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Introduction

In the last decades there has been a growing interest for approximation techniques that
exploit high performance computing with different fields of applications: industrial
applications, naval engineering, aeronautics engineering, medical engineering. Some
examples that may arise from these various fields are: heat transfer problem, elec-
tromagnetic problems, structural mechanics problems (linear/ nonlinear elasticity),
fluid problems, acoustic problems. In all these examples, the models are described
through a (system of) partial differential equation (PDE) that usually depends on a
given number of parametrs; these parameters can describe the geometrical configura-
tion of the physical domain over which the problem is formulated, they can describe
some physical quantities (e.g. the Reynolds number for a fluid or the Lamè constants
for a solid), or some boundary conditions. For all these models we usually focus on
a particular quantity of interest, such as the maximum temperature of a system, a
pressure drop, a channel flowrate. The idea is that, for each of these applications we
have an input, which is represented by a given value of the parameter(s) entering in
the equation, and we would like to compute, for each such value, the ouput of inter-
est. Unfortunately to compute such output for each new value of the parameter is a
difficult task, that is expensive both in terms of time computation and in terms of
computer memory, even on modern HPC systems. It is exactly at this point that the
Reduced Basis Method (RBM) comes into play: the idea at the core of the method
is to simulate the behaviour of the solution of our system of interest for some chosen
values of the parameters in the PDE. This is usually done with some well established
discretization technique, such as Finite Element Method (FEM); another discretiza-
tion method, used for example in the compressible framework in computational fluid
dynamics is the Finite Volume Method (FV), and yet another possibility is the Cut-
FEM method. Once we have computed these solutions, in an expensive offline phase,
we can use them to build some other basis functions: with these new basis functions,
in the inexpensive online phase, we approximate the solution of the system, for a new
value of the parameter.
With this idea in mind, the goal of this thesis is to give an extensive overview on the
application of the Reduced Basis Method to Fluid–Structure Interaction (FSI) prob-
lems. Depending on the approach adopted to adress a multiphysics problem, we will
see how we can adapt, modify, improve the RBM in order to obtain a complete model
order reduction procedure. In the following, we will introduce several different test
cases: a toy problem that describes the behaviour of two leaflets under the influence
of the jet of a fluid; a FSI problem whose solution exhibits a transport dominated
behaviour, and also some computational fluid dynamics toy problems, that depend on
a parameter (that can be physical or geometrical). For each one of these test cases, we
first introduce the problem formulation, then we present the model order reduction
procedure.

In Chapter 1 we give a short introduction to the Reduced Basis Method: we present the
mathematical setting within which the method is formulated, we give some definitions
and we set some notation.
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In Chapter 2 we introduce briefly Fluid–Structure Interaction problems: we present
some of the many everyday situations where multiphysics systems are used to simulate
the solution of a particular problem of interest. We then give a quick overview of the
two main approaches that are used to adress coupled problems, namely partitioned
(segregated) approaches and monolithic approaches. Finally, we set the mathematical
formalism that is necessary to introduce the Arbitrary Lagrangian Eulerian (ALE)
formulation, widely used in the FSI community.

Chapter 3 is devoted to the implementation of a model order reduction technique
for FSI problems that are solved through a partitioned procedure. We present the
problem formulation and we design the model order reduction procedure; finally, we
show some numerical results. In the second part of the Chapter we introduce a similar
test case, characterized by a geometrical parametrization of the domain; we therefore
modify slightly the reduction procedure, and at the end we present some numerical
results.

Chapter 4 is devoted to the study of reduced order models for advection dominated
problems: for these problems indeed, the corresponding solution manifold shows a
slow decay of the Kolmogorov n-width, or, in practical calculations, its computational
surrogate given by the magnitude of the eigenvalues returned by a Proper Orthogonal
Decomposition on the solution manifold. The problems considered in this Chapter
are two: the first test case is a time dependent computational fluid dynamics problem
(CFD), where a fluid flows around a circular obstacle that rotates counterclockwise;
this problem is studied both in the non parametrized and in the parametrized setting.
The second test case is a FSI problem, which describes the interaction between a
fluid flowing in a channel and the compliant walls of the channel. We enrich the
standard reduction method with an additional preprocessing during the offline phase,
in order to obtain smaller reduced basis spaces. Such preprocessing consists in the
composition of the snapshots with a transportation map belonging to a family of
smooth and invertible functions that map the physical domain of the problem into
itself. A comparison between the results of the novel offline stage and the standard
one is presented.

In Chapter 5 we focus on steady and unsteady Navier–Stokes problems, possibly with
moving boundaries, that are discretized with an unfitted mesh Finite Element Method.
The work presented in this Chapter extends the existing approaches in the Reduced
Basis Method within a CutFEM setting to nonlinear CutFEM discretization as well
as to evolutionary in time fluid flow problems. We construct and investigate a unified
and geometry independent reduced basis which overcomes many barriers and compli-
cations of the past. These complications may occur whenever geometrical morphings
are taking place: in this way, we may avoid remeshing and transformations to refer-
ence domains, and we may be able to handle complex geometries. The combination of
a fixed background mesh in a fixed extended background geometry with reduced order
techniques appears beneficial and advantageous in many industrial and engineering
applications, which could not be resolved efficiently with standard discretization tech-
niques and standard reduced order models.
The work presented in this Chapter is a preliminary work that lays the foundation for
a more general approach, that we would like to develop in the future: this approach
will be applied to FSI problems, in particular in those situations where the structure
undergoes a large deformation. Indeed, in the presence of large deformations in the
physical system, classical discretization methods, such as the FEM, would require very
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expensive procedures, like remeshing; instead, with a CutFEM approach this barrier
can be overcome.

In Chapter 6 we summarize all the work presented in this thesis, and we give some
general conclusions and future perspectives for these lines of research.

At the end of the thesis, in the Appendix, we present more in detail the calculations
that led to the formulation of a particular coupling condition, which is used in the
algorithm presented in Chapter 3.
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Chapter 1

The Reduced Basis Method: an
introduction

1.1 Some historical background

The aim of this overview is to present some historical background for the developement
of the RBM, and to provide some literature for the interested reader. The following
quick overview does not aspire to be complete and exhaustive, as there are many new
works that bring along advances in some of the aspects of the RBM.
The idea of the RBM, as we briefly mentioned in the Introduction, is to identify
some reduced basis functions, and to use those functions to effectively approximate
the solution of the problem of interest, for any new value of the parameter in the
system. This idea is certainly not recent, and some early work focusing on the efficient
evaluation in the many–query context can be found in [62]; some early work focusing
instead on efficient parameter continuation techniques for nonlinear problems can be
found in [3, 134, 135]. These early works were soon extended to a more large class of
problems; however, at that stage, the developed methods were still missing a posteriori
error estimators, and thus there were still a lot of open questions about the accuracy
and the reliability of the reduction techniques. For this reason a great effort was put
in the definition of error estimator procedures and rigorous a posteriori error bounds,
see [140, 123, 122, 117, 140]. Thanks to the avaliability of some error estimators, it has
been possible to design effective sampling strategies [130, 124, 154, 174, 28, 145], which
are particularly useful in presence of many parameters in the problem, and that are
based on Greedy algorithms. An alternative to these sampling strategies, that does
not rely on the avaliability of error estimators, is given by the Proper Orthogonal
Decomposition (POD) [81, 108, 149, 181]: in the next Section we will explain briefly
this technique, since it is the one that has been used in all the works presented in this
thesis. In general, a combination of the two techniques (POD and sampling with a
Greedy algorithm) can be used, especially for those problems which are both unsteady
(i.e. time dependent) and parametric: for a reference, see [29, 46, 82]. A posteriori
error bounds for the steady Navier–Stokes problem can be found in [173], however,
for unsteady problems, the certification of the reduction technique represents a great
challenge, see [129, 110, 107]. This is also the reason why in this thesis we do not
present any certification of the procedure that we have used: the formulation and
the study of error estimators for unsteady Fluid–Structure Interaction problems is a
great challenge still nowadays, and it goes beyond the scope of this work to present
certified error bounds for the systems that we will consider. Concerning multiphysics
problems, especially Fluid–Structure Interaction problems, some first model reduction
approaches were proposed in [111, 109] for some simple setting.
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At the early stages of its developement, the proposed Reduced Basis Method did
not fully decouple the Finite Element discretization of the parametrized problem of
interest, from the online projection to a reduced basis space; the method proposed
therefore showed a rather modest gain in terms of computational savings. From this
starting point, a lot of effort has been put in achieving a fully decoupling between the
Finite Element discretization and the reduced order model, through an offline–online
decoupling. In the case of affine parameter dependence, this decoupling is rather
natural and has been proposed in several works, see for example [93, 140, 15]. On
the contrary the decoupling is much more difficult in the case of non affine parameter
dependence; this difficulty has led to the developement of the Empirical Interpolation
Method (EIM), see [77, 116, 119, 121]. Thanks to the EIM, it has been possible to
design Reduced Basis Method that can be effectively applied also to very complex
may–query, real time applications, including nonlinear problems.

1.2 The Reduced Basis Method

In the following, we fix the mathematical setting in which the RBM operates, we give
some definitions and we show how to carry on a model order reduction procedure for
a given problem of interest; the reader interested in a detailed discussion is referred
to [90, 146].
Let us consider a sufficiently regular physical domain Ω ⊂ Rd, with d = 1, 2, 3, and let
us denote by ΓD the portion of ∂Ω where we impose Dirichlet boundary conditions,
and by ΓN the portion of ∂Ω where we impose Neumann boundary conditions. Let
µ ∈ P be a parameter, with P ⊂ Rk the parameter space and with k ≥ 1. In order to
ease the exposition we now consider only scalar–valued variables, but everything we
will say can be applied also to vector–valued variables. We want to solve the following
problem: for every µ ∈ P, find u(µ) : Ω 7→ R such that:

L(u;µ) = f(µ) in Ω,
u(µ) = g(µ) on ΓD,
∂nu(µ) = h(µ) on ΓN ,

where L is a linear operator, and g and h are some prescribed functions . The weak
formulation of the previous problem can be written in the following form: for every
µ ∈ P find u(µ) ∈ H1(Ω) such that u(µ) = g(µ) on ΓD, and such that

a(u(µ), v;µ) = `(v;µ), (1.1)

for all v ∈ H1
D(Ω), where H1

D(Ω) := {v ∈ H1(Ω)|v = 0 on ΓD}. Let us denote now
by ||·||H1 the intrinsic norm of the Hilbert space H1(Ω). Under the hypothesis that:
for all µ ∈ P the bilinear form a(·; ·, µ) is symmetric, coercive and continuous with
respect to the norm ||·||H1 , and the linear form `(·;µ) is continuous with respect to
the norm ||·||H1 , thanks to the Lax–Milgram theorem we can say that the problem
(1.1) is well posed.
Once we have stated the weak formulation of the problem of interest, the first question
that we have to adress is: how can we find the reduced basis that will allow us to
efficiently approximate any solution of (1.1), for any µ ∈ P? The first thing to do,
in this sense, is to carry out a discretization step. For this reason we introduce an
approximation space Vh ⊂ H1(Ω): Vh can be, for example, the space of continuous
functions that are piecewise polynomials of degree k on the elements of a suitable
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triangulation of the physical domain Ω. The discretized version of problem (1.1) is
now: for any µ ∈ P, find uh(µ) ∈ Vh such that uh(µ) = g(µ) on ΓD and:

a(uh(µ), vh;µ) = `(vh;µ), (1.2)

for all vh ∈ Vh,0, where Vh,0 := {v ∈ Vh|v = 0 on ΓD}.

Definition 1.2.1. Problem (1.2) is called truth problem or high fidelity problem.
The solution uh(µ) is called the snapshot.

Let us now introduce the solution manifold of the discretized version of the problem
of interest:

Definition 1.2.2. The discretized solution manifold of (1.2) is

Mh = {uh(µ), µ ∈ P}.

A basic assumption for the RBM is thatMh has a low dimension, meaning thatMh

(and so any discretized solution of (1.2)) can be approximated with a small error by
the span of a small number of appropriately chosen basis functions. This assumption
is fundamental in order to have an efficient model order reduction, and in Chapter 4
we will see what happens to the RBM when this assumption is no longer satisfied.
Let us assume that we have the basis functions Φ1, . . . , ΦN , and let VN := span{Φi}Ni=1.
We can now define

Definition 1.2.3. The reduced solution uN (µ), for any µ ∈ P, is defined as follows:

uN (µ) =
N∑
j=1

ujN (µ)Φj ,

with ujN (µ) ∈ R ∀µ ∈ P. The reduced solution is therefore a linear combination of
the basis functions Φj .
The reduced order problem now reads: for every µ ∈ P, find u1N (µ), . . . , uNN (µ) such
that:

N∑
j=1

ujN (µ)a(Φj , Φk;µ) = `(Φk;µ), ∀k = 1, . . . , N. (1.3)

We now assume that the problem satisfies an affine parameter dependence, i.e. it is
possible to write

a(Φj , Φk;µ) =

M∑
q=1

θqa(µ)aq(Φj , Φk),

`(Φk;µ) =

M∑
q=1

θq` (µ)`q(Φk),

then we can see that, in order to be able to find a reduced order solution, we can build
and store once and for all the parameter independent quantities (Aq)jk := aq(Φj , Φk)
and (Lq)k := `q(Φk) during the offline stage. Then, during the online stage, we will
compute the parameter dependent quantities θqa(µ) and θq` (µ), and we will build the
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following:

Aq
N := ZTAqZ,

AN (µ) :=
M∑
q=1

θqa(µ)A
q
N ,

LqN := ZTLqN ,

LN (µ) :=
M∑
q=1

θq` (µ)L
q.

Here Z is the reduced basis matrix : the j–th column of Z represents the j–th reduced
basis Φj expressed in terms of the basis functions that generate the space Vh. At the
end we will have to solve the following linear system:

AN (µ)uN (µ) = LN (µ).

We remark here that, if we introduce N = dimVh, then N � N : the dimension of
the system to be solved in the online phase is much smaller than the dimension of the
system to be solved in the offline phase (which is therefore the more expensive phase).
Now that we have defined everything that we need, the next step is to understand
how we can find a suitable set of reduced basis functions.

1.3 Reduced basis functions generation

As we previously mentioned, there are two possible ways of building the reduced basis
functions, in the case of a parametrized problem: we can either use a sampling strategy
based on a Greedy algorithm, or we can use a Proper Orthogonal Decomposition
(POD). In the remaining of the thesis we will be working with the POD, nevertheless
we briefly explain here also the Greedy procedure. Both strategies rely on a discretized
parameter space Ptrain = {µ1, . . . , µNtrain} ⊂ P.

Greedy algorithm

The Greedy procedure aims at progressively constructing the reduced basis space VN ,
and it relies on the avaliability of an error estimator, which we will call ε(·):

||uh(µ)− uN (µ)||µ :=
√
a(uh(µ)− uN (µ), uh(µ)− uN (µ);µ) ≤ ε(µ), ∀µ ∈ P.

Given the training set Ptrain, the Greedy algorithm works in the following way: at the
n–th iteration of the algorithm, we have a reduced basis space V (n)

N := span{Φ1, . . . , Φn}.
At iteration n+ 1 we consider the parameter µn+1 that satisfies the property

µn+1 = arg max
µ∈Ptrain

ε(µ);

we then compute the corresponding snapshot uh(µn+1), and we add it to the reduced
basis space. The procedure can be stopped when the maximum error estimated with
ε(·) falls under a certain tolerance. We remark that this procedure allows us to
construct hierarchical reduced basis spaces V (1)

N ⊂ . . . ⊂ V (N)
N .
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Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) is quite different with respect to the
previous strategy: in fact, in the POD we directly compute the snapshots uh(µ) corre-
sponding to all the parameters in Ptrain. Then, we somehow get rid of the unnecessary
information and retain only the "most important" functions.

Definition 1.3.1. The POD space VN is the linear space of dimension N that mini-
mizes the following quantity:√

1

Ntrain

∑
µ∈Ptrain

inf
v∈E
||uh(µ)− v||2H1

over all the linear subspaces E ⊂ VM := span{uh(µ), µ ∈ Ptrain} of dimension exactly
N .

To construct the space VN , we start by computing the snapshots uh(µ) for µ ∈ Ptrain.
With these snapshots we build the so called correlation matrix C ∈ RNtrain×Ntrain :

Cij =
1

Ntrain
(uh(µi), uh(µj))H1 , 1 ≤ i, j ≤ Ntrain. (1.4)

Then we solve an eigenvalue–eigenvector problem:

Cvk = λkvk, 1 ≤ k ≤ N,

where λ1 ≥ . . . ≥ λN are ordered by decreasing order of magnitude. Finally the
reduced basis functions Φk are defined as:

Φk =
1

Ntrain

Ntrain∑
j=1

(vk)juh(µj),

where (vk)j denotes the j–th component of the eigenvector vk.
As we can see from the definition of the Greedy algorithm and of the POD, the latter
is a more expensive procedure, as it requires the solution of the truth model for all
the parameters in the training set. Nevertheless the POD can be implemented also
for those classes of problems where there is no error estimator avaliable, as it happens
for the problems that we will focus on, namely unsteady nonlinear FSI problems. For
this reason, in the rest of the thesis we will rely on the POD.

1.4 Perspectives

In this Chapter we gave a quick introduction to the Reduced Basis Method: even
though the presentation is by no means exhaustive, we discussed the main aspects of
the reduction technique, such as the two procedures that can be used to generate a
reduced basis space. The research in the RBM community is very active and fruitful,
and it is moving in a number of different directions. For what concerns the application
of the reduction techniques to computational fluid dynamics (CFD), a few directions of
research nowadays are: the use of artificial intelligence in the recognition of a physical
phenomenon, and its incorporation in reduction methods (e.g. by means of convo-
lutional autoencoders); the integration of the reduction methods with discretization
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techniques other than the Finite Element Method (e.g. CutFEM, XFEM, Shifted
Boundary Method) especially in the case of geometrically parametrized systems; the
adaptation of the reduction methods in order to be able to deal with problems that are
dominated by an advection effect. Analyzing all of these lines of research, and many
more others, is out of the scope of this thesis; nevertheless some aspects previously
mentioned will be indeed considered, such as the integration of RBM with CutFEM
and the modification of the RBM for advection dominated problems.
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Chapter 2

An overview of Fluid–Structure
Interaction problems

Fluid–Structure Interaction (FSI) problems are a wide spread topic in the applied
mathematics community. Even though the research for computational methods for
solving FSI problems has a long history, a comprehensive presentation from a mathe-
matical point of view is missing still nowadays: one of the reasons for this is the fact
that the two subproblems, namely the Navier–Stokes equation and the elastic solid
equation, are two big mathematical challenges on their own, see for example [75].
Despite their instrinsic complicated nature (see [53, 73]), FSI problems are very com-
mon and frequently used in the simulation of a lot of situations: in naval engineering,
they are used to study the interaction between the water and the hull of a ship, see
for example [115]; in biomedical applications FSI problems describe the interaction
between the blood flow and the deformable walls of a vessel (as an example of the
implementation of FSI in the medical field see [177, 141, 11, 142, 147, 177, 118]); in
aeronautical engineering, FSI describes the way the air interacts with a plane or with
(parts of) a shuttle, see [148, 49, 54, 114]. These are just some of the many examples
of applications for FSI, and these problems have different characteristics, that lead to
different dynamics of the coupled system: the aerospace applications are in the set-
ting of high Reynolds number, and turbulent regime; in addition, the fluid is usually
compressible and has a behaviour that requires a three dimensional model. On the
other hand, for biomedical applications we are usually in a laminar regime, the models
can be either two dimensional or three dimensional, and the blood is usually modelled
as an incompressible fluid. Another very important difference in all these problems
is represented by the physical quantities describing the solid, and mainly the solid
density ρs, and its ratio with respect to the density ρf of the fluid under considera-
tion: indeed, as we will mention in the next Chapter, there are some algorithms for
solving FSI problems that may work very well for a problem that couples the air with
a very stiff material, but cease to work when the problem couples the blood flow with
some biological tissue. Other difficulties are given by the different assumptions on the
structure, and hence the different dynamics that one can obtain, see e.g [18]. As we
can see, therefore, FSI problems give rise to a wide set of different situations, different
dynamics, and they require different computational tools, depending on the setting
in which we are working: the aforementioned difficulties are just some of the many
peculiarities of multiphysics problems, that contribute to make it a very difficult topic
of research.
In the rest of this Chapter, we will first of all give a quick introduction on the dy-
namics of FSI problems; then we will give an overview of the mathematical challenges
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hidden in these problems, and finally we will present briefly two different classes of ap-
proaches used to adress FSI problems, namely partitioned approaches and monolithic
approaches.

2.1 Dynamics of Fluid–Structure Interaction problems

The dynamics of the FSI problems is realized by the interplay of the fluid and the
solid: this interplay is possible thanks to the coupling of the two different physics
at the FSI interface, namely the part of the physical domain that is common to the
fluid subdomain and the solid subdomain. This coupling is the consequence of three
different principles, that we present hereafter.

• Continuity of the displacement : this condition imposes the continuity of the
solid displacement and the fluid displacement at the FSI interface. This is a
geometrical condition, which is the mathematical translation of the hypothesis
that the fluid and the solid domain do not overlap.

• Continuity of the velocity : this is a kinematic condition, that represents the
hypothesis that the fluid sticks to the moving FSI interface. This condition
resembles in some ways the no–slip boundary condition, very common in viscous
fluid dynamics. In aeroelasticity application, the continuity of the velocity at
the FSI interface is relaxed and substituted with the non penetrating condition,
that prescribes the motion just in the direction normal to the FSI interface.

• Balance of the stresses: this is a classical action–reaction principle, that imposes
the balance between the fluid and the solid stresses at the FSI interface.

As we can see, the previous three coupling conditions are imposed at the FSI inter-
face: one of the big challenges and difficulties of coupled problems is represented by
the fact that this interface is not fixed, but it deforms in time, and this deformation
is not known a priori: it is one of the unknowns in the system. Another difficulty is
represented by the fact that the fluid domain in FSI applications is a moving domain;
in solid mechanics it is common to deal with moving domains, and the deformation
of the domain is usually the unknown of the problem; for fluid dynamics instead one
usually considers fixed domains. This different point of view is an intrinsic charac-
teristic of the FSI problems, and it gives rise to a formalism, very known and widely
used in the community, which is called the Arbitray Lagrangian Eulerian formulation.

2.1.1 The Arbitrary Lagrangian Eulerian formulation

Let Ω(t) ⊂ R2 be the physical domain over which the FSI problem is formulated:
Ω(t) = Ωf (t) ∪ Ωs(t), where Ωf (t) ⊂ R2 and Ωs(t) ⊂ R2 are the fluid and the solid
domain at time t, respectively; we also assume that the two domains do not overlap,
i.e. Ωf (t) ∩ Ωs(t) = ∅. In order to formulate the FSI problem, we will adopt an
Arbitrary Lagrangian Eulerian (ALE) formulation; the ALE formulation [151, 50, 91,
19] is widely used for the simulation of Fluid–Structure Interaction problems. The
ALE formulation arises from the fact that to describe the behaviour of a solid and
the behaviour of a fluid we usually use two different kind of approaches; in fact, to
describe the behaviour of a solid it is common practice to use the so called Lagrangian
formalism: all the quantities and the conservation laws are formulated on the reference
configuration Ω̂s = Ωs(t = 0). On the contrary, when describing the behaviour of
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Ω(t)Ω̂

Af (t)y

Figure 2.1: Example: domain reference configuration Ω̂ (left) and
domain configuration at time t, Ω(t) (right). In blue we have the fluid

domain, in red the solid domain.

a fluid, the definition of "domain reference configuration", "original position of a
particle" is not clear, and therefore the Eulerian formalism is used instead: all the
quantities and the conservation laws are formulated on the configuration Ωf (t) at
the current time t. In order to be able to describe both the fluid and the solid, a
mixed formulation (the ALE formulation indeed) is used: the underlying idea is that
of pulling back the fluid equations to an arbitrary time–independent configuration Ω̂f :
one possibel choice for Ω̂f is Ω̂f = Ωf (t = 0), the domain at initial time. In Figure
2.1 we can see an example of a reference configuration and the configuration of the
domain at the current time t. Let us see in the next paragraph how to introduce the
ALE formalism; for a more detailed discussion about different approaches to describe
coupled systems we refer to [83, 151]. Let [0, T ] be a time interval, and let Ω̂f be a
reference configuration for the fluid.
Definition 2.1.1. The ALE mapping Af (t), for every t ∈ [0, T ] is defined as follows:

Af (t) : Ω̂f 7→ Ωf (t)

x̂ 7→ x = x̂+ d̂f (x̂, t),

where d̂f (t) : Ω̂f 7→ Ω̂f is the mesh displacement. The definition of d̂f usually changes
depending on the kind of fluid problem we want to model; for a FSI problem, the
mesh displacement is defined as an extension of the solid displacement to the whole
fluid domain. Let Ω̂s ⊂ R2 be the reference configuration for the solid, and let
d̂s(t) : Ω̂s 7→ R2 be the solid displacement: one possible way to define d̂f is through
an harmonic extension of ds: {

−∆d̂f = 0 in Ω̂f ,
d̂f = d̂s on Γ̂FSI ,

where Γ̂FSI is the fluid–structure interface in the reference configuration. For other
alternatives on how to define df we refer to [151].
Remark 2.1.2. We underline that d̂f represents the displacement of the grid points,
therefore it is not a quantity with a real physical meaning, but rather a geometrical
quantity that describes the deformation of the mesh, according to the deformation of
the physical domain. It is also important to underline that ∂td̂f 6= ûf : in fact, while
ûf represents the velocity of the fluid, ∂td̂f is again a geometrical quantity, that can
be interpreted as the velocity with which the mesh moves.

A great attention has to be paid to the definition of the mesh displacement, as different
definitions for d̂f lead to different levels of regularity: if we loose regularity due to
the mesh displacement, then we loose regularity at the FSI interface, which is exactly
where the coupling between the two physics takes place. It is beyond the scope of
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this thesis to discuss the regularity of different definitions of the mesh displacement;
nonetheless we refer the interested reader to Chapter 5.3.5 of [151].

2.2 Approaches to Fluid–Structure Interaction problems

In general, to solve a FSI problem there are two different kind of approaches that
we can adopt: the first approach consists of a partitioned, or segregated, procedure
[14, 58, 56, 59, 57, 42], whereas the second approach consists of the so called monolithic
procedure [13, 182]. In the following we briefly introduce partitioned and monolithic
algorithms, as they will be employed in the next two Chapters of this thesis, respec-
tively.

2.2.1 Partitioned approaches

Existing simulation tools for fluid dynamics and for structural dynamics are well devel-
oped and are used on a daily basis in industrial applications. It is therefore natural to
try to combine these computational tools, to adress coupled problems: this is exactly
the rationale behind a partitioned algorithm. Indeed, in a partitioned procedure, we
solve separately the fluid and the solid problems, and then we couple the two physics
with some iterative procedure, see for example [72]. Even though the advantage of a
partitioned algorithm is the possibility of combining different discretization tools for
the two physics (e.g. Finite Volumes for the fluid and Finite Elements for the struc-
ture), the drawback of these procedures is that, under some physical and geometrical
conditions, they turn out to be unstable: this happens, for example, if the physical
domain has a slender shape, or if the fluid density ρf is close to the solid density
ρs, and this is usually the case in haemodynamics applications, where the density of
the blood is quite close to the density of the walls of the vessel. The reason for this
instability is the so called added mass effect : the fluid acts like an added mass to the
solid, thus changing its natural behaviour; we refer to [41] for a detailed derivation of
the added mass effect and relative consequences.
Partitioned algorithms differ from one another, according to the strategy used to im-
pose the coupling conditions at the FSI interface; indeed, we can classify partitioned
algorithms in the following three categories:

• Explicit algorithms: after having discretized in time the FSI problem, the condi-
tions on the continuity of the displacement and on the continuity of the velocity
at the interface are treated explicitly at every time–step. These algorithms, also
known as weakly or loosely coupled algorithms [30], are succesfully applied in
aerodynamics applications, see [55, 139], but some studies (see [41, 96, 112])
showed that they are unstable under some physical and geometrical conditions,
due to the added mass effect, as we previously mentioned.

• Implicit algorithms: in these algorithms, also known as strongly coupled algo-
rithms, the coupling conditions are treated implicitly at every time–step, see
for example [175, 176]. This implicit coupling represents a way to circumvent
the instability problems due to the added mass effect; nevertheless, an implicit
treatment of the coupling conditions leads to algorithms that are more expensive
in terms of computational time.
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• Semi–implicit algorithms: in these algorithms (see [7, 8, 20]), the continuity of
the displacement is treated explicitly, whereas the other coupling conditions are
treated implicitly. This alternative represents a tradeoff between the compu-
tational cost of the algorithm and its stability in relation to the physical and
geometrical properties of the problem. In Chapter 3 we will see a reduced order
method that is based on this kind of partitioned approach.

2.2.2 Monolithic models

In a monolithic algorithm (see for example [13, 151, 65, 61, 9]), the fluid and the solid
problem are solved simultaneously. This usually results in algorithms that are more
stable, and this is highly desirable, especially if we wish to use large time–steps in
our simulations. The main drawback is given by the fact that they deeply rely on the
avaliability of an ad hoc software that can be used to solve the fluid problem and the
solid problem: in this sense, monolithic algorithms are less flexible and more tailored
to the particular problem at hand. Moreover, as we will see in Chapter 4, in this
thesis, in order to pursue a Galerkin discretization of the original problem, we use two
Lagrange multipliers to impose the continuity of the displacement and of the velocity
at the interface: this results in the introduction of two new unknowns in the coupled
problem.

2.3 Perspectives

In this Chapter we gave a general introduction to the world of Fluid–Structure In-
teraction problems, and we gave an overview of the two main approaches used in the
community to adress such coupled systems. As we have seen, multiphysics problems
give rise to a large number of complications, due to the fact that they couple two
different physics. From a computational point of view, the research for discretiza-
tion tools that are able to capture the behaviour of the two physics, while still being
computationally tractable, is still very active, both in the framework of partitioned
algorithms and of monolithic algorithms. It is not in the scope of this work to give
an opinion on which of the two procedures is the best: indeed, the main goal of the
author is to present different algorithms which can be used to pursue a model order
reduction of some FSI problems of interest. Therefore, in the following two Chapters
we will see a Reduced Basis Method that has been designed as a partitioned proce-
dure, and which can thus potentially be combined with different computational tools
in the offline phase, and then a Reduced Basis Method that is instead a monolithic
procedure.
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Chapter 3

Partitioned Reduced Basis Method
for FSI problems

The main goal of this Chapter is to present an algorithm that combines the Reduced
Basis Method with a partitioned approach to solve multiphysics problems. The first
Fluid–Structure Interaction problem considered aims at describing the behaviour of
a fluid in a two dimensional cavity with deformable leaflets. We then move on to a
more complex Fluid–Structure Interaction problem, where we introduce a geometrical
parameter that takes into account the length of the leaflets. The material in this
Chapter is contained in a paper in preparation for journal publication, see [133].

3.1 Motivation

Partitioned algorithms, as we have mentioned in the previous Chapter, are particu-
larly useful when we want to couple different discretization tools for the two physics,
namely the fluid and the solid problem; even if we decide to use the same computa-
tional software, with a segregated procedure we can, in principle, use two different
space discretization for the fluid and for the solid, see [74]: this turns out to be ex-
tremely useful in the case we want to simulate, for example, the behaviour of a system
which has a stiff structure: if the solid does not deform too much, there is no need
to use a very fine mesh, whereas it may be useful to use a finer mesh to describe the
fluid behaviour, for example in the proximity of the FSI interface, or in the presence
of boundary layers.
Additionaly, from the reduced order model point of view, adressing a coupled problem
by means of a partitioned procedure is advantageous in terms of computational effi-
ciency: indeed, in the online phase of the RBM, we have to solve, separately, smaller
systems. Moreover, with some minor changes such as change of variables and appro-
priate choices for the couplings, it is possible to further reduce the dimension of the
online systems, as we will see in the following.
The goal of the work presented in this Chapter is to combine a segregated procedure
with a reduced order model, and to test and analyze the performance of the obtained
algorithm.
This Chapter is structured as follows: in Section 3.2 we introduce the first Fluid–
Structure Interaction problem of interest, namely the interaction of a fluid with a
thick, two dimensional, structure; in Section 3.3 we introduce the partitioned pro-
cedure at the high order level. In Section 3.4 we derive the partitioned procedure
at the reduced order level, and in Section 3.5 we present the numerical results. In
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Γ̂in Γ̂out

Γ̂FSI

Γ̂FSI

Γ̂Ds

Γ̂Ds

Figure 3.1: Physical reference configuration. Blue domain: the ref-
erence fluid configuration Ω̂f . Red leaflets: the reference solid config-
uration Ω̂s. The fluid–structure interface Γ̂FSI is depicted in green.

Γ̂Ds : the part of the leaflets that does not move.

Section 3.6 we introduce the geometrically parametrized version of the problem of in-
terest: in Section 3.6.1 we present the ALE formalism in the presence of a geometrical
parametrization of the domain; in Section 3.6.2 we give the strong formulation of the
problem of interest, and in Section 3.7 we describe the algortihm at the high order
level. In Section 3.8 we introduce the reduced order model, and then we present some
numerical results in Section 3.9.

3.2 Problem formulation: time dependent FSI

We now present the formulation of the first FSI problem: a time–dependent, nonlinear,
non–parametrized multiphysics test case. We want to simulate the behaviour of an
incompressible fluid interacting with a deformable solid, in the time interval [0, T ];
Figure 3.1 shows the physical domain in its reference configuration. The coupled FSI
problem reads as follows: for every t ∈ [0, T ], find uf (t) : Ωf (t) 7→ R2, pf (t) : Ωf (t) 7→
R and d̂s(t) : Ω̂s 7→ R2 such that:

ρf (∂tuf + (uf · ∇)uf )− divσf (uf , pf ) = bf in Ωf (t)× (0, T ],

divuf = 0 in Ωf (t)× (0, T ],

ρs∂ttd̂s − d̂ivP̂ (d̂s) = b̂s in Ω̂s × (0, T ],

(3.1)

with some suitable initial conditions and boundary conditions, and with some cou-
pling conditions that we are going to introduce subsequently. In system (3.1), the d̂iv
denotes the fact that the divergence is computed with respect to x̂, the space variable
in the reference configuration. ρf and ρs are the fluid and the solid density, respec-
tively; σf is the fluid Cauchy stress tensor, and P̂ is the solid second Piola–Kirchoff
tensor, defined respectively as:

σf (uf , pf ) = µf (∇uf +∇Tuf )− pfI,
P̂ (d̂s) = λstrεs(d̂s)I + 2µsεs(d̂s),

εs(d̂s) =
1

2
(∇̂d̂s + ∇̂T d̂s).

µf is the fluid viscosity, while µs and λs are the Lamè coefficients of the solid. As
we may see from system (3.1), the fluid problem is cast in the current fluid physical
domain Ωf (t), whereas the solid problem is already formulated in the reference solid
configuration Ω̂s. With the formalism introduced in the previous section 2.1.1, we
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are nevertheless able to perform a pull–back of the fluid equations onto the fluid
reference configuration Ω̂f , thus obtaining a more homogeneous formulation of the
whole coupled system. In order to perform a pull-back of the Navier–Stokes equation,
we define:

F := ∇̂Af , J := detF ,

the gradient of the ALE map and its determinant, respectively. With these quantities
we are ready to present the strong form of the coupled problem in an ALE formula-
tion: for every t ∈ [0, T ], find the fluid velocity ûf (t) : Ω̂f 7→ R2, the fluid pressure
p̂f (t) : Ω̂f 7→ R, the fluid displacement d̂f (t) : Ω̂f 7→ R2 and the solid deformation
d̂s(t) : Ω̂s 7→ R2 such that:
ρfJ(∂tûf + ∇̂ûfF−1(ûf − ∂td̂f ))− d̂iv(Jσ̂f (ûf , p̂f )F−T ) = bf in Ω̂f × (0, T ],

d̂iv(JF−1uf ) = 0 in Ω̂f × (0, T ],

−∆̂d̂f = 0 in Ω̂f × (0, T ],

ρs∂ttd̂s − d̂ivP̂ (d̂s) = bs in Ω̂s × (0, T ],

(3.2)
The fluid tensor σ̂f is the representation in the reference configuration of the Cauchy
stress tensor:

σ̂f (ûf , p̂f ) = µf (∇̂ûfF−1 + F−T ∇̂T ûf )− p̂fI.

System (3.2) is completed by some suitable initial conditions, by the boundary con-
ditions 

Jσ̂f (ûf , p̂f )F
−T n̂ = −pin(t)n̂ on Γ̂in,

Jσ̂f (ûf , p̂f )F
−T n̂ = −pout(t)n̂ on Γ̂out

d̂s = 0 on Γ̂Ds ,

and by the following coupling conditions:
d̂f = d̂s on Γ̂FSI
ûf = ∂tds on Γ̂FSI ,
Jσ̂f (ûf , p̂f )F

−T n̂f = −P̂ (d̂s)n̂s on Γ̂FSI .
(3.3)

In the previous equations the vector n̂ represents the normal vector to the inlet (or
outlet) boundary in the reference configuration, whereas n̂f is the vector normal to
the FSI interface Γ̂FSI , outgoing the fluid domain, and n̂s is the vector normal to the
FSI interface Γ̂FSI , outgoing the solid domain.
Remark 3.2.1. The gradient and the divergence in equation (3.2) are computed with
respect to the spatial coordinates in the reference configuration, namely x̂. Neverthe-
less, from now on, since everything will be formulated and computed on the reference
configuration, in order to ease the exposition, we will drop theˆnotation.

3.3 Offline computational phase

In this Section we are going to describe the offline phase of the partitioned procedure
that we use to solve the FSI problem described in the previous Section. The algorithm
is based on a Chorin-Temam projection scheme for the Navier–Stokes equation [80, 78],
and we choose to treat the coupling conditions (3.3) in a semi–implicit way (see also
[14, 8, 57]). We first apply a time stepping procedure to design the algorithm, and
then we show the space discretization of the whole procedure.
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3.3.1 High fidelity semi–implicit scheme

We present the offline phase of the partitioned procedure: we use an operator split-
ting approach, based on a Chorin-Temam projection scheme with pressure Poisson
formulation. The coupling between fluid and solid problem is imposed with a Robin
coupling.

Semi–implicit coupling

Let ∆T be a time–step: we discretize the time interval [0, T ] with an equispaced
sampling {t0, . . . , tNT }, where ti = i∆T , for i = 0, . . . , NT and NT = T

∆T . We
discretize the partial derivative of a function f with a first backward difference:
Dtf

i+1 = f i+1−f i
∆T , and Dttf

i+1 = Dt(Dtf
i+1), where f i+1 = f(ti+1). Our parti-

tioned scheme reads as follows: for i = 0, . . . , NT :

Extrapolation of the mesh displacement df :

find di+1
f : Ωf 7→ R2 such that:{

−∆di+1
f = 0 in Ωf ,

di+1
f = dis on ΓFSI .

(3.4)

Fluid explicit step:

find ui+1
f : Ωf 7→ R2 such that:

Jρf

(ui+1
f − uif
∆T

+∇ui+1
f F−1(ui+1

f −Dtd
i+1
f )

)
−

− µfdiv(Jε(ui+1
f )F−T ) + JF−T∇pif = 0 in Ωf ,

ui+1
f = Dtd

i+1
f on ΓFSI ,

(3.5)

Implicit step:

1. fluid projection substep (pressure Poisson formulation): find pi+1
f : Ωf 7→

R2 such that:{
− ρf
∆tdiv(JF

−1ui+1
f ) = −div(JF−1F−T∇pi+1

f ) in Ωf ,
−F−T∇pi+1

f · JF−Tnf = ρfDttd
i+1
s · JF−Tnf on ΓFSI ,

(3.6)

subject to the boundary conditions:{
pi+1
f = pin(ti+1) on Γin
pi+1
f = 0 on Γout,

(3.7)
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2. structure projection substep: find di+1
s : Ωs 7→ R2 such that:{

ρsDttd
i+1
s − divP (di+1

s ) = 0 in Ωs,
Jσf (u

i+1
f , pi+1

f )F−Tnf = −P (di+1
s )ns onΓFSI .

(3.8)

subject to the boundary condition di+1
s = 0 on ΓDs .

Remark 3.3.1. In the implicit step (3.6) we have chosen a pressure Poisson formulation;
an alternative is to use a Darcy formulation, which is defined as follows: find pi+1

f and
ũi+1
f such that: ρfJ

ũi+1
f −ui+1

f

∆T + JF−T∇pi+1
f = 0 in Ωf ,

div(JF−1ũi+1
f ) = 0 in Ωf .

However, we choose to employ a Poisson formulation throughout this Chapter, for
the sake of a more efficient reduced order model, since the Darcy formulation requires
the introduction of an additional unknown ũf , which translates in a larger system,
comprised of both velocity and pressure, at the implicit step.

In order to enhance the stability of the projection scheme, we employ a Robin–
Neumann coupling, as proposed in [5, 14]; for other references on this kind of coupling,
we refer to [6, 59]. We thus replace condition (3.6)2 with the following:

αROBp
i+1 + F−T∇pi+1 · JF−Tnf = αROBp

i+1,? − ρfDttd
i+1,?
s · JF−Tnf . (3.9)

In equation (3.9), pi+1,? and di+1,?
s are suitable extrapolations of the fluid pressure

and the solid displacement, respectively; we show in the next paragraph which kind
of extrapolation we use. The constant αROB is defined as αROB =

ρf
zp∆T

where zp is
called the solid impedance:

zp = ρscp,

cp =

√
λs + 2µs

ρs
.

In Appendix A we show more in detail how to compute the coupling condition (3.9),
starting from the idea proposed in [16].

Space discretization of the semi–implicit procedure

We now present the space discretized version of the algorithm introduced. We define
the following function spaces for the fluid:

V (Ωf ) := [H1(Ωf )]
2, Ef (Ωf ) := [H1(Ωf )]

2, Q(Ωf ) := L2(Ωf ),

endowed with the H1 norm (V (Ωf ) and Ef (Ωf )) and the L2 norm respectively, and
the function space for the solid: Es(Ωs) = [H1(Ωs)]

2, endowed with the H1 norm. We
discretize in space the FSI problem, using second order Lagrange Finite Elements for
the fluid velocity, the fluid displacement and the solid displacement, resulting in the
discrete spaces Vh ⊂ V , Efh ⊂ E

f and Esh ⊂ Es, while the fluid pressure is discretized
with first order Lagrange Finite Elements, resulting in the discrete space Qh ⊂ Q. The
non–homogeneous boundary condition (3.7)1 can be easily treated without the use of
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a Lagrange multiplier, by introducing a lifting function `i+1 such that `i+1 = pin(t
i+1)

on Γin and `i+1 = 0 on Γout; we refer to [12] for more details. By introducing the
homogenized pressure p0,i+1

f := p0,i+1
f − `i+1, we can conclude now that p0,i+1

f ∈ Q0
h,

where Q0
h = {qh ∈ Qh : qh = 0 on Γin}. The discretized version of the semi–implicit

procedure reads as follows: for i = 0, . . . , NT ,

Extrapolation of the mesh displacement:

find di+1
f,h ∈ E

f
h such that ∀ef,h ∈ Efh :{∫

Ωf
di+1
f,h · ef,h dx = 0 in Ωf ,

di+1
f,h = dis,h on ΓFSI .

(3.10)

Fluid explicit step:

find ui+1
f,h ∈ Vh such that ∀vh ∈ Vh:

ρf

∫
Ωf

J
(ui+1

f,h − u
i
f,h

∆T

)
· vh dx+ ρf

∫
Ωf

J(∇ui+1
f,h F

−1(ui+1
f,h −Dtd

i+1
f,h )) · vh dx

+ µf

∫
Ωf

Jε(ui+1
f,h )F

−T : ∇vh dx+

∫
Ωf

JF−T∇pif,h · vh dx = 0 in Ωf ,

ui+1
f,h = Dtd

i+1
f,h on ΓFSI ,

(3.11)

Implicit step:

for any j = 0, . . . until convergence:

1. fluid projection substep (pressure Poisson formulation): find p0,i+1,j+1
f,h ∈

Q0
h such that ∀qh ∈ Q0

h:

−
ρf
∆T

∫
Ωf

div(JF−1ui+1
f,h )qh dx− ρf

∫
ΓFSI

(Dttd
i+1,j
s,h ) · JF−Tnfqh ds

+ αROB

∫
ΓFSI

pi+1,j
f,h qh ds− αROB

∫
ΓFSI

`i+1qh ds

−
∫
Ωf

JF−T∇`i+1 · F−T∇qh dx = αROB

∫
ΓFSI

p0,i+1,j+1
f,h qh ds+

+

∫
Ωf

JF−T∇p0,i+1,j+1
f,h · F−T∇qh dx

2. structure projection substep: find di+1,j+1
s,h ∈ Esh such that ∀es,h ∈ Esh:

ρs

∫
Ωs

Dttd
i+1,j+1
s,h · es,h dx+

∫
Ωs

P (di+1,j+1
s,h ) : ∇es,h dx =

= −
∫
ΓFSI

Jσf (u
i+1
f,h , p

i+1,j+1
f,h )F−Tnf · es,h dx
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subject to the boundary condition di+1,j+1
s,h = 0 on Γ sD

We iterate between the two implicit substeps, until a convergence criteria is satisfied;
we choose as stopping criteria a relative error on the increments of the pressure and
the solid displacement, namely:

max
( ||pi+1,j+1

f,h − pi+1,j
f,h ||Qh

||pi+1,j+1
f,h ||Qh

;
||di+1,j+1

s,h − di+1,j
s,h ||Esh

||di+1,j+1
s,h ||Esh

)
< ε,

where ε is a fixed tolerance.
In the pressure Poisson formulation, to impose the Robin coupling condition, we have
chosen the pressure at the previous implicit iteration, namely pi+1,j

f , as an extrapo-
lation for the fluid pressure, and the same goes for the extrapolation of the structure
displacement.

3.3.2 POD and reduced basis generation

For the generation of the reduced basis for the fluid velocity uf and the fluid displace-
ment df we pursue here the idea that was first proposed in [14]. For the homogenized
fluid pressure p0f and for the solid displacement ds we employ a standard POD.

Change of variable for the fluid velocity

The main idea here is to introduce a change of variable in the fluid problem, in order to
transform condition (3.20)2 into a homogeneous boundary condition. The motivation
of this choice is that, to impose condition (3.20)2, we could use a Lagrange multiplier
λ, but unfortunately introducing a new variable leads to an increased dimension of
the system to be solved in the online phase. Therefore, in order to avoid this and
in order to design a more efficient reduced method, we choose to transform the non–
homogeneous coupling condition into a homogeneous one. In order to do this, we
define a new variable zi+1

f,h :

zi+1
f,h := ui+1

f,h −Dtd
i+1
f,h .

With this change of variable, equation (3.20)2 is equivalent to the homogeneous bound-
ary condition for the new variable:

zi+1
f,h = 0 on ΓFSI ,

for which no imposition by means of Lagrange multiplier is needed. Therefore, during
the offline phase of the scheme, at every iteration i + 1, after we have computed the
velocity ui+1

f,h , we compute the change of variable zi+1
f,h . We then consider the following

snapshots matrix:
Sz = [z1f,h, . . . ,z

NT
f,h ] ∈ RN

h
u×NT ,

where N h
u = dimVh and we use the underline notation to denote the vector consisting

of the FE degrees of freedom corresponding to each solution. We then apply a POD
to the snapshots matrix Sz and we retain the first Nz POD modes Φ1

z, . . . , Φ
Nz
z . We

therefore have the reduced space:

V N := span{Φkz}
Nz
k=1,
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and now it is clear that, since every Φkz satisfies the condition Φkz = 0 on ΓFSI , then
also every element of V N will satisfy the same condition.

Harmonic extension of the fluid displacement

In order to generate the reduced basis for the fluid displacement df , we pursue again
the idea presented in [14]. Therefore, we start by generating the snapshots matrix
related to the solid displacement:

Sds = [d1s,h, . . . ,d
NT
s,h ] ∈ RN

h
ds
×NT ,

where N h
ds

= dimEsh and again the underline notation denotes the vector of the FE
degrees of freedom corresponding to each solution of the solid displacement. We
then apply a POD to the snapshots matrix and retain the first Nds POD modes
Φ1
ds
, . . . , Φ

Nds
ds

, thus defining the reduced space for the solid problem:

EsN := span{Φkds}
Nds
k=1.

We then employ an harmonic extension of each one of the reduced basis Φkds to the
fluid domain, thus obtaining the functions Φkdf such that:{

−∆Φkdf = 0 in Ωf ,

Φkdf = Φkds on ΓFSI .

We can then define the reduced space for the fluid displacement:

EfN := span{Φkdf }
Nds
k=1.

The reason for defining the basis functions for df in such a way, instead of employing
a standard POD on the set of snapshots for the fluid displacement computed in the
offline phase relies in the fact that we want to avoid the introduction of another La-
grange multiplier to impose the non–homogeneous boundary condition (3.19)2. With
our method, we avoid to solve the reduced system related to (3.19): indeed, instead
of solving an harmonic extension problem at every time–step in the online phase, we
solve once and for all Nds harmonic extension problems in the expensive offline phase.
Then, during the online phase, the reduced fluid displacement will be computed just
as a linear combination of the basis Φidf , with coefficients that are the coefficients of
the reduced solid displacement at the previous time–step. We will see in the next
Section the final formulation of the online phase of the algorithm.
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3.4 Online computational phase

We are now ready to present the online formulation of the partitioned procedure. For
every i = 0, . . . , NT , we introduce the reduced functions zi+1

f,N , p
0,i+1
f,N , di+1

s,N of the form:

zi+1
f,N =

Nzf∑
k=1

zi+1
k Φkzf , (3.12)

p0,i+1
f,N =

Np∑
k=1

p0,i+1
k

Φkp, (3.13)

di+1
s,N =

Nds∑
k=1

di+1
k Φkds . (3.14)

Then the online phase of the partitioned procedure reads as follows:

Mesh displacement:

let di+1
f,N be defined by the reduced solid displacement at the previous time–step:

di+1
f,N =

Nds∑
k=1

dikΦ
k
df
; (3.15)

Fluid explicit step (with change of variable):

find zi+1
f,N ∈ VN such that ∀vN ∈ VN :

ρf

∫
Ωf

J
(zi+1

f,N − u
i
f,N

∆T

)
· vN dx+ ρf

∫
Ωf

J(∇(zi+1
f,N +Dtd

i+1
f,N )F

−1zi+1
f,N ) · vN dx

+ µf

∫
Ωf

Jε(zi+1
f,N )F

−T : ∇vN dx+

∫
Ωf

JF−T∇pif,N · vh dx =

− ρf
∫
Ωf

J
(Dtd

i+1
f,N

∆T

)
· vN dx− µf

∫
Ωf

Jε(Dtd
i+1
f,N )F

−T : ∇vN dx in Ωf .

We then restore the reduced fluid velocity: ui+1
f,N = zi+1

f,N +Dtd
i+1
f,N .

Implicit step:

for any j = 0, . . . until convergence:
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Table 3.1: Values for the implementation of the offline phase.

Physical constants Value
ρf 1 g/cm3

µf 0.035 Poise
ρs 1.1 g/cm3

µs 100000
λs 8000

Discretization details Value
FE displacement order 2
FE velocity order 2
FE pressure order 1

1. fluid projection substep: find p0,i+1,j+1
f,N ∈ Q0

N such that ∀qN ∈ Q0
N :

−
ρf
∆T

∫
Ωf

div(JF−1ui+1
f,N )qN dx− ρf

∫
ΓFSI

(Dttd
i+1,j
s,N ) · JF−TnfqN ds

+ αROB

∫
ΓFSI

pi+1,j
f,N qN ds− αROB

∫
ΓFSI

`i+1qN ds

−
∫
Ωf

JF−T∇`i+1 · F−T∇qN dx = αROB

∫
ΓFSI

pi+1,j+1
f,N qN ds

+

∫
Ωf

JF−T∇pi+1,j+1
f,N · F−T∇qN dx;

we then recover the reduced fluid pressure pi+1,j+1
f,N = p0,i+1,j+1

f,N + `i+1.

2. structure projection substep: find di+1,j+1
s,N ∈ EsN such that ∀es ∈ EsN :

ρs

∫
Ωs

Dttd
i+1,j+1
s,N · eN dx+

∫
Ωs

P (di+1,j+1
s,N ) : ∇eN dx =

= −
∫
Ωs

Jσf (u
i+1
f,N , p

i+1,j+1
f,N )F−Tnf · eN dx

3.5 Numerical results

We now present some numerical results obtained with the semi–implicit scheme. For
our simulation we used a time–step ∆T = 10−4, and a final time T = 0.2 s, for a
total of NT = 2000 iterations. The reference domain Ω is presented in Figure 3.1:
the fluid domain is 2.5 cm height, and it is 10 cm long; the leaflets are situated 1 cm
downstream the inlet boundary, they are 0.2 cm thick and 1.1 cm height.

The values of the physical constants used in the simulation are reported in Table 3.1.
A pressure impulse pin(t) is applied at the inlet boundary, and after some time this
impulse becomes constant:

pin(t) =

{
5− 5cos

(
2πt
Tin

)
for t ≤ 0.1s,

5 for t > 0.1s,
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(a) POD eigenvalues for the unsteady problem.

(b) Retained energy for the unsteady problem.

Figure 3.2: POD eigenvalues and retained energy for the unsteady,
non parametric leaflets problem.

where Tin = 0.4s. We fix a tolerance of ε = 10−6 as a stopping criterion for the
subiterations between the pressure Poisson problem and the solid problem.

Since we do not consider the top and the bottom walls of the fluid domain to be
deformable, we impose a homogeneous boundary condition for the fluid velocity on
these walls.

Figure 3.2a shows the rate of decay of the first 100 eigenvalues associated with three
unknowns of the problem, namely the change of variable for the fluid velocity zf , the
pressure pf and the solid displacement ds. It can be noticed that the rate of decay
of the eigenvalues for the pressure and for the fluid change of variable is slower than
the rate of decay of the eigenvalues of the solid displacement. Moreover, in Figure
3.2b we can notice that the first mode of the solid displacement retains 2% more
energy compared to the first mode of the pressure, and 8% more energy with respect
to the first mode of zf , which is the one that retains less energy. Figures 3.3 and
3.4 show two representative reduced order solutions: the fluid velocity and the solid
displacement, respectively; as we can see from Figure 3.4, the reduced order model
shows a good capability also in reproducing very small deformations. Figure 3.5 shows
that, with N = 20 basis functions for each component of the solution, we have a good
approximation error behaviour over time.
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Figure 3.3: Reduced velocity uf,N at time–step t = 0.1s (top) and
at time–step t = 0.2s (bottom). The velocity has been obtained with

Nzf = 20 reduced basis.

Figure 3.4: Reduced solid displacement ds,N at time–step t = 0.02s
(left), t = 0.1s (center) and at time–step t = 0.2s (right). The displace-
ment has been obtained withNd = 20 reduced basis. The displacement

has been magnified for visualization purposes.
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Figure 3.5: Error analysis: relative error behaviour, as a function of
time.

3.6 Problem formulation: parameter–dependent geome-
try

In this Section we are going to present a test case that is similar to the one previously
introduced, the difference being now the presence of a geometrical parameter µ, that
represents the length of the leaflets.

3.6.1 ALE formulation in the presence of shape parametrization

Let us denote by Ω(t;µ) := Ωf (t;µ) ∪ Ωs(t;µ) the current physical domain: we
now have a time dependence, and a parameter dependence. We introduce the time–
independent intermediate configuration Ω̃(µ) := Ω̃f (µ) ∪ Ω̃s(µ), where we are con-
sidering the reference configuration of both physics, still taking into account the pa-
rameter dependence. Finally, we have the time–independent, parameter–independent
reference configuration Ω̂ := Ω̂f ∪ Ω̂s.

We call T the shape parametrization map; for every µ ∈ P ⊂ R, where P =
[µmin, µmax] is the domain of the geometrical parameter, we have a map Tµ defined
as follows:

Tµ : Ω̂ 7→ Ω̃(µ)

x̂ 7→ x̃ = Tµ(x̂).

We then have the ALE map Af (t;µ), already introduced in Section 2.1.1, which is now
a map from the current parametrized fluid configuration Ωf (t;µ) and the intermediate
fluid configuration Ω̃f (µ):

Af (t;µ) : Ω̃f (µ) 7→ Ωf (t;µ)

x̃ 7→ x = x̃+ d̃f (x̃; t, µ),
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Ω̃(µ)Ω̂

Tµy

Ω(t;µ)

↓ Af (t;µ)

Figure 3.6: Domains: reference configuration Ω̂ (top left),
parametrized reference configuration Ω̃(µ) (top right), and original

configuration Ω(t;µ) (bottom).

where d̃f is the mesh displacement already defined in Section 2.1.1.
Let us define the gradients and the determinants of the deformation maps:

G(x̂;µ) = ∇̂Tµ(x̂), K(x̂;µ) = detG(x̂;µ),

F̃ (x̃;µ) = Ĩd+ ∇̃d̃f , J̃(x̃;µ) = detF̃ . (3.16)

We can pull-back the gradient F̃ (x̃;µ) to the reference domain Ω̂f , and we obtain
F (x̂;µ) = Id+ ∇̂d̂fG−1(x̂, µ). With this notation, we can conclude that the gradient
of the deformation map from the reference configuration to the current configuration
is given by F (x̂, µ)G(x̂, µ); for the sake of the simplicity of the notation let us denote
by Fµ and Gµ the gradients F (x̂, µ) and G(x̂, µ) respectively. We are now ready to
state the strong form of the problem of interest.

3.6.2 Problem formulation

The strong form of the parametrized FSI problem reads as follows: find the fluid
velocity uf (t;µ) : Ωf (t;µ) 7→ R2, the fluid pressure pf (t;µ) : Ωf (t;µ) 7→ R, the mesh
displacement d̃f (t;µ) : Ω̃f (µ) 7→ R2 and the solid displacement d̃s(t;µ) : Ω̃s(µ) 7→ R2

such that: {
−∆̃d̃f = 0 in Ω̃f (µ)× [0, T ],

d̃f = d̃s on Γ̃FSI × [0, T ],

and
ρf∂tuf |x̃+ρf (uf − ∂tdf |x̃) · ∇uf − divσf (uf , pf ) = bf in Ωf (t;µ)× [0, T ],

divuf = 0 in Ωf (t;µ)× [0, T ],

ρs∂ttd̃s − d̃ivP̃ (d̃s) = b̃s in Ω̃s(µ)× [0, T ].

Here we notice that, again, the fluid problem is formulated in the current parametrized
configuration Ωf (t;µ), whereas the solid problem is formulated in the parametrized
reference configuration Ω̃s(µ). The quantity ∂tuf |x̃ represents the ALE time deriva-
tive: ∂tuf (x, t;µ)|x̃= ∂tũf (x̃, t;µ). Again, σf is the fluid Cauchy stress tensor, and P̃
is the second Piola–Kirchoff stress tensor: their definition has been given in Section
3.2. The previous system is completed by some suitable initial conditions, by some
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boundary conditions and by the following coupling conditions:
df = ds on ΓFSI(t;µ)
uf = ∂tds on ΓFSI(t;µ),
J̃ σ̃f (ũf , p̃f )F̃

−T ñf = −P̃ (d̃s)ñs on Γ̃FSI(µ),

being σ̃f the Cauchy stress tensor in the parametrized intermediate fluid domain
Ω̃f (µ):

σ̃f (ũf , p̃f ) = µf (∇̃ũf F̃−1(µ) + F̃−T (µ)∇̃T ũf ).

Thanks to the introduction of the pull–back maps, we can reformulate our problem in
the reference configuration Ω̂: for every t ∈ [0, T ], find the fluid velocity ûf (t) : Ω̂f 7→
R2, the fluid pressure p̂f (t) : Ω̂f 7→ R and the solid deformation d̂s(t) : Ω̂s 7→ R2 such
that:

ρfJK(∂tûf + ∇̂ûfG−1µ F−1µ (ûf − ∂td̂f ))
− d̂iv(JKσ̂f (ûf , p̂f )F−Tµ G−Tµ ) = bf in Ω̂f × (0, T ],

d̂iv(JKG−1µ F−1µ uf ) = 0 in Ω̂f × (0, T ],

ρsK∂ttd̂s − d̂iv(KP̂ (d̂s)G
−T
µ ) = bs in Ω̂s × (0, T ],

(3.17)

where:

σ̂f (ûf , p̂f ) = µf (∇̂ûfG−1µ F−1µ + F−Tµ G−Tµ ∇̂T ûf ),

P̂ (d̂s) = λstrεs(d̂s)I + 2µsεs(d̂s),

εs(d̂s) =
1

2
(∇̂d̂sG−1µ +G−Tµ ∇̂T d̂s). (3.18)

We have the coupling conditions
d̂f = d̂s on Γ̂FSI
ûf = ∂td̂s on Γ̂FSI ,
JKσ̂f (ûf , p̂f )F

−T
µ G−Tµ n̂f = −KP̂ (d̂s)G

−T
µ n̂s on Γ̂FSI ,

and the following boundary conditions:
σ̂f (ûf , p̂f )n̂ = −pin(t)n̂ on Γ̂in,
σ̂f (ûf , p̂f )n̂ = −pout(t)n̂ on Γ̂out,
d̂s = 0 on Γ̂Ds .

Again, n̂ represents the normal vector to the relative part of the boundary of the
domain.
Remark 3.6.1. In this section we stressed the difference between entities on the current
configuration, the parametrized intermediate configuration and the reference configu-
ration, by using the superscripts˜and .̂ However, since from now on everything will
be cast in the reference configuration, and in order to make the notation as light as
possible, we will drop all the superscripts.
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3.7 Offline computational phase

In this Section we present the offline phase of the partitioned procedure in the presence
of a parameter µ. We employ again a Chorin-Temam projection scheme for the Navier–
Stokes equation. Since the whole procedure is very similar to the one already presented
for the non–parametric case, and the only thing that changes is the weak formulation
in the algortihm, we present directly the final algortihm. In order to do so, we define
a time-stepping procedure by sampling the time interval [0, T ] with an equispaced
sampling {t0, . . . , tN}, where ti = i∆T , for i = 0, . . . , NT and NT = T

∆T . We discretize
the time derivative of a function f with a first backward difference: Dtf

i+1 = f i+1−f i
∆T ,

and Dttf
i+1 = Dt(Dtf

i+1), where f i+1 = f(ti+1).
In the following, we use the same function spaces that we have introduced in Section
3.3.1:

V (Ωf ) := [H1(Ωf )]
2,

Ef (Ωf ) := [H1(Ωf )]
2,

Q(Ωf ) := L2(Ωf ),

Es(Ωs) = [H1(Ωs)]
2,

endowed with the H1 norm (V (Ωf ), Ef (Ωf ) and Ef (Ωs)) and the L2 norm respec-
tively. We remark that in the previous definitions, the domains Ωf and Ωs are the
parameter independent reference configurations. Again we discretize in space the FSI
problem, using second order Lagrange Finite Elements for fluid velocity, the fluid
displacement and the solid displacement, resulting in the discrete spaces Vh ⊂ V ,
Efh ⊂ Ef and Esh ⊂ Es, while the fluid pressure is discretized with first order La-
grange Finite Elements, resulting in the discrete space Qh ⊂ Q. The space discretized
version of the partitioned procedure now reads as follows: for i = 0, . . . , NT ,

Extrapolation of the mesh displacement:

find di+1
f,h ∈ E

f
h such that ∀ef,h ∈ Efh :{∫

Ωf
K∇di+1

f,hG
−1
µ · ∇ef,hG−1µ dx = 0 in Ωf ,

di+1
f,h = dis,h on ΓFSI .

(3.19)

Fluid explicit step:

find ui+1
f,h ∈ Vh such that ∀vh ∈ Vh:

ρf

∫
Ωf

JK
(ui+1

f,h − u
i
f,h

∆T

)
· vh dx+ ρf

∫
Ωf

JK[∇ui+1
f,hG

−1
µ F

−1
µ ](ui+1

f,h −Dtd
i+1
f,h ) · vh dx

+ µf

∫
Ωf

JKε(ui+1
f,h )F

−T
µ G−Tµ : ∇vh dx+

∫
Ωf

JKF−Tµ G−Tµ ∇pif,h · vh dx = 0 in Ωf ,

ui+1
f,h = Dtd

i+1
f,h on ΓFSI ,

(3.20)
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Implicit step:

for any j = 0, . . . until convergence:

1. fluid projection substep (pressure Poisson formulation): find pi+1,j+1
f,h ∈

Qh such that ∀qh ∈ Qh:

−
ρf
∆T

∫
Ωf

div(JKG−1µ F
−1
µ ui+1

f,h )qh dx+ αROB

∫
ΓFSI

pi+1,j
f,h qh ds

− ρf
∫
ΓFSI

(Dttd
i+1,j
s,h ) · JKF−Tµ G−Tµ nfqh ds = αROB

∫
ΓFSI

pi+1,j+1
f,h qh ds+

+

∫
Ωf

JKG−Tµ F−Tµ ∇p
i+1,j+1
f,h ·G−Tµ F−Tµ ∇qh dx,

subject to the boundary conditions (3.7);

2. structure projection substep: find di+1,j+1
s,h ∈ Esh such that ∀es,h ∈ Esh:

ρs

∫
Ωs

KDttd
i+1,j+1
s,h · es,h dx+

∫
Ωs

KP (di+1,j+1
s,h )G−Tµ : ∇es,h dx =

= −
∫
ΓFSI

JKσf (u
i+1,j+1
f,h , pi+1,j+1

f,h )G−Tµ F−Tµ nf · es,h dx

subject to the boundary condition ds = 0 on Γ sD
In the fluid projection step, in order to enhance the stability of the method we have
employed again a Robin boundary condition, which in the case of shape parametriza-
tion reads as follows:

αROBp
i+1 +G−Tµ F−Tµ ∇pi+1 · JKG−Tµ F−Tµ nf =

= αROBp
i+1,? − ρfDttd

i+1,?
s · JKG−Tµ F−Tµ nf .

3.7.1 POD-Greedy procedure

In order to find the reduced basis, we rely on a POD–Greedy procedure [29, 46]: this
means that we explore the parameter space P with a Greedy procedure, and we explore
in time with a POD. To explore the parameter space we actually use a pseudo–Greedy
procedure, and this is because we do not have at hand an error estimator for a Fluid–
Structure Interaction problem; we sample the parameter space P with M equispaced
samples and we obtain the training set Ptrain = {µ1, . . . , µM}. We therefore have the
following snapshots matrices:

Sz = [zh(t
1;µ1), . . . ,zh(t

NT ;µ1), . . . ,zh(t
1;µM ), . . . ,zh(t

NT ;µM )] ∈ RN
h
z ×M̂ ,

Sds = [ds,h(t
1, µ1), . . . ,ds,h(t

NT , µ1), . . . ,ds,h(t
1, µM ), . . . ,ds,h(t

NT , µM )] ∈ RN
h
ds
×M̂ ,

Sp = [p
f,h

(t1, µ1), . . . , pf,h(t
NT , µ1), . . . , pf,h(t

1, µM ), . . . , p
f,h

(tNT , µM )] ∈ RN
h
p×M̂ ,

where M̂ = NT ·M . We perform a POD on each snapshots matrix, obtaining the
following modes: {Φkz}

Nz
k=1, {Φ

k
ds
}Ndsk=1, {Φ

k
p}
Np
k=1, with Nz, Nds , Np chosen according

to the rate of decay of the eigenvalues returned by the POD on Sz, Sds and Sp,
respectively. We denote by VN , EsN , QN the reduced spaces spanned by these basis
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functions respectively. The reduced solutions zi+1
f,N (µ), p

i+1
f,N (µ) and d

i+1
s,N (µ) at time–

step i+ 1 and for µ ∈ P are defined as follows:

zi+1
f,N (µ) =

Nzf∑
k=1

zi+1
k (µ)Φkzf , (3.21)

pi+1
f,N (µ) =

Np∑
k=1

pi+1
k

(µ)Φkp, (3.22)

di+1
s,N (µ) =

Nds∑
k=1

di+1
k (µ)Φkds , (3.23)

Remark 3.7.1. We remark that also in the case of parameter dependence, we imple-
ment an harmonic extension of the reduced basis for the solid displacement. Once we
have the mesh displacement reduced basis {Φkdf }

Nds
k=1 and the relative reduced space

EfN , we define the reduced mesh displacement as in (3.15).
Remark 3.7.2. Also in this case, if we have a non–homogeneous boundary condition
for the fluid pressure, we take care of it with a lifting function `. We will not write it
explicitly in the formulation, in order to ease the notation.

3.8 Online computational phase

The online phase in the case of shape parametrization is similar to the online phase
described in Section 3.4; indeed, for the reduced basis generation we adopted the same
strategy: we relied on a change of variable for the fluid velocity, and on an harmonic
extension of the solid displacement reduced basis to obtain the reduced basis for the
mesh displacement. The reduced problem now reads: for every i = 0, . . . , NT and for
µ ∈ P:

Mesh displacement:

let di+1
f,N (µ) be defined by the reduced solid displacement at the previous time–step:

di+1
f,N (µ) =

Nds∑
k=1

dik(µ)Φ
k
df
; (3.24)
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Fluid explicit step (with change of variable):

find zi+1
f,N (µ) ∈ VN such that ∀vN ∈ VN :

ρf

∫
Ωf

JK
(zi+1

f,N (µ)− u
i
f,N (µ)

∆T

)
· vN dx+ µf

∫
Ωf

JKε(zi+1
f,N (µ))F

−T
µ G−Tµ : ∇vN dx

+ ρf

∫
Ωf

JK∇zi+1
f,N (µ)G

−1
µ F

−1
µ zi+1

f,N (µ) · vN dx+

+ ρf

∫
Ωf

JK∇Dtd
i+1
f,N (µ)G

−1
µ F

−1
µ zi+1

f,N (µ) · vN dx+

+

∫
Ωf

JKF−Tµ G−Tµ ∇pif,N (µ) · vh dx = −ρf
∫
Ωf

JK
(Dtd

i+1
f,N (µ)

∆T

)
· vN dx

− µf
∫
Ωf

JKε(Dtd
i+1
f,N (µ))F

−T
µ G−Tµ : ∇vN dx in Ωf .

We then restore the reduced fluid velocity: ui+1
f,N (µ) = z

i+1
f,N (µ) +Dtd

i+1
f,N (µ).

Implicit step:

for any j = 0, . . . until convergence:

1. fluid projection substep: find pi+1,j+1
f,N (µ) ∈ QN such that ∀qN ∈ QN :

−
ρf
∆T

∫
Ωf

div(JKG−1µ F
−1
µ ui+1

f,N (µ))qN dx+ αROB

∫
ΓFSI

pi+1,j
f,N (µ)qN ds

− ρf
∫
ΓFSI

Dttd
i+1,j
s,N (µ) · JKF−Tµ G−Tµ nfqN ds = αROB

∫
ΓFSI

pi+1,j+1
f,N (µ)qN ds

+

∫
Ωf

JKF−Tµ G−Tµ ∇p
i+1,j+1
f,N (µ) · F−Tµ G−Tµ ∇qN dx;

subject to some suitable boundary conditions for the pressure.

2. structure projection substep: find di+1,j+1
s,N (µ) ∈ EsN such that ∀es ∈ EsN :

ρs

∫
Ωs

KDttd
i+1,j+1
s,N (µ) · eN dx+

∫
Ωs

KP (di+1,j+1
s,N (µ))G−Tµ : ∇eN dx =

= −
∫
Ωs

JKσf (u
i+1
f,N (µ), p

i+1,j+1
f,N (µ))F−Tµ G−Tµ nf · eN dx

3.9 Numerical results

We now present some numerical results concerning the parametrized version of the two
dimensional FSI test case presented in Section 3.2. The original domain is shown in
Figure 3.6, together with the reference configuration, and the parametrized reference
configuration. The fluid domain is represented in blue, while the solid (the leaflets) is
depicted in red. The height of the channel is 2.5 cm, its length is 10 cm; the leaflets are
0.2 cm thick, and they are situated 1 cm downstream the fluid inlet, which corresponds
to the vertical boundary on the left of the blue domain. One geometrical parameter is
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Table 3.2: Physical and geometrical constants and parameters, for
the geometrically parametrized leaflets test case.

Physical parameter Value
ρs 1.1 g/cm3

µs 100000
λs 800000
ρf 1 g/cm3

µf 0.035 Poise
Geometrical parameter Value
µ [0.5, 1.0]
FE displacement order 2
FE velocity order 2
FE pressure order 1
Ntrain 10
N 100

considered: the length µ of the leaflets, where we have chosen µ ∈ P = [0.5, 1.0]. An
affine mapping T is chosen to deform the reference domain Ω̂, obtained for µ = 1.0 cm,
to the parametrized configuration Ω̃(µ). Top and bottom walls of the blue domain
are rigid, thus both the displacement df and the fluid velocity uf are set to zero.
Homogeneous Neumann condition is imposed on uf on the outlet; a pressure profile
pin(t) is described at the inlet, where:

pin(t) =

{
5− 5cos

(
2πt
Tin

)
for t ≤ 0.1s

5 for t > 0.1s,

and Tin = 0.4 s. Also in this case we set a tolerance of ε = 10−6 as a stopping criterion
for the subiterations between the pressure problem and the solid problem.

For the simulation, we use a time–step ∆t = 10−4, for a maximum number of time–
steps NT = 800, thus T = 0.08s. Table 3.2 summarizes the details of the offline stage
and of the FE discretization.

Figure 3.7a shows the rate of decay of the eigenvalues returned by a POD on zf , pf
and ds, respectively. As we can see, now the eigenvalues of the pressure decay faster
than the ones for the displacement and for the fluid velocity. This is confirmed also
at the level of retained energy, as we can see from Figure 3.7b: the first mode of
the pressure is indeed the most energetic one, while the first mode of the velocity is
the least energetic one. In Figure 3.8 we see a representative solution for the fluid
velocity, for two different values of the geometrical parameter µ. As we can notice,
for the same inlet pressure profile, when the leaflets are longer, at the final time of
the simulation (T = 0.08s) we are close to the formation of a jet inbetween the two
leaflets. Figure 3.9 shows the reduced displacement, for the three different values of
the geometrical parameter: µ = 0.61, µ = 0.78 and µ = 1.0; the influence of µ is
clear: the longer the leaflets, the bigger their deformation is going to be, under the
same physical parameters.
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(a) POD eigenvalues for the parametrized FSI prob-
lem.

(b) Retained energy for the parametrized FSI prob-
lem.

Figure 3.7: POD eigenvalues and retained energy for the parametric
leaflets problem.

3.10 Conclusions

In this Chapter we presented a partitioned reduced order model for adressing Fluid–
Structure Interaction problems, in the time dependent case, and possibly with a ge-
ometrical parametrization. We rely on a Proper Orthogonal Decomposition for the
generation of the reduced basis, and we introduce a change of variable in the prob-
lem formulation, in order to avoid the use of Lagrange multipliers to impose non–
homogeneous boundary conditions. The procedure that we have proposed extends
the work presented in [14], to the case of the coupling between an incompressible
fluid and a thick, two dimensional, structure, also in the presence of geometrical
parametrization. The results that we have obtained confirm the following points:

1. introducing a change of variable for the fluid velocity avoids the introduction of
a further unknown in the system, namely a Lagrange multiplier;

2. avoiding to perform a POD directly on the snapshots of the mesh displacement
df allows, again, to avoid the introduction of another Lagrange multiplier to
impose the continuity of the displacement at the interface; also, the choice to
extend harmonically the basis functions {Φ}Ndsi=1 accounts for just a small addi-
tional offline cost, namely the solution of Nds harmonic problems;
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Figure 3.8: Representative solutions for the fluid velocity uf , ob-
tained with the reduced order model proposed (N = 100 basis for the
fluid velocity), for different values of the leaflet length µ: µ = 0.77

(top), and µ = 1.0 (bottom).

Figure 3.9: Representative solutions for the displacement of the
leaflets, ds, obtained with the reduced order model proposed (N = 100
basis for the displacement), for different values of the leaflet length µ:
µ = 0.61 (left), µ = 0.78 (center), and µ = 1.0 (right). The displace-
ment has been magnified by a factor 103 for visualization purposes.
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3. during the online phase, computing the reduced mesh displacement through the
step (3.24) translates in no additional online cost: indeed the computation of the
reduced mesh displacement does not require the solution of an harmonic prob-
lem, but requires instead a linear combination of the basis functions {Φkdf }

Nds
i=1 ,

once the online solid displacement is known.

We also remark two important aspects of the procedure presented in this Chapter:
first of all, we did not employ a supremizer enrichment of the fluid velocity space.
This choice is motivated by the fact that, even at the FE level, the Chorin–Temam
projection scheme with the pressure Poisson formulation can be applied succesfully
also to velocity–pressure FE spaces that do not satisfy the inf–sup condition, see [79].
The second remarks is related to the fact that one can recover an efficient online–
offline splitting thanks to the Empirical Interpolation Method (EIM), see for example
[17, 120, 13]. The EIM has not been used at the moment in the nonlinear parametrized
problem; we have focused in this Chapter on the developement and test of a reduced
order segregated procedure for FSI problems which involve the coupling of an incom-
pressible fluid with an elastic structure; in addition to this, another future step in the
design of a partitioned reduced order model is the developement of an a posteriori
error estimator.
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Chapter 4

Reducing the Kolmogorov n-width
by transportation maps

This Chapter is devoted to the formulation of a model order reduction procedure
for those problems whose solution manifold exhibits a slow decay of the Kolmogorov
n–width. Thanks to the introduction of an additional preprocessing on the set of
snapshots during the offline phase of the RBM, we will see the improvements that
we obtain in the rate of decay of the eigenvalues returned by a POD on the solution
manifold. The advantage of adopting a reduced order method that is enriched with
a preprocessing procedure during the offline phase, is represented by the fact that we
are able to construct a reduced solution using a significantly smaller number of basis
functions, with a consequent reduction of the dimension of the system to be solved in
the online phase.
This Chapter is structured as follows: in Section 4.2 we introduce the preprocessing
procedure. We then test the preprocessing procedure on three test cases: a fluid flow
around a rotating cylinder in Section 4.3, a fluid in a channel with deformable walls
in Section 4.4, and finally a fluid dynamics problem with physical parametrization in
Section 4.5.
The material contained in this Chapter has been submitted for journal publication,
see [132].

4.1 Motivation

The reduced basis method [90, 84, 156, 26, 110, 85, 129] is a powerful tool in the
framework of fast simulations of parametrized partial differential equations (PDEs):
its efficiency relies on the possibility to construct an approximation of the solution
for any value of the parameter in the span of a few basis functions, which are com-
puted in the (expensive) offline phase. Despite its capability has been acclaimed in a
large variety of situations, model reduction of advection dominated problems is still
a challenging task [137, 76, 52]. It has therefore become clear that a modification of
the way the reduced basis method works is necessary, especially in order to be able to
obtain a small basis set also in these more challenging situations.

Assume that Ω is the physical domain of the problem of interest. Let P ⊂ Rp, p ∈ N,
be a compact set, and denote by µ ∈ P the parameter. Furthermore, let t ∈ [0, T ]
be the time, for some T > 0. In the following the symbol η will either stand for µ
in parametrized stationary problems, t in non-parametric unsteady problems, or the
pair (t, µ) in parametrized unsteady problems. For any value of η ∈ E , we seek the



42 Chapter 4. Reducing the Kolmogorov n-width by transportation maps

solution z(η) : Ω → RZ , Z ∈ N, to the following PDE:

N(z(η); η) = 0 (4.1)

where N is a nonlinear operator working on functions defined over Ω, and E := P,
E := [0, T ] or E := [0, T ]×P, respectively, in the three aforementioned cases. Specific
examples of problems of interests in computational fluid dynamics and Fluid–Structure
Interaction will be introduced throughout the Chapter.

Let z(η) be a component of z(η), andMz be the solution manifold, embedded in some
normed linear space (Xz, ||·||Xz), defined as:

Mz = {z(η), η ∈ E}.

The choice of a component-wise solution manifold (rather than just one solution man-
ifold associated to the vector z(η)) will be motivated in Section 4.4. One fundamental
assumption of the reduced basis method is that Mz can be approximated in an ac-
curate way by a sequence of finite dimensional spaces: any element of Mz can be
recovered using a linear combination of solutions of (4.1), which are computed only
once and for all. The mathematical entity that incorporates this concept is the Kol-
mogorov n-width ofMz.
Definition 4.1.1. The Kolmogorov n–width of the solution manifoldMz is:

Dn(Mz, Xz) = inf
En⊂Xz

sup
f∈Mz

inf
g∈En

||f − g||Xz , (4.2)

where En is any linear subspace of Xz of dimension n.

The Kolmogorov n-width Dn tells us the entity of the error that we commit by ap-
proximating any element f ofMz with an element g of a linear space En. The faster
Dn decays as we let n grow, the greater possibility we have to build a good linear
approximation space ofMz of low dimension. In the majority of the problems there
is no explicit analytic formula for Dn, yet there are some situations where we can
compute good bounds on the Kolmogorov n-width [126, 47]. In general, since it is
very difficult to provide such bounds on Dn, we can only hope that the n-width of the
solution manifold is small. A heuristic way to check that this hypothesis is satisfied
by the problem of interest is to run a POD on a set of snapshots, and check the rate of
decay of the eigenvalues {λi}i returned by the POD: if the {λi}i decay fast, then we
can expect to be able to build a good low dimensional linear approximation space for
Mz. This assumption often fails in transport-dominated problems, which show a very
slow decay of the eigenvalues of the POD, and thus the inability of the reduced basis
method to reconstruct any element ofMz by using a small number of basis functions.

A growing number of works which focus on constructing alternative (nonlinear) model
order reduction techniques, that can be effectively applied to transport-dominated
problems, has appeared in recent years. In [1] the authors show an L1 norm minimiza-
tion technique, to be used for the approximation of nonlinear hyperbolic equations,
without anyway curing the problem of high dimensional solution manifolds. Ap-
proximated Lax pairs have been employed for model reduction of nonlinear problems
arising in cardiac electrophysiology [68, 69]. In [68] the authors construct a reduced
basis space at each time step: the reduced basis are the modes of a Schroedinger
operator where the potential is the solution at the previous time step. The drawback
of this procedure is the increase of the number of basis functions as the approximation
accuracy requirement is increased. Nonlinear model reduction techniques in metric
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spaces are proposed in [52], relying either on a tangent principal component analysis
or barycentric greedy algorithm. Adaptivity is also employed to overcome difficulties
arising in model reduction of transport dominated flows, see [39] and [4] for the use
of localized reduced bases or [138] for the procedure to update the basis set. Several
other different techniques rely on a composition with a suitably defined transport map
(on which we will focus on in the rest of the Chapter). Such map may be obtained
as the solution of a Monge-Kantorovich optimal mass transport problem [95, 24], or
provided analytically in simple cases as the one-dimensional problem considered in
[37]. More complicated configurations, possibly including shocks, can still be handled
relying on transport maps based on more advanced shape parametrization maps [36].
Extension to multiple transport phenomena are also possible, most notably by means
of the shifted POD [150], as well as (possibly interacting) shocks by recent extensions
of the transported snapshots interpolation [179, 178, 180] and transported snapshots
model reduction methods [128]. An effort towards the design of a reduction proce-
dure that is not strictly related to the physical phenomenon under investigation, e.g.
transportation of a quantity or translation of a wave, has been made in [113]. The
authors propose a methodology which focuses on optimal projection of general dynam-
ical systems onto arbitrary nonlinear trial manifolds, in the online stage, where this
nonlinear trial manifold is computed from snapshot data alone, in the offline stage,
thanks to the employment of convolutional autoencoders. The reader interested in
the use of machine learning techniques in the model order reduction framework is
referred to [63, 87]. While in simple cases the underlying transport maps are provided
by the user, registration techniques can be employed to automate their selection in
more complex geometrical configurations [169]. Application of the use of transport
maps for model reduction based on an embedded high fidelity method is shown by
in [102]. An alternative is the freezing method [136, 153, 27], in which the key tool
is the identification of a Lie group acting on a frozen solution component. However,
to properly develop and analyze the proposed methodology for complex problems in
fluid dynamics, very involved mathematical tools and settings are needed which as of
now hinders its applicability in a broader setting. This consideration, together with
previous observations on other techniques, makes it clear that there is the need for
a lighter, simpler and more natural framework. A methodology that satisfies these
requirements and that is based on the definition of some transport maps has been
introduced and applied to some toy problems by Cagniart [35] and Cagniart et al.
[37]. The goal of this Chapter is to present an application of model reduction based
on transported snapshots for problems in fluid dynamics and Fluid–Structure Interac-
tion, focusing in particular on the comparison between results of the standard offline
phase and the novel one which relies on transport. As (especially in fluid dynamics
problems) further challenges are present during the online stage, such as keeping into
account stabilization [172, 125] or turbulence modelling [43, 159], we limit our exposi-
tion to the offline stage; future research work will extend the results presented in this
Chapter to the online stage.

4.2 Nonlinear model reduction by transport maps

In this section we summarize the nonlinear approach that we will apply in the forth-
coming sections to fluid dynamics and Fluid–Structure Interaction problems. We will
closely follow the presentation and the notation introduced by Cagniart et al. [37]
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for a parametrized viscous Burgers equation. The idea proposed therein is to “pre-
process” the solution manifoldMz by a composition with a map belonging to a family
of smooth and invertible mappings:

Fz = {Fη : Ω → Ω, Fη is smooth and invertible, η ∈ E}.

Maps in the family Fz depend on the same η appearing in (4.1), and are essentially
problem-specific in the sense that different maps (translation, dilatation) should be
employed in different settings: translation maps will be enough in some simple periodic
setting, while dilatation maps are more suited in the case of non periodic boundary
conditions. In any case it is important to stress that, independently on the particular
expression of the preprocessing map at hand, the main goal of these maps is to align
some feature of the solution of the problem under consideration (e.g. a shock or a peak)
to a fixed point. In [37], a family of translations Fη(x) = x−γ(η), x ∈ Ω ⊂ R, γ(η) ∈
Ω, is employed for the viscous Burgers equation, parametrized by the parameter η:
there, γ(η) is chosen in such a way that the steepest points of the solutions coincide.
Specific choices of Fz will be discussed alongside the problem of interest. We remark
here that one may choose different families Fz for different components z(η) of the
solution z(η); however, as we shall see more in detail in Section 4.4, there may be no
need of doing this: indeed, for the FSI problem that we are going to consider, we will
see that all the components of the solution exhibit the same behaviour, i.e. the one of
a travelling wave. This will turn out to be very useful and cost effective, both in the
offline phase, where we need to learn the position of just one out of the n components
of the solution, with n = 6 in our case, and in the online phase, where we will be
able to employ a single family of one-parameter mappings, instead of n families of
mappings.
We introduce the following:
Definition 4.2.1. The preprocessed solution manifoldMFz is:

MFz = {z(η) ◦ F−1η , η ∈ E}.

Assuming that Fz is carefully chosen,MFz has a smaller Kolmogorov n-width, com-
pared to the one ofMz. The practical realization of this preprocessing procedure is
incorporated in the offline phase. Given a discrete training set Etrain, we compute
each solution component z(ηtrain) associated to any ηtrain ∈ Etrain. The discrete
approximations of the corresponding standard and preprocessed solution manifolds

Mtr
z = {z(ηtrain), ηtrain ∈ Etrain},

Mtr
Fz = {z(ηtrain) ◦ F

−1
ηtrain , ηtrain ∈ Etrain},

provide snapshots for a compression by a POD. The compression is here applied
to both Mtr

z and Mtr
Fz to provide a comparison between the standard offline phase

and one with preprocessing, but in practical computations one would neglect the
compression of Mtr

z , as it is understood that Mtr
Fz would result in a POD basis set

{Φi}Ni=1 of lower dimension. In this Chapter we are going to focus mainly on the offline
part of the reduced order method; results concerning the online phase are presented
for the FSI problem in Section 4.4, where we aim at highlighting the good performance
of the whole algorithm. Assume now that an accurate approximation zN (tn) of the
solution component z(tn) at time tn is known, as a linear combination of our basis
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functions Φi:

zN (t
n) =

N∑
i=1

αni Φi ◦ Fηntrain .

In order to recover zN (tn+1) as an expansion:

zN (t
n+1) =

N∑
i=1

αn+1
i Φi ◦ Fηn+1

train
,

the idea proposed in [37] is to iterate between the search for the reduced coordinates
αn+1
i and the search for a suitable parameter ηn+1

train. This procedure is carried out
by means of a minimization problem of the L2 norm of the residual evaluated at∑N

i=1 α
n+1
i Φi ◦Fηn+1

train
. In this Chapter, in the presentation of the online phase for the

FSI problem, we do not employ an L2 norm minimization, as it was first suggested in
Cagniart et al. [37]: we employ instead a polynomial interpolation method to learn
the best suited parameter ηn+1

train to be used in the online phase.
To summarize, here is an outline of the general reduced basis method with prepro-
cessing of the snapshots:

• compute the snapshots z(ηtrain) for ηtrain ∈ Etrain;

• build the family of preprocessing maps Fz = {Fη, η ∈ E};

• preprocess the snapshots and obtain the preprocessed solution manifoldMtr
Fz ;

• run a POD onMtr
Fz and obtain the basis functions {Φi}Ni=1;

• during the online phase, at timestep tn+1, find zN (tn+1) =
∑N

i=1 α
n+1
i Φi◦Fηn+1

train
,

where ηn+1
train is a suitable parameter.

In the next two sections we will see two applications of this preprocessing procedure:
the first problem we are going to study is a computational fluid dynamics (CFD)
problem, and the second problem is a Fluid–Structure Interaction problem. These
two applications are quite different for what concerns the physics behind them (the
latter is a coupled multiphysics problem, the former is not), but they both feature a
slow decay of the eigenvalues returned by running a POD onMtr

z . The first test case
is characterized by the change of the direction of propagation of a vortex close to a
rotating cylinder, a feature which is difficult to reproduce with a small number of basis
functions. The second problem is a transport dominated problem, where the solution
behaves like a wave travelling in the domain. Also in this case the travelling wave
would be hard to be reconstructed with a standard model order reduction technique.

4.3 A CFD test case

In this Section we are going to show the results that we obtain with the preprocessing
procedure on a CFD test case, namely a fluid past a rotating cylinder. The problem
described in the following is inspired by the one presented in Cagniart’s thesis [35],
although our formulation is slightly different: in the reference, the direction of the
fluid velocity at the inlet boundary is changing in time, and the cylinder is kept fixed,
whereas on the contrary in our problem the inlet direction is constant, but the cylinder
is rotating.
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4.3.1 Problem formulation

In this problem we have a flow past a rotating cylinder; this situation, with or without
the rotation feature, is quite interesting and has indeed been studied in a large number
of papers, both in the incompressible case [21, 164, 99, 165] and in the compressible
regime [170]. If the Reynolds number Re is greater than 47, then a vortex shedding
phenomenon occurs [99]; when, in addition, the cylinder is rotating, it might happen
that we see a change in the direction of propagation of this vortex. This phenomenon
is quite complicated and is strictly related to a variety of different physical quantities;
in fact, it is related not only to Re, but also to the cylinder rotation rate α, which is
defined as:

α =
Dω

2U∞
,

where D is the diameter of the cylinder, ω is the angular velocity of a point on the
surface of the cylinder and U∞ is the oncoming free stream velocity. For α < αL vortex
shedding occurs, where αL is a critical value that is a function of Re. We refer to [164]
for different values of α related to different values of the Reynolds number. To model
our problem we use the Navier-Stokes equation, with incompressibility constraint.
Figure 4.1 shows the physical domain Ω for our problem. We do not take into account
any physical parameter. Our problem reads as follows: for any time t ∈ [0, T ] find
uf (·; t) : Ω 7→ R2 and pf (·; t) : Ω 7→ R such that:

∂tuf + (uf · ∇)uf − 1
Re∆uf +∇pf = bf in Ω × [0, T ],

−divuf = 0 in Ω × [0, T ],
uf = uin in Γin × [0, T ],
uf = utan in Γcyl × [0, T ],
pfn− 1

Re∇uf · n = 0 in (Γtop ∪ Γbottom ∪ Γout)× [0, T ].

We impose homogeneous Neumann conditions on top and bottom walls Γtop and
Γbottom, and also on the right boundary Γout, as all these boundaries are considered
as outlets due to the fact that the vortex sheet rotates alongside with the cylinder.
We impose a Dirichlet condition uf = uin on Γin, where uin is a fixed horizontal
inflow, see Table 4.1. Furthermore, utan is the tangential velocity at the surface of
the rotating cylinder. At the beginning of the simulation the cylinder is not moving,
and it stays still until a fully developed vortex shedding phenomenon is reached; after
that the cylinder starts to rotate counterclockwise, first with a constant acceleration
β, then it keeps on rotating with a constant angular velocity. Thus, denoting by ω be
the angular velocity of the cylinder, we set

ω =


ω0 = 0 for t ∈ [0, t1],
ωt = ω0 + β(t− t1) for t ∈ [t1, t2],
ωf = ωt2 for t ∈ [t2, T ].

(4.3)

Once we have the angular velocity, we can compute utan thanks to the relation:

||utan(t)|| = ωtr,

where r is the radius of the cylinder, and assuming utan(t) to be tangent to Γcyl.
As far as the problem formulation concerns, let us mention the fact that, in prepara-
tion of a forthcoming online stage, we enrich the space of the fluid velocity snapshots
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Γtop

Γbottom

↑
Γcyl

Γin Γout

Figure 4.1: Physical domain of the CFD test case. The cylinder is
depicted in white, the fluid domain in blue.

Physical constants Value
r 2 cm
uin (1, 0) m/s
Re 100
bf 0
β 0.025 rad/s2

Time constants Value
∆t 0.25 s
t1 75 s
t2 95 s
T 145 s

Table 4.1: Constants values for the problem of a flow past a rotating
cylinder.

uf with some supremizers snapshots s: the supremizer snapshots s are needed at the
reduced order level in order to have a more stable approximation of the fluid pressure.
For further details on the formulation of the supremizer in the POD framework of
parametrized fluid flows we refer to [12]. In Table 4.1 we can find the problem data
that we used in our simulation. After we obtain a fully developed Karman vortex,
and after the cylinder starts to rotate, we have a noticeable change in the direction of
propagation of the vortex. This change of direction may hinder the representation of
the solution by a small number of basis functions, and this expectation is confirmed by
running a POD on the fluid velocity snapshots collection, as we can see from Figure
4.2.

4.3.2 Preprocessing step

We will focus on the preprocessing of the fluid velocity uf , since it is more straight-
forward to visualize the direction of propagation of the Karman vortex and hence
understand the idea beneath the deformation map. First of all, let us notice from
Figure 4.3 that, when building the mesh, we have defined a fictitious subdomain Ωint
(in red). It is very important to choose the radius r of the circular subdomain Ωint
in such a way that Ωint is entirely contained in the physical domain Ω and yet Ωint
is able to capture all the complex behaviour of the solution that is strictly related
to the rotation of the cylinder. In fact the blue subdomain Ωext in Figure 4.3 deals
with the small vortexes that originate in the wake of the cylinder before it starts to
rotate: these vortexes propagate in the domain and their behaviour is not heavily
affected by the rotation of the cylinder, and therefore we should be able to reproduce
their behaviour with a coarse set of basis functions. Therefore as the solution features
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Figure 4.2: Decay of the eigenvalues for the fluid velocity past a
rotating cylinder.

Figure 4.3: Subdivision of the physical domain Ω into Ωint (red)
and Ωext (blue).



4.4. A multiphysics problem 49

the most interesting phenomena in a neighborhood of the cylinder Γcyl, we are not
going to preprocess the entire snapshot, but we are going to focus instead just on its
restriction on Ωint. This procedure is more adapted, in the sense that we are not
considering the solution manifold as a global entity, but we think of it as made of
two manifolds,Mext andMint: this division is based on the division of the physical
domain of interest Ω into two subdomains Ωext and Ωint. Therefore:

Mext = {uf (·, t)|Ωext , t ∈ [0, T ]}, (4.4)
Mint = {uf (·, t)|Ωint , t ∈ [0, T ]}. (4.5)

Being Ωext far from the rotating cylinder, and therefore far from the rotating phe-
nomenon, we expect Mext to be a better behaved solution manifold with respect to
Mint. This means that Mext has a small Kolmogorov n-width, and does not need
any preprocessing. On the contrary we will focus on Mint, which will have a slowly
decaying Kolmogorov n-width. Before going any further, let us remark that the sub-
division of Muf in Mint and Mext is strictly dependent on the subdivision of Ω,
therefore the fictitious cylinder has to be chosen wisely, in such a way that Ωint is
able to capture most of the rotating phenomenon. In particular, in our simulations,
we have chosen Ωint to be a cylinder of radius r, 7 times larger than the radius of the
physical cylinder.
For the preprocessing step therefore we first restrict the snapshots to the subdomain
Ωint. Then, we want to build a (one-parameter) family of smooth and invertible maps

Fuf = {Ft : Ωint → Ωint, t ∈ [0, T ]},

where:

Ft(x, y) =

(
cos θ(t) sin θ(t)
− sin θ(t) cos θ(t)

)(
x
y

)
(4.6)

and where θ(t) is the parameter identifying each map. In our case it is natural to
choose, at each time t, θ(t) to be the angle spanned by the direction of propagation of
the vortex (obtained through a postprocessing of the solution uf (t)) and the horizontal
axis. The idea behind (4.6) is pretty straightforward: at each timestep t of our
simulation, we compute how much the vortex has changed its direction of propagation,
and we therefore find θ(t). After that, in the preprocessing step we take all the
snapshots uf (t), we restrict them to the subdomain Ωint, and then we rotate them
back to a horizontal direction of propagation of the vortex with uf (t) ◦ F−1t .

Figure 4.4 shows some results of the preprocessing procedure. On the left column
we find the original snapshots: as the time increases, the direction of propagation
of the vortex changes. On the column to the right instead we see the corresponding
preprocessed snapshots: the direction of propagation of the vortex has been rotated
back to a horizontal direction. In Figure 4.5 we see the improvements (in terms of
POD eigenvalues decay) that we get by applying the rotation to the snapshots: as we
can see, after the preprocessing we obtain an improvement e.g. of almost 2 orders of
magnitude comparing the 10-th eigenvalue of standard and preprocessed manifolds.

4.4 A multiphysics problem

We are now interested in applying the preprocessing procedure to a Fluid–Structure
Interaction problem, whose solution exhibits a transport dominated behaviour. The
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Figure 4.4: Fluid velocity snapshots at different iterations i =
350, 444, 580 (top to bottom) before the preprocessing (left column)

and after the preprocessing (right column).

Figure 4.5: POD comparison before (black) and after (magenta) the
preprocessing of uf .
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Ω̂Γin ΓoutΣ̂
↗
↘

Figure 4.6: Physical domain (reference configuration): fluid subdo-
main (blue) and structure subdomain (red). The fluid-structure inter-
face coincides with the structure in our case; the structure has been

magnified for visualization purposes.

problem formulation features an Arbitrary Lagrangian Eulerian (ALE) formulation,
which has been introduced in Section 2.1.1. In this case we decide to adopt a different
approach to solve the problem: instead of using a partitioned procedure, which has
already been exploited in the previous Chapter, we employ here a monolithic approach,
see for example [13]. For further details on reduced order models and applications of
FSI problems we refer to [26, 111, 48].

4.4.1 Problem formulation

A two dimensional rectangle of height hf and length L is filled with a Newtonian
fluid. The top and the bottom walls of the rectangle represent the structure, which is
considered to be deformable, and its thickness is negligible with respect to the height
of the rectangle. Since the structure is thin, it is described by a one dimensional model.
We further assume that the displacement of the walls in the horizontal direction is
negligible, and hence the structure presents only vertical motion: the behaviour of
the compliant walls is therefore described by the generalized string model [142, 147].
We want to describe the behaviour of the solution (and the domain itself) in the
time interval [0, T ]. Let Σ(t) and Ωf (t) be, respectively, the structure and the fluid
domain at time t. Let Σ̂ be the solid reference configuration (undeformed walls), and
let Ω̂f be the fluid reference domain: for convenience we take Ω̂f = Ωf = Ωf (t =
0) (the blue fluid domain in Figure 4.6). Thanks to the introduction of the ALE
map Af (t) defined in Section 2.1.1, we can map the fluid equations back to the
reference domain Ω̂f . Let F be the gradient of Af (t), and let J be the Jacobian.
The Fluid–Structure Interaction problem, formulated on the reference configuration,
reads: find fluid velocity ûf (t) : Ω̂f → R2, fluid pressure p̂f (t) : Ω̂f → R, and structure
displacement d̂s(t) : Σ̂ → R such that:

Jρf (∂tûf + F
−1((ûf − ∂td̂f ) · ∇)ûf )− div(Jσ̂fF−T ) = bf in Ω̂f × [0, T ],

div(JF−1ûf ) = 0 in Ω̂f × [0, T ],

ρshs∂ttd̂s − c0∂xxd̂s + c1d̂s = −σ̂f (ûf , p̂f )n · n in Σ̂.
(4.7)

Here ρf is the fluid viscosity, ρs is the structure viscosity, hs is the structure height
(or thickness), c0 and c1 are the structure constitutive parameters. σ̂f is the Cauchy
stress tensor for the fluid, in the reference configuration, and is defined as:

σ̂f (ûf , p̂f ) = −p̂fI + ρfνf
(
∇ûfF−1 + F−T∇T ûf

)
.

νf being the kinematic viscosity of the fluid and I being the 2× 2 identity matrix.

Also in this Chapter, in order to ease the notation, we drop the ,̂ since everything
will be formulated and treated in the reference configuration. Since it is a Fluid–
Structure Interaction problem, we need some coupling conditions. Let us denote by
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Physical constants Value
ρf 1 g/cm3

Es 0.75× 106 dyn/cm2

νf 0.035 Poise
bf 0
pin(t) 103 × [1− cos( 2πtTin

)]χ[0,0.0025]

pout(t) 0
νs 0.5
ρs 1.1 g/cm3

c0
hsEs

2(1+νs)

c1
hsEs

h2f (1−ν2s )
hs 0.1 cm
Time constants Value
Tin 2.5× 10−3 s
∆T 10−4 s
NT 150 s

Table 4.2: Problem data for the test case of a flow in a channel with
deformable walls.

n the outward unit normal to Σ; we have:{
df = dsn in Σ, continuity of the displacement,
uf = ∂tdsn in Σ, continuity of the velocity.

(4.8)

Together with the coupling conditions we also have to give some boundary and some
initial conditions. For the latter we assume that at time t = 0 the system is at rest;
the boundary conditions can be summarized in the following system:

σf (uf , pf )n = −pin(t)n in Γin × (0, T ],

σf (uf , pf )n = −pout(t)n in Γout × (0, T ],

ds = 0 in ∂Σ × [0, T ],
(4.9)

where third condition says that the structure is fixed at its extremities.
As far as the problem formulation concerns, let us remark that we adopted a suprem-
izer enrichment technique also in this multiphysics test case, always to obtain, in the
POD framework, a set of basis functions that allows for a stable approximation of the
fluid pressure.

4.4.2 Transport dominated FSI problem

Problem data used for the simulation of our test case can be found in Table 4.2:
corresponding values are taken from the numerical results presented in [168, 127].

The behaviour of the fluid pressure pf and of the extended displacement df is shown
in Figure 4.7 and Figure 4.8 respectively. Our problem is transport dominated: if we
look at Figure 4.7 for example, the change in time of the position of the peak of the
pressure wave will be a difficult feature to capture at the reduced order level with
just a few modes. This expectation is finally confirmed at the numerical level, as we
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Figure 4.7: Fluid pressure behaviour: the solution is pictured here
at time t = 0.001, t = 0.005 and t = 0.015. The peak of the wave is

propagating into the domain, creating a transport phenomena.

Figure 4.8: Vertical component of fluid displacement behaviour:
again the solution is pictured at time t = 0.001, t = 0.005 and
t = 0.015. The peak of the wave is still very small at the beginning, it

grows for some time and then it starts to propagate.

Figure 4.9: Decay of the eigenvalues for the POD on the fluid pres-
sure (black line), fluid displacement (blue line) and fluid velocity (red

line).
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can see in Figure 4.9, by running a POD on pf , df , and also uf . Therefore we rely
on a transformation on the set of solutions, in order to compensate this transport
phenomenon.
Remark 4.4.1. In order to make the following exposition more clear and easy to read,
from now on we focus only on a particular component of the solution of our problem,
namely the fluid pressure. It is anyway important to keep in mind that, based on our
simulation, all the components of the solution to the FSI problem are subject to a
transport phenomenon, and hence every consideration that we are going to make on
pf could be easily applied to any of the other components of the solution.

4.4.3 Preprocessing step

Let us see more in detail how to apply this preprocessing procedure to the fluid
pressure solution manifold Mpf . Figure 4.7 shows how the peak of the pressure is
transported in the domain. We would like to align the peaks at all time steps in a
reference configuration; in this way, we obtain a set of snapshots where the pressure
wave is not moving at all. In this case therefore a low number of modes will be
sufficient to give a good representation of the situation.
Starting from this observation, we build a one parameter family of mappings:

Fpf = {Ft : Ωf → Ωf , t ∈ [0, T ]}

such that for every t in [0, T ], the peak of pf (F−1t (·), t) is located not at its original
position, but is instead moved to the middle of the domain. In this way the new
snapshots pf (F−1t (·), t) will all have the peak located at the exact same position,
meaning the middle of the domain. When building the map F−1t , another aspect to
which we should pay great attention is the boundary conditions. Since we are not
working in a periodic setting, we want to make sure that the preprocessed snapshots
satisfy the same boundary conditions as the original snapshots. An easy way to make
sure that these requirement is satisfied is to keep the points in Γin and the points in
Γout fixed.
A suitable map to be used in this problem (non periodic setting) is a dilatation map
F−1t :

F−1t (x) =
3xγ

x(γ − 3) + 3(6− γ)
,

where γ = γ(t) is the abscissa of the position of the peak of the wave at time t. We
assume that the abscissa of the points on the inlet boundary Γin is x = 0 and the
length of the domain Ωf is L = 6; in addition, the position in which we are moving
the peak of the wave at every time t is exactly in the center of the domain. Let us
remark that the map F−1t is just a stretching in the horizontal direction: this is due
to the fact that we do not have any transport phenomena in the vertical direction,
and hence there is no need for a transformation in the y−axis. So, with an abuse of
notation, we can think of F−1t (x, y) as F−1t (x, y) = (F−1t (x), y).

Our family of mappings Fpf is a one-parameter family, therefore to identify the stretch-
ing map F−1t we have to identify the parameter γ(t) at time t. One simple way of
doing this is to use polynomial interpolation: we approximate the physical law gov-
erning the position of the peak of the wave γ(t) with a polynomial qk(t) of degree k.
Of course, when the physical phenomenon under investigation becomes particularly
complex, also in presence of other parameters with respect to time, other techniques
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(a) Decay of the eigenvalues for the fluid pressure.

(b) Retained energy for the fluid pressure.

Figure 4.10: Top: comparison between the rate of decay of the
eigenvalues for the pressure with and without preprocessing. Bottom:

retained energy as a function of the number N of POD modes
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(a) Decay of the eigenvalues for the displacement.

(b) Retained energy for the displacement.

Figure 4.11: Top: comparison between the rate of decay of the eigen-
values for the displacement with and without preprocessing. Bottom:

retained energy as a function of the number N of POD modes

Figure 4.12: Original snapshots for pf at time t = 0.001, t = 0.005
and t = 0.015 (left column), and corresponding preprocessed snapshots

(right column).
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may become more useful and performing, such as, for example, the polynomial re-
gression or the artificial neural network presented in [171]. In our case, however, we
see that a polynomial of degree k = 1 is sufficient to obtain very good results in the
online phase. First of all we compute all the snapshots p1, . . . , pNT , where NT = T

∆t ,
pi = pf (ti) and ti = i∆t. Once we have the snapshots, we compute the peak γTin
and γNT . The reason for choosing γTin , instead of a more straightforward γ0, is that
usually in CFD applications, complex phenomena such as vortex formation, propaga-
tion of a quantity, require some time to develop, unlike the wave propagation problem
presented in [37], or [171] for example. For our problem, Tin is a reasonable starting
time for the preprocessing procedure: recall the expression of pin from Table 4.2; as
we can see, pin represents a given pulse at the inlet boundary, which is nonzero up
to time t = Tin = 0.0025. So, up to time t = 0.0025 the pulse makes the wave grow;
when the pulse is null, the wave starts to propagate into the domain. At the reduced
level this translates into the fact that, up to t = Tin we adopt a standard reduction
technique, using a standard reduced basis obtained with a standard POD on the first
Tin snapshots. From the snapshot Tin to the last one, on the other hand, we first
perform the preprocessing step, and then perform a POD.
In Figure 4.10 (a) we can compare the decay of the eigenvalues for the POD on the
pressure with and without this preprocessing procedure. As we can see, with the
preprocessing technique we do actually get an improvement in the decay of the eigen-
values, and in fact with less than 15 modes we reach a level of 10−3, which is one
order of magnitude less than the one we get with less than 15 modes in the standard
case. We get the same results for the extended displacement df , see Figure 4.10 (a).
As we can see from Figure 4.10 (b) and 4.11 (b), with the preprocessing procedure,
the first modes are able to capture almost 70% more energy with respect to the modes
without preprocessing.

4.4.4 Online phase

In the previous paragraph we have briefly explained the preprocessing procedure
adopted for the fluid pressure, which is nevertheless just one out of the many com-
ponents of the solution of our coupled problem. We therefore stress the fact that
interpolating with the polynomial q1(t) the position of the peak γ(t) of the pres-
sure wave p(t) is enough for the whole preprocessing procedure to be applied to our
multiphysics problem. Indeed, since the problem is coupled, the behaviour of each
component of the solution is influenced and influences the others components. Thus,
a peak in the pressure translates in a peak in the displacement of the solid and in
a peak in the velocity of the fluid. Therefore with q1(t) we are able to perform a
preprocessing of all the other components.
Once we have performed a standard POD on the preprocessed solution manifoldMz

F ,
where z denotes any of the components of the solution, we have at hand a set of
preprocessed reduced spaces V z

N = span{Φzj}Nj=1. Then the reduced approximation zN
of the component z is defined as:

zN (ti) =

N∑
j=1

αijΦ
z
j ◦ F̃ti

where F̃ti is the inverse map of the dilatation map previously introduced, with the
important difference that now we are replacing the exact position of the peak γi = γ(ti)
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Figure 4.13: Pressure snapshots (left column) at time t = 0.005 (top)
and final time t = 0.015 (bottom). Reduced order pressure simulation
(right column) at time t = 0.005 and time t = 0.015. The reduced
simulation has been obtained with N = 4 basis functions, for each

component of the solution of the FSI problem.

Figure 4.14: Displacement snapshots (left column) at time t = 0.005
(top) and final time t = 0.015 (bottom). Reduced order displacement
simulation (right column) at time t = 0.005 and time t = 0.015. The
reduced simulation has been obtained with N = 4 basis functions, for

each component of the solution of the FSI problem.

with γ̃i, a prediction of the position of the peak of the wave at time ti, obtained by
simply evaluating q1(ti).
We remark that, in order to have a more stable approximation of the pressure at the
reduced order level, we enrich the reduced space associated to the fluid velocity with
some supremizer modes, therefore V uf

N = span{Φu1 , . . . , ΦuNu , Φ
s
1, . . . , Φ

s
Ns
}.

4.4.5 Numerical results

As we can see from Figure 4.13 and Figure 4.14, the online step of the method performs
very well. These results are even more striking, given the fact that we were able to
obtain them by using just N = 4 modes for each component of the solution. Since
in total we have 6 unknowns for our FSI problem (remember also the two Lagrange
multipliers used to impose the coupling conditions), we use Ntot = 24 basis functions.
To obtain similar results, but without the preprocessing procedure, we need to use
at least 10 basis functions for each component, meaning at least 60 modes in total.
Thus during the online phase we are decreasing the dimension of the system to be
solved of at least 40. These considerations are finally confirmed by an error behaviour
analysis, as shown in Figures 4.15 and 4.16. In these figures we can see that the
overall behaviour of the relative error is improved by the preprocessing procedure. In
Figure 4.15 the oscillating behaviour of the relative error without the preprocessing
shows how the set of basis functions struggles to reproduce the exact location of the
peak of each component of the solution. On the other end Figure 4.16 shows that the
mean relative error is very low with just 4 basis functions for each component of the
solutions.

4.5 CFD test case with a physical parameter

So far we have considered test cases where the only parameter was time, nevertheless
we are interested in investigating what happens if we add another physical parameter
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Figure 4.15: Analysis of the behaviour of the relative error for the
fluid pressure approximation. Dashed lines were obtained employing
the preprocessing procedure, continuous lines were obtained using a

standar MOR.

Figure 4.16: Behaviour of the mean relative error for the fluid pres-
sure, depending on the number N of basis functions employed, with

preprocessing (red) and without preprocessing (blue).
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to the problem. We then go back to the CFD test case presented in Section 4.3, but
now the Reynolds number Re will be considered as a parameter. The fluid velocity
solution manifold will be defined as:

Muf = {uf (t, µ), t ∈ [0, T ], µ ∈ [Remin, Remax]},

where now µ = Re. Of course in this case we have to pay attention not only to the
Reynolds number, but also to the rotation rate α of the cylinder, since it is strictly
related to the development of a vortex shedding phenomenon. For our particular CFD
test case we choose the following parameter range:

[Remin, Remax] = [47, 150],

and we choose α = 1.0. We discretize the parameter space, choosing a set of parameter
samplings {µ1, . . . , µN}. After we have obtained a set of snapshots for each parameter
in the parameter sampling set, we observe that the change in the Reynolds number
leads to changes in the behaviour of the fluid velocity, with the vortex shedding that
may occur earlier or later, but in all the situations we see that after a while, due to
the rotation of the cylinder, the direction of propagation of the vortex changes.

4.5.1 POD-Greedy

With the addition of a physical parameter, the exploration strategy will be carried
out in a different way with respect to a standard POD on the set of snapshots; we
are going to explore the parameter space with a pseudo-Greedy algorithm, and we
are going to explore in time with a POD on the set of snapshots corresponding to
each parameter selected by the pseudo-Greedy strategy. First of all we discretize the
parameter space in order to obtain a sampling set of cardinality N of our choice; in
order to do so, we choose a Lagrange distribution sampling, i.e:

µi = Remin exp

((
i− 1

N − 1

)
log

(
Remax
Remin

))
.

Once we have the parameter sampling set {µ1, . . . , µN}, we compute the truth solution
for each one of these parameters. Afterwards, the POD is applied in the following
way:

1. for µ1, we run a standard POD on the corresponding snapshots;

2. we now have at hand a set of reduced basis {Φ1, . . . , ΦM1};

3. for µi, i ≥ 2, we orthogonalize each snapshot ujf (µi) with respect to the linear
space span(Φ1, . . . , ΦMi−1);

4. we then run a POD on the set of orthogonalized snapshots, and add the resulting
basis functions to the already existing set of basis functions.

We remark that we are not actually using a proper Greedy algorithm, because we are
choosing a priori the parameter sampling set; the reason for this “pseudo”-Greedy is
that it is beyond the scope of this thesis to introduce and to focus on an error estimator
to be used for the Greedy algorithm, and also a simple Lagrange distribution will be
sufficient to have an insight on what is going on before and after the preprocessing
step. We also remark that different possibilities for the POD are possible: the one we
are using here is based on an orthogonalization step (see [85]), where we are getting
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rid of the superfluous information before pursuing a POD. Another possibility, which
we have used in the previous Chapter, would be to run first a standard POD on the
snapshots, for every parameter, and then, at the end, run another standard POD on
the set of obtained reduced basis, again to get rid of the superfluous information (see
[129]).

4.5.2 Preprocessing step

The preprocessing procedure is carried out, for every value of the parameter µ in
the discretized parameter space, in the same way it was carried out in the case with
no physical parameter: ∀k ∈ {µ1, . . . , µN}, and for every timestep ti we compute
θki = θ(ti, µk), which is the angle spanned by the direction of propagation of the
vortex and the horizontal axis. Then the deformation map F−1ti,µk

(x, y) is defined as:

F−1ti,µk
(x, y) =

(
cos(θki ) − sin(θki )
sin(θki ) cos(θki )

)(
x
y

)
.

Also in this case the idea is to rotate back to a horizontal direction of propagation
all the vortexes. We remark that the preprocessing procedure is carried out on the
snapshots restricted to the domain Ωint, exactly as we did for the problem in Section
3. Figure 4.17 shows the results that we obtain for three different values of the
Reynolds number. As we can see, there is an improvement in the rate of decay of the
eigenvalues, with results showing a difference of one order of magnitude for Re = 145
(right column) with just 20 modes.

4.6 Conclusions

In this Chapter we used a preprocessing of the snapshots during the offline stage of
the reduced basis method to improve the rate of decay of the Kolmogorov n-width of
the solution manifold of the problem of interest. The general idea of the preprocessing
procedure employed is to perform a geometrical transformation over the domain of
interest, in order to get rid, or minimize, any kind of transportation phenomenon,
rotation phenomenon, and so on. The method is known to perform very well for
one dimensional problems [35], and in this Chapter we focused on two dimensional
problems in a non-periodic setting. We can say that by adopting this preprocessing
procedure of the set of snapshots, the saves from a computational point of view in
terms of the dimension of the set of basis functions needed to reach a certain approx-
imation accuracy are evident. The results that we obtained are promising: for the
FSI test case, to reach a magnitude of 10−3 for the eigenvalues related to the POD
on the pressure, we need 10 less modes with respect to the standard situation with no
preprocessing, and we can say the same about other components (fluid displacement,
fluid velocity, lagrange multipliers), thus lowering the dimension of the system to be
solved in the online phase of the reduced method of at least 50. The plots in Figure
4.10 tell us also that the energy retained by the first modes after the preprocessing has
been applied is by far higher with respect to the energy retained by the first modes
computed from a POD on the original solution manifold. We saw that, in this par-
ticular test case, to learn the parameter γ(t) that defines the family of deformation
mappings Fγ it is sufficient to adopt a polynomial interpolation of order one. For fu-
ture developements regarding the combination of the preprocessing procedure to FSI
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(a) Results for Reynolds number equal to 47.

(b) Results for Reynolds number equal to 82.72.

(c) Results for Reynolds number equal to 145.

Figure 4.17: Rate of decay of the eigenvalues with and without
preprocessing of the snapshots, for µ = 47 (a), µ = 82.72 (b) and for

µ = 145 (c).
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problems, an interesting idea would be to combine this procedure with a segregated
approach during the online stage: indeed, this would allow to decrease even more the
dimension of the system by discarding the Lagrange multipliers. It would be inter-
esting to compare the speedup obtained with the preprocessing technique combined
with segregated approaches, compared to the performance of a standard monolithic
approach combined with the preprocessing of the snapshots.
We obtained promising results also in the fluid dynamics test case. In the non para-
metric problem, results for the fluid velocity show that the eigenvalues after the pre-
processing decay with almost two orders of magnitude faster than the standard case:
to reach a magnitude of 10−3 in the standard case we need almost 30 modes whereas
in the preprocessed case we need 10 modes. In the parametric case we analyzed the
results for three different values of the physical parameter: all the three cases showed
good results.
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Chapter 5

A CutFEM Model Order
Reduction for nonlinear fluid flows

In this Chapter we adopt an alternative point of view for what concerns the discretiza-
tion of the problem of interest at the Finite Element level: indeed, in the previous
two Chapters, the model order reduction techniques that we have proposed and tested
have been based on a classical FE discretization. We are now interested in presenting
and analyzing a reduction procedure that is instead based on an unfitted cut Finite
Element discretization: these methods are particularly appealing because of their ca-
pability of handling large deformations of parametrized domains. We will see that the
use of an embedded method, together with a reduced order method, allows for fast
evaluation of parametrized problems, without the need of remeshing and without the
need of a reference domain formulation, as it has been done in the previous Chapters
in this thesis. The material presented in this Chapter has been submitted for journal
publication, see [101].

5.1 Motivation

In the current Chapter, we are interested in geometrically parameterized steady and
unsteady Navier–Stokes equation in a Eulerian framework. An approach based on
unfitted mesh Finite Element Method shows its flexibility and capability in situations
where domain changes occur, especially if the domain is subject to large deforma-
tions, and classical methods such as the Finite Element Method (FEM) fail. This
work extends the approaches of [102, 105, 106] to nonlinear CutFEM discretization
as well as to evolutionary in time fluid flow systems. We construct and investigate
a unified and geometry independent reduced basis which overcomes many barriers
and complications of the past. These complications may occur whenever geometrical
morphings are taking place, and by using a geometry independent reduced basis, we
are able to avoid remeshing, to avoid transformations to reference geometries and we
can handle complex geometries. This combination of a fixed background mesh in a
fixed extended background geometry with reduced order techniques appears beneficial
and advantageous in many industrial and engineering applications, which could not
be resolved efficiently in the past. In general, new computational tools have been
invented and studied over the past years to solve numerically Navier-Stokes problems.
The difficulties that arise from a mathematical point of view when we are interested
in solving numerically these systems are many. FEM is a powerful computational tool
to discretize the physical domain of interest and simulate the behavior of the solu-
tion of the system, and its efficiency has been proven over the years, in a wide range
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of applications. Nonetheless, FEM capability to handle geometrically parametrized
problems comes to a limit, this limit being given by extremely complex geometries,
but also by situations where large deformations, fractures, contact points occur: in
[20], the authors propose a modified ALE formulation that can be applied to problems
where large deformation occurs. As an alternative to classical FEM, we can consider
Finite Element (FE) approximations of the physical fields that are not fitted to the
actual physical geometry. The FE approximations are then cut at the boundaries and
interfaces: this gives rise to the Cut Finite Element Method (CutFEM). For a more
precise idea and for more rigorous definitions of what “cutting” a physical field means,
and for a detailed introduction to CutFEM, we refer to [32] and references therein.

The repeated solution of parametrized problems discretized by CutFEM is an expen-
sive task (whose cost essentially depends on the size of the underlying background
mesh), especially in complex geometries. It is precisely at this point that the Re-
duced Basis Method (RBM) comes into play. It is well known that the Reduced
Basis Method is an extremely powerful tool to obtain a speedup in the simulation
of the behavior of the solution of the system. The method relies on a set of al-
ready computed solutions (snapshots) for different parameter values: see, for example,
[90, 156, 86]. Therein, these snapshots are FE approximations of the truth solution,
thus the RBM relies on the FEM. Even though in general there are several methods
that can be employed to project the full order system to a reduced system, see for
example [156, 44, 98, 143, 45, 51], in the present work we will employ the Proper
Orthogonal Decomposition (POD). We use a fixed background geometry and mesh:
this approach leads to important advantages whenever a geometry deformation oc-
curs [102], and it overcomes several related limitations in efficiency, compared with
traditional FEM, see e.g. [10, 104, 105].
The aim of this Chapter is to implement a Reduced Basis Method for the stationary
and evolutionary Navier–Stokes equation, that relies not on FEM but on CutFEM
instead: already existing results on RBM applied to Navier Stokes problems with
standard FEM can be found for example in [92, 144, 159], as well as results concern-
ing RBM based on embedded FEM for different kind of problems, see for example
[104, 105], as well as [106] for Navier-Stokes with the Shifted Boundary Method.

Our starting motivation is to apply this technique to CutFEM nonlinear fluid flow
problems, but in order to do so, we test and study the procedure step by step: we
first begin with the parametrized steady Navier–Stokes equation, then we will move
to the time–dependent parametrized fluid problem. At the end of this Chapter we
consider an unsteady problem, with a time–dependent geometrical configuration: this
test case is of great interest, since it represents a first and preliminary study that
potentially allows to think about a future developement of the work, in the direction
of FSI applications; a work on this future line of research and developement is in
preparation [100].

This Chapter is structured as follows: in Section 5.3.1 we introduce first a steady
Navier–Stokes equation with incompressibility constraint in a fluid domain where the
shape of some of the boundaries is described through a levelset function depending
on a geometrical parameter; we move then to the unsteady Navier–Stokes equation,
formulated over the same physical domain. Finally we solve the unsteady Navier–
Stokes equation in a domain, where the levelset function is now time–dependent,
i.e. it changes with time. Afterwards, in Section 5.4 we present the reduced order
approach for each of the aforementioned problems. Numerical results are described
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Îh
Ω Γ Ω∗h

IΓ

Figure 5.1: Representation of some important definitions in Domain
Decomposition. Left: the background mesh Îh and the background
geometry (a rectangle in red). Center: the actual physical domain Ω
in blue, immersed in the background geometry. Right: the fictious
domain Ω∗

h (in blue and green), and the cut elements of IΓ in green.

in Section 5.5 at both the high fidelity level and the reduced order level. Conclusions
and perspectives are provided in Section 5.6.

5.2 CutFEM: terminology and definitions

In the following we recall some definitions and terminology that are commonly used
for Domain Decomposition techniques: Domain Decomposition is a useful tool that
allows to tailor the approximation approaches to the different computational domains
at hand.

Let Ω be the physical domain over which our problem is formulated, and let Îh be
a background mesh of mesh size h > 0 covering Ω. The active mesh Ih is the mesh
constituted by elements T of the background mesh, that are intersected by the physical
domain:

Ih := {T ∈ Îh : Ω ∩ T 6= ∅}.

Then, starting from the active mesh we can define a domain Ω∗h as follows:

Ω∗h =
⋃
T∈Ih

T.

We clarify that Ih is a

• boundary fitted mesh if Ω∗h = Ω;

• unfitted mesh if Ω ( Ω∗h. In this case Ω∗h is the so called fictitious domain.

For unfitted meshes an important role is played by those elements of the active mesh
that intersect the boundary Γ of the physical domain Ω:

IΓ := {T ∈ Ih : T ∩ Γ 6= ∅}.

Related to the set IΓ we can also define the set of facets that belong to elements
intersected by the boundary:

FΓ := {F ∈ F : F is a facet of an element T ∈ IΓ };

this set will become important in the next paragraph, when we introduce the Ghost
Penalty (GP) stabilization. Figure 5.1 helps to understand and visualize some of the
main concepts that are fundamental to understand the cut Finite Element Method.
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Finally we define the approximation space

Hh := {vh ∈ C0(Ω
∗
h) : vh|T ∈ Pk(T ), ∀T ∈ Ih},

which is the space of continuous functions over Ω∗h, which are polynomials of degree
k on each element of the active mesh.

Nitsche’s Method

Nitsche’s Method [131] is a technique to weakly impose boundary conditions. While
Neumann boundary conditions can be imposed naturally in the standard Galerkin
formulation of the problem without introducing any source of instability, things are
slightly more complicated for Dirichlet boundary conditions, or mixed boundary con-
ditions such as Robin-type. The most straightforward way to weakly impose Dirichlet
boundary conditions is to use a Lagrange multiplier, thus choosing an inf–sup stable
pair of approximation spaces (Λh, Vh), one for the Lagrange multiplier and one for the
primal unknown. In this framework, Nitsche’s Method can be viewed as a particular
Lagrange multiplier method, where the multiplier variable is replaced by its physi-
cal interpretation, or better, its numerical approximation: one of the reasons for the
popularity of this technique is that it avoids to introduce any further unknown in the
system. Originally the Nitsche’s Method was employed by Nitsche to impose Dirich-
let boundary conditions, but it has also been adapted for Robin and Neumman type
boundary conditions [97]. For the simplest problem −∆u = f in Ω, with boundary
conditions u = g in Γ , the weak Nitsche’s Method formulation reads as follows: find
uh ∈ Vh such that for every vh ∈ Vh it holds:

L(uh, vh) = F (vh), (5.1)

where:

L(uh, vh) = (∇uh,∇vh)Ω − (∇uh · n, vh)Γ ∓ (uh,∇vh · n)Γ + (γhuh, vh)Γ , (5.2)
F (vh) = (f, vh)Ω ∓ (g,∇vh · n)Γ + (γhg, vh)Γ . (5.3)

In (5.2), the first two terms come from standard integration by part, as vh 6= 0 in
Γ ; the third term enforces weakly the condition uh − g = 0 in Γ , using as Lagrange
multiplier the boundary flux (its numerical approximation) ∇vh ·n. According to the
choice of the sign we have a symmetric Nitsche’s Method (−) or a non-symmetric
Nitsche’s Method (+). The last term in (5.2) is the so called penalty term, and γ is
a user defined parameter. If γ = 0, the method is penalty free. In the original work
[131] the proposed method is a symmetric method, with penalty term γ to be choosen
carefully to ensure coercivity, and hence inf-sup stability, of the formulation.

Ghost Penalty stabilization

It can be shown that, for unfitted meshes, the choice of the parameter γ is strictly
related to the position of the interface Γ with respect to the element of the mesh.
In order to overcome the stability issue of unfitted meshes, namely dependency of
the stability and a priori estimates on the position of the interface, and the overall
ill-conditioning of the global system matrix due to bad intersections, Burman et al.
introduced a stabilization technique called Ghost Penalty, see [32, 34, 33, 31]. Ghost
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Penalty consists in adding weakly consistent operators with the aim of having a better
control on the solution in Ω∗h \ Ω. Let us call ghost nodes the nodes of the unfitted
mesh that are located in Ω∗h \Ω; the objective of Ghost Penalty is to control discrete
polynomials on these ghost nodes. The idea is to do so by defining a smooth extension
of discrete polyniomials in the boundary zone. We can distinguish two different types
of extensions: inter-element face jump penalties and patch-wise L2 projection–based
penalties.

Inter-element face jump penalty This operator is particularly suited for k–order
polynomials, and is defined as follows:

g(uh, vh) =
∑
F∈FΓ

∑
0≤j≤k

h2j+1
F 〈[[∂jnuh]], [[∂jnvh]]〉F , (5.4)

where uh and vh are piecewise polynomials of order at most k. The operator defined
in (5.4) introduces therefore a control on all the derivatives of the polynomial, up to
order k, thus “smoothing" the behaviour of the polynomial near the boundary.

Patch-wise L2 projection–based penalty For polynomials of higher order, a sta-
bilization like the one defined in (5.4) would require a lot of computational effort. A
good alternative is given by an L2 projection–based penalty, which aims at penalizing
fluctuations of discrete polynomials uh between elements T, and L2 projection onto
patches. A patch can be defined as the union of two neighbouring elements T+

F and
T−F sharing a common face F : PF = T+

F ∪ T
−
F . The L2 projection–based penalty

operator is defined as follows:

g(uh, vh) =
∑
F∈FT

(uh − πFuh, vh)PF , (5.5)

where (·, ·)PF is the L2 inner product on PF .
Both stabilization techniques have their drawbacks: for the operator defined in (5.4),
the computational cost of evaluating jumps becomes relevant, when high order dis-
crete polynomials are used; the operator also requires topological information on the
mesh, such as identifying neighbouring elements, which can be challenging. On the
other hand the operator defined in (5.5) requires the definition of functional spaces
on patches, or at least the evaluation of polynomials on neighbouring elements. Nev-
ertheless, even though the two operators require the introduction of additional data
structures, the advantage in terms of stabilization is much more important than these
drawbacks. Throughout this Chapter we will be using the inter–element face jump
penalty.

5.3 Full order discretization by CutFEM

In this paragraph we introduce the problem formulation for the steady and unsteady
Navier–Stokes equation.

In the time–dependent levelset geometry test case, we assume that the deformation in
time of the levelset geometry is given: this can be seen as a first step towards coupled
problems in fluid dynamics, which we are not considering herein and which will be
part of a future work.
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Figure 5.2: Six examples of solid walls, described by the lev-
elset {Φµ = 0}. From left to the right, the levelset for µ =

−0.1,−0.06, 0, 0.18, 0.37, 0.50.
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Figure 5.3: Mesh and geometry of the problem: the fluid domain
(light grey) has an inlet boundary Γin on the left and an outlet bound-
ary Γout on the right. The rest of the boundaries (ΓD) are Dirichlet
type boundaries. The solid domain is depicted in dark grey. Its shape
is described through a levelset function and varies according to a pa-

rameter µ. This instance corresponds to µ = 0.37.

5.3.1 Steady Navier–Stokes

Strong formulation

In the following, the incompressible Navier–Stokes equation is formulated within an
Eulerian formalism. Let R be a background rectangular domain in R2, and let D(µ) ⊂
R be a bounded subset of R, whose boundary is described through a levelset function
{Φµ = 0}, where Φµ is an implicit function depending on a geometrical parameter µ.
The physical domain over which our problem is formulated is Ω(µ) := R \ D(µ). We
denote by P the parameter space to which µ belongs. Under these assumptions, our
problem of interest reads: for every µ ∈ P, find u(µ) : Ω(µ) 7→ R2 and p(µ) : Ω(µ) 7→
R such that:

−ν∆u(µ) +∇p(µ) + (u(µ) · ∇)u(µ) = f(µ) in Ω(µ),

divu(µ) = 0 in Ω(µ),

u(µ) = uin(µ) on Γin(µ).
(5.6)

Geometrical parametrization

Figure 5.3 shows the background domain R, with the background mesh Îh, the phys-
ical domain Ω(µ) (light grey) and the domain D(µ) (dark grey). For the problem
considered in this section the expression of the levelset function is the following:

Φµ(x, y) = −
(
|A(x) +B(x)− 1|+ |A(x)−B(x)− 2|+D(x)

)
·
(
|A(x) + C(x)− 1|+ |A(x)− C(x)− 2|+D(x)

)
,

(5.7)

where A(x) =
√
k1 |x− k3|, B(x) =

√
k2 |y − k4|, C(x) =

√
k2 |y − k5| and D(x) =

e−µ(k1(x − k3)2)µ − 4. The values of the constants k1, k2, k3, k4, k5 are reported in
Table 5.1. To have a better idea of how the shape of the walls changes by varying the
parameter µ, the reader is referred to Figure 5.2.



72 Chapter 5. A CutFEM Model Order Reduction for nonlinear fluid flows

Table 5.1: Values for the constants in the levelset equation in the
Navier–Stokes problem.

Constant Value
k1 10
k2 10
k3 −2
k4 −1
k5 1

Discrete weak formulation and algebraic formulation

As we can see from Figure 5.3, the background mesh Îh is a rectangular mesh made
by triangular elements. By choosing an unfitted method, once we have defined a
background mesh, there is no need to remesh every time the parameter µ changes (and
hence everytime the shape of the levelset in dark grey in Figure 5.3 changes). Since
we are in an unfitted framework, we need some stabilization terms in the discretized
weak formulation, in order to control polynomials on the cut elements.
In order to state the discretized weak formulation of the problem, let us introduce the
following discrete approximation spaces:

Vh,k(µ) := {vh ∈ C0(Ω
∗
h(µ))

2 : vh|T ∈ (Pk(T ))2, ∀T ∈ Ih(µ)},
Qh,1(µ) := {qh ∈ C0(Ω

∗
h(µ)) : qh|T ∈ P1(T ), ∀T ∈ Ih(µ)},

where Ih(µ) and Ω∗h(µ) are the active mesh and the fictitious domain respectively, as
defined in Section 5.2. We remark that these spaces depend on µ, since the levelset
geometry changes according to the parameter µ. The discretized weak formulation
of the problem, with Nitsche’s Method and Ghost Penalty terms then reads: find
(uh(µ), ph(µ)) ∈ Vh,1(µ) × Qh,1(µ) such that for all test functions (vh(µ), qh(µ)) ∈
Vh,1(µ)×Qh,1(µ):

A(uh(µ), ph(µ),vh(µ), qh(µ)) = L(vh(µ)), (5.8)

where:

A(uh(µ), ph(µ),vh(µ), qh(µ)) = a(uh(µ),vh(µ);µ) + d(uh(µ),uh(µ),vh(µ);µ)

−b(ph(µ),vh(µ);µ) + b(qh(µ),uh(µ);µ)

−b̂(qh(µ),uh(µ);µ) + jNIT(uh(µ),vh(µ);µ)

+juIP(uh(µ),vh(µ);µ)− jpIP(ph(µ), qh(µ);µ),

L(vh) =

∫
Ω∗
h(µ)

f(µ)vh(µ).
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Table 5.2: Constants values for the weak formulation of the steady
Navier–Stokes problem

Constant Value Constant Value
ν 0.05 h 0.07
γ1 10 γ2 10
α 0.1 gu 0.001
γp 0.1 γg 0.1
λs 10 γs (0.1, 0.01)

More precisely we have the following terms:

a(uh(µ),vh(µ);µ) =

∫
Ω∗
h(µ)

ν∇uh(µ) : ∇vh(µ)−
∑

T∈IΓ (µ)

∫
T
ν∂nuh(µ) · vh(µ)

−
∑

T∈IΓ (µ)

∫
T
ν∂nvh(µ) · uh(µ),

d(uh(µ),wh(µ),vh(µ);µ) =

∫
Ω∗
h(µ)

((uh(µ) · ∇)wh(µ)) · vh(µ),

b(ph(µ),vh(µ);µ) =

∫
Ω∗
h(µ)

ph(µ)divvh(µ),

b̂(qh(µ),uh(µ);µ) =
∑

T∈IΓ (µ)

∫
T
qh(µ)n · uh(µ),

jNIT(uh(µ),vh(µ);µ) = ν
γ1
h

∑
T∈IΓ (µ)

∫
T
uh(µ)vh(µ) +

+
γ2
h

∑
T∈IΓ (µ)

∫
T
(uh(µ) · n)(vh(µ) · n),

juIP/GP(uh(µ),vh(µ);µ) =
∑

F∈FT (µ)

ανh2||uh(µ)||∞
∫
F
[[div(uh)(µ)]][[div(vh(µ))]]

−
∑

F∈FT (µ)

guνh
2

∫
F
[[∂n(uh(µ))]] · [[∂n(vh(µ))]]

+
∑

F∈FT (µ)

γuνh

∫
F
[[∂n(uh(µ))]][[∂n(vh(µ))]],

jpIP/GP(ph(µ), qh(µ);µ) =
∑

F∈FT (µ)

γph
3

ν

1

max(||u(µ)||∞, 1)

∫
F
[[∂nph(µ)]][[∂nqh(µ)]].

The terms a(uh(µ),vh(µ);µ), b(ph(µ),vh(µ);µ), d(uh(µ),uh(µ),vh(µ);µ), and
b̂(qh(µ),uh(µ);µ) come from the weak formulation of the incompressible Navier–
Stokes equation, with Nitsche terms to impose the Dirichlet boundary condition.
The expressions jNIT(uh(µ),vh(µ);µ), juIP/GP(uh(µ),vh(µ);µ) and j

p
IP/GP(ph(µ), qh(µ);µ)

contain stabilization terms, that are necessary whenever the discretization spaces do
not satisfy the inf–sup condition (e.g. with equal order spaces), Interior Penalty terms
and Ghost Penalty terms. The values of the constants appearing in the previous equa-
tions are reported in Table 5.2.
As we can see from the previous definitions, uh(µ) belongs to a space that is µ–
dependent, namely Vh,1(µ), and the same goes for the pressure ph(µ) ∈ Qh,1(µ).
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In order to define solutions on the whole background mesh, we employ a natural
smooth extension of both velocity and pressure. In this way we obtain snapshots
(ûh(µ), p̂h(µ)) that are defined on the common background mesh Îh; the reader in-
terested in a detailed discussion on the natural smooth extension and on alternative
techniques to extend the snapshots to the background mesh is referred to [102]. Such
extension defines a pair of velocity–pressure snapshots (ûh(µ), p̂h(µ)) belonging to
µ–independent discrete spaces:

V̂h,k := {v̂h ∈ C0(R)2 : v̂h|T ∈ (Pk(T ))2, ∀T ∈ Îh},
Q̂h,1 := {q̂h ∈ C0(R) : q̂h|T ∈ P1(T ), ∀T ∈ Îh}.

In order to state the algebraic formulation equivalent to (5.8), let us introduce the
following bijection between V̂h,1 and RNh

u (respectively Q̂h,1 and RNh
p ), where Nh

u and
Nh
p are the dimensions of the discrete spaces V̂h,1 and Q̂h,1:v̂h = (v̂1h, . . . , v̂

Nh
u

h )T ∈ RNh
u ⇐⇒ v̂h =

∑Nh
u

i=1 v̂
i
hϕ

i ∈ V̂h,1,

q̂
h
= (q̂1h, . . . , q̂

Nh
p

h )T ∈ RNh
p ⇐⇒ q̂h =

∑Nh
p

i=1 q̂
i
hζ
i ∈ Q̂h,1,

(5.9)

where ϕi and ζi are the parameter–independent basis functions of the FE spaces V̂h,1
and Q̂h,1 respectively. Thanks to this bijection we can define the following matrices:

A(µ)ij := a(ϕi,ϕj , µ) + jNIT(ϕ
i,ϕj , µ) + juIP/GP(ϕ

i,ϕj , µ),

N(ûh(µ);µ)ij :=

Nh
u∑

k=1

ûkh(µ)d(ϕ
k,ϕi,ϕj ;µ),

B(µ)ij := −b(ζi,ϕj , µ),
B̂(µ)ij := b̂(ζi,ϕj , µ).

C(µ)ij := jpIP/GP(ζ
i, ζj ;µ)

Thanks to the introduced notation, we can conclude that equation (5.8) is equivalent
to the following algebraic system:

R(Ûh(µ), µ) :=

[
A(µ) +N(ûh(µ);µ) BT (µ)

B(µ) + B̂(µ) C(µ)

] [
ûh(µ)
p̂
h
(µ)

]
−
[
F1(µ)
F2(µ)

]
=

[
0
0

]
,

where Ûh(µ) = (ûh(µ), p̂h(µ)), (F1(µ))i :=
∫
Ω∗
h(µ)

ϕi · f dx, and F2(µ) = 0.

We point out that the aforementioned formulation, defined on the whole background
mesh, is actually required only by the ROM procedure. The CutFEM formulation is
defined only on the active mesh Ih and the extended geometry Ω∗h.

5.3.2 Unsteady Navier–Stokes

Strong formulation

We now extend the previous treatment by introducing the time evolution term ∂tu(µ)
in system (5.6). Given a time interval of interest [0, T ], the strong formulation
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D(µ0) Ih
D(µ1)

Ih D(µ2)
Ih

Figure 5.4: Time-dependent levelset: The physical domain at dif-
ferent times t0, t1, t2. The black circle delimits the cylinder D(µ) im-
mersed in the fluid: the cylinder is moving up and down, so that the
levelset function defining D(µ) is time dependent. Ih corresponds to

the active mesh.

of the problem reads as follows: for every µ ∈ P, and for every t ∈ [0, T ], find
u(t;µ) : Ω(µ) 7→ R2 and p(t;µ) : Ω(µ) 7→ R such that:

∂tu(µ)− ν∆u(µ) +∇p(µ) + (u(µ) · ∇)u(µ) = f(µ) in Ω(µ)× [0, T ],

divu(µ) = 0 in Ω(µ)× [0, T ],

u(µ) = uin on Γin(µ)× [0, T ],

u(x, 0;µ) = u0(x, µ) in Ω(µ),

(5.10)

with geometrical parameterization identical to that in the previous subsection. We
remark that here the geometrical parametrization does not evolve in time, i.e. dµ

dt = 0.
We will consider the case of dµdt 6= 0 in the next Section 5.3.3.

Space discretization, time–stepping scheme and algebraic formulation

We discretize in time by an implicit–explicit Euler approach, see e.g. [152]. We
discretize the time interval [0, T ] with the following partition:

0 = t0 < . . . < tNt = T ,

where every interval (tn, tn+1] has measure τn+1 = tn+1 − tn, n = 0, ..., Nt − 1. The
discrete version of the initial condition u0(x;µ) is denoted by u0

h(x;µ); we denote
unh the discrete fluid velocity at time step tn, and similar notation is used for the
pressure.
We will treat the nonlinear term explicitly, and the linear terms implicitly. After
having applied a time stepping scheme, the space discretized weak formulation of
the problem reads as follows: for every n = 0, . . . , Nt − 1, we seek a discrete veloc-
ity un+1

h (µ) ∈ Vh,2(µ) and discrete pressure pn+1
h (µ) ∈ Qh,1(µ), such that for every

(vh(µ), qh(µ)) ∈ Vh,2(µ)×Qh,1(µ), it holds:

m(un+1
h (µ)− unh(µ), vh) + τn+1A(un+1

h (µ), pn+1
h (µ),vh(µ), qh(µ)) = τn+1L(vh(µ)),

where
m(wh,vh) :=

∫
Ω∗
h(µ)

wh · vh dx,

and where A(uh
n+1(µ), pn+1

h (µ),vh(µ), qh(µ)) and L(vh(µ)) are defined as in Section
5.3.1. We employ again a natural smooth extension, as stated in the previous sub-
section. Keeping the notation previously introduced, and using the bijection (5.9),
we introduce the mass matrix Mij := m(ϕi,ϕj). Let now Ûn+1

h (µ) be defined as
Ûn+1
h (µ) := (ûn+1

h , p̂n+1
h

); using the notation introduced for the steady problem, the
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resulting fully-discrete time dependent cut Finite Element Navier–Stokes algebraic
equation is

[
M 0
0 0

]
Ûn+1
h (µ) + τn+1R(Û

n+1
h (µ);µ) =

[
M 0
0 0

]
Ûnh (µ).

5.3.3 Unsteady Navier–Stokes with time dependent geometry

We extend here the previous unsteady formulation to the case where the parameter
µ is time dependent, i.e ∂tµ 6= 0. For this test case we assume that D(µ) represents
a cylinder immersed in the fluid domain, and therefore we denote herein Γcyl(µ) =
∂D(µ).

Strong formulation.

The problem reads as follows: for every t ∈ [0, T ] and for every µ(t) ∈ P, find
u(t;µ(t)) : Ω(µ(t)) 7→ R2, p(t;µ(t)) : Ω(µ(t)) 7→ R such that:

∂tu(µ(t))− ν∆u(µ(t))+∇p(µ(t))+
+ (u(µ(t)) · ∇)u(µ(t)) = f(µ(t)) in Ω(µ(t))× [0, T ],

divu(µ(t)) = 0 in Ω(µ(t))× [0, T ],

u(µ(t)) = uin on Γin(µ(t))× [0, T ],

u(µ(t)) = ∂tµ on Γcyl(µ(t))× [0, T ],

u(x, 0;µ(t)) = u0(x, µ(t)) in Ω(µ(t)),

(5.11)
where ∂tµ denotes the velocity with which the cylinder D(µ(t)) moves in the domain.

Geometrical parametrization

The obstacle immersed in the fluid domain in our problem is a parametrized circle,
defined through the time dependent levelset function:

φ(x, y, µ1(t), µ2(t)) = (x− µ1(t))2 + (y − µ2(t))2 −R2,

where µ(t) = (µ1(t), µ2(t)) denotes the position of the center of the cylinder in the
domain, and R is the radius of the circle.
As we can see from the strong formulation of the problem, the motion of the cylinder
is assumed to be known, i.e. it is not an unknown of the system, as it would be
instead for a fully coupled Fluid–Structure Interaction problem. For our simulations,
we assume the motion of the cylinder to be periodic, i.e

µ(t) = µ(0) +Asin(8πω(t))j, (5.12)

where A denotes the amplitude of the oscillation of the cylinder, ω(t) is a function
of time and j is a versor in the vertical direction: the cylinder moves only vertically
in our simulations. With this assumption, we can explicitly write the velocity of the
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cylinder ∂tµ, in fact:

∂tµ(t) = A
dω(t)

dt
8πcos(ω(t)8π)j.

Figure 5.4 shows the physical domain Ω(µ) at different times t0, t1, t2, for the time
dependent levelset function φ(x, y, t) defining D(µ).

Weak formulation and time discretization

We now want to state the weak formulation of the original problem after discretiza-
tion in space and after having applied a time stepping scheme. As far as the time
discretization concerns, we use the time stepping scheme adopted in the previous sub-
section for the unsteady Navier–Stokes problem: we discretize the time interval [0, T ]
in sub-intervals (tn, tn+1] of measure τn+1 = tn+1 − tn, for n = 0, . . . , Nt − 1. Let us
denote with µn = µ(tn) the value of the geometrical parameter at time tn.
For the space discretization, let us introduce the following discrete spaces at time-step
tn+1:

Vh,2(µ
n+1) := {vh ∈ (C0(Ω

∗
h(µ

n+1)))2 : vh|T ∈ (P2(T ))2, ∀T ∈ Ih(µn+1)},
Qh,1(µ

n+1) := {qh ∈ C0(Ω
∗
h(µ

n+1)) : qh|T ∈ P1(T ), ∀T ∈ Ih(µn+1)}.

As we can see from the previous definitions, the discrete spaces Vh,2(µn+1) and
Qh,1(µ

n+1) depend now not only on the geometrical parameter µ, but also on time
t; in fact, even though the background mesh Îh remains fixed, the active mesh
Ih, the fictitious domain Ω∗h, the cut elements in IΓ and other relevant entities,
change in time according to the change of the levelset function. After applying a
time stepping scheme, the weak formulation of the original problem reads: at time–
step tn+1, find (un+1

h (µn+1), pn+1
h (µn+1)) ∈ Vh,2(µn+1)×Qh,1(µn+1) such that, for all

(vh, qh) ∈ Vh,2(µn+1)×Qh,1(µn+1):

m(un+1
h (µn+1)− unh(µn), vh(µn+1))+

+ τn+1A(uhn+1(µn+1), pn+1
h (µn+1),vh(µ

n+1), qh(µ
n+1)) = τn+1L(vh(µn+1)),

(5.13)

where we have kept the same notation as in the previous subsection. The prob-
lem now is that all the integrals appearing in equation (5.13) are evaluated over
the fictitious domain at time-step tn+1, namely Ω∗h(µ

n+1): in general Ω∗h(µ
n+1) 6=

Ω∗h(µ
n), and thus V n+1

h (µn+1) 6= V n
h (µ

n), so in general unh(µ
n) /∈ Vh(µ

n+1). To
overcome this problem we employ again a natural smooth extension of the snapshots
(un+1

h (µn+1), pn+1
h (µn+1)), as already introduced in Section 5.3.1. We therefore recall

the definition of the global discrete spaces defined on the background domain R:

V̂h,2 := {v̂h ∈ C0(R)2 : v̂h|T ∈ (P2(T ))2, ∀T ∈ Îh},
Q̂h,1 := {q̂h ∈ C0(R) : q̂h|T ∈ P1(T ), ∀T ∈ Îh},

and, keeping the same notation previously introduced, we can recover the algebraic for-
mulation of the problem, which reads: for every n = 0, . . . , Nt−1, find Ûn+1

h (µn+1) :=
(ûn+1

h (µn+1), p̂
h
(µn+1)) such that:

[
M 0
0 0

]
Ûn+1
h (µn+1) + τn+1R(Û

n+1
h (µn+1);µ) =

[
M 0
0 0

]
Ûnh (µ

n).
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5.4 Proper Orthogonal Decomposition-Galerkin Model Re-
duction

In the present Chapter, the Proper Orthogonal Decomposition (POD) method is ap-
plied to parameter-dependent matrices which have been derived from solution in-
stances. The POD method consists of two phases: one offline and one online. During
the offline phase, we compute the solution of the problem of interest, for different val-
ues of the parameters. These parameters are collected from a training set Ptrain, and
the corresponding solutions are stored into a matrix, the so-called snapshots matrix.
This matrix is then processed in order to extract the reduced basis. Afterwards, in
the online phase, we employ these basis functions in a way that reduces the dimension
of the original problem, and in a way that is computationally efficient for (in our case)
geometrically parametrized systems.

We remind that for POD-Galerkin ROMs for incompressible Navier–Stokes equations,
instabilities in the approximation of the pressure may occur. We refer to [38, 70, 155]
for a more detailed analysis of the problem, while for such instabilities on transient
problems we refer to [94, 2, 23, 158, 60]. For SUPG and PSPG kind of stabilization
we refer to [12, 157, 161, 160].

5.4.1 Steady case

Next we denote by µ(j) each parameter in a finite dimensional training set Ptrain =
{µ(1), . . . , µ(M)} for a large number M . We recall that the number of degrees of
freedom considering the full order problem are denoted by Nh

u and Nh
p for the velocity

and the pressure respectively. The collected snapshots matrices Su and Sp, are then
defined as follows:

Su = [ûh(µ
(1)), . . . , ûh(µ

(M))] ∈ RN
h
u×M , Sp = [p̂

h
(µ(1)), . . . , p̂

h
(µ(M))] ∈ RN

h
p×M ,

(5.14)

where ûh and p̂
h
are vectors defined by the bijection (5.9).

In order to make the pressure approximation stable at the reduced order level we also
introduce a velocity supremizer variable sh: see [12, 155, 157] for a more detailed
introduction to the supremizer enrichment for Navier–Stokes equation. We start with
a Poisson formulation for the supremizer sh(µ):

(∇sh(µ),∇vh(µ)) = −ph(µ)divvh(µ),

and by adding Nitsche terms and stabilization terms we obtain the following formu-
lation:

(∇sh(µ(i)),∇vh(µ(i)))− (∇sh(µ(i))n,vh)(µ(i))− (∇vh(µ(i))n, sh(µ(i)))+

+
λs
h
(sh(µ

(i)), vh(µ
(i))) + gGP (sh(µ

(i)),vh(µ
(i))) = −ph(µ(i))divvh(µ(i)),

where the Ghost Penalty term is given by:

gGP (sh(µ
(i)),vh(µ

(i))) =
∑

0≤j≤k
γjsh

2j+1〈[[∂jnsh(µ(i))]], [[∂jnvh(µ(i))]]〉,
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for all j = 1, . . . ,M , where we recall that k is the degree of the piecewise polynomial
FE basis functions on each element of the active mesh. The values of the constants
used are reported in Table 5.2.

The formulation that we use for the supremizer enrichment is a special instance of
a Poisson problem, and therefore, we use the CutFEM Poisson discretization for its
approximation, component by component. We employ the same natural smooth ex-
tension (and the same extended FE space used for velocity) also for the supremizer,
thus obtaining the extendend snapshots ŝh. These snapshots are then collected in the
snapshot matrix

Ss = [ŝh(µ
(1)), . . . , ŝh(µ

(M))] ∈ RN
h
u×M ,

We then carry out a compression by POD on the snapshots matrices, namely Su, Ss

and Sp, following e.g. [108]. This derives an eigenvalue problem, that for the velocity
for example reads:

CuQu = QuΛu, for Cuij = (ûh(µ
(i)), ûh(µ

(j)))L2(Îh), i, j = 1, . . . ,M,

where Cu is the correlation matrix derived from the µ-independent snapshots, Qu is
an eigenvectors square matrix and Λu is a diagonal matrix of eigenvalues. Similar
eigenvalue problems can be derived for the supremizer and for the pressure.
We then obtain a set {Φu1 , . . . ,ΦuN ,Φs1, . . . ,ΦsN} of 2N basis functions for the reduced
order approximation of the velocity, and a set {Φp1, . . . , Φ

p
N} of N basis functions for

the reduced order approximation of the pressure. We define: V̂N , the enriched reduced
basis space for the velocity, and Q̂N , the reduced basis space for the pressure:

V̂N = span{Φu,s1 , . . . ,Φu,s2N}, Q̂N = span{Φp1, . . . , Φ
p
N}

where N < M is chosen according to the eigenvalue decay of Λuii and Λ
p
ii, see for

instance [156, 22]. We introduce the online velocity uN (µ) and the online pressure
pN (µ):

uN (µ) :=

2N∑
i=1

uiN (µ)Φ
u,s
i = Lu,suN (µ), (5.15)

pN (µ) :=
N∑
i=1

pi(µ)Φpi = LppN (µ), (5.16)

where Lu,s and Lp are rectangular matrices containg the FE degrees of freedom of the
basis of V̂N and Q̂N . The parameter dependent solution vector uN (µ), pN (µ) ∈ RN
and the parameter independent reduced basis functionsΦu,si , Φpi are the key ingredients
necessary to perform a Galerkin projection of the full system onto the aforementioned
reduced basis space. By introducing UN (µ) = (uN (µ), pN (µ)), the formulation, at the
reduced order level, of the steady Navier–Stokes problem, reads as follows:

[
LTu,s(A(µ) +N(uN (µ);µ))Lu,s LTu,sB

T (µ)Lp
LTp (B(µ) + B̂(µ))Lu,s LTp C(µ)Lp

]
UN (µ)−

[
LTu,sF1(µ)

LTp F2(µ)

]
= 0.

For the sake of the exposition, let us denote the vector on the left hand side of the above
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equation (the reduced residual) as RN (UN (µ);µ). In the above POD-ROM solution,
we clarify that we have to assemble the matrices of the high fidelity system. For a
“cheaper” in time execution and less computation resources costs, one could achieve
further improvement employing hyper reduction techniques as in [183, 17, 40, 162].

5.4.2 Unsteady case

Similarly to what has been done in the previous paragraph, in the time dependent
case an offline/online procedure will be employed, that will lead to the generation
of a proper reduced basis set. Since the system is both (geometrical) parameter and
time-dependent, we sample not only the geometrical parameter µ, but also the time t,
with the sample points tk ∈ {t0, . . . , tNt} ⊂ [0, T ]. This procedure is computationally
more expensive and results in a much larger total number of snapshots to be collected
with respect to the static system: the total number of snapshots that we collect is
now equal to M̂ =M ·Nt. The snapshots matrices Su, Ss and Sp are then given by:

Su = [ûh(µ
(1), t0), . . . , ûh(µ

(1), tNt), . . . , ûh(µ
(M), t0), . . . , ûh(µ

(M), tNt)] ∈ RN
h
u×M̂ ,
(5.17)

Ss = [ŝh(µ
(1), t0), . . . , ŝh(µ

(1), tNt), . . . , ŝh(µ
(M), t0), . . . , ŝh(µ

(M), tNt)] ∈ RN
h
u×M̂ ,
(5.18)

Sp = [p̂
h
(µ(1), t0), . . . , p̂

h
(µ(1), tNt), . . . , p̂

h
(µ(M), t0), . . . , p̂

h
(µ(M), tNt)] ∈ RN

h
p×M̂ ,

(5.19)

and we solve an eigenvalue problem like the one introduced in the previous subsection
5.4.1.

Finally, adopting the notation of subsection 5.4.1 we end up with the reduced basis
spaces

V̂N = span{Φu,s1 , . . . ,Φu,s2N}, Q̂N = span{Φp1, . . . , Φ
p
N},

Let us now denote by (unN (µ), p
n
N (µ)) the reduced solution at time-step tn, for n =

0, . . . , Nt, where unN (µ) and p
n
N (µ) are defined as in (5.15) and in (5.16), respectively.

Through a Galerkin projection of the full-order system of equations onto the POD
reduced basis spaces we can derive the subsequent reduced algebraic system for the
unknown Un+1

h (µ) = (un+1
N (µ), pn+1

N (µ)):

[
LTu,sMLu,s 0

0 0

]
Un+1
N (µ)+τn+1RN (U

n+1
N (µ);µ) =

[
LTu,sMLu,s 0

0 0

]
UnN (µ). (5.20)

5.4.3 Unsteady case with time–dependent geometry

For the unsteady Navier–Stokes with time–dependent geometry we sample the time
interval [0, T ] with the sample points {t0, . . . , tNt}; for each sample point tn we then
compute the corresponding geometrical parameter µn, for n = 0, . . . , Nt. Thus, in
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this case, the snapshots matrices Su, Ss and Sp are:

Su = [ûh(µ
0, t0), . . . , ûh(µ

Nt , tNt)] ∈ RN
h
u×Nt , (5.21)

Ss = [ŝh(µ
0, t0), . . . , ŝh(µ

Nt , tNt)] ∈ RN
h
u×Nt , (5.22)

Sp = [p̂
h
(µ0, t0), . . . , p̂

h
(µNt , tNt)] ∈ RN

h
p×Nt , (5.23)

Again, by adopting the notation of subsection 5.4.1 we end up with the reduced basis
spaces

V̂N = span{Φu,s1 . . . ,Φu2N}, Q̂N = span{Φp1, . . . , Φ
p
N},

We denote by (unN (µ
n), pnN (µ

n)) the reduced solution at time–step tn, for n = 0, . . . , Nt,
defined as in (5.15) and (5.16). We employ again a Galerkin projection of the full-order
system of equations onto the POD reduced basis spaces; we derive the subsequent re-
duced algebraic system of equations for the unknown Un+1

h (µ) = (unN (µ
n), pnN (µ

n)):[
LTu,sMLu,s 0

0 0

]
Un+1
N (µn+1)+τn+1RN (U

n+1
N (µn+1);µn+1) =

[
LTu,sMLu,s 0

0 0

]
UnN (µ

n).

Remark 5.4.1. Here we have underlined the dependence of the geometrical parameter
µ on time t because in the strong formulation of the original problem the geometry of
the domain is time dependent; nevertheless we would like to remember the reader that
we chose to implement a natural smooth extension of the discrete CutFEM solution,
therefore all the snapshots, as well as the reduced solution, are defined on the whole
background mesh.

5.5 Numerical results

5.5.1 Steady Navier–Stokes

In this paragraph we present the results obtained by applying the aforementioned
reduction techniques to our model problem. For our simulation, the fluid viscosity
is νf = 0.05 cm2/s and the fluid density is ρf = 1 g/cm3. We impose a constant
velocity profile at the inlet, uin = (1, 0), and we impose a homogeneous condition on
the vertical component of the velocity at the top and bottom walls of the rectangle.
The reduced basis have been obtained with a Proper Orthogonal Decomposition on
the set of snapshots: this reduction technique, although costly in computational terms,
is very useful as it gives an insight on the rate of decay of the eigenvalues related to
each component of the solution. We take Ntrain = 150, and we generate randomly
Ntrain uniformly distributed values for the parameter µ. We then run a POD on the
collected set of snapshots and we obtain our basis functions, with which we are going
to compute the reduced solutions (uN (µ(i)), pN (µ(i))), where i = 1, . . . , Ntest, and N
is the number of basis functions that we use. Figures 5.5(a) and 5.5(b) give an
example of the first modes that we obtain with this procedure, whereas in Figure 5.6
we report the decay of the eigenvalues for all the components of the solution and for
the supremizer. To test the reduced order model we generate randomly Ntest = 30
uniformly distributed values values for µ ∈ Ptest. We are interested in the behavior
of the relative approximation error that we obtain by changing the number of basis
functions N used to build the reduced solution. In order to do this we let N vary
in a discrete set N : for a fixed value of N ∈ N , and for each µ(i), i = 1, . . . , Ntest,
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(a) First six modes for the velocity in the steady Navier–Stokes problem.

(b) First four modes for the pressure in the steady Navier–Stokes problem.

Figure 5.5: Steady system: Some reduced basis modes for velocity
and pressure for a geometrically patrametrized Navier–Stokes system.
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Figure 5.6: Steady case: POD eigenvalues decay for the fluid veloc-
ity u (black), the fluid pressure p (blue), and the fluid supremizer s

(magenta), for a set of Ntrain = 150 snapshots.

we compute both the reduced solution (uN (µ
(i)), pN (µ

(i))) and the corresponding
full order solution (uh(µ

(i)), ph(µ
(i))). We compute the L2 relative error εN,iu for the

velocity and the relative error εN,ip for the pressure; then we compute the average
approximation errors εNu and εNp for every N ∈ N , defined as:

εNu =
1

Ntest

Ntest∑
i=1

εN,iu .

Figure 5.7 shows the relative approximation errors plotted against the number N of
basis functions used, with the use of the supremizer enrichment at the reduced or-
der level and without the supremizer enrichment, respectively. As we can see, using a
supremizer enrichment at the reduced level allows us to obtain a better approximation
of the pressure: we have almost one order of magnitude of difference in the relative
error with N = 20 basis functions for the pressure, with or without the supremizer.
Figure 5.8(b) shows the approximation error for the pressure, for a given test value
of the parameter µ, without the supremizer enrichment; the error has been calculated
in the L2 norm. Figure 5.8(a) shows the approximation error for the pressure, for the
same parameter value, with the supremizer enrichment: as we can see, the suprem-
izer is useful in obtaining a much more accurate approximation of the reduced order
pressure. It is worth to mention that the approximation error tends to concentrate
near the cut between the physical domain and the background mesh, similar to to
experiments in the works of [102, 105, 106, 103], phenomenon which will be studied
in a future work.
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Figure 5.7: Steady case: Mode dependent errors between high fi-
delity and reduced order approximation, with (top) and without (bot-

tom) the supremizer enrichment.



5.5. Numerical results 85

(a) Without supremizer enrichment.

(b) With supremizer enrichment.

Figure 5.8: Steady case: Uncut geometry and the high fidelity pres-
sure solution for parameter µ = −0.015854 (left), reduced order solu-

tion for the same µ (right) and approximation error (middle)
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5.5.2 Unsteady Navier–Stokes

1) Stationary in time geometry case

In this paragraph we present the results obtained by applying the proposed reduc-
tion technique to a time dependent case. The time-step used in our simulation is
τ = 0.011s, and the final time is T = 0.7s. The fluid viscosity is νf = 0.05 cm2/s and
the fluid density is ρf = 1 g/cm3. We impose a constant inlet velocity uin = (1, 0),
and we impose a homogeneous boundary condition for the vertical component of the
fluid velocity at the top and bottom walls of the rectangle. We now take Ntrain = 200,
and we generate randomly Ntrain uniformly distributed values for the parameter µ.
We also remind that we sample the time interval [0, T ] with an equispaced sampling
{t0, . . . , tNt}. We then run a POD on the set of snapshots collected, and we ob-
tain our basis functions with which we are going to compute the reduced solutions
(uN (t, µi), pN (t, µi)), where i = 1, . . . , Ntest, and N is the number of basis functions
that we use. Figures 5.9 gives an example of the first modes that we obtain with this
procedure, whereas in Figure 5.10 we show the rate of decay of the eigenvalues for
all the components of the solution and for the supremizer. To test the reduced order
model we generate randomly Ntest = 30 uniformly distributed values for µ ∈ Ptest.
We are again interested in the behavior of the relative approximation error as a func-
tion of the number N of basis functions used at the reduced order level. We there-
fore let N vary in a discrete set N : for a fixed value of N ∈ N , and for each µi,
i = 1, . . . , Ntest, we compute both the reduced solution (uN (t, µi), pN (t, µi)) and the
corresponding high order solution (uh(t, µi), ph(t, µi)). We calculate the L2 relative
error εN,iu,tk

for the velocity and the relative error εN,ip,tk
for the pressure at time tk, by

taking an average of these relatives error we obtain the mean approximation error εN,iu

for u and εN,ip for p, for each µi ∈ Ptest. Finally we compute the average approximation
errors εNu and εNp for every N ∈ N , defined as:

εNu =
1

Ntest

Ntest∑
i=1

εN,iu .

Figure 5.11 shows the relative approximation errors plotted against the number N of
basis functions used, with and without of the supremizer enrichment at the reduced
order level, respectively. As we can see, using a supremizer enrichment at the reduced
level allows us to obtain a better approximation of the pressure: for example with
N = 40 basis functions we have an approximation error εNp that is almost one order
of magnitude smaller with respect of the approximation error that we obtain without
the supremizer enrichment.

Figure 5.12(a) shows the approximation error for the pressure, for a given value of the
test parameter µ, without the supremizer enrichment; the error has been calculated in
the L2 norm. Figure 5.12(b) shows the approximation error for the pressure, for the
same parameter value, with the supremizer enrichment: as we can see, by employing a
supremizer enrichment, we obtain a much more accurate approximation of the reduced
order pressure. Figure 5.13 shows the approximation error for the fluid velocity uf
for a given value of the test parameter µ, at the final time-step of the simulation.
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(a) First six modes for the velocity in the unsteady Navier–Stokes problem.

(b) First four modes for the pressure in the unsteady Navier–Stokes problem.

Figure 5.9: Unsteady system with time–independent geometry:
some reduced basis modes for velocity and pressure.

Table 5.3: Values for the constants in the equation (5.12) of motion
of the cylinder .

Constant Value
µ(0) (−1.5, 0.25)
A 0.015625

µ(t)
(
µM−µm

T

)
t+ µm

µM 0.5
µm −0.5
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Figure 5.10: POD eigenvalues decay in the time dependent Navier–
Stokes problem, for the fluid velocity u (black), the fluid pressure p
(blue), and the fluid supremizer s (magenta), for a set of Ntrain = 200

snapshots.

2) Evolutionary in time geometry case

In this subsection we present the results obtained by applying the proposed reduction
technique to a time dependent case, with evolutionary in time level set geometry.
The values of the quantities that determine the oscillatory motion of the cylinder
immersed in the fluid are reported in Table 5.3. The time-step used in our simulation
is τ = 0.011s, and the final time is T = 400τ = 4.4s. Similarly to paragraph 5.5.2,
we take the fluid viscosity νf = 0.05 cm2/s, the fluid density ρf = 1 g/cm3, inlet
velocity uin = (1, 0) and the same boundary conditions. We choose Ntrain = Nt = 400
time instances, and we run a POD on the set of the collected snapshots, and we
obtain our basis functions with which we are going to compute the reduced solutions
(uN (t

i, µi), pN (t
i, µi)), where i = 1, . . . , Nt, and N is the number of basis functions

that we use. Figures 5.14 represent some of the first modes that are derived with
the POD procedure, while in Figure 5.15 we show the rate of decay of the eigenvalues
for the velocity, pressure snapshot solutions and for the supremizer. Finally, we are
interested in the behavior of the relative approximation error as a function of the
number N of basis functions used at the reduced solution stage. We again let N vary
in a discrete set N : for a fixed value of N ∈ N , and for each µi, i = 1, . . . , Nt, we
compute both the reduced solution (uN (ti, µi), pN (ti, µi)) and the corresponding high
fidelity solution (uh(t

i, µi), ph(t
i, µi)). We compute the L2 relative error εN,iu,tk

for the
velocity and the relative error εN,ip,tk

for the pressure at time tk; by taking the time
average of these relative errors we obtain the mean approximation error εN,iu for u and
εN,ip for p, for each µi ∈ Pt.

Figures 5.17 and 5.18 visualizes the approximation error for the pressure, at final
time T , with supremizer enrichment as well as the velocity error; the error has been
calculated in the L2 norm. In Figure 5.16 the mean with respect time relative errors
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Figure 5.11: Unsteady case: mode dependent errors between high fi-
delity and reduced order approximation, with and without the suprem-

izer enrichment.
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(a) Without supremizer enrichment.

(b) With supremizer enrichment.

Figure 5.12: Unsteady case: cut geometry and the high fidelity
pressure solution at final time at final time T = 0.7 for parameter
µ = 0.050014 (left), reduced order solution for the same µ (right) and

approximation error (bottom).
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Figure 5.13: Unsteady case: cut geometry and high fidelity fluid
velocity at final time T = 0.7 for parameter µ = 0.045406 (left), re-
duced order solution for the same µ (right) and approximation error

(bottom).

for various number of modes are visualized.

With this test case we can appreciate deeply the advantage that we obtain by em-
ploying the cutFEM reduced order model that we proposed. Indeed, at every new
time–step ti corresponds a different domain configuration, depending on the parame-
ter µi; without a cutFEM formulation, we would have to remesh at every time–step,
making the offline phase of a reduced order model prohibitive from the computational
cost point of view. Moreover, results show that we are able to obtain good results at
the reduced order level even without employing a snapshot transportation during the
offline phase.

5.6 Conclusions

In this Chapter we have introduced a POD–Galerkin ROM approach for a geometri-
cally parametrized two dimensional Navier–Stokes equation, both in the steady and
in the unsteady case, extending the study also to a problem where the levelset ge-
ometry changes in time. The procedure that we have proposed shows many of the
advantages that characterize CutFEM and reduced order methods. First of all, by
choosing an unfitted mesh approach, we have shown that it is possible to work with
geometries that can potentially change significantly the shape of (part of) the domain,
as we can see from the examples in Figure 5.2. By employing an unfitted CutFEM
approach at the full order level, we can let the geometrical parameter µ vary in a large
interval of values: this helps to overcome one of the limitations of the standard Finite
Element discretization, where a re–meshing would have been needed. At the reduced
order level, we have extended the supremizer enrichment technique, widely used in
the reduced basis community, to a CutFEM setting: the results that we have ob-
tained confirm that the supremizer does actually significantly help in obtaining more
accurate approximation of the fluid pressure allowing an inf-sup stable reduced basis
preserving the stabilization effects.
A first future perspective is the extension of the work presented in this Chapter to
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(a) First six modes for the velocity in the time dependent geometry problem.

(b) First four modes for the pressure in the time dependent geometry.

Figure 5.14: Unsteady system with evolutionary in time geometry:
some reduced basis modes for velocity and pressure for the evolution-

ary in time Navier–Stokes system.
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Figure 5.15: Evolutionary in time geometry: the POD eigenvalues
decay for the fluid velocity u (black), the fluid pressure p (blue), and
the fluid supremizer s (magenta), for a set of Ntrain = Nt = 400 (time

instances) snapshots.
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Figure 5.16: Evolutionary in time geometry: Mode dependent er-
rors between high fidelity and reduced order approximation, with the

supremizer enrichment.
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Figure 5.17: Unsteady case with evolutionary in time geometry: The
high fidelity pressure solution at final time t = T = 400τ (left), reduced
order solution for the same t (right) and approximation error (bottom).

The results have been calculated with supremizer enrichment.

Figure 5.18: Unsteady case with evolutionary in time geometry: The
high fidelity fluid velocity at final time t = T = 400τ (left), reduced
order solution for the same t (right) and approximation error (bottom).

The results have been calculated with supremizer enrichment.
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multiphisics problems, i.e. in the situation where the deformation of the domain is
governed by an unknown motion. The integration of a reduction procedure for cou-
pled problems with a preprocessing technique such as the one presented in Chapter
4 would also be very interesting in the design of an algorithm that combines all the
advantages of using an embedded Finite Element discretization and the advantages of
reducing the Kolmogorov n–width of the solution manifold of the problem of interest.
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Chapter 6

Conclusions and future
perspectives

The goal of this thesis has been to analyze, test and adapt the widely used Reduced
Basis Method to various situations; in particular, the main interest in this work has
been the application of the RBM to Fluid–Structure Interaction problems. Through
the study of different test cases, we have seen how the Reduced Basis Method can be
coupled with various discretization techniques and with various algorithms, in order
to obtain reduction procedures that can be applied to several situations: coupled
problems where we want to reduce the dimensionality of the system to be solved,
advection dominated problems and problems with a significant change in the physical
domain. For all the considered cases, we have obtained promising results.

After the theoretical preliminaries presented in Chapter 1 and Chapter 2, in Chapter
3 we have introduced a particular class of algorithms used for solving Fluid–Structure
Interaction problems, namely the partitioned (or segregated) procedures. With this
algorithms we have seen that it is possible to decouple the fluid and the structure
problem, and in this way we can use two different solvers for the fluid and for the
solid. By adapting the Reduced Basis Method, we have designed a reduced order
model that is a partitioned procedure as well: the main advantage of this reduction
technique is given by the fact that, by solving separately the fluid and the solid
problem, we are lowering the dimension of the systems to be solved in the online phase.
Moreover, thanks to the introduction of some change of variables, we have seen that it
is also possible to avoid the use of Lagrange multipliers to impose non–homogeneous
boundary conditions, and this is a further advantage that makes this procedure very
appealing. The results that we have obtained have a good level of accuracy, both
in the geometrical parametrization case and in the non parametrized case. While
testing this algorithm, we have seen that a partitioned procedure is demanding from
the computational time point of view: this drawback is represented by the fact that,
in the imposition of the coupling conditions through a Robin boundary condition, the
constant αROB that makes the procedure more stable is heavily dependent on the
time–step used. If we choose a time–step that is too big, the coupling becomes very
weak and the algorithm becomes somehow insensitive to the effect of the interaction
between the two physics. Aside from this aspect, which is peculiar to segregated
approaches, the designed Reduced Basis Method performs very well, and thanks to
the choice of a pressure Poisson formulation and to the derivation the basis functions
for the fluid displacement directly from the basis functions of the solid displacement,
we have been able to limit the number of unknowns in the online stage.
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The entire work of Chapter 4 has been motivated by a Fluid–Structure Interaction
test case, where the solution behaves like a travelling wave: this problem clearly
does not satisfy one of the very basics and fundamental assumptions at the core of
the reduction method, namely that the solution manifold can be well represented by
linear spaces of small dimension. In this framework, we have decided to test a modified
Reduced Basis Method, where in the offline phase we have added a preprocessing of
the snapshots. We focused on two different test cases, that are interesting for this
study: a fluid dynamics problem where a Karman vortex developing in the wake of
a cylinder changes its direction of propagation due to the rotation of the cylinder,
and a multiphysics problem, where the solution behaves like a travelling wave. One
of the good aspects of the method presented is that, in the online phase, the problem
is solved in the original domain, with the original mesh: indeed, we did not recast
the problem formulation on the domain with the deformed mesh, where everything
is aligned (the peak of the wave, the fluid vortex). This is a big advantage for the
procedure, compared for example to an ALE method like the one proposed in [171],
where the problem in the online phase is solved on the reference domain. For the
FSI problem that we have studied, indeed, solving on the reference mesh could cause
some issues, especially when the peak of the wave is quite far from the point where
we want to align everything, as the re–mapping causes some triangles of the mesh to
become degenerate. The results that we have obtained with this study are promising,
and they confirm the necessity of some preprocessing procedure, in order to lower the
dimension of the solution manifold.

In Chapter 5 we have designed a POD–Galerkin ROM approach for a geometrically
parametrized CFD problem, both in the steady and in the unsteady case. Starting
from a steady Navier–Stokes problem, formulated over a domain whose shape depends
on a geometrical parameter, we moved to the unsteady Navier–Stokes equation, and
we finally arrived to an unsteady problem, formulated over a domain whose shape
changes in time, according to some prescribed law. As we have mentioned in the
conclusion of Chapter 5, the combination of CutFEM discretization techniques with
the Reduced Basis Method creates an extremely powerful tool in the framework of
model order reduction, that can be employed also for those problems and those ap-
plications in which the geometry under consideration is very complicated, and where
the geometrical parametrization can lead to a potentially big change in the physical
domain. In our work we have adopted a natural smooth extension of the snapshots on
the whole background mesh: this guarantees that we can work with basis functions
and with functions spaces that do not depend on the geometrical parameter or on
time. Another avdantage of the method presented is given by the fact that we have
employed a supremizer enrichment technique, in order to obtain a more stable ap-
proximation of the pressure at the reduced order level: we have adapted the Poisson
formulation for the supremizer to be suited for a CutFEM approach.

To conclude, the proposed methodologies have been tested for the following problems:
an unsteady Fluid–Structure Interaction problem that couples an incompressible fluid
with an elastic structure, also in the presence of geometrical parametrization of part of
the domain; an unsteady Fluid–Structure Interaction problem that couples an incom-
pressible fluid with a one dimensional string and that is dominated by an advection
phenomenon; an unsteady fluid dynamics problem, also in the presence of a physical
parameter, that exhibits a change in the direction of propagation of a vortex in the
wake of a rotating cylinder, and lastly three fluid dynamics problems (steady and
unsteady case), formulated over a domain whose shape changes significantly accord-
ing to a parameter of our choice. In all the situations considered, the methodologies
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presented in this thesis have performed very well, showing all the advantages of using
the proposed modified reduction techniques in these different frameworks.

6.1 Overall perspectives

The work presented in this thesis represents an improvement in the framework of pur-
suing a model order reduction for multiphysics problems: indeed, we have improved
the design of partitioned techniques by implementing a Reduced Basis Method that
can be efficiently applied to FSI problems with a thick, two dimensional structure, also
in the presence of a geometrical parametrization. We have enriched the offline phase of
the Reduced Basis Method with a preprocessing procedure that leads to the design of a
reduction technique that is well suited for advection dominated problems. Finally, we
have designed a Reduced Basis Method that is based on an embedded Finite Element
discretization, and that performs very well for problems with a significant change in
the shape of the domain. For all the reduction methods proposed here, we have relied
on a Proper Orthogonal Decomposition, or on a Proper Orthogonal Decomposition
combined with a pseudo Greedy algorithm. When using a classical Finite Element
discretization, we have employed an Arbitrary Lagrangian Eulerian formulation, i.e.
we have rewritten the coupled problem on a reference configuration. On the contrary,
by using an embedded Finite Element discretization, we have avoided the formulation
on a reference configuration and we have focused on the original domain. All these
results represent an improvement in the state of the art of reduction techniques for
coupled problems, in different situations: large deformations of the structure, large
transport phenomenon, large dimension of the system to be solved in the online phase.
For what concerns the various techniques that we have used, these are some opinions
that the author of this thesis has formulated during the developement of the algo-
rithms proposed: monolithic algorithms are more stable with respect to partitioned
procedures. They do not suffer from instabilities due to the physical constants of the
fluid and of the solid, and, moreover, they allow for a bigger time step in the simu-
lation. They however require a larger number of unknowns in the system. On the
other hand, partitioned approaches are well suited for reducing the dimensionality of
the system to be solved in the online phase, but they are sensitive to the properties of
the materials under consideration. If the goal is to focus on a particular problem of
interest for a long time interval, the author believes that monolithic approaches are
more suited, especially because of the improvement that has been proposed in this
thesis at the level of reducing the Kolmogorov n–width of the problem.
The incorporation of a snapshot transportation, shift or preprocessing procedure in
the offline phase of the RBM represents without any doubt a benefit for the method,
especially in combination with other advantageous features of the RBM, such as EIM
for example.
The embedded approach is extremely helpful: the author believes that, if the focus is
on biomedical applications, then the deformation of the biological tissue under con-
sideration is quite small, so there is no need to use a CutFEM approach in these
situations. For other industrial applications, where large deformations occur, using
an embedded formulation seems the most natural choice, even though the mathemat-
ical formulation of the problem becomes more involved.
Several improvements and several further studies are possible, for the proposed re-
duced order models: we mention herafter a few of them.
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• Partitioned ROMs: in this thesis we have proposed a partitioned reduced or-
der model that relies on a Chorin–Temam projection scheme, with semi–implicit
coupling between the fluid and the solid problem. The algorithm has been tested
for an unsteady problem, where we couple an incompressible fluid with an elas-
tic, two dimensional structure, and for the geometrically parametrized version
of the same problem. A next step in the direction of testing partitioned model
order reduction techniques is to take into consideration a test case that com-
prises both a geometrical and a physical parametrization; for example, it would
be interesting to study, for the FSI test case that has been considered in this
Chapter, the influence of the leaflet length in combination with some physical
parameters such as the solid stiffness and the fluid Reynolds number.
A future developement for this reduction technique is the implementation of
the Empirical Interpolation Method (EIM), in order to guarantee an efficient
offline–online decoupling for nonlinear problems such as the one considered in
this thesis. With the incorporation of the EIM we pursue a further speedup of
the online part and we design a partitioned reduction method that can be effi-
ciently applied in situations where we have a non–affine parameter dependence.
An investigation of a different, more efficient separation at the reduced order
level of the parabolic and the hyperbolic component of the coupled problem is
another future step in the developement of partitioned reduced order methods.
It would also be beneficial to try to overcome the fact that the Robin coupling
condition in the implicit step is heavily time dependent: alternative coupling
techniques should be studied and tested, in order to allow a bigger time–step in
the simulation.

• ROMs in the framework of advection dominated problems: this line of research
has become more and more active and productive in the last years, and we
are aware that there are several interesting alternatives to the preprocessing
technique that we have used, and several aspects in which the work that has
been presented in this thesis can be improved. For future perspectives indeed,
we do believe that there are several possibilities to further develop this tech-
nique, especially in the parametric setting. For example, for the CFD test case
with physical parametrization of Section 4.5, it would be an interesting idea
to use an Artificial Neural Network (ANN), in order to efficiently explore the
parameter space and in order to efficiently learn the deformation parameter γ(t)
that identifies the map used in the preprocessing procedure; computing γ(t) at
every time t is not feasible, especially if the deformation map is identified by
multiple parameters. While for the FSI problem that we have considered, a
linear interpolation was enough, we expect more difficulties for more complex
phenomena, that do not behave linearly. To conclude, future research work con-
cerning the results presented in this Chapter includes the efficient evaluation
of the online phase, and, in addition, application of this reduced order method
coupled with the preprocessing technique in the framework of inverse problems
[120, 64, 167, 166, 184].

• CutFEM ROMs: all the work that has been presented in Chapter 5 lays the
groundwork for the application of ROMs based on CutFEM to Fluid–Structure
Interaction problems: we have started to prepare the basis for a CutFEM-RB
procedure that, thanks to a Galerkin projection and with the use of a supremizer
enrichment, will ideally be used to obtain accurate approximations of solutions
of very complex problems, such as fully coupled multiphysics problem, where
large displacements occur. Therefore, as future perspectives, we would like to
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test the performance of this approach with time dependent Fluid–Structure
Interaction problems, geometrically shallow water flows as well as with phase
flow Navier-Stokes systems. Furthemore, from the model reduction point of
view, we will pursue further developments in hyper-reduction techniques [183,
17, 40, 162] tailored for unfitted discretizations. Another interesting direction
of developement is the incorporation of a snapshots transportation technique
during the offline phase, in order to obtain a reduction method in the CutFEM
framework, that can be applied also to problems that show a slow decay of
the Kolmogorov n–width of the solution manifold. A combination of the work
presented in Chapter 4 and in this Chapter is thus a possible future line of
research.

As a concluding observation we remark that all the examples that have been consid-
ered in this thesis are in the low Reynolds number regime, i.e. the fluid has a laminar
behaviour. A general perspective is to adapt the reduction procedures presented also
for problems and applications where the Reynolds number of the fluid under consid-
eration is high [25]. In the framework of turbulent models, Finite Volumes (FV) and
Spectral Element Methods (SEM) represent the most suited and most used discretiza-
tion methods: examples of already existing reduction procedures based on FV can be
found in [163, 67, 66, 71, 162], whereas for SEM we refer to [88, 89].
To conclude, we believe that the future inspection of reduced order models for prob-
lems with varying Reynolds number allows to further develop and to extend the work
presented in this thesis to general multiphysics problems that are not necessarily given
by biomedical applications, such as, for example, aeronautical applications, as well as
another class of coupled problems, namely multiphase flows problems.
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Appendix A

Robin coupling conditions in a
projection scheme

We propose here all the calculation that leads to the formulation of Robin boundary
conditions for a projection–based semi–implicit coupling scheme. The final goal is to
compute the constant αROB that improves the stability of the implicit coupling step,
for a problem where we couple an incompressible fluid with a thick elastic structure.
All the calculations presented here are inspired by the work of [58, 16]. We will proceed
by steps: we start with the coupling of the fluid with a thin structure (generalized
string equation); in this case, the coupling between the fluid and the solid is given
by the nature of the equation describing the motion of the structure. Then we will
move to the coupling with a thick elastic structure. The final step will be to recast
everything within the ALE framework.

A.1 Coupling of an incompressible fluid with a thin struc-
ture

We consider a simplified model, where the fluid is described by the Stokes equation
on a fixed domain Ω, and the structure, which is assumed to be one dimensional, is
described by a Reissner-Mindlin shell model. Let Ω be the fluid domain, and let Σ
be the portion of the boundary ∂Ω that represents the FSI interface. The problem
formulation is the following: find uf : Ω 7→ R2, p : Ω 7→ R and ds : Σ 7→ R2 such that:

ρf∂tuf − divσf (uf , pf ) = 0 in Ω,
divuf = 0 in Ω,
ρshs∂ttds + L(ds) = −σf (uf , pf )n in Σ,

(A.1)

where we assume that L(·) is a linear operator for ds. We complete system (A.1) with
the coupling condition:

uf = ∂tds on Σ, (A.2)

and with some suitable boundary conditions. From equation (A.1)3 and coupling
condition (A.2) it follows that:

ρshs∂tuf + σf (uf , pf )n = −L(ds), on Σ. (A.3)
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Condition (A.3) can be seen as a Robin condition for the fluid at the interface, and
now we want to incorporate it in the fluid projection step of our partitioned procedure.
First of all, let us summarize the partitioned procedure hereafter.

Projection-based partitioned scheme

Let ∆t denote the timestep for our discretization; for a function f we choose to
discretize Dtf

i+1 = f i+1−f i
∆t , and Dttf

i+1 = Dt(Dtf
i+1). Our partitioned scheme

reads as follows: for i = 0, . . . , NT = T
∆t :

Fluid explicit step:

find ũi+1
f : Ω → R2 such that:ρf

ũi+1
f −uif
∆t

− 2µfdivε(ũi+1
f ) = 0 in Ω,

ũi+1
f = Dtd

i
s on Σ

(A.4)

Implicit step:

1. fluid projection substep: find pi+1 : Ω → R and ui+1
f : Ω → R2 such that:{

ρf
ui+1
f −ũi+1

f

∆t
+∇pi+1 = 0 in Ω,

div(uf )i+1 = 0 in Ω,
(A.5)

2. structure projection substep: find di+1
s : Σ → R such that:

ρshsDttd
i+1
s + L(di+1

s ) = σf (ũ
i+1
f , pi+1)n on Σ. (A.6)

In order to add some coupling conditions to the procedure, first of all we decompose
equation (A.3), by observing that the fluid pressure only contributes to the normal
component of the fluid stress σf (uf , p)n. Therefore, just the normal component of
the vectorial equation (A.3) is going to contribute to the pressure projection step
(A.5). The previous observation motivates the following discretized and "decoupled"
conditions: {

2µfε(ũ
i+1
f )n+ ρshs

∆t ũ
i+1
f = ρshs

∆t ḋ
i
s − L(d

i+1,?
s ) · τ

−pi+1 + ρshs
∆t u

i+1
f · n = ρshs

∆t ũ
i+1
f · n− L(di+1,?

s ) · n,
(A.7)

where τ is the vector tangent to Σ and n is the outward unit normal to Σ. In
the previous system, the superscript ? indicates an extrapolation of the quantity of
interest. The key point of the previous system is that we have a tangential component
of the Robin condition (A.3), that takes care of the viscous part of the fluid and that
incorporates the continuity of the velocity at the interface, and we have a normal
component of the equation, that incorporates the contribution of the pressure.
Usually the tangential component of the equation (A.3) is used as a Robin boundary
condition for the fluid viscous step (fluid explicit step). We re–write the tangential
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component of equation (A.3), because we will use it further on to write in a suitable
way the Robin boundary condition for the pressure implicit step.

From the structure implicit step (A.6) it follows that:

−L(di+1,?
s ) = ρshsDttd

i+1,?
s + σf (ũ

i+1,?
f , pi+1,?)n.

So:
−L(d1+1,?

s ) · n = ρshsDttd
i+1,?
s · n+ σf (ũ

i+1,?
f , pi+1?)n · n

= ρshsDttd
i+1,?
s · n− pi+1,? + 2µfε(ũ

i+1,?
f )n · n.

(A.8)

But now taking the scalar product of (A.7)1 with n we find that:

2µfε(ũ
i+1,?
f )n · n =

ρshs
∆t

(ḋi,?s − ũ
i+1,?
f ) · n,

so substituting this term in equation (A.8), and re–writing the right hand side of
(A.7)2 leads us to:

−pi+1 +
ρshs
∆t

ui+1
f · n =

ρshs
∆t

ũi+1
f · n− ρshs

∆t
(ḋi+1,?
s − ḋi,?s ) · n− pi+1,?+

+
ρshs
∆t

(ḋi,?s − ũ
i+i,?
f ) · n

=
ρshs
∆t

ũi+1
f · n− pi+1,? + ρshsDttd

i+1,?
s · n.

(A.9)

The previous equation is the Robin BC for the pressure projection step in the Darcy
formulation: if we want to work with the pressure projection Poisson formulation, we
just have to substitute the term ui+1 with the term ui+1 = ũi+1

f − ∆t
ρf
∇pi+1, and

we retrieve the famous coefficient αROB = ρshs
ρf

and the Robin BC for the Poisson
problem.

A.2 Coupling of an incompressible fluid with a thick struc-
ture

In this Section we try to find suitable Robin conditions, in a situation where the
structure is no longer considered to be one dimensional, and its behavior is described
by a linear elasticity equation. What follows is inspired by the idea proposed in [16].
We first begin with a simple test case: the deformation of the structure is so small,
that we can consider the domain as being fixed. Let Ωf be the fluid domain, Ωs the
solid domain, and ΓFSI the fluid–structure interface.
The fluid problem reads as follows: find uf : Ωf 7→ R2, p : Ωf 7→ R and ds : Ωs 7→ R2

such that 
ρf∂tuf − divσf (uf , p) = 0 in Ωf ,
divuf = 0 in Ωf ,
ρs∂ttus − divP (ds) = 0 in Ωs,

(A.10)

where P (ds) is defined as

P (ds) = λs(∇ · ds)I + µsε(ds), ε(ds) = (∇ds +∇Tds).
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Here I is the 2× 2 identity matrix, and λs, µs are the Lamè coefficients of the solid.
The coupling conditions are:{

uf = ∂tds, on Σ,
σf (uf , p)n = P (ds)n, on Σ.

The key ingredient is the observation that the solid problem (A.10) is an hyperbolic
PDE, that has two wave velocities:

cp =

√
λs + 2µs

ρs
cs =

√
µs
ρs

If one writes equation (A.10) in the normal component with respect to ΓFSI , then it
is possible to compute the characteristics of the corresponding wave equation, and the
characteristic variables: the characteristic variables represent, basically, the informa-
tion that is carried by the wave, in the normal component with respect to ΓFSI .
These are the characteristic variables that are outgoing, i.e. that are transferred from
the solid to the fluid:

B(P, ∂tds) = P (ds)n · n+ zp∂tds · n, Bτ (P, ∂tds) = P (ds)n · τ + zs∂tds · τ,

whereas the characteristic variables that are incoming to the solid are:

A(P, ∂tds) = P (ds)n · n− zp∂tds · n, Aτ (P, ∂tds) = P (ds)n · τ − zs∂tds · τ,

where zp = ρscp and zs = ρscs are the solid impedances, while n and τ are, re-
spectively, the unit normal to ΓFSI pointing outward the fluid domain, and τ is the
tangential unit vector to ΓFSI .
The key point, therefore, is to impose the balance of these informations at the interface
ΓFSI :

B(σff ,uf ) = B(P (ds), ∂tds), Bτ (σff ,uf ) = Bτ (P (ds), ∂tds) (A.11)

and

A(σff ,uf ) = A(P (ds), ∂tds), Aτ (σff ,uf ) = Aτ (P (ds), ∂tds). (A.12)

From equation (A.11) it follows in particular that:

P (ds)n · n+ zp∂tds · n = σff (uf , p)n · n+ zpuf · n, (A.13)

and keeping the structure of the semi-implicit coupling scheme in mind, we can re–
write the discretized in time version of the previous equation as follows:

λstrε(di+1,?
s )+µsε(d

i+1,?
s )n ·n+zpDtd

i+1,?
s ·n = −pi+1+µfε(ũ

i+1
f )n ·n+zpu

i+1
f ·n.
(A.14)

Now let us remember that we choose to impose strongly the coupling condition:

σf (ũ
i+1
f , pi+1)n = P (di+1

s )n on ΓFSI ,

so it follows that:

σf (ũ
i+1,?
f , pi+1,?)n = P (di+1,?

s )n on ΓFSI ,
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and so we have the following equation, obtained projecting the previous coupling
condition along n:

−pi+1,? + µfε(ũ
i+1,?
f )n · n = λstrε(di+1,?) + µsε(d

i+1,?
s )n · n.

Now, remembering that ũi+1,?
f is an extrapolation of ũi+1

f and that ũi+1,?
f has al-

ready been computed at iteration i+ 1, according to the structure of our partitioned
algorithm, it follows, by substituting the previous equation into equation (A.14), that:

−pi+1 + zpu
i+1
f · n = −pi+1,? + zpDtd

i+1,?
s · n.

Again, if we adopt a pressure Poisson formulation in our algorithm, then we substitute
ui+1
f = ũi+1

f − ∆t
ρf
∇pi+1, and we arrive to the final expression of the Robin coupling

condition:
− αrobpi+1 −∇pi+1 · n = −αrobpi+1,? + ρfDttd

i+1,?
s · n. (A.15)

Thus the expression of the Robin coupling conditions remains unchanged, the only
thing that changes is the Robin constant αrob, which now is αrob =

ρf
zp∆t

: the coupling
constant now depends also on the timestep, unlike in the case of a thin structure.
Therefore if we choose a timestep that is too big, αrob goes to zero and thus the algo-
rithm becomes insensitive to the effects of the interaction between fluid and structure.

A.3 Coupling of an incompressible fluid in ALE formula-
tion with a thick walled structure

The final step of these calculations is to formulate the proper Robin boundary con-
ditions in the situation where we are incorporating an Arbitrary Lagrangian Eulerian
formulation to the problem description.
Let us call Ωf (t) the fluid domain at time t, and let Ω̂f be a reference configuration.
Let Af (t) : Ω̂f 7→ Ωf (t) be the ALE map that maps the reference configuration to
the actual physical domain. Let F be the jacobian of Af and let J be its determi-
nant. Let uf , p be the fluid velocity and the fluid pressure, defined on the physical
domain Ωf (t), and let ûf and p̂ be their counterparts in the reference configuration,
let Ω̂s be the solid reference domain (which coincides with the Lagrangian domain
for the solid), and let Γ̂FSI be the FSI interface in the reference configuration. The
coupled FSI problem now reads: find ûf : Ω̂f 7→ R2, p̂ : Ω̂f 7→ R, df : Ω̂f 7→ R2 and
ds : Ω̂s 7→ R2 such that:
ρfJ(∂tûf + F

−1((ûf − ∂tdf ) · ∇̂ûf )− µfdiv(Jε̂(ûf )F−T ) + JF−T ∇̂p̂ = 0 in Ω̂f ,
div(JF−1ûf ) = 0 in Ω̂f ,
ρs∂ttds − divP (ds) = 0 in Ω̂s,

(A.16)
together with the coupling condition:

Jσ̂f (ûf , p̂)F
−T n̂ = P (ds)n̂ on Γ̂FSI ,

and with some suitable boundary conditions. Here ε̂(ûf ) is defined as:

ε̂(ûf ) = ∇̂ufF−1 + F−T ∇̂Tuf .
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Before going any further with the computations, let us just remind the partitioned
procedure in the case of ALE formalism. Everything is formulated over the reference
configuration and therefore, in order to ease the notation, we now drop theˆnotation.

Partitioned algorithm in the nonlinear case

For i = 0, . . . , NT = T
∆t : {

−∆di+1
f = 0 in Ωf ,

di+1
f = dis on ΓFSI .

(A.17)

Fluid explicit step:

find ũi+1
f such that:{

Jρf
∆t (ũ

i+1
f − uif ) + JF−1((ũi+1

f −Dtd
i+1
f ) · ∇ũi+1

f )− µfdiv(Jε̂(ũi+1
f )F−T ) = 0 in Ωf ,

ũi+1
f = Dtd

i+1
f on ΓFSI ,

(A.18)

Implicit step:

1. fluid projection substep: find pi+1 and ui+1
f such that:{

ρfJ
ui+1
f −ũi+1

f

∆t + JF−T∇pi+1 = 0 in Ωf ,
div(JF−1ui+1

f ) = 0 in Ωf
(A.19)

2. structure projection substep: find di+1
s such that:

ρsDttd
i+1
s − divP (di+1

s ) = 0 in Ωs. (A.20)

Now to move from the Darcy formulation (A.19) to the Poisson formulation in ALE
coordinates, we make the substitution

ui+1
f = ũi+1

f − ∆t

ρf
F−T∇pi+1,

and obtain:
−
ρf
∆t

div(JF−1ũi+1
f ) = −div(JF−1F−T∇pi+1). (A.21)

Now if we write explicitly the fluid stress tensor in the reference configuration, we may
notice that now the pressure p contributes just to the normal component of the vector
Jσf (uf , p)F

−Tn; but now the normal component in the reference configuration is
JF−Tn. With this subtle yet very important observation, we can perform a pull–
back of the equation (A.15) on the reference configuration, to obtain the following
Robin coupling condition in the ALE setting:

−
ρf
zp∆t

pi+1 − F−T∇pi+1 · JF−Tn = −
ρf
zp∆t

pi+1,? + ρfDttd
i+1,?
s · JF−Tn.
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