Ã = A/C1l
be the quotient of A by the scalar multiples of the unit 1l. Given an idempotent,

e = (eij) ∈ Matr(A) e2 = e,

the component chk(e) of the (reduced) Chern character of e is the element of A⊗ (Ã)⊗2k,
given explicitly by the formula

chk(e) = λk
〈
(e− 1

2
1l)⊗ e⊗2k

〉
= λk

(
ei0i1 −

1
2
δi0i1
)
⊗ ei1i2 ⊗ e

i2
i3
· · · ⊗ ei2ki0 . (9.19)

Here δij is the usual Kronecker symbol and the λk normalization constants.
Similarly, for a unitary

U = (U i
j) ∈ Matr(A) UU∗ = U∗U,

the component chk+ 1
2
(U) of the Chern character of U is the element of A ⊗ (Ã)⊗(2k+1)

given explicitly by the formula

chk+ 1
2
(U) =

〈
U ⊗ U∗ ⊗ U ⊗ U∗ ⊗ · · ·U ⊗ U∗︸ ︷︷ ︸

2(k+1)

−U∗ ⊗ U ⊗ U∗ ⊗ U · · · ⊗ U∗ ⊗ U︸ ︷︷ ︸
2(k+1)

〉

= λk

(
U i0
i1
⊗ U∗i1i2 ⊗ U

i2
i3
⊗ · · · ⊗ U∗i2k+1

i0
− U∗i0i1 ⊗ · · · ⊗ U

i2k+1

i0

)
(9.20)

with λk again normalization constants.
The crucial property of the components chk(e) or chk+ 1

2
(U) is that they define a cycle

in the (b, B) bicomplex of cyclic homology [9], [23], that is

B chk(e) = b chk+1(e) or B chk+ 1
2
(U) = b chk+ 3

2
(U) (9.21)

where b is the Hochschild boundary operator and B is the Connes boundary operator.
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For a noncommutative spherical manifold [11], [10], one asks that the components of
the character vanish but a top one that, due to (9.21) is then a (non zero) Hochschild
cycle and plays the role of the volume form for the noncommutative manifold. Specifically,
in even dimensions, for n = 2m one asks

chk(e) = 0, for all k = 0, 1, . . .m− 1, (9.22)

and chm(e) (with b chm(e) = 0 from (9.21)) is the volume form. Similarly, in odd
dimensions, for n = 2m+ 1 the vanishing condition becomes

chk+ 1
2
(U) = 0, for all k = 0, 1, . . .m− 1, (9.23)

and chm+ 1
2
(U) (with b chm+ 1

2
(U) = 0 from (9.21)) is the volume form.

9.4. Volume forms. We have already observed that the unit radius conditions in (9.5)
requires that the ‘quaternion’ Y = Y 0e0 + Y kek be such that Y Y ∗ = Y ∗Y ∈ 1l2 ⊗A(S4

R)
(in fact be in the centre of A(S4

R). An important role is played by the components of the
Connes–Chern character in cyclic homology of Y ,

ch 1
2
(Y ) = 〈Y ⊗ Y ∗ − Y ∗ ⊗ Y 〉 (9.24)

and

ch 3
2
(Y ) = 〈Y ⊗ Y ∗ ⊗ Y ⊗ Y ∗ − Y ∗ ⊗ Y ⊗ Y ∗ ⊗ Y 〉 . (9.25)

Here 〈 · 〉 indicates the partial matrix trace over M2(C), thinking of H as a subset of
M2(C). We know that when ch 1

2
(Y ) = 0 the element ch 3

2
(Y ) is a Hochschild cycle which

gives a volume element for the three-sphere S3
R obtained by the unitarity conditions

Y Y ∗ = Y ∗Y = 1l2.
On the other hand, for the projection p in (9.4) one has at once that

ch0(p) =
〈
(p− 1

2
1l)
〉

= 0.

Moreover, being the four-sphere S4
R the suspension by the central element Y 4 of the three-

sphere S3
R, the vanishing ch 1

2
(Y ) = 0 would also imply the vanishing of the component

ch1(p) (cf. [10, Theorem 2]), where

ch1(p) =
〈
(p− 1

2
1l)⊗ p⊗2

〉
.

Then, similarly to before, the element ch2(p) =
〈
(p− 1

2
1l)⊗ p⊗4

〉
is a Hochschild cycle

which gives a volume element for the four-sphere S4
R.

We see that the vanishing ch 1
2
(Y ) = 0 makes both the sphere S3

R as well as its suspension

sphere S4
R, noncommutative spherical manifolds in the sense of [11], [10].

9.5. An analysis of the ∗-structure. Due to relation (9.9), one expect the elements
Y a∗, a = 0, 1, 2, 3, to be expressed in terms of the elements Y a, a = 0, 1, 2, 3. This fact
requires conditions on the possible deformation matrix R, while giving nicer properties
for both spheres S4

R and S3
R. Indeed, they becomes spherical manifolds as mentioned at

the end of previous section. A direct computation shows that the vanishing ch 1
2
(Y ) = 0 is

equivalent to the condition

3∑
µ=0

(Y µ∗ ⊗ Y µ − Y µ ⊗ Y µ∗) = 0. (9.26)

One has then the following
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Lemma 9.3. [10, Lemma 2] The condition (9.26) is satisfied, that is ch 1
2
(Y ) = 0, if and

only if there is a symmetric unitary matrix Λ ∈M4(C) such that

Y µ∗ = Λµ
νY

ν µ, ν = 0, 1, 2, 3 . (9.27)

In turn, the condition ch 1
2
(Y ) = 0 is left unchanged by a linear change in generators as

Y µ 7→ uSµν Y
ν (9.28)

with u ∈ U(1) and S ∈ SO(4) a real rotation. Under this transformation, the symmetric
unitary matrix Λ in (9.27) transforms as

Λ 7→ u2 St ΛS. (9.29)

Then it can be diagonalized by a real rotation S and with a further normalization (by a
factor u ∈ U(1)) it can alway be put in the form

Λ =


1 0 0 0
0 eiθ1 0 0
0 0 eiθ2 0
0 0 0 eiθ3

 , (9.30)

for suitable angles θ1, θ2, θ3 (see [10, §2]).

10. The quaternionic family of four-spheres

Let us now consider the quaternionic deformations mentioned in section 8.3 governed
by the deformation matrix in (8.20) and in particular the noncommutative seven-sphere.
As we have seen, there is a compatible action of U1(H) × U1(H) by ∗-automorphisms
of the corresponding coordinate algebra. Then for the action in (9.14) we may take the
diagonal action by w = w0 +waea ∈ U1(H) 7→ w01l +waJ−a ∈ SU(2), written explicitly on
generators as x1 7→ (w01l + waJ−a )x1 and x2 7→ (w01l + waJ−a )x2.

Proposition 10.1. Given the commutation relations for the x’s for the matrix (8.20),
one has Y µ∗ = Λµ

νY
ν for Λ ∈M4(C) a symmetric unitary matrix given explicitly by:(

Y 0∗

Y 3∗

)
=

(
u0 + iu1 iu2

iu2 u0 − iu1

)(
Y 0

Y 3

)
(10.1)

and (
Y 1∗

Y 2∗

)
=

(
u0 + iu1 iu2

iu2 u0 − iu1

)(
Y 1

Y 2

)
. (10.2)

Proof. A comparison with the matrices (8.17) shows that 1
2
Y a = (Ja+)αλ x

α
2x

λ
1 for a =

0, 1, 2, 3, with J0
+ = 1l. This allows one to write 1

2
Y a∗ = (Ja+)αλ x

λ
1x

α
2 = (Ja+)αλR

λα
βµ x

β
2x

µ
1 .

Then, with the R matrix in (8.20), a direct computation of (9.13) yields

1
2
Y a∗ = (J+

a )αλR
λα
βµ x

β
2x

µ
1

=
(
u0J+

a − iu1J+
1 J

+
a J

+
1 − iu2J+

2 J
+
a J

+
1

)
βµ
xβ2x

µ
1

= 1
2

(
u0Y a − iu1J+

1 Y
aJ+

1 − iu2J+
2 Y

aJ+
1

)
,

from which one gets the explicit expressions in (10.1) and (10.2). �
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With the ∗-structure of the previous proposition one shows that none of the generators
is normal, that is Y µ∗Y µ 6= Y µY µ∗ while the condition (9.9) is automatically satisfied. On
the other hand, the commutation relations (9.7) and (9.8) can be written as:

(u0 + iu1)(Y 1Y 0 − Y 0Y 1) + iu2(Y 1Y 3 − Y 0Y 2) = 0

(u0 − iu1)(Y 3Y 2 − Y 2Y 3) + iu2(Y 3Y 1 − Y 2Y 0) = 0

u0(Y 2Y 0 − Y 0Y 2)− iu1(Y 1Y 3 + Y 3Y 1) + iu2(Y 1Y 0 − Y 3Y 2) = 0

u0(Y 3Y 1 − Y 1Y 3)− iu1(Y 0Y 2 + Y 2Y 0) + iu2(Y 0Y 1 − Y 2Y 3) = 0

u0(Y 3Y 0 − Y 0Y 3) + iu1(Y 1Y 2 + Y 2Y 1) + iu2
(
(Y 2)2 − (Y 1)2

)
= 0

u0(Y 2Y 1 − Y 1Y 2) + iu1(Y 0Y 3 + Y 3Y 0) + iu2
(
(Y 3)2 − (Y 0)2

)
= 0.

For the structure Λ in (10.1) and (10.2), the matrix

Λ′ =

(
u0 + iu1 iu2

iu2 u0 − iu1

)
(10.3)

being symmetric and unitary, can be diagonalized by a real rotation S: one finds eigenvalues
λ± = u0 ± i

√
(u1)2 + (u2)2 = u0 ± i

√
1− (u0)2. With a further normalization by the

factor u0 − i
√

(u1)2 + (u2)2 ∈ U(1), the matrix Λ′ can be put in the form(
1 0
0 eiθ

)
, (10.4)

and a direct computation gives:

eiθ =
u0 + i

√
(u1)2 + (u2)2

u0 − i
√

(u1)2 + (u2)2
=
(
u0 + i

√
(u1)2 + (u2)2

)2
. (10.5)

The sphere S4
R = S4

θ is then (isomorphic to) a θ-deformation, as the one introduced in [11]
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Part 2. On the Gauge group of Galois objects

11. The gauge groups

In [5] gauge transformations for a noncommutative principal bundles were defined to be
invertible and unital comodule maps, with no additional requirement. In particular they
were not asked to be algebra morphisms. A drawback of this approach is that the resulting
gauge group might be very big, even in the classical case; for example the gauge group
of the a G-bundle over a point would be much bigger than the structure group G. On
the other hand, in [2] gauge transformations were required to be algebra homomorphisms.
This implies in particular that they are invertible.

In the line of the paper [2] we are lead to the following definition.

Definition 11.1. Given a Hopf–Galois extension B = AcoH ⊆ A. Consider the collection

AutH(A) := {F ∈ HomAH (A,A) | F |B ∈ Aut(B)}, (11.1)

of right H-comodule unital algebra morphisms of A which restrict to automorphisms of
B, and the sub-collection

Autver(A) := {F ∈ AutH(A) | F |B = idB}. (11.2)

of ‘vertical’ ones, that is that in addition are left B-module morphisms.

Thus elements F ∈ AutH(A) preserve the (co)-action of the structure quantum group
since they are such that δA ◦F = (F ⊗ id)δA (or F (a)(0)⊗F (a)(1) = F (a(0))⊗ a(1)). And if
in Autver(A) they also preserve the base space algebra B. These will be called the gauge
group and the vertical gauge group respectively: in parallel with [2, Prop. 3.6], AutH(A)
and Autver(A) are groups when B is restricted to be in the centre of A by the following
proposition:

Proposition 11.2. Let B = AcoH ⊆ A be a H-Hopf–Galois extension with B in the
centre of A. Then AutH(A) is a group with respect to the composition of maps

F ·G := G ◦ F
for all F,G ∈ AutH(A). For F ∈ AutH(A) its inverse F−1 ∈ AutH(A) is given by

F−1 := m ◦ ((F |B)−1 ⊗ id) ◦ (m⊗ id) ◦ (id⊗ F ⊗B id) ◦ (id⊗ τ) ◦ δA (11.3)

where τ is the translation map, that is for all a ∈ A,

F−1(a) := (F |B)−1
(
a(0)F (a(1)

<1>)
)
a(1)

<2> . (11.4)

In particular the vertical homomorphisms Autver(A) form a subgroup of AutH(A).

Proof. The group multiplication is clearly well defined with unit the identity map on A.
Next, we compute that somewhat ‘implicitly’, a(0)F (a(1)

<1>)⊗B a(1)
<2> ∈ B ⊗B A. Indeed

(δA ⊗B idA)(a(0)F (a(1)
<1>)⊗B a(1)

<2>) = a(0)(0)F (a(1)
<1>)(0) ⊗ a(0)(1)F (a(1)

<1>)(1) ⊗B a(1)
<2>

= a(0)F (a(2)
<1>

(0))⊗ a(1)a(2)
<1>

(1) ⊗B a(2)
<2>

= a(0)F (a(2)(2)
<1>)⊗ a(1)S(a(2)(1))⊗B a(2)(2)

<2>

= a(0)F (a(1)
<1>)⊗ 1H ⊗B a(1)

<2>,

where the 2nd step uses that F is H-equivalent map, the 3rd step uses (7.6); since δA is
right B–linear, everything is well defined. Now, being B the coinvariant subalgebra of A
for the coaction, we have the exact sequence,

0 −→ B
i−→ A

δA−idA⊗idH−→ A⊗H −→ 0
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And, since A is faithful flat as left B-module, we also have exactness of the sequence,

0−→B ⊗B A
i⊗B idA−→ A⊗B A

(δA−idA⊗idH)⊗B idA−→ A⊗H ⊗B A−→ 0 .

Thus, the equality (δA ⊗B idA)(a(0)F (a(1)
<1>)⊗B a(1)

<2>) = a(0)F (a(1)
<1>)⊗ 1H ⊗B a(1)

<2>

shows that a(0)F (a(1)
<1>)⊗B a(1)

<2> ∈ B ⊗B A and thus F−1 in (11.4) is well defined. Let
us check that F−1 is an algebra map:

F−1(aa′) = (F |B)−1
(
(aa′)(0)F ((aa′)(1)

<1>)
)

(aa′)(1)
<2>

= (F |B)−1
(
a(0)a

′
(0)F (a′(1)

<1>)F (a(1)
<1>)

)
a(1)

<2>a′(1)

<2>

= F−1(a)F−1(a′),

where the 2nd step uses (7.9), and the last step uses the fact that a′(0)F (a′(1)
<1>)⊗Ba′(1)

<2> ∈
B ⊗B A and B belongs to the centre of A, thus F−1 is an algebra map. Also for any
b ∈ B, F−1(b) = (F |B)−1(b), so F−1|B ∈ Aut(B). Then, for any a ∈ A

F−1(F (a)) = (F |B)−1
(
F (a)(0)F (F (a)(1)

<1>)
)
F (a)(1)

<2>

= (F |B)−1
(
F (a(0))F (a(1)

<1>)
)
a(1)

<2>

= (F |B)−1
(
F (a(0)a(1)

<1>)
)
a(1)

<2>

= a,

where the 2nd step uses the H-equivariance of F , and the last step uses (7.11). Finally,

F (F−1(a)) = F
(
(F |B)−1(a(0)F (a(1)

<1>))a(1)
<2>
)

= a(0)F (a(1)
<1>)F (a(1)

<2>)

= a.

Thus F−1 is the inverse map of F ∈ AutH(A). The map F−1 is H-equivariant as well so
it belongs to AutH(A). Indeed, for any a ∈ A we have

a(0) ⊗ a(1) = F (F−1(a))(0) ⊗ F (F−1(a))(1) = F (F−1(a)(0))⊗ F−1(a)(1),

where the last step uses the H-equivariance of F . Applying F−1 ⊗ idH on both sides of
the last equation we get

F−1(a(0))⊗ a(1) = F−1(a)(0) ⊗ F−1(a)(1)

so F−1 is H-equivariant. We conclude that AutH(A) is a group.
As for the vertical automorphisms, clearly Autver(A) is closed for map compositions and
one sees that F−1 ∈ Autver(A) when F ∈ Autver(A). Thus Autver(A) is also a group. �

Remark 11.3. A similar proposition was first given in [2], for a Hopf algebra H which is
a coquasitriangular Hopf algebra, and A is a quasi-commutative H-comodule algebra. As
a consequence, B belongs to the centre of A. In the present paper, we only require B to
belongs to the centre of A without assuming H to be a coquasitriangular Hopf algebra.

For the sake of the present paper, where we are concerned mainly with Galois objects,
and seek to study their gauge groups with relations to bisections of suitable groupoids,
there is no restriction in assuming that the base space algebra B be in the centre.

12. Ehresmann–Schauenburg bialgebroids

To any Hopf–Galois extension B = AcoH ⊆ A one associates a B-coring [6, §34.13]
and a bialgebroid [6, §34.14]. These can be viewed as a quantization of the gauge or
Ehresmann groupoid that is associated to a principal fibre bundle (cf. [27]).
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12.1. Ehresmann corings. The coring can be given in few equivalent ways. Let B =
AcoH ⊆ A be a Hopf–Galois extension with right coaction δA : A→ A⊗H. Recall the
diagonal coaction (7.2), given for all a, a′ ∈ A by

δA⊗A : A⊗ A→ A⊗ A⊗H, a⊗ a′ 7→ a(0) ⊗ a′(0) ⊗ a(1)a
′
(1) ,

with corresponding B-bimodule of coinvariant elements,

(A⊗ A)coH = {a⊗ ã ∈ A⊗ A ; a(0) ⊗ ã(0) ⊗ a(1)ã(1) = a⊗ ã⊗ 1H}. (12.1)

Lemma 12.1. Let τ be the translation map of the Hopf–Galois extension. Then the
B-bimodule of coinvariant elements in (12.1) is the same as the B-bimodule,

C := {a⊗ ã ∈ A⊗ A : a(0) ⊗ τ(a(1))ã = a⊗ ã⊗B 1A}. (12.2)

Proof. Let a⊗ ã ∈ (A⊗A)coH . By applying (idA⊗ χ) on a(0)⊗ a(1)
<1>⊗B a(1)

<2>ã, we get

a(0) ⊗ a(1)
<1>a(1)

<2>
(0)ã(0) ⊗ a(1)

<2>
(1)ã(1) = a(0) ⊗ ã(0) ⊗ a(1)ã(1)

= a⊗ ã⊗ 1H = a⊗ χ(ã⊗B 1A)

= (idA ⊗ χ)(a⊗ ã⊗B 1A),

where the first step uses (7.7). This shows that (A⊗ A)coH ⊆ C.
Conversely, let a⊗ ã ∈ C. By applying (idA ⊗ χ−1) on a(0) ⊗ ã(0) ⊗ a(1)ã(1) and using the
fact that χ−1 is left A-linear and (7.9), we get

a(0) ⊗ ã(0)ã(1)
<1>a(1)

<1> ⊗B a(1)
<2>ã(1)

<2> = a(0) ⊗ a(1)
<1> ⊗B a(1)

<2>ã

= a⊗ ã⊗B 1A

= (idA ⊗ χ−1)(a⊗ ã⊗ 1H),

where in the first step (7.11) is used. This shows that C ⊆ (A⊗ A)coH . �

We have then the following definition [6, §34.13].

Definition 12.2. Let B = AcoH ⊆ A be a Hopf–Galois extension with translation map
τ . If A is faithful flat as a left B-module, then the B-bimodule C in (12.2) is a B-coring
with coring coproduct

∆(a⊗ ã) = a(0) ⊗ τ(a(1))⊗ ã = a(0) ⊗ a(1)
<1> ⊗B a(1)

<2> ⊗ ã, (12.3)

and counit

ε(a⊗ ã) = aã. (12.4)

By applying the map mA ⊗ idH to elements of (12.1), it is clear that aã ∈ B. The above
B-coring is called the Ehresmann or gauge coring ; we denote it C(A,H).

Whenever the structure Hopf algebra H has an invertible antipode, the Ehresmann
coring can also be given as an equaliser (see [18]). Indeed, let H be a Hopf algebra
with invertible antipode. And let B = AcoH ⊆ A be a H-Hopf–Galois extension, with
right coaction δA : A → A ⊗ H, a 7→ δA(a) = a(0) ⊗ a(1). Via the inverse of S one has
also a left H coaction Aδ : A → H ⊗ A, Aδ(a) := S−1(a(1)) ⊗ a(0). One also shows that
B := coHA =

{
b ∈ A | Aδ(b) = 1H ⊗ b

}
. Using the left B-linearity of δA and the right

B-linearity of Aδ one has a B-bimodule,

AH �HA = ker(δA ⊗ idA − idA ⊗ Aδ)

=
{
a⊗ ã ∈ A⊗ A : a(0) ⊗ a(1) ⊗ ã = a⊗ S−1(ã(1))⊗ ã(0)

}
(12.5)

Lemma 12.3. The bimodule AH �HA is the same as the bimodules C and (A⊗ A)coH .
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Proof. Let a ⊗ ã ∈ C. Then, by applying (idA ⊗ idH ⊗ mA) ◦ (idA ⊗ Aδ ⊗ idA) on
a(0) ⊗ a(1)

<1> ⊗B a(1)
<2>ã = a⊗ ã⊗B 1A we get, for the left hand side,

a(0) ⊗ S−1(a(1)
<1>

(1))⊗ a(1)
<1>

(0)a(1)
<2>ã = a(0) ⊗ S−1(S(a(1)(1)))⊗ a(1)(2)

<1>a(1)(2)
<2>ã

= a(0) ⊗ a(1) ⊗ ã,

using (7.6) in the first step and (7.8) in the second one. As for the right hand side, we get
a⊗ S−1(ã(1))⊗ ã(0). Thus a(0) ⊗ a(1) ⊗ ã = a⊗ S−1(ã(1))⊗ ã(0), and a⊗ ã ∈ AH �HA.

Conversely, assume a⊗ ã ∈ AH �HA. By applying (idA ⊗ idA ⊗mA) ◦ (idA ⊗ τ ⊗ idA)
on a(0) ⊗ a(1) ⊗ ã = a⊗ S−1(ã(1))⊗ ã(0), we get

a(0) ⊗ a(1)
<1> ⊗B a(1)

<2>ã = a⊗ S−1(ã(1))
<1> ⊗B S−1(ã(1))

<2>ã(0). (12.6)

Now, using (7.7) in the second step, we have

χ(S−1(ã(1))
<1> ⊗B S−1(ã(1))

<2>ã(0)) = S−1(ã(1))
<1>S−1(ã(1))

<2>
(0)ã(0)(0) ⊗ S−1(ã(1))

<2>
(1)ã(0)(1)

= ã(0) ⊗ S−1(ã(2))ã(1) = ã⊗ 1 = χ(ã⊗B 1A),

From this S−1(ã(1))
<1> ⊗B S−1(ã(1))

<2>ã(0) = ã⊗B 1 which, when substituting in the right
hand side of (12.6) yields a(0) ⊗ a(1)

<1> ⊗B a(1)
<2>ã = a⊗ ã⊗B 1A. Thus a⊗ ã ∈ C. �

Finally the coproduct (12.3) translates to the coproduct on AH �HA written as,

∆(a⊗ ã) = a⊗ τ(S−1(ã(1)))⊗ ã(0), (12.7)

The Ehresmann coring of a Hopf–Galois extension is in fact a bialgebroid, called the
Ehresmann–Schauenburg bialgebroid (cf. [6, 34.14]). One see that C(A,H) = (A⊗ A)coH

is a subalgebra of A ⊗ Aop; indeed, given a ⊗ ã, a′ ⊗ ã′ ∈ (A ⊗ A)coH , one computes
δA⊗A(aa′⊗ã′ã) = a(0)a

′
(0)⊗ã′(0)ã(0)⊗a(1)a

′
(1)ã
′
(1)ã(1) = a(0)a

′⊗ã′ã(0)⊗a(1)ã(1) = aa′⊗ã′ã⊗1H .

Definition 12.4. Let C(A,H) be the coring of a Hopf–Galois extension B = AcoH ⊆ A,
with A faithful flat as a left B-module. Then C(A,H) is a (left) B-bialgebroid with
product

(a⊗ ã) •C(A,H) (a′ ⊗ ã′) = aa′ ⊗ ã′ã, (12.8)

for all a⊗ ã, a′⊗ ã′ ∈ C(A,H) (and unit 1⊗ 1 ∈ A⊗A). The target and the source maps
are given by

t(b) = 1⊗ b, and s(b) = b⊗ 1. (12.9)

We refer to [6, 34.14] for the checking that all defining properties are satisfied.

12.2. The groups of bisections. The bialgebroid of a Hopf–Galois extension can be
view as a quantization (of the dualization) of the classical gauge groupoid (see Example
3.2), of a (classical) principal bundle. Dually to the notion of a bisection on the classical
gauge groupoid there is the notion of a bisection on the Ehresmann–Schauenburg bial-
gebroid. And in particular there are vertical bisections. These bisections correspond to
automorphisms and vertical automorphisms (gauge transformations) respectively.

Definition 12.5. Let C(A,H) be the left Ehresmann–Schauenburg bialgebroid associate
to a Hopf–Galois extension B = AcoH ⊆ A. A bisection of C(A,H) is a unital algebra
map σ : C(A,H)→ B, such that σ ◦ t = idB and σ ◦ s ∈ Aut(B).

In general the collections of all bisections do not have additional structure. As a
particular case that parallels Proposition 11.2 we have the following.
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Proposition 12.6. Consider the left Ehresmann–Schauenburg bialgebroid C(A,H) asso-
ciate to a Hopf–Galois extension B = AcoH ⊆ A. If B belong to the centre of A, then the
set of all bisections of C(A,H) is a group, denoted B(C(A,H)), with product defined by

σ1 ∗ σ2(a⊗ ã) := (σ2 ◦ s)
(
σ1(a(0) ⊗ a(1)

<1>)
)
σ2(a(1)

<2> ⊗ ã),

= σ2

(
σ1(a(0) ⊗ a(1)

<1>) a(1)
<2> ⊗ ã

)
= σ2

(
σ1((a⊗ ã)(1)) (a⊗ ã)(2)

)
(12.10)

for any bisections σ1, σ2 and any element a⊗ ã ∈ C(A,H). The unit of this group is the
counit of the bialgebroid. And for any bisection σ, its inverse is given by

σ−1(a⊗ ã) = (σ ◦ s)−1
(
aσ(ã(0) ⊗ ã(1)

<1>) ã(1)
<2>
)
. (12.11)

Here (σ ◦ s)−1 is the inverse of σ ◦ s ∈ Aut(B).

Proof. The second equality in (12.10) follows from the fact that bisections are taken to
be algebra maps. The expressions on the right hand side of (12.10) and (12.11) are well
defined. For any bisection σ and any b ∈ B, a ∈ A the condition σ ◦ t = idB yields:

σ(a(0) ⊗ a(1)
<1> b) a(1)

<2> = σ(a(0) ⊗ a(1)
<1>) b a(1)

<2> . (12.12)

As for the multiplication in (12.10): for bisections σ1, σ2 and any b ∈ B, we have

σ1 ∗ σ2(s(b)) = σ1 ∗ σ2(b⊗ 1) = σ2(s(σ1(b⊗ 1))) = (σ2 ◦ s) ◦ (σ1 ◦ s)(b).

Being both σ1 ◦s and σ2 ◦s automorphisms of B, we have (σ1 ∗σ2)◦s ∈ Aut(B). Similarly
one shows that σ1∗σ2(t(b)) = b for b ∈ B, that is (σ1∗σ2)◦t = idB. Also, the multiplication
is associative: let σ1, σ2, σ3 be bisections, and let a⊗ ã ∈ C(A,H). From

((∆⊗B idC(A,H)) ◦∆)(a⊗ ã) = a(0) ⊗ a(1)
<1> ⊗B a(1)

<2> ⊗ a(2)
<1> ⊗B a(2)

<2> ⊗ ã,

we have (using in the second step that σ3 ◦ s is an algebra map):

((σ1 ∗ σ2) ∗ σ3)(a⊗ ã)

= (σ3 ◦ s)
(

(σ2 ◦ s)
(
σ1(a(0) ⊗ a(1)

<1>)
)
σ2(a(1)

<2> ⊗ a(2)
<1>)

)
σ3(a(2)

<2> ⊗ ã)

= (σ3 ◦ s)
(

(σ2 ◦ s)
(
σ1(a(0) ⊗ a(1)

<1>)
))

(σ3 ◦ s)
(
σ2(a(1)

<2> ⊗ a(2)
<1>)

)
σ3(a(2)

<2> ⊗ ã)

= ((σ2 ∗ σ3) ◦ s)
(
σ1(a(0) ⊗ a(1)

<1>)
)

(σ2 ∗ σ3)(a(1)
<2> ⊗ ã)

= (σ1 ∗ (σ2 ∗ σ3))(a⊗ ã) .

The assumption that B belongs to the centre of A implies that the product σ1 ∗ σ2 is an
algebra map. Indeed, for a⊗ ã and a′ ⊗ ã′ ∈ C one has,

σ1 ∗ σ2(aa′ ⊗ ã′ã)

= (σ2 ◦ t)(σ1((aa)′(0) ⊗ (aa′)(1)
<1>)) (σ2((aa′)(1)

<2> ⊗ ã′ã))

= (σ2 ◦ t)(σ1(a(0)a
′
(0) ⊗ a′(1)

<1>a(1)
<1>)) (σ2(a(1)

<2>a′(1)
<2> ⊗ ã′ã))

= (σ2 ◦ t)(σ1(a(0) ⊗ a(1)
<1>)) (σ2 ◦ t)(σ1(a′(0) ⊗ a′(1)

<1>)) (σ2(a′(1)
<2> ⊗ ã′))(σ2(a(1)

<2> ⊗ ã))

= (σ1 ∗ σ2)(a⊗ ã) (σ1 ∗ σ2)(a′ ⊗ ã′)

The 2nd step uses (7.9), the 3rd step uses the fact that σ1 and σ2 are both algebra maps,
the last step uses that B belongs to the centre.

Thus σ1 ∗ σ2 is a well defined algebra map. Next, we check ε is the unit of this
multiplication. Firstly, since B is taken to belong to the centre of A the counit ε is an
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algebra map. Indeed, for any a⊗ ã ∈ C(A,H),

ε(aa′ ⊗ ã′ã) = aa′ã′ã = a′ã′aã = ε(a⊗ ã)ε(a′ ⊗ ã′),

the 2nd step using that B belongs to the centre. Then,

σ ∗ ε (a⊗ ã) = (ε ◦ t)
(
σ(a(0) ⊗ a(1)

<1>)
)
ε(a(1)

<2> ⊗ ã) = (ε ◦ t)
(
σ(a(0) ⊗ a(1)

<1>)
)
a(1)

<2>ã

= (ε ◦ t)
(
σ(a⊗ ã)

)
= σ(a⊗ ã),

where the 3rd step uses the definition of C. Similarly, for any a⊗ ã ∈ C(A,H):

ε ∗ σ(a⊗ ã) = (σ ◦ t)
(
ε(a(0) ⊗ a(1)

<1>)
)
σ(a(1)

<2> ⊗ ã)

= (σ ◦ t)
(
a(0)a(1)

<1>
)
σ(a(1)

<2> ⊗ ã)

= σ(a⊗ ã),

and for the last equality we use a(0)a(1)
<1> ⊗B a(1)

<2> = 1⊗B a. Thus ε is the unit.
Next, let us check that the inverse of a bisection σ as given in (12.11), is well defined.

The quantity aσ(ã(0) ⊗ ã(1)
<1>)ã(1)

<2>, the argument of (σ ◦ s)−1 in (12.11), belongs to B.
Indeed, with δA the coaction as in 7.1, one has

δA(aσ(ã(0) ⊗ ã(1)
<1>)ã(1)

<2>) = a(0)σ(ã(0) ⊗ ã(1)
<1>)(ã(1)

<2>)(0) ⊗ a(1)(ã(1)
<2>)(1)

= a(0)σ(ã(0) ⊗ ã(1)
<1>)ã(1)

<2> ⊗ a(1)ã(2)

= a(0)σ(ã(0)(0) ⊗ ã(0)(1)
<1>)ã(0)(1)

<2> ⊗ a(1)ã(1)

= aσ(ã(0) ⊗ ã(1)
<1>)ã(1)

<2> ⊗ 1H ,

where the 1st step uses that σ is valued in B, the 2nd use (7.5), the last one uses (12.1).
And for any b ∈ B, σ−1(s(b)) = (σ ◦ s)−1(b), so σ−1 ◦ s = (σ ◦ s)−1 ∈ Aut(B); also

σ−1(t(b)) = (σ ◦ s)−1(σ(b⊗ 1)) = (σ ◦ s)−1((σ ◦ s)(b))) = b, so σ−1 ◦ t = idB.
Next, let us show σ−1 is indeed the inverse of σ. For a⊗ ã ∈ C, we have

(σ−1 ∗ σ)(a⊗ ã)

= (σ ◦ s)(σ−1(a(0) ⊗ a(1)
<1>))σ(a(1)

<2> ⊗ ã)

= (σ ◦ s)
(

(σ ◦ s)−1
(
a(0)σ(a(1)

<1>
(0) ⊗ a(1)

<1>
(1)

<1>)a(1)
<1>

(1)
<2>
))
σ(a(1)

<2> ⊗ ã)

= a(0)σ(a(1)
<1>

(0) ⊗ a(1)
<1>

(1)
<1>)a(1)

<1>
(1)

<2> σ(a(1)
<2> ⊗ ã)

= a(0)σ
(
a(2)

<1> ⊗ S(a(1))
<1>)S(a(1))

<2> σ(a(2)
<2> ⊗ ã)

= a(0)σ(a(2)
<1>a(2)

<2> ⊗ ãS(a(1))
<1>
)
S(a(1))

<2>

= a(0)ã S(a(1))
<1>S(a(1))

<2>

= aã

= ε(a⊗ ã),
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where the 4th step uses (7.6), the 5th step uses that B belongs to the centre of A, the 6th
and 7th steps use (7.8). On the other hand,

(σ ∗ σ−1)(a⊗ ã) = (σ−1 ◦ s)
(
σ(a(0) ⊗ a(1)

<1>)
)
σ−1(a(1)

<2> ⊗ ã)

= (σ ◦ s)−1
(
σ(a(0) ⊗ a(1)

<1>)
)

(σ ◦ s)−1(a(1)
<2>σ(ã(0) ⊗ ã(1)

<1>)ã(1)
<2>)

= (σ ◦ s)−1
(
σ(a(0)ã(0) ⊗ ã(1)

<1>a(1)
<1>
)
a(1)

<2>ã(1)
<2>)

= (σ ◦ s)−1
(
σ((aã)(0) ⊗ (aã)(1)

<1>
)

(aã)(1)
<2>)

= (σ ◦ s)−1(σ(aã⊗ 1))

= (σ ◦ s)−1
(
(σ ◦ s)(aã)

)
= aã

= ε(a⊗ ã),

where the second step uses σ−1(s(b)) = (σ ◦ s)−1(b), the 3rd step uses that B belongs to
the centre of A, the 4th step uses (7.9), and the 5th step uses that aã ∈ B.

Finally, the map σ−1 is an algebra map:

σ−1(aa′ ⊗ ã′ã) = (σ ◦ s)−1
(
aa′σ

(
(ã′ã)

)
(0) ⊗ (ã′ã)(1)

<1>

)
(ã′ã)(1)

<2>

= (σ ◦ s)−1
(
aa′σ(ã′(0)ã(0) ⊗ ã(1)

<1>ã′(1)

<1>)ã′(1)

<2>ã(1)
<2>
)

= (σ ◦ s)−1
(
aa′σ(ã(0) ⊗ ã(1)

<1>)σ(ã′(0) ⊗ ã′(1)

<1>)ã′(1)

<2>ã(1)
<2>
)

= (σ ◦ s)−1
(
aa′σ(ã′(0) ⊗ ã′(1)

<1>)ã′(1)

<2>σ(ã(0) ⊗ ã(1)
<1>)ã(1)

<2>
)

= (σ ◦ s)−1
(
a′σ(ã′(0) ⊗ ã′(1)

<1>)ã′(1)

<2>aσ(ã(0) ⊗ ã(1)
<1>)ã(1)

<2>
)

= (σ ◦ s)−1
(
a′σ(ã′(0) ⊗ ã′(1)

<1>)ã′(1)

<2>
)
(σ ◦ s)−1

(
aσ(ã(0) ⊗ ã(1)

<1>)ã(1)
<2>
)

= σ−1(a⊗ ã)σ−1(a′ ⊗ ã′);

the second step uses (7.9), the 3rd step uses σ is an algebra map, the 5th one uses that
the image of σ and a′σ(ã′(0) ⊗ ã′(1)

<1>)ã′(1)
<2> are in B, which is in the centre of A. �

Remark 12.7. Having asked that bisections are algebra maps, they are B-linear in the
sense of the coring bimodule structure in (6.6). That is, for any bisection σ and b ∈ B,

σ
(
(a⊗ ã) / b

)
= σ

(
t(b) •C a⊗ ã

)
= σ(a⊗ ã)σ(t(b)) = σ(a⊗ ã) b

and

σ
(
b . (a⊗ ã)

)
= σ

(
s(b) •C a⊗ ã

)
= σ(a⊗ ã)σ(s(b)) = σ(a⊗ ã) (σ ◦ s)(b) .

Among all bisections an important role is played by the vertical ones.

Definition 12.8. Let C(A,H) be the left Ehresmann–Schauenburg bialgebroid associate
to a Hopf–Galois extension B = AcoH ⊆ A. A vertical bisection is a bisection of C which
is also a left inverse for the target map s, that is σ ◦ s = idB.

Then the following statement is immediate.

Corollary 12.9. Consider the left Ehresmann–Schauenburg bialgebroid C(A,H) associate
to a Hopf–Galois extension B = AcoH ⊆ A. If B belong to the centre of A, then the set
Bver(C(A,H)) of all vertical bisections of C is a group, a subgroup of the group of all
bisections B(C(A,H)), with the restricted product given by

σ1 ∗ σ2(a⊗ ã) := σ1(a(0) ⊗ a(1)
<1>)σ2(a(1)

<2> ⊗ ã) (12.13)
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for any vertical bisections σ1, σ2. Moreover, the inverse of a vertical bisection is given by

σ−1(a⊗ ã) = aσ(ã(0) ⊗ ã(1)
<1>) ã(1)

<2> = σ(ã(0) ⊗ ã(1)
<1>) a ã(1)

<2> . (12.14)

Proof. The right hand side of both (12.13) and (12.14) is seen to be a vertical bisection. �

Remark 12.10. We notice that the product (12.13) on vertical bisections is just the
convolution product due to the second expression for the coproduct in (12.3),

σ1 ∗ σ2(a⊗ ã) = (σ1 ⊗B σ2) ◦∆(a⊗ ã)

= σ1(a(0) ⊗ a(1)
<1>)σ2(a(1)

<2> ⊗ ã). (12.15)

We show directly that the product in (12.15) is well defined, Indeed, for b ∈ B we have

σ1(a(0) ⊗ a(1)
<1> b)σ2(a(1)

<2> ⊗ ã) = σ1

(
(a(0) ⊗ a(1)

<1>) •C (1⊗ b)
)
σ2(a(1)

<2> ⊗ ã)

= σ1(a(0) ⊗ a(1)
<1>)σ1(1⊗ b)σ2(a(1)

<2> ⊗ ã)

= σ1(a(0) ⊗ a(1)
<1>) b σ2(a(1)

<2> ⊗ ã)

= σ1(a(0) ⊗ a(1)
<1>)σ2(b⊗ 1)σ2(a(1)

<2> ⊗ ã)

= σ1(a(0) ⊗ a(1)
<1>)σ2(b a(1)

<2> ⊗ ã)

with the 4th step coming from σ2 being vertical.

12.3. Bisections and gauge groups. Recall the Definition 11.1 and the Proposition 11.2
concerning the gauge group of a Hopf–Galois extension. We have the following results.

Proposition 12.11. Let B = AcoH ⊆ A be a Hopf–Galois extension, and let C(A,H)
be the corresponding left Ehresmann–Schauenburg bialgebroid. If B is in the centre of
A, then there is a group isomorphism α : AutH(A)→ B(C(A,H)). The isomorphism α
restricts to an isomorphism between vertical subgroups α : Autver(A)→ Bver(C(A,H)).

Proof. Let F ∈ AutH(A) and define σF ∈ B(C(A,H)) by

σF (a⊗ ã) := F (a)ã, (12.16)

for any a⊗ ã ∈ C(A,H). This is well defined since

δA(F (a)ã) = (F (a)ã)(0) ⊗ (F (a)ã)(1)

= F (a)(0)ã(0) ⊗ F (a)(1)ã(1) = F (a(0))ã(0) ⊗ a(1)ã(1)

= F (a)ã⊗ 1H ,

where the last equality use (12.1), thus F (a)ã ∈ B. And σF is an algebra map, since

σF ((a′ ⊗ ã′) •C(A,H) (a⊗ ã)) = σF (a′a⊗ ãã′) = F (a′a)ãã′

= F (a′)F (a)ãã′ = F (a′)(F (a)ã)ã′ = F (a′)ã′σF (a⊗ ã)

= σF (a′ ⊗ ã′)σF (a⊗ ã),

where the 5th equality uses that B is in the centre of A. It is clear that σF ◦ t = idB and
σF ◦ s = F |B ∈ Aut(B). Thus σF is a well defined bisection. By the definition (12.16),

σidA(a⊗ ã) = aã = ε(a⊗ ã)
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and for any a⊗ ã ∈ C(A,H) we have

σG ∗ σF (a⊗ ã) = (σF ◦ s)
(
σG(a(0) ⊗ a(1)

<1>)
)
σF (a(1)

<2> ⊗ ã)

= σF
(
G(a(0))a(1)

<1> ⊗ 1)
)
σF (a(1)

<2> ⊗ ã)

= F (G(a(0))a(1)
<1>)F (a(1)

<2>)ã

= F
(
G(a(0))a(1)

<1>a(1)
<2>
)
ã

= F (G(a)) ã

= σ(G·F )(a⊗ ã),

where the 5th step uses (7.8).
Conversely, given a bisection σ, one can define an algebra map Fσ : A→ A by

Fσ(a) := σ(a(0) ⊗ a(1)
<1>)a(1)

<2> . (12.17)

We have already seen (cf. (12.12)) that the right hand side of (12.17) is well defined.
Clearly Fσ(b) = (σ ◦ s)(b) for any b ∈ B, so Fσ|B ∈ Aut(B). Moreover,

Fσ(aa′) = σ((aa′)(0) ⊗ (aa′)(1)
<1>)(aa′)(1)

<2> = σ(a(0)a
′
(0) ⊗ (a(1)a

′
(1))

<1>)(a(1)a
′
(1))

<2>

= σ(a(0)a
′
(0) ⊗ a′(1)

<1>a(1)
<1>)a(1)

<2>a′(1)
<2>

= σ(a′(0) ⊗ a′(1)
<1>)σ(a(0) ⊗ a(1)

<1>)a(1)
<2>a′(1)

<2>

= Fσ(a)Fσ(a′),

where in the third step we use (7.9). Also, Fσ is H-equivalent:

Fσ(a)(0) ⊗ Fσ(a)(1) = σ(a(0) ⊗ a(1)
<1>)a(1)

<2>
(0) ⊗ a(1)

<2>
(1)

= σ(a(0) ⊗ a(1)
<1>)a(1)

<2> ⊗ a(2)

= Fσ(a(0))⊗ a(1),

where the 2nd step uses (7.5), thus Fσ ∈ AutH(A).
The map α is an isomorphism. Indeed for any a⊗ ã ∈ C(A,H) and any σ ∈ B(C(A,H)):

σFσ(a⊗ ã) = Fσ(a)ã = σ(a(0) ⊗ a(1)
<1>)a(1)

<2>ã = σ(a⊗ ã),

where the last step uses (12.2). On the other hand, for any a ∈ A and any F ∈ AutH(A):

FσF (a) = σF (a(0) ⊗ a(1)
<1>)a(1)

<2> = F (a(0))a(1)
<1>a(1)

<2> = F (a).

Finally, for a vertical automorphism F ∈ Autver(A), it is clear that the corresponding
σF ∈ Bver(C(A,H)), and conversely from σ ∈ Bver(C(A,H)) we have Fσ ∈ Autver(A). �

12.4. Extended bisections and gauge groups. We have already mentioned that gauge
transformations for a noncommutative principal bundles could be defined without asking
them to be algebra homomorphisms [5]. Mainly for the sake of completeness we record
here a version of them via bialgebroid and bisections. To distinguish them from the
analogous concepts introduced in the previous section, and for lack of a better name, we
call the extended gauge transformation and extended bisections.

In the same vein of [5] we have the following definition.

Definition 12.12. Given a Hopf–Galois extension B = AcoH ⊆ A. Its extended gauge
group AutextH (A) consists of invertible H-comodule unital maps F : A→ A such that their
restrictions F |B ∈ Aut(B) and such that F (ba) = F (b)F (a) for any b ∈ B and a ∈ A.
The extended vertical gauge group Autextver(A) is made of elements F ∈ AutextH (A) whose
restrictions F |B = idB. The group structure is map composition.

In parallel with this we have then the following.
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Definition 12.13. Let C(A,H) be the left Ehresmann–Schauenburg bialgebroid of the
Hopf–Galois extension B = AcoH ⊆ A. An extended bisection is an unital convolution
invertible (in the sense of (12.10)) map σ : C(A,H) → B, such that σ ◦ t = idB and
σ◦s ∈ Aut(B), which in addition is B-linear in the sense of the B-coring structure on C (cf.
Remark 12.7). That is, σ

(
(a⊗ ã) / b

)
= σ(a⊗ ã) b, and σ

(
b . (a⊗ ã)

)
= σ(a⊗ ã) (σ ◦ s)(b).

The set of all extended bisections which are invertible for the product (12.10):

(σ1 ∗ σ2)(a⊗ ã) := (σ2 ◦ s)
(
σ1(a(0) ⊗ a(1)

<1>)
)
σ2(a(1)

<2> ⊗ ã). (12.18)

will be denote by Bext(C(A,H)), while Bextver(C(A,H)) will denote those which are invertible
and vertical, that is such that σ ◦ s = idB as well.

Lemma 12.14. The product (12.18) is well defined.

Proof. We need to check that σ1 ∗ σ2 is B-linear in the sense of the definition. Now, for
any a⊗ a′ ∈ C and b ∈ B we have

(σ1 ∗ σ2)((a⊗ ã) / b) = (σ1 ∗ σ2)((a⊗ ãb)
= (σ2 ◦ s)

(
σ1(a(0) ⊗ a(1)

<1>)
)

(σ2(a(1)
<2> ⊗ ãb))

= (σ2 ◦ s)
(
σ1(a(0) ⊗ a(1)

<1>)
)
σ2

(
(a(1)

<2> ⊗ ã) / b)
)

= (σ1 ∗ σ2)(a⊗ a′) b.
Similarly,

(σ1 ∗ σ2)(b . (a⊗ ã)) = (σ1 ∗ σ2)(ba⊗ ã)

= (σ2 ◦ s)
(
σ1(ba(0) ⊗ a(1)

<1>)
)

(σ2(a(1)
<2> ⊗ ã))

= (σ2 ◦ s)
(
σ1(b . (a(0) ⊗ a(1)

<1>))
)

(σ2(a(1)
<2> ⊗ ã))

= (σ2 ◦ s)
(
σ1(a(0) ⊗ a(1)

<1>) (σ1 ◦ s)(b)
)

(σ2(a(1)
<2> ⊗ ã))

= (σ2 ◦ s)(σ1 ◦ s)(b) (σ2 ◦ s)
(
σ1(a(0) ⊗ a(1)

<1>)
)
σ2(a(1)

<2> ⊗ ã)

= (σ1 ∗ σ2)(a⊗ ã)
(
(σ1 ∗ σ2) ◦ s

)
(b).

Were the last step uses the identity
(
(σ1 ∗ σ2) ◦ s

)
(b) = (σ2 ◦ s)(σ1 ◦ s)(b), and the last

but one one the fact that σ ◦ s ∈ Aut(B) and that B is in the centre. �

Remark 12.15. We remark that (12.11) is now not the inverse for the product in (12.18)
since, in contrast to Proposition 12.6 we are not asking the bisections be algebra maps.

Finally, in analogy with Proposition 12.11 we have the following.

Proposition 12.16. Let B = AcoH ⊆ A be a Hopf–Galois extension, and let C(A,H) be
the corresponding left Ehresmann–Schauenburg bialgebroid. If B belongs to the centre of
A, there is a group isomomorphism α̂ : AutextH (A) → Bext(C(A,H)). The isomorphism
restricts to an isomorphism α̂v : Autextver(A)→ Bextver(C(A,H)) between vertical subgroups.

Proof. This uses the same methods as Proposition 12.11. Given F ∈ AutextH (A), define its
image as in (12.16): σF (a⊗ ã) = F (a)ã. Being B in the centre, for all b ∈ B we have,

σF (a⊗ ãb) = F (a)ã b = σF (a⊗ ã) b ,

σF (ba⊗ ã) = F (ba)ã = F (b)F (a)ã = σF (a⊗ ã) (σF ◦ s)(b),

that is, σF
(
(a⊗ ã)/b

)
= σF (a⊗ ã) b, and σF

(
b.(a⊗ ã)

)
= σF (a⊗ ã) (σF ◦s)(b). Conversely,

for σ ∈ Bext(C(A,H)), define its image as in (12.17): Fσ(a) = σ(a(0)⊗a(1)
<1>)a(1)

<2>. Then
Fσ(ba) = σ(ba(0) ⊗ a(1)

<1>)a(1)
<2> = (σ ◦ s)(b)Fσ(a) = Fσ(b)Fσ(a), due to B in the centre

of A. The rest of the proof goes as that of Proposition 12.11. (minus the algebra map
parts). �
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13. Bisections and gauge groups of Galois objects

From now on we shall concentrate on Galois objects of a Hopf algebra H. These are
noncommutative principal bundles over a point. In contrast to the classical result that
any fibre bundle over a point is trivial, the set GalH(C) of isomorphic classes of H-Galois
objects need not be trivial (cf. [4], [19]). We shall illustrate later on this non-triviality
with examples coming from group algebras and Taft algebras.

13.1. Galois objects.

Definition 13.1. Let H be a Hopf algebra, a H-Galois object of H is an H-Hopf–Galois
extension A of the ground field C.

Thus for a Galois object the coinvariant subalgebra is the ground field C. Now if A
is faithfully flat over C, then bijectivity of the canonical Galois map implies C = AcoH

(cf. [36, Lem. 1.11]) and H is faithfully flat over C since A⊗ A is faithfully flat over A.
Recall from Section 5 that an (A,H)-relative Hopf module M is a right H-comodule with
a compatible right A-module structure. That is the action is a morphism of H-comodules
such that δM(ma) = m(0)a(0) ⊗m(1)a(1) for all a ∈ A, m ∈M . We have the following [31]:

Lemma 13.2. Let M be an (A,H)-relative Hopf module. If A is faithfully flat over C,
the multiplication induces an isomorphism

M coH ⊗ A→M,

whose inverse is M 3 m 7→ m(0)m(1)
<1> ⊗m(1)

<2> ∈M coH ⊗ A.

With coaction δA : A→ A⊗H, δA(a) = a(0)⊗a(1), and translation map τ : H → A⊗A,
τ(h) = h<1>⊗ h<2>, for the Ehresmann–Schauenburg bialgebroid of a Galois object, being
B = C one has (see also [31, Def. 3.1]):

C(A,H) = {a⊗ ã ∈ A⊗ A : a(0) ⊗ ã(0) ⊗ a(1)ã(1) = a⊗ ã⊗ 1H} (13.1)

= {a⊗ ã ∈ A⊗ A : a(0) ⊗ a(1)
<1> ⊗ a(1)

<2>ã = a⊗ ã⊗ 1A} . (13.2)

The coproduct (12.3) and counit (12.4) become ∆C(a⊗ ã) = a(0) ⊗ a(1)
<1> ⊗ a(1)

<2> ⊗ ã,
and εC(a⊗ ã) = aã ∈ C respectively, for any a⊗ ã ∈ C(A,H). But now there is also an
antipode [31, Thm. 3.5] given, for any a⊗ ã ∈ C(A,H), by

SC(a⊗ ã) := ã(0) ⊗ ã(1)
<1>aã(1)

<2> . (13.3)

Thus the Ehresmann–Schauenburg bialgebroid of a Galois object is a Hopf algebra.
Now, given that C(A,H) = (A⊗ A)coH , Lemma 13.2 yields an isomorphism

A⊗ A ' C(A,H)⊗ A , χ̃(a⊗ ã) = a(0) ⊗ a(1)
<1> ⊗ a(1)

<2>ã . (13.4)

We finally collect some results of [31] (cf. Lemma 3.2 and Lemma 3.3) in the following:

Lemma 13.3. Let H be a Hopf algebra, and A a (faithfully flat) H-Galois object of H.
There is a right H-equivariant algebra map δC : A→ C(A,H)⊗ A given by

δC(a) = a(0) ⊗ a(1)
<1> ⊗ a(1)

<2>

which is universal in the following sense: Given an algebra M and a H-equivariant
algebra map φ : A→M ⊗ A, there is a unique algebra map Φ : C(A,H)→M such that
φ = (Φ⊗ idA) ◦ δC. Explicitly, Φ(a⊗ ã)⊗ 1A = φ(a)ã.
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The ground field C being undoubtedly in the centre, for the bisections of the Ehresmann–
Schauenburg bialgebroid C(A,H) of a Galois object A, we can use all results of previous
sections. Clearly, any bisection of C(A,H) is now vertical as it is vertical any automorphism
of the principal bundle A. In fact bisections, being algebra maps, are just characters of
the Hopf algebra C(A,H) with convolution product in (12.13) and inverse in (12.14) that,
with the antipode in (13.3) can be written as σ−1 = σ ◦ SC, as is the case for characters.
From Proposition 12.11 we have then the isomorphism

AutH(A) ' B(C(A,H)) = Char(C(A,H)). (13.5)

As for extended bisections and automorphisms as in Section 12.4 we have analogously
from Proposition 12.16 the isomorphism,

AutextH (A) ' Bext(C(A,H)) = Charext(C(A,H)) , (13.6)

with Charext(C(A,H)) the group of convolution invertible unital maps φ : C(A,H)→ C.

13.2. Hopf algebras as Galois objects. Any Hopf algebra H is a H-Galois object
with coaction given by its coproduct. Then H is isomorphic to the corresponding left
bialgebroid C(H,H).

Let H be a Hopf algebra with coproduct ∆(h) = h(1) ⊗ h(2). For the corresponding
coinvariants: h(1) ⊗ h(2) = h⊗ 1, we have ε(h(1))⊗ h(2) = ε(h)⊗ 1, this imply h = ε(h) ∈ C
and HcoH = C. Moreover, the canonical Galois map χ : g ⊗ h 7→ gh(1) ⊗ h(2) is bijective
with inverse given by χ−1(g ⊗ h) := g S(h(1))⊗ h(2). Thus H is a H-Galois object.

With A = H, the corresponding left bialgebroid becomes

C(H,H) = {g ⊗ h ∈ H ⊗H : g(1) ⊗ h(1) ⊗ g(2)h(2) = g ⊗ h⊗ 1H}
= {g ⊗ h ∈ H ⊗H : g(1) ⊗ S(g(2))⊗ g(3)h = g ⊗ h⊗ 1A}. (13.7)

We have a linear map φ : C(H,H) → H given by φ(g ⊗ h) := g ε(h). The map φ has
inverse φ−1 : H → C(H,H), defined by φ−1(h) := h(1) ⊗ S(h(2)). This is well defined since

∆H⊗H(h(1) ⊗ S(h(2))) = h(1) ⊗ S(h(4))⊗ h(2)S(h(3)) = h(1) ⊗ S(h(2))⊗ 1H ,

showing that h(1) ⊗ S(h(2)) ∈ C(H,H). Moreover,

φ(φ−1(h)) = φ(h(1) ⊗ S(h(2))) = h,

and

φ−1(φ(g ⊗ h)) = ε(h)φ−1(g) = ε(h) g(1) ⊗ S(g(2)) = g ⊗ h.

Here the last equality is obtained from the condition g(1) ⊗ S(g(2))⊗ g(3)h = g ⊗ h⊗ 1H
(for any g ⊗ h ∈ C(H,H), as in the second line of (13.7)) by applying idH ⊗ idH ⊗ ε on
both sides and then multiplying the second and third factors:

g(1) ⊗ S(g(2)) ε(g(3))ε(h) = g ⊗ h ε(1H) =⇒ ε(h) g(1) ⊗ S(g(2)) = g ⊗ h.

The map φ is an algebra map:

φ((g ⊗ h) •C (g′ ⊗ h′)) = φ(gg′ ⊗ h′h) = gg′ε(h′)ε(h)

= φ(g ⊗ h) •C φ(g′ ⊗ h′).
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It is also a coalgebra map:

(φ⊗ φ)(∆C(g ⊗ h)) = (φ⊗ φ)(g(1) ⊗ g(2)
<1> ⊗ g(2)

<2> ⊗ h)

= (φ⊗ φ)(g(1) ⊗ S(g(2))⊗ g(3) ⊗ h)

= g(1) ⊗ g(2) ε(h)

= ∆H(φ(g ⊗ h));

εC(g ⊗ h) = gh = εH(gh) = εH(g)εH(h) = εH(φ(g ⊗ h)) .

13.3. Cocommutative Hopf algebras. We start with a class of examples coming from
cocommutative Hopf algebras. From [31] (Remark 3.8 and Theorem 3.5.) we have:

Lemma 13.4. Let H be a cocommutative Hopf algebra, and let A be a H-Galois object.
Then the bialgebroid C(A,H) is isomorphic to H as Hopf algebra.

Proof. We give a sketch of the proof that uses Lemma 13.3. Start with the coaction
δA : A→ A⊗H, δA(a) = a(0)⊗ a(1), and translation map τ(h) = h<1>⊗ h<2>. Firstly, the
image of τ is in C(A,H); indeed, for any h ∈ H, we get

h<1>
(0) ⊗ h<2>

(0) ⊗ h<1>
(1)h

<2>
(1) = h(1)

<1>
(0) ⊗ h(1)

<2> ⊗ h(1)
<1>

(1)h(2)

= h(1)(2)
<1> ⊗ h(1)(2)

<2> ⊗ S(h(1)(1))h(2)

= h<1> ⊗ h<2> ⊗ 1H ,

where the first step uses (7.5), and the second step uses (7.6). While τ is not an algebra
map, being H cocommutative, it is a coalgebra map. Indeed, for any h ∈ H,

∆C(τ(h)) = h<1>
(0) ⊗ τ(h<1>

(1))⊗ h<2>

= h(2)
<1> ⊗ τ(S(h(1)))⊗ h(2)

<2>

= h(2)
<1> ⊗ h(2)

<2>h(3)
<1> τ(S(h(1)))h(3)

<2>h(4)
<1> ⊗ h(4)

<2>

= h(3)
<1> ⊗ h(3)

<2>h(2)
<1> τ(S(h(1)))h(2)

<2>h(4)
<1> ⊗ h(4)

<2>

= h(1)
<1> ⊗ h(1)

<2> ⊗ h(2)
<1> ⊗ h(2)

<2>

= (τ ⊗ τ)(∆H(h)) ,

where the 2nd step uses (7.6): h(2)
<1> ⊗ h(2)

<2> ⊗ S(h(1)) = h<1>
(0) ⊗ h<2> ⊗ h<1>

(1), the
3nd step uses twice (7.10): h(1)

<1> ⊗ h(1)
<2>h(2)

<1> ⊗ h(2)
<2> = h<1> ⊗ 1A ⊗ h<2>; the 4rd

step uses H is cocommutative: we change the lower indices 2 and 3; and the 5th one uses:
ε(h)⊗ 1A = τ(S(h(1))h(2)) = h(2)

<1> τ(S(h(1)))h(2)
<2>. Also,

εC(τ(h)) = h<1>h<2> = ε(h)1A.

On the other hand, since H is cocommutative, A is also a left H-Galois object with coaction
δL(a) = a(1)⊗ a(0) and bijective canonical map χL(a⊗ ã) = a(1)⊗ a(0)ã. The corresponding
translation map is then τL = τ ◦ S where S = S−1 (since H is cocommutative) is the
antipode of H. The map τL is a coalgebra map being the composition of two such maps
(for S this is the case again due to H cocommutative).

From the universality of Lemma 13.3, there is a unique algebra map Φ : C(A,H)→ H
such that δL = (Φ⊗ idA) ◦ δC; where δC : H → C(A,H)⊗H as in the lemma. Explicitly,
Φ(a⊗ ã)⊗ 1A = δL(a)ã = χL|C(a⊗ ã) for a⊗ ã ∈ C(A,H). Indeed, with the isomorphism
χ̃ in (13.4), the map Φ is such that χL = (Φ⊗ idA) ◦ χ̃, thus is an isomorphism since χL
and χ̃ are such. The map Φ has inverse Φ−1 = τL and thus is a coalgebra map. �
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Consequently, the isomorphisms 13.5 and 13.6 for a cocommutative Hopf algebra H are:

AutH(A) ' B(C(A,H)) = Char(H) (13.8)

and
AutextH (A) ' Bext(C(A,H)) = Charext(H) , (13.9)

with Charext(H) the group of convolution invertible unital maps φ : H → C and Char(H)
the subgroup of those which are algebra maps (the characters of H).

13.4. Group Hopf algebras. Let G be a group, with neutral element e, and H = C[G]
be its group algebra. Its elements are finite sums

∑
λg g with λg complex number. We

assume that {g , g ∈ G} is a vector space basis. The product in C[G] follows from the
group product in G, with algebra unit 1C[G] = e. The coproduct, counit, and antipode,
making C[G] a Hopf algebra are defined by ∆(g) = g ⊗ g, ε(g) = 1, S(g) = g−1.

An algebra A is G-graded, that is A = ⊕g∈GAg and AgAh ⊆ Agh for all g, h ∈ G,
if and only if A is a right C[G]-comodule algebra with coaction δA : A → A ⊗ C[G],
a 7→

∑
ag ⊗ g for a =

∑
ag, ag ∈ Ag. Moreover, the algebra A is strongly G-graded, that

is AgAh = Agh, if and only if Ae = AcoC[G] ⊆ A is Hopf–Galois (see e.g. [29, Thm.8.1.7]).
Thus C[G]-Hopf–Galois extensions are the same as G-strongly graded algebras.

In particular, if A is a C[G]-Galois object, that is Ae = C, each component Ag is
one-dimensional. If we pick a non-zero element ug in each Ag, the multiplication of A is
determined by the products uguh for each pair g, h of elements of G. We then have

uguh = λ(g, h)ugh (13.10)

for a non vanishing λ(g, h) ∈ C. We get then a map λ : G×G→ C× which is in fact a
two cocycle λ ∈ H2(G,C×). Indeed, associativity of the product requires that λ satisfies
a 2-cocycle condition, that is for any g, h ∈ G,

λ(g, h)λ(gh, k) = λ(h, k)λ(g, hk). (13.11)

If we choose a different non-zero element vg ∈ Ag, we shall have vg = µ(g)ug, for some
non-zero µ(g) ∈ C. The multiplication (13.10) will become vgvh = λ′(g, h)vgh with

λ′(g, h) = µ(g)µ(h)(µ(gh))−1λ(g, h), (13.12)

that is the two 2-cocycles λ′ and λ are cohomologous. It is easy to check that for any
map µ(g) : G→ C× the assignment (g, h) 7→ µ(g)µ(h)(µ(gh))−1, is a coboundary, that is
a ‘trivial’ 2-cocycle which is cohomologous to λ(g, h) = 1. Thus the multiplication in A
depends only on the second cohomology class of λ ∈ H2(G,C×), the second cohomology
group of G with values in C×. We conclude that the equivalence classes of C[G]-Galois
objects are in bijective correspondence with the cohomology group H2(G,C×).

Example 13.5. From [19, Ex. 7.13] we have the following. For any cyclic group G
(infinite or not) one has H2(G,C×) = 0. Thus any corresponding C[G]-Galois object is
trivial. On the other hand, for the free abelian group of rank r ≥ 2, one has

H2(Zr,C×) = (C×)r(r−1)/2 .

Hence, there are infinitely many isomorphism classes of C[Zr]-Galois objects.

Since H = C[G] is cocommutative, we know from above that the corresponding
bialgebroids C(A,H) are all isomorphic to H as Hopf algebra. It is instructive to show
this directly. Clearly, for any ug⊗uh ∈ C(A,H) the coinvariance condition ug⊗uh⊗ gh =
ug ⊗ uh ⊗ 1H , requires h = g−1 so that C(A,H) is generated as vector space by elements
ug ⊗ ug−1 , g ∈ G, with multiplication

(ug ⊗ ug−1) •C (uh ⊗ uh−1) = λ(g, h)λ(h−1, g−1)ugh ⊗ u(gh)−1 , (13.13)
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Lemma 13.6. The cocycle Λ(g, h) = λ(g, h)λ(h−1, g−1) is trivial in H2(G,C×).

Proof. Firstly, we can always rescale ue to λ(e, e)ue so to have λ(e, e) = 1. Then the
cocycle condition (13.11) yields λ(g, e) = λ(e, g) = λ(e, e) = 1, for any g ∈ G. Next,
with uguh = λ(g, h)ugh and uh−1ug−1 = λ(h−1, g−1)u(gh)−1 , on the one hand we have
uguhuh−1ug−1 = λ(g, h)λ(h−1, g−1)λ(gh, (gh)−1)ue. On the other hand uguhuh−1ug−1 =
λ(g, g−1)λ(h, h−1)ue. Thus

Λ(g, h) = λ(g, g−1)λ(h, h−1)/λ(gh, (gh)−1)

showing Λ(g, h) is trivial since Λ(g, h) = µ(g)µ(h)(µ(gh))−1 with µ(g) = λ(g, g−1). �

Consequently, by rescaling the generators ug → vg = λ(g, g−1)−
1
2 ug the multiplication

rule (13.10) becomes vgvh = λ′(g, h) vgh, with λ′(g, h) = Λ(g, h)−
1
2 λ(g, h) that we rename

back to λ(g, h) from now on. As for the bialgebroid product in (13.13) one has,

(vg ⊗ vg−1) •C (vh ⊗ vh−1) = vgh ⊗ v(gh)−1 , (13.14)

and the isomorphism Φ−1 : H → C(A,H) is simply Φ−1(g) = τL(g) = vg ⊗ vg−1 .
As in (13.8), the group of bisections B(C(A,H)) of C(A,H), and the gauge group

AutH(A) of the Galois object A coincide with the group of characters on C[G], which
is in turn the same as Hom(G,C×) the group (for point-wise multiplication) of group
morphisms from G to C×.

Explicitly, since F ∈ AutH(A) is linear on A, on a basis {vg}g∈G of A, it is of the form

F (vg) =
∑
h∈G

fh(g)vh,

for complex numbers, fh(g) ∈ C. Then, the H-equivariance of F ,

F (vg)(0) ⊗ F (vg)(1) = F (vg(0))⊗ vg(1) = F (vg)⊗ g,

requires F (vg) belongs to Ag and we get fh(g) = 0, if h 6= g while fg := fg(g) ∈ C× from
the invertibility of F . Finally F is an algebra map:

λ(g, h)fghvgh = F (λ(g, h) vgh) = F (vgvh) = F (vg)F (vh) = λ(g, h)fgfh vgh ,

implies fgh = fgfh, for any g, h ∈ G. Thus we re-obtain that AutH(A) ' Hom(G,C×).
Note that the requirement F (ve = 1A) = 1 = Fe implies that Fg−1 = (Fg)

−1.
On the other hand, the group AutextH (A) and then Bext(C(A,H)) can be quite big. If

F ∈ AutextH (A) that is one does not require F to be an algebra map, the corresponding fg
can take any value in C× with the only condition that fe = 1.

13.5. Taft algebras. Let N ≥ 2 be an integer and let q be a primitive N -th roots of unity.
The Taft algebra TN , [35], is the N2-dimensional unital algebra generated by generators
x, g subject to relations:

xN = 0 , gN = 1 , xg − q gx = 0 .

It is a Hopf algebra with coproduct:

∆(x) := 1⊗ x+ x⊗ g, ∆(g) := g ⊗ g ;

counit:

ε(x) := 0, ε(g) := 1 ;

and antipode:

S(x) := −xg−1, S(g) := g−1 .
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This Hopf algebra is neither commutative nor cocommutative. The four dimensional
algebra T2 is also known as the Sweedler algebra.

For any s ∈ C, let As be the unital algebra generated by elements X,G with relations:

XN = s , GN = 1 , XG− q GX = 0 .

The algebra As is a right TN -comodule algebra, with coaction defined by

δA(X) := 1⊗ x+X ⊗ g, δA(G) := G⊗ g. (13.15)

Clearly, the corresponding coinvariants are just the ground field C and so As is a TN -Galois
object. It is known (cf. [26], Prop. 2.17, Prop. 2.22, as well as [32]) that any TN -Galois
object is isomorphic to As for some s ∈ C and that any two such Galois objects As
and At are isomorphic if and only if s = t. Thus the equivalence classes of TN -Galois
objects are in bijective correspondence with the abelian group C. For the corresponding
Ehresmann–Schauenburg bialgebroid C(As, TN) = (As ⊗ As)co TN .

Lemma 13.7. The translation map of the coaction (13.15) is given on generators by

τ(g) = G−1 ⊗G,
τ(x) = 1⊗X −XG−1 ⊗G.

Proof. We just apply the corresponding canonical map to obtain:

χ ◦ τ(g) = G−1G⊗ g = 1⊗ g,
χ ◦ τ(x) = 1⊗ x+X ⊗ g −XG−1G⊗ g = 1⊗ x.

as it should be. �

We have then the following:

Proposition 13.8. For any complex number s there is a Hopf algebra isomorphism

Φ : C(As, TN) ' TN .

Proof. It is easy to see that the elements

Ξ = X ⊗G−1 − 1⊗XG−1, Γ = G⊗G−1 (13.16)

are coinvariants for the right diagonal coaction of TN on As ⊗ As and that they generate
C(As, TN) = (As ⊗ As)co TN as an algebra. These elements satisfy the relations:

ΞN = 0, ΓN = 1, Ξ •C Γ = q Ξ •C Γ . (13.17)

Indeed, the last two relations are easy to see. As for the first one, shifting powers of G−1

to the right one finds

ΞN = XN ⊗G−N +
N−1∑
r=1

crX
N−r ⊗XrG−N + (−1)N ⊗ (XG−1)N

=
[
XN ⊗ 1 +

N−1∑
r=1

crX
N−r ⊗Xr + (−1)Nq

n(n−1)
2 ⊗XN

]
G−N

for explicit coefficients cr depending on q. Then, using the same methods as in [35] one
shows that, being q a primitive N -th roots of unity, all coefficients cr vanish and so
ΞN = XN ⊗G−N + (−1)N ⊗ (XG−1)N which then vanishes from XN = 0.

Thus the elements Ξ and Γ generate a copy of the algebra TN and the isomorphism Φ
maps Ξ to x and Γ to g. The map Φ is also a coalgebra map. Indeed,

∆(Φ(Γ)) = ∆(g) = g ⊗ g,
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while, using Lemma 13.7,

∆C(Γ) = G(0) ⊗G(1)
<1> ⊗G(1)

<2> ⊗G−1 = G⊗G−1 ⊗G⊗G−1 = Γ⊗ Γ.

Thus (Φ⊗ Φ)(∆C(Γ)) = g ⊗ g = ∆(Φ(Γ)). Similarly,

∆(Φ(Ξ)) = ∆(x) = 1⊗ x+ x⊗ g,

while, using Lemma 13.7 in the third step,

∆C(Ξ) = ∆C(X ⊗G−1)−∆C(1⊗XG−1)

= X (0) ⊗X (1)
<1> ⊗X (1)

<2> ⊗G−1 − 1⊗ 1⊗ 1⊗XG−1

= 1⊗ x<1> ⊗ x<2> ⊗G−1 +X ⊗ g<1> ⊗ g<2> ⊗G−1 − 1⊗ 1⊗ 1⊗XG−1

= 1⊗
(

1⊗X −XG−1 ⊗G
)
⊗G−1 +X ⊗G−1 ⊗G⊗G−1 − 1⊗ 1⊗ 1⊗XG−1

= 1⊗ 1⊗
(
X ⊗G−1 − 1⊗XG−1

)
+
(
X ⊗G−1 − 1⊗XG−1

)
⊗G⊗G−1

= 1⊗ Ξ + Ξ⊗ Γ.

Thus (Φ ⊗ Φ)(∆C(Ξ)) = 1 ⊗ x + x ⊗ g = ∆(Φ(Ξ)). Finally: εC(Γ) = 1 = ε(g) and
εC(Ξ) = 0 = ε(x). This concludes the proof. �

The group of characters of the Taft algebra TN is the cyclic group ZN : indeed any
character φ must be such that φ(x) = 0, while φ(g)N = φ(gN) = φ(1) = 1. Then for
the group of gauge transformations of the Galois object As, the same as the group of
bisections of the bialgebroid C(As, TN), due to Proposition 13.8 we have,

AutTN (As) ' B(C(As, TN)) = Char(TN) = ZN . (13.18)

On the other hand, elements F of AutextTN
(As) ' Bext(C(As, TN), due to equivariance

F (a)(0) ⊗ F (a)(1) = F (a(0))⊗ a(1) for any a ∈ As, can be given as a block diagonal matrix

F = diag(M1,M2, . . . ,MN−1,MN)

with each Mj a N ×N invertible lower triangular matrix

Mj =



1 0 0 . . . 0 0
b21 aN−1 0 . . . 0 0

b31 b32 aN−2
. . . . . .

...
...

. . . . . . . . . 0 0

bN−1,1 bN−1,2
. . . . . . a2 0

bN1 bN2 . . . bN,N−2 bN,N−1 a1


All matrices Mj have in common the diagonal elements aj (ciclic permuted) which are all
different from zero for the invertibility of Mj. For the subgroup AutTN (As) the Mj are
diagonal as well with ak = (a1)k and (a1)N = 1 so that Mj ∈ ZN . The reason all Mj share
the same diagonal elements (up to permutation) is the following: firstly, the ‘diagonal’
form of the coaction of G in (13.15) imply that the image F (Gk) is proportional to Gk,
say F (Gk) = αkG

k for some constant αk. Then, do to the first term in the coaction of X
in (13.15), the ‘diagonal’ component along the basis element X lGk of the image F (X lGk)
is given again by αk for any possible value of the index l.

Let us illustrate the construction for the cases of N = 2, 3. Firstly, F (1) = 1 since F
is unital. When N = 2, on the basis {1, X,G,XG}, the equivariance F (a)(0) ⊗ F (a)(1) =
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F (a(0))⊗ a(1) for the coaction (13.15) becomes

F (X)(0) ⊗ F (X)(1) = 1⊗ x+ F (X)⊗ g,
F (G)(0) ⊗ F (G)(1) = F (G)⊗ g,

F (XG)(0) ⊗ F (XG)(1) = F (G)⊗ xg + F (XG)⊗ 1.

Next, write F (a) = f1(a)+f2(a)X+f3(a)G+f4(a)XG, for complex numbers fk(a). And
compute F (a)(0)⊗F (a)(1) = f1(a) 1⊗ 1 + f2(a) (1⊗ x+X ⊗ g) + f3(a)G⊗ g+ f4(a) (G⊗
xg +XG⊗ 1). Then comparing generators, the equivariance gives

f1(X) = f4(X) = 0

f1(G) = f2(G) = f4(G) = 0

f2(XG) = f3(XG) = 0,

while the remaining coefficients are related by the system of equations

f2(X) (1⊗ x+X ⊗ g) + f3(X)G⊗ g = 1⊗ x+ F (X)⊗ g,
f3(G)G⊗ g = F (G)⊗ g,

f1(XG) 1⊗ 1 + f4(XG) (G⊗ xg +XG⊗ 1) = F (G)⊗ xg + F (XG)⊗ 1.

One readily finds solutions

f2(X) = 1, f3(X) = γ, f1(XG) = β

f3(G) = f4(XG) = α

with α, β, γ arbitrary complex numbers. Thus a generic element F of AutextT2
(As) can be

represented by the matrix:

F :


1
XG
G
X

 7→


1 0 0 0
β α 0 0
0 0 α 0
0 0 γ 1




1
XG
G
X

 . (13.19)

Asking F to be invertible requires α 6= 0. On the other hand, any F ∈ AutT2(As) is an
algebra map and so is determined by its values on the generators G,X. From F (G) = αG
and F (X) = γG+X: requiring s = F (X2) = (γG+X)2 = γ+(GX+XG)+s yields γ = 0;
then β + αXG = F (XG) = αXG yields β = 0; and 1 = F (G2) = (αG)2 leads to α2 = 1.
Thus F (X) = X and F (G) = αG, with α2 = 1 and we conclude that AutT2(As) ' Z2.

When N = 3, a similar, if longer computation, gives for AutexpT3
(As) an eight parameter

group with its elements F of the form

F :



1
XG2

X2G
G2

XG
X2

G
X

X2G−1


7→



1 0 0 0 0 0 0 0 0
β α2 0 0 0 0 0 0 0
η −qδ α1 0 0 0 0 0 0
0 0 0 α2 0 0 0 0 0
0 0 0 δ α1 0 0 0 0
0 0 0 λ −qγ 1 0 0 0
0 0 0 0 0 0 α1 0 0
0 0 0 0 0 0 γ 1 0
0 0 0 0 0 0 θ −qβ α2





1
XG2

X2G
G2

XG
X2

G
X

X2G−1


. (13.20)

One needs αj 6= 0, j = 1, 2 for invertibility. By going as before, for any F ∈ AutTN (As)
one starts from it values on the generators, F (G) = α1G and F (X) = γG+X, to conclude
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that F is a diagonal matrix (in particular F (X) = X) with α2 = (α1)
2 and 1 = (α1)

3;
thus AutT3(As) ' Z3.

14. Crossed module structures on bialgebroids

Isomorphisms of (a usual) groupoid with natural transformations between them form
a strict 2-groupoid. In particular, automorphisms of the groupoid with its natural
transformations, form a strict 2-group or, equivalently, a crossed module (cf. [28], Definition
3.21). The crossed module combines automorphisms of the groupoid and bisections since
the latter are the natural transformations from the identity functor to automorphisms. The
crossed module involves the product on bisections and the composition on automorphisms,
and the group homomorphism from bisections to automorphisms together with the action
of automorphisms on bisections by conjugation. Any bisection σ is the 2-arrow from the
identity morphism to an automorphism Adσ, and the composition of bisections can be
viewed as the horizontal composition of 2-arrows.

In this section we quantise this construction for the Ehresmann–Schauenburg bialgebroid
of a Hopf–Galois extension. We construct a crossed module for the bisections and the
automorphisms of the bialgebroid. Notice that we do not need the antipode of bialgebroid,
that is we do not need to defined the crossed module on Hopf algebroid and the crossed
module on bialgebroid is a generalization of the crossed module on groupoid. In the next
section, The construction can also be repeated for extended bisections.

14.1. Automorphisms and crossed modules. Recall that a crossed module is the
data (M,N, µ, α) of two groups M , N together with a group morphism µ : M → N and
a group morphism α : N → Aut(M) such that, denoting αn : M →M for every n ∈ N ,
the following conditions are satisfied:

(1) µ(αn(m)) = nµ(m)n−1, for any n ∈ N and m ∈M ;

(2) αµ(m)(m
′) = mm′m−1, for any m,m′ ∈M .

Then, with the definition of the automorphism group of a bialgebroid as given in
Definition 6.8, we aim at proving the following.

Theorem 14.1. Given a Hopf–Galois extension B = AcoH ⊆ A, let C(A,H) be the
corresponding left Ehresmann–Schauenburg bialgebroid, and assume B is in the cen-
tre of A. Then there is a group morphism Ad : B(C(A,H)) → Aut(C(A,H)) and
an action . of Aut(C(A,H)) on B(C(A,H)) that give a crossed module structure to(
B(C(A,H)),Aut(C(A,H))

)
.

We give the proof in a few lemmas.

Lemma 14.2. Given a Hopf–Galois extension B = AcoH ⊆ A, let C(A,H) be the
corresponding left Ehresmann–Schauenburg bialgebroid. Assume B belongs to the centre
of A. For any bisection σ ∈ B(C(A,H)), denote adσ = σ ◦ s ∈ Aut(B) and let Fσ be the
associated gauge element in AutH(A) (see (12.17)). Define Adσ : C(A,H)→ C(A,H) by

Adσ(a⊗ ã) := Fσ(a)⊗ Fσ(ã)

= σ(a(0) ⊗ a(1)
<1>)a(1)

<2> ⊗ σ(ã(0) ⊗ ã(1)
<1>)ã(1)

<2> . (14.1)

Then the pair (Adσ, adσ) is an automorphism of C(A,H).

Proof. Since Fσ is an algebra automorphism, so is Adσ. Then, for any b ∈ B,

Adσ(t(b)) = Adσ(1⊗ b) = 1⊗ σ(b⊗ 1) = t(adσ(b))

60



and

Adσ(s(b)) = Adσ(b⊗ 1) = σ(b⊗ 1)⊗ 1 = s(adσ(b)).

So conditions (i) and (ii) of Definition 6.8 are satisfied. For condition (iii), using H-
equivariance of Fσ, with a⊗ ã ∈ C(A,H) we get

(∆C(A,H) ◦ Adσ)(a⊗ ã) = Fσ(a(0))⊗ a(1)
<1> ⊗B a(1)

<2> ⊗ Fσ(ã). (14.2)

On the other hand,(
(Adσ ⊗B Adσ) ◦∆C(A,H)

)
(a⊗ ã) = Fσ(a(0))⊗ Fσ(a(1)

<1>)⊗B Fσ(a(1)
<2>)⊗ Fσ(ã). (14.3)

Now, for any F ∈ AutH(A), given h ∈ H, one has

F (h<1>)⊗B F (h<2>) = h<1> ⊗B h<2>, for any h ∈ H. (14.4)

By applying the canonical map χ and using equivariance of F we compute,

χ(F (h<1>)⊗B F (h<2>)) = F (h<1>)F (h<2>)(0) ⊗ F (h<2>)(1)

= F (h<1>)F (h<2>
(0))⊗ h<2>

(1)

= F (1A)⊗ h = 1A ⊗ h
using (7.7). Being χ an isomorphism we get the relation (14.4). Using this for the right
hand sides of (14.2) and (14.3) shows that they coincide and condition (iii) is satisfied.
Finally,

(ε ◦ Adσ)(a⊗ ã) = ε(Fσ(a)⊗ Fσ(ã)) = Fσ(aã) = (σ ◦ s)(aã) = adσ ◦ ε(a⊗ ã).

This finishes the proof. �

Remark 14.3. The map Adσ in (14.1) can also be written in the following useful ways:

Adσ(a⊗ ã) = σ(a(0) ⊗ a(1)
<1>)a(1)

<2> ⊗ a(2)
<1>σ−1(a(2)

<2> ⊗ ã)

= σ((a⊗ ã)(1)) (a⊗ ã)(2) (σ ◦ s) ◦ σ−1((a⊗ ã)(3))) (14.5)

Indeed, for a⊗ a′ ∈ C(A,H), by inserting (7.8) and using the definition of the inverse φ−1,
we compute,

Adσ(a⊗ ã) = σ(a(0) ⊗ a(1)
<1>)a(1)

<2> ⊗ σ(ã(0) ⊗ ã(1)
<1>)ã(1)

<2>

= σ(a(0) ⊗ a(1)
<1>)a(1)

<2> ⊗ a(2)
<1>a(2)

<2>σ(ã(0) ⊗ ã(1)
<1>)ã(1)

<2>

= σ(a(0) ⊗ a(1)
<1>)a(1)

<2> ⊗ a(2)
<1>σ(ã(0) ⊗ ã(1)

<1>)a(2)
<2>ã(1)

<2>

= σ(a(0) ⊗ a(1)
<1>)a(1)

<2> ⊗ a(2)
<1>(σ ◦ s) ◦ σ−1(a(2)

<2> ⊗ ã)
)

= σ((a⊗ ã)(1)) (a⊗ ã)(2) (σ ◦ s) ◦ σ−1((a⊗ ã)(3))

It is easy to see that Adσ ◦ Adτ = Adτ∗σ for any σ1, σ2 ∈ B(C(A,H)), while (Adσ)−1 =
Adσ−1 and Adε = idC(A,H). And, of course adσ ◦ adτ = adτ∗σ, with (adσ)−1 = adσ−1 and
adε = idB. Thus Ad is a group morphism Ad : B(C(A,H))→ Aut(C(A,H)).

Next, given an automorphism (Φ, ϕ) of C(A,H) with inverse (Φ−1, ϕ−1), we define an
action of (Φ, ϕ) on the group of bisections B(C(A,H)) as follow:

Φ . σ := ϕ−1 ◦ σ ◦ Φ, (14.6)

for any σ ∈ B(C(A,H)). The result is an algebra map since it is a composition of algebra
map. Moreover, for any b ∈ B, (Φ . σ)(t(b)) = ϕ−1(σ(t(ϕ(b)))) = ϕ−1(ϕ(b)) = b, so that
(Φ . σ) ◦ t = idB; while (Φ . σ)(s(b)) = ϕ−1

(
(σ ◦ s)(ϕ(b))

)
, so that (Φ . σ) ◦ s ∈ Aut(B).

And one checks that
(Φ . σ)−1 = Φ . σ−1 = ϕ−1 ◦ σ−1 ◦ Φ. (14.7)
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Lemma 14.4. Given any automorphism (Φ, ϕ), the action defined in (14.6) is a group
automorphism of B(C(A,H)).

Proof. Let σ, τ ∈ B(C(A,H)), and c ∈ C(A,H), we compute:

(Φ . τ) ∗ (Φ . σ)(c) = (Φ . σ)(s(Φ . τ(c(1))))(Φ . σ)(c(2))

=
(
ϕ−1 ◦ σ ◦ Φ ◦ s ◦ ϕ−1 ◦ τ ◦ Φ(c(1))

)(
ϕ−1 ◦ σ ◦ Φ(c(2))

)
=
(
ϕ−1 ◦ σ ◦ s ◦ τ ◦ Φ(c(1))

)(
ϕ−1 ◦ σ ◦ Φ(c(2))

)
= ϕ−1

(
σ ◦ s ◦ τ(Φ(c(1)))σ(Φ(c(2)))

)
= ϕ−1 ◦ (τ ∗ σ) ◦ Φ(c)

= Φ . (τ ∗ σ)(c),

where the last but one step uses condition (iii) of Definition 6.8. Also,

Φ . ε = ϕ−1 ◦ ε ◦ Φ = ϕ−1 ◦ ϕ ◦ ε = ε.

Finally, for any two automorphism (Φ, ϕ) and (Ψ, ψ) of C(A,H), we have

Φ . (Ψ . (σ)) = ϕ−1 ◦ ψ−1 ◦ σ ◦Ψ ◦ Φ = (ψϕ)−1 ◦ σ ◦Ψ ◦ Φ = (Ψ ◦ Φ) . σ.

In particular Φ−1 . (Φ . (σ)) = σ and so the action is an automorphism of B(C(A,H)). �

Lemma 14.5. For any automorphism (Φ, ϕ), and any σ ∈ B(C(A,H)) we have

AdΦ.σ = Φ−1 ◦ Adσ ◦ Φ.

Proof. With a⊗ ã ∈ C(A,H), from (14.5) we get

(Adσ ◦ Φ)(a⊗ ã) = σ((Φ(a⊗ ã))(1)) (Φ(a⊗ ã))(2) (σ ◦ s) ◦ σ−1((Φ(a⊗ ã))(3)), (14.8)

while, using (14.6) and (14.7), we have

AdΦ.σ(a⊗ ã) = (Φ . σ)((a⊗ ã)(1)) (a⊗ ã)(2)

(
(Φ . σ) ◦ s

)
◦ (Φ . σ)−1((a⊗ ã)(3))

= ϕ−1
(
σ(Φ((a⊗ ã)(1)))

)
(a⊗ ã)(2)

(
(Φ . σ) ◦ s

)
◦ (ϕ−1 ◦ σ−1

)
(Φ((a⊗ ã)(3))).

Since Φ is a bimodule map: Φ(b(a⊗ ã)b̃) = ϕ(b)Φ(a⊗ ã)ϕ(b̃), for all b, b̃ ∈ B, we get,

(Φ ◦ AdΦ.σ)(a⊗ ã) = σ(Φ((a⊗ ã)(1))) Φ((a⊗ ã)(2)) (σ ◦ s) ◦ σ−1(Φ((a⊗ ã)(3))). (14.9)

That the right hand sides of (14.8) and (14.9) are equal follows from the equavariance
condition (iii) of Definition 6.8. �

Lemma 14.6. Let σ, τ ∈ B(C(A,H)), then Adτ . σ = τ ∗ σ ∗ τ−1.

Proof. With a⊗ ã ∈ C(A,H), using the definition (14.5) we compute

Adτ . σ(a⊗ ã) = (ad−1
τ ◦ σ)(Adτ (a⊗ ã))

= ((τ ◦ s)−1 ◦ σ)
(
τ((a⊗ ã)(1)) (a⊗ ã)(2) (τ ◦ s) ◦ τ−1((a⊗ ã)(3))

)
= (τ−1 ◦ s)

(
(σ ◦ s)

(
τ((a⊗ ã)(1))

)
σ((a⊗ ã)(2)) (σ ◦ t) ◦ (τ ◦ s ◦ τ−1)((a⊗ ã)(3))

)
= (τ−1 ◦ s)

(
(σ ◦ s)

(
τ((a⊗ ã)(1))

)
σ((a⊗ ã)(2)) (τ ◦ s) ◦ τ−1((a⊗ ã)(3))

)
= (τ−1 ◦ s)

(
(τ ∗ σ)((a⊗ ã)(1))

)
τ−1((a⊗ ã)(2))

= τ ∗ σ ∗ τ−1(a⊗ ã),

where we used (τ ◦ s)−1 = τ−1 ◦ s, σ ◦ t = idB and definition (12.10) for the product. �

Taken together the previous lemmas establish that a crossed module structure to(
B(C(A,H)),Aut(C(A,H)), Ad, .

)
, which is the content of Theorem 14.1.
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14.2. CoInner authomorphisms of bialgebroids. Given a Hopf algebra H and a
character φ : H → C, one defines a Hopf algebra automorphisms (see [31, page 3807]) by

coinn(φ) : H → H, coinn(φ)(h) := φ(h(1))h(2)φ(S(h(3))), (14.10)

for any h ∈ H. Recall that for a character φ−1 = φ ◦ S. The set CoInn(H) of co-inner
authomorphisms of H is a normal subgroup of the group AutHopf(H) of Hopf algebra
automorphisms (this is just Aut(H) if one sees view H as a bialgebroid over C).

We know from the previous sections that for a Galois object A of a Hopf algebra
H, the corresponding bialgebroid C(A,H) is a Hopf algebra. Also, the group of gauge
transformations of the Galois object which is the same as the group of bisections can be
identified with the group of characters of C(A,H) (see (13.5)). It turns out that these
groups are also isomorphic to CoInn(C(A,H)). We have the following lemma:

Lemma 14.7. For a Galois object A of a Hopf algebra H, let C(A,H) be the corresponding
bialgebroid of A. If φ ∈ B(C(A,H)) = Char(C(A,H)), then Adφ = coinn(φ).

Proof. Let φ ∈ Char(C(A,H)); then φ−1 = φ ◦ SC. Substituting the latter in (14.5), for
a⊗ a′ ∈ C(A,H), we get

Adφ(a⊗ ã) = φ((a⊗ ã)(1)) (a⊗ ã)(2) (φ ◦ SC)((a⊗ ã)(3))

= coinn(φ)(a⊗ ã),

as claimed. �

Example 14.8. Let us consider again the Taft algebra TN of Section 13.5. We know from
Proposition 13.8 that for any TN -Galois object As the bialgebroid C(TN , As) is isomorphic
to TN and bisections of C(TN , As) are the same as characters of TN the group of which
is isomorphic to ZN . A generic character is a map φr : TN → C, given on generators x
and g by φr(x) = 0 and φr(g) = r for r a N -root of unity rN = 1. The corresponding
automorphism Adφr = coinn(φr) is easily found to be on generators given by

coinn(φr)(g) = g, coinn(φr)(x) = r−1x .

It is known (cf. [32], Lemma 2.1) that Aut(TN) ' AutHopf(TN) ' C×: Indeed, given
r ∈ C×, one defines an authomorphism Fr : TN → TN by Fr(x) := rx and Fr(g) := g.
Thus Ad : Char(TN)→ Aut(TN) is the injection sending φr to Fr−1 .

Moreover, for F ∈ Aut(TN) and φ ∈ Char(TN), one checks that AdF.φ(x) = Adφ(x)
and AdF.φ(g) = Adφ(g). Thus, as a crossed module, the action of Aut(TN) on Char(TN)
is trival and the crossed module (Char(C(TN , As)),Aut(C(TN , As)), Ad, id) is isomorphic
to (ZN ,C×, i, id), with inclusion i : ZN → C× given by i(r) := e−i2rπ/N and C× acting
trivially on ZN .

14.3. Crossed module structures on extended bisections. In parallel with the
crossed module structure on bialgebroid automorphisms and bisections, there is a similar
structure on the set of ‘extended’ bialgebroid automorphisms and extended bisections.

Given a left bialgebroid (L,∆, ε, s, t) be a left bialgebroid over the algebra B. An
extended automorphism of L is a pair (Φ, ϕ) with ϕ : B → B an algebra map and a unital
invertible linear map Φ : L → L, obeying the properties (i)− (iv) of Definition 6.8

So, an extended automorphism is not required in general to be an algebra map while
still satisfying all other properties of an automorphism. In particular we still have the
bimodule property: Φ(bab̃) = ϕ(b)Φ(a)ϕ(b̃). We denote by Autext(L) the group (by
composition) of extended automorphisms of L. There is an analogous of Theorem 14.1:
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Theorem 14.9. Given a Hopf–Galois extension B = AcoH ⊆ A, let C(A,H) be the
corresponding left Ehresmann–Schauenburg bialgebroid, and assume B be in the centre of
A. Then there is a group morphism Ad : Bext(C(A,H))→ Autext(C(A,H)) and an action
. of Autext(C(A,H)) on Bext(C(A,H)) such that the group of extended automorphisms
Autext(C(A,H)) and of extended bisections Bext(C(A,H)), form a crossed module.

This result is established in parallel and similarly to the proof of Theorem 14.1. Here
we shall only point to the differences in the definitions and the proofs.

Thus, under the hypothesis of Theorem 14.9, for any bisection σ ∈ Bext(C(A,H)), define
Adσ : C(A,H)→ C(A,H), for any a⊗ ã ∈ C(A,H), by

Adσ(a⊗ ã) := (σ(a(0) ⊗ a(1)
<1>)a(1)

<2>)⊗
(
a(2)

<1>(σ ◦ s) ◦ σ−1(a(2)
<2> ⊗ ã)

)
,

= σ((a⊗ ã)(1)) (a⊗ ã)(2) (σ ◦ s) ◦ σ−1((a⊗ ã)(3)) (14.11)

in parallel with (14.5). Then the pair of map (Adσ, adσ = σ ◦ s) is an extended automor-
phism of C(A,H). In particular we have, for any c = a⊗ ã ∈ C(A,H),

∆C(Adσ(c)) = σ(c(1)) c(2) ⊗B c(3) (σ ◦ s) ◦ σ−1(c(4))

= σ(c(1)) c(2) (σ ◦ s) ◦ σ−1(c(3))⊗B σ(c(4)) c(5) (σ ◦ s) ◦ σ−1(c(6))

where the 2nd step use (σ ◦ s) ◦ σ−1(c(1))σ(c(2)) = ε(c). With the latter, we have also,

(ε ◦ Adσ)(c) = σ(c(1)) ε(c(2)) (σ ◦ s) ◦ σ−1(c(3))

= σ(c(1)) (σ ◦ s) ◦ σ−1(c(2))

= (σ ◦ s) ε(c)
= adσ(ε(c)).

Moreover, for two extended bisections σ and τ we have, for c ∈ C(A,H),

Adσ ◦ Adτ (c) = Adσ
(
τ(c(1)) c(2) (τ ◦ s) ◦ τ−1(c(3))

)
= s
(
adσ(τ(c(1)))

)
Adσ(c(2)) t

(
adσ ◦ (τ ◦ s) ◦ τ−1(c(3))

)
= s
(
σ
(
s(τ(c(1)))

))(
σ(c(2)) c(3)

(
σ(s(σ−1(c(4))))

))
t ◦
(
σ ◦ s) ◦ (τ ◦ s) ◦ τ−1(c(5))

)
=
(
σ
(
s(τ(c(1)))

)
σ
(
c(2)

))
c(3)

(
(σ ◦ s ◦ τ ◦ s)

(
(τ−1 ◦ s) ◦ σ−1(c(4)) τ

−1(c(5))
))

= (τ ∗ σ)(c(1)) c(2)

(
(τ ∗ σ) ◦ s)(σ−1 ∗ τ−1(c(3))

)
= Adτ∗σ(c),

with the 2nd step using Adσ is a B-bimodule map. One also shows adσ ◦ adτ = adτ∗σ and
(Adε, adε) = (idC(A,H), idB). Therefore (Adσ, adσ) is invertible with inverse (Adσ−1 , adσ−1).

When σ is an algebra map, (14.11) reduces to (14.1) (or equivalently to(14.5)).
If (Φ, ϕ) is an extended automorphism of C(A,H) with inverse (Φ−1, ϕ−1) the formula

(14.6) is an action of (Φ, ϕ) on Bext(C(A,H)), a group automorphism of Bext(C(A,H)).
We only check F . σ is well defined as an extended bisection since the rest goes as in

the previous section. For a⊗ ã ∈ C(A,H) and b ∈ B, a direct computation yields:

(Φ . σ)((a⊗ ã) / b) = (Φ . σ)(a⊗ ã) b

(Φ . σ)(b . (a⊗ ã)) = (Φ . σ)(s(b)) (Φ . σ)(a⊗ ã).

Finally, with similar computation as those of Lemma 14.5 and Lemma 14.6 one shows
that for any extended automorphism (Φ, ϕ), and any σ ∈ Bext(C(A,H)) one has

AdΦ.σ = Φ−1 ◦ Adσ ◦ Φ.
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And that, with σ, τ ∈ Bext(C(A,H)), one has

Adτ . σ = τ ∗ σ ∗ τ−1.

Example 14.10. Consider a H-Galois object A and let C(A,H) be the corresponding
bialgebroid, a Hopf algebra itself. Given an extended bisection σ ∈ Bext(C(A,H)) '
Charext(H), the expression (14.11) reduces to

Adσ(a⊗ ã) = σ((a⊗ ã)(1)) (a⊗ ã)(2) σ
−1((a⊗ ã)(3))

In analogy with (14.10) to which it reduces when φ is a character (and Lemma 14.7)
we may thing of this unital invertible coalgebra map as defining an extended coinner
authomorphism of C(A,H), coinn(σ)(c) := Adσ(c) = σ(c(1))c(2)σ

−1(c(3)).

In Example 14.8 we constructed an Abelian crossed module for the Taft algebras. The
following example present a non-Abelian crossed module for Taft algebras with respect to
the extended characters and extended automorphisms.

Example 14.11. We know from Section 13.5 that the Schauenburg bialgebroid C(As, TN )
of any Galois object As for the Taft algebra TN , is isomorphic to TN itself. Thus
Autext(C(As, TN)) ' Autext(TN) is the group of unital invertible coalgebra maps: maps
Φ : TN → TN such that Φ(h(1))⊗Φ(h(2)) = Φ(h)(1)⊗Φ(h)(2) for any h ∈ TN with Φ(1) = 1.

Let us illustrate this for the case N = 2. The coproduct of T2 on the generators x, g
will then require the following condition for an automorphism Φ:

Φ(g)(1) ⊗ Φ(g)(2) = Φ(g)⊗ Φ(g)

Φ(x)(1) ⊗ Φ(x)(2) = 1⊗ Φ(x) + Φ(x)⊗ g
Φ(xg)(1) ⊗ Φ(xg)(2) = g ⊗ Φ(xg) + Φ(xg)⊗ 1 . (14.12)

A little algebra then shows that

Φ(g) = g

Φ(x) = c (g − 1) + a2 x

Φ(xg) = b (1− g) + a1 xg (14.13)

for arbitrary parameters b, c ∈ C and a1, a2 ∈ C× (for Φ to be invertible). As in (13.19)
we can represent Φ as a matrix:

Φ :


1
xg
g
x

 7→


1 0 0 0
b a1 −b 0
0 0 1 0
−c 0 c a2




1
xg
g
x

 . (14.14)

One checks that matrices MΦ of the form above form a group: Autext(TN ) ' AutHopf(TN ).
Given σ ∈ Charext(T2) we shall denote σa = σ(a) ∈ C for a ∈ {1, x, g, xg}. For the

convolution inverse σ−1, from the condition σ ∗ σ−1 = ε we get on the basis that
σ1 = (σ−1)1 = 1,

σg(σ
−1)g = 1,

σg(σ
−1)x + σx = 0,

σg(σ
−1)xg + σxg = 0

(14.15)
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from which we solve 
(σ−1)g = (σg)

−1,

(σ−1)x = −σx(σg)−1,

(σ−1)xg = −σxg(σg)−1

(14.16)

Then computing Adσ(h) = σ(h(1))h(2)σ
−1(h(3)) leads to

Adσ


1
xg
g
x

 =


1 0 0 0
σxg σg −σxg 0
0 0 1 0

−σx(σg)−1 0 σx(σg)
−1 (σg)

−1

 . (14.17)

We see that the matrix (14.17) is of the form (14.14) with the restriction that a2 = a−1
1

so that Adφ has determinant 1. Clearly, the image of Charext(T2) form a subgroup of
Autext(C(As, T2)) ' Autext(TN). Moreover, Ad : Charext(T2)→ Autext(T2) is an injective
map. Finally, the action AdΦ.σ will have as matrix just the product:

MAdΦ.σ
= MΦ−1 MAdσ MΦ (14.18)

=


1 0 0 0

a−1
1 [σxg + b(σg − 1)] σg −a−1

1 [σxg + b(σg − 1)] 0

0 0 1 0

−a−1
2 [σx (σg)

−1 + c((σg)
−1 − 1)] 0 a−1

2 [σx (σg)
−1 + c((σg)

−1 − 1)] (σg)
−1


We conclude that as a crossed module the action on Charext(T2) is not trivial.
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Part 3. On coherent Hopf 2-algebras

15. Coherent Hopf-2-algebras

In [25], the researcher constructs a strict quantum 2-group, which can be viewed as a
linear extension of strict 2-group. In [15], the quantum 2-groups are given by a crossed
module and a crossed comodule of Hopf algebra. Both of these papers constructed strict
quantum 2-group, while here we generalize them. When we consider the strict case, the
coherent Hopf 2-algebra in the following will become the dual case of the strict quantum
2-group in [15].

In Section 2 we explain a special case of coherent 2-groups, whose morphisms and
objects form a quasigroup, since usually we are interested in a more strict case where all
the objects have strict inverse and the unit object of the monoidal category is also strict.
Under this condition, we have a more interesting property of the associator. Therefore,
base on the idea of 2-arrows quantisation we can construct a coherent quantum 2-group,
which is also called coherent Hopf 2-algebra.

Definition 15.1. A coherent Hopf 2-algebra consists of a commutative Hopf coquasigroup
(B,mB, 1B,∆B, εB, SB) and a Hopf coquasigroup (H,m, 1H ,N, εH , SH), together with a
central Hopf algebroid (H,m, 1H ,∆, ε, S) over B. Moreover, there is an algebra map

(called coassociator) α : H → B ⊗B ⊗B. Denote the image of α by α(h) =: h1̃⊗ h2̃⊗ h3̃

for any h ∈ H, and Sweedler notation for both the coproduct of Hopf coquasigroup and
Hopf algebroid, N(h) =: h(1) ⊗ h(2), ∆(h) =: h(1) ⊗ h(2), such that all the structures above
satisfy the following axioms:

(i) The underlying algebra of the Hopf coquasigroup (H,m, 1H ,N, εH , SH) and the
Hopf algebroid (H,m, 1H ,∆, ε, S) coincide with each other.

(ii) ε : H → B is a morphism of Hopf coquasigroups.
(iii) s, t : B → H are morphisms of Hopf coquasigroups.
(iv) The two coproducts ∆ and N have the following cocommutation relation:

(∆⊗∆) ◦ N = (idH ⊗ τ ⊗ idH) ◦ (N⊗B N) ◦∆, (15.1)

where τ : H ⊗H → H ⊗H is given by τ(h⊗ g) := g ⊗ h.

(v)

α ◦ t = (∆B ⊗ idB) ◦∆B, α ◦ s = (idB ⊗∆B) ◦∆B (15.2)

(vi) 
εB(h1̃)1B ⊗ h2̃ ⊗ h3̃ = 1B ⊗ ε(h(1))⊗ ε(h(2))

h1̃ ⊗ εB(h2̃)1B ⊗ h3̃ = ε(h(1))⊗ 1B ⊗ ε(h(2))

h1̃ ⊗ h2̃ ⊗ εB(h3̃)1B = ε(h(1))⊗ ε(h(2))⊗ 1B.

(15.3)

(vii) {
h1̃SB(h2̃)⊗ h3̃ = SB(h1̃)h2̃ ⊗ h3̃ = 1B ⊗ ε(h)

h1̃ ⊗ SB(h2̃)h3̃ = h1̃ ⊗ h2̃SB(h3̃) = ε(h)⊗ 1B.
(15.4)

(viii) Let ? be the convolution product corresponding to the Hopf algebroid coproduct,
we have

((s⊗ s⊗ s) ◦ α) ? ((N⊗ idH) ◦ N) = ((idH ⊗ N) ◦ N) ? ((t⊗ t⊗ t) ◦ α) (15.5)
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More precisely,

s(h(1)1̃)h(2)
(1)(1) ⊗ s(h(1)2̃)h(2)

(1)(2) ⊗ s(h(1)3̃)h(2)
(2)

=h(1)
(1)t(h

(2)1̃)⊗ h(1)
(2)(1)t(h

(2)2̃)⊗ h(1)
(2)(2)t(h

(2)3̃),

(ix) The 3-cocycle condition:

((ε⊗α)◦N)?((idB⊗∆B⊗idB)◦α)?((α⊗ε)◦N) = ((idB⊗idB⊗∆B)◦α)?((∆B⊗idB⊗idB)◦α).
(15.6)

More precisely,

ε(h(1)
(1))h

(2)1̃h(3)
(1)

1̃ ⊗ h(1)
(2)

1̃h(2)2̃
(1)h

(3)
(1)

2̃ ⊗ h(1)
(2)

2̃h(2)2̃
(2)h

(3)
(1)

3̃ ⊗ h(1)
(2)

3̃h(2)3̃ε(h(3)
(2))

=h(1)1̃h(2)1̃
(1) ⊗ h(1)2̃h(2)1̃

(2) ⊗ h(1)3̃
(1)h

(2)2̃ ⊗ h(1)3̃
(2)h

(2)3̃.

A coherent Hopf 2-algebra is called a strict Hopf 2-algebra, if H and B are coassociative
(H and B are Hopf algebras), and α = (ε⊗ ε⊗ ε) ◦ (N⊗ idH) ◦ N.

Now let’s explain why Definition 15.1 is a quantisation of a coherent 2-group (see
Definition 4.4 and Proposition 4.7), whose objects form a quasigroup. First, the morphisms
and their composition form a groupoid, which corresponds to a Hopf algebroid, and the
tensor product of objects and morphisms forms a quasigroup, which corresponds to a
Hopf coquasigroup.

By the definition of monoidal category, we can see that axiom (ii), (iii) and (iv) are
natural, since the source and target maps from objects to morphisms preserve the tensor
product, and the identity map from objects to morphisms also preserves the tensor
product. The interchange law corresponds to condition (iv). The source and target
of the morphism αg,h,k is (gh)k and g(hk), which corresponds to condition (v). Since
α1,g,h = αg,1,h = αg,h,1 = idgh, we have condition (vi). Because αg,g−1,h = αg−1,g,h = idh
and αh,g,g−1 = αh,g−1,g = idh, we have the corresponding (vii). The naturality of α
corresponds to condition (viii), the pentagon corresponds to condition (ix). Here we will
still call Definition 15.1 ‘coherent Hopf 2-algebra’ even though it only corresponds to a
special case of “quantum” coherent 2-group.

Remark 15.2. For a strict Hopf 2-algebra, we can see the morphisms s, t and ε are
morphisms of Hopf algebras, and (v), (vi), (vii) are automatically satisfied. For (viii), we
have

((s⊗ s⊗ s) ◦ α) ? ((N⊗ idH) ◦ N)(h)

=s(ε(h(1)
(1)))h

(2)
(1) ⊗ s(ε(h(1)

(2)))h
(2)

(2) ⊗ s(ε(h(1)
(3)))h

(2)
(3)

=(N⊗ idH) ◦ N(h)

=h(1)
(1)t(ε(h

(2)
(1)))⊗ h(1)

(2)t(ε(h
(2)

(2)))⊗ h(1)
(3)t(ε(h

(2)
(3)))

=((idH ⊗ N) ◦ N) ? ((t⊗ t⊗ t) ◦ α)(h).

For (ix) we can see the left hand side is

ε(h(1)
(1))h

(2)1̃h(3)
(1)

1̃ ⊗ h(1)
(2)

1̃h(2)2̃
(1)h

(3)
(1)

2̃ ⊗ h(1)
(2)

2̃h(2)2̃
(2)h

(3)
(1)

3̃ ⊗ h(1)
(2)

3̃h(2)3̃ε(h(3)
(2))

=ε(h(1)
(1))ε(h

(2)
(1))ε(h

(3)
(1))⊗ ε(h(1)

(2))ε(h
(2)

(2))ε(h
(3)

(2))

⊗ε(h(1)
(3))ε(h

(2)
(3))ε(h

(3)
(3))⊗ ε(h(1)

(4))ε(h
(2)

(4))ε(h
(3)

(4)),

while the right hand side is

h(1)1̃h(2)1̃
(1) ⊗ h(1)2̃h(2)1̃

(2) ⊗ h(1)3̃
(1)h

(2)2̃ ⊗ h(1)3̃
(2)h

(2)3̃

=ε(h(1)
(1))ε(h

(2)
(1))⊗ ε(h(1)

(2))ε(h
(2)

(2))⊗ ε(h(1)
(3))ε(h

(2)
(3))⊗ ε(h(1)

(4))ε(h
(2)

(4)),
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using the fact that ε(h(1))ε(h(2)) = ε(s(ε(h(1))))ε(h(2)) = ε(s(ε(h(1)))h(2)) = ε(h), we get that
the left and right hand side of (ix) are equal.

Remark 15.3. In general, for any Hopf algebroid over an algebra B, the base algebra B
is not necessary commutative. However, in order to give a nice definition of coherent
Hopf 2-algebras, we need the maps ε, s, t to be Hopf algebra maps, since only in that case
condition (iv), (viii) and (ix) make sense. As a result, we assume that the Hopf algebroid
H is a central Hopf algebroid, so the base algebra B is a commutative algebra.

(1) In condition (iv), N ⊗B N : H ⊗B H → (H ⊗H) ⊗B⊗B (H ⊗H) is well defined
since H ⊗H has B ⊗ B-bimodule structure: (b⊗ b′) . (h⊗ h′) = s(b)h⊗ s(b′)h′
and (h⊗h′) / (b⊗ b′) = t(b)h⊗ t(b′)h′, for any b⊗ b′ ∈ B⊗B and h⊗h′ ∈ H ⊗H.
Indeed, for any b ∈ B and h, h′ ∈ H we have

(N⊗B N)(h⊗B b . h′) =(N⊗B N)(h⊗B s(b)h′)
=(h(1) ⊗ h(2))⊗B⊗B (s(b)(1)g(1) ⊗ s(b)(2)g(2))

=(h(1) ⊗ h(2))⊗B⊗B (s(b(1))g(1) ⊗ s(b(2))g(2))

=(t(b(1))h(1) ⊗ t(b(2))h(2))⊗B⊗B (g(1) ⊗ g(2))

=(t(b)(1)h(1) ⊗ t(b)(2)h(2))⊗B⊗B (g(1) ⊗ g(2))

=(N⊗B N)(h / b⊗B h′),

where in the 2nd step we use that N is an algebra map, and in the 3rd step we use the
fact that s is a coalgebra map. Clearly, the map idH⊗τ⊗idH : h⊗h′⊗B⊗B g⊗g′ 7→
(h⊗B g)⊗ (h′⊗B g′) is also well defined for any h⊗h′, g⊗ g′ ∈ H ⊗H. Concretely,
(iv) can be written as

h(1)
(1) ⊗B h(1)

(2) ⊗ h(2)
(1) ⊗B h(2)

(2) = h(1)
(1) ⊗B h(2)

(1) ⊗ h(1)
(2) ⊗B h(2)

(2), (15.7)

for any h ∈ H.
(3) By using condition (v) and the fact that s, t are bialgebra maps, we get that (viii)

is well defined over the balanced tensor product ⊗B, since (s ⊗ s ⊗ s) ◦ α ◦ t =
(N⊗ idH) ◦ N ◦ s and (t⊗ t⊗ t) ◦ α ◦ s = (idH ⊗ N) ◦ N ◦ t.

(4) The left hand side of (15.6) is well defined since:

((ε⊗ α) ◦ N)(t(b)) =ε(t(b(1)))⊗ α(t(b(2))) = b(1) ⊗ b(2)(1)(1) ⊗ b(2)(1)(2) ⊗ b(2)(2)

=(idB ⊗∆B ⊗ idB) ◦ α(s(b)).

(idB ⊗∆B ⊗ idB) ◦ α(t(b)) =b(1)(1) ⊗ b(1)(2)(1) ⊗ b(1)(2)(2) ⊗ b(2) = α(s(b(1)))⊗ ε(s(b(2)))

=((α⊗ ε) ◦ N)(s(b)).

The right hand side of (15.6) is also well defined, indeed,

((idB ⊗ idB ⊗∆B) ◦ α)(t(b)) = b(1)(1) ⊗ b(1)(2) ⊗ b(2)(1) ⊗ b(2)(2) = ((∆B ⊗ idB ⊗ idB) ◦ α)(s(b)).

Proposition 15.4. Given a coherent Hopf 2-algebra as in Definition 15.1, the antipodes
have the following property:

(i) ∆ ◦ SH = (SH ⊗B SH) ◦∆.
(ii) S is a coalgebra map on (H,N, εH). In other words, N◦S = (S⊗S)◦N and εH ◦S = εH .
(iii) If H is commutative, S ◦ SH = SH ◦ S.
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Proof. For (i), let h ∈ H,

SH(h(1))⊗B SH(h(2))

=(SH(h(1)(1)
(1))⊗B SH(h(1)(1)

(2)))(∆(h(1)(2)SH(h(2))))

=(SH(h(1)(1)
(1))⊗B SH(h(1)(1)

(2)))(h(1)(2)
(1) ⊗B h(1)(2)

(2))((SH(h(2)))
(1) ⊗B (SH(h(2)))

(2))

=(SH(h(1)
(1)

(1))⊗B SH(h(1)
(2)

(1)))(h(1)
(1)

(2) ⊗B h(1)
(2)

(2))((SH(h(2)))
(1) ⊗B (SH(h(2)))

(2))

=(εH(h(1)
(1))⊗B εH(h(1)

(2)))((SH(h(2)))
(1) ⊗B (SH(h(2)))

(2))

=εB(ε(s(ε(h(1)
(1)))h(1)

(2)))((SH(h(2)))
(1) ⊗B (SH(h(2)))

(2))

=εH(h(1))((SH(h(2)))
(1) ⊗B (SH(h(2)))

(2))

=(SH(h))(1) ⊗B (SH(h))(2)

For (ii), on the one hand we have

(S(h(1)
(1))⊗ S(h(1)

(2)))(h
(2)

(1) ⊗ h(2)
(2))(S(h(3))(1) ⊗ S(h(3))(2))

=(S(h(1)
(1))⊗ S(h(1)

(2)))(h
(2)(1)

(1) ⊗ h(2)(1)

(2))(S(h(2)(2)
)(1) ⊗ S(h(2)(2)

)(2))

=(S(h(1)
(1))⊗ S(h(1)

(2)))(N(h(2)(1)
S(h(2)(2)

)))

=(S(h(1)
(1))⊗ S(h(1)

(2)))(s(ε(h
(2)))(1) ⊗ s(ε(h(2)))(2))

=(S(h(1)
(1))⊗ S(h(1)

(2)))(s(ε(h
(2)

(1)))⊗ s(ε(h(2)
(2))))

=S(h(1)
(1)t(ε(h

(2)
(1))))⊗ S(h(1)

(2)t(ε(h
(2)

(2))))

=S(h(1)
(1)t(ε(h(1)

(2))))⊗ S(h(2)
(1)t(ε(h(2)

(2))))

=S(h(1))⊗ S(h(2))

on the other hand we have

(S(h(1)
(1))⊗ S(h(1)

(2)))(h
(2)

(1) ⊗ h(2)
(2))(S(h(3))(1) ⊗ S(h(3))(2))

=(S(h(1)(1)

(1))⊗ S(h(1)(1)

(2)))(h
(1)(2)

(1) ⊗ h(1)(2)

(2))(S(h(2))(1) ⊗ S(h(2))(2))

=(S(h(1)
(1)

(1)
)⊗ S(h(1)

(2)

(1)
))(h(1)

(1)

(2) ⊗ h(1)
(2)

(2)
)(S(h(2))(1) ⊗ S(h(2))(2))

=t(ε(h(1)
(1)))⊗ t(ε(h(1)

(2)))((S(h(2)))(1) ⊗ S(h(2))(2))

=(t(ε(h(1)))S(h(2)))(1) ⊗ (t(ε(h(1)))S(h(2)))(2)

=N(S(s(ε(h(1)))h(2)))

=N(S(h)),

and

εH(S(h)) = εH(S(h(1)))εH(h(2)) = εH(S(h(1))h(2)) = εH(t(ε(h))) = εH(h).

For (iii), on the one hand we have

S(SH(h(1)))SH(h(2))SH(S(h(3))) = S(SH(h(1)))SH(h(2)S(h(3)))

=S(SH(h(1)))SH(s(ε(h(2)))) = S(SH(h(1))))s(SB(ε(h(2))))

=S(SH(h(1)))t(SB(ε(h(2))))) = S(SH(h(1))SH(t(ε(h(2)))))

=S(SH(h(1)t(ε(h(2))))) = S(SH(h))
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where in the first step we use the fact that H is commutative. On the other hand we have

S(SH(h(1)))SH(h(2))SH(S(h(3))) = S((SH(h(1)))
(1)

)(SH(h(1)))
(2)
SH(S(h(2)))

=t(ε(SH(h(1))))SH(S(h(2))) = SH(t(ε(h(1))))SH(S(h(2)))

=SH(S(s(ε(h(1)))h(2))) = SH(S(h)),

where the first step uses (i) of this Proposition.
�

Remark 15.5. SH ⊗B SH is well defined, since for any b ∈ B and h, h′ ∈ H we have

(SH ⊗B SH)(h⊗B b . h′) =(SH ⊗B SH)(h⊗B s(b)h′)
=SH(h)⊗B SH(s(b)h′) = SH(h)⊗B SH(h′)SH(s(b))

=SH(h)⊗B SH(h′)s(SB(b)) = SH(h)⊗B s(SB(b))SH(h′)

=t(SB(b))SH(h)⊗B SH(h′) = SH(h)t(SB(b))⊗B SH(h′)

=SH(h)SH(t(b))⊗B SH(h′) = SH(h / b)⊗B SH(h′)

=(SH ⊗B SH)(h / b⊗B h′),

where in the 4th and 8th steps we use the fact that s, t are Hopf algebra maps; the 5th
and 7th steps use the fact that the image of s, t belongs to the centre of H.

16. Crossed comodule of Hopf coquasigroups

We know a strict 2-group is equivalent to a crossed module, so it is natural to construct
a quantum 2-group in terms of a crossed comodule of Hopf algebra [15]. In this section
we show that if the base algebra is commutative, a crossed comodule of Hopf algebra is
a strict Hopf 2-algebra. Moreover, we will make a generalisation of it in terms of Hopf
coquasigroups, which corresponds to a coherent Hopf 2-algebra.

Definition 16.1. A crossed comodule of Hopf coquasigroup consists of a coassociative
pair (A,B, φ) , such that the following conditions are satisfied:

(1) A is a left B comodule coalgebra and left B comodule algebra, that is:
(i) A is a left comodule of B with coaction δ : A → B ⊗ A, here we use the

Sweedler index notation: δ(a) = a(−1) ⊗ a(0);
(ii) For any a ∈ A,

a(−1) ⊗ a(0)
(1) ⊗ a(0)

(2) = a(1)
(−1)a(2)

(−1) ⊗ a(1)
(0) ⊗ a(2)

(0); (16.1)

(iii) For any a ∈ A,

εA(a) = a(−1)εA(a(0)); (16.2)

(iv) δ is an algebra map.
(2) For any b ∈ B,

φ(b)(−1) ⊗ φ(b)(0) = b(1)(1)SB(b(2))⊗ φ(b(1)(2)) = b(1)SB(b(2)(2))⊗ φ(b(2)(1)); (16.3)

(3) For any a ∈ A,

φ(a(−1))⊗ a(0) = a(1)SA(a(3))⊗ a(2). (16.4)

If B is coassociative we call the crossed comodule of Hopf coquasigroup a crossed
comodule of Hopf algebra.
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Lemma 16.2. Let (A,B, φ, δ) be a crossed comodule of Hopf coquasigroup, if B is
commutative, then the tensor product H := A⊗B is a Hopf coquasigroup, with factorwise
tensor product multiplication, and unit 1A ⊗ 1B. The coproduct is defined by N(a ⊗
b) := a(1) ⊗ a(2)

(−1)b(1) ⊗ a(2)
(0) ⊗ b(2), for any a ⊗ b ∈ A ⊗ B, the counit is defined by

εH(a ⊗ b) := εA(a)εB(b). The antipode is given by SH(a ⊗ b) := SA(a(0)) ⊗ SB(a(−1)b).
Moreover, if B is coassociative, then H is a Hopf algebra.

Proof. A⊗B is clearly an unital algebra. Now we show it is also a Hopf coquasigroup:

((idH ⊗ εH) ◦ N)(a⊗ b) =a(1) ⊗ a(2)
(−1)b(1)εA(a(2)

(0))εB(b(2))

=a(1) ⊗ a(2)
(−1)bεA(a(2)

(0))

=a(1) ⊗ εA(a(2))b

=a⊗ b,

where the 3rd step we use the fact that A is comodule coalgebra,

((εH ⊗ idH) ◦ N)(a⊗ b) =εA(a(1))εB(a(2)
(−1)b(1))a(2)

(0) ⊗ b(2)

=a⊗ b.

Now we show H is also a bialgebra:

N(aa′ ⊗ bb′) =a(1)a
′
(1) ⊗ a(2)

(−1)a′(2)
(−1)b(1)b

′
(1) ⊗ a(2)

(0)a′(2)
(0) ⊗ b(2)b

′
(2)

=a(1)a
′
(1) ⊗ a(2)

(−1)b(1)a
′
(2)

(−1)b′(1) ⊗ a(2)
(0)a′(2)

(0) ⊗ b(2)b
′
(2)

=N(a⊗ b)N(a′ ⊗ b′),

here we use the fact that B is a commutative algebra in the 2nd step. So N and εH are
clearly algebra maps, thus H is a bialgebra. Now check the antipode SH for h = a⊗ b,

h(1)(1) ⊗ SH(h(1)(2))h(2)

=a(1)(1) ⊗ a(1)(2)
(−1)a(2)

(−1)
(1)b(1)(1) ⊗ SA(a(1)(2)

(0)(0))a(2)
(0) ⊗ SB(a(1)(2)

(0)(−1)a(2)
(−1)

(2)b(1)(2))b(2)

=a(1)(1) ⊗ a(1)(2)
(−1)a(2)

(−1)
(1)b⊗ SA(a(1)(2)

(0)(0))a(2)
(0) ⊗ SB(a(1)(2)

(0)(−1)a(2)
(−1)

(2))

=a(1)(1) ⊗ a(1)(2)
(−1)

(1)a(2)
(−1)

(1)b⊗ SA(a(1)(2)
(0))a(2)

(0) ⊗ SB(a(1)(2)
(−1)

(2)a(2)
(−1)

(2))

=a(1)(1) ⊗ SA(a(1)(2))
(−1)

(1)a(2)
(−1)

(1)b⊗ SA(a(1)(2))
(0)a(2)

(0) ⊗ SB(SA(a(1)(2))
(−1)

(2)a(2)
(−1)

(2))

=a⊗ b⊗ 1A ⊗ 1B

where in the second step we use the fact that B is commutative, the fourth step use the
fact that a(−1) ⊗ SA(a(0)) = SA(a)(−1) ⊗ SA(a)(0), indeed,

a(−1) ⊗ SA(a(0))

=a(1)(1)
(−1)a(1)(2)

(−1)SA(a(2))
(−1) ⊗ SA(a(1)(1)

(0))a(1)(2)
(0)SA(a(2))

(0)

=a(1)
(−1)SA(a(2))

(−1) ⊗ SA(a(1)
(0)

(1))a(1)
(0)

(2)SA(a(2))
(0)

=a(1)
(−1)SA(a(2))

(−1) ⊗ εA(a(1)
(0))SA(a(2))

(0)

=SA(a)(−1) ⊗ SA(a)(0),

where in the second and third steps we use the comodule coalgebra property. The other
axioms of Hopf coquasigroups are similar. Thus H is a Hopf coquasigroup.
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When B is coassociative, for any a⊗ b ∈ A⊗B, we also have

((idH ⊗ N) ◦ N)(a⊗ b) =(idH ⊗ N)(a(1) ⊗ a(2)
(−1)b(1) ⊗ a(2)

(0) ⊗ b(2))

=a(1) ⊗ a(2)
(−1)b(1) ⊗ a(2)

(0)
(1) ⊗ a(2)

(0)
(2)

(−1)b(2) ⊗ a(2)
(0)

(2)
(0) ⊗ b(3)

=a(1) ⊗ a(2)
(−1)a(3)

(−1)b(1) ⊗ a(2)
(0) ⊗ a(3)

(0)(−1)b(2) ⊗ a(3)
(0)(0) ⊗ b(3)

=a(1) ⊗ a(2)
(−1)a(3)

(−1)
(1)b(1) ⊗ a(2)

(0) ⊗ a(3)
(−1)

(2)b(2) ⊗ a(3)
(0) ⊗ b(3)

=(N⊗ idH)(a(1) ⊗ a(2)
(−1)b(1) ⊗ a(2)

(0) ⊗ b(2))

=((N⊗ idH) ◦ N)(a⊗ b),

where in the 3rd step we use the fact that A is a comodule coalgebra and in the 4th step
we use the fact that A is a left B comodule. So (H,N, εH) is coassociative. �

From the proof above we can also see that even if A is a Hopf coquasigroup, we can
also get a Hopf coquasigroup A⊗B, with the same coproduct, counit and antipode.

Lemma 16.3. Let (A,B, φ, δ) be a crossed comodule of Hopf coquasigroup. If B is
commutative and the image of φ belongs to the center of A, then H = A⊗B is a central
Hopf algebroid over B, such that the source, target and counit (of the bialgebroid structure)
are bialgebra map.

Proof. We can see that H is a tensor product algebra. The source and target maps
s, t : B → H are given by s(b) := φ(b(1)) ⊗ b(2), and t(b) := 1A ⊗ b, for any b ∈ B. The
counit map ε : H → B is defined to be ε(a ⊗ b) := εA(a)b, and the left bialgebroid
coproduct is defined to be ∆(a ⊗ b) := (a(1) ⊗ 1B) ⊗B (a(2) ⊗ b). The antipode is given
by S(a ⊗ b) := SA(a)φ(b(1)) ⊗ b(2). Now we show all the structure above forms a left
bialgebroid structure on H. First we can see that s, t are algebra maps, so H is a B ⊗B-
ring. Now we show H is a B-coring. Here the B-bimodule structure on H is given by
b′ . (a⊗ b) / b′′ = s(b′)t(b′′)(a⊗ b) for a⊗ b ∈ H, b′, b′′ ∈ B. So we have

ε(b′ . (a⊗ b) / b′′) =ε(s(b′)t(b′′)(a⊗ b)) = εA(φ(b′(1))a)b′(2)b
′′b

=εB(b′(1))εA(a)b′(2)b
′′b = b′ε(a⊗ b)b′′,

where we use the fact that φ is a bialgebra map in the 3rd step. Clearly, ε is an algebra
map from A⊗B to B. We also have

(ε⊗ ε)(N(a⊗ b)) =(ε⊗ ε)(a(1) ⊗ a(2)
(−1)b(1) ⊗ a(2)

(0) ⊗ b(2))

=εA(a(1))a(2)
(−1)b(1) ⊗ εA(a(2)

(0))b(2)

=a(−1)b(1) ⊗ εA(a(0))b(2)

=εA(a)b(1) ⊗ b(2)

=∆B(ε(a⊗ b)),

where for the 3rd step we use the fact that A is a comodule algebra. So we can see that ε
is a bialgebra map from A⊗B to B. We can also show s and t are also bialgebra maps,
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since we have

N(s(b)) =N(φ(b(1))⊗ b(2))

=φ(b(1))(1) ⊗ φ(b(1))(2)
(−1)b(2)(1) ⊗ φ(b(1))(2)

(0) ⊗ b(2)(2)

=φ(b(1)(1))⊗ φ(b(1)(2))
(−1)b(2)(1) ⊗ φ(b(1)(2))

(0) ⊗ b(2)(2)

=φ(b(1)(1))⊗ φ(b(1)(2)(1))
(−1)b(1)(2)(2) ⊗ φ(b(1)(2)(1))

(0) ⊗ b(2)(2)

=φ(b(1)(1))⊗ b(1)(2)(1)(1)(1)SB(b(1)(2)(1)(2))b(1)(2)(2) ⊗ φ(b(1)(2)(1)(1)(2))⊗ b(2)(2)

=φ(b(1)(1))⊗ b(1)(2)(1) ⊗ φ(b(1)(2)(2))⊗ b(2)(2)

=φ(b(1)(1))⊗ b(1)(2) ⊗ φ(b(2)(1))⊗ b(2)(2)

=(s⊗ s)(∆B(b))

where in the 4th and 7th steps we use the axiom of coassociative pairing, and in the 5th
step we use (16.3). We also have

N(t(b)) =N(1⊗ b) = 1⊗ b(1) ⊗ 1⊗ b(2) = (t⊗ t)(∆B(b)),

for any b ∈ B. So s and t are algebra maps. We can also show ∆ is a B-bimodule map:

∆(b′ . (a⊗ b)) =∆(φ(b′(1))a⊗ b′(2)b)

=(φ(b′(1))(1)a(1) ⊗ 1)⊗B (φ(b′(1))(2)a(2) ⊗ b′(2)b)

=(φ(b′(1)(1))a(1) ⊗ 1)⊗B (φ(b′(1)(2))a(2) ⊗ b′(2)b)

=(φ(b′(1))a(1) ⊗ 1)⊗B (φ(b′(2)(1))a(2) ⊗ b′(2)(2)b)

=(φ(b′(1))a(1) ⊗ 1)⊗B s(b′(2))(a(2) ⊗ b)
=(φ(b′(1))a(1) ⊗ 1)t(b′(2))⊗B (a(2) ⊗ b)
=(φ(b′(1))a(1) ⊗ b′(2))⊗B (a(2) ⊗ b)
=b′ .∆(a⊗ b),

where in the fourth step we use the axiom of coassociative pairing. We also have

∆((a⊗ b) / b′) =∆(a⊗ bb′) = (a(1) ⊗ 1)⊗B (a(2) ⊗ bb′) = ∆(a⊗ b) / b′

for any a⊗ b ∈ A⊗B and b′ ∈ B. ∆ is clearly coassociative, and we also have

(idH ⊗B ε) ◦∆(a⊗ b) = a⊗ b⊗B 1H ,

and

(ε⊗B idH) ◦∆(a⊗ b) = εA(a(1))⊗ 1⊗B (a(2) ⊗ b) = 1H ⊗B a⊗ b

by straightforward computation. Up to now we have already shown that H is a B-coring.
Clearly, ∆ is also an algebra map from H to H ×B H. Given a⊗ b, a′ ⊗ b′ ∈ H, we have
ε((a⊗ b)(a′ ⊗ b′)) = εA(aa′)bb′, and ε((a⊗ b)t(ε(a′ ⊗ b′))) = ε(a⊗ bεA(a′)b′) = εA(aa′)bb′.
We also have

ε((a⊗ b)s(ε(a′ ⊗ b′))) =ε((a⊗ b)(φ(εA(a′)b′(1))⊗ b′(2)))

=εA(aa′)bb′,

thus ε is a left character and H is therefore a left bialgebroid. Since the image of φ belongs
to the center of A, we can check that S(t(b′)(a ⊗ b)s(b′′)) = t(b′′)S(a ⊗ b)s(b′) for any
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a⊗ b ∈ H and b′, b′′ ∈ B:

S(t(b′)(a⊗ b)s(b′′)) =S(aφ(b′′(1))⊗ b′bb′′(2))

=SA(aφ(b′′(1)))φ(b′(1)b(1)b
′′

(2)(1))⊗ b′(2)b(2)b
′′

(2)(2)

=SA(a)φ(b(1))φ(b′(1))⊗ b′′b(2)b
′
(2)

=t(b′′)S(a⊗ b)s(b′),
where the 3rd step uses the fact that B is commutative and its image of φ belongs to the
center of A. Now we can see that

S(a(1) ⊗ 1)(a(2) ⊗ b) = SA(a(1))a(2) ⊗ b = (t ◦ ε)(a⊗ b),
and

(a(1) ⊗ 1)S(a(2) ⊗ b) = a(1)SA(a(2))φ(b(1))⊗ b(2) = (s ◦ ε)(a⊗ b)
So H is a Hopf algebroid. �

Lemma 16.4. For A, B and H = A⊗B as above, we have

(∆⊗∆) ◦ N = (idH ⊗ τ ⊗ idH) ◦ (N⊗B N) ◦∆.

Proof. Let h = a⊗ b ∈ H, on the left hand side we have

(∆⊗∆) ◦ N(h) = a(1) ⊗ 1⊗B a(2) ⊗ a(3)
(−1)b(1) ⊗ a(3)

(0)
(1) ⊗ 1⊗B a(3)

(0)
(2) ⊗ b(2),

on the right hand side we have

(H ⊗ τ ⊗H) ◦ (N⊗B N) ◦ (∆(h))

=a(1) ⊗ a(2)
(−1) ⊗B a(3) ⊗ a(4)

(−1)b(1) ⊗ a(2)
(0) ⊗ 1⊗B a(4)

(0) ⊗ b(2)

=a(1) ⊗ 1⊗B φ(a(2)
(−1)

(1))a(3) ⊗ a(2)
(−1)

(2)a(4)
(−1)b(1) ⊗ a(2)

(0) ⊗ 1⊗B a(4)
(0) ⊗ b(2)

=a(1) ⊗ 1⊗B φ(a(2)
(−1))a(3) ⊗ a(2)

(0)(−1)a(4)
(−1)b(1) ⊗ a(2)

(0)(0) ⊗ 1⊗B a(4)
(0) ⊗ b(2)

=a(1) ⊗ 1⊗B a(2)(1)SA(a(2)(3))a(3) ⊗ a(2)(2)
(−1)a(4)

(−1)b(1) ⊗ a(2)(2)
(0) ⊗ 1⊗B a(4)

(0) ⊗ b(2)

=a(1) ⊗ 1⊗B a(2) ⊗ a(3)
(−1)a(4)

(−1)b(1) ⊗ a(3)
(0) ⊗ 1⊗B a(4)

(0) ⊗ b(2)

=a(1) ⊗ 1⊗B a(2) ⊗ a(3)
(−1)b(1) ⊗ a(3)

(0)
(1) ⊗ 1⊗B a(3)

(0)
(2) ⊗ b(2),

where in the second step we use the balanced tensor product over B, the fourth step uses
(16.4), and in the last step we use the fact that A is a comodule coalgebra of B. �

Since for strict Hopf 2-algebra all the axioms of coassociator are trivial, we can conclude:

Theorem 16.5. Let (A,B, φ, δ) be a crossed comodule of Hopf algebra, if B is commutative
and the image of φ belongs to the center of B, then H = A⊗B is a strict Hopf 2-algebra
with the structure maps given by:

N(a⊗ b) =a(1) ⊗ a(2)
(−1)b(1) ⊗ a(2)

(0) ⊗ b(2),

εH(a⊗ b) =εA(a)εB(b),

SH(a⊗ b) =SA(a(0))⊗ SB(a(−1)b),

s(b) =φ(b(1))⊗ b(2),

t(b) =1⊗ b,
∆(a⊗ b) =a(1) ⊗ 1⊗B a(2) ⊗ b,
ε(a⊗ b) =εA(a)b,

S(a⊗ b) =SA(a)φ(b(1))⊗ b(2).
75



Here are some examples of crossed comodule of Hopf algebras:

Example 16.6. Let φ : B → A be a surjective morphism of Hopf algebras, where A is
commutative, such that for any i ∈ I := ker(φ), i(1)SB(i(3))⊗ i(2) ∈ B ⊗ I. Thus we can
define δ : A → B ⊗ A by δ([a]) := a(1)SB(a(3)) ⊗ [a(2)], where [a] denote the image of
φ. We can see that A is a comodule coalgebra and comodule algebra of B, since A is
commutative. Moreover, (16.3) and (16.4) are also satisfied. Therefore (A,B, φ, δ) is a
crossed comodule of Hopf algebra.

Example 16.7. Let G ↪→ H � E be a short exact sequence of Hopf algebras with injection
i : G → H, surjection π : H → E and G is commutative, such that h(1) ⊗ π(h(2)) =
h(2) ⊗ π(h(1)) for any h ∈ H. For any k ∈ H, we can see k(1)SH(k(3)) ⊗ k(2) ∈ i(G) ⊗H,
since k(1)SH(k(3))⊗ k(2) ∈ ker(π)⊗H. Therefore, we can define a coaction δ : H → G⊗H
by δ(h) := h(1)SH(h(3)) ⊗ h(2) (here we identify G and its image under i). We can see
that the H is a G-comodule algebra and comodule coalgebra. (16.3) and (16.4) are also
satisfied. Thus (H,G, i, δ) is a crossed comodule of Hopf algebra. Moreover, if the image
of i belongs to the centre of H, then (H,G, i, δ) forms a strict Hopf 2-algebra.

Example 16.8. Let A, B be two Hopf algebras and let A be cocommutative, such that
A is a comodule algebra and comodule coalgebra of B. Define φ : B → A by φ(b) :=
εB(b)1A. Clearly, φ is a Hopf algebra map, (16.3) and (16.4) are also satisfied, since A is
cocommutative. Therefore (A,B, φ, δ) is a crossed comodule of Hopf algebra.

Example 16.9. Let A, B be two cocommutative Hopf algebras, and φ : B → A be a Hopf
algebra map. Define δ : A→ B ⊗ A by δ(a) := 1B ⊗ a. Clearly, A is a comodule algebra
and comodule coalgebra of B, and (16.3) and (16.4) are also satisfied, since A and B are
cocommutative. Therefore (A,B, φ, δ) is a crossed comodule of Hopf algebra.

17. Quasi coassociative Hopf coquasigroups

In this section we will construct a crossed comodule of Hopf coquasigroup as a generali-
sation of Example 16.6, and then construct a coherent Hopf 2-algebra. First we define a
quasi coassociative Hopf coquasigroup, which can be viewed as a quantum quasiassociative
quasigroup.

Definition 17.1. Let (C,B, φ) be a coassociative pair. We call the Hopf coquasigroup B
quasi coassociative corresponding to (C,B, φ), if:

• φ : B → C is a surjective morphism of Hopf coquasigroups.
• For any i ∈ IB := ker(φ),{

i(1)(1)SB(i(2))⊗ i(1)(2) ∈ B ⊗ IB,
i(1)SB(i(2)(2))⊗ i(2)(1) ∈ B ⊗ IB.

(17.1)

• I ⊆ ker(β), where β : B → B ⊗B ⊗B is the coassociator (5.7).

Since φ is surjective, then for any element x in C, there is an element c ∈ B, such that
x = [c] := φ(c). If B is a quasi coassociative, by (17.1) there is a linear map Ad : C →
B ⊗ C, Ad([c]) := c(1)SB(c(3)) ⊗ [c(2)] := c(1)(1)SB(c(2)) ⊗ [c(2)(1)] = c(1)SB(c(2)(2)) ⊗ [c(1)(2)]
for any [c] ∈ C (the last equality hold because of Proposition 5.6). We can see in the
following that Ad is a comodule map and C is a comodule coalgebra of B. For any b ∈ B,
there is an important result of Proposition 5.6:

b(1)(1)SB(b(1)(3))b(2) ⊗ [b(1)(2)] = b(1)(1)(1)SB(b(1)(2))b(2) ⊗ [b(1)(1)(2)] = b(1) ⊗ [b(2)]. (17.2)
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Similarly,

SB(b(1))b(2)(1)SB(b(2)(3))⊗ [b(2)(2)] = SB(b(2))⊗ [b(1)]. (17.3)

Since I ⊆ ker(β), there is a linear map β̃ : C → B⊗B⊗B given by β̃([b]) := β(b), which

is denoted by β(b) = b1̂ ⊗ b2̂ ⊗ b3̂.

Lemma 17.2. Let B be a quasi coassociative Hopf coquasigroup corresponding to (C,B, φ).
If B is commutative, then the Hopf coquasigroup B and Hopf algebra C together with the
maps Ad : C → B ⊗C and the quotient map φ : B → C form a crossed comodule of Hopf
coquasigroup.

Proof. We first prove Ad is a comodule map:

c(1)(1)SB(c(3)(2))⊗ c(1)(2)SB(c(3)(1))⊗ [c(2)] = c(1)SB(c(3))⊗ c(2)(1)SB(c(2)(3))⊗ [c(2)(2)], (17.4)

for which it is sufficient to show

c(1)(1)(1)SB(c(1)(3)(2))c(2) ⊗ c(1)(1)(2)SB(c(1)(3)(1))⊗ [c(1)(2)]

=c(1)(1)SB(c(1)(3))c(2) ⊗ c(1)(2)(1)SB(c(1)(2)(3))⊗ [c(1)(2)(2)].

On the one hand we have

c(1)(1)(1)SB(c(1)(3)(2))c(2) ⊗ c(1)(1)(2)SB(c(1)(3)(1))⊗ [c(1)(2)]

=c(1)(1)(1)SB(c(1)(3))(1)c(2)(1)(1) ⊗ c(1)(1)(2)SB(c(1)(3))(2)c(2)(1)(2)SB(c(2)(2))⊗ [c(1)(2)]

=c(1)(1)(1)(1)SB(c(1)(1)(3))(1)c(1)(2)(1) ⊗ c(1)(1)(1)(2)SB(c(1)(1)(3))(2)c(1)(2)(2)SB(c(2))⊗ [c(1)(1)(2)]

=c(1)(1)(1) ⊗ c(1)(1)(2)SB(c(2))⊗ [c(1)(2)]

=c(1)(1) ⊗ c(1)(2)SB(c(2)(2))⊗ [c(2)(1)],

where in the first step we use the definition of a Hopf coquasigroup, in the second and
last step we use Proposition 5.6, and in the third step we use (17.2). On the other hand
we have

c(1)(1)SB(c(1)(3))c(2) ⊗ c(1)(2)(1)SB(c(1)(2)(3))⊗ [c(1)(2)(2)]

=c(1) ⊗ c(2)(1)SB(c(2)(3))⊗ [c(2)(2)]

=c(1)(1)(1) ⊗ c(1)(1)(2)SB(c(1)(2))c(2)(1)SB(c(2)(3))⊗ [c(2)(2)]

=c(1)(1) ⊗ c(1)(2)SB(c(2)(1))c(2)(2)(1)SB(c(2)(2)(3))⊗ [c(2)(2)(2)]

=c(1)(1) ⊗ c(1)(2)SB(c(2)(2))⊗ [c(2)(1)],

where in the first and last step we use (17.2) and (17.3), the second step uses the definition
of a Hopf coquasigroup, and the third step uses Proposition (5.6). So we have

c(1)(1)SB(c(3)(2))⊗ c(1)(2)SB(c(3)(1))⊗ [c(2)]

=c(1)(1)(1)(1)SB(c(1)(1)(3)(2))c(1)(2)SB(c(2))⊗ c(1)(1)(1)(2)SB(c(1)(1)(3)(1))⊗ [c(1)(1)(2)]

=c(1)(1)(1)SB(c(1)(1)(3))c(1)(2)SB(c(2))⊗ c(1)(1)(2)(1)SB(c(1)(1)(2)(3))⊗ [c(1)(1)(2)(2)]

=c(1)SB(c(3))⊗ c(2)(1)SB(c(2)(3))⊗ [c(2)(2)],

where in the first and last step we use the definition of Hopf coquasigroup, and the second
step uses the relation we just proved above. We can see that Ad is an algebra map, since
B is commutative. Now let’s show that Ad is a comodule coalgebra map: On the one
hand

[c](−1) ⊗ [c](0)
(1) ⊗ [c](0)

(2) = c(1)SB(c(3))⊗ [c(2)(1)]⊗ [c(2)(2)].
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On the other hand

[c](1)
(−1)[c](2)

(−1) ⊗ [c](1)
(0) ⊗ [c](2)

(0)

=c(1)(1)SB(c(1)(3))c(2)(1)SB(c(2)(3))⊗ [c(1)(2)]⊗ [c(2)(2)]

=c(1)SB(c(3))⊗ [c(2)(1)]⊗ [c(2)(2)],

where the last step uses Proposition 5.6. And

εC([c]) = εB(c) = c(1)SB(c(3))εB(c(2)) = [c](−1)εC([c](0)).

(16.3) and (16.4) are given by the construction of Ad.
�

Now we want to construct a coherent 2-group in terms of the crossed comodule
(C,B, φ,Ad) we just considered above. In the following we always assume B to be
commutative. Compare to Definition 15.1, the first Hopf coquasigroup is B. The second
Hopf coquasigroup is H := C ⊗B, with the canonical unit and factorwise multiplication.
The coproduct, counit and antipode are defined by the following:

N([c]⊗ b) := [c](1) ⊗ [c](2)
(−1)b(1) ⊗ [c](2)

(0) ⊗ b(2), (17.5)

εH([c]⊗ b) := εB(c)εB(b), (17.6)

SH([c]⊗ b) := [SB(c(1)(2))]⊗ SB(c(1))c(2)(2)SB(b) = SC([c](0))⊗ SB([c](−1)b). (17.7)

By Lemma 16.2 and Lemma 17.2, we have
H = C ⊗B is a Hopf coquasigroup.
Then we construct a Hopf algebroid structure on H by Lemma 16.3 with the source

and target maps s, t : B → H given by

s(b) := [b(1)]⊗ b(2), and t(b) := 1C ⊗ b, (17.8)

for any b ∈ B. The Hopf algebroid coproduct is given by

∆([c]⊗ b) := ([c(1)]⊗ 1B)⊗B ([c(2)]⊗ b), (17.9)

and the counit is given by

ε([c]⊗ b) := εB(c)b. (17.10)

The antipode is

S([c]⊗ b) := [SB(c)b(1)]⊗ b(2). (17.11)

Using Lemma 16.4, we can also get the cocommutation relation of coproducts:

(∆⊗∆) ◦ N = (idH ⊗ τ ⊗ idH) ◦ (N⊗B N) ◦∆.

The coassociator α : H → B ⊗B ⊗B is given by

α([c]⊗ b) := β(c)(b(1)(1) ⊗ b(1)(2) ⊗ b(2)) = c1̂b(1)(1) ⊗ c2̂b(1)(2) ⊗ c3̂b(2). (17.12)

This is well defined, since B is quasi coassociative with I ⊆ ker(β). By using (5.8) we
can check condition (v) of Definition 15.1:

α(t(b)) = b(1)(1) ⊗ b(1)(2) ⊗ b(2)

and

α(s(b)) =(b(1))
1̂b(2)(1)(1) ⊗ (b(1))

2̂b(2)(1)(2) ⊗ (b(1))
3̂b(2)(2)

=b(1) ⊗ b(2)(1) ⊗ b(2)(2),
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by using (5.7). For condition (vi) of Definition 15.1, we can see

εB(h1̃)1B ⊗ h2̃ ⊗ h3̃ = 1B ⊗ c(1)(1)SB(c(2))(1)b(1) ⊗ c(1)(2)SB(c(2))(2)b(2) = 1B ⊗ ε(h(1))⊗ ε(h(2)),

where h = [c]⊗ b, and the rest of condition (vi) of Definition 15.1 can be checked similarly.
For condition (vii) we can see

h1̃SB(h2̃)⊗ h3̃ =c(1)(1)SB(c(2))(1)(1)SB(c(1)(2)(1)SB(c(2))(1)(2))⊗ c(1)(2)(2)SB(c(2))(2)b

=c(1)(1)SB(c(1)(2)(1))SB(c(2))(1)(1)SB(SB(c(2))(1)(2))⊗ c(1)(2)(2)SB(c(2))(2)b

=1B ⊗ ε(h),

where we use the fact that B is commutative and the rest of (vii) is similar. Now let’s
check (viii) and (ix).

Lemma 17.3. For any h ∈ H, we have

s(h(1)1̃)h(2)
(1)(1) ⊗ s(h(1)2̃)h(2)

(1)(2) ⊗ s(h(1)3̃)h(2)
(2)

=h(1)
(1)t(h

(2)1̃)⊗ h(1)
(2)(1)t(h

(2)2̃)⊗ h(1)
(2)(2)t(h

(2)3̃).

Proof. Let h = [c]⊗ b. The left hand side of the equation above is:

(s((c(1))
1̂)[c(2)(1)(1)]⊗ [c(2)(1)(2)]

(−1)[c(2)(2)]
(−1)

(1)b(1)(1))⊗ (s((c(1))
2̂)[c(2)(1)(2)]

(0) ⊗ [c(2)(2)]
(−1)

(2)b(1)(2))

⊗(s((c(1))
3̂)[c(2)(2)]

(0) ⊗ b(2)),

while the right hand side of the equation is

[c(1)(1)]⊗ [c(1)(2)]
(−1)(c(2))

1̂b(1)(1) ⊗ [c(1)(2)]
(0)

(1) ⊗ [c(1)(2)]
(0)

(2)
(−1)(c(2))

2̂b(1)(2)

⊗[c(1)(2)]
(0)

(2)
(0) ⊗ (c(2))

3̂b(2).

So it is sufficient to show

(s((c(1))
1̂)[c(2)(1)(1)]⊗ [c(2)(1)(2)]

(−1)[c(2)(2)]
(−1)

(1))⊗ (s((c(1))
2̂)[c(2)(1)(2)]

(0) ⊗ [c(2)(2)]
(−1)

(2))

⊗(s((c(1))
3̂)[c(2)(2)]

(0) ⊗ 1)

=[c(1)(1)]⊗ [c(1)(2)]
(−1)(c(2))

1̂ ⊗ [c(1)(2)]
(0)

(1) ⊗ [c(1)(2)]
(0)

(2)
(−1)(c(2))

2̂ ⊗ [c(1)(2)]
(0)

(2)
(0) ⊗ (c(2))

3̂.

By the definition of Hopf coquasigroup, this is equivalent to

(s((c(1)(1)(1))
1̂)[c(1)(1)(2)(1)(1)]⊗ [c(1)(1)(2)(1)(2)]

(−1)[c(1)(1)(2)(2)]
(−1)

(1)c(1)(2)(1)(1)SB(c(2))(1)(1))

⊗(s((c(1)(1)(1))
2̂)[c(1)(1)(2)(1)(2)]

(0) ⊗ [c(1)(1)(2)(2)]
(−1)

(2)c(1)(2)(1)(2)SB(c(2))(1)(2))

⊗(s((c(1)(1)(1))
3̂)[c(1)(1)(2)(2)]

(0) ⊗ c(1)(2)(2)SB(c(2))(2))

=[c(1)(1)(1)(1)]⊗ [c(1)(1)(1)(2)]
(−1)(c(1)(1)(2))

1̂c(1)(2)(1)(1)SB(c(2))(1)(1)

⊗[c(1)(1)(1)(2)]
(0)

(1) ⊗ [c(1)(1)(1)(2)]
(0)

(2)
(−1)(c(1)(1)(2))

2̂c(1)(2)(1)(2)SB(c(2))(1)(2)

⊗[c(1)(1)(1)(2)]
(0)

(2)
(0) ⊗ (c(1)(1)(2))

3̂c(1)(2)(2)SB(c(2))(2).

Thus it is sufficient to show

(s((c(1)(1))
1̂)[c(1)(2)(1)(1)]⊗ [c(1)(2)(1)(2)]

(−1)[c(1)(2)(2)]
(−1)

(1)c(2)(1)(1))

⊗(s((c(1)(1))
2̂)[c(1)(2)(1)(2)]

(0) ⊗ [c(1)(2)(2)]
(−1)

(2)c(2)(1)(2))⊗ (s((c(1)(1))
3̂)[c(1)(2)(2)]

(0) ⊗ c(2)(2))

=[c(1)(1)(1)]⊗ [c(1)(1)(2)]
(−1)(c(1)(2))

1̂c(2)(1)(1)

⊗[c(1)(1)(2)]
(0)

(1) ⊗ [c(1)(1)(2)]
(0)

(2)
(−1)(c(1)(2))

2̂c(2)(1)(2) ⊗ [c(1)(1)(2)]
(0)

(2)
(0) ⊗ (c(1)(2))

3̂c(2)(2).
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The left hand side is

(s((c(1)(1))
1̂)[c(1)(2)(1)(1)]⊗ [c(1)(2)(1)(2)]

(−1)[c(1)(2)(2)]
(−1)

(1)c(2)(1)(1))

⊗(s((c(1)(1))
2̂)[c(1)(2)(1)(2)]

(0) ⊗ [c(1)(2)(2)]
(−1)

(2)c(2)(1)(2))⊗ (s((c(1)(1))
3̂)[c(1)(2)(2)]

(0) ⊗ c(2)(2))

=(s((c(1))
1̂)[c(2)(1)(1)]⊗ [c(2)(1)(2)]

(−1)[c(2)(2)(1)(1)]
(−1)

(1)c(2)(2)(1)(2)(1))

⊗(s((c(1))
2̂)[c(2)(1)(2)]

(0) ⊗ [c(2)(2)(1)(1)]
(−1)

(2)c(2)(2)(1)(2)(2))⊗ (s((c(1))
3̂)[c(2)(2)(1)(1)]

(0) ⊗ c(2)(2)(2))

=(s((c(1))
1̂)[c(2)(1)(1)(1)]⊗ [c(2)(1)(1)(2)]

(−1)c(2)(1)(2)(1))

⊗(s((c(1))
2̂)[c(2)(1)(1)(2)]

(0) ⊗ c(2)(1)(2)(2))⊗ (s((c(1))
3̂)[c(2)(2)(1)]⊗ c(2)(2)(2))

=(s((c(1))
1̂)[c(2)(1)(1)]⊗ [c(2)(1)(2)(1)(1)]

(−1)c(2)(1)(2)(1)(2))

⊗(s((c(1))
2̂)[c(2)(1)(2)(1)(1)]

(0) ⊗ c(2)(1)(2)(2))⊗ (s((c(1))
3̂)[c(2)(2)(1)]⊗ c(2)(2)(2))

=(s((c(1))
1̂)[c(2)(1)(1)]⊗ c(2)(1)(2)(1)(1))⊗ (s((c(1))

2̂)[c(2)(1)(2)(1)(2)]⊗ c(2)(1)(2)(2))⊗ (s((c(1))
3̂)[c(2)(2)(1)]⊗ c(2)(2)(2))

=[((c(1))
1̂)(1)c(2)(1)(1)(1)]⊗ ((c(1))

1̂)(2)c(2)(1)(1)(2) ⊗ [((c(1))
2̂)(1)c(2)(1)(2)(1)]⊗ ((c(1))

2̂)(2)c(2)(1)(2)(2)

⊗[((c(1))
3̂)(1)c(2)(2)(1)]⊗ ((c(1))

3̂)(2)c(2)(2)(2)

=[c(1)(1)]⊗ c(1)(2) ⊗ [c(2)(1)(1)]⊗ c(2)(1)(2) ⊗ [c(2)(2)(1)]⊗ c(2)(2)(2)

where for the 1st, 3rd, 5th step we use Proposition 5.6, in the 2nd, 4th step we use (17.2),
and the last step uses (5.8). The right hand side is:

[c(1)(1)(1)]⊗ [c(1)(1)(2)]
(−1)(c(1)(2))

1̂c(2)(1)(1) ⊗ [c(1)(1)(2)]
(0)

(1) ⊗ [c(1)(1)(2)]
(0)

(2)
(−1)(c(1)(2))

2̂c(2)(1)(2)

⊗[c(1)(1)(2)]
(0)

(2)
(0) ⊗ (c(1)(2))

3̂c(2)(2)

=[c(1)(1)]⊗ [c(1)(2)]
(−1)(c(2)(1))

1̂c(2)(2)(1)(1) ⊗ [c(1)(2)]
(0)

(1) ⊗ [c(1)(2)]
(0)

(2)
(−1)(c(2)(1))

2̂c(2)(2)(1)(2)

⊗[c(1)(2)]
(0)

(2)
(0) ⊗ (c(2)(1))

3̂c(2)(2)(2)

=[c(1)(1)]⊗ [c(1)(2)]
(−1)c(2)(1) ⊗ [c(1)(2)]

(0)
(1) ⊗ [c(1)(2)]

(0)
(2)

(−1)c(2)(2)(1) ⊗ [c(1)(2)]
(0)

(2)
(0) ⊗ c(2)(2)(2)

=[c(1)]⊗ [c(2)(1)(1)]
(−1)c(2)(1)(2) ⊗ [c(2)(1)(1)]

(0)
(1) ⊗ [c(2)(1)(1)]

(0)
(2)

(−1)c(2)(2)(1) ⊗ [c(2)(1)(1)]
(0)

(2)
(0) ⊗ c(2)(2)(2)

=[c(1)]⊗ c(2)(1)(1) ⊗ [c(2)(1)(2)(1)]⊗ [c(2)(1)(2)(2)]
(−1)c(2)(2)(1) ⊗ [c(2)(1)(2)(2)]

(0) ⊗ c(2)(2)(2)

=[c(1)]⊗ c(2)(1) ⊗ [c(2)(2)(1)]⊗ [c(2)(2)(2)(1)(1)]
(−1)c(2)(2)(2)(1)(2) ⊗ [c(2)(2)(2)(1)(1)]

(0) ⊗ c(2)(2)(2)(2)

=[c(1)]⊗ c(2)(1) ⊗ [c(2)(2)(1)]⊗ c(2)(2)(2)(1)(1) ⊗ [c(2)(2)(2)(1)(2)]⊗ c(2)(2)(2)(2)

=[c(1)(1)]⊗ c(1)(2) ⊗ [c(2)(1)(1)]⊗ c(2)(1)(2) ⊗ [c(2)(2)(1)]⊗ c(2)(2)(2),

where in the 1st, 3rd, 5th and last step we use Proposition 5.6, the 2nd step uses (5.8),
and the 4th and 6th step use (17.2).

�

Lemma 17.4. α : H → B ⊗B ⊗B satisfies the 3-cocycle condition:

h(1)1̃h(2)1̃
(1) ⊗ h(1)2̃h(2)1̃

(2) ⊗ h(1)3̃
(1)h

(2)2̃ ⊗ h(1)3̃
(2)h

(2)3̃

=ε(h(1)
(1))h

(2)1̃h(3)
(1)

1̃ ⊗ h(1)
(2)

1̃h(2)2̃
(1)h

(3)
(1)

2̃ ⊗ h(1)
(2)

2̃h(2)2̃
(2)h

(3)
(1)

3̃ ⊗ h(1)
(2)

3̃h(2)3̃ε(h(3)
(2)).

for any h ∈ H.

Proof. Let h = [c]⊗ b, the left hand side is

(c(1))
1̂(c(2))

1̂
(1)b(1)(1)(1) ⊗ (c(1))

2̂(c(2))
1̂

(2)b(1)(1)(2) ⊗ (c(1))
3̂

(1)(c(2))
2̂b(1)(2) ⊗ (c(1))

3̂
(2)(c(2))

3̂b(2)
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while the right hand side is

c(1)(1)(1)SB(c(1)(2))(c(2))
1̂(c(3))

1̂b(1)(1)(1) ⊗ (c(1)(1)(2))
1̂(c(2))

2̂
(1)(c(3))

2̂b(1)(1)(2)

⊗(c(1)(1)(2))
2̂(c(2))

2̂
(2)(c(3))

3̂b(1)(2) ⊗ (c(1)(1)(2))
3̂(c(2))

3̂b(2).

Notice that c(1) ⊗ c(2) ⊗ c(3) can be replaced by c(1)(1) ⊗ c(1)(2) ⊗ c(2) or c(1) ⊗ c(2)(1) ⊗ c(2)(2),
since [c] ∈ C. Now we have

(c(1))
1̂(c(2))

1̂
(1) ⊗ (c(1))

2̂(c(2))
1̂

(2) ⊗ (c(1))
3̂

(1)(c(2))
2̂ ⊗ (c(1))

3̂
(2)(c(2))

3̂

=(c(1)(1)(1))
1̂(c(1)(1)(2))

1̂
(1)c(1)(2)(1)(1)(1)SB(c(2))(1)(1)(1) ⊗ (c(1)(1)(1))

2̂(c(1)(1)(2))
1̂

(2)c(1)(2)(1)(1)(2)SB(c(2))(1)(1)(2)

⊗(c(1)(1)(1))
3̂

(1)(c(1)(1)(2))
2̂c(1)(2)(1)(2)SB(c(2))(1)(2) ⊗ (c(1)(1)(1))

3̂
(2)(c(1)(1)(2))

3̂c(1)(2)(2)SB(c(2))(2)

and

c(1)(1)(1)SB(c(1)(2))(c(2))
1̂(c(3))

1̂ ⊗ (c(1)(1)(2))
1̂(c(2))

2̂
(1)(c(3))

2̂

⊗(c(1)(1)(2))
2̂(c(2))

2̂
(2)(c(3))

3̂ ⊗ (c(1)(1)(2))
3̂(c(2))

3̂

=c(1)(1)(1)(1)(1)SB(c(1)(1)(1)(2))(c(1)(1)(2))
1̂(c(1)(1)(3))

1̂c(1)(2)(1)(1)(1)SB(c(2))(1)(1)(1)

⊗(c(1)(1)(1)(1)(2))
1̂(c(1)(1)(2))

2̂
(1)(c(1)(1)(3))

2̂c(1)(2)(1)(1)(2)SB(c(2))(1)(1)(2)

⊗(c(1)(1)(1)(1)(2))
2̂(c(1)(1)(2))

2̂
(2)(c(1)(1)(3))

3̂c(1)(2)(1)(2)SB(c(2))(1)(2)

⊗(c(1)(1)(1)(1)(2))
3̂(c(1)(1)(2))

3̂c(1)(2)(2)SB(c(2))(2)

Thus to show this lemma it is sufficient to show:

(c(1)(1))
1̂(c(1)(2))

1̂
(1)c(2)(1)(1)(1) ⊗ (c(1)(1))

2̂(c(1)(2))
1̂

(2)c(2)(1)(1)(2)

⊗(c(1)(1))
3̂

(1)(c(1)(2))
2̂c(2)(1)(2) ⊗ (c(1)(1))

3̂
(2)(c(1)(2))

3̂c(2)(2)

=c(1)(1)(1)(1)SB(c(1)(1)(2))(c(1)(2))
1̂(c(1)(3))

1̂c(2)(1)(1)(1) ⊗ (c(1)(1)(1)(2))
1̂(c(1)(2))

2̂
(1)(c(1)(3))

2̂c(2)(1)(1)(2)

⊗(c(1)(1)(1)(2))
2̂(c(1)(2))

2̂
(2)(c(1)(3))

3̂c(2)(1)(2) ⊗ (c(1)(1)(1)(2))
3̂(c(1)(2))

3̂c(2)(2)

Using (5.8) the left hand side of the above equation becomes

(c(1)(1))
1̂(c(1)(2))

1̂
(1)c(2)(1)(1)(1) ⊗ (c(1)(1))

2̂(c(1)(2))
1̂

(2)c(2)(1)(1)(2)

⊗(c(1)(1))
3̂

(1)(c(1)(2))
2̂c(2)(1)(2) ⊗ (c(1)(1))

3̂
(2)(c(1)(2))

3̂c(2)(2)

=(c(1))
1̂(c(2)(1))

1̂
(1)c(2)(2)(1)(1)(1) ⊗ (c(1))

2̂(c(2)(1))
1̂

(2)c(2)(2)(1)(1)(2)

⊗(c(1))
3̂

(1)(c(2)(1))
2̂c(2)(2)(1)(2) ⊗ (c(1))

3̂
(2)(c(2)(1))

3̂c(2)(2)(2)

=(c(1))
1̂c(2)(1)(1) ⊗ (c(1))

2̂c(2)(1)(2) ⊗ (c(1))
3̂

(1)c(2)(2)(1) ⊗ (c(1))
3̂

(2)c(2)(2)(2)

=c(1) ⊗ c(2)(1) ⊗ c(2)(2)(1) ⊗ c(2)(2)(2).
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Using the Proposition 5.6 the right hand side becomes

c(1)(1)(1)SB(c(1)(2))(c(2)(1))
1̂(c(2)(2)(1))

1̂c(2)(2)(2)(1)(1)(1) ⊗ (c(1)(1)(2))
1̂(c(2)(1))

2̂
(1)(c(2)(2)(1))

2̂c(2)(2)(2)(1)(1)(2)

⊗(c(1)(1)(2))
2̂(c(2)(1))

2̂
(2)(c(2)(2)(1))

3̂c(2)(2)(2)(1)(2) ⊗ (c(1)(1)(2))
3̂(c(2)(1))

3̂c(2)(2)(2)(2)

=c(1)(1)(1)SB(c(1)(2))(c(2)(1))
1̂(c(2)(2)(1)(1))

1̂c(2)(2)(1)(2)(1)(1) ⊗ (c(1)(1)(2))
1̂(c(2)(1))

2̂
(1)(c(2)(2)(1)(1))

2̂c(2)(2)(1)(2)(1)(2)

⊗(c(1)(1)(2))
2̂(c(2)(1))

2̂
(2)(c(2)(2)(1)(1))

3̂c(2)(2)(1)(2)(2) ⊗ (c(1)(1)(2))
3̂(c(2)(1))

3̂c(2)(2)(2)

=c(1)(1)(1)SB(c(1)(2))(c(2)(1))
1̂c(2)(2)(1)(1) ⊗ (c(1)(1)(2))

1̂(c(2)(1))
2̂

(1)c(2)(2)(1)(2)(1)

⊗(c(1)(1)(2))
2̂(c(2)(1))

2̂
(2)c(2)(2)(1)(2)(2) ⊗ (c(1)(1)(2))

3̂(c(2)(1))
3̂c(2)(2)(2)

=c(1)(1)(1)SB(c(1)(2))c(2)(1) ⊗ (c(1)(1)(2))
1̂c(2)(2)(1)(1) ⊗ (c(1)(1)(2))

2̂c(2)(2)(1)(2) ⊗ (c(1)(1)(2))
3̂c(2)(2)(2)

=c(1)(1)(1)(1)SB(c(1)(1)(2))c(1)(2) ⊗ (c(1)(1)(1)(2))
1̂c(2)(1)(1) ⊗ (c(1)(1)(1)(2))

2̂c(2)(1)(2) ⊗ (c(1)(1)(1)(2))
3̂c(2)(2)

=c(1)(1) ⊗ (c(1)(2))
1̂c(2)(1)(1) ⊗ (c(1)(2))

2̂c(2)(1)(2) ⊗ (c(1)(2))
3̂c(2)(2)

=c(1) ⊗ (c(2)(1))
1̂c(2)(2)(1)(1) ⊗ (c(2)(1))

2̂c(2)(2)(1)(2) ⊗ (c(2)(1))
3̂c(2)(2)(2)

=c(1) ⊗ c(2)(1) ⊗ c(2)(2)(1) ⊗ c(2)(2)(2),

where in the 1st, 4th and 6th step we use Proposition 5.6, for the 2nd, 3rd and last step
we use (5.8), and the 5th step uses (17.2).

�

As a result of Lemma 17.2, 16.2, 16.3, 17.3 and 17.4 we have

Theorem 17.5. Let B be a quasi coassociative Hopf coquasigroup corresponding to a
coassociative pair (C,B, φ). If B is commutative, then H = C ⊗ B is a coherent Hopf
2-algebra.

Since quasi coassociative Hopf coquasigroups are the quantisation of quasiassociative
quasigroups, we can see Theorem 17.5 is the ‘quantum’ case of Theorem 4.8.

18. Finite dimensional coherent Hopf 2-algebras and examples

In [21] there is a dual pairing between bialgebras, we can see that there is also a
dual pairing between Hopf coquasigroups and Hopf quasigroups. In this section we will
make clear why quasi coassociative Hopf coquasigroup is the correct quantization of
quasiassociative quasi group.

Definition 18.1. Given a Hopf quasigroup (A,∆A, εA,mA, 1A, SA) and a Hopf coquasi-
group (B,∆B, εB,mB, 1B, SB). A dual pairing between A and B is a bilinear map
〈•, •〉 : B × A→ k such that:

• 〈∆B(b), a⊗ a′〉 = 〈b, aa′〉 and 〈b⊗ b′,∆A(a)〉 = 〈bb′, a〉.
• εB(b) = 〈b, 1A〉 and εA(a) = 〈1B, a〉.

for any a, a′ ∈ A and b, b′ ∈ B. A dual pairing between B and A is called nondegenerate
if 〈b, a〉 = 0 for all b ∈ B implies a = 0 and if 〈b, a〉 = 0 for all a ∈ A implies b = 0.

Remark 18.2. Given two dual pairings 〈•, •〉1 : B1 × A1 → k and 〈•, •〉2 : B2 × A2 → k
for two Hopf quasigroups A1, A2 and two Hopf coquasigroup B1, B2, we can construct a
new dual pairing 〈•, •〉 : B1 ⊗B2 × A1 ⊗ A2 → k, which is given by 〈b1 ⊗ b2, a1 ⊗ a2〉 :=
〈a1, b1〉1〈a2, b2〉2 for any a1 ∈ A1, a2 ∈ A2 and b1 ∈ B1, b2 ∈ B2. Notice that A1 ⊗ A2 is
also a Hopf quasigroup with the factorwise (co)product, (co)unit and antipode. Similarly,
B1⊗B2 is also a Hopf coquasigroup. Moreover, if both the dual pairings are nondegenerate,
then the new pairing is also nondegenerate.
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If B is a finite dimensional Hopf coquasigroup, there is a nondegenerate dual pairing
between B and its dual algebra A := Hom(B, k). More precisely, the dual pairing is given
by 〈b, a〉 := a(b) for b ∈ B and a ∈ A. In this case A is a Hopf quasigroup, with structure
given by aa′(b) := a(b(1))a

′(b(2)), 1A(b) := ε(b), ∆A(a)(b ⊗ b′) := a(bb′), εA(a) := a(1B),
SA(a)(b) := a(SB(b)), for any a ∈ A and b ∈ B. We can see that it satisfies the axioms of
a Hopf quasigroup, for example, (S(a(1))(a(2)a

′))(b) = a(1)(SB(b(1)))a(2)(b(2)(1))a
′(b(2)(2)) =

a(SB(b(1))b(2)(1))a
′(b(2)(2)) = εA(a)a′(b), since the pairing of A and B are nondegenerate, we

get the required axioms.
Given a finite dimensional coquasigroup B with its dual A := Hom(B, k), recall the

associative elements of a quasigroup form a subquasi group. We have similarly a subset of
A:

NA := {a ∈ A | a(uv) = (au)v, u(av) = (ua)v, u(va) = (uv)a, ∀u, v ∈ A}, (18.1)

Clearly, NA is an associative algebra. The elements in NA can pass though brakets for
the multiplication like the associative elements of a quasigroup.

If ∆A(NA) ⊆ NA ⊗NA, then NA is a Hopf algebra with the structure inherited from
A. In this case there is also a dual pairing between NA and B by the restriction of dual
pairing between A and B, which is not necessarily nondegenerate. From now on we will
assume NA to be a Hopf algebra.

Define
IB := {b ∈ B | 〈b, a〉 = 0 ∀a ∈ NA}, (18.2)

we can see that IB is an ideal of B, since for any b ∈ B, a ∈ NA and i ∈ IB,
a(bi) = a(1)(b)a(2)(i) = 0. IB is also a coideal (i.e. ∆B(i) ∈ IB ⊗ B + B ⊗ IB for
any i ∈ IB), since NA is an algebra. As a result, the quotient algebra C := B/IB is
a Hopf coquasigroup. We can see that there is also a dual pairing between NA and C
given by 〈[b], a〉 := 〈b, a〉, where b ∈ B and [b] is the image of the quotient map in C, and
a ∈ NA. If 〈[b], a〉 = 0 for any b ∈ B, we get a = 0. If 〈[b], a〉 = 0 for any a ∈ NA, we get
b ∈ IB, so [b] = 0. Thus the dual pairing between C and NA is nondegenerate. Since NA

is associative and the dual pairing is nondegenerate, we get that C is coassociative. As a
result, C is a Hopf algebra.

Remark 18.3. Let 〈•, •〉 : B × A → k be a nondegenerate dual pairing between a Hopf
coquasigroup B and a Hopf quasigroup A. Recall the linear map β : B → B ⊗B ⊗B

β(b) = b(1)(1)SB(b(2))(1)(1) ⊗ b(1)(2)(1)SB(b(2))(1)(2) ⊗ b(1)(2)(2)SB(b(2))(2)

for any b ∈ B. We can see that β is the dualisation of associator β∗ : A ⊗ A ⊗ A → A,
which is given by

β∗(u⊗ v ⊗ w) := (u(1)(v(1)w(1)))(S(w(2))(S(v(2))S(u(2)))) (18.3)

for any u, v, w ∈ A. Indeed, we can see

〈β(b), u⊗ v ⊗ w〉 = 〈b, β∗(u⊗ v ⊗ w)〉.
for any b ∈ B. We call A quasiassociative, if NA is invariant under the adjoint action (i.e.
a(1)nS(a(2))) ∈ NA for any n ∈ NA and a ∈ A) and the image of β∗ belongs to NA. We
can see that if a quasigroup G is a quasiassociative (see Definition 4.1), then its linear
extension kG is a quasiassociative Hopf quasigroup.

Now we will give an explicit example of a coherent Hopf 2-algebra based on the Cayley
algebra:
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Example 18.4. In [20] the unital basis of Cayley algebras Gn := {±ea | a ∈ Zn2} is
a quasigroup, with the product controlled by a 2-cochain F : Zn2 × Zn2 → k∗, more
precisely, eaeb := F (a, b)ea+b. From now on we also denote e0

a := ea and e1
a := −ea,

i.e. Gn = {eia | a ∈ Zn2 , i ∈ Z2}, so we have eiae
j
b = F (a, b)ei+ja+b. We define kGn as the

linear extension of Gn, which is a Hopf quasigroup with the coalgebra structure given by
∆(u) = u⊗ u, ε(u) = 1, and S(u) := u−1 on the basis elements.
As we already know from [20] that

kGn '


C if n = 1

H if n = 2

O if n = 3.

Since kGn is a subalgebra of kGm, for n ≤ m, we get NkGm ⊆ NkGn . We have

NkGn '


C if n = 1

H if n = 2

R if n ≥ 3,

since NkG3 = R. In [[20], Prop 3.6] we find that Gn is quasiassociative and the dual of Gn
is a Hopf coquasigroup B := k[Gn] given by functions on Gn. Let f ia ∈ k[Gn] be the delta
function on each element of Gn, i.e. f ia(e

j
b) = δa,bδi,j. We can see k[Gn] is an algebra with

generators {f ia | a ∈ Zn2 , i ∈ Z2} subject to the relations:

f iaf
i′

a′ =

{
f ia if a = a′ and i = i′

0 otherwise

The unit of k[Gn] is
∑

a∈Zn2 ,i∈Z2
f ia. The coproduct, counit and antipode are given by

∆B(f ia) :=
∑
b+c=a
j+k=i

F (b, c)f jb ⊗ f
k
c . (18.4)

εB(f ia) :=δa,0δi,0. (18.5)

SB(f ij) :=F (a, a)f ia. (18.6)

The previous structures make k[Gn] a Hopf coquasigroup.
Now we can show k[Gn] is quasi coassociative corresponding to the coassociative pair

(k[G0], k[Gn], π), where π : k[Gn]→ k[G0] is the canonical projection map and k[G0] is just
the functions on {−e0, e0}. First, we can see that (k[G0], k[Gn], π) is a coassociative pair
by Definition 5.4. Second, we have

x(1)(1)SB(x(2))⊗ x(1)(2) ∈ B ⊗ IB
x(1)SB(x(2)(2))⊗ x(2)(1) ∈ B ⊗ IB,

for any x ∈ IB. Indeed, let x ∈ IB = ker(π), then x is a linear combination of f ia with
a 6= 0. Without losing generality (since every map below is linear), assuming x = f ia, we
can see

x(2)(1) ⊗ x(1)SB(x(2)(2)) =
∑

b+c+d=a
j+k+l=i

F (b, c+ d)F (c, d)F (d, d)fkc ⊗ f
j
b f

l
d, (18.7)

the right hand side of the equality is not zero only if b = d. As a result c is equal to a, and
x(1)(1)SB(x(2))⊗ x(1)(2) ∈ B ⊗ IB. Similarly, we also have x(1)SB(x(2)(2))⊗ x(2)(1) ∈ B ⊗ IB.
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Finally, recall the linear map β : B → B ⊗B ⊗B
β(b) = b(1)(1)SB(b(2))(1)(1) ⊗ b(1)(2)(1)SB(b(2))(1)(2) ⊗ b(1)(2)(2)SB(b(2))(2)

for any b ∈ B.
We can see IB ⊆ ker(β). Indeed, without losing generality, let x = f ia with a 6= 0, then

we have:

β(x) = β(f ia) =
∑

j+k+l+m+n+p=i
b+c+d+e+f+g=a

F (b+ c+ d, e+ f + g)F (b, c+ d)F (c, d)F (e, f + g)F (f, g)

F (e, e)F (f, f)F (g, g)f jb f
p
g ⊗ fkc fnf ⊗ f ldfme .

Since a 6= 0, we can see the right hand side of the above equation is zero (by using
b+ c+ d+ e+ f + g = a). So IB belongs to the kernel of β. By Definition 17.1 we can
see k[Gn] is quasi coassociative corresponding to the coassociative pair (k[G0], k[Gn], π).

Thus by Theorem 17.5 there is a coherent Hopf 2-algebra structure, with C = k[G0],
and H = k[G0]⊗ k[Gn]. To be more precise, we give the structure maps:

∆(f i0 ⊗ f la) =
∑
j+k=i

f j0 ⊗ 1⊗B fk0 ⊗ f la;

ε(f i0 ⊗ f la) = εB(f i0)f la;

S(f i0 ⊗ f la) =
∑
i+n=l

f i0 ⊗ fna ;

s(f la) =
∑

m+n=l

fm0 ⊗ fna ;

t(f la) = 1⊗ f la.

All the above is the structure of Hopf algebroid over B = k[Gn].
For the Hopf coquasigroup structure on H we have:

N(f i0 ⊗ f la) =
∑

m+n=l
b+c=a
j+k=i

F (b, c)f j0 ⊗ fmb ⊗ fk0 ⊗ fnc ;

εH(f i0 ⊗ f la) =εB(f i0f
l
a) = δi,0δl,0δa,0;

SH(f i0 ⊗ f la) =F (a, a)f i0 ⊗ f la.

Recall α : H → B ⊗B ⊗B in (17.12), we have

α(f i0 ⊗ f la) =
∑

k+m+n=l
b+c+d=a

β(f i0)(F (b+ c, d)F (b, c)fkb ⊗ fmc ⊗ fnd ).

From the formula of β, we can see that α is controlled by a 3-cocycle corresponding to
the 2-cochain F . In fact,

β(f i0) =
∑

j,k,l∈Z2

b,c,d∈Z2
n

F (b+ c+ d, b+ c+ d)F (b, c+ d)F (c, d)F (d, c+ b)F (c, b)

F (d, d)F (c, c)F (b, b)f jb ⊗ f
k
c ⊗ f ld

=
∑

j,k,l∈Z2

b,c,d∈Z2
n

F (b+ c+ d, b+ c+ d)ψ(b, c, d)F (d, d)F (c, c)F (b, b)f jb ⊗ f
k
c ⊗ f ld,
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where ψ is the 3-cocycle given by the 2-cochain F ,

ψ(b, c, d) =
F (b, c+ d)F (c, d)

F (d, c+ b)F (c, b)
= F (b, c+ d)F (c, d)F (d, c+ b)F (c, b),

since F takes its value in {±1} [20].
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