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Abstract

In this thesis we propose mathematical models for the motility of one-

dimensional crawlers moving along a line and for growing slender plant or-

gans, which are applied to the study of peristaltic crawling and nutations of

plant shoots, respectively. The first chapter contains a theoretical analysis

of metameric worm-like robotic crawlers, and it investigates optimal actu-

ation strategies. Our main result is that peristalsis, i.e., muscle extension

and contraction waves propagating along the body, is an optimal actuation

strategy for locomotion. We give a rigorous mathematical proof of this result

by solving analytically the optimal control problem in the regime of small

deformations. We show that phase coordination arises from the geometric

symmetry of a 1D system, exactly in the periodic case and approximately,

due to edge-effects, in the case of a crawler of finite length. In the second

chapter we introduce the general framework of morphoelastic rods to model

elongating slender plant organs. This chapter is intended as preparatory

to the third one, where we derive a rod model that is exploited to inves-

tigate the role of mechanical deformations in circumnutating plant shoots.

We show that, in the absence of endogenous cues, spontaneous oscillations

might arise as system instabilities when a loading parameter exceeds a crit-

ical value. Moreover, when oscillations of endogenous nature are present,

their relative importance with respect to the ones associated with the for-

mer mechanism varies in time, as the biomechanical properties of the shoot

change. Our findings suggest that the relative importance of exogenous ver-

sus endogenous oscillations is an emergent property of the system, and that

elastic deformations play a crucial role in this kind of phenomena.
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Introduction

Biomechanics is the branch of physics that applies and extends the principles, laws and

methods of mechanics to the study of biological systems. In this sense, it exploits ad-

vances in mechanics and differs from mechanobiology, which is the branch of biology that

studies biological responses to mechanical stimuli. Despite the fact that these sciences

have different approaches and perspectives, they share the objective of understanding

questions related to growth and to the interplay between structure, shape and function.

The idea of exploring fundamental aspects of biological systems by applying mechanics

can be traced back to the infancy of modern science itself, when Galileo Galilei investi-

gated the strength of beams by relating it to animal bones and canes [1]. Since then, the

field raised considerable and growing interest, and it recently benefited from advances

in both nonlinear mechanics and computational capabilities [2].

Quantitative mathematical modelling of biological systems has been proved capable

of producing valuable biophysical insight, by guiding the design and interpretation of

experimental observations, and by providing test beds to compare different hypotheses.

The broad theme of biological motility is an illustrative example of fertile grounds for this

kind of approaches. Indeed, the study of motility enjoyed considerable success in the last

few decades and it provided a fruitful two-directional interaction between biology and

mechanics. Mechanical models shed light on the basic biology and physiology of motility

and, conversely, the latter have been a valuable source of inspiration for innovative

engineering applications (see [3] and references cited therein).

The theme of biological motility is the main leitmotiv of the present thesis, whose

purpose is to investigate two ubiquitous complex phenomena: Peristaltic crawling in

biological systems (Chapter 1) and plant circumnutations (Chapters 2 and 3). Here we

present the studies at the base of two recently published journal articles [4, 5], which

are also part of a perspective paper on biological motility [3], and a preprint, currently

under review [6].

As regards peristaltic crawling, it has been experimentally observed that many

species of limbless animals (such as earthworms, caterpillars, sea cucumbers and snails)

as well as unicellular organisms (such as the protist Euglena gracilis under confinement,

see Fig. 1) move using peristalsis, i.e., a locomotion mechanism consisting of propa-
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INTRODUCTION

gating muscle contraction and expansion waves along the body [3, 7]. This locomotion

Figure 1: Micrographs of Euglena gracilis ef-
fectively crawling in a capillary under signifi-
cant spatial confinement by means of peristaltic
shape changes. Adapted from [3].

strategy has been often mimicked on

a trial-and-error basis in bio-inspired

robots. In particular, studies on

metameric earthworm-like robots have

shown that actuation of their segments

using a “phase coordination” principle

maximizes the average velocity [8].

Inspired by these observations, in

the first chapter we investigate whether

peristalsis, which requires not only

phase coordination, but also that all

segments oscillate at the same frequency

and amplitude, might emerge from gen-

eral optimization principles. To ad-

dress this question, we modelled one-

dimensional self-propelled locomotors

that exploit the friction interaction with

the environment as a result of body

shape changes. More precisely, we as-

sume that inertia is negligible and net

displacements are produced by asym-

metric friction interactions. Our main result is a mathematically rigorous proof that,

in the small deformation regime, actuation by peristaltic waves is an optimal control

strategy emerging naturally from the geometric symmetry of the system, namely, the

invariance under shifts along the body axis. This is true exactly in the ideal case of a

periodic infinite system, and approximately true in the case of finite length, as a conse-

quence of edge-effects. This result is relevant for bio-inspired robotic applications, as it

confirms the effectiveness of peristalsis under specific assumptions (geometric symmetry

and small deformations). Also, it stimulates critical judgment and shuns the naive temp-

tation to expect peristaltic waves to be always optimal just because they are observed

in biological systems [4].

As for plant motions, time-lapse photography has often revealed an extraordinary

variety of interesting behaviours, which are otherwise difficult to detect, due to the fact

that their span is much longer than the typical movements drawing the human attention.

This has fascinated scientists since the pioneering work by Darwin [9], and is raising con-

siderable and growing interest. Many essential functions, such as reproduction, nutrition

and defense, involve passive conformational changes and active adaptation triggered by

diverse conditions. Indeed, tropic responses and nutational movements, explosive seed
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INTRODUCTION

and pollen dispersal, and phenomena such as the snapping of Venus flytrap or the closing

of Mimosa Pudica, provide spectacular illustrations of how active biochemical processes

and mechanical instabilities cooperate in plant architectures in order to produce a func-

tion [10, 11]. The principles and methods of mechanics have been successfully extended

and applied to obtain biological insight into many of these plant behaviours, to investi-

gate hypotheses and validate theories. In the context of development and morphogenesis

of slender plant organs, significant advances in the modelling of plant response to a va-

riety of cues (e.g., gravity, bending and contact) have been obtained in the last decades.

Nevertheless, results on the way complex three-dimensional dynamics of growing organs

is affected by elastic deformations are still very limited.

In the second chapter we discuss the modelling of growing slender plant organs by

means of the theory of morphoelastic rods. This provides a general framework to model

elongating slender structures in space by efficiently decoupling growth and remodelling

processes from mechanical and elastic deformations [12]. This is done by introducing

an unstressed virtual configuration, where the rod is free to grow and evolve in the

absence of loads and boundary conditions. The distinction between current and virtual

configuration reflects the separation between sensing and actuating mechanisms. Plants

sense the stimulus in the current configuration by means of a specific sensing apparatus,

and reorient accordingly by differential growth, which provides the source term for the

evolution of the virtual configuration. In this framework, we discuss the evolution laws

that model the effect of endogenous oscillators, of reorientations under directional cues,

such as gravitropic responses governed by the statoliths avalanche dynamics [13], and of

straightening mechanisms as proprioceptive reactions to geometric curvatures [14]. The

overall plant response results from the superposition of the reaction to different signals,

each properly integrated in time to take delay and memory effects into account, as done

in recent studies [13, 15].

Finally, in the third chapter we propose a morphoelastic rod model to study circum-

nutations in elongating plant shoots, namely, pendular, elliptical or circular oscillatory

movements such as the ones exhibited by primary inflorescences of Arabidopsis thaliana

illustrated in Fig. 2. The nature of these phenomena has been intensively investigated

over the last century, and this produced three main hypotheses [16]. First, as already

suggested by Darwin [9], oscillatory movements might be driven by endogenous oscil-

lators, internally regulating differential growth. Second, circumnutations might be the

byproduct of posture control mechanisms that overshoot the target equilibrium, due to

delayed responses [17]. Third, the previous two mechanisms might be combined in a

“two-oscillator” hypothesis in which endogenous prescriptions and delayed responses co-

exist [18]. As for the overshooting hypothesis, this is typically based on externally driven

feedback systems (of gravitropic, autotropic, phototropic or other nature) and mechan-

ical (elastic) deformations of the plant organ are neglected. In this way, mechanical

3



INTRODUCTION

parameters play no role in controlling the occurrence of exogenous oscillations. How-

Figure 2: Examples of tip trajectories from specimens of Arabidopsis thaliana (ecotype
Col-0) grown under normal gravity conditions (1 g) and continuous light at the SAMBA
laboratory of SISSA: (a) Pendular oscillations in specimen 1 (about 27 days old), (b) elliptic
and (c) circular patterns in specimen 2 (about 29 days old). Left: Stereo pair of images
corresponding to the last instant of the tip trajectories. The superposed black dots are
the tracked positions of the tip at time intervals of 1 minute. Right: Top view of the tip
trajectories as reconstructed by matching corresponding points in the stereo pair of images.
The coloured lines, from blue to red for increasing time, are obtained by moving averaging
over ten detected positions, shown in black. From [6].

ever, in this study we show that accounting for elastic deflections due to gravity loading

enriches the scenario [5, 6]. Indeed, by means of theoretical analyses of the linear regime

and computational studies of the nonlinear one, we find that, in the absence of en-

dogenous cues, spontaneous oscillations might arise as system instabilities (bifurcations)

when a loading parameter exceeds a critical value. In this respect, we derived a discrete

prototypical model (a gravitropic spring-pendulum system) that retains the essence of

the phenomenon while allowing a mathematically rigorous proof of the occurrence of a

Hopf bifurcation at a critical length. We refer to this revised scenario as the “mechanical
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flutter” hypothesis, as circumnutations are reminiscent of dynamic instabilities exhibited

by mechanical system under nonconservative loads [19, 20]. When also oscillations due

to endogenous cues are present, their weight relative to those associated with the Hopf

instability varies in time as the shoot length and other biomechanical properties change.

Thanks to the simultaneous occurrence of these two oscillatory mechanisms, we are able

to reproduce a variety of complex behaviours, including trochoid-like patterns, which

evolve into circular orbits as the shoot length increases, and the amplitude of the flutter

induced oscillations becomes dominant. Our findings suggest that the relative impor-

tance of the two mechanisms is an emergent property of the system that is affected by

the amplitude of elastic deformations, and highlight the crucial role of elasticity in the

analysis of circumnutations.
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Chapter 1

Peristaltic crawling

The study of self-propelled locomotors exploiting friction-induced traction as a result

of body shape changes, is gaining attention because of the variety of physical systems

which take advantage of such a locomotion strategy. One motivation is the desire to

understand biological phenomena, such as cell migration on or within solid substrates,

matrices and tissues [21]. Another motivation is the attempt to replicate these mecha-

nisms in robotics with the idea that biomimetic constructs may outperform traditional

ones when confronted with unstructured and unpredictable environments.

In particular, robotic locomotion research has recently considered crawling and burrow-

ing animals (e.g., earthworms, snakes and caterpillars), whence an increasing number of

research projects on bio-inspired metameric (soft) robots [8, 22, 23, 24, 25, 26, 27, 28]. As

a matter of fact, many species such as earthworms, caterpillars, sea cucumbers and snails

move using peristalsis which is a locomotion mechanism consisting of a series of wave-like

muscle relaxation and contraction which propagate along the body [7]. One of the most

studied biological species is Lumbricus terrestris (commonly known as nightcrawler)

which is a kind of earthworm which uses peristalsis both for surface crawling and for

burrowing. Each of its metameres (body segments) is endowed with longitudinal and

circular muscles and can regulate frictional forces thanks to microscopic bristles called

setae [7]. Understanding how relatively simple organisms are able to attain peristalsis

and to which extent coordination is regulated by either the nervous system or sponta-

neous reflexes, are questions addressed by researchers for about a century and are still

drawing attention [7, 29, 30, 31].

In the field of robotics, peristalsis has been mostly mimicked by a priori assignment

of “gaits” defined by a few scalar parameters. Optimization of locomotion performances

with respect to variations of these scalar parameters has been studied. In [8], Fang

and coauthors consider harmonic deformations with a single, fixed, (time) frequency

and amplitude, and determine the phase patterns of actuation maximizing the average

velocity. Optimization leads to phase coordination, in the form of a pattern which is close
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1. PERISTALTIC CRAWLING

to the identical-phase-difference (IPD) pattern corresponding to peristalsis. However,

no rigorous proof of the connection between peristaltic waves and optimal actuation is

given and, more importantly, the basic hypothesis of harmonic oscillations with a single

fixed time frequency and amplitude is taken as an a priori assumption.

The aim of this chapter is to provide a deeper understanding of harmonic oscillations

and peristalsis as result of an optimization problem rather than an a priori hypothesis.

Indeed, we prove that - in the regime of small deformations - peristalsis is a symmetry

property of the solution to an optimization problem. Symmetry of the solution comes

from symmetry properties of operators in the equations governing the optimization prob-

lem, which are, in turn, the signature of geometric symmetries of the physical system.

1.1 Model description and kinematics

We model a one-dimensional crawler that is able to move along a straight line by ex-

ploiting shape changes (extensions and contractions along its axis) and interactions with

a substrate. Following [32, 33], we analyze the system within the nonlinear framework

of large deformations. The reference configuration of the crawler is parameterized by

the axial coordinate S ranging in the interval [0, L] and, at any time t, it is mapped to

the current configuration by means of the function s(·, t), see Fig. 1.1.

S

s

u(S, t)

χ(S, t)

s0(t) sL(t)s(S, t)

v(s, t)f(s, t)

0 LS
a

b

Figure 1.1: Kinematics of a continuous 1D crawler: reference (a) and current (b) config-
urations.

We define the current distance from the left end as

χ(S, t) := s(S, t)− s0(t) ∈ [0, sL(t)], (1.1)

where s0(t) := s(0, t) and sL(t) := s(L, t). By definition, χ(0, t) = 0 for all t and we

assume that
∂χ(S, t)

∂S
> 0 ∀S, t, (1.2)

in order to guarantee the monotonicity of s(·, t) at any time t. Then s(·, t) is invertible

and we denote its inverse by S(·, t) : [s0(t), sL(t)]→ [0, L].

8



1.2 Equations of motion

We define the displacement (relative to the left end)

u(S, t) := (s(S, t)− s0(t))− S, (1.3)

the stretch

λ(S, t) :=
∂s

∂S
(S, t) =

∂χ

∂S
(S, t), (1.4)

and the (engineering) strain

ε(S, t) :=
∂u

∂S
(S, t) = λ(S, t)− 1, (1.5)

in terms of which condition (1.2) reads

ε(S, t) > −1 ∀S, t. (1.6)

In what follows a superscript dot denotes the derivative with respect to t so that the

material (Lagrangian) velocity is given by ṡ(S, t) = ṡ0(t) + χ̇(S, t), whereas the spatial

(Eulerian) velocity is v(s, t) := ṡ(S(s, t), t).

1.2 Equations of motion

Figure 1.2: Function gp(ε) governing the fric-
tion law (1.7) for selected values of parameter p.
From [4].

In this section we deal with the motil-

ity problem, namely, prescribed a his-

tory of strain ε(S, t), we want to deter-

mine the corresponding dynamics of the

one-dimensional crawler. To this aim,

we write the equations of motion which,

by neglecting inertia, reduces to the bal-

ance of the s-axis component of the total

force.

1.2.1 Friction laws

The force at the interface between sub-

strate and crawler is modelled through

a force-velocity relationship. In particu-

lar, we assume the density per unit cur-

rent length of the tangential component

of the friction force at time t, f(s, t), as

a function of the Eulerian velocity v(s, t)

by prescribing

f(s, t) := −µ gp
∣∣
ε(S(s,t),t)

v(s, t), (1.7)

9



1. PERISTALTIC CRAWLING

where µ > 0 is a friction (or viscosity) coefficient and gp(ε) := (1 + ε)−p for p ∈ [0,+∞).

Parameter p allows us to investigate different types of frictional behaviours. For p = 0,

we obtain a force per unit current length that is a linear function of velocity alone, which

reduces to the Newtonian model

f(s, t) := −µv(s, t), (1.8)

which consists of a linear viscous law. For p > 0, we obtain a friction law that is

sensitive to the state of elongation of the segment, with force per unit length higher or

lower than that of the Newtonian case depending on whether the element is contracted

(λ < 1 or ε < 0) or extended (λ > 1 or ε > 0). In the limit p → ∞, this produces an

idealized model for friction in which no force opposes slip when the segment is extended

(free slip), while the segment can withstand any tangential force without sliding (perfect

grip) when it is contracted. We call this idealized model “free slip - perfect grip”. Fig. 1.2

displays the graphs of gp(ε) around ε = 0 for different values of p. In fact, our model

is a continuous analog of the discrete model proposed by [8] to mimic the behaviour of

earthworms setae, which protrude when the body is axially contracted, resulting in an

increment of the resistance [34].

1.2.2 Force balance

The total friction is obtained by integrating the force per unit current length on the

whole current domain, i.e.,

Ff (t) =

∫ sL

s0

f(s, t) ds =

∫ L

0
fref (S, t) dS, (1.9)

where fref (S, t) := f (s(S, t), t)λ(S, t). Since inertia is neglected, the force balance yields

0 =Ff (t) + Fe(t)

=− µ
∫ L

0
(1 + ε(S, t))−p λ(S, t) (ṡ0(t) + χ̇(S, t)) dS + Fe(t)

=

[
−µ
∫ L

0
(1 + ε(S, t))1−p dS

]
ṡ0 − µ

∫ L

0
(1 + ε(S, t))1−p χ̇(S, t) dS + Fe(t). (1.10)

The square bracket multiplying ṡ0(t) in the formula above is the drag for rigid motion

at unit speed and fixed shape ε(S, t), while Fe(t) is an external force which, for instance,

can take into account the gravity force acting on a crawler on an inclined plane. Solving

for ṡ0(t), we obtain

ṡ0(t) = −
∫ L

0 (1 + ε(S, t))1−p χ̇(S, t) dS∫ L
0 (1 + ε(S, t))1−p dS

+
Fe(t)

µ
∫ L

0 (1 + ε(S, t))1−p dS
, (1.11)

10



1.3 Locomotion by means of periodic traveling waves

which, in the case of zero external forces, is independent of the viscosity coefficient µ.

Notice that, once the initial position s0(0), the strain ε(S, t) and the external force

Fe(t) are provided, the whole dynamics s0(t) can be determined by integrating (1.11).

Indeed, assuming sufficient regularity, we get

χ(S, t) = χ(0, t) +

∫ S

0
λ(Z, t) dZ = S +

∫ S

0
ε(Z, t) dZ, (1.12)

and

χ̇(S, t) =

∫ S

0
ε̇(Z, t) dZ, (1.13)

so that the right hand side of (1.11) is known once ε(S, t) is specified. Then, since

u(S, t) =

∫ S

0
ε(Z, t) dZ, (1.14)

at any time t, the current position of the crawler is determined by

s(S, t) = s0(t) + S + u(S, t). (1.15)

1.3 Locomotion by means of periodic traveling waves

In this section we discuss two examples of traveling stretching waves to illustrate the

behaviour of the friction model (1.7) in the absence of external forces (Fe ≡ 0).

We show that the parameter p determines the kind of motion: For p < 1 the motion

is prograde (i.e., motion in the same direction as the one of the waves) while for p > 1

the model reproduces an earthworm-like retrograde motion (i.e., motion in the opposite

direction as the one of the waves).

1.3.1 Smooth stretching wave

Consider a smooth traveling stretching wave by prescribing the strain along the body of

the crawler as

ε(S, t) := ε0 cos

(
2π

L
(S − c t)

)
, (1.16)

or equivalently, in terms of the stretch,

λ(S, t) = 1 + ε(S, t) = 1 + ε0 cos

(
2π

L
(S − c t)

)
, (1.17)

where ε0 is the wave amplitude, L is the reference length of the crawler and c is a pa-

rameter which modulates time frequency and it is assumed to be strictly positive, i.e.,

the wave travels towards the right.

11



1. PERISTALTIC CRAWLING

By integrating over space, we get

χ(S, t) = χ(0, t) +

∫ S

0
λ(Z, t) dZ

=

∫ S

0

[
1 + ε0 cos

(
2π

L
(Z − c t)

)]
dZ = S +

ε0L

2π

∫ 2π(S−c t)/L

−2πc t/L
cos z dz

= S +
ε0L

2π

[
sin

(
2π

L
(S − c t)

)
+ sin

(
2πc

L
t

)]
, (1.18)

so that a time differentiation leads to

χ̇(S, t) = ε0 c

[
cos

(
2πc

L
t

)
− cos

(
2π

L
(S − c t)

)]
.

Then, in view of (1.11), we arrive at

ṡ0(t) = −ε0 c cos

(
2πc

L
t

)
+ c

∫ L
0 ε(S, t) (1 + ε(S, t))1−p dS∫ L

0 (1 + ε(S, t))1−p dS
, (1.19)

whence

s0(t) = −ε0L

2π
sin

(
2πc

L
t

)
+ c

∫ t

0

∫ L
0 ε(S, z) (1 + ε(S, z))1−p dS∫ L

0 (1 + ε(S, z))1−p dS
dz. (1.20)

For the Newtonian case p = 0, the integral can be solved analytically yielding

s0(t) = −ε0 L

2π
sin

(
2πc

L
t

)
+
ε2

0 c

2
t. (1.21)

Figure 1.3 displays three numerical examples. For p < 1 and, in particular for p = 0,

the case of Newtonian resistance, we always have prograde motion (i.e., motion in the

same direction as the one of the waves). This is indeed observed for example in snails,

although in this case the force-velocity laws that we use in this study would not be

fully adequate to capture the properties of the mucus present between the animal and

the surface (non-Newtonian rheology, suction effects, see [33, 35]). For p > 1 and, in

particular, for the limit case p =∞ describing the perfect-grip/free-slip ideal version of

the modulated friction laws typical of animals with setae, the motion is retrograde (i.e.,

motion in the opposite direction as the one of the waves). This is the behaviour typically

observed for earthworms.

1.3.2 Square stretching wave

Consider the square wave

ε(S, t) := ε0(S − c t) where ε0(S) :=

{
δ if SmodL ≤ ξ,
−δ if SmodL > ξ,

(1.22)

12



1.3 Locomotion by means of periodic traveling waves

a b

Figure 1.3: (a) Plot of s0(t) for a smooth contraction wave (1.16) for selected values of
parameter p. The other parameters are ε0 = 0.6, L = 1 and c = 1.5. (b) Plot of s0(t) for
a square contraction wave (1.22) for selected values of parameter p. The other parameters
are δ = 0.6, L = 1, T = 0.5 and c = 1.5. Adapted from [4].

or equivalently, in terms of the stretch,

λ(S, t) = 1 + ε(S, t) =

{
1 + δ if (S − c t) modL ≤ ξ,
1− δ if (S − c t) modL > ξ,

(1.23)

where L is the reference length of the crawler, c is the wave speed, ξ ∈ (0, L) is the

measure of the interval where ε = δ and the mod operator is such that xmod y =

x− bx/ycy (here b·c denotes the floor function).

By integrating the stretch over space, we get

χ(S, t) = χ(0, t) +

∫ S

0
λ(Z, t) dZ = S +

∫ S

0
ε0(Z − c t) dZ, (1.24)

whence

χ̇(S, t) =


−2δc if (c tmodL) ≤ L− ξ and S ∈ [c t, c t+ ξ] modL,

2δc if (c tmodL) > L− ξ and S ∈ [c t+ ξ − L, c t] modL,

0 otherwise.

(1.25)

Finally, in view of (1.11), we get

ṡ0(t) =

{
A(p) if (c tmodL) ≤ L− ξ,
B(p) otherwise,

(1.26)

13



1. PERISTALTIC CRAWLING

where

A(p) :=
2δc(1 + δ)1−pξ

(1 + δ)1−pξ + (1− δ)1−p(L− ξ) , (1.27)

and

B(p) :=
2δc(1− δ)1−p(ξ − L)

(1 + δ)1−pξ + (1− δ)1−p(L− ξ) . (1.28)

Then the analytical solution is explicitly given by

s0(t) = s0(0) +

∫ t

0
ṡ0(τ) dτ =

∫ bt/βcβ
0

ṡ0(τ) dτ +

∫ t

bt/βcβ
ṡ0(τ) dτ

=

⌊
t

β

⌋
[αA(p) + (β − α)B(p)] +

{
{t/β}βA(p) if {t/β}β ≤ α,
αA(p) + ({t/β}β − α)B(p) otherwise,

(1.29)

where α := (L− ξ)/c, β := L/c, and {·} and b·c denote the fractional and integer parts,

respectively.

As for the smooth stretching wave, parameter p determines the character of the

motion with a transition at p = 1: For p < 1 (and in particular for the Newtonian case

p = 0) the motion is prograde while for p > 1 it turns out to be retrograde, see Fig. 1.3.

1.4 Discrete framework

Inspired by studies on annelid worms [7] and metameric robots [8, 22, 25], we move to

a discrete setting by assuming that the reference configuration of the crawler’s body

is made up of N segments of length ` := L/N , i.e., (Sn−1, Sn) where Sn := n` for

n = 1, . . . , N , cf. Fig. 1.4.

s0(t) s1(t) sN (t)
s(S, t)

u(S, t)S

S0 := 0 S1 := ` · · · SN := LS

s(·, t)
a

b

Figure 1.4: Kinematics of a discrete 1D crawler consisting of N identical segments of ref-
erence length `. (a) Reference configuration. (b) Current configuration. Adapted from [4].

Each segment can be contracted or expanded according to a constant stretch so that the
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1.4 Discrete framework

overall strain results to be a piecewise constant function of S (at any fixed time t), i.e.,

ε(S, t) :=


ε1(t) if S ∈ [S0, S1) ,
...

εN (t) if S ∈ (SN−1, SN ] .

(1.30)

Consequently, its time-derivative, ε̇(·, t), is piecewise constant and hence, from (1.13),

χ̇(·, t) is piecewise affine, namely,

χ̇(S, t) = `
n−1∑
j=1

ε̇j(t) + [S − (n− 1)`] ε̇n(t) (1.31)

for S ∈ [Sn−1, Sn]. In passing, we notice that in this framework the monotonicity

condition (1.6) requires that εn(t) > −1 for all t and for n = 1, . . . , N , which is the only

constraint for an admissible history of strains, the datum of our motility problem.

1.4.1 Equations of motion

By making use of equation (1.11), we get

ṡ0(t) = −
∑N

n=1

∫ Sn
Sn−1

(1 + εn(t))1−p χ̇(S, t) dS

`
∑N

n=1(1 + εn(t))1−p
+

Fe(t)

µ`
∑N

n=1(1 + εn(t))1−p
. (1.32)

In view of (1.31), we obtain∫ Sn

Sn−1

(1 + εn)1−p χ̇(S, t) dS = (1 + εn)1−p
∫ n`

(n−1)`

[
(S − (n− 1)`) ε̇n + `

n−1∑
k=1

ε̇k

]
dS

=
`2

2
(1 + εn)1−p

[
ε̇n + 2

n−1∑
k=1

ε̇k

]
, (1.33)

so that

N∑
n=1

∫ Sn

Sn−1

(1 + εn)1−p χ̇(S, t) dS =
`2

2

N∑
n=1

[
(1 + εn)1−p + 2

N∑
m=n+1

(1 + εm)1−p

]
ε̇n.

(1.34)

Therefore expression (1.32) reduces to

ṡ0(t) =

[
N∑
n=1

(1 + εn)1−p

]−1{
Fe(t)

µ`
− `

2

N∑
n=1

[
(1 + εn)1−p + 2

N∑
m=n+1

(1 + εm)1−p

]
ε̇n

}
,

(1.35)
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1. PERISTALTIC CRAWLING

which can be rewritten in the following vectorial form, namely,

ṡ0(t) =

N∑
n=1

vn(ε(t))ε̇n(t) + q(ε(t))Fe(t) = v(ε(t)) · ε̇(t) + q(ε(t))Fe(t), (1.36)

where

vn(ε) = − `
2

(1 + εn)1−p + 2
N∑

m=n+1
(1 + εm)1−p

N∑
j=1

(1 + εj)
1−p

, q(ε) =

µ` N∑
j=1

(1 + εj)
1−p

−1

,

v(ε) =

 v1(ε)
...

vN (ε)

 and ε(t) =

 ε1(t)
...

εN (t)

 .
Equation (1.35) fully describes the dynamics once s0(0) and ε(S, t) are provided.

Specifically, the displacement after T time units is given by

s0(T )− s0(0) =

∫ T

0
v(ε(t)) · ε̇(t) dt+

∫ T

0
q(ε(t))Fe(t) dt =: D[ε, ε̇]. (1.37)

Remark 1.4.1. We can rewrite everything in terms of the displacement relative to s0(t),
u(S, t). In the discrete framework the relative displacement turns out to be a piecewise
affine function of S (at any fixed time t), namely,

u(S, t) = `

n−1∑
j=1

εj(t) + [S − (n− 1)`]εn(t) (1.38)

for S ∈ [Sn−1, Sn]. In this case, for n = 1, . . . , N ,

εn =
un − un−1

`
, (1.39)

where un(t) := u(Sn, t), so that the relationship between strain and relative displacement
is given by

ε(t) = J u(t), (1.40)

where ε = (ε1, ε2, . . . , εN )T , u = (u1, u2, . . . , uN )T , and

J :=
1

`


1
−1 1

. . .
. . .

−1 1

 . (1.41)
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1.4 Discrete framework

1.4.2 Optimal control problems

In this section we address the problem of maximizing the net displacement of the left

end, D, among periodic shape changes ε(S, t) with the same given energy cost.

We now describe the optimization problems with quadratic energy in the non-linear

case first, and then in the small-deformation regime, for which general results can be

established. We assume no external forces, namely, Fe ≡ 0.

Feasible region

We assume that the shape function ε(t) is a C2 function defined from R to RN . In

addition, we require ε(·) to be a time-periodic function. Finally we restrict our search to

shape functions with a given cost per period, i.e., E[ε, ε̇] = c, where the energy functional

is assumed to be of the following quadratic form (in both ε and ε̇)

E[ε, ε̇] :=

∫ T

0
Aε · ε dt+

∫ T

0
Bε̇ · ε̇ dt, (1.42)

where A and B are symmetric and positive definite N -dimensional matrices. Overall,

the feasible region is

Ωc :=

{
ε ∈ C2

(
R,RN

) ∣∣∣∣ ε(0) = ε(T ) and E[ε, ε̇] = c

}
. (1.43)

Optimization problem

The general (non-linear) optimization problem is

max
ε∈Ωc

D [ε, ε̇] where D [ε, ε̇] :=

∫ T

0
v(ε(t)) · ε̇(t) dt, (1.44)

which is an isoperimetric problem involving N dependent variables εn [36]. The corre-

sponding Euler-Lagrange equations lead to a second order non-linear system of ODEs,

i.e., for n = 1, . . . , N ,
d

dt

∂F

∂ε̇n
(t, ε, ε̇)− ∂F

∂εn
(t, ε, ε̇) = 0, (1.45)

where F(t, ε, ε̇) := v(ε) · ε̇− λ (Aε · ε+ Bε̇ · ε̇) and λ denotes a Lagrange multiplier.

The small-deformation regime

We can focus on the small-deformation regime by expanding the objective function at

the leading orders (about ε = 0), i.e.,

D[ε, ε̇] =

∫ T

0
v(ε) · ε̇ dt =

∫ T

0
(v(0) + vε(0)ε+ o(ε)) · ε̇ dt
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1. PERISTALTIC CRAWLING

' v(0) · (ε(T )− ε(0)) +

∫ T

0
vε(0)ε · ε̇ dt =

∫ T

0
vε(0)ε · ε̇ dt, (1.46)

where vε(ε) denotes the derivative of v with respect to ε. An integration by parts of

the right-hand side yields∫ T

0
vε(0)ε · ε̇ dt = [vε(0)ε · ε]T0 −

∫ T

0
vε(0)ε̇ · ε dt =

∫ T

0
−ε̇ · vTε (0)ε dt, (1.47)

whence

D[ε, ε̇] ' 1

2

[∫ T

0
vε(0)ε · ε̇ dt+

∫ T

0
−vTε (0)ε · ε̇ dt

]
=

1

2

∫ T

0

(
vε(0)− vTε (0)

)
ε · ε̇ dt =: V[ε, ε̇]. (1.48)

In particular, it can be proved that the (skew-symmetric Toeplitz) matrix V := skw (vε(0))

depends only on N , ` and p. Indeed, as shown in Appendix A.1,

{V}ij =


`(p− 1)N+i−j

2N2 if i < j,

0 if i = j,

−`(p− 1)N+j−i
2N2 if i > j.

(1.49)

Therefore, in the regime of small deformations, problem (1.44) can be replaced by the

following linear problem

max
ε∈Ωc

V[ε, ε̇] where V[ε, ε̇] :=

∫ T

0
ε̇ ·Vε dt. (1.50)

The corresponding Euler-Lagrange equations

d

dt

∂L

∂ε̇
(t, ε, ε̇)− ∂L

∂ε
(t, ε, ε̇) = 0, (1.51)

where L(t, ε, ε̇) := Vε · ε̇ − λ (Aε · ε+ Bε̇ · ε̇), lead to the following system of second

order linear ODEs

Vε̇ = λ (Bε̈−Aε) . (1.52)

In general, a solution to (1.52) might be difficult to determine due to the complexity

of finding a common diagonalization of A and B. However, following the procedure

adopted by [37], we can solve this problem when one of the two operators is null, say

A ≡ 0 (resp. B ≡ 0), and the other one, B (resp. A), is symmetric, positive definite

and such that the eigenspaces associated with the maximum-modulus eigenvalues of

B−
1
2 VB−

1
2 (resp. A−

1
2 VA−

1
2 ) have dimension 1. Indeed, as shown in Appendix A.2,

the following facts hold.
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1.4 Discrete framework

(i) For A = 0 and B symmetric and positive definite, up to a constant, a solution

of (1.50) must be of the form

ε(t) = −T
π

Re
(
α i ei 2π t/Te

)
, (1.53)

where α ∈ C\{0} is a constant such that ||α|| =
√
c/(2T ) and e = (e1, e2, . . . , eN )T ∈

CN \ {0} is a suitable constant vector depending only on A and V.

(ii) For A symmetric and positive definite and B = 0, a solution of (1.50) with ε of

unitary time frequency must be of the form

ε(t) = 2 Re
(
α ei 2π t/Te

)
, (1.54)

where α ∈ C\{0} is a constant such that ||α|| =
√
c/(2T ) and e = (e1, e2, . . . , eN )T ∈

CN \ {0} is a suitable constant vector depending only on A and V.

Expressions (1.53) and (1.54) share the same form ε(t) = Re
(
α̂ ei 2π t/Te

)
, namely, they

are circles in the plane (Re(e), Im(e)), regardless of the number of links. Moreover, by

using the polar representations α̂ = ρae
iϑa and en = ρne

iϑn , we get

εn(t) = ρaρn Re
(
ei(2π t/T+ϑa+ϑn)

)
= ρaρn sin

(
2π

T
t+ ϑa + ϑn +

π

2

)
∀n, (1.55)

i.e., the optimal gait depends only on the 2N + 2 parameters {ϑn}n, {ρn}n, ϑa and ρa.

Admittedly, since α is a constant with fixed modulus and free argument, we can always

assume that ϑa = −π/2, i.e.,

εn(t) = ρaρn sin

(
2π

T
t+ ϑn

)
, (1.56)

thus reducing the number of parameters to 2N + 1.

In concluding, we stress the fact that the problem for A = 0 and B = IN , where

IN is the N -dimensional identity matrix, is essentially equivalent to the one for A = IN
and B = 0, provided that unitary time frequency of ε is prescribed. Indeed, if (1.56) is

a solution to

max
ε∈Ω1

V[ε, ε̇]

Ω1 :=

{
ε ∈ C2

∣∣∣∣ ε(0) = ε(T ) and

∫ T

0
||ε||2RN dt = 1

}
,

(1.57)

then it is a solution also to

max
ε∈Ωc

V[ε, ε̇]

Ωc :=

{
ε ∈ C2

∣∣∣∣ ε(0) = ε(T ) and

∫ T

0
||ε̇||2RN dt =

(
2π

T

)2
}
,

(1.58)
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1. PERISTALTIC CRAWLING

and vice versa. In general, however, the two problems, A = 0 with B symmetric positive

definite and B = 0 with A symmetric positive definite, are not equivalent. In fact,

constraining the norm induced by one operator does not determine the norm induced

by the other one, but only provides a bound. Indeed, if ε(t) has the form (1.56), then∫ T

0
Aε · ε dt ≥ λmin(A)

∫ T

0
ε · ε dt = λmin(A)

(
T

2π

)2 ∫ T

0
ε̇ · ε̇ dt

≥
(
T

2π

)2 λmin(A)

λmax(B)

∫ T

0
Bε̇ · ε̇ dt, (1.59)

and, analogously,∫ T

0
Bε̇ · ε̇ dt ≥ λmin(B)

∫ T

0
ε̇ · ε̇ dt = λmin(B)

(
2π

T

)2 ∫ T

0
ε · ε dt

≥
(

2π

T

)2 λmin(B)

λmax(A)

∫ T

0
Aε · ε dt, (1.60)

where λmin(·) and λmax(·) denote the minimum and maximum eigenvalues, respectively.

1.4.3 Peristalsis as optimal gait

In the discrete framework, peristalsis is the result of phase coordination among the

harmonic contractions of body segments, i.e., it has the form

εn(t) = ρ sin

(
2πt

T
+ n∆ϕ

)
for n = 1, . . . , N, (1.61)

where T is the period, ρ is the amplitude and ∆ϕ is the constant phase difference. As

for the continuous case, discrete peristalsis produces prograde or retrograde motions

according to the value of the parameter p in (1.7).

In this section we work out explicitly the problem of maximizing the displacement

for a particular case from which peristalsis emerges, modulo an edge-effect.

Dissipation energy

Let us define an energy functional E : C2(R,RN )→ R as

E[ε, ε̇] :=

∫ T

0
(d1(t, ε, ε̇) + w d2(t, ε̇)) dt, (1.62)

where d1(t, ε, ε̇) :=
∫ L

0 − 1
µfref (S, t)v(s(S, t)) dS and d2(t, ε̇) :=

∑N
n=1 ε̇

2
n(t). In other

terms, the energy cost is the time integral over a period of a dissipation rate which is

sum of two terms: d1(t, ε, ε̇) is 1/µ times the energy expended to overcome the friction

force and d2(t, ε̇) is the cost of control weighted by a scalar factor w. E[ε] is thus 1/µ
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1.4 Discrete framework

times the sum of the work due to the friction force plus the L2-norm of the controls

suitably weighted to time the input direction.

As shown in Appendix A.3.1, we can write

d1(t, ε, ε̇) = ε̇ ·D(ε)ε̇, (1.63)

where D(ε) ∈ RN×N for any ε ∈ (−1,+∞]N , and

d2(t, ε̇) = ε̇ · IN ε̇, (1.64)

where IN is the N -dimensional identity matrix. Therefore the energy functional is given

by

E[ε, ε̇] =

∫ T

0
ε̇ ·G(ε)ε̇ dt, (1.65)

where G(ε) := D(ε) + w IN .

Non-linear optimal control problem

The non-linear optimization problem associated with energy functional (1.65) is

max
ε∈Ωc

D[ε, ε̇] where D[ε, ε̇] :=

∫ T

0
v(ε) · ε̇ dt,

Ωc :=

{
ε ∈ C2

∣∣∣∣ ε(0) = ε(T ) and E[ε, ε̇] = c

}
.

(1.66)

The Euler-Lagrange equations lead to a second order non-linear system of ODEs, i.e.,

for n = 1, . . . , N ,
d

dt

∂F

∂ε̇n
(t, ε, ε̇)− ∂F

∂εn
(t, ε, ε̇) = 0, (1.67)

where F(t, ε, ε̇) := v(ε) · ε̇− λε̇ ·G(ε)ε̇ and λ is the Lagrange multiplier.

The small-deformation regime

In the regime of small deformations we can expand the terms of problem (1.66) at the

leading orders about ε = 0. As before, the net displacement per time period can be

approximated by

D[ε, ε̇] ' V[ε, ε̇] :=

∫ T

0
Vε · ε̇ dt, (1.68)

and the energy functional by

E[ε, ε̇] =

∫ T

0
ε̇ ·G(ε)ε̇ dt '

∫ T

0
ε̇ ·Gε̇ dt, (1.69)
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1. PERISTALTIC CRAWLING

where G := G(0). Hence, in the small-deformation regime, the problem fits the

form (1.42)-(1.44) for A = 0 and B = G. Moreover, G is bisymmetric (namely, sym-

metric about both of its diagonals) and depends only on N , ` and w. Indeed

{G}ij =


`3

4N (2i− 1) (2(N − j) + 1) if i < j,
`3

12N

[
4N(3i− 2)− 3 (2i− 1)2

]
+ w if i = j,

`3

4N (2j − 1) (2(N − i) + 1) if i > j,

(1.70)

as shown in Appendix A.3.2. Therefore a solution must be of the form (1.56), namely,

ε?n(t) = ρaρn sin

(
2π

T
t+ ϑn

)
.

Figure 1.5: Plot of arguments and moduli of
εn for n = 1, . . . , 15: amplitudes, (a), approx-
imation by a IPD (Identical Phase Difference)
model, (b), and relative errors, (c). Parame-
ters: p = 100, w = 1, T = 1 and ` = 1. Adapted
from [4].

As shown in Appendix A.2.3, the

centrosymmetry of G and the skew-

centrosymmetry of V imply a reflec-

tional symmetry about the center:

(i) The moduli of components of e are

symmetric about the center (cf.

Fig. 1.5), namely,

ρN+1−n = ρn, (1.71)

for all n = 1, . . . , N ;

(ii) Phase differences between ad-

jacent segments are symmetric

about the center, i.e.,

ϑn+1 − ϑn = ϑN+1−n − ϑN−n,
(1.72)

for all n = 1, . . . , N , so that the N -

th phase differs from the (N−1)-th

one by the same amount by which

the second phase differs from the

first one and so on, see Fig. 1.5.

Equation (1.56) shows that the optimal gait requires a precise “phase coordination”

of locomotion patterns among the segments, which is a common observation in Biology

for several kinds of animals. Numerical simulations show that the optimal solution is a

discrete approximation of a traveling wave:
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1.4 Discrete framework

(i) The moduli of en for n = 1, . . . , N can be approximated by a constant average

value, i.e.,

ρn ' ρ̄ constant, (1.73)

so that each segment undergoes a harmonic deformation with a certain initial phase,

cf. Fig. 1.5;

(ii) Phase differences between adjacent segments turn out to be almost constant, i.e.,

for a suitable ϑ0,

ϑn ' nϑ? + ϑ0, (1.74)

for n = 1, . . . , N , cf. Fig. 1.5.

Figure 1.6: Plot of piecewise constant optimal strain ε?n(S, t): the value is determined by
means of the color legend. Parameters: p = 100, w = 10, T = 1, ` = 1; N = 25. Adapted
from [4].

Therefore, in view of properties (1.73) and (1.74), the solution is a discrete approxi-

mation of a continuous traveling wave. Indeed, by extending the strain to the continuous

arc length parameter S, we get

ε?(S, t) = ρaρ(S) sin

(
2π

T
t+ ϑ(S)

)
' ρaρ̄ sin

(
2π

T
t+ ϑ?S + ϑ0

)
= H(S − vt), (1.75)

where H(z) := ρaρ̄ sin (ϑ?z + ϑ0) and v := −2π/(T ϑ?). This is a continuous approx-

imation of a peristaltic wave, and the solution is its discrete version, namely, ε?n(t) =

ε?(Zn, t), where Zn := (Sn + Sn+1)/2 is the midpoint of the n-th segment, as illustrated

in Fig. 1.6.
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1. PERISTALTIC CRAWLING

The edge-effect

The symmetric structure of the optimal gait (in the small-deformation regime) arises

from underlying physical symmetries which clearly stand out in the properties of the

matrices G and V. In particular, an “edge-effect” is apparent: The 1D crawler is sym-

metric about its geometric center and segments near the edges behave differently with

respect to adjacent segments, but in the same way as their centrosymmetric counterparts.

In this section, we show that this edge-effect vanishes when considering an “infinite” (pe-

riodic) 1D crawler because, due to the shift-invariance symmetry, each segment behaves

as a “geometric centre”.

Consider a 1D crawler made up of infinitely many segments and assume that it is a

periodic structure of which each module consists of N components (cf. Fig. 1.7). At

s0(t) s1(t) · · · sN (t)

s(S, t) = s0(t) + S + u(S, t)

· · · S0 = 0 S1 = ` · · · SN = L · · ·S
a

b

Figure 1.7: Kinematics of a discrete infinite 1D crawler consisting of identical segments
of reference length `. (a) Reference configuration. (b) Current configuration. Adapted
from [4].

any time t, we define the relative displacement u(·, t) as the change of position of the

material point S in the body’s reference, i.e., s(S, t) = s0(t)+S+u(S, t). The hypothesis

of periodicity leads to

u(S + L, t) = u(S, t) ∀S, t. (1.76)

From (1.76) we obtain that the friction force is periodic and we can consider the force

balance in a single module. In addition, condition (1.76) implies∫ L

0
ε(S, t) dS = 0 ∀ t, (1.77)

and, in the discrete framework (1.30), this leads to

N∑
n=1

εn(t) = 0 ∀ t. (1.78)
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1.4 Discrete framework

The optimal control problem becomes

max
ε∈Ω′c

V[ε, ε̇] where V[ε, ε̇] :=

∫ T

0
ε̇ ·Vε dt

Ω′c =

{
ε ∈ C2

(
R,RN

) ∣∣∣∣ N∑
n=1

εn = 0, ε(0) = ε(T ) and

∫ T

0
ε̇ ·Gε̇ dt = c

}
,

(1.79)

and it can be proved (see Appendix A.4) that its solutions need to be like (1.53), where

the complex N -dimensional vector e has the form

e =



e1

e2
...
en
...
eN


=



e1

ei 2πk/Ne1
...

ei 2πk(n−1)/Ne1
...

ei 2πk(N−1)/Ne1


, (1.80)

for some k ∈ {1, . . . , N − 1} and e1 ∈ C \ {0}, cf. Fig. 1.8. More specifically, we get an

exact harmonic peristalsis:

(i) Each component of e has modulus ρ := ||e1||;

(ii) Each component can be obtained from the previous one by a rotation of 2πk/N

or, in other words, the phase difference between two consecutive components is

constant, i.e., for n = 1, . . . , N

arg(en) = (n− 1)
2πk

N
+ arg(e1) = nϑ? + ϑ0, (1.81)

where ϑ? := 2πk/N and ϑ0 := arg(e1)− 2πk/N .

Notice that problem (1.79) can be written in terms of relative displacements un
through the periodic version of transformation (1.40), i.e.,

ε(t) = Jp u(t), (1.82)

where

Jp :=
1

L


1 −1
−1 1

. . .
. . .

−1 1

. (1.83)

In particular, we arrive at

max
ε∈Ω?c,u

V [u, u̇] :=

∫ T

0
u̇ ·V?

uu dt

Ω?
c,u =

{
u ∈ C3

(
R,RN

) ∣∣∣∣ u(0) = u(T ) ∧ E [u, u̇] :=

∫ T

0
u̇ ·G?

uu̇ dt = c

}
,

(1.84)
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1. PERISTALTIC CRAWLING

Figure 1.8: Complex components of the vector e in the general case (a) and in the periodic
one (b), for N = 8 segments. Parameters: p = 100, w = 10, T = 1, ` = 1. Adapted from [4].

where V?
u := JTp VJp and G?

u := JTp GJp are circulant matrices (namely, Toeplitz matri-

ces where each row vector is rotated one element to the right relative to the preceding

row vector), thus reflecting the geometric symmetry of the periodic structure, namely,

the shift-invariance.

Considering the general (i.e., non-periodic) problem in terms of relative displace-

ments yields

max
ε∈Ωc,u

V[u, u̇] where V[u, u̇] :=

∫ T

0
u̇ ·Vuu dt

Ωc,u :=

{
u ∈ C3

(
R,RN

) ∣∣∣∣ u(0) = u(T ) and E [u, u̇] :=

∫ T

0
u̇ ·Guu̇ dt = c

}
,

(1.85)

where Vu := JTVJ and Gu := JTGJ are two “quasi-circulant” matrices, indeed

Vu = V?
u + EV and Gu = G?

u + EG, (1.86)

where EV and EG are null apart from the last column and the last row, i.e.,

EV =
`(p− 1)

2N2


N − 1
−1
...
−1

1−N 1 · · · 1

 and EG =
1

12N


a

6`3

...
6`3

a 6`3 · · · 6`3 b

 , (1.87)

where a := 2`3(3−N) + 12Nw and b := `3(9− 4N)− 12Nw.

Wavenumber

In the “periodic case” we can study the wavenumber (that is the number of waves

travelling along the body of the crawler) of the optimal gait in relation to the number
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1.5 Discussion

of metameres N and to the weight w.

Figure 1.9: Wavenumber of optimal gaits as a
function of N and w. The axis of w ∈ [0, 100]
is plotted on a log-scale with base 10. The
color-bar gives the wavenumber. ` = 1 and
N ∈ [3, 250]. From [4].

As shown in Appendix A.4, the

wavenumber of the optimal gait must be

an integer close to the real number

N

2π
arccos

(
1

2

6w − `3
3w + `3

)
. (1.88)

Then, for any fixed N , it depends on the

weight w:

(i) For w → ∞, it tends to 1, corre-

sponding to a single wave spanning

the whole length L;

(ii) For w = 0, it is close to N/3, i.e.,

one full wave-length every three

segments.

This behaviour is qualitatively unaf-

fected by the type of friction model

which is adopted (i.e., by the choice of the parameter p). Fig. 1.9 shows the wavenumber

as a function of w and N for a fixed dissipation E[ε, ε̇] = c̄.

1.5 Discussion

1.5.1 Comparison with previous studies

To put our study in perspective, we consider the discrete framework and we compare

our results with the ones presented by [8]. Here the authors perform an optimization of

the so-called “average steady-state velocity” us among harmonic shape functions having

the form (in our notation)

εn(t) = a sin

(
2π

T
t+ ηn

)
for n = 1, . . . , N, (1.89)

where a ∈ (0, 1/`) is the oscillation amplitude, T is the period and ηn is the actuation

phase for the n-th segment (or actuator). Since the average steady-state velocity is given

by

us(ε) =
D[ε, ε̇]

T
=

1

T

∫ T

0
v(ε) · ε̇ dt, (1.90)

the optimization problem reads

max
η∈[0,2π)N

us(η) where us(η) :=
1

T

∫ T

0
v(ε) · ε̇ dt, (1.91)
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1. PERISTALTIC CRAWLING

and in the small-deformation regime it can be replaced by

max
η∈[0,2π)N

∫ T

0
ε̇ ·Vε dt. (1.92)

Denote the actuation phase differences between adjacent segments by pn := ηn+1−ηn
for n = 1, . . . , N − 1. From observations of numerical simulations, it has been reported

that “[...] the optimized phase-different patterns are always reflectionally symmetric

[about the center, Ed.] regardless of the initial symmetry requirements [...]” and of the

number of segments [8]. Thus, a solution to (1.91) fulfills

pn = pN−n ∀n. (1.93)

In fact this property can be rigorously proved under the assumption that problem (1.91)

admits a unique solution in [0, 2π)N , as shown in Appendix A.5. Here we prove such

a property for problem (1.92), assuming that it admits a unique solution in [0, 2π)N .

To this aim, denote the unique solution to (1.92) by ε̃ = [ε̃1, . . . , ε̃N ]T where ε̃n(t) =

a sin(2πt/T + η̃n) for all n = 1, . . . , N , and consider the shape change ε̂(t) associated

with

η̂ := −Kη̃ + 2π where K :=


0 0 · · · 0 1
0 0 · · · 1 0
...

...
...
...

...
0 1 · · · 0 0
1 0 · · · 0 0

 ∈ RN×N . (1.94)

Notice that for n = 1, . . . , N ,

ε̂n(t) := a sin

(
2π

T
t− (Kη̃)n

)
= (−Kε̃(−t))n , (1.95)

so that, by exploiting the fact that V is skew-centrosymmetric (i.e., KTVK = −V),∫ T

0

˙̂ε ·Vε̂ dt = −
∫ T

0

˙̃ε(−t) ·KTVK ε̃(−t) dt =

∫ 0

−T
˙̃ε ·Vε̃ dt =

∫ T

0

˙̃ε ·Vε̃ dt.

Thus, by the uniqueness of the solution, we deduce that η̃ = −Kη̃ + 2π, which im-

plies (1.93).

Problem (1.92) constrains the L2-norm of the time-derivatives, i.e., for strains having

the form (1.89) we get ∫ T

0
ε̇ · ε̇ dt =

2N(aπ)2

T
=: c?, (1.96)

regardless of η. Therefore we can extend the maximization to the C2 periodic strains

whose time derivative fulfills the same constraint, i.e.,

max
ε∈Ωc?

V [ε, ε̇] where V [ε, ε̇] :=

∫ T

0
ε̇ ·Vε dt

Ωc? =

{
ε ∈ C2

(
R,RN

) ∣∣∣∣ ε(0) = ε(T ) and

∫ T

0
ε̇ · ε̇ dt = c?

}
.

(1.97)
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1.5 Discussion

Figure 1.10: Average velocities us, (1.90) obtained by the solution ε̃ to (1.92) (blue bars)
and by the solution ε? to (1.97) (yellow bars) for different numbers of segments: N =
25, 50, 100, 150, 200. (a) is for p = 0 (Newtonian case) and (b) for p = 100. The other
parameters are T = 2π, a = 2−10, ` = 1. From [4].

Since problem (1.52) reduces to (1.97) when A = 0 and B = IN , a solution to (1.97)

must be of the form

ε?n(t) = a
√
N ||en|| sin

(
2π

T
t+ arg (en) + ϑa

)
, (1.98)

where e = (en)n is a unit eigenvector associated with the maximum-modulus eigenvalue

of V and ϑa is a constant. Notice that the reflectional symmetry about the center still

holds. As a matter of fact, (1.98) leads to a slight increment in the net displacement

with respect to the solution to (1.92), cf. Fig. 1.10.

1.5.2 Summary and outlook

Our analysis confirms the effectiveness of mimicking peristalsis in bio-inspired robots,

at least in the small-deformation regime. This bio-inspired actuation strategy has been

implemented on a trial-and-error basis many times in the robotics literature and, more

recently, also proposed as optimal (in some suitably defined sense, and in some suitably

defined class of actuation strategies). Our main result is a mathematically rigorous

proof that, in the small deformation regime, actuation by peristaltic waves is an optimal

control strategy emerging naturally from the geometric symmetry of the system, namely,

the invariance under shifts along the body axis. This is true exactly in the periodic case,

and approximately true in the case of finite length, modulo edge-effects.

Actuation by phase coordination, optimal actuation by identical phase difference,

and the connections between this and traveling waves have been already discussed in

the literature (see, e.g., [8]), but never through a mathematically rigorous analysis of

the optimal control problem, of the symmetry properties of the governing equations and

operators, and of the relation between these and the geometric symmetries of the system.
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1. PERISTALTIC CRAWLING

This is exactly what we do in this study. The added value of this analysis is that we are

able to show (for the first time, to the best of our knowledge, at least in the robotics

literature) that peristaltic waves are the signature of the invariance with respect to shifts

(a geometric symmetry) of a homogeneous one-dimensional system.

Two possible avenues for future research regard the effectiveness of peristaltic waves

as a locomotion strategy if large deformations are allowed, and the issue of how peristalsis

is actually enforced in biological systems. As for the latter, of particular interest is

the dichotomy between the paradigm of actuations via a Central Pattern Generator

(CPG), as opposed to local sensory and feedback mechanisms. The CPG paradigm

is apparent in several different organisms [38, 39] and has been employed in robotics

with some success [24, 40]. However, there is a growing awareness of the role played by

proprioception, especially for lower organisms such as the nematode worm C. elegans [41,

42] and D. melanogaster larvae [43].
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Chapter 2

Growing slender plant organs

From micro to macro, many three-dimensional structures are characterized by one length

scale that is much larger than the other two, so that the classical rod theory provides an

appropriate framework for mathematical modelling. The core idea is to define resultant

forces and couples acting on the rod centerline by integrating the tractions over the cross

section of the filament, and to relate these quantities to the strains of the rod.

When modelling the growth of biofilaments, the elastic theory of rods has to be

properly adapted to take different processes into account: Axial (or primary) growth,

radial (or secondary) growth, and differential growth, i.e., nonhomogenous growth rates

in the cross section. There are at least three different approaches to model growing rods:

Parameter variation, remodelling and morphoelasticity [12].

The first approach consists in letting a parameter vary, and spanning the correspond-

ing family of rod solutions. For example, following this approach, a growing plant shoot

could be modelled by considering elastic rods of increasing length.

The second method considers separate time evolution laws for some material pa-

rameters, which have to be prescribed according to the relevant physics. For instance,

in the case of a plant shoot whose shape adapts and evolves in response to a number

of stimuli, we could prescribe the time evolution of its intrinsic curvatures in terms of

material history.

The last approach, morphoelasticity, combines growth and remodelling. As illus-

trated in Fig. 2.1, three configurations are introduced: An initial configuration B0, an

unstressed virtual configuration Bv that changes due to growth and, finally, a current

configuration B that is the actual configuration with imposed body forces and bound-

ary conditions. While the distinction between growth and remodelling is clear in the

general theory of three-dimensional growing elastic bodies, it is blurred in the theory of

morphoelastic rods. Indeed, in the rod theory, geometry affects elastic material prop-

erties. This is vividly illustrated by bending stiffness coefficients, which are defined as

the product of elastic material properties (Young’s modulus) and geometric properties
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2. GROWING SLENDER PLANT ORGANS

Figure 2.1: The three configurations of a morphoelastic rod: Initial (B0), virtual (Bv) and
current (B) configurations.

of the cross sections (second moments of area). Therefore bending stiffnesses can change

due to both radial growth and remodelling of material parameters.

Since plant shoots and roots are elongated slender structures, the theory of morphoe-

lastic rods represents a general framework that is suitable for modelling their morpho-

genetic processes [12]. In preparation for our study on circumnutations in plant shoots,

this chapter introduces such a theory by discussing differential growth at the tip, while

neglecting changes in girth. More specifically, we introduce the evolution laws for en-

dogenous oscillators, straightening mechanisms and reoreintations to directional cues,

such as phototropic responses to a far light source and gravitropic reactions governed by

the statoliths avalanche dynamics.

2.1 Kinematics

Consider an Euclidean space E3 with a fixed right-handed orthonormal basis {e1, e2, e3}
and define three different configurations of the rod:

• An initial reference configuration B0 given by a rod having axis p0(S)

and material cross sections characterized by the orthonormal directors{
d0

1(S),d0
2(S),d0

3(S) := d0
1(S)× d0

2(S)
}

where S ∈ [0, `0] is the arc length ma-

terial parameter describing the distance from the base;

• A virtual reference configuration Bv(t) defined as the unstressed realiza-

tion of the rod at time t, having axis pv(sv, t) and orthonormal directors

{dv1(sv, t),d
v
2(sv, t),d

v
3(sv, t) := dv1(sv, t)× dv2(sv, t)} where sv ∈ [0, `v(t)] is the arc
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2.1 Kinematics

length coordinate;

• A current configuration B(t) which is the actual shape of the rod at time t, taking

into account deflections from mechanical loads and boundary conditions. Such a

rod is defined by the space curve p(s, t) equipped with the triple of right-handed

orthonormal directors {d1(s, t),d2(s, t),d3(s, t) := d1(s, t)× d2(s, t)} where s ∈
[0, `(t)] is the arc length parameter.

In particular, we choose the initial reference configuration as the virtual configuration

at time t = 0, namely, `0 := `v(0) and d0
j (S) := dj(S, 0) for all S ∈ [0, `0].

Since the parameter S is a material coordinate for both the virtual and the current

configuration, we define the respective motions, namely,

sv(·, t) : [0, `0]→ [0, `v(t)] and s(·, t) : [0, `0]→ [0, `(t)] , (2.1)

and we denote their inverse functions by the same symbol S(·, t). Moreover, in order to

simplify the notation, we use the same symbol to denote material and spatial descriptions

of any given field. Therefore any field defined on one of the three configurations can be

evaluated at each of the other ones, by means of an implicit composition of functions.

For example, given a Lagrangian (or material) field f(S, t) : [0, `0] → R, the associated

Eulerian (or spatial) field is simply denoted by f(s, t) := f(S(s, t), t) : [0, `(t)] → R. In

the following we use a superimposed dot to denote the material time derivatives of any

spatial vector or scalar field.

In this framework we introduce the full axial stretch as

λ(S, t) :=
∂s(S, t)

∂S
, (2.2)

which can be decomposed in the product λ(S, t) = σ(sv(S, t), t)γ(S, t) where

σ(sv, t) :=
∂s(sv, t)

∂sv
and γ(S, t) :=

∂sv(S, t)

∂S
(2.3)

are the elastic stretch and the growth stretch, respectively. Then, we define the true

strains

ε?(S, t) := lnλ(S, t) and ε?v(S, t) := ln γ(S, t), (2.4)

which turn out to be crucial growth quantifier. Moreover, we define the (Lagrangian)

velocity fields

v(S, t) :=
∂s(S, t)

∂t
and vv(S, t) :=

∂sv(S, t)

∂t
. (2.5)

From classical rod theory [44], we know that there exist vector-valued functions

u(s, t), called twist, and w(s, t), called spin, such that

∂svdj = u× dj and ∂tdj = w × dj . (2.6)
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2. GROWING SLENDER PLANT ORGANS

As for the components uj := u·dj , these are referred to as flexural strains for j = 1, 2, and

torsional strain for j = 3. In a similar manner, the directors of the virtual configuration

define the spontaneous twist, u?, and the spontaneous spin, w?, i.e.,

∂svd
v
j = u? × dvj and ∂td

v
j = w? × dvj , (2.7)

and the components u?j := u? · dj are called spontaneous strains.

In addition, we can define the stretch vector v := ∂svp = σt where t is the curve

tangent and |v| = σ > 0 is not necessarily equal to one. Then the component vj := v ·dj
are called shear strains for j = 1, 2, and dilatation for j = 3. If the rod is unshearable,

then we have v1 = v2 = 0 and d3 = t. In this case, the directors d1 and d2 lie on a

plane normal to the rod axis. In this case, denoted by ξ the register angle formed by

the normal to the centerline ν(s, t) and the director d1(s, t), i.e.,

ν = cos ξ d1 + sin ξ d2, (2.8)

we get

u1 = −σκ sin ξ, (2.9a)

u2 = σκ cos ξ, (2.9b)

u3 = σ (τ − ∂sξ) . (2.9c)

If the rod is both unshearable and inextensible, namely, σ = |v| = v3 = 1 and d3 = v,

then virtual and current arc length coordinates coincide, i.e., sv = s and `v(t) = `(t).

2.2 Mechanics

Under the quasi-static assumption we impose the static equilibrium in the virtual refer-

ence configuration at all times, such that

∂n

∂sv
(sv, t) + f(sv, t) = 0, (2.10a)

∂m

∂sv
(sv, t) +

∂p

∂sv
(sv, t)× n(sv, t) + l(sv, t) = 0, (2.10b)

where n and m are the resultant contact force and contact couple, whereas f and l the

body force and couple per unit virtual reference length, respectively. Determination of

the current configuration B(t) can be achieved by solving equations (2.10) combined

with a suitable constitutive model and appropriate boundary conditions.

Alternative formulations in the current and initial configuration can be obtained by

a change of variables. In particular, in the current configuration we get

∂n

∂s
(s, t) + σ−1(s, t)f(s, t) = 0, (2.11)

34



2.3 Constitutive laws

∂m

∂s
(s, t) +

∂p

∂s
(s, t)× n(s, t) + σ−1(s, t)l(s, t) = 0, (2.12)

where σ(s, t) = σ(sv(s, t), t) is the elastic stretch.

2.3 Constitutive laws

We assume the rod to be hyperelastic and characterized by a quadratic strain-energy

function W = W (u − u?,v − v?, sv) where u? and v? are the strains in the unstressed

reference configuration.

For extensible and shearable rods, it is typically assumed that

m = ∂yW (u− u?,v − v?, sv), (2.13a)

n = ∂zW (u− u?,v − v?, sv), (2.13b)

where W (y, z, sv) is a continuously differentiable convex function fulfilling the additional

growth condition at infinity

W (y, z, sv)

|y|2 + |z|2 →∞, as |y|2 + |z|2 →∞. (2.14)

For inextensible and unshearable rods, we have s = sv and there is only the consti-

tutive relation for the resultant moment,

m = ∂yW (u− u?), (2.15)

where it is common to assume a quadratic strain-energy function W (y) = 1
2yTKy.

In particular, the energy is usually simplified by taking a diagonal stiffness matrix K,

yielding

m =
∑
j

Kj

(
uj − u?j

)
dj , (2.16)

where K1 and K2 are the principal bending stiffnesses, and K3 is the torsional stiffness.

More specifically, K1 = EI1, K2 = EI2, and K3 = µJ , where E is the Young’s modulus,

µ is the shear modulus, I1 and I2 are the second moments of area, and J is a parameter

depending on the cross-sectional shape.

For isotropic, extensible and unshearable rods, we could consider the constitutive law

for the resultant moment (2.15) together with the following relation between the elastic

stretch and the tension, namely,

n · d3 = EA(σ − 1), (2.17)

where A is the cross-sectional area.

In the absence of external loads and couples, i.e., for f = 0 and l = 0, the static

equilibrium yields n = 0 and m = 0. Then equation (2.15) implies that the visible
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2. GROWING SLENDER PLANT ORGANS

strains coincide with the spontaneous strains that correspond to the unstressed virtual

configuration, Bv(t), while equation (2.17) implies that σ = 1, namely, s = sv.

For slender plant organs such as roots and shoots, a reasonable assumption is to

treat them as unshearable (d3 = ∂sp) and elastically inextensible rods, such that σ =

1 and s = sv, and characterized by the quadratic strain-energy function defined by

expression (2.16). More specifically, assuming rods of circular cross section of radius r

implies that K1 = K2 = EI, where E is the Young’s modulus and I = πr4/4 is the

second moment of inertia, and K3 = µJ where J = 2I and µ = 2E(1 + ν) is the shear

modulus determined by the Poisson’s ratio ν. In passing, we notice that such a modelling

assumption might be refined by considering elliptic cross sections, which provide more

accurate descriptions of some plant organs [45].

2.4 Tip growth

In both roots and shoots, tip (or primary) growth can be modelled as a process localized

at the end of the organ, in a region of constant size `g. This is a reasonable assumption

when modelling short time periods, and it might be refined by introducing a time-

dependent elongation zone `g.

The growth stretch γ and the true strain ε?v are two connected key quantifiers in the

modelling of growth by elongation. Indeed, they define the relative elemental growth rate

(REGR) or relative elongation rate (RER), which is a notion introduced by Erickson and

Sax [46] in order to quantify the growth of plant roots. In our notation, it can be defined

as the material gradient of the Lagrangian velocity field vv(S, t), i.e.,

REGR(sv, t) := grad vv(sv, t) =
∂vv(sv, t)

∂sv
=

∂

∂sv

(
∂sv
∂t

∣∣∣∣
S(sv ,t)

)
. (2.18)

Such a quantity is related to the deformation gradient, F = γ, by means of the relation-

ship grad vv = ḞF−1, which explicitly reads

∂

∂sv

(
∂sv
∂t

∣∣∣∣
S(sv ,t)

)
=

∂

∂t

(
∂sv
∂S

) ∣∣∣∣
S(sv ,t)

∂S

∂sv
=

(
1

γ

∂γ

∂t

) ∣∣∣∣
S(sv ,t)

, (2.19)

thus yielding

REGR(sv, t) =

(
1

γ

∂γ

∂t

) ∣∣∣∣
S(sv ,t)

= ε̇?v(sv, t), (2.20)

where a dot denotes the material time derivative. Equation (2.20) shows the connection

between strain rate and REGR. Since the latter can be experimentally measured by

tracking material markers along the organ [47, 48, 49, 50, 51, 52, 53], tip growth is
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2.4 Tip growth

prescribed by the following coupled problems,

∂sv
∂S

(S, t) = γ(S, t) with sv(0, t) = 0, (2.21a)

1

γ(S, t)

∂γ

∂t
(S, t) = REGR(S, t) with γ(S, 0) = 1, (2.21b)

for S ∈ [0, `0] and t ≥ 0, which can be integrated to get

sv(S, t) =

∫ S

0
e
∫ t
0 REGR(ζ,τ) dτ dζ. (2.22)

In addition, if the solution sv is sufficiently regular, a change of the order of partial

derivatives in (2.21) yields

∂

∂S

(
∂sv
∂t

(S, t)

)
= REGR(S, t)

∂sv
∂S

(S, t), (2.23)

so that by integrating first in space and then in time, we arrive at

sv(S, t) = S +

∫ t

0

∫ sv(S,τ)

0
REGR(s−1

v (ζ, τ), τ) dζ dτ. (2.24)

In particular, we assume that REGR(S, t) = G(S, t) where G is a nonnegative function

that vanishes outside the apical growth zone of constant length `g. In other terms,

G(S, t) = 0 for S ∈ [P (t), `0] where P (t) := S(`v(t) − `g, t) denotes the material point

that exits the growth zone at time t. More precisely, we consider

G(S, t) = H(S − P (t))F (sv(S, t)− sv(P (t), t)) (2.25a)

= H(sv(S, t)− (`v(t)− `g))F (sv(S, t)− (`v(t)− `g)), (2.25b)

where H(·) is the Heaviside function and F : [0, `g] → R+ is a nonzero continuous

function. As stated in the following theorem, P (t) is invertible and we denote by t?(S)

its inverse that is the time at which the material point S exits the growth zone, as its

distance from the tip exceeds `g.

Theorem 2.4.1. Let G be a function of the kind (2.25). Then for all t ≥ 0, sv(·, t)
is monotone increasing (hence invertible). Moreover, P (t) := s−1

v (sv (`0, t)− `g, t) is
monotone increasing (hence invertible).

Proof. In view of equation (2.22), the function sv(·, t) is monotone increasing for any
fixed time t. Moreover, since G(S, t) ≥ 0, also γ(S, ·) is an increasing function for any
fixed S ∈ [0, `0]. Let us now consider t1 < t2 and the map f : [0, `v(t1)] → [0, `v(t2)]
defined as f(ζ) := sv(s

−1
v (ζ, t1), t2). Since γ(S, ·) is increasing, we get

f ′(ζ) =
∂sv
∂S

(s−1
v (ζ, t1), t2)

[
∂sv
∂S

(s−1
v (ζ, t1), t1)

]−1

=
γ(s−1

v (ζ, t1), t2)

γ(s−1
v (ζ, t1), t1)

≥ 1, (2.26)
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2. GROWING SLENDER PLANT ORGANS

for all ζ ∈ [0, `v(t1)]. Moreover, since F is continuous and nonzero, there exists an
interval of positive measure in [`v(t1)− `g, `v(t1)] where f ′ > 1 so that

`v(t2)− sv(P (t2), t2) =

∫ `v(t1)

sv(P (t1),t1)

df

dζ
(ζ) dζ > `v(t1)− s(P (t1), t1) = `g, (2.27)

that is
sv(P (t1), t2) < `0(t2)− `g = sv(P (t2), t2). (2.28)

Finally, since sv(·, t) is monotone increasing, we conclude that P (t1) < P (t2).

In addition, for G of the form (2.25), equation (2.24) yields

`v(t) := sv(`0, t) = `0 +

∫ t

0

∫ `v(τ)

0
H(ζ − (`v(τ)− `g))F (ζ − `v(τ) + `g) dζ dτ

= `0 +

∫ t

0

∫ `v(τ)

max{0,`v(τ)−`g}
F (ζ − `v(τ) + `g) dζ dτ

= `0 +

∫ t

0

∫ `g

max{0,`g−`v(τ)}
F (ζ) dζ dτ, (2.29)

so that, for `0 ≥ `g, we get

`v(t) = `0 + t

∫ `g

0
F (ζ) dζ, (2.30)

which is a linear function of time, regardless of the particular choice of F .

Since the definition of G depends on the solution sv(S, t) itself, in general it is difficult

to solve analytically (2.21). Therefore, we introduce a simple numerical scheme that

might be useful to approximate the solution. More specifically, we first approximate

problem (2.21b) by{
γ(S, t0) = 1,

γ(S, tn+1) = γ(S, tn) [1 + (tn+1 − tn)G(S, tn)] n ≥ 1,
(2.31)

where tn := nh for a sufficiently small time-step h, and then we solve for sv(S, tn) by

integrating γ(S, tn) in space.

In the following we present two cases in which the integral representation (2.22) can

be used to determine an analytical solution to problem (2.21), which are depicted in

Fig. 2.2a,b. Then for three more cases (shown in Fig. 2.2c,d and Fig. 2.3), we solve the

problem numerically and we make use of equation (2.29) to analytically determine the

linear growth of `v(t), for t > t?(0).
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2.4 Tip growth

a b

c d

Figure 2.2: Time evolution of the virtual arc length sv(S, t) for a set of 17 material
points along the plant organ for different functions G of the form (2.25): (a) F (ζ) = k, (b)
F (ζ) = kH(`1−`g−ζ)+k1H(ζ−`g+`1), (c) F (ζ) = 2kζ/`g, (d) F (ζ) = k (1− cos (2πζ/`g)).
Model parameters are `0 = 1 cm, `g = 3 cm, `1 = 2 cm, k1 = 0.05 h−1, and k ' 0.083 h−1.
Notice the black line that denotes the time t∗(S) at which the material point S exits the
growth zone, as its distance from the tip exceeds `g. From [6].

Example 1

Consider G(S, t) = kH(S − P (t)) where k is a positive constant. By means of equa-

tion (2.22),

`v(t) := sv(`0, t) =

∫ `0

0
e
∫ t
0 kH(ζ−P (τ)) dτ dζ =

∫ P (t)

0
e
∫ t
0 kH(ζ−P (τ)) dτ dζ +

∫ `0

P (t)
ekt dζ

= sv(P (t), t) + [`0 − P (t)] ekt = `v(t)− `g + [`0 − P (t)] ekt, (2.32)

whence

P (t) = `0 − `ge−kt and t?(S) =
1

k
ln

(
`g

`0 − S

)
. (2.33)

We recall that t?(S) is the instant of time at which the cell initially located at S stops

elongating and we notice that t?(S)→∞ as S → `−0 , namely, the tip is never going to

stop growing. By combining equations (2.33) with equation (2.22), we arrive at

sv(S, t) =

[1−H (S − (`0 − `g))]S
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2. GROWING SLENDER PLANT ORGANS

+H (S − (`0 − `g))
{
H(t− t?(S)) [max {`0, `g}+ `gkmin {t?(S), t?(S)− t?(0)} − `g]

+ [1−H(t− t?(S))]
[
−(`0 − S)ekt + [1−H(t− t?(0))]`0e

kt

+H(t− t?(0)) [max {`0, `g}+ `gkmin {t, t− t?(0)}]
]}

, (2.34)

whence

`v(t) := sv(`0, t) =

{
`0e

kt if t ≤ t?(0),

max {`0, `g}+ `gk (t−max {0, t?(0)}) if t > t?(0).
(2.35)

Finally, the motion given by (2.34) can be rewritten in the following compact form

sv(S, t) =


S if S ≤ `0 − `g,
`v(t

?(S))− `g if S > `0 − `g and t ≥ t?(S),

`v(t)− (`0 − S)ekt if S > `0 − `g and t < t?(S),

(2.36)

and it is shown in Fig. 2.2a.

Example 2

Drawing inspiration from the REGR profiles experimentally measured in growing roots [50,

54], we consider G as in equation (2.25) with F (ζ) = k+ (k1−k)H (ζ − (`g − `1)) where

k, k1 > 0 and 0 < `1 < `g. Upon defining

P1(t) := s−1
v (sv(`0, t)− `1, t), (2.37)

we get

G(S, t) = H(S − P (t)) [k1H(S − P1(t)) + k (1−H(S − P1(t)))]

=


0 if S ≤ P (t),

k if P (t) < S ≤ P1(t),

k1 if P1(t) < S ≤ `v(t).
(2.38)

We first determine the functions P and P1 together with their inverse. We notice that

`v(t) := sv(`0, t) =

∫ S

0
e
∫ t
0 H(ζ−P (τ))[k1H(ζ−P1(τ))+k(1−H(ζ−P1(τ)))] dτ dζ

= sv(P1(t), t) +

∫ S

P1(t)
ek1t dζ = `v(t)− `1 + [`0 − P1(t)] ek1t, (2.39)

whence

P1(t) = `0 − `1e−k1t and t?1(S) =
1

k1
ln

(
`1

`0 − S

)
. (2.40)
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2.4 Tip growth

Moreover,

`v(t) := sv(`0, t) =

∫ S

0
e
∫ t
0 H(ζ−P (τ))[k1H(ζ−P (τ))+k(1−H(ζ−P1(τ)))] dτ dζ

= sv(P (t), t) +H(P (t)− (`0 − `1))

∫ P1(t)

P (t)
ek1t+k(t−t?1(ζ)) dζ

+ [1−H(P (t)− (`0 − `1))]

[∫ `0−`1

P (t)
ekt dζ +

∫ P1(t)

`0−`1
ek1t?1(ζ)+k(t−t?1(ζ)) dζ

]

+

∫ `0

P1(t)
ek1t dζ

= `v(t)− `g +H(P (t)− (`0 − `1))

∫ P1(t)

P (t)
ekt
(

`1
`0 − ζ

)1− k
k1

dζ

+ [1−H(P (t)− (`0 − `1))]

[
(`0 − `1 − P (t))ekt +

∫ P1(t)

`0−`1
ekt
(

`1
`0 − ζ

)1− k
k1

dζ

]
+ [`0 − P1(t)] ek1t

= `v(t)− (`g − `1) +H(P (t)− (`0 − `1))`1
k1

k

[(
`0 − P (t)

`1

)k/k1

ekt − 1

]

+ [1−H(P (t)− (`0 − `1))]

[
(`0 − `1 − P (t))ekt + `1

k

k1

(
ekt − 1

)]

= `v(t) +


`1

[
1− k1

k −
(

1− k1
k

)
ekt
]

+ (`0 − P (t))ekt − `g if P (t) < `0 − `1,

`1

[
1− k1

k + k1
k

(
`0−P
`1

) k
k1 ekt

]
− `g if P (t) ≥ `0 − `1.

(2.41)

Then we deduce that

P (t) =


`0 −

[
`g − `1

(
1− k1

k (1− ekt)
)]
e−kt if t ≤ 1

k ln
(

1 + k
k1

(
`g
`1
− 1
))

,

`0 − `1
[
1 + k

k1

(
`g
`1
− 1
)] k1

k
e−k1t otherwise,

(2.42)

whose inverse is

t? (S) =


1
k ln

(
k1`1+k(`g−`1)

k1`1+k(`0−`1−S)

)
if S ≤ `0 − `1,

1
k ln

(
1 + k

k1`1
(`g − `1)

)
+ 1

k1
ln
(

`1
`0−S

)
if S > `0 − `1.

(2.43)

We next notice that∫ t

0
G(ζ, τ) dτ =

∫ t

0
H(ζ − P (τ)) [k1H(ζ − P1(τ)) + k (1−H(ζ − P1(τ)))] dτ
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=



0 if ζ ≤ `0 − `g,
kt?(ζ) if `0 − `g < ζ ≤ min {`0 − `1, P (t)} ,
kt if P (t) < ζ ≤ `0 − `1,
k1t

?
1(ζ) + k[t?(ζ)− t?1(ζ)] if `0 − `1 < ζ ≤ P (t),

k1t
?
1(ζ) + k[t− t?1(ζ)] if max {P (t), `0 − `1} < ζ ≤ P1(t),

k1t if ζ > P1(t),

(2.44)

and equation (2.22) can be used to deduce the following expression for the total virtual

length, namely,

`v(t) =


`0e

k1t t ≤ t?1(0),[
max {`0 − `1, 0}+ `1

k1
k

]
ek(t−max{0,t?1(0)}) + `1(1− k1

k ) t?1(0) < t ≤ t?(0),

max {`0, `g}+ [(`g − `1)k + `1k1] (t−max {0, t?(0)}) t > t?(0),

(2.45)

for any t > 0. Finally, we arrive at

sv(S, t) =



S if S ≤ `0 − `g,
`v(t)− (`0 − S)ek1t if S > `0 − `g and t ≤ t?1(S),

`v(t)− `g + (S − P (t))ekt if S > `0 − `g and

t?1(S) < t ≤ t?(S) ≤ t?(`0 − `1),

`v(t)− `1 − `1 k1
k

[
ek(t−t

?
1(S)) − 1

]
if S > `0 − `g, t?1(S) < t ≤ t?(S) and

t?(S) > t?(`0 − `1),

`v(t
?(S))− `g if S > `0 − `g and t > t?(S),

(2.46)

which is illustrated in Fig. 2.2b.

Example 3

Inspired by the REGR profiles experimentally measured in growing Arabidopsis thaliana

inflorescence stems by Phyo et al. [53], we consider G as in equation (2.25) with a linear

function F (ζ) = 2kζ/`g where k > 0. For `g ≤ `0, we have `g ≤ `v(t) so that

`v(t) = `0 +

∫ t

0

∫ `g

0
F (ζ) dζ dτ = `0 +

k

`g

∫ t

0

∫ `g

0
2ζ dζ dτ = `0 + `gkt. (2.47)

Fig. 2.2c shows the numerical solution of the problem (2.21) corresponding to such a

choice.
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Example 4

Drawing inspiration from the REGR profiles measured by Hall and Ellis [52], we consider

G as in equation (2.25) with F (ζ) = k (1− cos (2πζ/`g)) where k > 0. By assuming that

`g ≤ `0, we get

`v(t) = `0 +

∫ t

0

∫ `g

0
F (ζ) dζ dτ = `0 + kt

∫ `g

0

[
1− cos

(
2πζ

`g

)]
dζ

= `0 + kt

[
ζ − `g

2π
sin

(
2πζ

`g

)]`g
0

dζ = `0 + `gkt. (2.48)

A numerical solution of the problem (2.21) corresponding to such a choice is illustrated

in Fig. 2.2d.

Figure 2.3: Time evolution of the virtual arc length sv(S, t) for a set of 17 material
points along the plant organ for different functions G of the form (2.25) with F (ζ) =
(2k/`g) [1− cos (2πζ/`g)] ζ. Model parameters are `0 = 0.9 cm, `g = 3 cm and k = 0.05 h−1.
Notice the black line that denotes the time t∗(S) at which the material point S exits the
growth zone, as its distance from the tip exceeds `g. From [6].

Example 5

Consider G as in equation (2.25) with F (ζ) = (2k/`g) [1− cos (2πζ/`g)] ζ where k > 0.

For `g ≤ `0, we get

`v(t) = `0 +

∫ t

0

∫ `g

0
F (ζ) dζ dτ = `0 +

k

`g
t

∫ `g

0
2ζ

[
1− cos

(
2πζ

`g

)]
dζ
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= `0 +
k

`g
t

[
ζ2 −

`2g
2π2

cos

(
2πζ

`g

)
− ζ`g

π
sin

(
2πζ

`g

)]`g
0

= `0 + `gkt. (2.49)

Fig. 2.3 shows sv(S, t) as numerically computed by means of the numerical scheme (2.31).

2.5 Differential growth and evolution laws

The shape of growing plant roots and shoots evolves and adapts by responding to a va-

riety of stimuli. The main morphing mechanism consists in a spatially nonhomogeneous

growth rate of the cross section, called differential growth. For any cross section sv and

time t, equation (2.20) can be used to extend the notion of relative elemental growth rate

to any point (x, y) of the cross section: We denote it by ε̇?v(sv, t;x, y), cf. Appendix B.1.

Then, by a Taylor expansion about the center of the cross section we arrive at

ε̇?v(sv, t;x, y) = ε̇?v(sv, t) + δv(sv, t) · (xdv1(sv, t) + y dv2(sv, t)) + o(
√
x2 + y2), (2.50)

where x and y are the coordinates of the point in the local basis {dv1,dv2}, and

δv(sv, t) :=∇ε̇?v(sv, t; 0, 0) = u̇?1(sv, t)d
v
2(sv, t)− u̇?2(sv, t)d

v
1(sv, t) (2.51)

is the growth gradient on the virtual cross section sv at time t. Hence the corresponding

growth gradient in the current configuration is given by

δ(s, t) = u̇?1(s, t)d2(s, t)− u̇?2(s, t)d1(s, t), (2.52)

which is orthogonal to the axis of bending, see Fig. 2.4a.

Equation (2.52) reveals the connection between differential growth and spontaneous

strain rates. Indeed when the growth rate of the cross section is affine, or the organ radius

is small enough to justify a linearization, the prescription of the growth gradient δ results

in the evolution laws for the spontaneous flexural strains u?1 and u?2. We observe that the

contribution of the torsional strain u?3 to the growth gradient is negligible. Nevertheless,

it could play a crucial role in other growth mechanisms, such as that observed in twining

plants.

In the presence of n different stimuli, we assume a weighted average of their respective

growth gradients defined on the current cross section. In other terms, the overall growth

gradient of the circular cross section of radius r is determined by

δ =
n∑
j=1

δj with δj(s, t) :=
ε̇?v(s, t)

r

∫ t

−∞
µj(s, τ ; t)kj1(s, τ ; t) dτ, (2.53)

44



2.5 Differential growth and evolution laws

where µj(s, τ ; t)kj1(s, τ ; t) is the vector on the current cross section that defines the con-

tribution to the growth gradient from the j-th stimulus sensed at time τ . Equation (2.53)

can be projected on the local basis {d1,d2} to get

u̇?1(s, t) =
ε̇?v(s, t)

r

n∑
j=1

∫ t

−∞
µj(s, τ ; t)kj1(s, τ ; τ) · d2(s, τ) dτ, (2.54a)

u̇?2(s, t) =− ε̇?v(s, t)

r

n∑
j=1

∫ t

−∞
µj(s, τ ; t)kj1(s, τ ; τ) · d1(s, τ) dτ, (2.54b)

b

(s, τ)

d1(s, τ )

d2(s, τ )

k1(s, τ ; τ )

R(s; τ, t)

(s, t)

d1(s, t)

d2(s, t)

k1(s, τ ; t)

k1(s, t; t)

a

δ(s, t)

Figure 2.4: (a) Level curves of an affine strain rate having gradient δ, on the cross section
(s, t); the axis perpendicular to δ is the one about which bending occurs as due to differential
growth. (b) Time evolution of the material cross section. R(s; τ, t) is the rotation mapping
dj(s, τ) into dj(s, t), whereas k1(s, τ ; t) denotes the contribution to the growth gradient at
time t due to a stimulus sensed at time τ . From [6].

where we have used the fact that the contribution to growth sensed at a certain time

τ is fixed in the frame of the directors, namely, k1(s, τ ; t) = R(s; τ, t)k1(s, τ ; τ) where

R(s; τ, t) is the rotation that maps dj(s, τ) into dj(s, t), as illustrated in Fig. 2.4b.

In passing, we notice that equations (2.54) describe a response of a material cross

section to a stimulus sensed at the very same location. However, they might be adapted

to the case of nonlocal responses, as it occurs for gravitropic reactions of roots [55].

Moreover, these expressions allow to include memory and delay effects, as done in recent

studies [13, 15], and the instantaneous models are recovered as special cases by choosing

the Dirac delta as response function.

In the following we discuss the plant response to different stimuli: Endogenous pre-

scription (e.g, internal oscillators), reorientation to align the organ axis with a given

vector (e.g., gravitropism or phototropism), and straightening mechanism (i.e., propri-

oception).
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2. GROWING SLENDER PLANT ORGANS

2.5.1 Endogenous cues

Inspired by the Darwinian concept of internal oscillator, we implement an endogenous

driver for the differential growth mechanism. Several studies on plant growth and nu-

tations have revealed a strong correlation between oscillatory movements and biological

rhythms [48, 56, 57, 58, 59, 60] and three-dimensional models including endogenous

mechanisms have already been proposed [14, 61]. In our framework, we extend such

approaches by assigning a growth direction in the stem cross section s at time t, namely,

δe(s, t) = α(s, t)
ε̇?v(s, t)

r
[ve1(s, t)d1(s, t) + ve2(s, t)d2(s, t)] , (2.55)

where α is a scalar dimensionless sensitivity parameter and (ve1, v
e
2) are the prescribed

growth components in the local basis. As an example, we consider a spatially uniform

time-harmonic oscillator, such that

δe(s, t) =
α

r
ε̇?v(s, t) [cos (2πt/τe) d1(s, t) + sin (2πt/τe) d2(s, t)] , (2.56)

where τe is the period of endogenous oscillations and α is constant.

2.5.2 Reorientation under directional cues

Any vector stimulus s sensed in the current configuration, towards (or away from) which

the plant organ aligns via differential growth (e.g., gravitropism and phototropism for a

far light source), contributes to growth gradient via its projection on the plane (d1,d2),

such that

ks1 :=
(I− d3 ⊗ d3)s

||(I− d3 ⊗ d3)s|| =
s− (d3 · s)d3

||s− (d3 · s)d3||
, (2.57)

where I denotes the identity operator. Notice that the direction of null differential

growth, about which the organ bends, is given by ks2 := d3 × ks1. Then the growth

gradient associated with the stimulus s can be written as

δs(s, t) :=
ε̇?v(s, t)

r

∫ t

−∞
µs(s, τ ; t)ks1(s, τ ; t) dτ, (2.58)

for an appropriate choice of the response function µs.

2.5.2.1 Gravitropism

Gravity is a major stimulus for growing plant organs, which adjust their shape to align

towards or against the vector of gravitational acceleration g := −e2, being negatively

or positively gravitropic, respectively. Experimental studies identified the gravity per-

ception of plants with the sedimentation of starch-filled plastids, called statoliths, into

specialized cells, called statocytes, which are found along the shoot growing zone and
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2.5 Differential growth and evolution laws

at the root tips [13, 55]. Therefore, when applying equation (2.57) to gravitropic re-

sponses, there are at least two choices for the stimulus s: Either we consider the vector

of gravitational acceleration g or the local inclination as perceived by the gravity sensing

apparatus (see Fig. 2.5). These two possibilities are described more in detail below.

e2

d2

d1
kg
1

kg
2

kg
3 =d3

e2

kh
2

h

d2

d1

kh
1

kh
3 =d3

a b c

Figure 2.5: (a-b) Illustration of the orthonormal bases exploited to define the gravitropic
responses. (a) The basis {kg

1,k
g
2,k

g
3} is constructed by defining kg

1 as the unit vector lying
on the stem cross section and having the most negative e2-component, and setting kg

3 := d3

and kg
2 := kg

3×kg
1. (b) The basis

{
kh
1 ,k

h
2 ,k

h
3

}
is constructed in a similar manner by defining

the unit vector laying on the stem cross section having the most negative h-component, kh
1 ,

and considering kh
3 := d3 and kh

2 := kh
3 × kh

1 . (c) Sketch of a single statocyte cell where h
is the average outer normal to the free surface of the pile of statoliths. From [6].

Sachs’ sine law. In its classical version, the well-known phenomenological sine law

by Sachs [62] assumes the plant graviresponse to be proportional to the angle between

the direction of the organ axis and the gravity vector, thus neglecting the microscopic

description of how gravity is sensed. In other terms, it approximates the stimulus s with

the vector of gravitational acceleration g := −e2, so that

kg1 :=
(I− d3 ⊗ d3) (−e2)

|| (I− d3 ⊗ d3) (−e2)|| =
(d3 · e2)d3 − e2

||(d3 · e2)d3 − e2||
=
d32d3 − e2√

1− d2
32

, (2.59a)

kg2 :=
d3 × kg1
||d3 × kg1||

= − d3 × e2√
1− d2

32

=
d33e1 − d31e3√

1− d2
32

, (2.59b)

kg3 := d3, (2.59c)

where dji := dj · ei (see Fig. 2.5a). By definition, the vector kg2 indicates the direction

of null differential growth and the sine law implies that the response function associated

with gravitropism, µg, is proportional to kg1 · e2 = − sin(angle between d3 and e2) =

−
√

1− d2
32.
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2. GROWING SLENDER PLANT ORGANS

The statoliths dynamics. If compared to the purely phenomenological model of

Sachs’ sine law, plant gravitropic responses can be refined by including the dynamics

of the statoliths avalanche in plant cells. Indeed, this is the microscopic mechanism

through which plant shoots and roots perceive the direction of gravity [13, 55]. In this

case, we can assume the stimulus s to be given by the average outer normal to the free

surface of the pile of statoliths, h, so that

kh1 =
(I− d3 ⊗ d3)(−h)

||(I− d3 ⊗ d3)h|| = −h1d1 + h2d2√
h2

1 + h2
2

, (2.60a)

kh2 =
d3 × kh1
||d3 × kh1 ||

=
h2d1 − h1d2√

h2
1 + h2

2

, (2.60b)

kh3 = d3, (2.60c)

as shown in Fig. 2.5b,c. Consequently, the corresponding response function must be

proportional to the sine of the angle formed by h and d3, namely, kh1 · h = −
√
h2

1 + h2
2.

Figure 2.6: Statoliths avalanche dynamics in a statocyte. The motion of the free surface of
piled statoliths can be decomposed into two rotations as in (2.61): ĥ(t) = Ra(t)h(0) is the

orientation as described by an observer co-moving with the directors and h(t) = Rd(t)ĥ(t)
is the orientation as seen by an external observer. Here the unit vector h is parameterized
by two angles defined with respect to the directors: θh is the angle between h and d1 and
αh is the angle between (I− d1 ⊗ d1)h and d2.

As for the time evolution of h, we model it as a viscous relaxation to −g, thus

extending the approach taken by Chauvet et al. [13] to the three-dimensional case.

In order to derive the governing equations, we decompose the motion of h into two

dynamics, namely,

h(t) = Rd(t)Ra(t)h(0), (2.61)

where, for any t, Ra(t) and Rd(t) are rotations, as shown in Fig. 2.6.1 Here, Ra(t) can

be thought of as the viscous relaxation of the statoliths pile relative to the statocyte

1Notice that here the dependence on the cross section coordinate s is omitted for brevity.
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2.5 Differential growth and evolution laws

so that ĥ(t) := Ra(t)h(0) is the dynamics as described by an observer co-moving with

the directors, while Rd(t) is the rotation of the material frame, that is, of the statocyte

itself. We prescribe the dynamics of ĥ as a viscous relaxation towards Rd(t)
Te2, i.e.,

˙̂
h(t) = − 1

τa

(
Rd(t)

Te2 × ĥ(t)
)
× ĥ(t), (2.62)

where τa is the characteristic time scale for the statoliths avalanche dynamics. By taking

the time derivative of equation (2.61) and making use of equation (2.62), we arrive at

ḣ(t) =
(
Ṙd(t)Ra(t) + Rd(t)Ṙa(t)

)
h(0)

= Ṙd(t)Rd(t)
Th(t) + Rd(t)Ṙa(t)Ra(t)

T ĥ(t)

= w(t)× h(t) + Rd(t)

[
− 1

τa

(
Rd(t)

Te2 × ĥ(t)
)
×Rd(t)

Th(t)

]
=

(
w(t) +

1

τa
h(t)× e2

)
× h(t), (2.63)

where w(t) is the spin, namely, the axial vector associated with Rd(t). In other terms,

ḣ(t)−w(t)× h(t) =
1

τa
(h(t)× e2)× h(t), (2.64)

and, by using the kinematic relationship ḋj = w × dj , we get∑
j

ḣj(t)dj(t) =
1

τa
(h(t)× e2)× h(t), (2.65)

where hj := h · dj . In terms of components, equation (2.65) reads

ḣj(t) =
1

τa
[dj2(t)− (h(t) · e2)(h(t) · dj(t))]

=
1

τa

[
dj2(t)− hj(t)

∑
i

hi(t)di2(t)

]
∀j, (2.66)

where dij := di ·ej for all i, j = 1, 2, 3. However, we notice that the components of h are

not independent one from the other, due to the constraint on the norm, i.e., ||h|| = 1.

Then, from the practical point of view, it is convenient to parameterize h with two angles

defined with respect to a certain frame of reference. One possibility is to consider the

angles that h forms with d1 and d2, as shown in Fig. 2.6. In this case, θh is the angle

between h and d1, while αh is the angle between (I− d1 ⊗ d1)h and d2, so that

h = cos θhd1 + sin θh cosαhd2 + sin θh sinαhd3. (2.67)

Then

ḣ1 = −θ̇h sin θh, (2.68a)
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2. GROWING SLENDER PLANT ORGANS

ḣ2 = θ̇h cos θh cosαh − α̇h sin θh sinαh, (2.68b)

ḣ3 = θ̇h cos θh sinαh + α̇h sin θh cosαh, (2.68c)

whence

cos θh

(
ḣ2 cosαh + ḣ3 sinαh

)
− ḣ1 sin θh = θ̇h, (2.69a)

ḣ3 cosαh − ḣ2 sinαh = α̇h sin θh. (2.69b)

Therefore, for sin θh 6= 0, equations (2.69) provide the evolution laws (2.65) in terms of

the angles θh and αh.

2.5.2.2 Phototropism

For light sources that are sufficiently far, also phototropic reactions can be included

among the plant responses to directional cues. In this case, denoted by ` the vector

defining the light direction, we can define the orthonormal right-handed basis

k`1 =
(` · d3)d3 − `
||(` · d3)d3 − `||

, k`2 =
`× d3

||`× d3||
, and k`3 = d3, (2.70)

where k`1 determines the point of the cross section that is the most exposed to the

stimulus and k`2 is the zero differential growth direction. Then, as for the response

function, it needs to be proportional to a sensitivity depending on the fluence rate of the

incident light. More precisely, two phenomenological laws are commonly used, namely,

either a power law or a logarithmic relation (cf. [63] and references cited therein).

2.5.3 Proprioception

A number of experimental studies have pointed out the existence of an indepen-

dent straightening mechanism, often referred to as proprioception, autotropism or au-

tostraightening, which is triggered by bending of the organ [64]. Following recent ap-

proaches [14, 65], we assume that such a straightening response is driven by the geometric

curvature of the organ, i.e., κ = σ−1(u2
1 +u2

2)1/2, thus producing a growth gradient par-

allel to the visible normal vector ν := κ−1∂st, where t = ∂sp is the tangent to the rod

axis. In other terms, we prescribe

δp(s, t) := ε̇?v(s, t)

∫ t

−∞
µp(s, τ ; t)ν dτ, (2.71)

for an appropriate response function µp that is proportional to κ.
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2.6 Remodelling of other material properties

2.6 Remodelling of other material properties

While the rod is growing, some material parameters might undergo changes that can be

included by means of a remodelling procedure. For instance, plant growth is typically

accompanied by lignification processes that determine the evolution of the mechanical

properties of the organ. Then, in the current framework, this can be accounted for

by rod stiffening, adapting the approach taken by Chelakkot and Mahadevan [66]; in

particular, we can assume the Young’s modulus to evolve in time according to

E(sv, t) = E1 − (E1 − E0) e
− 1
τ`

max{0,t−t?(S(sv ,t))}, (2.72)

where t?(S) is the time at which the material point S exits the growth zone, τ` is the

lignification characteristic time, whereas E0 and E1 are the minimum and maximum

values of the Young’s modulus, respectively.

2.7 Discussion

Building on the general framework of morphoelasticity, we have introduced a rod model

capable of describing three-dimensional motions of growing plant organs and that ac-

counts for directional responses driven by differential growth. These include any plant

response that aligns the organ axis with a directional stimulus, e.g., gravitropism and

phototropism (for a far light source) as well as straightening mechanisms triggered by

curvature perception.

Some models previously proposed in the literature can be derived as limit cases of

the present one by assigning suitable response functions and by either constraining the

organ to a plane [5, 66] or disregarding elastic deformations [61] or both [13, 15, 65]. We

believe that these features, namely, three-dimensionality and elasticity, play a crucial

role in many phenomena and cannot be disregarded. The framework proposed in this

chapter is intended as a test bed for different hypotheses, that may provide new biological

insight, and it is exploited to study circumnutations of plant shoots in Chapter 3.

In concluding, we remark the fact that this framework may be useful also in the con-

text of bioinspired soft robotics, which has recently started to draw inspiration from the

plant kingdom to conceive and design innovative adaptable robots and smart-actuation

strategies [67].
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Chapter 3

Nutations in plant shoots

Movements of growing plant organs are very complex and far from being completely

understood. The observable shape of a plant is the specific result of its unique history

of endogenous and exogenous factors. Discerning whether certain dynamics are encoded

in the biology of the system or they represent the mechanical and physiological reaction

to external cues, or a combination of both, is a fundamental question that has intrigued

and puzzled many scientists over the past two centuries.

Movements in plants are mainly classified in tropisms and nastic movements.

Tropisms are the directed growth responses to directional environmental cues, e.g., light

(phototropism), gravity (gravitropism), touch (thigmotropism), etc, while nastic move-

ments are motions responding to external stimuli which are independent of the position

of the stimulus source, e.g., temperature (thermonasty), chemicals (chemonasty), touch

(thigmonasty), etc.

This classification fails to include circumnutation movements, i.e., circular, elliptical

or pendular oscillations of elongating plant organs (exemplified in Fig. 2 for Arabidop-

sis thaliana Col-0), which are caused by radially asymmetric growth rates that have

uncertain origin. The first reports about circumnutations can be traced back to the

19th century and, since then, many different terms have been used in the literature to

refer to such a phenomenon. Indeed, Palm [68] talked about twining, von Sachs [69]

used the term revolving nutation, Darwin [9] coined the term circumnutation, Noll [70]

reported about rotating nutations, Gradmann [17] about over-bending movements, Raw-

itscher [71] about circular movements, Bünning [72] about circumnasty, and Hammer

and Gessner [73] about growth oscillations.

It seems widely accepted that circumnutations are the consequence of helical growth

and reversible cell volume variations [74]. However, consensus on the regulatory mech-

anism of circumnutations has not been reached yet, with opinions split between two

main theories: Circumnutations can be explained either by endogenous mechanisms or

as internal responses to exogenous stimuli. In the first case, circumnutations should con-
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3. NUTATIONS IN PLANT SHOOTS

stitute a class of movements on their own [75], whereas in the second case, they should

be included among tropisms or nastic movements.

Darwin [9] was probably the first one to suggest an endogenous feature of circumnu-

tations whose “amplitude, or direction, or both have only to be modified for the good of

the plant in relation with internal or external stimuli”. Theories supporting this point of

view included hormonal and ionic oscillations with gravity acting as an external signal.

Arnal [76] proposed periodic variations in auxin fluxes from the tip and Joerrens [77]

hypothesized periodic changes in the sensitivity of the elongating cells to auxin. Heath-

cote and Aston [78] formulated the theory of a nutational oscillator situated in each cell.

Studying shoots in Phaseolus Vulgaris L., Millet et al. [79, 80] and Badot et al. [81]

proposed a primary mechanism residing in the moving of a turgescence wave around the

shoot, also related to K distribution. More recently, Shabala et al. [56, 57] observed

strong correlations between nutation and rhythmical patterns of H+, K+ and Ca2+ ion

fluxes in the elongation region of corn roots.

On the other side, Gradmann [82] introduced the idea that circumnutations could be

the result of delayed gravitropic responses: The deviation from the vertical line triggers

a correcting movement that, due to a reaction time between perception and actuation,

makes the plant overshoot giving rise to self-sustained oscillations. Building on this,

Israelsson and Johnsson [83], and Somolinos [84] showed that a model describing the

plant gravitropic response based on delay and memory could explain circumnutations.

Later, observing an autotropic straightening to a vertical position in Avena seedlings

during weightlessness experiments, Chapman et al. [85] adapted the model proposed by

Israelsson and Johnsson [83] by including such autotropic effects.

The debate about the role of gravity for the induction or continuation of circumnu-

tations persisted and has been fueled by new experiments on Earth and in space over

the last few decades [86, 87, 88]. On the one hand, the study of agravitropic mutants

in morning glory, pea and arabidopsis supported the idea that graviresponse is required

in both the shoots and roots of dicotyledonous plants [89, 90, 91, 92]. On the other

hand, many experimental results have been interpreted as corroborating the Darwinian

theory of endogenous oscillations affected by graviresponses. Based on experiments in

microgravity reported by Brown et al. [93, 94], Johnsson et al. [18] suggested a two-

oscillator model by combining the gravitropic feedback oscillator with an endogenous

oscillator. Performing experiments on the gravitropic rice mutant lazy1, Yoshihara et

al. concluded that circumnutation and gravitropism are separate (although interfering)

phenomena [95]. Moreover, “minute oscillatory movements in microgravity” have been

observed by Johnsson et al. [96] in A. thaliana and, more recently, also Kobayashi et

al. [88] reported minute movements in rice coleoptiles in microgravity, although cau-

tiously stressing the fact that such movements were difficult to measure and it was

“technically difficult to determine whether they were truly circumnutation or not”.
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In addition, another important unsolved issue is to which extent the role of gravity

depends on the plant organs or species. For instance, tillers of the rice mutant lazy1

behave differently from coleoptiles [97], and evolutionary benefits are obvious for twining

plants in search of mechanical support. In any case, it is clear that considerable devia-

tions from the plumb line will cause a gravitropic reaction, possibly interfering with an

endogenous oscillator (assuming this oscillator exists). This is the reason why gravit-

ropism plays a crucial role when dealing with circumnutations. In general, the study of

any kind of tropism consists in understanding the mechanisms of stimulus perception,

signal transduction and response.

The concept of tropism was introduced by Knight in 1806 but only recently “the data

converged to provide a picture of the physiological, molecular and cell biological processes

that underlie plant tropisms” [98]. About gravitropism, it is widely accepted that plants

sense gravity in specialized cells (statocytes) through the sedimentation of starch-filled

plastids (statoliths) that are denser than the surrounding cellular fluid. This leads to

the development of an asymmetry in auxin concentration between the upper and lower

flanks, causing differential cell elongation and hence bending.

The standard way to model gravitropism goes back to von Sachs, who formulated the

so-called sine law stating that the graviresponse is proportional to the sine of the angle

formed by the vertical and the organ axis [62]. An important modification to the sine

law has been introduced by Bastien et al. [65, 99], who included a proprioceptive term

to describe the phenomenon of organ straightening, often referred to as autotropism.

However, in the last few decades, an apparent contradiction emerged when testing this

law: Under permanent inclination, the response of the plant appeared to be indepen-

dent of effective gravity, whereas, under transient gravi-stimulation, the graviresponse

was quantified by a dose-response curve, the dose depending on the stimulation time

and the effective gravity [13]. By introducing a memory process in the gravitropic sig-

nalling pathway (using an approach already proposed in [83] and similarly taken in [15])

and a microscropic description of the statoliths dynamics, Chauvet et al. [13] identified

four time-scales regulating the graviresponse. In this unified framework, the gravity-

independent sine law is recovered when the stimulation is long enough compared to the

statolith avalanche duration and the memory time, while dose-responses are obtained

either when the time of the stimulation is shorter than the avalanche time or when it is

longer than that but shorter than the memory time.

In this scenario, elastic deformations due to gravity loading have been often over-

looked. Here, building on the observation that growing shoots often appear as elongated

biological structures of significant weight relative to their stiffness, we focus on the role

that elasticity may have on the nutational movements. We analyze these movements

as a Hopf bifurcation phenomenon in a three-dimensional model for elongating plant

shoots that is derived from the theory of morphoelastic rods presented in Chapter 2. As
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discussed in the present chapter, we calibrate the model in agreement with results from

the relevant literature and we identify the regime of model parameters for which the

bifurcation is likely to occur. We find that, in the presence of gravity, the bifurcation

is associated with the shoot length exceeding a critical value `? that depends on several

parameters. These include the growth time τg, the characteristic times of gravitropism

and proprioception, namely, the memory times τm and τ̄m, and the reaction times τr
and τ̄r, as well as morphological and biomechanical parameters, such as the organ radius

r, the mass density ρ, and the stiffnesses Kj . The presence of a proprioceptive term

has an influence on the value of `? but it does not hinder the bifurcation phenomenon.

In addition, proprioception may induce spontaneous oscillations when the growth rate

exceeds a critical value 1/τ?g , which is independent of the shoot length. As already

proposed in previous studies, this feature may provide an explanation for oscillations

in microgravity conditions [18]. However, the value of τ?g that we find with our model

calibration turns out to be one order of magnitude smaller than reported experimental

observations. Finally, in the presence of oscillations of endogenous origin, their relative

importance with respect to the ones associated with the flutter mechanism varies in time

as the biomechanical properties and the shoot length change. When all the parameters

but the shoot length are fixed, elastic deformations due to gravity loading become in-

creasingly important as the plant organ grows, and the oscillations associated with the

flutter mechanism become dominant over those of endogenous origin. In intermediate

regimes, we find trochoid-like patterns that are reminiscent of the trajectories observed

by Schuster and Engelmann [58] in the hypocotyls of Arabidopsis thaliana.

3.1 A toy model: The gravitropic spring-pendulum

We begin our study on circumnutations of growing shoots by exploring the dynamics

of a prototypical system consisting of an upward vertical pendulum supported by a

“gravitropic” torsional spring which adapts its rest angle to reorient the pendulum in the

direction opposite to gravity. This one-degree-of-freedom model is extremely simplistic

but we find it instructive as it captures the essence of the problem and provides a guide

for the analysis of the rod model studied in the following sections.

More specifically, let us consider a rigid bar of length `, hinged at the bottom and

supported by a spring of torsional stiffness B > 0, see Fig. 3.1a. The bar carries its

weight, modelled by a vertical distributed load of magnitude q, and is confined to the

plane (e1, e2) so that its configuration is determined at any time t by the angle θ(t) with

respect to the vertical.

Equilibrium of the pendulum under the prescribed distributed load requires that

m(θ, θ0) =
1

2
q `2 sin θ, (3.1)
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3.1 A toy model: The gravitropic spring-pendulum

where m(θ, θ0) is the torque exerted by the spring. As for its constitutive characteriza-

tion, we consider the affine law

m(θ, θ0) = B (θ − θ0) , (3.2)

where θ0 is the time-dependent rest angle for which we assume the following time evo-

lution law

θ̇0(t) = − β

τgτm

∫ t−τr

−∞
e−

1
τm

(t−τr−τ) sin θ(τ) dτ, (3.3)

where a dot denotes differentiation with respect to time. In the equation above, β ≥ 0

ba

c

Figure 3.1: (a) A sketch of the one-degree-of-freedom gravitropic spring-pendulum system
discussed in the manuscript. (b) Real (solid lines) and imaginary (dashed lines) part of the
roots of the characteristic equation (3.11) as functions of y ∈ [0, 1] for τ1 = 1, τ2 = 0.01,
and β = 0.8. We distinguish three regions corresponding to three distinct behaviours of the
fixed point θ̂ ≡ 0: (i) a stable node (light blue), (ii) a stable spiral (orange), and (iii) an
unstable spiral converging to a stable limit cycle (green). (c) Numerical solutions of the
nonlinear discrete delay differential equation (3.6) at increasing values of the parameter y

and for θ̂(t̂) = 0.01 for t̂ ≤ 0. Specifically, the angular coordinate θ̂ is reported as a function
of dimensionless time t̂ for y = 0.9 (light blue curve), y = 0.99 (orange curve), and y = 0.995
(green curve). Adapted from [5].

is the dimensionless gravitropic sensitivity, τg > 0 is the characteristic time for the

evolution of the rest angle, τr ≥ 0 is the geotropic reaction time or delay, whereas τm > 0

is a parameter of the exponential weighting function defining the plant’s memory of the
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3. NUTATIONS IN PLANT SHOOTS

stimulus. The evolution law (3.3) was initially proposed by [83] to model the response of

growing plants to gravi-stimulation. This has been recently improved by [13] to account

for the dynamics of statoliths sedimentation, as discussed in the manuscript.

For the special case of β = 0 the time evolution of the rest angle is inhibited. It

follows that θ0(t) ≡ 0, such that the vertical configuration is an equilibrium which loses

stability as the length of the pendulum exceeds a critical value `c. This can easily be

computed through a stability analysis of the spring-pendulum system, leading to

`c :=

√
2B

q
. (3.4)

Our goal is to consider the more general case of β 6= 0 and to explore the behaviour

of the spring-pendulum system as its length increases. We anticipate that our analysis

reveals that the trivial equilibrium (θ, θ0) = (0, 0) undergoes a supercritical Hopf bifur-

cation at a pendulum length of the order of `c. To that aim, we proceed by taking the

derivative of the balance equation (3.1). Substitution of (3.3) leads to

θ̇(t)

(
1− q `2

2B
cos θ(t)

)
= − β

τgτm

∫ t−τr

−∞
e−

1
τm

(t−τr−τ) sin θ(τ) dτ, (3.5)

such that by a further differentiation with respect to time we arrive at(
1− q `2

2B
cos θ(t)

)(
θ̈(t) +

1

τm
θ̇(t)

)
+
q `2

2B
θ̇2(t) sin θ(t) +

β

τgτm
sin θ(t− τr) = 0. (3.6)

We notice that, in the absence of external loading (q = 0), (3.6) reduces to the so-

called “sunflower” equation. This model was proposed by [83] to interpret the geotropic

circumnutations of the apical region of plants, and has already been proved to admit

periodic solutions [84] for a specific range of parameters. However, growing shoots often

appear as elongated, biological structures of significant weight relative to their stiffness,

a fact that cannot be disregarded. This is evident from the parameter q `2/(2B) in the

equation above, measuring the relative magnitude of the plant’s weight to stiffness.

To explore the effect of elastic deformations of the pendulum due to gravity loading,

we proceed by linearizing equation (3.6) about θ = 0 to derive the following second order

discrete delay differential equation(
1− q `2

2B

)(
θ̈(t) +

1

τm
θ̇(t)

)
+

β

τgτm
θ(t− τr) = 0, (3.7)

which, assuming τr > 0, can be restated in dimensionless form upon introduction of

three dimensionless parameters, i.e.,

y :=
q `2

2B
, τ1 :=

τr
τm
, τ2 :=

τ2
r

τgτm
, (3.8)
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3.1 A toy model: The gravitropic spring-pendulum

leading to

(1− y)
(

¨̂
θ(t̂) + τ1

˙̂
θ(t̂)

)
+ β τ2 θ̂(t̂− 1) = 0, (3.9)

where θ̂(t̂) := θ(t̂τr) and a superimposed dot denotes now differentiation with respect to

the dimensionless time t̂ := t/τr.

Here, we prefer to omit the details of our analysis to focus instead on the following,

important result. As shown in Section B.2.5, application of the theorems reported in

Appendix B.2 leads to the conclusion that (3.9) exhibits a supercritical Hopf bifurcation

at

y = y? := 1− β τ2

τ1

sin ξ?

ξ?
, (3.10)

where ξ? is defined as the unique root of ξ = τ1 cot ξ in (0, π/2). Notice that y = (`/`c)
2,

such that we propose the following physical interpretation of the result above: in a

growing shoot subject to gravity, circumnutations may arise as a consequence of a Hopf

bifurcation as the shoot’s length attains the critical value `? :=
√
y? `c. We infer from

equation (3.10) that y? < 1, so that `? < `c, i.e., the delayed graviresponse triggers a

Hopf bifurcation before the stability critical length (3.4) is reached. This conclusion is

further supported by the analysis of the roots of the characteristic equation relative to

(3.9)

(1− y)
(
ω̂2 + τ1 ω̂

)
eω̂ + βτ2 = 0, (3.11)

obtained by plugging in it the representation θ̂(t̂) = eω̂t̂ for the angular coordinate, where

ω̂ is a dimensionless circular frequency. We report in Fig. 3.1b the real (solid lines) and

the imaginary (dashed lines) part of the roots of the characteristic equation (3.11) as

functions of the loading parameter y ∈ [0, 1] for τ1 = 1, β = 0.8, and τ2 = 0.01. These

values were determined by assuming τg = 1200 min, and τr = τm = 12 min, see [13], and

correspond to a critical loading parameter of y? ' 0.993.

In the figure, we distinguish three regions corresponding to distinct behaviours of the

fixed point θ̂ ≡ 0: (i) a stable node (light blue region, where roots are real and negative),

(ii) a stable spiral (orange region, where roots are complex conjugate with negative

real part), and (iii) an unstable spiral converging to a stable limit cycle (green region,

where roots are complex conjugate with positive real part) for y > y?. The figure also

reports numerical solutions of the nonlinear discrete delay differential equation (3.6) at

increasing values of the parameter y and for the initial condition of θ̂(t̂) = 0.01 for t̂ ≤ 0.

Specifically, Fig. 3.1c shows the angular coordinate θ̂ as a function of dimensionless time

t̂ for y = 0.9 (light blue curve), y = 0.99 (orange curve), and y = 0.995 (green curve).

The numerical implementation of the nonlinear equation (3.6) was achieved by exploiting

the NDSolve functionality of Mathematica v11.3.0.0 and confirms the onset of periodic

solutions in correspondence with the theoretical Hopf bifurcation point.

We notice, in passing, that the distributed delay of (3.5) is not necessary to give rise

to such a qualitative behaviour. Indeed, the following first order differential equation
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3. NUTATIONS IN PLANT SHOOTS

with discrete delay

θ̇(t) (1− y cos θ(t)) = − β
τg

sin θ(t− τr), (3.12)

has the same qualitative features and undergoes a supercritical Hopf bifurcation at

y?0 := 1− 2

π

τ2

τ1
β. (3.13)

Equation (3.12) can be recovered from equation (3.5) by letting τm↘ 0 (as the gravit-

ropic memory kernel in (3.5) tends to a Dirac delta in the sense of distributions) and,

consistently, y?↗ y?0.

In concluding this section, we find it useful to stress the significance of elastic de-

formations due to gravity in determining the oscillatory behaviour sometimes exhibited

by growing shoots. Indeed, by neglecting the effect of either external loading (q→ 0)

or of elastic deformations (B→∞), one would constrain the parameter y to null, such

that self-sustained oscillations would be impossible, at least for the chosen values of the

parameters, which are the most realistic ones to characterize the biological machinery

regulating the gravitropic response of plant organs.

3.2 A rod model for growing plant shoots

Building on the theory of morphoelasticity, we introduce a working model for elongating

plant shoots suitable for the study of circumnutations under the following assumptions.

(i) The plant shoot is modelled as an unshearable (d3 = v) and elastically inextensible

(s = sv) rod of circular cross section with a quadratic strain-energy function defined

by a diagonal stiffness matrix K, such that the constitutive law for the moments

is given by (2.16), i.e., m =
∑

jKj(uj − u?j )dj .

(ii) Following previous studies [13, 14, 65, 66], we specialize the tip growth model

of (2.21) by choosing a piecewise constant growth function, namely,

REGR(S, t) = G(S, t) :=

{
0 if s(S, t) ≤ `(t)− `g,
1
τg

if s(S, t) > `(t)− `g,
(3.14)

where τg > 0 is the characteristic growth time. For such a case, the map s(S, t)

can be analytically determined, as shown in Section 2.4.

(iii) We assume that there is no external couple and that the shoot carries a uniform

distributed gravity load q = ρgA ≥ 0, where ρ is the mass density, A = πr2

is the cross-sectional area, and g the gravitational acceleration so that f = q g =

−q e2. Moreover, the apical end is free and the boundary conditions associated with

equations (2.10) read n(`(t), t) = m(`(t), t) = 0. Then, equation (2.10a) can be
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3.2 A rod model for growing plant shoots

integrated to get n = q (`(t)− s) e2 and we are left with m′(s, t) = −q (`(t)− s) e2×
d3(s, t).

(iv) Differential growth is due to the combination of the harmonic intrinsic oscilla-

tor (2.56) and gravitropic-proprioceptive reactions weighted by an exponential re-

sponse function of the form

µ(s, τ ; t) =

{
k
τm
e−

1
τm

(t−τr−τ) if τ ≤ t− τr,
0 if τ > t− τr,

(3.15)

where k is a sensitivity parameter, while τm > 0 and τr ≥ 0 are the characteristic

times for memory and delay, respectively.

(v) We assume that there is no evolution of the spontaneous torsional strain, namely,

we set u̇?3(s, t) = 0 ∀s, t.

(vi) The shoot lignification process is taken into account by the remodelling of the rod

stiffness given by (2.72).

(vii) As for the analysis reported in the following, the list of relevant parameters is

summarized in Table 3.1.

3.2.1 Summary of the governing equations

Under the assumptions (i)-(vii) discussed above, the governing equations read

∂s

∂S
(S, t) =λ(S, t), (3.16a)

1

λ(S, t)

∂λ

∂t
(S, t) =

{
0 if s(S, t) ≤ `(t)− `g,
1
τg

if s(S, t) > `(t)− `g,
(3.16b)

m′(s, t) =− q (`(t)− s) e2 × d3(s, t), (3.16c)

m =
∑
j

Kj

(
uj − u?j

)
dj , (3.16d)

E(s, t) =E1 − (E1 − E0) e
− 1
τ`

max{0,t−t?(S(s,t))}
, (3.16e)∑

j

ḣj(s, t)dj(s, t) =
1

τa
(h(s, t)× e2)× h(s, t), (3.16f)

u̇?1(s, t) =α
ε̇?(s, t)

r
cos(2πt/τe)− β

ε̇?(s, t)

rτm

∫ t−τr

−∞
e−

1
τm

(t−τr−τ)h2(s, τ) dτ

− η ε̇
?(s, t)

τ̄m

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)u1(s, τ) dτ, (3.16g)

u̇?2(s, t) =α
ε̇?(s, t)

r
sin(2πt/τe) + β

ε̇?(s, t)

rτm

∫ t−τr

−∞
e−

1
τm

(t−τr−τ)h1(s, τ) dτ
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3. NUTATIONS IN PLANT SHOOTS

− η ε̇
?(s, t)

τ̄m

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)u2(s, τ) dτ, (3.16h)

to be combined with appropriate boundary and initial conditions. Here primes denote

differentiation with respect to the parameter s and dots denote material time derivatives.

We recall that equations (3.16a)-(3.16b) define the tip growth law, equation (3.16c) fol-

lows from the balance of linear and angular momentum where m is the resultant contact

couple given by the constitutive law of (3.16d). Equation (3.16e) is the lignification

law, equation (3.16f) governs the statoliths avalanche dynamics, and equations (3.16g)-

(3.16h) are the evolution laws for the spontaneous strains.

Parameter Description Value Source

Sensitivities for differential growth

α endogenous sensitivity 0− 1 assumed

β gravitropic sensitivity 0.8 [13]

η proprioceptive sensitivity 20 assumed

Characteristic times

τa statoliths avalanche 2 min [13]

τe endogenous oscillation 20 min assumed

τm gravitropic memory 12 min [13]

τ̄m proprioceptive memory 12 min assumed

τr gravitropic delay 12 min [13]

τ̄r proprioceptive delay 12 min assumed

τg growth 20− 40 h [13, 52, 53]

τ` lignification 6 d assumed

Morphological and biomechanical parameters

r cross-sectional radius 0.5 mm [45]

`g growth zone 4− 7 cm [52]

ν Poisson’s ratio 0.5 assumed

ρ mass density 103 Kg m−3 [66]

E0 initial Young’s modulus 10 MPa [66]

E1/E0 stiffening ratio 200 assumed

Table 3.1: Summary of model parameters and respective order of magnitude of their values.

3.2.2 Representation in terms of Euler angles

The nine components of the directors {dj} are not independent, due to the orthonormal-

ity constraints. Then it is possible to represent the directors in terms of three indepen-
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3.2 A rod model for growing plant shoots

dent angles, the Euler angles, so that the orthonormality constraints are automatically

fulfilled. Although this representation introduces a polar singularity leading to an am-

biguity of the representation, this can be successfully adopted in our setting, upon a

careful choice of the notation for the Euler angles. We describe the rotation mapping

the fixed basis {ej} to the basis of directors {dj} by means of the following three suc-

cessive rotations:

(i) A rotation by an angle ϕ about the e3-axis;

(ii) A rotation by an angle ψ about the rotated e2-axis, denoted by e′2;

(iii) A rotation by an angle χ about the rotated e3-axis, denoted by e′′3.

d1

e1

e′′1

e2

e3 = e′3

e′1

d2

d3 = e′′3

e′2 = e′′2

ϕ

ψ

χ

ϕ

ψ

χ

Figure 3.2: The relationship of the directors {dj} to the fixed basis {ej} via the Euler
angles χ, ψ and ϕ.

Such a decomposition is illustrated in Fig. 3.2 and it is well defined if ψ 6= 0, otherwise

the Euler angles are not uniquely determined by the directors, since only the sum χ+ϕ

can be established. On the other hand, the directors are always uniquely determined by

the three angles as

d1 = (cosχ cosψ cosϕ− sinχ sinϕ) e1

+ (cosχ cosψ sinϕ+ sinχ cosϕ) e2 − cosχ sinψ e3, (3.17a)

d2 =− (sinχ cosψ cosϕ+ cosχ sinϕ) e1
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3. NUTATIONS IN PLANT SHOOTS

− (sinχ cosψ sinϕ− cosχ cosϕ) e2 + sinχ sinψ e3, (3.17b)

d3 = sinψ cosϕ e1 + sinψ sinϕ e2 + cosψ e3, (3.17c)

Consequently, the strains can be written as

u1 =
∂ψ

∂s
sinχ− ∂ϕ

∂s
cosχ sinψ, (3.18a)

u2 =
∂ψ

∂s
cosχ+

∂ϕ

∂s
sinχ sinψ, (3.18b)

u3 =
∂χ

∂s
+
∂ϕ

∂s
cosψ. (3.18c)

Moreover, denoting by mj the components of the resultant moment with respect to the

fixed basis {ej}, the constitutive assumption (2.16) leads to

m1 =EI {cosψ cosϕ [(u1 − u?1) cosχ− (u2 − u?2) sinχ]

− sinϕ [(u1 − u?1) sinχ+ (u2 − u?2) cosχ]}+ µJ (u3 − u?3) sinψ cosϕ, (3.19a)

m2 =EI {cosψ sinϕ [(u1 − u?1) cosχ− (u2 − u?2) sinχ]

+ cosϕ [(u1 − u?1) sinχ+ (u2 − u?2) cosχ]}+ µJ (u3 − u?3) sinψ sinϕ, (3.19b)

m3 =− EI sinψ [(u1 − u?1) cosχ− (u2 − u?2) sinχ] + µJ (u3 − u?3) cosψ. (3.19c)

3.3 The regime of short times

Under suitable assumptions on the relevant time scales, in this section we deduce a model

that is amenable for theoretical analysis. More specifically, we exploit the fact that the

statolith avalanche dynamics is much faster than that of circumnutations with charac-

teristic time τc, which, in turn, is much faster than the processes of organ elongation

and lignification.

Based on the assumption of τg � τc, we neglect changes in length, cf. equation (3.14),

and we assume that the whole organ is “active”, i.e., ` ≈ `0 ≤ `g. In this case, current

and reference arc lengths coincide such that material time derivatives reduce to standard

time derivatives.

The condition on the lignification time, i.e., τ` � τc, implies that at short times

compared to τ`, the Young’s modulus (2.72) is approximately constant, namely E ≈ E0.

Finally, the assumption of τa � τc implies h ≈ −g = e2, which is the stable steady

solution to equation (2.65), so that hj ≈ dj · e2 for j = 1, 2, and the statoliths avalanche

dynamics can be disregarded.

Then, the governing equations (3.16) reduce to

m′(s, t) =− q (`− s) e2 × d3(s, t), (3.20a)

u̇?1(s, t) =
α

rτg
cos (2πt/τe)−

β

rτmτg

∫ t−τr

−∞
e−

1
τm

(t−τr−τ)d22(s, τ) dτ
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− η

τ̄mτg

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)u1(s, τ) dτ, (3.20b)

u̇?2(s, t) =
α

rτg
sin (2πt/τe) +

β

rτmτg

∫ t−τr

−∞
e−

1
τm

(t−τr−τ)d12(s, τ) dτ

− η

τ̄mτg

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)u2(s, τ) dτ, (3.20c)

where dij := di · ej . Then, in terms of the Euler angles introduced in Section 3.2.2, we

get

m′1(s, t) =− q (`− s) cosψ(s, t), (3.21a)

m′2(s, t) = 0, (3.21b)

m′3(s, t) = q (`− s) sinψ(s, t) cosϕ(s, t), (3.21c)

u̇?1(s, t) =
α

rτg
cos (2πt/τe)−

η

τ̄mτg

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ) [ψ′ sinχ− ϕ′ cosχ sinψ
] ∣∣

(s,τ)
dτ

+
β

rτmτg

∫ t−τr

−∞
e−

1
τm

(t−τr−τ) (sinχ cosψ sinϕ− cosχ cosϕ)
∣∣
(s,τ)

dτ, (3.21d)

u̇?2(s, t) =
α

rτg
sin (2πt/τe)−

η

τ̄mτg

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ) [ψ′ cosχ+ ϕ′ sinχ sinψ
] ∣∣

(s,τ)
dτ

+
β

rτmτg

∫ t−τr

−∞
e−

1
τm

(t−τr−τ) (cosχ cosψ sinϕ+ sinχ cosϕ)
∣∣
(s,τ)

dτ, (3.21e)

to be solved for appropriate boundary conditions and initial data.

In the following we carry out a gradual study of the rod model (3.21). We first explore

the contribution of gravitropic and proprioceptive responses independently. Then we

analyze the interaction of these two adaptive growth processes to understand the effect

of their combination. Finally, we explore the possibility of the existence of an intrinsic

oscillator.

3.3.1 Graviceptive model: α = η = 0 and β > 0

In the absence of both endogenous cues (α = 0) and straightening mechanisms (η = 0),

we show that the straight equilibrium configuration suffers a flutter instability as the

plant shoot attains a critical length. The stability boundary for the system are reported

in Fig. 3.7a, in terms of the model parameters (τg, `).

We first explore the dynamics in the planar case, which exhibits pendular oscillations

and then we extend it to the 3D case, whose scenario is enriched by the appearance of

circular oscillations.
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3. NUTATIONS IN PLANT SHOOTS

The two-dimensional case

We confine the rod to the plane (e1, e2) by imposing ψ(s, t) ≡ π/2 and χ(s, t) ≡ 0, which

yields

EI
[
θ′(s, t)− u?1(s, t)

]′
= −q(`− s) sin θ(s, t), (3.22a)

u̇?1(s, t) = − β

rτmτg

∫ t−τr

−∞
e−

1
τm

(t−τr−τ) sin θ(s, τ) dτ, (3.22b)

for s ∈ (0, `) and t > 0. Here θ := π/2 − ϕ is the angle between e2 and d3, and dots

and primes denote differentiation with respect to t and s, respectively. This system of

equations is supplemented by the following boundary and initial conditions, namely

θ(0, t) = 0, θ′(`, t)− u?1(`, t) = 0, (3.23)

holding ∀ t > 0 as the basal end is clamped and the apical end is torque free, and

θ(s, t) = θ0(s, t), u?1(s, 0) = κ0(s), (3.24)

prescribing respectively the past history of the angular coordinate and the initial datum

for the spontaneous curvature evolution ∀ s ∈ [0, `].

Assuming sufficient regularity, we can combine the time-derivative of (3.22a) with

the space-derivative of (3.22b), so that by a further differentiation with respect to time

we arrive at

θ̈′′+
1

τm
θ̇′′+

q(`− s)
EI

[(
θ̈ +

1

τm
θ̇

)
cos θ − θ̇ 2 sin θ

]
+

β

rτmτg
θ′(s, t− τr) cos θ(s, t− τr) = 0,

(3.25)

along with the boundary condition (3.23)1 and

θ̈′(`, t) +
1

τm
θ̇′(`, t) +

β

rτmτg
sin θ(`, t− τr) = 0, (3.26)

holding ∀ t > 0 and resulting from time differentiation of (3.23)2. By linearizing prob-

lem (3.25)-(3.26) about the equilibrium solution θ(s, t) ≡ 0, we get the following fourth

order partial differential equation with discrete delay

θ̈′′(s, t) +
1

τm
θ̇′′(s, t) +

q(`− s)
EI

(
θ̈(s, t) +

1

τm
θ̇(s, t)

)
+

β

rτmτg
θ′(s, t− τr) = 0, (3.27)

supplemented by the boundary condition (3.23)1 and

θ̈′(`, t) +
1

τm
θ̇′(`, t) +

β

rτmτg
θ(`, t− τr) = 0, (3.28)
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Figure 3.3: (a) A sketch of the planar rod model for the analysis of periodic oscillations
in plant shoots. (b) Real (solid lines) and imaginary (dashed lines) part of the roots of
the characteristic equation (3.35) as functions of `/`c ∈ [0, 1] and for the choice of param-
eters reported in Table 3.1. As for the case of the gravitropic spring-pendulum system, we
distinguish three regions corresponding to different dynamical responses for θ̂(ŝ, t̂): (i) an
exponential decay (light blue), (ii) a damped oscillation (orange), and (iii) an increasing
oscillation (green) for ` > `? ≈ 0.895 `c. (c) Superposition of deformed shapes from the
nonlinear rod model as computed for ` = 0.91 `c as the time spans half a period of the
limit cycle. (d) Numerical solutions of the nonlinear problem (3.22)-(3.24) as obtained for
` = 0.91 `c. Specifically, the transverse displacement and the phase portraits related to the
angle and position of the rod’s tip as functions of time are shown. From [5].

holding ∀ t > 0 and resulting from the linearization of (3.26). Upon introducing four

dimensionless parameters, i.e.,

y :=
q `3

EI
, τ1 :=

τr
τm
, τ2 :=

τ2
r

τgτm
, µ :=

`

r
, (3.29)

equation (3.27) can be recast in dimensionless form as

¨̂
θ′′
(
ŝ, t̂
)

+ τ1
˙̂
θ′′
(
ŝ, t̂
)

+ y (1− ŝ)
(

¨̂
θ
(
ŝ, t̂
)

+ τ1
˙̂
θ
(
ŝ, t̂
))

+ βµτ2 θ̂
′ (ŝ, t̂− 1

)
= 0. (3.30)

Here, θ̂(ŝ, t̂) := θ(ŝ`, t̂τr) and dots and primes denote differentiation with respect to

t̂ := t/τr and ŝ := s/`, respectively. As for the boundary conditions, we write

θ̂(0, t̂) = 0,
¨̂
θ′(1, t̂) + τ1

˙̂
θ′(1, t̂) + βµτ2 θ̂(1, t̂− 1) = 0, (3.31)
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3. NUTATIONS IN PLANT SHOOTS

holding ∀ t̂ > 0, whereas the initial condition is

θ̂(ŝ, t̂) = θ̂0(ŝ, t̂), (3.32)

which applies ∀ ŝ ∈ [0, 1] , ∀ t̂ ∈ [−1, 0].

We proceed with our analysis in the linear regime by seeking time-harmonic solutions

of the form θ̂(ŝ, t̂) = Θ(ŝ)eω̂t̂ to (3.30)-(3.32). By substituting the form above in (3.30)

we obtain

Θ′′(ŝ) + cΘ′(ŝ) + y (1− ŝ) Θ(ŝ) = 0, (3.33)

where c := βµτ2 e
−ω̂/(ω̂2 + τ1 ω̂). Integration of (3.33) leads to

Θ(ŝ) = e−c ŝ/2 [c1 Ai(x(ŝ)) + c2 Bi(x(ŝ))] , (3.34)

in which c1 and c2 are constants of integration, whereas Ai(x) and Bi(x) are the Airy

functions of the first and second kind, respectively, and x(ŝ) := [c2/4−y(1− ŝ)]/y2/3. By

imposing the boundary conditions (3.31), and neglecting the trivial case of c1 = c2 = 0,

we derive

Ai(x0)
(
cBi(x1) + 2 3

√
yBi′(x1)

)
− Bi(x0)

(
cAi(x1) + 2 3

√
yAi′(x1)

)
= 0 , (3.35)

where x0 := x(0), x1 := x(1), and a prime denotes differentiation of the Airy functions

with respect to their argument.

We numerically computed the roots of the characteristic equation (3.35) to explore

the stability of model shoots of increasing length `. To this aim, we exploited the Find-

Root functionality of Mathematica v11.3.0.0. In agreement with the relevant literature

we calibrated the model by setting the values of model parameters as reported in Ta-

ble 3.1, and τg = 20 h. For such a choice, we determined values of the circular frequency

ω̂ letting ` range in [0, `c]. Here, `c denotes the critical length at which an elastic rod of

bending stiffness EI subject to a distributed, vertical load of magnitude q loses stability,

that is

`c := 3
√
α0EI/q, (3.36)

with α0 ≈ 7.837, see [100].

We report in Fig. 3.3b the real (solid lines) and the imaginary (dashed lines) part

of two roots of (3.35). As for the case of the gravitropic pendulum, we distinguish in

the figure three regions corresponding to different dynamical responses of θ̂(ŝ, t̂): (i) an

exponential decay (light blue region, where roots are real and negative), (ii) a damped

oscillation (orange region, where roots are complex conjugate with negative real part),

and (iii) an increasing oscillation (green region, where roots are complex conjugate with

positive real part) for ` > `? ≈ 0.895 `c.

This analysis is restricted to solutions of the form introduced above, where spatial and

temporal variables are separated. However, the presented results clearly indicate that
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3.3 The regime of short times

the rod model suffers an instability in the linear regime as the shoot’s length exceeds the

critical value `?. This behaviour shares similarities with that exhibited by the gravitropic

spring-pendulum system of Section 3.1. A computational study of the nonlinear regime

(see Appendix B.3) reveals the onset of a limit cycle as the rod’s length exceeds `?

(≈ 7.1 cm, for the chosen parameters). In particular, we report in Fig. 3.3c several

configurations of the rod at different times, clearly showing a symmetric oscillation with

respect to the vertical line as the time spans half a period of the limit cycle (≈ 88 min,

for a full cycle). In addition, Fig. 3.3d depicts the transverse displacement and the phase

portraits related to the angle and position of the tip as functions of time. These show

the signature of the limit cycle and provide a quantitative description of the dynamics

of the system during its evolution towards the steady, oscillatory regime.

The three-dimensional case

Guided by the analysis carried out for the two-dimensional model, we progress to the

three-dimensional case. First, we study the linear regime around the straight trivial

solution, for which we show the emergence of a larger variety of periodic solutions when

the same critical length is attained. Then, we explore the nonlinear regime through a

computational model confirming the behaviour exhibited by the planar model.

The steady state solution to problem (3.21) is given by

χ ≡ 0, ϕ ≡ π

2
, ψ ≡ π

2
, u?1 ≡ 0, u?2 ≡ 0, (3.37)

which corresponds to the straight position along the e2 axis. By assuming sufficient

regularity, we take the time derivative of equations (3.21d) and (3.21e), and we linearize

the problem about the equilibrium solution (3.37), arriving at

EI
(
ψ′(s, t)− u?2(s, t)

)′
=− q (`− s)

(
ψ(s, t)− π

2

)
, (3.38a)

χ′′(s, t) = 0, (3.38b)

EI
(
ϕ′(s, t) + u?1(s, t)

)′
=− q (`− s)

(
ϕ(s, t)− π

2

)
, (3.38c)

ü?1(s, t) =− 1

τm
u̇?1(s, t) +

β

rτgτm

(
ϕ(s, t− τr)−

π

2

)
, (3.38d)

ü?2(s, t) =− 1

τm
u̇?2(s, t)− β

rτgτm

(
ψ(s, t− τr)−

π

2

)
. (3.38e)

This system of equations is supplemented by the following linearized boundary and

initial conditions, namely

ψ(0, t) =
π

2
, ψ′(`, t)− u?2(`, t) = 0, (3.39a)

χ(0, t) = 0, χ′(`, t) = 0, (3.39b)
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3. NUTATIONS IN PLANT SHOOTS

ϕ(0, t) =
π

2
, ϕ′(`, t) + u?1(`, t) = 0, (3.39c)

holding ∀ t > 0 as the basal end is clamped and the apical end is torque free, and

ϕ(s, t) = ϕ0(s, t), ψ(s, t) = ψ0(s, t), (3.40a)

u?1(s, 0) = u?1,0(s), u?2(s, 0) = u?2,0(s), (3.40b)

prescribing respectively the past history of the angular coordinates and the initial datum

for the spontaneous strains evolution ∀ s ∈ [0, `].

As for the angle χ, equations (3.38b) and (3.39b) yield χ(s, t) = 0 for all s and t.

Moreover, assuming sufficient regularity, we can combine the time-derivatives of (3.38a)

and (3.38c) with the space-derivatives of (3.38e) and (3.38d) respectively, so that we

arrive at

ψ̈′′(s, t) +
1

τm
ψ̇′′(s, t) +

q(`− s)
EI

(
ψ̈(s, t) +

1

τm
ψ̇(s, t)

)
+

β

rτmτg
ψ′(s, t− τr) = 0,

(3.41a)

ϕ̈′′(s, t) +
1

τm
ϕ̇′′(s, t) +

q(`− s)
EI

(
ϕ̈(s, t) +

1

τm
ϕ̇(s, t)

)
+

β

rτmτg
ϕ′(s, t− τr) = 0,

(3.41b)

along with the boundary conditions (3.39a)1, (3.39c)1 and

ψ̈′(`, t) +
1

τm
ψ̇′(`, t) +

β

rτmτg

(
ψ(`, t− τr)−

π

2

)
= 0, (3.42a)

ϕ̈′(`, t) +
1

τm
ϕ̇′(`, t) +

β

rτmτg

(
ϕ(`, t− τr)−

π

2

)
= 0, (3.42b)

holding ∀ t > 0 and resulting from time differentiation of (3.39a)2 and (3.39c)2.

Then we notice that equations (3.41a) and (3.41b) are decoupled and coincident

with (3.27). Moreover, up to a shift of π/2, the problems associated with such equations

are exactly the same, so that we can rely on the analysis carried out for the planar

model to conclude that the straight equilibrium configuration suffers a flutter instability

as the plant shoot attains a critical length `? (≈ 7.1 cm, for the parameters chosen in the

previous section). We report in Fig. 3.7a the stability boundary for the system in terms of

the model parameters (τg, `). Moreover, we confirm by means of numerical simulations

(see Appendix B.3) the appearance of limit cycles in the nonlinear regime and show

that the planar oscillations are unstable periodic solutions, whereas three-dimensional

circular patterns emerge as stable limit cycles.

3.3.2 Microgravity: α = β = 0, η > 0, and q = 0

We now proceed our study by exploring the effects of straightening mechanisms, sepa-

rately from gravi-responses. The only neat way to decouple proprioception and gravit-

ropism is to conduct experiments in microgravity conditions, such that the gravitational
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3.3 The regime of short times

stimulus is completely suppressed. In this case, we assume β = 0 but, as a byproduct,

this removes also elastic deflections due to gravity loading, i.e., q = 0. In the following

we analyze this scenario in two steps: planar and three-dimensional case.

In agreement with previous studies [18] we find that proprioceptive responses alone

might induce spontaneous oscillations. Indeed, even in the absence of an intrinsic oscil-

lator (α = 0), the rest state undergoes an instability when the growth rate exceeds a

critical threshold 1/τ?g . Interestingly, this is independent of the shoot length, as shown

in Fig. 3.7b. For the model parameters of Table 3.1, we find a critical value of τ?g ≈ 3.52

h. This seems to be out of the range of experimental observations, thus suggesting that

the persistence of oscillations in microgravity might have an endogenous origin [88, 96].

The two-dimensional case

Let us confine the rod to the plane (e1, e2). In this way we arrive at

θ′′(s, t) = u?1
′(s, t), (3.43a)

u̇?1(s, t) = − η

τ̄mτg

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)θ′(s, τ) dτ, (3.43b)

for s ∈ (0, `) and t > 0. In the equations above, θ := π/2−ϕ is the angle between e2 and

d3, and dots and primes denote differentiation with respect to t and s, respectively. This

system of equations is supplemented by boundary and initial conditions (3.23)-(3.24).

In particular, from condition (3.23)2 we deduce that θ′(s, t) = u?1(s, t) and, assuming

sufficient regularity, a further differentiation in time yields

θ̈′(s, t) +
1

τ̄m
θ̇′(s, t) +

η

τ̄mτg
θ′(s, t− τ̄r) = 0, (3.44)

which, can be restated in dimensionless form as

¨̂
θ′(ŝ, t̂) +

τ̄r
τ̄m
θ̇′(ŝ, t̂) +

η τ̄2
r

τ̄mτg
θ̂′(ŝ, t̂− 1) = 0, (3.45)

where, θ̂(ŝ, t̂) := θ(ŝ`, t̂τr) and dots and primes denote differentiation with respect to

t̂ := t/τ̄r and ŝ := s/`, respectively.

By assuming a solution with separated variables θ̂(ŝ, t̂) = Θ(ŝ)T (t̂), we have

Θ′(ŝ)

[
T̈ (t̂) +

τ̄r
τ̄m
Ṫ(t̂) +

η τ̄2
r

τ̄mτg
T(t̂− 1)

]
= 0, (3.46)

so that any Θ(ŝ) with Θ(0) = 0 is admissible if T solves the following second order

RFDE

T̈ (t̂) +
τ̄r
τ̄m
Ṫ(t̂) +

η τ̄2
r

τ̄mτg
T(t̂− 1) = 0. (3.47)
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3. NUTATIONS IN PLANT SHOOTS

Then, as shown in Appendix B.2, the linear delay differential equation (3.45) admits

nontrivial periodic solutions when

τg = τ?g := ητ̄r
sin(ξ?)

ξ?
, (3.48)

where ξ? is the unique solution of ξ tan ξ = τ̄r/τ̄m in (0, π/2). More precisely, the

characteristic equation of (3.47) has a pair of conjugate complex roots for

τg < τ̃g :=
ητ̄2
r e
−ω0

2ω0τ̄m + τ̄r
, (3.49)

where ω0 :=
(
1 + τ̄2

r /(4τ̄
2
m)
)1/2 − (1 + τ̄r/(2τ̄m)), and their real part crosses the zero at

τ?g , as shown in Fig. 3.4. Then the trivial straight position is stable for τg > τ?g and it is

unstable for τg < τ?g , see Section B.2.6 of Appendix B.2.

Figure 3.4: Real (solid lines) and imaginary (dashed lines) part of two roots of the char-
acteristic equation (3.47) as functions of τg ∈ [0, 50] h and for η = 20, τ̄r = τ̄m = 12 min,
r = 0.5 × 10−3 m. We distinguish three regions corresponding to different dynamical re-
sponses: (i) an exponential decay for τg > τ̃g ≈ 24.83 h (light blue), (ii) a damped oscillation
(orange), and (iii) an increasing oscillation for τg < τ?g ≈ 3.52 h (green). From [6].

The three-dimensional case

Building on the analysis carried out for the two-dimensional rod model in microgravity,

we are now able to extend the results to the three-dimensional case. Indeed when q = 0,

virtual and current configuration coincide and u?j = uj for all j. Then for β = 0,

equations (3.20b) and (3.20c) reduce to

u̇1(s, t) =− η

τ̄mτg

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)u1(s, τ) dτ, (3.50a)
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3.3 The regime of short times

u̇2(s, t) =− η

τ̄mτg

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)u2(s, τ) dτ. (3.50b)

By assuming sufficient regularity, a time differentiation yields

ü1(s, t) +
1

τ̄m
u̇1(s, t) +

η

rτg τ̄m
u1(s, t− τ̄r) = 0, (3.51a)

ü2(s, t) +
1

τ̄m
u̇2(s, t) +

η

rτg τ̄m
u2(s, t− τ̄r) = 0, (3.51b)

which are decoupled and equivalent to equation (3.44). Then we conclude that the trivial

solution is unstable for τg < τ?g , where τ?g is the critical growth time defined in (3.48).

3.3.3 Proprio-graviceptive model: α = 0 and β, η > 0

When proprioception and gravitropism coexist in the absence of endogenous oscillators

(α = 0), we find the persistence of a critical growth rate 1/τ?g , beyond which the rest

state changes its stability character, as observed in microgravity. As depicted in Fig. 3.7c,

the system may still lose stability at lower growth rates (τg > τ?g ) for a critical length

`?. This is different from the one found in the graviceptive case, and a numerical study

of the nonlinear regime reveals the occurrence of pendular and circular limit cycles for

supercritical lengths, see Fig. 3.5. As for the effect of the auto-straightening mechanism,

this lowers the critical length, provided that the delay τ̄r and the memory time τ̄m are

sufficiently large.

We report below the linearized analysis of the model with gravitropic and proprio-

ceptive responses by first considering the planar case and then extending it to the 3D

setting.

The two-dimensional case

By confining the rod model (3.21) to the plane (e1, e2), and assuming sufficient regularity,

we get

EI
[
θ′(s, t)− u?1(s, t)

]′
=− q(`− s) sin θ(s, t), (3.52a)

r τgu̇
?
1(s, t) =− βwg(s, t)− r η wp(s, t), (3.52b)

τmẇg(s, t) =− wg(s, t) + sin θ(s, t− τr), (3.52c)

τ̄mẇp(s, t) =− wp(s, t) + θ′(s, t− τr), (3.52d)

as the governing equations, where

wg :=
1

τm

∫ t−τr

−∞
e−

1
τm

(t−τr−τ) sin θ(s, τ) dτ, wp :=
1

τ̄m

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)θ′(s, τ) dτ.

(3.53)
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a b

Figure 3.5: Superposition of deformed shapes and respective directors, from the reduced
nonlinear rod model for ` = 6.59 cm (`/`c ≈ 0.83), τg = 20 h, and the parameters reported
in Table 3.1. This choice of model parameters corresponds to the red dot shown in Fig. 3.7c.
For supercritical lengths (`? ≈ 6.56 cm, for such a choice of model parameters) two types
of nontrivial periodic solutions emerge: (a) unstable pendular oscillations and (b) stable
circular oscillatory patterns. From [6].

Steady-state solution. A steady-state solution θ(s) of (3.52) needs to solve

θ̂′(ŝ) = −β
η

`

r
sin θ̂(ŝ), (3.54)

for ŝ ∈ [0, 1], combined with the boundary condition θ̂(0) = θ0. Here, θ̂(ŝ) := θ(ŝ`) and

primes denote differentiation with respect to ŝ := s/`. Then an equilibrium of (3.52) is

given by

θ̂(ŝ) = 2 acot
[
cot
(
θ0
2

)
e
β
η
`
r
ŝ
]
, (3.55)

for ŝ ∈ [0, 1]. Therefore, when converging to (3.55), the final shape is completely deter-

mined by the ratio between the two sensitivities, β/η, while the whole dynamics towards

the steady state depends also on the characteristic times, i.e., τg, τm, τr, τ̄m and τ̄r.

Since gravitropic and proprioceptive responses generate planar dynamics for initially

straight plant shoots, the planar steady-state solution (3.55) can be used to determine

the dimensionless parameter β`/(ηr) by fitting the experimental shapes attained in a

time period that is short with respect to growth, as already done for the instantaneous

version of this model without gravity loads [65].
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3.3 The regime of short times

Stability analysis. By assuming sufficient regularity, we carry out an analysis similar

to the one presented in Section 3.3.1. Specifically, by linearizing about the trivial solution

θ ≡ 0, and considering the dimensionless equations, we arrive at

˙̂
θ′′(ŝ, t̂) + β

`

r

τ2
s

τmτg

∫ t̂− τr
τs

−∞
e
− τs
τm

(
t̂− τr

τs
−τ
)
θ̂′(ŝ, τ) dτ

+ η
τ2
s

τ̄mτg

∫ t̂− τ̄r
τs

−∞
e
− τs
τ̄m

(
t̂− τ̄r

τs
−τ
)
θ̂′′(ŝ, τ) dτ +

q`3

EI
(1− ŝ) ˙̂

θ(ŝ, t̂) = 0, (3.56)

where θ̂(ŝ, t̂) := θ(ŝ`, t̂τs) for a given time scale τs. The linearized boundary conditions

are given by

θ̂(0, t̂) = 0, (3.57a)

τg
τ2
s

˙̂
θ′(1, t̂) = − β

τm

`

r

∫ t̂− τr
τs

−∞
e
− τs
τm

(
t̂− τr

τs
−τ
)
θ̂(1, τ) dτ − η

τ̄m

∫ t̂− τ̄r
τs

−∞
e
− τs
τ̄m

(
t̂− τ̄r

τs
−τ
)
θ̂′(1, τ) dτ,

(3.57b)

for t̂ > 0. By seeking time-harmonic solutions of the form θ̂(ŝ, t̂) = Θ(ŝ)eω̂t̂ with Re(ω̂) >

−min {τs/τm, τs/τ̄m}, we get

aΘ′′(ŝ) + bΘ′(ŝ) + c(1− ŝ)Θ(ŝ) = 0, (3.58)

where

a := ω̂ + η
τ2
s e
−ω̂ τ̄r

τs

τg (τ̄mω̂ + τs)
, b := β

`

r

τ2
s e
−ω̂ τr

τs

τg (τmω̂ + τs)
, c := ω̂

q`3

EI
. (3.59)

By imposing the boundary conditions (3.57), and neglecting the trivial case, we derive

the following characteristic equation for the dimensionless frequency ω̂, namely,

Ai(x0)
[
bBi(x1) + 2

3
√
a2cBi′(x1)

]
− Bi(x0)

[
bAi(x1) + 2

3
√
a2cAi′(x1)

]
= 0, (3.60)

where

x0 :=
b2 − 4ac

4a
3
√
ac2

, x1 :=
b2

4a
3
√
ac2

, (3.61)

and Ai(x), Bi(x) are the Airy functions of the first and second kind, respectively, and a

prime denotes differentiation of such functions with respect to their argument.

Then we can explore the stability of the model by performing a numerical study of

the roots of equation (3.60) for shoots of increasing length `. To this aim, we exploited

the FindRoot functionality of Mathematica v12.0.0.0. As for the model calibration, we

explored the model for the values reported in Table 3.1, where the order of magnitude of

η, τ̄r and τ̄m was estimated by qualitatively fitting the steady-state solution (3.55) and

the dynamics reported in [64]. For each choice of model parameters, we determined the
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3. NUTATIONS IN PLANT SHOOTS

a b

c d

Figure 3.6: Real (solid lines) and imaginary (dashed lines) part of two roots of the char-
acteristic equation (3.60) as functions of `/`c ∈ [0, 1] and for the model parameters reported
in Table 3.1. We distinguish three regions corresponding to different dynamical responses:
(i) an exponential decay (light blue), (ii) a damped oscillation (orange), and (iii) an increas-
ing oscillation (green) for ` > `?. More specifically, we get (a) `? ≈ 0.827 `c for τ̄r = τ̄m = 12
min, (b) `? ≈ 0.896 `c for τ̄r = 1 min and τ̄m = 12 min, (c) `? ≈ 0.838 `c for τ̄r = 12 min
and τ̄m = 6 min, and (d) `? ≈ 0.883 `c for τ̄r = 6 min and τ̄m = 6 min. For comparison,
we recall that the same choice of model parameters yields a critical value of `? ≈ 0.895 `c in
the graviceptive model (η = 0). From [6].

values of the frequency ω̂ letting ` range in [0, `c] where `c is the critical length given

by (3.36). Fig. 3.6 shows the real (solid lines) and the imaginary (dashed lines) part of

two roots of (3.60). As for the case of the gravitropic rod model, we distinguish in the

figure three regions corresponding to different dynamical responses: (i) an exponential

decay (light blue region, where roots are real and negative), (ii) a damped oscillation

(orange region, where roots are complex conjugate with negative real part), and (iii) an

increasing oscillation (green region, where roots are complex conjugate with positive real

part) for ` > `?. We remark the fact that the memory time τ̄m and the delay τ̄r influence

the value of the critical length `?: Higher times τ̄r and τ̄m imply a lower critical length.
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3.3 The regime of short times

This affects the overall effect of the proprioceptive term, which can either destabilize

(Fig. 3.6a,c,d) or stabilize (Fig. 3.6b) the system with respect to the gravitropic case

(η = 0). In particular, when the memory time τ̄m and the delay τ̄r are large enough,

a b c

Figure 3.7: Theoretical stability boundaries in terms of the model parameters (τg, `). Blue,
orange and green curves are for the graviceptive case (α = η = 0, β = 0.8), for microgravity
(α = β = 0, η = 20, q = 0) and for the proprio-graviceptive case (α = 0, β = 0.8, η = 20),
respectively. In each plot (a-c) results for the relevant case are reported as solid curves,
whereas the boundaries for the other two cases are shown as dashed curves for comparison
purposes. Model parameters are those reported in Table 3.1. Shoot length ` is normalized
by the self-buckling length `c. The red dot in (c) corresponds to the computational results
of Fig. 3.5. From [6].

the auto-straightening mechanism has an overall destabilizing effect on the system. This

is clearly illustrated in Fig. 3.7, which compares the theoretical stability boundaries of

the models, as obtained for τ̄m = τ̄r = τm = τr (see also Section B.2.7 of Appendix B.2).

The three-dimensional case

Guided by the analysis carried out in Section 3.3.1, we linearize (3.21) about the equi-

librium (3.37), thus arriving at

EI
(
ψ′(s, t)− u?2(s, t)

)′
=− q (`− s)

(
ψ(s, t)− π

2

)
, (3.62a)

χ′′(s, t) = 0, (3.62b)

EI
(
ϕ′(s, t) + u?1(s, t)

)′
=− q (`− s)

(
ϕ(s, t)− π

2

)
, (3.62c)

u̇?1(s, t) =
β

rτmτg

∫ t−τr

−∞
e−

1
τm

(t−τr−τ)
(
ϕ(s, τ)− π

2

)
dτ

+
η

τ̄mτg

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)ϕ′(s, τ) dτ, (3.62d)

u̇?2(s, t) =− β

rτmτg

∫ t−τr

−∞
e−

1
τm

(t−τr−τ)
(
ψ(s, τ)− π

2

)
dτ

− η

τ̄mτg

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)ψ′(s, τ) dτ, (3.62e)
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3. NUTATIONS IN PLANT SHOOTS

By assuming sufficient regularity, we get

ψ̇′′(s, t) +
β

rτmτg

∫ t−τr

−∞
e−

1
τm

(t−τr−τ)ψ′(s, τ) dτ

+
η

τ̄mτg

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)ψ′′(s, τ) dτ +
q

EI
(`− s) ψ̇(s, t) = 0, (3.63a)

ϕ̇′′(s, t) +
β

rτmτg

∫ t−τr

−∞
e−

1
τm

(t−τr−τ)ϕ′(s, τ) dτ

+
η

τ̄mτg

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)ϕ′′(s, τ) dτ +
q

EI
(`− s) ϕ̇(s, t) = 0, (3.63b)

where equations (3.62d) and (3.62e) have been combined with the time derivatives of

equations (3.62a) and (3.62c), respectively, while solving equation (3.62b) with boundary

conditions (3.39b). We notice that equations (3.63) along with the boundary conditions

(3.39a)1, (3.39c)1 and (3.42), form two decoupled problems. Moreover, up to a shift of

π/2, they are equivalent to (3.56) so that the linearized stability analysis coincides with

the one carried out for the planar model. In addition, a computational study of the

nonlinear regime (see Appendix B.3) confirms the occurrence of pendular and circular

limit cycles when the critical length is attained, see Fig. 3.5.

a b

Figure 3.8: Superposition of deformed shapes and respective directors, from the reduced
nonlinear rod model for ` = 6.565 cm, α = 0.3, and for the model parameters as reported in
Table 3.1. Flutter was initiated in the clockwise direction by suitable initial perturbations
and epitrochoid-like (a) and hypotrochoid-like (b) patterns were obtained for concordant
and discordant endogenous oscillations, respectively. From [6].
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3.4 The role of plant shoot elongation

3.3.4 Endogenous oscillations α, β, η > 0

By means of the computational model described in Appendix B.3, we consider the case of

α > 0 to investigate the effects of an endogenous, time-harmonic oscillator with period τe.

For subcritical lengths, the intrinsic oscillator dominates the dynamics and the solutions

ultimately converge to motions of period τe. On the contrary, for supercritical lengths

we find sustained dynamics for which the tip projection on the (e1, e3) plane determines

trochoid-like patterns, see Fig. 3.8.

The shape of the trochoid is determined by the ratio of two periods, namely, the one of

the internal oscillator, τe, and the one of the limit cycle emerging from flutter instability.

As a consequence, we do not expect these patterns to be periodic unless such a ratio is a

rational number. More specifically, patterns similar to epitrochoid or hypotrochoid are

found when the rotational directions of the two oscillatory mechanisms are concordant

or discordant, respectively. The results of Fig. 3.8 exemplify the rod dynamics, together

with the tip projections on the coordinate planes.

3.4 The role of plant shoot elongation

We conclude our analysis by exploring the contribution of length changes and lignification

processes in the overall dynamics of the model plant, by exploiting the computational

model detailed in Appendix B.3. As the shoot length varies in time, the relative weight of

the two oscillatory mechanisms, namely, the intrinsic oscillator and the flutter instability,

changes and affects the resulting dynamics. As exemplified by Fig. 3.9, the system

gradually transitions from a dynamics mainly characterized by endogenous oscillations

in the subcritical regime (` < `?) to one in which flutter-induced oscillations dominate in

the supercritical regime (` > `?). Trochoid-like patterns are visible in the intermediate

regime of flutter initiation.

3.5 Discussion

Since the first experimental observations of plant nutations, a long-lasting debate has

produced three main theories for their nature: The existence of an endogenous oscilla-

tor [9], a gravitropic feedback oscillator [17] or a combination of the two [18]. Inspired

by this fascinating phenomenon of uncertain origin, we investigated the effect of elastic

deformations induced by gravity loading on the active response of plant shoots, an aspect

that has been so far disregarded. To this aim, we first introduced a simple prototypical

model, the so-called gravitropic spring-pendulum system. This was shown to be capable

of capturing the main features of plants response to gravity. The simplicity of the model

allowed us to perform a rigorous mathematical analysis to prove that a Hopf bifurcation

occurs for a critical length of the pendulum.
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3. NUTATIONS IN PLANT SHOOTS

a b

Figure 3.9: (a) Superposition of deformed shapes and respective directors from the non-
linear rod model and for `0 = 6.8 cm, `g = 7 cm, α = 0.2, τe = 24 min, τg = 40 h, and all
other parameters as reported in Table 3.1. Notice the progressive transition of the system
from a dynamics dominated by the endogenous oscillator to one in which flutter-induced
oscillations prevail. (b) Experimental results (tip trajectory and its projections on coor-
dinate planes) from a sample of Arabidopsis thaliana (Col-0) are reported for qualitative
comparison. From [6].

To account for the complex nature of the interplay between elasticity and growth in

plant shoots, we then derived a three-dimensional rod model built on the general theory

of morphoelastic rods. For this model, in a linearized setting, we proved the existence

of oscillatory and diverging solutions above a critical length of the rod.

Finite element simulations allowed us to extend the analysis of the dynamics of model

shoots into the nonlinear regime, with computational results confirming our theoretical

findings. For a choice of material parameters consistent with the available literature on

plant shoots, we found that rods of sufficient length may exhibit oscillations of increasing

amplitude, which eventually converge to limit cycles. In particular, pendular movements

are unstable in the three-dimensional setting, and elliptic trajectories could represent

transient oscillations towards stable circular limit cycles. This behavior strongly suggests

the occurrence of a Hopf bifurcation, just as for the gravitropic spring-pendulum system,

and is closely reminiscent of the periodic movements reported for elongating plant organs.

Straightening mechanisms, modelled as proprioception with delay and memory, do

not alter the scenario of mechanical instabilities from a qualitative viewpoint. As pro-

posed in the literature, in the absence of other stimuli, proprioception might even be re-

sponsible for oscillatory movements in microgravity conditions. However, for the present

80



3.5 Discussion

model calibration, the critical growth rate we determine is about ten times larger than

that of available experimental observations.

In addition, the flutter instability combined with an internal harmonic oscillator can

reproduce trochoid-like patterns, which were observed in previous experiments on the

hypocotyls of Arabidopsis thaliana seedlings, as the result of the superposition of short

and long period nutations [58]. In the presence of elastic deformations, the relative

amplitude of the two oscillations becomes time-dependent, with endogenous oscillations

prevailing in the subcritical regime of short shoots (` < `?) and dominant fluttering in

the supercritical one of long shoots (` > `?).

These findings suggest the possibility to reinterpret the vast existing experimental

literature from a renewed perspective. Our observations conducted on the primary

inflorescence of A. thaliana Col-0 growing under continuous light, which are partially

reported in Fig. 2, are in agreement with the literature. We observed elliptic and circular

oscillatory patterns, which occurred in both directions, as well as pendular oscillations.

However, the observed inflorescences did not exhibit clear trochoid-like patterns.

The existence of pendular circumnutations cannot be explained by the intrinsic os-

cillator model alone, without ad hoc endogenous prescriptions, whereas the flutter in-

stability mechanism might reproduce pendular, elliptic and circular trajectories. On

the other hand, a model based on the flutter instability alone seems unable to repro-

duce the trochoid-like patterns reported in the literature, which would indeed require

the superposition of different oscillation modes. Therefore the present study suggests

that the preferred hypothesis for the nature of circumnutations should take into account

both mechanisms. The relative importance of exogenous versus endogenous oscillations

is an emergent property of the system. The first become dominant as the shoot length

increases, due to the increasing importance of elastic deformations caused by gravity

loading. In other words, the role of elastic deformations in controlling the relative im-

portance of the two mechanisms and the geometry of the oscillations is crucial.

In concluding, we point out that circular trajectories of the plant tip might be the

byproduct of having assumed the plant cross section to be circular. Indeed we believe

that this is not an intrinsic property of the physical system and preliminary results (not

reported) for rods with elliptic cross sections show the emergence of patterns that differ

from circular ones. We reserve future studies to explore this observation, together with

the need for a quantitative assessment of the accuracy of the theoretical predictions in

comparison with experimental observations.

Finally, we stress the fact that, beside their relevance in a biological context, studies

on circumnutational movements in plants are providing inspiration for innovative de-

signs in robotic applications. For instance, Del Dottore et al. [101] have shown that

soil penetration strategies mimicking circumnutating roots may be advantageous when

compared to standard drilling techniques in the context of robotic soil exploration tasks.
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Appendix A

Appendices to chapter 1

A.1 The displacement in the small-deformation regime

In this appendix, we calculate the matrix V := skw(vε(0)). Since

ṡ0 =
N∑
n=1

vn(ε)ε̇n where vn(ε) := − `
2

(1 + εn)1−p + 2
N∑

j=n+1
(1 + εj)

1−p

N∑
j=1

(1 + εj)
1−p

, (A.1)

we get

{vε(ε)}ij :=
∂vi
∂εj

=



− `
2(1− p)

2
N∑
n=1

(1+εn)1−p−
(

(1+εi)
1−p+2

N∑
n=i+1

(1+εn)1−p

)

(1+εj)p

(
N∑
n=1

(1+εn)1−p

)2 if i < j,

− `
2(1− p)

N∑
n=1

(1+εn)1−p−
(

(1+εi)
1−p+2

N∑
n=i+1

(1+εn)1−p

)

(1+εj)p

(
N∑
n=1

(1+εn)1−p

)2 if i = j,

`
2(1− p)

(1+εi)
1−p+2

N∑
n=i+1

(1+εn)1−p

(1+εj)p

(
N∑
n=1

(1+εn)1−p

)2 if i > j,

(A.2)

so that

{vε(0)}ij =


`(p− 1)2i−1

2N2 if i < j,

`(p− 1)2i−N−1
2N2 if i = j,

`(p− 1)2i−2N−1
2N2 if i > j.

(A.3)
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Then we conclude that

{V}ij =


`(p− 1) i−j+N

2N2 if i < j,

0 if i = j,

−`(p− 1) j−i+N
2N2 if i > j,

(A.4)

which is a Toeplitz matrix, indeed

{V}(i+1)(j+1) = {V}ij , (A.5)

for all i, j = 1, . . . , N − 1, i.e., each descending diagonal from left to right is constant.

Therefore, the matrix V turns out to be “skew-centrosymmetric”, i.e., skew-symmetric

about its center or, equivalently,

{V}ij = −{V}(N+1−i)(N+1−j), (A.6)

for all i, j = 1, . . . , N .
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A.2 Euler-Lagrange equations

The Euler-Lagrange equations associated with the isoperimetric optimization prob-

lem (1.50) in the main text, namely,

max
ε∈Ωc

V[ε, ε̇] where V[ε, ε̇] :=

∫ T

0
ε̇ ·Vε dt

Ωc =

{
ε ∈ C2

(
R,RN

) ∣∣∣∣ ε(0) = ε(T ) and

∫ T

0
(Aε · ε+ Bε̇ · ε̇) dt = c

}
,

(A.7)

leads to the system of second order linear ODEs

Vε̇ = λ (Bε̈−Aε) , (A.8)

where V is Toeplitz and skew-symmetric while A and B are supposed to be symmetric

and positive definite.

In the following we address problem (A.2) for two particular cases.

A.2.1 Solutions for A = 0

For A = 0, equation (A.8) becomes

Vε̇ = λBε̈. (A.9)

The strategy is to decompose (A.9) along the eigen-elements of M := B−
1
2 V B−

1
2 , which

is supposed to have N distinct eigenvalues for simplicity. In fact, it would be sufficient

to assume that the eigenspaces associated with the maximum-modulus eigenvalues have

dimension 1.

Since M is a skew-symmetric matrix, its eigenvalues are purely imaginary and, apart

from 0, they go by pairs due to the fact that to every purely imaginary eigenvalue

there corresponds its conjugate (with the same multiplicity). This implies that 0 is an

eigenvalue of M if and only if N is odd. Without any loss of generality, we assume that

N is odd. If N is even the same argument can be applied by neglecting the eigenvector

associated with 0. Thus, consider

v±j for j = 1, . . . , bN/2c =: N?, (A.10)

(complex and orthonormal) eigenvectors associated with the purely imaginary eigenvalue

±iµj where µj > 0, and v0, eigenvector associated with µ0 = 0, so that

Mv0 = 0,

Mv±j = ±iµjv±j for j = 1, . . . , N?.
(A.11)
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Therefore

B
1
2ε(t) =

N?∑
j=1

(
ψ+
j (t)v+

j + ψ−j (t)v−j

)
+ ψ0(t)v0, (A.12)

and from (A.9) we get {
λψ̈±j = ±iµjψ̇±j for j = 1, . . . , N?,

λψ̈0 = 0,
(A.13)

whence ψ±j (t) =
λα±j
±iµj e

±i
µj
λ
t + γ±j for j = 1, . . . , N?,

ψ0(t) = α0t+ γ0,
(A.14)

where α±j , γ±j , α0 and γ0 are complex constants. Since the constants γ±j and γ0 determine

the initial condition ε(0), for simplicity we can assume that γ0 = 0 and γ±j = 0 for

j = 1, . . . , N?. Then, up to a constant, a solution to (A.9) can be written as

ε(t) =
N?∑
j=1

(
λα+

j

iµj
ei
µj
λ
tB−

1
2v+

j −
λα−j
iµj

e−i
µj
λ
tB−

1
2v−j

)
+ α0tB

− 1
2v0 for t ∈ [0, T ] .

(A.15)

Moreover, since a solution to (A.7) must be periodic, i.e., ε(0) = ε(T ), we deduce that

α0 = 0 and

λ =
µjT

2πkj
, (A.16)

where kj ∈ N for j = 1, . . . , N?. On the other hand,

V[ε, ε̇] = −
∫ T

0
Vε̇ · ε dt = −

∫ T

0
λBε̈ · ε dt = λ

∫ T

0
Bε̇ · ε̇ dt = λE [ε, ε̇] , (A.17)

where E [ε, ε̇] = c is constrained by the optimization problem. Then maximizing the

approximated displacement leads to take λ as big as possible, namely,

λ =
µMT

2π
where µM := max

j=1,...,N?
µj . (A.18)

In addition, in order to preserve the periodicity, we get

α±j = 0 for j 6= M, (A.19)

thus yielding to

ε(t) = α+
M

T

2iπ
e

2iπt
T B−

1
2 v+

M − α−M
T

2iπ
e−

2iπt
T B−

1
2 v−M , (A.20)
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where v−M is the conjugate of v+
M . Moreover, since ε(t) must be in RN , α+

M is the

conjugate of α−M and needs to fulfill

||α+
M || =

√
c

2T
, (A.21)

indeed

E [ε, ε̇] = T
N?∑
j=1

(
||α+

j ||2 + ||α−j ||2
)

= 2T ||α+
M ||2. (A.22)

Finally, we conclude that a solution to (A.9) has the form

ε(t) = α
T

2iπ
e

2iπt
T B−

1
2 v − ᾱ T

2iπ
e−

2iπt
T B−

1
2 v̄, (A.23)

where the bar denotes complex conjugation. This expression can be rewritten as

ε(t) = −T
π

Re
(
αie

2iπt
T e
)

where e := B−
1
2 v and ||α|| =

√
c

2T
. (A.24)

In concluding, we notice that in order to maximize the displacement in the opposite

direction, it is sufficient to consider

λ = −µMT
2π

where µM := max
j=1,...,N?

µM , (A.25)

so that (A.24) becomes

ε(t) =
T

π
Re
(
αie−

2iπt
T e
)
. (A.26)

A.2.2 Solutions for B = 0

For B = 0, equation (A.8) becomes

Vε̇ = −λAε. (A.27)

As in the previous section, the strategy is to decompose (A.27) along the eigen-elements

of M := A−
1
2 V A−

1
2 , which is supposed to have N distinct eigenvalues for simplicity. In

fact, it would be sufficient to assume that the eigenspaces associated with the maximum-

modulus eigenvalues have dimension 1.

M is a skew-symmetric matrix, so that its eigenvalues are purely imaginary and, apart

from 0, they go by pairs since to every purely imaginary eigenvalue there corresponds

its conjugate (with the same multiplicity). This implies that 0 is an eigenvalue of M if

and only if N is odd. Without any loss of generality, we assume that N is odd. If N is

even the same argument can be applied by neglecting the eigenvector associated with 0.

Thus, consider

v±j for j = 1, . . . , bN/2c =: N?, (A.28)
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(complex and orthonormal) eigenvectors associated with the purely imaginary eigenvalue

±iµj where µj > 0, and v0, eigenvector associated with µ0 := 0, so that

Mv0 = 0

Mv±j = ±iµjv±j for j = 1, . . . , N?.
(A.29)

Therefore

A
1
2ε(t) =

N?∑
j=1

(
ψ+
j (t)v+

j + ψ−j (t)v−j

)
+ ψ0(t)v0, (A.30)

and from (A.27) we get {
±iµjψ̇±j = −λψ±j for j = 1, . . . , N?,

λψ0 = 0,
(A.31)

whence {
ψ±j (t) = α±j e

±iλ
µj

t
for j = 1, . . . , N?,

ψ0(t) ≡ 0,
(A.32)

where α±j are complex constants. Therefore a solution to (A.27) can be written as

ε(t) =
N?∑
j=1

(
α+
j e

iλ
µj
t
A−

1
2v+

j − α−j e
− iλ
µj
t
A−

1
2v−j

)
for t ∈ [0, T ] . (A.33)

Moreover, since a solution to (A.7) must be periodic, i.e., ε(0) = ε(T ), we deduce that

λ =
2πkjµj
T

, (A.34)

where kj ∈ N for j = 1, . . . , N?. On the other hand,

V[ε, ε̇] = −
∫ T

0
Vε̇ · ε dt = λ

∫ T

0
Aε · ε dt = λE [ε, ε̇] , (A.35)

where E [ε, ε̇] = c is constrained by the optimization problem. Then maximizing the

approximated displacement leads to take λ as big as possible but, since in principle kj
could tend to infinity, in order to have a meaningful problem, we restrict our attention

to shape changes with unitary time frequency (one wave per period), that is kj = 1 and

hence

λ =
2πµM
T

where µM := max
j=1,...,N?

µM . (A.36)

In order to preserve the periodicity, we get

α±j = 0 for j 6= M, (A.37)
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A.2 Euler-Lagrange equations

thus yielding to

ε(t) = α+
Me

2iπt
T B−

1
2 v+

M − α−Me−
2iπt
T B−

1
2 v−M , (A.38)

where v−M is the conjugate of v+
M . Moreover, since ε(t) must be in RN , α+

M is the

conjugate of α−M and needs to fulfill

||α+
M || =

√
c

2T
, (A.39)

indeed

E [ε, ε̇] = T
N?∑
j=1

(
||α+

j ||2 + ||α−j ||2
)

= 2T ||α+
M ||2. (A.40)

Finally, we conclude that a solution to (A.27) has the form

ε(t) = αe
2iπt
T B−

1
2 v − ᾱe− 2iπt

T B−
1
2 v̄, (A.41)

where the bar denotes complex conjugation. This expression can be rewritten as

ε(t) = 2 Re
(
αe

2iπt
T e
)

where e := B−
1
2 v and ||α|| =

√
c

2T
. (A.42)

In concluding, we notice that for maximizing the displacement in the opposite direc-

tion, it is enough to consider

λ = −2πµM
T

where µM := max
j=1,...,N?

µM , (A.43)

so that the solution has the form

ε(t) = 2 Re
(
αe−

2iπt
T e
)
. (A.44)

A.2.3 Symmetry properties

In this section we prove the symmetry properties stated in the main text. Consider

E[ε, ε̇] :=

∫ T

0
(Aε · ε+ Bε̇ · ε̇) dt, (A.45)

where A = 0 and B is centrosymmetric (resp. A is centrosymmetric and B = 0), and

V[ε, ε̇] :=

∫ T

0
ε̇ ·Vε dt, (A.46)

where V is skew-centrosymmetric. Then, from basic properties of centrosymmetric and

skew-centrosymmetric matrices (see, e.g., [102]), we know that

KTBK = B (resp. KTAK = A) and KTVK = −V, (A.47)
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where

K =


0 0 · · · 0 1

...

1 0 · · · 0 0

 . (A.48)

As shown in Sections A.2.1 and A.2.2, a solution to (A.7) has the form

ε?(t) = −T
π

Re
(
αie

2iπt
T e
) (

resp. ε?(t) = 2 Re
(
αe

2iπt
T e
))

, (A.49)

where ||α|| =
√
c/2T . Then, we notice that

η?(t) := Kε?(t) = −T
π

Re
(
αie

2iπt
T Ke

) (
resp. η?(t) := Kε?(t) = 2 Re

(
αe

2iπt
T Ke

))
,

(A.50)

solve the minimization problem given by

min
ε∈Ωc

−V[ε, ε̇]. (A.51)

Indeed E[η?, η̇?] = E[ε?, ε̇?] = c and

V[η?, η̇?] =

∫ T

0
Kε̇? ·VKε? dt = −

∫ T

0
ε̇? ·Vε? dt

= −V[ε?, ε̇?] = −max
ε∈Ωc

V[ε, ε̇] = min
ε∈Ωc

(−V[ε, ε̇]) . (A.52)

Since η?(t) is a solution to (A.51), it must be of the form

η?(t) =
T

π
Re
(
βie−

2iπt
T e
) (

resp. η?(t) = 2 Re
(
βe−

2iπt
T e
))

(A.53)

where ||β|| =
√
c/2T . Therefore,

−Re
(
αie

2iπt
T Ke

)
= Re

(
βie−

2iπt
T e
) (

resp. Re
(
αe

2iπt
T Ke

)
= Re

(
βe−

2iπt
T e
))

,

(A.54)

for all t ∈ [0, T ], namely, for n = 1, . . . , N , the real parts of iβen and −iα(Ke)n (resp.

βen and α(Ke)n) coincide for any simultaneous opposite rotation (i.e., multiplication

by e−2iπt/T and e2iπt/T ∀t ∈ [0, T ]). Then we conclude that Ke = eiϑē for some suitable

ϑ ∈ [0, 2π). In particular, eN+1−n = eiϑēn for all n = 1, . . . , N , so that

(i) moduli are symmetric about the center, i.e., ||eN+1−n|| = ||en|| for all n = 1, . . . , N ,

and

(ii) phase differences between adjacent segments are symmetric about the center, i.e.,

en+1eN+1−n = eN−nen for all n = 1, . . . , N .
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A.3 Dissipation energy

In this appendix we show the details of the calculations for the operators that determine

the dissipation energy, E, defined by (1.62) in the main text. We first focus on the

operator D(ε) that defines the first term of the dissipation energy, and then we derive

the overall operator G := D(0) + wIN and we show its symmetry properties.

A.3.1 The first term of the dissipation rate: The power

We recall that, by definition, the first term of the dissipation rate is given by

d1(t, ε, ε̇) :=

∫ L

0
− 1

µ
f (s0(t) + χ(S, t), t) χ′(S, t) ṡ(S, t) dS, (A.55)

where, for S ∈ [Sn−1 := (n− 1)`, Sn := n`], namely, for the n-th segment,

f (s0(t) + χ(S, t), t) = (1 + ε(S, t))−pṡ(S, t), (A.56)

χ′(S, t) = 1 + ε(S, t), (A.57)

ṡ(S, t) = ṡ0(t) + [S − (n− 1)`] ε̇n(t) + `

n−1∑
i=1

ε̇i(t). (A.58)

Therefore,

d1(t, ε, ε̇) =

∫ L

0
(1 + ε(S, t))1−p ṡ2(S, t) dS

=

∫ L

0
(1 + ε(S, t))1−p

[
ṡ0(t) + (S − (n− 1)`) ε̇n(t) + `

n−1∑
i=1

ε̇i(t)

]2

dS

=

N∑
n=1

Dn, (A.59)

where, for all n = 1, . . . , N ,

Dn :=

∫ n`

(n−1)`
(1 + εn)1−p

[
ṡ0 + `

n−1∑
i=1

ε̇i + (S − (n− 1)`) ε̇n

]2

dS

= (1 + εn)1−p
∫ n`

(n−1)`


[
ṡ0 + `

n−1∑
i=1

ε̇i

]2

+ 2

[
ṡ0 + `

n−1∑
i=1

ε̇i

]
(S − (n− 1)`) ε̇n

+ε̇n
2 (S − (n− 1)`)2

 dS

= (1 + εn)1−p


[
ṡ0 + `

n−1∑
i=1

ε̇i

]2

`+

[
ṡ0 + `

n−1∑
i=1

ε̇i

]
ε̇n (S − (n− 1)`)2

∣∣∣∣n`
(n−1)`
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+ε̇n
2 (S − (n− 1)`)3

3

∣∣∣∣n`
(n−1)`


=
`

3
(1 + εn)1−p

3

[
ṡ0 + `

n−1∑
i=1

ε̇i

]2

+ 3`

[
ṡ0 + `

n−1∑
i=1

ε̇i

]
ε̇n + ε̇n

2`2

 . (A.60)

In view of (A.1), we get

ṡ0 + `
n−1∑
i=1

ε̇i =
N∑
n=1

vnε̇n + `
n−1∑
i=1

ε̇i =
n−1∑
i=1

(`+ vi)ε̇i +
N∑
i=n

viε̇i, ∀n = 1, . . . , N, (A.61)

so that

Dn =
`

3
(1 + εn)1−p

3

n−1∑
j=1

(`+ vj)ε̇j +

N∑
i=n

vj ε̇j

2

+ 3`

n−1∑
j=1

(`+ vj)ε̇j +

N∑
j=n

vj ε̇j

 ε̇n
+ ε̇n

2`2


= ` (1 + εn)1−p


n−1∑
j=1

(`+ vj)
2ε̇2
j + 2

n−1∑
i,j=1
i<j

(`+ vj)(`+ vi)ε̇iε̇j + 2
N∑

i,j=n
i<j

vivj ε̇iε̇j+

N∑
j=n

v2
j ε̇

2
j + 2

n−1∑
i=1

N∑
j=n

(`+ vi)vj ε̇iε̇j + `

n−1∑
j=1

(`+ vj)ε̇j +

N∑
j=n

vj ε̇j

 ε̇n +
`2ε̇2

n

3


= ` (1 + εn)1−p


n−1∑
j=1

(`+ vj)
2ε̇j

2 + `
n−1∑
j=1

(`+ vj)ε̇j ε̇n +
N∑
j=n

v2
j ε̇

2
j + `

N∑
j=n

vj ε̇j ε̇n

+
`2ε̇2

n

3
+ 2

n−1∑
i,j=1
i<j

(`+ vj)(`+ vi)ε̇iε̇j + 2

N∑
i,j=n
i<j

vivj ε̇iε̇j + 2

N∑
j=n

n−1∑
i=1

(`+ vi)vj ε̇iε̇j


=
`

3
(1 + εn)1−p


N∑
j=1

a
(n)
j (ε)ε̇2

j + ε̇2
j + 2

N∑
j=1
j 6=n

b
(n)
j (ε)ε̇j ε̇n + 2

n−1∑
i,j=1
i<j

cij(ε)ε̇iε̇j

+2
N∑

i,j=n+1
i<j

dij(ε)ε̇iε̇j + 2

n−1∑
i=1

N∑
j=n+1

eij(ε)ε̇iε̇j

 , (A.62)
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where

a
(n)
j (ε) :=


3(`+ vj)

2 if j ≤ n− 1,

`2 + 3`vn + 3v2
n if j = n,

3v2
j if j ≥ n+ 1,

(A.63)

b
(n)
j (ε) :=

{
3(`+ vj)(

`
2 + vn) if j ≤ n− 1,

3vj(
`
2 + vn) if j ≥ n+ 1,

(A.64)

cij(ε) :=3(`+ vi)(`+ vj), (A.65)

dij(ε) :=3`+ vivj , (A.66)

eij(ε) :=3(`+ vi)vj . (A.67)

Then

Dn =
`

3
(1 + εn)1−p [ε̇ ·Dn(ε)ε̇] , (A.68)

where, for n = 1, . . . , N ,

Dn(ε) :=



a
(n)
1 c12 · · · c1,n−1 b

(n)
1 e1,n+1 · · · · · · e1,N

c12
. . .

. . .
...

...
...

...
...

. . .
. . . cn−2,n−1

...
...

...

c1,n−1 · · · cn−2,n−1 a
(n)
n−1 b

(n)
n−1 en−1,n+1 · · · · · · en−1,N

b
(n)
1 · · · · · · b

(n)
n−1 a

(n)
n b

(n)
n+1 · · · · · · b

(n)
N

e1,n+1 · · · · · · en−1,n+1 b
(n)
n+1 a

(n)
n+1 dn+1,n+2 · · · dn+1,N

...
...

... dn+1,n+2
. . .

. . .
...

...
...

...
...

. . .
. . . dN−1,N

e1,N · · · · · · en−1,N b
(n)
N dn+1,N · · · dN−1,N a

(n)
N



.

(A.69)

Finally,

d1(t, ε, ε̇) =
N∑
n=1

Dn =
N∑
n=1

`

3
(1 + εn)1−p [ε̇ ·Dn(ε)ε̇] = ε̇ ·D(ε)ε̇, (A.70)

where

D(ε) :=
`

3

N∑
n=1

(1 + εn)1−pDn(ε). (A.71)

A.3.2 Operator G

Since, from (A.1), vn(0) = − `
2

2(N−n)+1
N for n = 1, . . . , N , we obtain

G := D(0) + wIN =
`

3

N∑
n=1

Dn(0) + wIN , (A.72)
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where

a
(n)
j (0) =


3`2

4N2 (2j − 1)2 if j < n,
3`2

4N2

[
4
3N

2 + 2N(1− 2n) + 4n(n− 1) + 1
]

if j = n,
3`2

4N2 [2(N − j) + 1]2 if j > n,

, (A.73)

b
(n)
j (0) =

{
3`2

4N2 (2j − 1)(2n−N − 1) if j < n,
3`2

4N2 (2N − 2j + 1)(N − 2n+ 1) if j > n,
, (A.74)

cij(0) =
3`2

4N2
(2j − 1)(2i− 1), (A.75)

dij(0) =
3`2

4N2
[2(N − i) + 1] [2(N − j) + 1] , (A.76)

eij(0) =
3`2

4N2
(2i− 1) [2(j −N)− 1] . (A.77)

More precisely,

1. for i < j,

{D(0)}ij =
`3

4N2

 i−1∑
n=1

(2N − 2i+ 1) (2N − 2j + 1) + (2j − 2N − 1) (2i−N − 1)

+

j−1∑
n=i+1

(2i− 1) (2j − 2N − 1) + (2i− 1)(2j −N − 1)

+
N∑

n=j+1

(2i− 1) (2j − 1)

 =
`3

4N
(2i− 1) [2(N − j) + 1] , (A.78)

2. for i = j,

{D(0)}ii =
`3

4N2

[
i−1∑
n=1

(2N − 2i+ 1)2 +

(
4

3
N2 + 2N(1− 2i) + 4i(i− 1) + 1

)

+

N∑
n=i+1

(2i− 1)2

]
=

`3

12N

[
4N(3i− 2)− 3(2i− 1)2

]
, (A.79)

3. for i > j, by symmetry,

{D(0)}ij = {D(0)}ji =
`3

4N
(2j − 1) [2(N − i) + 1] . (A.80)

Therefore, we conclude that

{G}ij =


`3

4N (2i− 1) (2(N − j) + 1) if i < j,
`3

12N

[
4N(3i− 2)− 3 (2i− 1)2

]
+ w if i = j,

`3

4N (2j − 1) (2(N − i) + 1) if i > j.

(A.81)
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Then G is symmetric about both the main diagonal (by construction) and the secondary

diagonal, indeed

1. for i < j,

{G}ij =
`3

4N
(2i− 1) (2(N − j) + 1)

=
`3

4N
(2(N + 1− j)− 1) (2(N − (N + 1− i)) + 1)

= {G}(N+1−j)(N+1−i) , (A.82)

2. for i = j,

{G}ii =
`3

12N

[
4N(3i− 2)− 3 (2i− 1)2

]
+ w

=
`3

12N

[
4N(3(N + 1− i)− 2)− 3 (2(N + 1− i)− 1)2

]
+ w

= {G}(N+1−i)(N+1−i) , (A.83)

3. for i > j, by symmetry,

{G}ij = {G}ji = {G}(N+1−i)(N+1−j) = {G}(N+1−j)(N+1−i). (A.84)

Such a property is usually referred to as “bisymmetry” and it implies “centrosymmetry”,

namely,

{G}ij = {G}(N+1−i)(N+1−j) ∀i, j = 1, . . . , N. (A.85)

A.4 Optimal control problem for the periodic version

Consider the optimal control problem

max
ε∈Ω?c,u

V[u, u̇] :=

∫ T

0
u̇ ·V?

uu dt

Ω?
c,u :=

{
u ∈ C3

(
R,RN

) ∣∣∣∣ u(0) = u(T ) and E [u, u̇] :=

∫ T

0
u̇ ·G?

uu̇ dt = c

}
,

(A.86)

where V?
u := JTp VJp, G?

u := JTp GJp, ε = Jpu, and

Jp :=
1

`


1 −1

−1 1
. . .

. . .

−1 1

 . (A.87)
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By making use of expressions (A.4) and (A.81), we arrive at

{V?
u}ij =


p−1
2L if i = j − 1 or (i, j) = (N, 1),

−p−1
2L if i = j + 1 or (i, j) = (1, N),

0 otherwise,

(A.88)

and

{G?
u}ij =


2N−3

3N `+ 2w
`2

if i = j − 1 or (i, j) = (N, 1),
N−6
6N `− w

`2
if i = j + 1 or (i, j) = (1, N),

−`/N otherwise.

(A.89)

Euler-Lagrange equations associated with (A.86), are given by

V?
uu̇ = λG?

uü, (A.90)

where V?
u and G?

u are circulant and, for this reason, diagonalizable on a common or-

thonormal basis, which is called Fourier basis. Indeed,

V?
u = {V?

u}1,1 IN + {V?
u}1,2 E + · · ·+ {V?

u}1,N EN−1, (A.91)

G?
u = {G?

u}1,1 IN + {G?
u}1,2 E + · · ·+ {G?

u}1,N EN−1. (A.92)

In the equations above,

E :=


1

. . .

1

1

 , (A.93)

which is such that EN = IN , and whose eigenvectors are

ej =
1

N


1

ei
2π
N

(j−1)

...

ei
2π
N

(j−1)(N−1)

 , (A.94)

corresponding to the eigenvalue µj = ei 2π(j−1)/N for j = 1, . . . , N . Therefore

G?
uej = gjej where gj :=

(
N∑
k=1

{G?
u}1,k µk−1

j

)
, (A.95)

and

V?
uej = vjej where vj :=

(
N∑
k=1

{V?
u}1,k µk−1

j

)
. (A.96)
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By writing

u(t) =
N∑
j=1

uj(t)ej , (A.97)

we can project equation (A.90) along the eigenvectors, i.e., λgj üj(t) = vj u̇j(t) ∀j. Thus,

up to a constant,

uj(t) =

αjλ
√
gj

vj
e
vj
λgj

t
for j = 1, . . . , N s.t. gj , vj 6= 0,

αjt otherwise,
(A.98)

where αj are complex constants; in addition, periodicity yields{
λ = T

2πkj

vj
igj

for j = 1, . . . , N s.t. gj , vj 6= 0,

αj = 0 otherwise,
(A.99)

where ∀j, kj ∈ N. On the other hand,

V[u, u̇] = −
∫ T

0
V?
uu̇ · u dt = −

∫ T

0
λG?

uü · u dt = λ

∫ T

0
G?
uu̇ · u̇ dt = λE [u, u̇] ,

(A.100)

where E [u, u̇] = c is constrained by the optimization problem. Then maximizing the

approximated displacement leads to take λ as big as possible, i.e.,

λ =
T

2π

vM
igM

where
vM
igM

= max
j=1,...,N
gj , vj 6=0

vj
igj

, (A.101)

and, in order to preserve the periodicity, we get

αj = 0 for j 6∈

k ∈ {1, . . . , N} :
vk
igk

= max
j=1,...,N
gj , vj 6=0

∣∣∣∣ vjigj
∣∣∣∣
 . (A.102)

In particular, in view of (A.95) and (A.96), we obtain

vj =

N∑
k=1

{V?
u}1,k ei

2π
N

(k−1)(j−1) =
(p− 1)

2L

[
ei

2π
N

(j−1) − e−i 2π
N

(j−1)
]

= i
(p− 1)

L
sin

(
2π(j − 1)

N

)
, (A.103)

and

gj =

N∑
k=1

{G?
u}1,k ei

2π
N

(k−1)(j−1)
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= {G?
u}1,1 + {G?

u}1,2
[
ei

2π
N

(j−1) − ei 2π
N

(j−1)(N−1)
]

+ {G?
u}1,3

N−1∑
k=3

ei
2π
N

(j−1)(k−1)

=

{
2
[
`
3 + w

`2
+
(
`
6 − w

`2

)
cos
(

2π(j−1)
N

)]
for j 6= 1,

0 for j = 1.
(A.104)

Then
vj
gj

= −vN−j+2

gN−j+2
for j = 2, . . . , N, (A.105)

so that a (real) solution has the form (up to a constant)

u(t) =
αT

2πi
√
gM

e
2πi
T
teM −

ᾱT

2πi
√
gM

e−
2πi
T
tēM = − T

π
√
gM

Re
(
αie

2πi
T
teM

)
, (A.106)

where

eM :=
1

N


1

ei
2π
N

(M−1)

...

ei
2π
N

(M−1)(N−1)

 , (A.107)

and α ∈ C \ {0} fulfills the constraint ||α|| =
√
c/2T , since

∫ T
0 G?

uu̇ · u̇ dt = 2T ||α||2. In

terms of strains,ε1 = u1−uN
` = − T

πL
√
gM

Re
(
αie

2πi
T
t
[
1− e−i 2π

N
(M−1)

])
,

εj =
uj−uj−1

` = − T
πL
√
gM

Re
(
αie

2πi
T
t
[
1− e−i 2π

N
(M−1)

]
ei

2π
N

(M−1)(j−1)
)

for j 6= 1,

(A.108)

whence the exact peristalsis

ε(t) = − T

π
√
gM

Re
(
αie

2πi
T
te
)
, (A.109)

where

e :=


e1

ei
2π(M−1)

N e1

...

ei
2π(M−1)

N
(N−1)e1

 with e1 :=
1

L

[
1− e−i 2π

N
(M−1)

]
. (A.110)

Finally, we observe that the wavenumber (i.e., the frequency in space) of the peristalsis

is k = M − 1 and it is the result of

max
k=1,...N−1

vk+1

igk+1
= max

k=1,...N−1

(p−1)
L sin

(
2πk
N

)[
`
3 + w

`2
+
(
`
6 − w

`2

)
cos
(

2πk
N

)] , (A.111)
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A.4 Optimal control problem for the periodic version

namely,

k ∼ N

2π
arccos

(
1

2

6w − `3
3w + `3

)
. (A.112)

Therefore,

(i) for w → +∞, the wavenumber k tends to 1;

(ii) for w = 0, the wavenumber k gets close to N/3.
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A.5 Proof of reflectional symmetry

In this appendix we prove the reflectional symmetry of the optimization problem

max
η∈[0,2π)N

us(η) :=
1

T

∫ T

0
v(ε) · ε̇ dt, (A.113)

where, for n = 1, . . . , N ,

εn(t) := a sin

(
2π

T
t+ ηn

)
and vn(t) := − `

2

(1 + εn)1−p + 2
N∑

i=n+1
(1 + εi)

1−p

N∑
j=1

(1 + εj)
1−p

, (A.114)

under the assumption that there exists a unique solution, which is denoted by

ε(η)(t) =

{
εn(t) = a sin

(
2π

T
t+ ηn

)}
n=1,...,N

. (A.115)

Let us consider the shape change

ε̃(t) := ε̃(η̃)(t) where η̃ = −Kη + 2π, K :=


0 0 · · · 0 1

...

0 1 · · · 0 0

 ∈ RN×N . (A.116)

Then, we notice that, for n = 1, . . . , N ,

ε̃n(t) = a sin

(
2π

T
t− (Kη)n

)
= {−Kε(−t)}n = −εN+1−n(−t), (A.117)

and, consequently, ˙̃εn(t) = ε̇N+1−n(−t). Since both ε(t) and ε̇(t) are periodic functions

of period T , we observe that

− 2

`

∫ T

0
v(ε̃) · ˙̃ε dt

=

∫ T

0

N∑
n=1

˙̃εn

(
(1 + ε̃n)1−p + 2

N∑
i=n+1

(1 + ε̃i)
1−p

) N∑
j=1

(1 + ε̃j)
1−p

−1

dt

=

∫ T

0

N∑
n=1

ε̇N+1−n(−t)

 N∑
j=1

(1− εN+1−j(−t))1−p

−1

·

·
[

(1− εN+1−n(−t))1−p + 2

N∑
i=n+1

(1− εN+1−i(−t))1−p

]
dt
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=

∫ T

0

N∑
n=1

ε̇N+1−n(t)

 N∑
j=1

(1− εN+1−j(t))
1−p

−1

·

·
[

(1− εN+1−n(t))1−p + 2
N∑

i=n+1

(1− εN+1−i(t))
1−p

]
dt

=

∫ T

0

N∑
n=1

ε̇n

(
(1− εn)1−p + 2

n−1∑
i=1

(1− εi)1−p

) N∑
j=1

(1− εj)1−p

−1

dt

= −2

`

∫ T

0
v?(ε) · ε̇ dt, (A.118)

where

v?n := − `
2

(1− εn)1−p + 2
n−1∑
i=1

(1− εi)1−p

N∑
j=1

(1− εj)1−p
. (A.119)

Notice that the last integral can be rewritten as∫ T

0
v?(ε) · ε̇ dt =

∮
∂Ω
ω?, (A.120)

where ∂Ω is the closed curve described by ε(t) and ω? is the 1-form given by

ω? :=

N∑
n=1

v?n dεn. (A.121)

The exterior derivative of (A.121) is the following 2-form

dω? =

N∑
i,j=1
i 6=j

∂v?i
∂εj

dεj ∧ dεi =

N∑
i,j=1
i<j

A?ij(ε) dεi ∧ dεj , (A.122)

where A?ij(ε) := ∂εiv
?
j − ∂εjv?i . In particular, since

∂v?i
∂εj

=


− (1−p)

(1−εj)p

[
N∑
n=1

(1− εn)1−p
]−2 [

(1− εi)1−p + 2
N∑

n=i+1
(1− εn)1−p

]
j < i,

(1−p)
(1−εj)p

[
N∑
n=1

(1− εn)1−p
]−2 [

(1− εi)1−p + 2
i−1∑
n=1

(1− εn)1−p
]

j > i,

(A.123)

we get

A?ij(ε) =− (1− p)
[
N∑
n=1

(1− εn)1−p

]−2
(1− εi)−p

(1− εj)1−p + 2

N∑
n=j+1

(1− εn)1−p


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+ (1− εj)−p
(

(1− εi)1−p + 2

i−1∑
n=1

(1− εn)1−p

) . (A.124)

Therefore, by Stokes’ theorem (see, e.g., [103]),∫ T

0
v?(ε) · ε̇ dt =

∮
∂Ω
ω? =

∫
Ω

dω? =

∫
Ω

∑
i<j

A?ij dεi ∧ dεj , (A.125)

and, since the domain Ω is invariant with respect to the reflection about the origin, we

deduce that ∫
Ω

∑
i<j

A?ij dεi ∧ dεj =

∫
Ω

∑
i<j

A?ij(−ε) dεi ∧ dεj . (A.126)

Similarly, the exterior derivative of the 1-form

ω :=

N∑
n=1

vn dεn, (A.127)

is given by

dω =
N∑

i,j=1
i<j

Aij(ε)dεi ∧ dεj where Aij(ε) :=

(
∂vj
∂εi
− ∂vi
∂εj

)
. (A.128)

Since

∂vi
∂εj

=


− (1−p)

(1+εj)p

[
N∑
n=1

(1 + εn)1−p
]−2 [

(1 + εi)
1−p + 2

N∑
n=i+1

(1 + εn)1−p
]

j < i,

(1−p)
(1+εj)p

[
N∑
n=1

(1 + εn)1−p
]−2 [

(1 + εi)
1−p + 2

i−1∑
n=1

(1 + εn)1−p
]

j > i,

,

(A.129)

we notice that

Aij(ε) = −(1− p)
[
N∑
n=1

(1− εn)1−p

]−2
(1− εi)−p

(1− εj)1−p + 2

N∑
n=j+1

(1− εn)1−p


+ (1− εj)−p

(
(1− εi)1−p + 2

i−1∑
n=1

(1− εn)1−p

) = A?ij(−ε). (A.130)

Finally,∫ T

0
v?(ε) · ε̇ dt =

∮
∂Ω
ω? =

∫
Ω

dω? =

∫
Ω

dω =

∮
∂Ω
ω =

∫ T

0
v(ε) · ε̇ dt, (A.131)
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so that
1

T

∫ T

0
v(ε̃) · ˙̃ε dt =

1

T

∫ T

0
v(ε) · ε̇ dt. (A.132)

In other terms, ε̃ is a solution to (A.113) and, by uniqueness of the solution, we deduce

that εn(t) = −εN+1−n(−t). Then η = −Kη + 2π, which leads to the “reflectional

symmetry about the center”, namely,

ηn+1 − ηn = ηN+1−n − ηN−n ∀n. (A.133)

107





Appendix B

Appendices to chapters 2 and 3

B.1 Differential growth and evolution laws

In this appendix we derive expressions (2.50)-(2.51), which determine the relationship

between differential growth and strain rates. We start by extending the notion of relative

elemental growth rate to any point lying on the circular cross section sv of the virtual

configuration at time t. We parameterize the surface by means of the spatial coordinates

(x, y) in the local basis {dv1(sv, t),d
v
2(sv, t)}, namely,

pv(sv, t;x, y) := pv(sv, t) + xdv1(sv, t) + y dv2(sv, t). (B.1)

Then the length of the material fiber passing through point (x, y) of the cross section sv
and extending from the rod’s base to that point, can be written as

`v(sv, t;x, y) :=

∫ sv

0
(∂svpv(ζ, t;x, y) · ∂svpv(ζ, t;x, y))

1
2 dζ

=

∫ sv

0
{∂svpv · ∂svpv + 2 ∂svpv · (x ∂svdv1 + y ∂svd

v
2)

+
[
x2 ∂svd

v
1 · ∂svdv1 + x2 ∂svd

v
2 · ∂svdv2 + 2x y ∂svd

v
1 · ∂svdv2

]}1
2 dζ

=

∫ sv

0
{1 + 2 (xdv3 · (u? × dv1) + y dv3 · (u? × dv2))

+ x2 (u? × dv1) · (u? × dv1) + y2 (u? × dv2) · (u? × dv2)

+2x y (u? × dv1) · (u? × dv2)}
1
2 dζ

=

∫ sv

0

{
1 + 2 (−xu?2 + y u?1)

+
[
x2ϑ

(
u? · u? − u?12

)
+ y2ϑ

(
u? · u? − u?22

)
− 2x y u?1u

?
2

]}1
2

dζ

=

∫ sv

0

{
1 + 2 (−u?2x+ u?1y) + x2

(
u?2

2 + u?3
2
)
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+y2
(
u?1

2 + u?3
2
)
− 2u?1u

?
2xy
}1

2
dζ

=

∫ sv

0

{
[1 + u?1y − u?2x]2 +

(
x2 + y2

)
u?3

2
}1

2
dζ. (B.2)

Notice that, in the passages above, we used the kinematic relationships ∂svpv = dv3 and

∂svd
v
i = u? × dvi ∀ i, where u? =

∑
j u

?
jd

v
j is the spontaneous twist. Then the growth

stretch at (x, y) is given by

γ(sv, t;x, y) :=
∂`v(sv, t;x, y)

∂S

∣∣∣∣
S=S(sv ,t)

=
∂`v(sv, t;x, y)

∂sv

∂sv
∂S

∣∣∣∣
S=S(sv ,t)

= γ(sv, t)
{

[1 + u?1y − u?2x]2 +
(
x2 + y2

)
u?3

2
}1

2

∣∣∣∣
(sv ,t)

, (B.3)

so that the true strain rate reads

ε̇?v(sv, t;x, y) =
γ̇

γ
(sv, t;x, y)

= ε̇?v(sv, t) +

[
(1 + u?1y − u?2x) (u̇?1y − u̇?2x) + u?3u̇

?
3

(
x2 + y2

)]
(1 + u?1y − u?2x)2 + u?3

2 (x2 + y2)
. (B.4)

By differentiating expression (B.4) with respect to x and y, we get

∂xε̇
?
v(sv, t;x, y)

=
[−u̇?2 − (u?1u̇

?
2 + u?2u̇

?
1) y + 2 (u?2u̇

?
2 + u?3u̇

?
3)x]

[
(1 + u?1y − u?2x)2 + u?3

2
(
x2 + y2

)]
[
(1 + u?1y − u?2x)2 + u?3

2 (x2 + y2)
]2

−
[
(1 + u?1y − u?2x) (u̇?1y − u̇?2x) + u?3u̇

?
3

(
x2 + y2

)] [
−2u?2 (1 + u?1y − u?2x) + 2u?3

2x
][

(1 + u?1y − u?2x)2 + u?3
2 (x2 + y2)

]2 ,

(B.5)

and

∂y ε̇
?
v(sv, t;x, y)

=
[u̇?1 − (u?1u̇

?
2 + u?2u̇

?
1)x+ 2 (u?1u̇

?
1 + u?3u̇

?
3) y]

[
(1 + u?1y − u?2x)2 + u?3

2
(
x2 + y2

)]
[
(1 + u?1y − u?2x)2 + u?3

2 (x2 + y2)
]2

−
[
(1 + u?1y − u?2x) (u̇?1y − u̇?2x) + u?3u̇

?
3

(
x2 + y2

)] [
2u?1 (1 + u?1y − u?2x) + 2u?3

2y
][

(1 + u?1y − u?2x)2 + u?3
2 (x2 + y2)

]2 ,

(B.6)

110



B.1 Differential growth and evolution laws

respectively. Therefore, by Taylor expanding (B.4) about the cross section center (0, 0),

we arrive at

ε̇?v(sv, t;x, y) = ε̇?v(sv, t) +∇ε̇?v(sv, t; 0, 0) · (xdv1(sv, t) + y dv2(sv, t)) + o(
√
x2 + y2)

= ε̇?v(sv, t) + [−u̇?2(sv, t), u̇
?
1(sv, t)] · [x, y] + o(

√
x2 + y2), (B.7)

from which equations (2.50)-(2.51) follow.

Remark B.1.1. Prescribing the growth gradient δv := ∇ε̇?v(sv, t; 0, 0) is equivalent to
the approaches taken in previous studies [14, 61, 65], which involve a notion of differential
growth DG(sv, t;ϑ) introduced as a means to compare strains at diametrically opposite
sides of the circular cross section. Indeed, by passing to the polar coordinates (ρ, ϑ),
such that (x, y) = (ρ cosϑ, ρ sinϑ), equation (B.4) reads

ε̇?v(sv, t; ρ, ϑ) = ε̇?v(sv, t) +

[
(1 + u?1ρ sinϑ− u?2ρ cosϑ) (u̇?1ρ sinϑ− u̇?2ρ cosϑ) + u?3u̇

?
3ρ

2
]

(1 + u?1ρ sinϑ− u?2ρ cosϑ)2 + u?3
2ρ2

,

(B.8)

and then, the differential growth can be defined as

DG(sv, t;ϑ) :=
ε̇?v(sv, t; r, ϑ)− ε̇?v(sv, t; r, ϑ+ π)

ε̇?v(sv, t; r, ϑ) + ε̇?v(sv, t; r, ϑ+ π)

=
(ȧ− ḃ) (A+ (b− a)B)− cċB

ε̇?v(sv, t) (A2 −B2) + (ȧ− ḃ) ((a− b)A−B) + cċ
, (B.9)

or

DG(sv, t;ϑ) :=
ε̇?v(sv, t; r, ϑ)− ε̇?v(sv, t; r, ϑ+ π)

2ε̇?v(sv, t)
=

(ȧ− ḃ) (A+ (b− a)B)− cċB
ε̇?v(sv, t) (A2 −B2)

,

(B.10)

where a := u?1r sinϑ, b := u?2r cosϑ, c := u?3r, A := 1+(a− b)2 +c2, and B := 2(a−b). In
both cases, by assuming that ru?j � 1, the differential growth DG can be approximated
as

DG(sv, t;ϑ) ' r

ε̇?v
(u̇?1 sinϑ− u̇?2 cosϑ) =

r

ε̇?v
(u̇?1d

v
2 − u̇?2dv1) · a(sv, t;ϑ), (B.11)

where a(sv, t;ϑ) := cosϑdv1(sv, t) + sinϑdv2(sv, t). Therefore, by comparing expres-
sions (B.7) and (B.11), we deduce that prescribing the differential growth DG(sv, t;ϑ)
for all ϑ ∈ [0, 2π) is equivalent to prescribe the growth gradient δv := ∇ε̇?v(sv, t; 0, 0), as
introduced in the main text by means of equation (2.51).
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B.2 Delay differential equations

In this appendix we collect results and notions on delay differential equations, which are

used to present a rigorous proof of what stated in the main text, by referring to [104]

for a more exhaustive discussion of these topics.

B.2.1 Definitions

Definition B.2.1 (RFDE or DDE). Let C := C([−d, 0],Rn) for d ∈ [0,∞) and denote
the norm of an element φ in C by |φ| := supδ∈[−d,0] |φ(δ)|. If x ∈ C ([t0 − d, t1] ,Rn) for
t1 > t0 in R, then for any t ∈ [t0, t1], we define xt ∈ C by

xt(δ) := x(t+ δ) ∀ δ ∈ [−d, 0] .

Given D ⊂ R× C and f : D → Rn, we say that the relation

ẋ(t) = f(t,xt) (B.12)

is a Retarded Functional Differential Equation (RFDE), or a Delay Differential Equation
(DDE), on D. A function x ∈ C ([t0 − d, t1] ,Rn) is said to be a solution of (B.12) with
initial value φ ∈ C at t0 if (t,xt) ∈ D for all t ∈ [t0, t1], xt0 ≡ φ and x(t) has a continuous
derivative on (t0, t1), a right hand derivative at t0 and satisfies (B.12) on [t0 − d, t1). Such
a solution is denoted by x(t;φ). Moreover, we say that equation (B.12) is

(i) linear if f(t,φ) = L(t)φ+ h(t), where L(t) is linear;

(ii) autonomous if f(t,φ) = g(φ) where g does not depend on t.

In the following we occasionally write RFDE(f) to emphasize that the equation is defined
by f .

Definition B.2.2 (Stability of equilibria). Let x? be an equilibrium point of ẋ(t) =
f(t,xt), i.e., f(t,x?) = 0 for all t ∈ R. Then, the point x? is said to be

(i) stable if, for any ε > 0, there is δ > 0 such that for any φ ∈ C with |φ − x?| < δ,
we have |x(t;φ)− x?| < ε for t ≥ t0 − d;

(ii) unstable if it is not stable;

(iii) asymptotically stable if it is stable and there is b > 0 such that |φ−x?| < b implies
that |x(t;φ)− x?| → 0 as t→∞;

(iv) a local attractor if there is a neighborhood U of x? s.t. limt→∞ dist(x(t;U),x?) = 0,
i.e., x? attracts elements in U uniformly.

Definition B.2.3 (Characteristic equation). Let L : C → Rn be a continuous linear
functional. We define the characteristic equation of the linear retarded equation ẋ(t) =
L(xt) as

det (ωI− Lω) = 0, (B.13)

where Lω := [L(expω e1)| · · · |L(expω en)]. Here, expω(δ) := eωδ and {ei}i is the canoni-
cal basis for Rn.
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B.2.2 Existence, uniqueness and regularity

Many well known results for ODEs can be extended to RFDEs [104]. We start by

restating an existence and uniqueness result as provided in [105].

Theorem B.2.4 (Existence and uniqueness). Suppose that f is continuous and Lips-
chitz, namely, for all a, b ∈ R and M > 0, there is a K > 0 such that:

|f(t,φ)− f(t,ψ)| ≤ K|φ−ψ|, a ≤ t ≤ b, |φ|, |ψ| ≤M. (Lip)

Fixed t0 ∈ R and M > 0, there exists T > 0, depending only on M such that if φ ∈ C

satisfies |φ| ≤ M , then there exists a unique solution x(t) := x(t;φ) to (B.12) with
initial value φ ∈ C at t0, defined on [t0 − d, t0 + T ]. Moreover, if K is the Lipschitz
constant for f corresponding to [t0, t0 + T ] and M , then

max
t0−d≤τ≤t0+T

|x(τ ;φ)− x(τ ;ψ)| ≤ |φ−ψ|eKT , |φ|, |ψ| ≤M. (B.14)

In addition to this, if f is globally Lipschitz, i.e., K does not depend on a, b and M ,
then the solution exists and satisfies (B.14) for all t ≥ t0.

In addition, the following theorems provide conditions to ensure the continuous de-

pendence and the differentiability with respect to (d,φ, f).

Theorem B.2.5 (Continuous dependence). Suppose Ω ⊆ R × C is open, (t0,φ0) ∈ Ω,
f0 ∈ C(Ω,Rn), and x0 is a solution of the RFDE(f0) through (t0,φ0), which exists
and is unique on [t0 − d, T ]. Let W0 ⊆ Ω be the compact set defined by W0 :={

(t,x0
t ) : t ∈ [t0, T ]

}
and let V0 be a neighborhood of W0 on which f0 is bounded. If

(tk,φk, fk), k = 1, 2, . . . satisfies tk → t0, φk → φ0, and |fk − f0|V0 → 0 as k → ∞,
then there is a k0 such that the RFDE(fk) for k ≥ k0 is such that each solution
xk = xk(tk,φk, fk) through (tk,φk) exists on [tk − d, T ] and xk → x0 uniformly on
[t0 − d, T ]. Since all xk may not be defined on [t0 − d, T ], by xk → x0 uniformly on
[t0 − d, T ], we mean that for any ε > 0, there is a k1(ε) such that xk(t), k ≥ k1(ε), is
defined on [t0 − d+ ε, T ], and xk → x0 uniformly on [t0 − d+ ε, T ].

Theorem B.2.6 (Differentiability). If f ∈ Cp(Ω,Rn), p ≥ 1, then the solution
x(t0,φ, f)(t) of the RFDE(f) through (t0,φ) is unique and continuously differentiable
with respect to (φ, f) for t in any compact set in the domain of definition of x(t0,φ, f).
Furthermore, for each t ≥ t0, the derivative of x with respect to φ, Dφx(t0,φ, f)(t) is a
linear operator from C to Rn, Dφx(t0,φ, f)(t0) = I, the identity, and Dφx(t0,φ, f)ψ(t)
for each ψ ∈ C satisfies the linear equation

ẏ(t) = Dφf(t,xt(t0,φ, f))yt. (B.15)

Also, for each t ≥ t0, Dfx(t0,φ, f)(t) is a linear operator from Cp(Ω,Rn) into Rn,
Dfx(t0,φ, f)(t0) = 0, and Dfx(t0,φ, f)g(t) for each g ∈ Cp(Ω,Rn) satisfies the nonho-
mogeneous linear equation

ż(t) = Dφf(t,xt(t0,φ, f))zt + g(t,xt(t0,φ, f)). (B.16)
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B.2.3 Linearized stability and periodic solutions

The stability analysis of the equilibria is a key tool for studying nonlinear systems of

RFDEs for which the classical principle of linearized stability holds.

Consider an autonomous system

ẋ(t) = f(xt), (B.17)

which has an equilibrium x?, namely, f(x?) = 0. Without any loss of generality, we

can assume such an equilibrium to be 0, indeed we can rewrite the problem in terms of

z := x− x? as

ż(t) = f(zt + x?), (B.18)

for which 0 is an equilibrium that has the same stability properties of x?. If we write

the linearization of equation (B.18) about 0 as

ż(t) = Lzt, (B.19)

then the stability is determined by the roots of its characteristic equation. In particular,

if there exists a root with positive real part, then the origin is unstable, and a necessary

and sufficient condition for asymptotic stability is that each root ω has negative real

part. This can be restated as in the following result.

Theorem B.2.7 (Linearized stability). Let ∆(ω) = 0 denote the characteristic equation
corresponding to (B.19) and suppose that

−σ := max
∆(ω)=0

Re(ω) < 0. (B.20)

Then x? is a locally asymptotically stable steady state of (B.17). In fact, there exists
b > 0 such that

if |φ− x?| < b, then |xt(φ)− x?| ≤ K|φ− x?|e−σt/2, t ≥ 0. (B.21)

If Re(ω) > 0 for some characteristic root, then x? is unstable.

A result of crucial importance for rigorously showing the existence of periodic solu-

tions is given by the Hopf bifurcation theorem that can be stated in the following form

for RFDEs.

Theorem B.2.8 (Hopf bifurcation). Consider a one-parameter family of autonomous
RFDEs of the form

ẋ(t) = F(µ,xt), (B.22)

where F ∈ C2 (R× C,Rn) such that 0 is an equilibrium point of (B.22) for all µ. Define
L : R× C→ Rn by

L(µ)φ = DφF(µ,0)φ, (B.23)

where DφF(µ,0) is the derivative of F(µ,φ) with respect to φ at φ = 0. Assume that:
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(i) the linear equation ẋ(t) = L(0)xt has a pair of simple imaginary characteristic roots
ω±0 = ±iβ0 6= 0 and all other characteristic roots ωj 6= mω+

0 for any m ∈ Z.

Then there is a µ0 > 0 and a simple characteristic root ω(µ) = α(µ) + iβ(µ) of equation
ẋ(t) = L(µ)xt s.t. ω(0) = ω+

0 and for |µ| < µ0 it is continuously differentiable. Suppose
that:

(ii) Re(ω′(0)) = α′(0) 6= 0, where primes denote differentiation with respect to µ.

Then there exists ε0 > 0 and two real-valued even functions µ(ε) and T (ε) > 0 satisfying
µ(0) = 0 and T (0) = 2π/β0, and a nonconstant T (ε)-periodic function p(t, ε), with all
functions being continuously differentiable in ε for |ε| < ε0, such that p(t, ε) is a solution
of (B.22) and p(t, ε) = εq(t, ε) where q(t, 0) is a T (0)-periodic solution of ẋ = L(0)x.
Moreover, there exist µ0, η0, δ > 0 s.t. if (B.22) has a nonconstant periodic solution
x(t) of period P for some µ satisfying |µ| < µ0 with maxt |x(t)| < η0 and |P −T (0)| < δ,
then µ = µ(ε) and x(t) = p(t+ θ, ε) for some |ε| < ε0 and some θ.
If F is five times continuously differentiable, then

µ(ε) = µ1ε
2 +O(ε4) and T (ε) = T (0)

[
1 + τ1ε

2 +O(ε4)
]
. (B.24)

If all other characteristic roots for µ = 0 have strictly negative real parts except for ±iβ0,
then p(t, ε) is asymptotically stable if µ1 > 0 and unstable if µ1 < 0.

B.2.4 The equation ÿ(t) + aẏ(t) + by(t− 1) = 0

Motivated by the study of the gravitropic spring-pendulum system (3.6) in the main

text, we now consider a second order linear autonomous RFDE with discrete delay of

the form

ÿ(t) + aẏ(t) + by(t− 1) = 0, (B.25)

which can be restated in system form as{
ẋ1(t) = x2(t),

ẋ2(t) = −ax2(t)− bx1(t− 1),
(B.26)

i.e.,

ẋ(t) =

[
0 1

0−a

]
xt(0) +

[
0 0

−b 0

]
xt(−1) =: L(a)xt. (B.27)

Since the characteristic equation of (B.25) is equivalent to

∆(ω) :=
(
ω2 + aω

)
eω + b = 0, (B.28)

we are interested in determining the behaviour of its roots in terms of the parameter

a. To this purpose we use the same argument applied by Hale [104] (see Theorem A.6

115



B. APPENDICES TO CHAPTERS 2 AND 3

therein) that is based on the Pontryagin’s method. Indeed, by extending the Routh-

Hurwitz criterion, Pontryagin [106] gave necessary and sufficient conditions for all roots

of a polynomial in ω and eω to have negative real part.

In the following we collect some other known results which are needed.

Theorem B.2.9. Let f(x, y, z) be a polynomial of the form

f(x, y, z) :=
M∑
m=0

N∑
n=0

xmφ(n)
m (y, z), (B.29)

where the coefficient of xM is

φ
(N)
? (y, z) :=

N∑
n=0

φ
(n)
M (y, z) 6≡ 0. (B.30)

If ε is such that φ
(N)
? (cos(ε+ iν), sin(ε+ iν)) 6= 0, ν ∈ R, then, for sufficiently large

integers k, the function F (β) = f(β, cosβ, sinβ) has exactly 4Nk+M zeros in the strip
−2kπ + ε ≤ Reβ ≤ 2kπ + ε.
Consequently, the function F (β) has only real roots if and only if, for sufficiently large
integers k, it has exactly 4Nk +M roots in the strip −2kπ + ε ≤ Reβ ≤ 2kπ + ε.

Theorem B.2.10. Let ∆(ω) := P (ω, eω) where P (x, y) is a polynomial of the form

P (x, y) :=
M∑
m=0

N∑
n=0

pmnx
myn, (B.31)

with pMN 6= 0. Suppose ∆(iβ), β ∈ R, is separated into its real and imaginary parts,
∆(iβ) = F (β) + iG(β).
If all zeros of ∆(z) have negative real parts, then the zeros of F (β) and G(β) are real,
simple, alternate and

G′(β)F (β)−G(β)F ′(β) > 0, (B.32)

for β ∈ R.
Conversely, all zeros of ∆(ω) are in the left-half plane provided that either of the following
conditions is satisfied:

(i) All the zeros of F (β) and G(β) are real, simple and alternate and inequality (B.32)
is satisfied for at least one β;

(ii) All the zeros of F (β) are real and, for each zero, inequality (B.32) is satisfied;

(iii) All the zeros of G(β) are real and, for each zero, inequality (B.32) is satisfied.

Theorem B.2.11 (Rouché’s theorem). Let γ be a simple closed curve in C and let f(ω)
and h(ω) be functions analytic in the complex plane and satisfying

|h(ω)| < |f(ω)| , ω ∈ γ . (B.33)

Then f and f + h have the same number of zeros, counting the order of each root,
enclosed by γ.
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By means of these results we are now able to prove the following, which is equivalent

to what shown by [84].

Lemma B.2.12. Consider the equation(
ω2 + aω

)
eω + b = 0, (B.34)

for b > 0 and let ξb be the unique solution of ξ2 = b cos(ξ) in (0, π/2) and let ab :=
sin(ξb)b/ξb. Then the following holds for equation (B.34):

(i) All roots have negative real parts if and only if a > ab;

(ii) For a = ab, ±iξb is the only pair of simple imaginary roots. In particular, no other
root is an integer multiple of iξb;

(iii) There is an ε > 0 and a root ω(a) that is continuously differentiable in
(ab − ε, ab + ε) s.t. ω(ab) = iξb and Re (ω′(ab)) < 0;

(iv) For each a < ab, there are precisely two roots ω with Re (ω) > 0 and Im (ω) ∈
(−π, π).

Proof. (i) Let ∆(ω; a) :=
(
ω2 + aω

)
eω + b. Then, for any β ∈ R, ∆(iβ; a) = F (β) +

iG(β) where

F (β) = b− β2 cosβ − aβ sinβ,

G(β) = β (a cosβ − β sinβ) .

First of all, let us show that G(β) has only real roots if and only if a > 0. We write

G(β) = g(β, cosβ, sinβ),

where g(x, y, z) = −x2z+axy is a polynomial of the form (B.29) for M = 2, N = 1

and φ
(1)
? (y, z) = −z. Since φ

(1)
?

(
cos(π/2 + iν), sin(π2 + iν)

)
= − sin (π/2 + iν) =

− cosh ν 6= 0 for any ν ∈ R, by Theorem B.2.9, G(β) has exactly 4k + 2 zeros in
the strip −2kπ + π/2 ≤ Reβ ≤ 2kπ + π/2. On the other hand,

G(β) = 0 ⇔ β = 0 or β tanβ = a,

and hence G(β) has exactly 4k + 2 real roots in [−2kπ + π/2, 2kπ + π/2] if and
only if a > 0. Consequently, G(β) has only real roots if and only if a > 0.

Theorem B.2.10 implies that the zeros of ∆(ω; a) have negative real parts if and
only if all the zeros of G(β) are real (i.e., a > 0) and, for each zero, G′(β)F (β) > 0.
To conclude we need to show that this is equivalent to the condition a > ab.

(⇒) Assume that a > 0 and that G′(β)F (β) > 0 for all zeros of G. In particular,
this holds for the zero βa ∈ (0, π/2) such that βa = a cotβa. Thus,

0 < G′(βa)F (βa) = β2
a

(
a+ a2 + β2

a

) [
1− b

a

sinβa
βa

]
,
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that is, a/b > (sinβa)/βa. Moreover, βa > ξb. Indeed, for βa ≤ ξb we would
have

a

b
>

sinβa
βa

=
a cosβa
β2
a

≥ a cos ξb
β2
a

=
a

b

(
ξb
βa

)2

≥ a

b
,

that is a contraction. Then(a
b

)2
>

sin2 βa
b cosβa

>
sin2 ξb
b cos ξb

=

(
sin ξb
ξb

)2

,

whence the thesis, a > ab.

(⇐) Assume that a > ab. By definition ab > 0 and hence a > 0, so that we are
left to show that all the zeros of G satisfy

0 < G′(β)F (β) =
[
b− β2 cosβ − aβ sinβ

] [(
a− β2

)
cosβ − (2 + a)β sinβ

]
.

Since G′(0)F (0) = ab > 0, this is true for β = 0. All other zeros of G satisfy
the equation β = a cotβ and hence

G′(β)F (β) = β2
(
a+ a2 + β2

) [
1− b

a

sinβ

β

]
.

It follows that we need to show that

a

b
>

sinβ

β
∀β s.t. β = a cotβ,

and, since β = a cotβ has a unique root βa ∈ (0, π/2) and (sinβa)/βa >
(sinx)/x ∀x ≥ π/2, it is sufficient to show that this inequality holds for
β = βa. We notice that βa > ξb. Indeed, for βa ≤ ξb we would have

ξb ≥ βa = a cotβa > ab cot ξb = b ξ−1
b cos ξb = ξb,

which is a contradiction. Then

b

a

(
sinβa
ξb

)2

=
sin2 βa
a cos ξb

<
sin2 βa
a cosβa

=
sinβa
βa

<
sinβa
ξb

,

whence
a

b
>

sinβa
ξb

>
sinβa
βa

.

(ii) Let ω = α + iβ be a solution of (B.34). By separating real and imaginary parts,
we get

α2 − β2 + aα+ b e−α cosβ = 0, (B.35a)

2αβ + aβ − b e−α sinβ = 0. (B.35b)
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For a = ab and α = 0, such equations reduce to

β2 = b cosβ,

sinβ

β
=

sin ξb
ξb

,

which are fulfilled if and only if β = ±ξb.

(iii) Let F : R× R2 → R2 be the C∞ function defined by

F (a;α, β) =

[
α2 − β2 + aα+ b e−α cosβ

2αβ + aβ − b e−α sinβ

]
,

whose Jacobian with respect to (α, β) is given by

det J(a;α, µ) =
2α+ a− b e−α cosβ −2β − b e−α sinβ

2β + b e−α sinβ 2α+ a− b e−α cosβ

=
(
2α+ a− b e−α cosβ

)2
+
(
2β + b e−α sinβ

)2
.

Since F (ab; 0, ξb) = 0 and det J(ab; 0, ξb) ≥ (2ξb + b sin ξb)
2 > 0, the Implicit

Function Theorem implies that there exists an ε > 0 and unique functions
α(a), β(a) ∈ C∞(ab − ε, ab − ε) s.t. α(ab) = 0, β(ab) = ξb and F (a;α(a), β(a)) =
0 ∀a ∈ (ab − ε, ab − ε). In addition, at a = ab,[

α′

β′

]
(ab) = −[J(ab; 0, ξb)]

−1∂F

∂a
(ab; 0, ξb)

=
1

det J(ab; 0, ξb)

[
−ab + b cos ξb −2ξb − b sin ξb

2ξb + b sin ξb −ab + b cos ξb

][
0

ξb

]

= − ξb
det J(ab; 0, ξb)

[
2ξb + b sin ξb

ab − b cos ξb

]
,

and hence α′(ab) < 0. Then ω(a) := α(a) + iβ(a) fulfills the thesis.

(iv) Let ΩI
r0,r1 := {ω ∈ C : Reω ∈ [r0, r1] , | Imω| < I}. From (i)-(iii), there exists

a0 < ab s.t. equation (B.34) has exactly two roots in Ωπ
0,∞. Suppose a ≤ a0. We

observe that there is no solution to (B.34) with either ω = α± iπ, α ≥ 0 or ω = iβ,
β ∈ [0, π]. Indeed,

– if ω = α ± iπ with α ≥ 0 is a solution, then equation (B.35b) implies that
2α = −a and equation (B.35a) leads

0 = α2 − π2 + aα− b e−α = −π2 − a2

4
− b e−α < 0,

which is a contraction;

119



B. APPENDICES TO CHAPTERS 2 AND 3

– if ω = iβ, β ∈ [0, π] is a solution, then equation (B.35a) implies that β = ξb
and, from (B.35b), a = ab that is impossible, since a ≤ a0 < ab.

Moreover, there exists R > 0, depending only on b, such that equation (B.34) has
no solutions ω with Reω ≥ R for any a ∈ (0, ab]. Indeed,∣∣∣∣∆(ω; a)

ω2eω

∣∣∣∣ =

∣∣∣∣ω2 + aω + be−ω

ω2

∣∣∣∣ =

∣∣∣∣1 +
a

ω
+
be−ω

ω2

∣∣∣∣ ≥ 1−
[
ab|ω|−1 + b e−Reω|ω|−2

]
,

where the term in the square brackets is strictly less than 1 for Reω large enough.
Therefore, for any a ≤ a0, there are no solutions of ∆(ω; a) = 0 on ∂Ωπ

0,R and then

m(a) := min
ω∈∂Ωπ0,R

|∆(ω; a)| > 0.

Since there exists δ > 0 such that ∀ a1, a2 ≤ a0 with |a2 − a1| < δ,

|∆(ω; a2)−∆(ω; a1)| = |a2 − a1||ω|e−Reω < m(a0) ∀ω ∈ ∂Ωπ
0,R,

it follows from Rouché’s theorem B.2.11 that ∆(ω; a0) has the same number of
zeros in Ωπ

0,R as ∆(ω; a) for any a ≤ a0. This shows that, for each a < ab, there
are precisely two roots ω with Re (ω) > 0 and Im (ω) ∈ (−π, π).

Lemma B.2.13. Consider equation (B.34) for b > 0 and let ba := (a+ 2ω̃) eω̃ where
ω̃ := (

√
4 + a2 − a − 2)/2. Then for b < ba there are precisely two real roots, which

coincide for b = ba, whereas there is no real root for b > ba.

Proof. Let us define y(ω) := ω2 + aω and z(ω) := −be−ω. By means of the graphical
method, one can show that there are at most two real intersections between the graphs
of y and z. If there is a single distinct real root ω̃, then it is such that

y(ω̃) = z(ω̃) and
∂y

∂ω
(ω̃) =

∂z

∂ω
(ω̃), (B.36)

namely, ω̃2 + aω̃ + be−ω̃ = 0 and 2ω̃ + a = be−ω̃. Therefore ω̃ needs to solve ω̃2 + (2 +
a)ω̃ + a = 0, whose solutions are given by

ω± =
−2− a±

√
4 + a2

2
. (B.37)

Since 2ω̃ + a = be−ω̃ > 0, we conclude that the only admissible root is given by ω̃ = ω+

and that b = (a+ 2ω̃)eω̃ =: ba.

Theorem B.2.14. Consider F ∈ C2
(
R× C

(
[−1, 0] ,R2

)
,R2

)
, such that

F(a,xt) = L(a)xt + f(a,xt),
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where f(a,0) ≡ 0 for all a ∈ R and L(a) : C
(
[−1, 0] ,R2

)
→ R2 is the linear operator

L(a)φ :=

[
0 1

0−a

]
φ(0) +

[
0 0

−b 0

]
φ(−1),

where b > 0. Then the system ẋ(t) = F(a,xt) undergoes a subcritical Hopf bifurcation
at a = ab := sin(ξb)b/ξb where ξb is the unique solution of ξ2 = b cos(ξ) in (0, π/2).

Proof. By Lemma B.2.12, the system ẋ(t) = F(a− ab,xt) verifies all the hypotheses of
Theorem B.2.8. Therefore there is a subcritical Hopf bifurcation at a = ab.

B.2.5 Hopf bifurcation of the gravitropic spring-pendulum system

By exploiting the results of Sections B.2.1-B.2.4, we can finally prove the supercritical

Hopf bifurcation for the gravitropic spring-pendulum system (3.6), as stated in Sec-

tion 3.1.

Corollary B.2.15. For q`2 < 2B equation (3.6) has a supercritical Hopf bifurcation at

q`2

2B
= y? := 1− βτr

τg

sin ξ?

ξ?
, (B.38)

where ξ? is the unique root of ξ = (τr/τm) cot ξ in (0, π/2).

Proof. The linearization of (3.6) about 0 is given by (3.7) that can be written in the
dimensionless form as (3.9), i.e.,

θ̈(t̂) + τ1 θ̇(t̂) +
βτ2

(1− y)
θ(t̂− 1) = 0,

where, by hypothesis, y < 1 (q`2 < 2B). Since its characteristic equation is equivalent
to (

ω̂2 + τ1 ω̂
)
eω̂ +

βτ2

(1− y)
= 0,

Theorem B.2.14 implies that a Hopf bifurcation occurs at

τ1 =
βτ2

(1− y)

sin ξ?

ξ?
, ξ? =

βτ2

(1− y)

cos ξ?

ξ?
, (B.39)

where ξ? ∈ (0, π/2). By taking the ratio between (B.39)b and (B.39)a, we get

ξ? = τ1 cot ξ?,

and then (B.39)a can be rewritten as

y = 1− β τ2

τ1

sin ξ?

ξ?
,
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which is exactly (B.38). Moreover, since the inequality

τ1 <
βτ2

(1− y)

sin ξ?

ξ?

corresponds to

y > 1− β τ2

τ1

sin ξ?

ξ?
,

we conclude that the Hopf bifurcation is supercritical in terms of y.

Moreover, by applying Lemma B.2.13, we conclude that the spring-pendulum system

admits no real characteristic roots for

y > 1− βτ2e
−ω̃

2ω̃ + τ1
, (B.40)

where ω̃ :=
√

1 + (τ1/2)2 − (1 + τ1/2).

B.2.6 Stability analysis in microgravity conditions

As shown in Section 3.3.2, in microgravity conditions the strains uj for j = 1, 2 need to

solve equation (3.51), namely,

üj(s, t) +
1

τ̄m
u̇j(s, t) +

η

rτg τ̄m
uj(s, t− τ̄r) = 0, j = 1, 2, (B.41)

which are linear discrete delay equations that can be restated in dimensionless form as

¨̂uj(ŝ, t̂) +
τ̄r
τ̄m

˙̂uj(ŝ, t̂) + η
τ̄2
r

τ̄mτg
ûj(ŝ, t̂− 1) = 0, (B.42)

where ûj(ŝ, t̂) := uj(ŝ`, t̂τr) for j = 1, 2, and dots and primes denote differentiation with

respect to t̂ := t/τ̄r and ŝ := s/`, respectively.

Since equation (B.42) does not contain space derivatives, we can rely on the theory

of retarded functional differential equations (RFDEs) by considering the space variable

as a parameter. Indeed, given the problem

ü(s, t) + au̇(s, t) + bu(s, t− 1) = 0, s ∈ [0, `0] , t > 1 (B.43a)

u(s, t) = u0(s, t), s ∈ [0, `0] , t ∈ [0, 1] (B.43b)

with a > 0 and an initial datum u0 that is regular enough, say u0 ∈ C∞, we can consider

the solution u(s, t) := us(t) where us(t) is the unique solution to

v̈(t) + av̇(t) + bv(t− 1) = 0, t > 1, (B.44a)
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v(t) = u0(s, t), t ∈ [0, 1] , (B.44b)

for any fixed s ∈ [0, `0]. Then the regularity of u(s, t) with respect to s follows from

the results on the continuous dependence of solutions to RFDEs on initial data, see

Section B.2.2. Moreover, we can exploit the stability analysis of the trivial equilibrium

of (B.44) to learn something about the solution u(s, t). More specifically, we can prove

the following fact.

Theorem B.2.16. Consider problem (B.43) and the solution u(s, t) := us(t) where us
solves (B.44) for any s ∈ [0, `0]. Moreover, let ab be defined as in Lemma B.2.12. Then,

(i) if a > ab, the trivial equilibrium of (B.43a) is stable and there exists δ > 0 such
that ||u0||∞ < δ implies that, for any fixed s ∈ [0, `0], |u(s, t)| → 0 as t→∞;

(ii) if a < ab, the trivial equilibrium of (B.43a) is unstable.

Moreover, for a = ab, equation (B.43a) admits nontrivial periodic solutions.

Proof. Assume that a > ab. Then, by means of Lemma B.2.12, for any ε > 0, there
exists δε > 0 such that sup |u0(s, t)| < δε implies |us(t)| < ε for all t ≥ 0. Moreover,
there exists δ > 0 such that sup |u0(s, t)| < δ implies that |us(t)| → 0 as t → ∞. It
follows that if we take u0(s, t) such that sup |u0(s, t)| < min {δε, δ}, then |us(t)| < ε for
all (s, t) ∈ [0, `0]× [0,∞) and, for any fixed s ∈ [0, `0], |u(s, t)| → 0 as t→∞.
On the contrary, if a < ab, there exists ε > 0 such that for any δ > 0, we find an initial
datum ū(t) for which sup |ū(t)| < δ and the corresponding solution of (B.44a) verifies
|u(t)| > ε for some t ≥ 0. Then the statement follows by observing that u(s, t) := u(t)
solves (B.43) for the space-independent initial datum u0(s, t) := ū(t).

Finally, by applying these results to equation (B.42), we conclude that it admits

nontrivial periodic solutions when

τg = τ?g := ητ̄r
sin(ξ?)

ξ?
, (B.45)

where ξ? is the unique solution of ξ tan ξ = τ̄r/τ̄m in (0, π/2). Moreover, the trivial

equilibrium is stable for τg > τ?g and unstable for τg < τ?g .

B.2.7 The linearized analysis of the proprio-graviceptive model

In this appendix we show the existence of periodic solutions to the linearization about

the trivial rest state of the model that combines gravitropic and proprioceptive responses

(α = 0 and η, β > 0), in the special case that the characteristic times of memory and

delay coincide, namely, τm = τ̄m and τr = τ̄r.

As seen in Section 3.3.3 of the main text, the linearization about the trivial solution

leads to a pair of decoupled problems in the Euler angles ϕ and ψ. These problems are
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equivalent and can be restated in the following dimensionless form

˙̂
θ′′(ŝ, t̂) =− β `

r

τ2
s

τmτg

∫ t̂− τr
τs

−∞
e
− τs
τm

(
t̂− τr

τs
−τ
)
θ̂′(ŝ, τ) dτ − q`3

EI
(1− ŝ) ˙̂

θ(ŝ, t̂)

− η τ2
s

τ̄mτg

∫ t̂− τ̄r
τs

−∞
e
− τs
τ̄m

(
t̂− τ̄r

τs
−τ
)
θ̂′′(ŝ, τ) dτ for ŝ ∈ [0, 1] and t̂ > 0, (B.46a)

θ̂(0, t̂) = 0 for t̂ > 0, (B.46b)

˙̂
θ′(1, t̂) =− β `

r

τ2
s

τmτg

∫ t̂− τr
τs

−∞
e
− τs
τm

(
t̂− τr

τs
−τ
)
θ̂(1, τ) dτ

− η τ2
s

τ̄mτg

∫ t̂− τ̄r
τs

−∞
e
− τs
τ̄m

(
t̂− τ̄r

τs
−τ
)
θ̂′(1, τ) dτ for t̂ > 0, (B.46c)

θ̂(ŝ, t̂) = θ̂0(ŝ, t̂) for (ŝ, t̂) ∈ [0, 1]× [−τr, 0], (B.46d)

where θ̂(ŝ, t̂) = ϕ(ŝ`, t̂τs) − π/2, ψ(ŝ`, t̂τs) − π/2, and primes and dots denote differen-

tiation with respect to ŝ and t̂, respectively. More specifically, if τm = τ̄m and τr = τ̄r,

it is convenient to choose the delay as time scale, namely, τs = τr, and by differentiat-

ing (B.46a) and (B.46c) in time, we arrive at

¨̂
θ′′(ŝ, t̂) =− τr

τm

˙̂
θ′′(ŝ, t̂)− q`3

EI
(1− ŝ)

(
¨̂
θ(ŝ, t̂) +

τr
τm

˙̂
θ(ŝ, t̂)

)
− τ2

r

τmτg

(
ηθ̂′′(ŝ, t̂− 1) + β

`

r
θ̂′(ŝ, t̂− 1)

)
for ŝ ∈ [0, 1] and t̂ > 0, (B.47a)

θ̂(0, t̂) = 0 for t̂ > 0, (B.47b)

¨̂
θ′(1, t̂) =− τr

τm

˙̂
θ′(1, t̂)− τ2

r

τmτg

(
ηθ̂′(1, t̂− 1) + β

`

r
θ̂(1, t̂− 1)

)
for t̂ > 0, (B.47c)

θ̂(ŝ, t̂) = θ̂0(ŝ, t̂) for (ŝ, t̂) ∈ [0, 1]× [−τr, 0]. (B.47d)

Then, for a suitable initial datum θ̂0, we provide sufficient conditions for the existence

of periodic solutions. In particular, if θ̂0(ŝ, t̂) = S(ŝ)f(t̂) for any function f ∈ C2, a

solution to (B.47) that has the form θ̂(ŝ, t̂) = S(ŝ)T (t̂) needs to fulfill

T̈ (t̂) + τ1Ṫ (t̂)

τ2T (t̂− 1)
= − ηS′′(ŝ) + βµS′(ŝ)

S′′(ŝ) + y(1− ŝ)S(ŝ)
= −c, (B.48)

where y := q`3/EI, µ := `/r, τ1 := τr/τm, τ2 := τ2
r /(τmτg), and c is some real constant.

Then we deduce the boundary value problem for S,

(η − c)S′′(ŝ) + βµS′(ŝ)− cy(1− ŝ)S(ŝ) = 0, ŝ ∈ [0, 1] , (B.49a)

S(0) = 0, (B.49b)

(η − c)S′(1) + βµS(1) = 0, (B.49c)
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and the initial value problem for T ,

T̈ (t̂) + τ1Ṫ (t̂) + c τ2T (t̂− 1) = 0, t̂ > 0, (B.50a)

T (t̂) = f(t̂), ∀t̂ ∈ [−1, 0] . (B.50b)

Since the characteristic equation of (B.50a) is given by(
ω̂2 + τ1ω̂

)
eω̂ + c τ2 = 0 (B.51)

where τ1, τ2 > 0, we can apply Lemma B.2.12 that immediately gives the following

results.

Proposition B.2.17. Consider problem (B.50) for c > 0. Let ξ? be the unique root of
ξ = c τ2 cos ξ in (0, π/2) and define ζ := c τ2 sin ξ?/ξ?.

(i) If τ1 < ζ then T ≡ 0 is unstable.

(ii) If τ1 = ζ then cos(ξ?t̂) and sin(ξ?t̂) are solutions of (B.50a).

(iii) If τ1 > ζ then T ≡ 0 is asymptotically stable.

Corollary B.2.18. Assume that Θ : [0, 1] → R is a nontrivial solution to (B.49) for
some c > 0. Then

(i) for τ1 = ζ, Θ(ŝ) cos(ξ?t̂) and Θ(ŝ) sin(ξ?t̂) are solutions to (B.47);

(ii) for τ1 > ζ, ∃ δ > 0 s.t. for all initial functions f ∈ C2([−1, 0],R) with ||f ||∞ < δ,
the solution Θ(ŝ)T (t̂) to (B.47) with initial condition θ̂0(ŝ, t̂) = Θ(ŝ)f(t̂) is such
that, for any fixed ŝ ∈ [0, 1], Θ(ŝ)T (t̂)→ 0 as t̂→∞.

Therefore, nontrivial periodic solutions exist, provided that the boundary-value prob-

lem (B.49) admits nontrivial solutions for some c > 0, and τg = c τr sin ξ?/ξ?. In this

respect, we notice that, for y 6= 0, equation (B.49a) is a second order linear ODE with

a nonconstant coefficient and its general solution can be written as

S(ŝ) = e
βµ

2(c−η)
ŝ

[c1 Ai(x(ŝ)) + c2 Bi(x(ŝ))] , (B.52)

where x(ŝ) := [(βµ)2 − 4cy(1− ŝ)(c− η)]/(4(c y)2/3(c− η)4/3), and Ai(x) and Bi(x)

are the Airy functions of the first and second kind, respectively. By imposing condi-

tions (B.49b)-(B.49c) and neglecting the trivial case c1 = c2 = 0, we arrive at

Ai(x0)
[
aBi(x1)− 2 c yBi′(x1)

]
− Bi(x0)

[
aAi(x1)− 2 c yAi′(x1)

]
= 0, (B.53)

where x0 := x(0), x1 := x(1) and a := βµ [c y/(c− η)]2/3. Then equation (B.53) can

be studied numerically to find positive roots c, depending only on β, η, y, and µ. In

particular, we can study these roots as functions of `, c(`), and we can determine the

corresponding critical growth time, τ?g (`), such that τ1 = ζ, namely,

τ?g (`) = τr c(`)
sin ξ?(`)

ξ?(`)
, (B.54)

as shown in Fig. 3.7c of the main text.
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B.3 Computational model

In this appendix we discuss a computational model to study the nonlinear response

of (3.16) and (3.20). More specifically, we introduce a numerical scheme for the full

three-dimensional model (3.16), which can be easily adapted to the reduced model given

by (3.20) and to their planar versions.

An effective way to implement the model is to write all equations in the reference

domain B0, i.e., in terms of the parameter S ∈ [0, `0]. Any material field can be converted

into a spatial field, and vice versa. Indeed, as shown in Section 2.4, the motion s(S, t)

can be analytically determined for the growth law given by (3.16b), namely,

s(S, t) =


S if S ≤ `0 − `g,
`(t?(S))− `g if S > `0 − `g and t ≥ t?(S),

`(t)− (`0 − S)et/τg if S > `0 − `g and t < t?(S),

(B.55)

where

`(t) =

{
`0e

t/τg if t ≤ t?(0),

max {`0, `g}+
`g
τg

(t−max {0, t?(0)}) if t > t?(0),
(B.56)

and t?(S) = τg ln (`g/(`0 − S)). Moreover, its inverse is given by

S(s, t) :=


s if s ≤ `0 − `g,
`0 + [s− ` (t̄?(s, t))] e−t̄

?(s,t)/τg if s ∈ (`0 − `g, `(t)− `g] ,
`0 + [s− ` (t)] e−t/τg if s ∈ (`(t)− `g, `(t)] ,

(B.57)

where t̄?(s, t) := t+ τg (s+ `g − `(t)) /`g.
As a first step towards the numerical formulation, we introduce some auxiliary fields

representing the delay integrals, namely,

w1,g(S, t) :=− 1

τm

∫ t−τr

−∞
e−

1
τm

(t−τr−τ) sin θh(S, τ) cosαh(S, τ) dτ, (B.58a)

w1,p(S, t) :=− 1

τ̄m

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)u1(S, τ) dτ, (B.58b)

w2,g(S, t) :=
1

τm

∫ t−τr

−∞
e−

1
τm

(t−τr−τ) cos θh(S, τ) dτ, (B.58c)

w2,p(S, t) :=− 1

τ̄m

∫ t−τ̄r

−∞
e−

1
τ̄m

(t−τ̄r−τ)u2(S, τ) dτ, (B.58d)

so that such integrals may be computed from the solution of the following differential

equations

dw1,g

dt
=− 1

τm
w1,g −

1

τm
sin θh(S, t− τr) cosαh(S, t− τr), (B.59a)
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dw1,p

dt
=− 1

τ̄m
w1,p −

1

τ̄m
u1(S, t− τ̄r), (B.59b)

dw2,g

dt
=− 1

τm
w2,g +

1

τm
cos θh(S, t− τr), (B.59c)

dw2,p

dt
=− 1

τ̄m
w2,p −

1

τ̄m
u2(S, t− τ̄r), (B.59d)

respectively. Then we can write the governing equations in terms of the Euler angles

introduced in Section 3.2.2 and the angles describing the statoliths pile configuration as

defined in Section 2.5.2.1, i.e.,

∂m1

∂S
=− q [`(t)− s(S, t)]λ cosψ, (B.60a)

∂m2

∂S
= 0, (B.60b)

∂m3

∂S
= q [`(t)− s(S, t)]λ sinψ cosϕ, (B.60c)

τa
dθh
dt

= cos θh [cosχ cosαh cosϕ+ (− cosψ cosαh sinχ+ sinψ sinαh) sinϕ]

− (cosϕ sinχ+ cosχ cosψ sinϕ) sin θh, (B.60d)

τa
dαh
dt

sin θh =− cosχ cosϕ sinαh + (cosαh sinψ + cosψ sinχ sinαh) sinϕ, (B.60e)

du?1
dt

=
1

λ

dλ

dt

[
α

r
cos

(
2πt

τe

)
+
β

r
w1,g + ηw1,p

]
, (B.60f)

du?2
dt

=
1

λ

dλ

dt

[
α

r
sin

(
2πt

τe

)
+
β

r
w2,g + ηw2,p

]
, (B.60g)

where λ(S, t) = ∂s(S,t)
∂S and

m1 =EI {cosψ cosϕ [(u1 − u?1) cosχ− (u2 − u?2) sinχ]

− sinϕ [(u1 − u?1) sinχ+ (u2 − u?2) cosχ]}+ µJ (u3 − u?3) sinψ cosϕ, (B.61a)

m2 =EI {cosψ sinϕ [(u1 − u?1) cosχ− (u2 − u?2) sinχ]

+ cosϕ [(u1 − u?1) sinχ+ (u2 − u?2) cosχ]}+ µJ (u3 − u?3) sinψ sinϕ, (B.61b)

m3 =− EI sinψ [(u1 − u?1) cosχ− (u2 − u?2) sinχ] + µJ (u3 − u?3) cosψ, (B.61c)

with

u1 =
1

λ

[
∂ψ

∂S
sinχ− ∂ϕ

∂S
cosχ sinψ

]
, (B.62a)

u2 =
1

λ

[
∂ψ

∂S
cosχ+

∂ϕ

∂S
sinχ sinψ

]
, (B.62b)

u3 =
1

λ

[
∂χ

∂S
+
∂ϕ

∂S
cosψ

]
. (B.62c)
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The weak formulation of (B.59)-(B.60) is obtained by multiplying such equations by the

test functions and integrating by parts in space along the interval [0, `0] while accounting

for the appropriate boundary conditions. Following standard finite element procedures,

the unknowns are discretized in space using linear Langrange shape functions, while for

the time discretization we used the backward Euler method. Finally, the rod axis p can

be reconstructed by integrating in space the tangent that, for unshearable rods, coincides

with the director d3, i.e.,

p(S, t) = p(0, t) +

∫ `0

0
λ(ζ, t)d3(ζ, t) dζ. (B.63)

We implemented this computational model for (3.16), together with its re-

duced version for (3.20), by exploiting the DOLFIN library as interface for the

FEniCS Project Version 2019.1.0 [107]. These Python codes are available at

https://github.com/mathLab/MorphoelasticRod.
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