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Forecasting performance of CMB experiments in the presence of complex foreground
contaminations.
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1AstroParticule et Cosmologie, Univ Paris Diderot, CNRS/IN2P3,CEA/Irfu, Obs de Paris, Sorbonne Paris Cité, France
2Sorbonne Universités Institut Lagrange de Paris (ILP), 98 bis Boulevard Arago 75014 Paris, France

3LPNHE, CNRS-IN2P3 and Universités Paris 6 & 7, 4 place Jussieu F-75252 Paris, Cedex 05, France
(Dated: November 2, 2016)

We present a new, semi-analytic framework for estimating the level of residuals present in CMB
maps derived from multi-frequency Cosmic Microwave Background (CMB) data and forecasting
their impact on cosmological parameters. The data are assumed to contain non-negligible signals of
astrophysical and/or Galactic origin, which we clean using parametric component separation tech-
nique. We account for discrepancies between the foreground model assumed during the separation
procedure and the true one, allowing for differences in scaling laws and/or their spatial variations.
Our estimates and their uncertainties include both systematic and statistical effects and are averaged
over the instrumental noise and CMB signal realizations. The framework can be further extended to
account self-consistently for existing uncertainties in the foreground models. We demonstrate and
validate the framework on simple study cases which aim at estimating the tensor-to-scalar ratio,
r. The proposed approach is computationally efficient permitting an investigation of hundreds of
set-ups and foreground models on a single CPU.

I. INTRODUCTION.

Forecasting performance of current and future CMB
experiments is a necessary step in conception, design and
optimization of their hardware as well as operations. Ide-
ally, a forecasting procedure should be both reliable and
efficient permitting scrutiny of broad swaths of parame-
ter space in order to quickly zoom on a limited subset of
the most promising configurations. This subset should
be small enough to facilitate their further, more detailed
investigation, typically employing numerical simulations,
which while permitting a higher level of realism and de-
tail are significantly more time and resource consuming.

Reliable forecasting for high precision CMB experi-
ments is difficult due to the presence of the non-CMB sig-
nals, which unavoidably contribute to the measurements
registered by the CMB instruments. Indeed, the multi-
frequency observations from the Planck and WMAP
satellites indicate that foreground emissions originating
from our Galaxy or extra-galactic sources represent a
major contaminant, e.g., [1–3], which current and future
CMB polarization experiments will have to deal explic-
itly with. Methods employed for this purpose will thus
have to ensure precision matching sensitivity envisaged
for these forthcoming efforts and set by very ambitious
science goals, which the CMB community world-wide is
preparing to address. These goals include a detection
and a characterization of the B-mode signal over a broad
range of angular scales with a special emphasis on its
large angular scale part, which is thought to be gener-
ated by primordial gravity waves present in the early

∗E-mail: radek@apc.univ-paris-diderot.fr
†E-mail: josquin.errard@lpnhe.in2p3.fr
‡E-mail: Davide.Poletti@apc.univ-paris7.fr

Universe. The key parameter in this latter case is the
so-called tensor-to-scalar ratio, r, and for concreteness in
the following we will couch our presentation as targeting
constraints on this parameter. The approach we intro-
duce is however fully general and generalization to other
parameters is straightforward.

The standard CMB forecasting tools are ill-adapted
to tackle cases with non-negligible foreground contribu-
tions. Their impact is therefore often either modelled or
assessed by some simplified means either in respect to
estimating the residuals or their impact on the detection
of r, e.g., [3–10]. Alternately, the issue is investigated
with help of numerical simulations, which are typically
computationally heavy and thus only allow for a limited
number of studied cases [11–13].

Against this background, Errard et al (2011) [14] has
proposed a semi-analytic framework, which attempts to
propagate strictly statistical uncertainties incurred as a
result of a component separation procedure to the final
estimate of r. Their component separation of choice is
a maximum likelihood parametric component separation
approach [15–17], which assumes a parametrization of the
frequency scalings for each considered sky component.
Though self-consistent this approach is only capable of
dealing with the statistical uncertainties and therefore
its conclusions are limited in their validity and the re-
sults should be interpreted with caution. Specifically,
this approach requires that the parametrization assumed
for the frequency scaling of the sky components is suffi-
ciently flexible and general that the actual frequency scal-
ing laws of the true sky signals is included as its special
case. Nonetheless, the framework has proven to be help-
ful in enabling studies of numerous experimental set-ups
in a uniform fashion [18, 19], providing useful insights and
intuitions and informing multiple instrument designs.

In this work we develop a framework capable of ac-
counting for differences between these two sky signal
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models. As in [14], we assume that the components are
separated with help of the parametric component sepa-
ration technique and we estimate by semi-analytic means
both the bias and statistical uncertainty, which are both
present whenever the two sky models do not match. This
can be either due to differences in the frequency scaling
laws for some of the components or their spatial vari-
ability. The framework also permits incorporating the
uncertainty related to our ignorance of the foreground
signals and/or shortcomings of our models.

The bias and statistical uncertainties are then propa-
gated to the second step of the procedure, where their
impact on r is calculated. The new approach is equiva-
lent to that of Errard et al (2011) [14], if the sky model
and the true sky are consistent, and in this sense it ex-
tends and completes this earlier work.

We present the formalism in Sect. II and demonstrate
and validate it in Sect. III. We leave a thorough inves-
tigation of different experimental set-ups and foreground
models for future work. For convenience, we define sym-
bols most commonly used in this paper in Table I.

II. FRAMEWORK

A. Data model.

The outline of our approach is as follows. Our input
data are assumed to consist of a set of multi-frequency
maps. These are collated together in a single data vec-
tor, d, and are assumed to be a linear combination of sky
component amplitudes in corresponding sky pixels. Col-
lecting these together in a single sky component vector,
ŝ, we can therefore write,

d = d̂ + n ≡ Â ŝ + n, (1)

where d̂ denotes true sky (noiseless) signal, matrix Â
stands for the true mixing matrix of our data, and n –
noise. We therefore have for a specific pixel, p,

dp = d̂p + np ≡ Âp ŝp + np, (2)

where dp stands for a vector of sky signal amplitudes
measured at all observed frequencies in pixel p. Similarly,
for a channel, k,

d(k) = d̂(k) + n(k) ≡ Â(k) ŝ(k) + n(k), (3)

where d(k) is a single frequency map of the observed sky
in a frequency band defined by k.

We assume hereafter that the actual mixing matrix, Â,
is not available to us and instead we have to rely on some
model of it to represent the available data. We denote
this assumed mixing matrix as A and the corresponding
component vector as s. Our assumed data model there-
fore states that,

dp = Ap(β) sp + np, (4)

where β denotes parameters used to parametrize the mix-
ing matrix in order to reduce the number of unknowns.

Hereafter, we allow for a pixel-dependence of the model
mixing matrix, A. This could be either due to allowing
for different values of the same physical parameters in
different subsets of pixels or due to adopting different
physical laws and parametrizations in different pixels. In
any case, hearafter, a parameter, which is allowed to have
a different value in two different pixels is treated as two
different parameters rather than as a single parameter,
which is pixel-dependent. This perspective will be helpful
in the following.

Note that, whenever sky-variability of the scaling pa-
rameters is considered later on, we will assign different
parameters to subsets of all pixels and make an implicit
assumption hereafter that these are composed of a rather
large number of pixels, covering well-behaved, singly-
connected, compact sky patches. Though, the formal-
ism is applicable more generally, its implementation and
the interpretation of its results are both aided by this
assumption.

We emphasize that in the presented formalism no as-
sumption is made about the true sky signals and mixing
matrices. Though, these are obviously needed for any
specific application of the formalism in order to define
the statistical properties of the data and play a crucial
role in determining the resulting forecasts.

B. Data likelihood.

Following our data model we can write the standard
likelihood function for the data given our model, Eq. (4).
This reads up to an irrelevant constant as,

Smap =
∑
p

(dp −Ap(β) sp)
t N−1

p (dp −Ap(β) sp), (5)

where here and in the following we define S as equal to
−2 lnL up to some constant. We note that in the above
expression the noise covariance is explicitly assumed to
be uncorrelated between pixels. This is clearly not al-
ways the case and may need to be taken into account
(see, e.g., a relevant discussion in [13]). Mathematically,
the formalism presented hereafter can be easily gener-
alized to permit correlations between pixels, however, in
actual implementation treating full pixel-pixel covariance
matrices becomes quickly prohibitively expensive. As our
goal here is to provide a quick, performance forecasting
tool, we will thus neglect the potential presence of such
correlations.

If the multifrequency maps do not conform with our
assumed model, i.e., A 6= Â, this likelihood is obviously
incorrect as there is no value of β for which dp−Ap(β)sp
could be merely a noise. However, this is the likelihood
we would have adopted for component separation in the
absence of any other information about the true sky. If
discrepancies between the assumed and true sky signal
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TABLE I: Notations
symbols d ŝ n, N d̂ Â p k β A s m̄p rp, rcmb(β), Cres

` f̂p, Fpk, F fore
`

definition
set of observed true sky noise, true sky true mixing sky frequency spectral model model sky noiseless noiseless foregrounds

multi-frequency noiseless covariance component matrix pixel channel parameters mixing component estimates of residuals signal

maps signal amplitudes matrix amplitudes the components

models are present, we expect that relying on this likeli-
hood will lead in general to both systematic and statisti-
cal uncertainties in the derived results and in particular
to systematic and statistical foreground residuals in the
separated CMB map. In the approach proposed here
we aim at estimating both these residuals and evaluat-
ing their impact on a value of the tensor-to-scalar ratio
parameter, r, derived from the separated CMB map.

The proposed procedure involves two main steps: com-
ponent separation and parameter estimation, which we
describe in detail in the following.

C. Parametric component separation.

1. Spectral parameters

Following [14, 17] we invoke the spectral likelihood,
which we will use to determine the spectral parameters
of the scaling relations,

Sspec=−
∑
p

(
ApN

−1
p dp

)t (
At
pN
−1
p Ap

)−1
ApN

−1
p dp. (6)

This is a profile likelihood obtained by maximizing the
map likelihood in Eq. (5) with respect to the sky signal,
s. As such it peaks at exactly the same values as the full
likelihood. Sspec can be maximized case-by-case for any
given data, what indeed is implicitly or explicitly done
in the parametric component separation codes, e.g. [16],
or, instead, first averaged over the statistical ensemble of
plausible input data and then maximized over the spec-
tral parameters to yield both their average estimate and
error on them. In the simplest case the statistical ensem-
ble can merely include realizations of the noise. How-
ever, more generally, instead of a single true model of
the foreground signals we may prefer to consider a fam-
ily of models defined by their stochastic properties. This
can be either due to our imperfect understanding of the
foreground physics or due to the actual complexity of the
foreground, which may be easier to sum up by statistical
means [20, 21]. The formalism presented here lends itself
straightforwardly to this kind of extensions. Nonethe-
less, we leave their exploitation to future work and in
this paper we focus on the spectral likelihood averaged
over a statistical ensemble of the noise realizations, which
is then given by,

〈Sspec〉 = −tr
∑
p

{
(N−1

p −Pp)
(
d̂pd̂

t
p + Np

)}
. (7)

Here, the dependence on the spectral parameters is con-
fined to the projection operator, Pp,

Pp ≡ N−1
p −N−1

p Ap

(
At
pN
−1
p Ap

)−1
At
pN
−1
p . (8)

This likelihood can be maximized very efficiently numer-
ically, given that in most applications the number of un-
known spectral parameters is rather limited and capi-
talizing on the analytical derivatives of the likelihood as
derived in Appendix A. In the approach proposed here,
these maximum likelihood values define the average val-
ues of the spectral parameters as could be derived from
the actual data while the curvature of the likelihood com-
puted at its peak quantifies the uncertainty expected due
to the instrumental noise. Denoting the latter as Σ, we
have, (

Σ−1
)
ββ′ ≡

〈
∂2S
∂β∂β′

〉
. (9)

We note that the proposed procedure can be always ap-
plied, whether the assumed and true sky models match
or not. When the true mixing matrix, Â, agrees with the
assumed one, A(β), for some values of the parameters,
β, then the estimated values agree with these and the
estimator is unbiased. In this case, only statistical resid-
ual, related to the statistical scatter of the determined
values of β due to the instrumental noise, is present in
the cleaned CMB map, which, if properly accounted for,
will merely increase the statistical uncertainty of subse-
quently estimated cosmological parameters, without bi-
asing their values [14].

When the assumed and true mixing matrices do not
perfectly coincide for any values of the parameters for
some or all pixels, be it due the inconsistency of the scal-
ing laws or their spatial variability or both, there is a
systematic residual unavoidably present in the estimated
CMB map, which in turn may lead to biases in the es-
timated values of the cosmological parameters. We note
that in such cases there are in general no ’true’ values of
the spectral parameters and their estimated, ’effective’
values depend not only on the assumed and true mix-
ing matrices but also instrument characteristics such as
observational frequency bands, etc.

The statistical error matrix, Σ, can be computed semi-
analytically using Eq. (A5), or numerically. Indeed,
many maximization routines construct a numerical ap-
proximation to the curvature matrix as part of the pro-
cedure. We have found that in our test cases both ap-
proaches produced results in very good agreement. We
note that in the absence of calibration errors and assum-
ing that the spectral dependence of the CMB compo-
nent is known completely, neither the estimated spectral
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parameter values nor their uncertainties depend on the
CMB signal present in the data. This observation is anal-
ogous to the one pointed out in [14] and is elaborated on
in Appendix A.

2. Residuals

Given Ap computed for some value of β, we can express
noiseless estimates of the components as [22],

m̄p = (At
pN
−1
p Ap)

−1At
pN
−1
p d̂p ≡Wp(β)d̂p. (10)

The noiseless residuals in the estimates then read as,

rp = m̄p − ŝp = Wp(β)d̂p − ŝp. (11)

Hereafter, we assume that the CMB corresponds to the
0th element of any multicomponent vector and split the
multi-component vectors and the mixing matrices into
CMB and foreground parts as follows,

Â≡ [Âcmb, Âfore], A≡ [Acmb,Afore], ŝp≡

[
ŝcmb

ŝfore

]
. (12)

We can now represent d̂p as,

d̂p = Âcmb
p ŝcmb

p + Âfore
p ŝfore

p ≡ Âcmb
p ŝcmb

p + f̂p, (13)

where f̂ denotes a true noise-free contribution of the fore-
grounds to all single-frequency maps. As we assume
throughout that the CMB scaling is the same in the
model and true sky, we have,[

Wp Âcmb
]

00
= 1. (14)

This emphasizes the fact that all of the CMB signal will
remain in the estimated CMB component, which however
will be contaminated by contributions from the other,
non-CMB signals.

Indeed, on rewriting Eq. (11) and specializing it for the
CMB component residual only we have,

rcmb
p =

∑
k

W0k
p (β)f̂ (k)

p ≡
∑
k

W0k
p (β)Fpk (15)

which, as expected, is explicitly free of the CMB signal.
Here, we have introduced a foreground matrix, F, kth
column of which defines the total foreground contribution
to the kth frequency channel.

We can now perform a Taylor expansion of the resid-
uals with respect to the scaling parameters but around
their estimated, maximum likelihood values, β̄, obtain-
ing,

rcmb
p (β) '

∑
k

W0k
p (β̄)Fpk +

∑
k,β

δβ
∂W0k

p

∂β

∣∣∣∣∣
β̄

Fpk

+
∑
k,β,β′

δβδβ′
∂2W0k

p

∂β∂β′

∣∣∣∣∣
β̄

Fpk,

(16)

where we need to go up to the second order to have a
consistent, up to the second order, approximation of the
data covariance matrix, E, in Eq. (38). On introducing
pixel-domain objects: a vector, y, two dimensional, Y(1),
and three dimensional, Y(2), arrays, defined as,

yp ≡
∑
k

W0k
p (β̄) Fpk,

Y
(1)
pβ ≡

∑
k

∂W0k
p

∂β

∣∣∣∣∣
β̄

Fpk, (17)

Y
(2)
pββ′ ≡

∑
k

∂2W0k
p

∂β∂β′

∣∣∣∣∣
β̄

Fpk,

we can rewrite this last expression as,

rcmb(β) ≡ y +
∑
β

δβY
(1)
β +

∑
β,β′

δβδβ′Y
(2)
ββ′ , (18)

where for shortness we use Y
(1)
β and Y

(2)
ββ′ to denote pixel-

domain vectors given by the elements of the arrays, Y(1)

and Y(2) for which the spectral parameter indices – β
and β, β′ – are fixed.

We point out that δβ is explicitly pixel-independent.
This is so thanks to the way we define the total spectral
parameter set as discussed following Eq. (4), where every
parameter appears as many times in the parameter set as
many independent values it is allowed to take. Clearly,
not all the parameters defined in this way will in general
be relevant for all pixels. This is encoded in the multi-
dimensional arrays, Y(1) and Y(2), which will have all
entries corresponding to such pixels set to zero.

Eq. (18) is a generalization of Eq. (10) of Errard et
al. (2011) and Eq. (24) of Stivoli et al. (2010) [22]. The
generalization concerns two aspects:

1. first, it includes the bias in the estimated compo-
nent maps due to the residual foregrounds, which
does not disappear when averaged over the statis-
tical ensemble of noise and foreground realizations.
This is given by y.

2. second, this equation has been derived in a way,
which did not invoke any assumptions about the
pixel-dependence of the true sky mixing matrix,
Âp, which can be therefore arbitrary.

Though this expression is derived in the pixel domain
we can rewrite it in the harmonic domain owing to the
fact that δβ are pixel independent,

r̃cmb(β) ≡ ỹ +
∑
β

δβ Ỹ
(1)
β +

∑
β,β′

δβδβ′ Ỹ
(2)
ββ′ , (19)

where we use a tilde to denote vectors of harmonic mul-
tipoles. For definiteness they are arranged in such a way
that the multipoles with the same ` are ordered consec-
utively with m increasing from −` to ` and are followed
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by the modes with `′ = ` + 1. So the relations between
the multipole numbers, (`,m), of a multipole and its po-
sition, j, in the harmonic vector are as follows,

j = `2 + `+m,

` = round[(−1 +
√

1 + 4j)/2], (20)

m = j − ` (`+ 2) ,

where j goes from 0 to (`max + 1)2 − 1 and the function
round rounds a real number to the closest integer.

We note that going from the pixel domain vectors,

y,Y
(1)
β ,Y

(2)
ββ′ , to their harmonic domain counterparts,

ỹ, Ỹ
(1)
β , Ỹ

(2)
ββ′ , is only straightforward, if the pixel-domain

vectors corresponds to the full-sky maps. This obviously
is rarely the case in practice, as even for the full sky ob-
servations, the parts most affected by the foregrounds,
i.e., Galactic plane and point sources, need to be typ-
ically masked out and are not used for the component
separation. In the spirit of the Fisher approaches we how-
ever ignore this difficulty hereafter, assuming that this is
possible and merely comes at the cost of the increased
statistical uncertainty due to a fewer number of available
modes and some rough cut-off scale at low-`. In practice,
as mentioned earlier, see the discussion after Eq. (4), this
implies that the adopted mixing matrix instead of being
permitted to change freely from pixel-to-pixel is taken to
be the same for sufficiently large and regular sky patches.

For future convenience, we can write Eq. (19) for each
harmonic mode, j (= `2 + `+m), Eqs. (20), as,

r̃cmb
j (β) ≡ ỹj + Ỹ

(1)
j δ + δtỸ

(2)
j δ, (21)

where Ỹ
(1)
j and Ỹ

(2)
j stand for a vector and a matrix re-

spectively made of elements of Ỹ
(1)
jβ and Ỹ

(2)
jββ′ for the

given j and δ is a vector of uncertainties on spectral pa-
rameters, β, around the estimated values of the parame-
ters. We therefore have

〈δδt〉 = Σ and 〈δ〉 = 0. (22)

Using these two last equations we can now rewrite an ex-
pression for the typical level of the residuals in the power
spectrum domain. Indeed, we have, (see Appendix B for
details),

Cres
` ' ⊗`(ỹ, ỹ) + ⊗`(ỹ, z̃) + ⊗`(z̃, ỹ) (23)

+tr
[
Σ ⊗`(Ỹ

(1), Ỹ(1))
]
,

where z̃ is defined as,

z̃j ≡ tr
[
Ỹ

(2)
j Σ

]
, (24)

and can be computed as the harmonic representation of
the pixel domain object, z, defined as,

zp = tr
[
Y(2)
p Σ

]
=
∑
β,β′

∑
k

∂2W0k
p

∂β∂β′

∣∣∣∣∣
β̄

Fpk Σβ′β

=
∑
k

Fpk

∑
β,β′

 ∂2W0k
p

∂β∂β′

∣∣∣∣∣
β̄

Σβ′β

 . (25)

In addition, we have also introduced symbol ⊗ to denote
a power spectrum of two sets of harmonic coefficients
provided as input parameters, i.e.,

⊗`(X̃, Z̃) ≡ 1

2`+ 1

∑̀
m=−`

X̃†jZ̃j , j = `2 + `+m. (26)

We note that whenever, X̃ and Z̃ are multi-dimensional
arrays of spectral coefficients indexed by j and the out-
come of the operations is a matrix containing `th multi-
pole of all the (cross)spectra of all these coefficients.

Eq. (23) permits computation of the power spectra of
the typical residual in the presence of: (1) spatial vari-
ability of the spectral indices, in both the model and
the actual sky, (2) discrepancies in the spatial and fre-
quency behavior between the two, and (3) inhomogeneity
of the measurement noise, which is however assumed to
be uncorrelated between pixels. The inputs required for
this are the relevant auto- and cross- spectra of ỹ, Ỹ(1),
and z̃. These spectra, in general, do not have any sim-
ple physical interpretation as they conflate all the dif-
ferent pixel-dependent effects together. However, if the
assumed sky model is pixel-independent and the noise is
white, all the spectra can be directly related to the spec-
tra of the combined foreground signals as measured in
different frequency bands, Appendix D, i.e.,

F fore
` ≡ ⊗`(F̃, F̃), (27)

where F̃ is a harmonic representation of F defined in
Eq. (13) and therefore it is a matrix of as many columns
as the assumed frequency bands with each column repre-
senting a combined foreground signal in each frequency
band. Consequently, F fore

` is then a matrix containing
multipole ` of all auto- and cross-spectra between fore-
ground signals in all the frequency bands. Furthermore,
if the true sky frequency scaling is also pixel independent,
then the latter spectra can be related straightforwardly to
those of the sky components at some fiducial frequency,
as it was the case in [18].

We can also compute a dispersion around the average
spectrum of the residual, Appendix B, which can be ap-
proximated as follows,

Var(Cres
` ) ' 2

[
tr
(
Σ ⊗`(Ỹ

(1), Ỹ(1))
)]2

(28)

+ 2 ⊗`(ỹ, Ỹ
(1)) Σ ⊗`(Ỹ

(1), ỹ).

3. Noise

The instrumental noise present in the cleaned CMB
map, ncmb, is given by,

ncmb
p =

∑
k

W0k
p (β̄)npk, (29)

where npk denotes the noise of the kth frequency map.
Given that we assume that the noise of each single fre-
quency map is Gaussian, uncorrelated between pixels and
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its pixel covariance is given by Np, the variance of the
CMB map noise can be expressed as,

σ2
cmb, p ≡

[(
AtN−1A

)−1
]
cmb x cmb

=
∑
k,k′

W0k
p (β̄)W0k′

p (β̄)Np, kk′ . (30)

The CMB map noise will be inhomogeneous and its vari-
ance – pixel-dependent, whenever the noise of the single-
frequency maps is inhomogeneous and/or the assumed
scaling laws are pixel-dependent. In this latter case the
coefficient of the matrix W will depend on the pixel, giv-
ing rise to the CMB map noise inhomogeneity even if the
single-frequency maps noise is homogeneous. As men-
tioned earlier the formalism as developed until now is
capable of handling the cases of both these kinds. Never-
theless, the noise inhomogeneity potentially leads to two
problems. On the technical level, the noise which is inho-
mogeneous in the pixel domain results in correlations of
the noise in the harmonic domain, which therefore usu-
ally can not be described in a compact, computationally-
manageable manner. In particular, the noise power spec-
trum does not anymore provide a sufficient description
of the noise properties in the harmonic domain. This is
however in practice a necessary assumption for the fore-
casting approach as presented here. We discuss this issue
in the next Section.

There is also another, more fundamental problem re-
lated to the noise inhomogeneities, which is pertinent to
the robustness of the performance forecasts in the pres-
ence of the foregrounds and is not specific to this partic-
ular approach but is applicable to any forecasts based
on the pixel-domain parametric approach and its ap-
plications. The constraints on the spectral parameters
are tight whenever the foreground signal is high, or the
noise level is low or both. The wildly inhomogeneous
noise patterns are thus likely to lead to very different
constraints depending on the fortuitous overlap of the
densely observed sky areas with high foreground areas
or lack thereof. Consequently, the predicted levels of
both systematic and statistical residuals will not only
very wildly but also will depend on the details of mod-
elling, which can be difficult to control. As such they
may not be particularly illuminating and useful in the
performance forecasting, whatever is the specific way of
obtaining those. Indeed, though such coincidental align-
ments may happen in the analysis of an actual data sets,
it is likely that if the constraints on spectral parame-
ters are found to be dominated by a handful of pixels,
in which the foreground levels happen to be high and
the instrumental noise – low, the best way forward could
be to isolate these pixels in the analysis by for instance
assigning to them a new set of parameters. Obviously,
this effect is also present when the noise is homogeneous,
however the noise fluctuations tend to amplify its role.
In the former case, the effect is thought to be minimized
by usually an implicit assumption that the foregrounds
in the observed sky area are typical and that the area

is large enough to include a range of typical foreground
features.

The observational strategies of the CMB experiments,
including those of the satellite missions [23, 24], how-
ever, commonly lead to inhomogeneous distributions of
the observations over the covered sky area. Therefore,
estimating the effects of the inhomogeneities on the fore-
casts is of clear importance. One way of proceeding here
could be to derive the constraints on spectral parameters
not tied up to specific foreground templates but averag-
ing over plausible foreground morphologies. Though, as
mentioned earlier this is something what can be readily
incorporated in the proposed formalism, we leave an ex-
ploration of this aspect of the approach for future work.

Instead, for time being we make an implicit assump-
tion that both the noise inhomogeneities and frequency
scaling laws change only slowly with the position on the
sky and across the observed sky, the noise power spec-
trum is expected to provide a description of the noise
of the CMB map, which is sufficient for the estimation
of the cosmological parameters based on this map. We
calculate this spectrum as,

Cnoise
` =

1

npix

∑
p

σ2
p, cmb, (31)

with the pixel-variance as given by Eq. (30). So the only
effect due to the noise inhomogeneity or spatial depen-
dence of the scaling laws, which is taken into account
here, is an increased noise level.

In the case of the homogeneous noise and a single scal-
ing law assumed for the entire observed patch, as used in
the specific examples studied later on, this can be rewrit-
ten as,

Cnoise
` =

[(
ATN−1

` A
)−1
]
cmb x cmb

(32)

where matrices N` are the harmonic space counterparts
of Np and describe the noise spectra of single frequency
maps accounting for their resolution,

Nij
` ≡ (wi)

−1
exp

(
`(`+ 1)

FWHM 2
i

8 log 2

)
δ ji (33)

with (wi)
−1

the sensitivity of the frequency channel i in

(µKRJ − rad)
2
. We note that the beam effects appear-

ing explicitly in this equation are included in there by
hand as they are not fully consistent with the formalism
presented earlier, which assumes no pixel-domain corre-
lations. Indeed, the latter requirement implies that no
beam-deconvolution procedure of any sort can be applied
to the single-frequency maps prior to the component sep-
aration and instead the latter would have to be performed
instead on the maps smoothed to the largest experimen-
tal beam. However, once the spectral parameter estima-
tion is done, and thus the constraints on them are set
using only the underpixelized data, both the noise and
the residuals can be extrapolated to higher multipoles as
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long as the number of frequency channels with a resolu-
tion high enough is sufficient to ensure that the matrix
on the rhs of Eq. (32) is invertible.

D. Parameter estimation

As before, to estimate the parameters, we proceed
as we would have done it if we did not know that our
maps are potentially systematically biased. We therefore
start off from the standard Gaussian likelihood, which
accounts only for the presence of the noise, the CMB
signal and the statistical foreground residual in the re-
covered CMB map, assuming that they all are Gaussian
with the total covariance given by C, i.e.,

Spar ≡ −2 lnLpar = atC−1a + ln det C. (34)

Here, a is a harmonic representation of the available
CMB map. In our case this is the map obtained from
the component separation procedure, and which there-
fore may include in addition to the CMB signal, the mea-
surement noise and the statistical residual also system-
atic bias. This latter is however ignored in the assumed
data covariance matrix, C, which as in [14] includes only
first three of these contributions: the CMB signal, the
noise and the statistical foreground residual. The explicit
form of C is given later on. The cosmological parame-
ters we are after here enter only in the expression for
the CMB covariance. The parameter likelihood averaged
over the instrumental noise and CMB signal realizations
is given by,

〈Spar〉 = tr C−1E + ln det C, (35)

where E ≡ 〈aat〉 is the correlation matrix of the data.
The values of the cosmological parameters, which maxi-
mize Eq. (35), are those, for which the likelihood gradient
vanishes. This reads, e.g., [25],

〈Spar,i 〉 = tr
[
C−1C,i −C−1C,iC

−1E
]
. (36)

Given that the harmonic coefficients of the CMB map,
a, can be represented as,

aj = acmb
j + anoise

j + r̃cmb
j

= acmb
j + anoise

j + ỹj + Ỹ
(1)
j δ + δtỸ

(2)
j δ, (37)

we can write up to the second order in δ,

Ejj′≡ Djj′ + ỹjỹ
∗
j′ + ỹj tr

[
Ỹ

(2)∗
j′ Σ

]
+ tr

[
Ỹ

(2)
j Σ

]
ỹ∗j′ + Ỹ

(1)t
j ΣỸ

(1)∗
j′

= Djj′+ ỹjỹ
∗
j′ + ỹj z̃∗j′ + z̃jỹ

∗
j′+ Ỹ

(1)
j Σ Ỹ

(1), †
j′ . (38)

where the cross-terms vanish given that 〈alm〉 = 0 for
both the noise and CMB, and 〈δβ〉 = 〈almδβ〉 = 0 by
definition. Here,

Djj′ ≡ 〈acmb
j acmb, †

j′ 〉+ 〈anoise
j anoise, †

j′ 〉

= Ccmb
` δjj′ + Cnoise

` δjj′ ≡ C`δjj′ , (39)

is the CMB plus noise only covariance, which is assumed
hereafter to be diagonal in the harmonic space, corre-
sponding therefore to the assumption of the stationary
pixel-domain noise.

We can rewrite the expression for the true data covari-
ance, Eq. (38), in the matrix form as,

E = D + ỹỹ† + z̃ỹ† + ỹz̃† + Ỹ(1)Σ Ỹ(1)†. (40)

In contrast, the assumed covariance, C, will be like above
but with the terms due to the bias omitted, i.e.,

C = D + Ỹ(1)Σ Ỹ(1)†. (41)

This last expression resembles the one derived in [14],
Eq. (B5), however it extends it by accounting correctly
for the possible presence of multiple foreground compo-
nents. We can now use Eqs. (41) and (38) to calculate the
ensemble averages of derivatives of the likelihood given
by Eq. (34). The full expressions are quite lengthy and
are collected in Appendix C.

We note that though a computation of the explicit
form of the covariance matrices, C and E, Eqs. (41)
and (40), respectively, requires knowledge of all the har-
monic modes of the foreground components, for the
calculation of the ensemble averaged likelihood and its
derivatives, we need only various cross-spectra of pixel-
domain objects defined by ỹ, z̃ and columns of Ỹ(1).
This is a general observation, which stems merely from
the assumptions about the diagonality of the CMB sig-
nal and noise covariance matrices in the harmonic do-
main, and thus their stationarity in the pixel domain,
and does not involve any specific assumptions about the
foregrounds themselves. This can be intuitively under-
stood, as whenever the CMB signal and noise are both
stationary in the pixel domain the constraints on the
cosmological parameters parametrizing the CMB spec-
trum can only depend on foreground properties averaged
over the observed patch such as their power spectra, and
not on their morphology or phase-dependent information.
This is the case, whatever is the actual statistics of the
foreground templates. If the noise is inhomogeneous and
anisotropic in the pixel domain, it will give preference to
some selected modes over others and the results of the
parameter estimation will depend on both the power and
morphology of the foregrounds, making the forecasting
dependent on subtle details of the modelling, many of
which are still poorly known at this time. This is similar
to the case discussed earlier in the context of the compo-
nent separation. Unlike in that latter case now the as-
sumption of the pixel-domain noise stationarity not only
makes our forecasts less detail dependent but it is in fact
necessary in order to facilitate the analytic calculations,
which in turn are essential for the numerical efficiency of
the proposed approach.

Hereafter, we will thus employ the noise spectra as
given in Eq. (31) accepting that some of the informa-
tion is lost in this process. Our forecast will therefore be
pessimistic in some sense but more reliable. The informa-
tion is not lost only when the noise of the recovered CMB



8

map is homogeneous, which is equivalent to the case of
the homogeneous noise in the frequency maps and global
scalings laws, and where our assumptions are automati-
cally fulfilled.

We note that more general noise power spectra than
the white noise cases can be studied using this formalism,
for instance, the spectra with excess power at low-` end
of the spectrum, devised to mimic the potential effects
of time-domain noise correlations and/or time-domain
filtering. As no noise correlations are included in our
component separation step this will not be a fully con-
sistent approach, however, as the pixel-stationary noise
correlations are expected to have a bigger impact on the
cosmological parameter estimation than the component
separation step, such ad hoc adjustments can be expected
to provide useful and meaningful insights.

This part of our algorithm now proceeds as follows:
for the given foreground models, true and assumed, and
the noise power spectrum, we maximize Eq. (35) us-
ing its first derivatives, Eq. (36), to find the maxi-
mum likelihood-like values of the cosmological parame-
ters, which can be however biased by the presence of the
residual foregrounds. We then use the ensemble aver-
age Hessian of the likelihood in Eq. (35), with the true
data matrix set to E, to assign uncertainties to these
estimates.

The proposed procedure is well-defined in full- or
nearly full- sky coverage cases. If only a limited sky area
is available, the procedure can be adapted to produce
some meaningful estimates. This involves the usual steps
of introducing a low-` cut-off corresponding to the largest
mode, which can be still well-constrained by the cut-sky
data, and of multiplying the derived, full-sky Hessian by
the observed sky fraction, fsky, to reflect the overall loss
of the independent modes in the available data. Were
we projecting out all the sky modes potentially contam-
inated by the foreground residuals, what would corre-
spond to Σ→∞, this later step would suffice. However,
in our case Σ is finite and in fact hoped to be small so
the spectral parameters are well-determined. Moreover,
as it is estimated on the component separation step, it
already incorporates the information about the observed
sky fraction, as roughly Σ ∝ 1/npix ∝ 1/fsky. To ac-
count on that, as an input to the cosmological parameter
estimation procedure, we use the rescaled matrix of spec-
tral parameter errors, Σ′ ≡ fskyΣ. This rescaled error
matrix roughly reflects the full sky errors and we use it
in our algorithm to compute the bias and the Hessian for
this case as described earlier. Once this is done we then
rescale the Hessian by fsky, so the statistical errors on

the cosmological parameters are amplified by
√
fsky.

E. Algorithm

The approach proposed here involves three main steps,

step i: estimation of the spectral parameters, used to
parametrize the frequency scaling laws of the com-

optimization of the spectral 
likelihood using a mixing matrix  

A ≠ Â, cf. Eq.(7)

estimation of the cross-spectra of the pixel-domain 
objects y, Y(1), Y(2), z ➔ estimation of statistical and 

systematic foregrounds residuals, Eq. (23)

estimation of the cosmological parameters and their 
uncertainty, Eq. (35)

instrumental 
sensitivity, 

fsky, resolution

sky templates (CMB, foregrounds)

true sky mixing matrix Â (cf. Fig. 1)

ST
EP
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FIG. 1: A flow chart of the main steps of the proposed ap-
proach and of its validation pipeline implemented in this work.

ponents and their uncertainty.

step ii: estimation of the cross-spectra of the pixel-
domain objects, y, Y(1), Y(2), z, characterizing the
systematic and statistical residuals.

step iii: estimation of the cosmological parameters and
their uncertainty.

As the products computed on each of these steps provide
the inputs for the next ones, the necessary initial inputs
consist of those required for the first step computations.
In general these are,

1. the multi-frequency, noiseless true sky signal maps,
d̂, split into its CMB, ŝ, and foreground, f̂ , parts;

2. the noise covariance matrices for the frequency
channels, N;

3. assumed, parametrizable scaling laws for all con-
sidered sky components, A.

These are in principle sufficient to perform all the steps
of the proposed approach. If available, the algorithm
proceeds as follows,

step i: The best-fit spectra parameters are found by a
direct maximization of the ensemble average likeli-
hood in Eq. (7). This is implemented using a mini-
mization routine from the Python’s Scipy library
implementing the truncated Newton constrained
(TNC) solver. It capitalizes on the analytic deriva-
tives of the likelihood with respect to the spectral
parameters given by Eq. (A4). The statistical un-
certainty is then computed using Eq. (A5).

step ii: Given the best-fit values of the spectral param-
eters and their statistical uncertainty estimated on
step i, we first estimate the pixel-domain objects,
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TABLE II: Instruments specifications

frequency [GHz] 40 50 60 70 80 90 100 120 140 165 200 235 280 340 400

sensitivity [µK-arcmin] 42 26 20 15 12 19 12 10 7 7 5 6 19 10 19

FWHM [arcmin] 108 86 72 63 55 49 43 36 31 26 22 18 37 31 26

y, Y(1), Y(2), z, using Eqs. (17) and (25), and cal-
culate their spherical harmonic decomposition and
cross-spectra as needed;

step iii: The forecasted values of the cosmological pa-
rameters are then computed by directly maximiz-
ing the likelihood in Eq. (35) with the first deriva-
tive computed with help of Eqs. (C13), (C18) and
(C20). The likelihood itself is calculated using
Eqs. (C8)-(C12), These computations use the cross-
spectra computed on step ii and is performed, as
before, with help of a Scipy minimization routine
implementing the truncated Newton constrained
(TNC) solver. However, this is now only performed
after a rough grid-based search needed to ensure a
reasonable starting point. The statistical uncer-
tainty is then computed numerically as the curva-
ture of the ensemble average cosmological parame-
ter likelihood, which is an output of the routine.
Alternately, whenever the number of the sought-
after cosmological parameters is very limited, typ-
ically <∼ 2, the proposed formalism permits a full
investigation of the likelihood function by a direct
evaluation of Eq. (35) on a grid of the parameters
and using the analytic results from Appendix C,
Eqs. (C8)-(C12).

We note that in many cases of interest not all these cal-
culations have to be actually performed and instead can
be supplemented by some additional or alternative in-
puts. For instance, if neither the frequency scaling laws
for the assumed sky model nor the pixel-domain noise
depend on the pixel position on the sky, the sufficient in-
formation about the foregrounds can be provided by the
foreground component-component covariance matrix and
the component-component cross-spectra, Appendix D.
In such a case, the cross-spectra of y, Y(1), Y(2), z are
directly related to those, simplifying and accelerating the
calculations on required on step ii. Also, the estimation
of the spectral parameters, step i, can be then performed
using only the component-component covariance matrix
of the foregrounds as the input.

A simplified flowchart of the method is shown in Fig. 1.

III. VALIDATION AND DEMONSTRATION

We validate our approach using simulated, multi-
frequency data sets of a putative CMB observation. Be-
low we describe in turn: the assumed experimental set-
up, the assumed foreground models, and the adopted val-
idation methodology.

A. Set-up

1. Observation

We assume here a nearly full-sky observation, which
have produced a set of multi-frequency maps of 70% of
the entire sky suitable for cosmological component sepa-
ration. The frequency bands, their assumed resolutions
and sensitivites are all listed in Table II and have been
selected following loosely the example of a contemporary
satellite mission concept, [30]. Top-hat band passes are
used throughout with their widths set to 30% of the cen-
tral frequency for each band. We assume the duration of
the observation to be 3 years, the noise to be white in
map domain, with the homogeneous sky coverage, and
no correlation between the maps at different frequencies
included. In the following analyses we always include
harmonic modes with ` ranging from 2 to 500, with the
high-end cut-off set by the assumed resolutions. We em-
phasize that our goal here is to demonstrate and validate
the proposed method and not to provide a performance
evaluation of any specific instrument, what is left to the
future work.

The noise spectrum, Cnoise
` , characterizing the noise

of the final recovered CMB map, is computed using
Eqs. (32) and (33) with the parameters listed in Table II.

2. Sky models

We adopt, as the true sky model, a model composed
of two diffuse foreground components, one dust-like and
the other synchrotron-like. We represent them as tem-
plates at 150GHz and scale them following the scalings
laws as described below to all the frequencies of interest.
For the templates we used the so-called COMMANDER
dust and synchrotron maps, scaled to 150GHz using the
Planck’s fiducial scaling laws, as included and described
in the Planck’s latest polarized data release [31]. For sim-
plicity, but also in agreement with recent findings of [26],
hereafter we restrict ourselves to the case with no spatial
variability of the scaling laws. We consider only 70% of
the sky leaving out the Galactic plane as well as some
other high foreground regions as defined by the sky mask
provided by the Planck collaboration [32].

We model dust frequency scaling law as a sum of mul-
tiple grey-body terms each computed with a different set
of grey-body parameters: the power law index, βd, and
temperature, Td. Similarly, we model synchrotron fre-
quency scaling as a sum of power laws with different
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FIG. 2: Frequency scaling laws used in this work to demon-
strate our method. The top panels show the scaling laws
for dust, left, and synchrotron, right, for three different cases
involving mixtures of 1, 2 and 4, grey-bodies, for dust, and
power-laws, for synchrotron. The bottom panels show the
same lines but relatively to the single term case. Shaded
areas show a rough, 1-σ, uncertainty on these scaling laws
consistent with the Planck data [27].

power law indices, βs. Though these models are very
simple, they allow us to investigate a range of different
cases from the simple scaling law models, involving only
a single term, to progressively more complex ones based
on two and more terms. Specifically, in the following we
will focus on three cases of the true sky scaling laws: one
involving only one term, with the parameters set to be
Td = 19.6K, βd = 1.59, and βs = −3.1, and two more
complex scalings based on a combination of 2 and 4 terms
respectively for both dust and synchrotron. The effective
scalings are shown in Fig. 2, where the top panels show
the absolute scaling laws and the bottom ones – these
laws relative to the single-term case. Clearly, the two-
term scaling leads to the departures of up to ∼ 0.5% in
the dust scaling within the consider range of frequencies,
while the 4-term cases admits deviations as big as ∼ 1%
for both the dust and synchrotron. The specific param-
eters used for the calculations of all the terms have been
tuned to ensure that the adopted scaling laws are consis-
tent with the Planck constraints [27], but also to allow us
to validate and demonstrate our method in qualitatively
different regimes. We discuss this in more detail in the
next Section.

In contrast, while performing the component separa-
tion step on the simulated data sets, we always assume
single-term-only scalings for both dust and synchrotron,
fixing the dust temperature, Td, to the actual value for
the first term, i.e., Td = 19.6K, and let the data deter-
mine values of two spectral indices, βd and βs.
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β
s

single layer
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FIG. 3: Constraints on spectral parameters, power-law in-
dices for dust, βd, and synchrotron, βs, forecasted for the
assumed multi-frequency observation using the approach pre-
sented here. These are shown as solid ovals corresponding to
1, 2, and 3- σ contours of the spectral parameter likelihood
and computed for the three different foreground models as
discussed in the text and shown in Fig. 2. Each model results
are shown in different colors as indicated in the legend. The
filled circles show the results of a direct maximization of the
spectral likelihood performed for 500 independent realizations
of the considered data set. The thin dashed lines show the
position of the likelihood peaks as determined by the semi-
analytic approach. These are virtually indistinguishable from
the average values derived from simulations.

B. Validation procedure

We validate our approach using simulations. These as-
sume the foreground model described above. Each fore-
ground template is scaled to each considered frequency
band using one of the three scaling laws and integrated
over the frequency band passes. These are coadded with
500 simulated CMB maps produced as a random realiza-
tion of the Gaussian process with power spectra defined
by the standard cosmological model with parameters set
to the best fit Planck values. All the signal maps are
downgraded to Nside = 32. We thus obtain three sets
of 500 simulated, single-frequency maps, each set imple-
menting a different foreground scaling law. In addition,
for each set we generate 500 independent realizations of
the instrumental noise, which combined together with the
signal maps create mock data sets. These noise realiza-
tions are drawn for each frequency band separately and
modelled as a Gaussian process with variance as given in
Table II and zero mean. There are no other systematic
effects included in the simulations.

As part of the validation procedure, we analyze each of
the simulations as we would the actual data, performing
first the pixel-domain, maximum-likelihood, paramet-
ric component separation followed by the pixel-domain,
maximum-likelihood cosmological parameter fitting. At
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the conclusion of each of these two steps we compare
the simulated results with the corresponding results ob-
tained with the proposed method. Specific comparisons,
performed on each step of the proposed algorithm, are as
follows, cf. Fig. 1:

step i: we estimate the best-fit spectral parameters for
the mock data by explicitly maximizing the spectral
likelihood in Eq. (6). We do so for each of the three
sets of the 500 simulations. We then compare the
results with the expected distribution of the mea-
sured spectral parameters derived semi-analytically
using Eqs. (7) and (9) and assuming a Gaussian ap-
proximation.

step ii: to validate this step we compute power spec-
tra of the foreground residuals left over in the CMB
maps after the component separation step. We note
that these are higher level objects, which are nei-
ther explicitly derived on this step of the processing
nor needed for the subsequent stages of the proce-
dure. However, they combine the same information
as the direct products and have well-defined physi-
cal interpretation. They therefore provide a mean-
ingful and intuitive comparison metric.
We implement this comparison as follows. For
the simulated data, we first compute the cleaned
CMB map using expression in Eq. (10) assuming
the spectral parameters as derived on step i. The
map domain residual is then derived by subtract-
ing from this map the true CMB map used to sim-
ulate the input data. We then calculate the power
spectrum of the residuals and compare it with the
semi-analytic results derived via Eqs. (23) and (28).

step iii: we estimate the best fit value of the tensor-
to-scalar ratio parameter, r, by explicitly maximiz-
ing full cosmological parameter likelihood, Eq. (34),
we bin the results and compare the histogram with
the Gaussian distribution with an average and dis-
persion derived using the proposed approach, Sec-
tion II D. In addition, we explicitly compute the av-
eraged likelihood as a function of r, using Eq. (35).
In both these latter cases the computations are per-
formed directly in the harmonic domain using the
harmonic space representation of the cleaned CMB
maps obtained on step ii. This is done with help of
a standard spherical harmonic transform and thus
neglects the effects due to cut sky. This is expected
to lead to some power loss at the low-` end and
thus may affect the level of bias in the estimated
values of r. This should be taken care of in the
actual forecasting process however is irrelevant for
the formalism demonstration purposes.

Due to computational-time limitation we perform the
end-to-end analysis of the actual simulation on under-
pixelized maps with HEALpix nside = 32. This is what
restricts the analysis presented hereafter to `max = 64

as the semi-analytic approach can be easily applied for
much higher cut-offs.

C. Results

We present here results obtained for each of the three
steps defined earlier. They are visualized in Figs. 3, 4,
and 5.

In Fig. 3 we show the spectral laws parameters and
their 1, 2, 3− σ confidence levels, shown as contours, ob-
tained as a Gaussian approximation to our spectral like-
lihood, Eq. (7). This likelihood is averaged over possible
noise realizations. The thick points show the results of
the simulations and therefore each point shows the values
of the spectral parameters derived by a direct maximiza-
tion of the spectral likelihood, Eq. (6). We note that each
set of the mock multifrequency data contains different
realization of the noise and the CMB signal, however as
discussed earlier on, the latter does not impact the spec-
tral parameter estimation, see Eq. (15), and the scatter
of the spectral parameters values from the simulations
seen in the figure is driven only by the noise. Overall,
we see very good agreement between the semi-analytic
contours and the overall distribution of the results de-
rived from the simulations, which as expected cover the
areas delineated by the contours aggregating around the
expected peaks of the likelihood. More quantitively, the
average spectral parameters derived from the simulations
are the dashed lines and show a good agreement with the
semi-analytic values.

We note that the position of the peak of the likelihood
is different for each of the cases. Indeed, only in the case
of the single-term model the true and assumed sky agree
and the recovered values of the spectral parameters agree
with those used in the sky simulations. For the multi-
term scaling laws, the assumed model does not provide
an accurate description of the true scaling laws and the
derived values of the spectral parameters do not carry
any more any physical meaning, but rather they are some
effective values that lead to the scaling laws matching the
true ones most accurately.

In Fig. 4 we show the comparison performed after step
ii. The grey lines show power spectra of the foreground
residuals computed for each of the 500 realizations of the
noise and the thick dashed lines show their average. The
solid orange lines depict the average residual spectra and
the orange shaded areas show 2σ uncertainty computed
with help of the proposed method. We see a very good
overall agreement for all three choices of the scaling laws.

The residuals shown in the left panel are merely due
to the statistical scatter in the estimates of the spectral
parameters and this case corresponds to those studied
in [14]. Though in this case no bias is expected on the
map level, this is not so on the power spectrum level.
Indeed, the average power spectrum of the residuals does
not vanish as it is indeed shown in the figure by both
semi-analytic and simulated results.
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statistical residuals, left panel, dominant systematic residuals, right panel, and comparable statistical and systematic residuals,
middle panel. For comparison the red-shaded band shows the total, dust plus synchrotron, foreground signal at 150GHz. Only
the low-` residuals are shown here.
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FIG. 5: Forecasted constraints on the tensor-to-scalar ratio parameter, r, derived from foreground-cleaned CMB maps derived
for the multi-frequency observation studied here. The orange solid lines show the likelihoods on r averaged over the statistical
ensemble of noise and CMB realizations estimated using Eq. (35). The black, thick, dashed lines show the results of the
Gaussian approximation with the average and variance computed semi-analytically as described in this work. The histograms
show results of an end-to-end analysis of the putative, simulated data sets involving random realizations of the instrumental
noise and CMB signal and the foreground contributions as used in the semi-analytic approach. The results in the left panel
show no bias in the estimated value of r. The bias in the middle panel though formally non-zero is negligible as compared to
the statistical error. In contrast, the bias seen in the rightmost panel is significant as compared to the true value of r and the
estimated statistical uncertainty. These results demonstrate an excellent agreement between our semi-analytic approach and
the full computation with the Gaussian approximation being, however, more permissive as far as low values of r are concerned.
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In the middle and right panels, given the scaling laws
mismatch the residuals are due to both the systematic
and the statistical errors. In the middle panel, both these
errors are comparable and non-negligible. While in the
right panel, the systematic contribution is by far domi-
nant. These results show that the systematic residuals
due to the mismatch in the scaling laws can quickly dom-
inate over the statistical residuals even for rather minor
levels of the mismatch (0.5% and 1% in the cases shown
in the middle and right panels) at least as long as the
freedom of introducing more spectral parameters is not
capitalized on.

The residuals may potentially affect the values of the
cosmological parameters determined from the CMB maps
cleaned with the parametric component separation ap-
proach. This is not the case for the statistical residuals
as in the case shown in the left panel of Fig. 4. This
is because our parameter likelihood, Eq. (34), is written
in the map-domain, where the foreground residual aver-
aged over ensemble of the noise realization vanishes, and
because it accounts for the extra statistical uncertainty.
In this case we thus expect only the extra uncertainty
but no bias for the estimated cosmological parameters.
This would not have been the case, were our likelihood
written in the power spectrum domain. The bias of the
cosmological parameters is expected in our approach once
the systematic foreground residuals are present. In such
cases, the cosmological parameter estimates will be af-
fected by both biases and extra uncertainty.

Fig. 5 demonstrates all these general considerations in
the context of a determination of parameter r. In this
figure, the smooth orange lines show the predictions ob-
tained from our semi-analytic approach, while the his-
tograms are obtained by performing simplified maximum
likelihood parameter fitting applied to the CMB maps
contaminated with the foreground residuals. Again we
find a very good qualitative and quantitive agreement in
all three cases. The peak value of the likelihoods and
histograms shifts progressively away from the true value,
taken here to be r = 10−3, when the scaling law mis-
match and therefore the systematic residual is getting
bigger. The case shown in the left panel and thus af-
fected only by the statistical residual does not lead to
any bias in r. In the intermediate case, middle panel,
the bias is marginal and negligible when compared to
the statistical scatter, however, in the case shown in the
right panel the bias is already statistically important.
However, even in this case the bias on r is not as large
as one may have expected from the level of the residuals
in the power spectrum domain as seen in Fig. 4. This
merely reflects the fact that power spectra of the fore-
grounds and CMB signals are sufficiently different that
the effects of the former are minimized in the parameter
fitting procedure. Last but not least, we note that the
Gaussian approximation tends to underestimate the ac-
tual significance of the detection due to the long tail for
values of r going to 0.

With regard to the methodology, in the studied cases

we have found that the terms containing either vectors z
or Y(2), Eqs. (25) and (17), and which thus arise due to
our inclusion of the second order terms in the expansion
of the residuals with respect to the spectral parameter
deviations, Eq. (18), tend to be subdominant and can
probably be safely discarded, what would simplify the
numerical implementation. On the other hand, neglect-
ing the off-diagonal terms in the covariance matrices, C
and E, Eqs. (41) and (40), is more consequential as it
can potentially cause mis-estimation of the bias in the
estimated parameters by as much as 100%. At the same
time, this will not however lead to a spurious bias if such
is absent in the cleaned CMB map.

IV. CONCLUSIONS AND PROSPECTS

In this work we have proposed a semi-analytic ap-
proach suitable for realistic forecasting of constraints,
which can be set on the cosmological parameters by
multi-frequency CMB experiments in the presence of
complex foreground contaminations. The derived con-
straints are averaged over the instrumental noise and
CMB realizations and consist of the estimates of the most
likely values of the parameters as well as of their disper-
sion.

The method assumes that the foregrounds are cleaned
using a pixel-based, parametric, maximum likelihood
component separation approach, however it does not re-
quire that the parametric model assumed for the separa-
tion process matches the true one for any set of param-
eter values. If the mismatch is indeed present, the esti-
mated scaling laws will differ from the actual sky ones
in a systematic way. This leads to foreground residuals,
both systematic and statistical, which will be present in
the cleaned CMB map. In our approach we first esti-
mate both these residuals and subsequently incorporate
them in the pixel-based cosmological parameter likeli-
hood, which we use to set constraints on cosmological
parameters. The constraints derived in this way there-
fore include both biases as well as statistical uncertainty.
In this sense our method generalizes previous efforts of
the similar kind [14, 18, 19]. We have validated the
method in the case of pixel-independent scaling laws and
white pixel-domain noise, however, the presented alge-
braic framework is flexible enough to allow for spatial
variation of the foreground scaling for both the true and
modelled signals as well as some other real life effects.
Furthermore, we also note that the proposed formalism
permits incorporating any uncertainties in the foreground
modelling in the final forecasts. This could be a poten-
tially very handy feature if broad families of the fore-
ground models need to be investigated. We leave detailed
studies of those cases for future work.

In the cases studied in this work, we have found that
even a rather minor mismatch, say of ∼ 1%, between
the true and assumed scaling laws over a broad range
of frequencies can lead to substantial biases of the esti-
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mated value of the tensor-to-ratio parameter, r, if its true
value is as low as 10−3. This emphasizes two things: (1)
importance of accurate and realistic modelling of the un-
derlying foreground signals in ensuring that the obtained
forecasts are realistic; (2) importance of suitably chosen,
parametric scaling models. In this work, for the demon-
stration purposes, we have adopted rather simple models
in both these instances. In particular, we have employed
a simple, two-parameter scaling model for the separation
stage and thus have not explored all the constraining
power of the considered observation, which allows for a
significantly larger number of the spectral parameters.
For these reasons the results shown here should not be
seen as a fair evaluation of the performance of the as-
sumed instrumental set-up but rather merely as indica-
tive of more qualitative effects and dependences one may
expect in such circumstances. Again we leave exhaustive
explorations of this kind to future work.

Our approach, though clearly more involved and
complex than that of [14, 18, 19], retains the speed
and efficiency of these previous, simplified techniques,
while permitting to attain a higher level of realism.
Indeed, all the numerical computations scale linearly
with the high-` cut-off, `max, allowing the calculation
to be conducted efficiently even for high-resolution
experimental set-ups. Consequently, the method is very
well-suited for optimizations of experimental set-ups and

forecasting their performance, in particular whenever
large parameter space of experimental characteristics
needs to be considered. Equally importantly, this
approach also allows for a direct exploration of a large
number of viable foreground models, thus enabling
investigations of robustness of the predictions with
respect to details of the foreground modelling – a key
feature given our present ignorance about the polarized
foreground emissions in the microwave band and the
impact of the assumed foreground models on the derived
predictions. In all these aspects, the proposed approach
is complementary to a more thorough but also more
resource demanding, fully-fledged, end-to-end analysis
of the realistic simulations.
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Appendix A: Spectral likelihood derivatives

We calculate here the first derivative of the likelihood averaged over the statistical ensemble of noise. Without
losing the generality, for the derivation’s sake, we assume only one pixel, and thus drop subscript p and take the noise
covariance, N, to be the identity. We then present the fully general expressions only at the very end.

We start from Eq, (6) and rewrite it as

Sspec= tr
[
(1−P) ddt

]
. (A1)

Consequently all we need to do is to compute P,β and P,ββ′ . On defining, M ≡ (AtA)−1, these can be written as,

P,β = −AMAt
,βP + transpose, (A2)

and,

P,ββ′ = −PA,β′MAt
,βP + AMAt

,β′AMAt
,βP−AMAt

,ββ′P

+ AMAt
,βAMAt

,β′P + AMAt
,βPA,β′MAt + transpose. (A3)

We can now combine all these terms to form the derivatives of the spectral likelihood, obtaining,〈
∂Sspec
∂β

〉
=
∑
p

tr
[
N−1
p Ap(A

t
pN
−1
p Ap)

−1At
p,βPp〈dpdtp〉

]
, (A4)

and 〈
∂2Sspec
∂β∂β′

〉
=
∑
p

tr
{[

PpAp,β′(At
pN
−1
p Ap)

−1At
p,βPp + N−1

p Ap(A
t
pN
−1
p Ap)

−1At
p,ββ′Pp

− N−1
p Ap(A

t
pN
−1
p Ap)

−1At
p,β′N−1

p Ap(A
t
pN
−1
p Ap)

−1At
p,βPp

− N−1
p Ap(A

t
pN
−1
p Ap)

−1At
p,βN−1

p Ap(A
t
pN
−1
p Ap)

−1At
p,β′Pp

− N−1
p Ap(A

t
pN
−1
p Ap)

−1At
p,βPpAp,β′(At

pN
−1
p Ap)

−1At
pN
−1
p

]
〈dpdtp〉

}
, (A5)



15

where we have used the fact that the trace of a product of a symmetric matrix and an arbitrary matrix is the same
as that of the symmetric matrix and the transpose of the arbitrary matrix. We note that these equations agree with
Eqs. (4) and (A9) of [14]. We also note that as in the case studied in this latter work neither derivative depends on

the specific CMB sky signal included in the data, d̂p = Âŝ, as long as the CMB frequency scaling is assumed to be
known. This can be seen on observing that the sky signal, ŝ, in the expressions for the first and second derivative of
the likelihood is processed either by operator,

Ap,β At
pN
−1
p Ap)

−1At
pN
−1
p Âp, (A6)

or the projection operator, Pp. However, by assumption we have, Ai0 = Âi0 = 1, where subscript 0 denotes the
column corresponding to the CMB and we have adopted the thermodynamical units, and therefore (see also Eq (14)),[

(At
pN
−1
p Ap)

−1At
pN
−1
p Âp

]
i0

= δi0. (A7)

Moreover, given that, [Ap,β ]0i = 0, [
Ap,β(At

pN
−1
p Ap)

−1At
pN
−1
p Â

]
0i

= 0 (A8)

and the operator removes all the CMB signal present in the input data vector, ŝp. Similarly, the projection operator,
Pp, projects out the CMB signal in its entirety as,[

PpÂ
]
i0

=
[
N−1
p

]
ij

[
Âp − Ap(A

t
pN
−1
p Ap)

−1ApN
−1
p Âp

]
j0

=
[
N−1
p

]
ij

(
Âj0 −Aj0

)
= 0. (A9)

Consequently, the CMB signal affects neither the best-fit values of the spectral parameters, β, nor their uncertainties.

Appendix B: Residuals power spectrum and its variance.

We calculate the power spectrum of the residuals up to the second order in δβ. From Eq. (21) we get,

Cres
l ' 1

2l + 1

∑
m

〈r̃cmb, †
j r̃cmb

j 〉 =
1

2l + 1

∑
m

[
ỹ†j ỹj + tr

[
Σ Ỹ

(1) †
j Ỹ

(1)
j

]
+ ỹ†jtr

[
Ỹ

(2)
j Σ

]
+ tr

[
Ỹ

(2) †
j Σ

]
ỹj

]
=

1

2l + 1

[∑
m

ỹ†j ỹj + tr
[
Σ
∑
m

Ỹ
(1) †
j Ỹ

(1)
j

]
+
∑
m

(
ỹ†j z̃j + z̃†j ỹj

)]
, (B1)

where j = `2 + `+m. From this, Eq. (23) follows.
To calculate the expression for the variance we first compute, (here j and j′ correspond to the same multipole, `,

and two different values of m),∑
m,m′

〈r̃cmb †
j r̃cmb

j r̃cmb †
j′ r̃cmb

j′ 〉=
∑
m,m′

[
tr
[
Ỹ

(1)
j ΣỸ

(1)†
j

]
tr
[
Ỹ

(1)
j′ ΣỸ

(1)†
j′

]
+ 2 tr

[
Ỹ

(1)†
j ΣỸ

(1)
j′

]
tr
[
Ỹ

(1)†
j′ ΣỸ

(1)
j

]
+ ỹ†j ỹj ỹ†j′ ỹj′+ ỹ†j ỹjtr

[
Σ Ỹ

(1)†
j′ Ỹ

(1)
j′

]
+ ỹ†j ỹj′tr

[
Σ Ỹ

(1)†
j′ Ỹ

(1)
j

]
+ ỹ†j′ ỹjtr

[
Σ Ỹ

(1)†
j Ỹ

(1)
j′

]
+ ỹ†j′ ỹj′tr

[
Σ Ỹ

(1)†
j Ỹ

(1)
j

]
+ ỹ†j ỹjỹ

†
j′tr
[
Ỹ

(2)
j′ Σ

]
+ ỹ†j ỹjỹj′tr

[
Ỹ

(2)
j′ Σ

]
+ ỹ†j′ ỹj′ ỹ

†
jtr
[
Ỹ

(2)
j Σ

]
+ ỹ†j′ ỹj′ ỹjtr

[
Ỹ

(2)
j Σ

]]
, (B2)

where we have retained contributions the lowest order in δ separately for the terms related to the bias and the bias-free
ones. From this we now have,

Var(Cres
` ) =

1

(2`+ 1)2

∑
m,m′

〈r̃cmb †
j r̃cmb

j r̃cmb †
j′ r̃cmb

j′ 〉 − (Cres
` )2

=
1

(2`+ 1)2

{
2

[∑
m

tr
(
Ỹ

(1)
j ΣỸ

(1)†
j

)]2

+
∑
m,m′

[
ỹ†j ỹj′tr

[
Σ Ỹ

(1)†
j′ Ỹ

(1)
j

]
+ ỹ†j′ ỹjtr

[
Σ Ỹ

(1)†
j Ỹ

(1)
j′

]]}
, (B3)

which is equivalent to Eq. (28).
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Appendix C: Cosmological parameter likelihood

Here, we derive explicit equations for the calculation of first order derivatives of the cosmological parameter likeli-
hood. We note that the same type of calculations are in principle involved in the computation of the matrix of the
second derivatives of the likelihood. Importantly, also these derivatives can be expressed solely via cross-spectra of the
pixel-domain objects defined in Sect. II C 2. However, the number of terms of the analytic expression grows rapidly
and we have found that in practice computing this matrix numerically is more efficient and thus useful, while ensuring
precision sufficient for the purpose. For this reason we do not include explicitly the corresponding derivations.

1. Preliminaries

Let us first compute the inverse of the covariance matrix, C. This can be done with help of the Sherman-Morrison-
Woodbury formula (e.g., [29]),

C−1 = D−1 −D−1Ỹ(1) (Σ−1 + Ỹ(1)†D−1Ỹ(1))−1︸ ︷︷ ︸
≡ U

Ỹ(1)†D−1, (C1)

where U is a square, real, symmetric matrix of rank nβ . On noting that,

[Ỹ(1)†D−1Ỹ(1)]ββ′ =
∑
j,j′

Ỹ
(1)†
jβ (D−1)jj′Ỹ

(1)
j′β′ =

∑
`

C−1
` (2`+ 1)⊗`(Ỹ

(1)
β , Ỹ

(1)
β′ ), (C2)

where j = `2 + `+m, the inverse of U can be expressed as,

U−1 = Σ−1 + Ỹ(1) †D−1Ỹ(1) = Σ−1 +
∑
`

C−1
` (2`+ 1)⊗`(Ỹ

(1), Ỹ(1)). (C3)

Typically, this matrix will be dense and its inversion has to be then calculated numerically. However, given the
typically limited number of spectral parameters, this does not pose any computational problems and matrix U can
be readily derived.

We can now write down the explicit expression for (C−1)jj′ , which is given by,

(C−1)jj′ = C−1
` δjj′ −

∑
j′′,j′′′
β,β′

C−1
` δjj′′Ỹ

(1)
j′′β Uββ′Ỹ

(1)†
j′′′β′ C

−1
`′ δj′′′j′ = C−1

` δjj′ − C−1
` C−1

`′

∑
β,β′

Ỹ
(1)
jβ Uββ′Ỹ

(1)†
j′β′ , (C4)

where ` is related to j and `′ to j′. Given this we can write,

(C−1)2
jj′ = C−2

` δjj′ − 2C−3
` δjj′

∑
β,β′

Ỹ
(1)
jβ Uββ′Ỹ

(1)†
j′β′ + C−2

` C−2
`′

∑
β,β′
α,α′

Ỹ
(1)
jβ Ỹ

(1)
jαUββ′Uαα′Ỹ

(1)†
j′β′Ỹ

(1)†
j′α′ , (C5)

which will be found useful later on.
Similarly, for an arbitrary harmonic space vector, x̃, we have on using Eq. (C4),

(C−1x̃)j = ≡ C−1
`

(
x̃j −

∑
β

Ỹ
(1)
jβ uβ [x̃]

)
, (C6)

where,

uβ [x̃] ≡
∑
β′

Uββ′

∑
`′

2`′ + 1

C`′
⊗`′ (Ỹ

(1)
β′ , x̃). (C7)

2. Likelihood

The ’χ2-term’ of the likelihood can be represented as follows, Eq. (35),

tr C−1E = tr C−1Ĉ + tr C−1
(
E− Ĉ

)
, (C8)
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where Ĉ stands for the true signal covariance matrix. We can write the first term on the rhs of this equation as,

tr C−1Ĉ =
∑
j,j′

(C−1)jj′Ĉj′j =
∑
j,j′

(
C−1
` δjj′ − C−1

` C−1
`′

∑
β,β′

Ỹ
(1)
jβ Uββ′Ỹ

(1)†
j′β′

)(
Ĉ`′δjj′ +

∑
β,β′

Ỹ
(1)
jβ Σββ′Ỹ

(1)†
j′β′

)
=
∑
`

[
(2`+ 1)

Ĉ`
C`

(
1− C−1

` tr [U ⊗`(Ỹ
(1), Ỹ(1))]

)
+

(2`+ 1)

C`
tr [Σ ⊗`(Ỹ

(1), Ỹ(1))]

]
−
∑
`,`′

(2`+ 1)

C`

(2`′ + 1)

C`′
tr [U ⊗`′ (Ỹ

(1), Ỹ(1)) Σ ⊗`(Ỹ
(1), Ỹ(1))], (C9)

where for the computational reasons it is better to first performs the sum over ` and `′ before calculating traces. In
particular the last term becomes then linear in `max. Similarly, we can now write the second term of the χ2,

tr C−1
(
E− Ĉ

)
=
∑
j,j′

(C−1)jj′(ỹj′ ỹ
†
j + z̃j′ ỹ

†
j + ỹj′ z̃

†
j) =

∑
`

(2`+ 1)

C`
( ⊗`(ỹ, ỹ) + ⊗`(z̃, ỹ) + ⊗`(ỹ, z̃))

−
∑
`,`′

(2`+ 1)

C`

(2`′ + 1)

C`′
tr
[
U
(
⊗`′ (Ỹ

(1), ỹ) ⊗`(ỹ, Ỹ
(1)) + ⊗`′(Ỹ

(1), ỹ) ⊗`(z̃, Ỹ
(1))

+ ⊗`′ (Ỹ
(1), z̃) ⊗`(ỹ, Ỹ

(1))
)]
, (C10)

and again in a numerical implementation it is better to first perform sums over the multipoles and only later take the
traces.

The determinant of the assumed covariance matrix, C, can then be efficiently calculated by noting that,

det

([
D −Ỹ(1)

Ỹ(1) † Σ−1

])
= det D det (Σ−1 + Ỹ(1) †D−1 Ỹ(1)) = det Σ−1 det (D + Ỹ(1) Σ Ỹ(1) †), (C11)

and thus

det C = det D
det Σ

det U
. (C12)

Given that D is diagonal and U and Σ – small, the computation of the determinant of the covariance does not
pose typically any problem. Note that as these two latter matrices are typically dense their determinants need to be
calculated numerically using standard techniques.

3. First derivatives of the likelihood

We can now compute the likelihood gradient. From Eq. (36) we can write,

〈Spar,i 〉 = tr
[
C−1C,i − C−1C,i C

−1 E
]

= tr
[
C−1C,i − C−1C,i C

−1 Ĉ
]
− tr

[
C−1C,i C

−1(E− Ĉ)
]
, (C13)

where the second part contains all the extra corrections from the model mismatches, while the former vanishes when
the true and estimated parameters are the same, i.e, Ĉ = C.

We compute each of these two terms separately below.

a. tr
[
C−1C,i − C−1C,i C−1 Ĉ

]
:

We first observe that,

Ĉ−C = D̂−D, (C14)

where D̂ stands for D computed for the true values of the cosmological parameters. Hence, we can represent Ĉ as,

Ĉ = C + D̂−D ≡ C + ∆D, (C15)
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where,

∆Djj′ = (Ĉ` − C`) δjj′ ≡ ∆Ccmb
` δjj′ . (C16)

On using Eq. (C15) we can rewrite the complete term as,

tr
[
C−1C,i − C−1C,i C

−1 Ĉ
]

= −tr
[
C−1C,i C

−1 ∆D
]
, (C17)

and then,

tr
[
C−1C,i C

−1 ∆D
]

=
∑

j,j′,j′′,j′′′

(C−1)jj′ (C,i)j′j′′ (C−1)j′′j′′′ ∆Dj′′′j =
∑
j,j′

(C−1)2
jj′
∂Ccmb

`′

∂pi
∆Ccmb

`

=
∑
j,j′

(
C−2
` δjj′ − 2C−3

` δjj′
∑
β,β′

Ỹ
(1)
jβ Uββ′Ỹ

(1)†
j′β′ + C−2

` C−2
`′

∑
β,β′
α,α′

Ỹ
(1)
jβ Ỹ

(1)
jα Uββ′ Uαα′ Ỹ

(1)†
j′β′ Ỹ

(1)†
j′α′

)∂Ccmb
`′

∂pi
∆C`,

=
∑
`

∂Ccmb
`

∂pi
∆C`

(2`+ 1)

C2
`

− tr
{

U
∑
`

[2(2`+ 1)

C3
`

∂Ccmb
`

∂pi
∆C` ⊗` (Ỹ(1), Ỹ(1))

]}
+

+tr
{

U
∑
`

[ (2`+ 1)

C2
`

∂Ccmb
`

∂pi
⊗` (Ỹ(1)†, Ỹ(1))

]
U
∑
`

[ (2`+ 1)

C2
`

∆C` ⊗`(Ỹ
(1), Ỹ(1)†)

]}
(C18)

where pi is the parameter we estimate and we have used Eq. (C5) derived earlier and the fact that U is positive and
symmetric. We note that the expression on the right hand side above is manifestly real as it should.

b. tr
[
C−1C,i C−1(E− Ĉ)

]
:

On using Eq. (40) and the fact that the covariance, C, is symmetric and real, we can rewrite this term as follows,

tr
[
C−1C,i C

−1(E− Ĉ)
]

= tr

{
C,i

[
(C−1ỹ)(C−1ỹ)† + (C−1ỹ)(C−1z̃)† + (C−1z̃)(C−1ỹ)†

]}
=
∑
j

{
∂C`
∂pi

[
(C−1ỹ)j(C

−1ỹ)†j + (C−1z̃)j(C
−1ỹ)†j + (C−1ỹ)j(C

−1z̃)†j

]}
. (C19)

where as usual j = `2 + `+m. Therefore, on using Eq. (C6),

tr
[
C−1C,i C

−1(E− Ĉ)
]

=
∑
`

{
2`+ 1

C2
`

∂C`
∂pi

[
⊗` (ỹ, ỹ)− 2<

∑
β

⊗`(ỹ, Ỹ
(1)
β ) ũβ [ỹ] +

∑
β,β′

⊗`(Ỹ
(1)
β , Ỹ

(1)
β′ ) ũ†β [ỹ] ũβ′ [ỹ]

+2<
(
⊗` (ỹ, z̃)−

∑
β

⊗`(ỹ, Ỹ
(1)
β ) ũβ [z̃]−

∑
β

⊗`(z̃, Ỹ
(1)
β ) ũβ [ỹ] +

∑
β,β′

⊗`(Ỹ
(1)
β , Ỹ

(1)
β′ ) ũ†β [ỹ] ũβ′ [z̃]

)]
. (C20)

Appendix D: Special case: homogeneous noise and pixel-independent scaling laws.

Let us assume that the noise of the frequency maps is homogeneous and that we use global scaling laws for all
considered components and all considered pixels. Then, matrix W0k

p (β) and its derivatives with respect to the spectra
parameters are all the same for all considered pixels, p. We can then drop the pixel subscripts and introduce following
pixel-independent objects,

wk ≡W0k(β̄), ∂Wkβ ≡
∂W0k

∂β

∣∣∣∣
β̄

, vk ≡
∑
β,β′

∂2W0k

∂β ∂β′

∣∣∣∣
β̄

Σβ′β , (D1)

so then, we can rewrite Eqs. (17) and (25) as,

ỹ = F̃ w

Ỹ(1) = F̃ ∂W (D2)

z̃ = F̃v.
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Subsequently, we can relate all the cross-correlations appearing in the earlier equations to the cross-correlation matrix
of the foreground signal in different frequency bands, F fore

` , defined in Eq. (27),

⊗`(ỹ, ỹ) = wtF fore
` w,

⊗`(Ỹ
(1), Ỹ(1)) = ∂Wt F fore

` ∂W,

⊗`(ỹ, z̃) = wtF fore
` v, (D3)

⊗`(Ỹ
(1), ỹ) = ∂Wt F fore

` w,

⊗`(Ỹ
(1), z̃) = ∂Wt F fore

` v.

[1] B. Gold, N. Odegard, J. L. Weiland, R. S. Hill, A. Kogut,
C. L. Bennett, G. Hinshaw, X. Chen, J. Dunkley,
M. Halpern, et al., ApJS 192, 15 (2011), 1001.4555.

[2] Planck Collaboration, P. A. R. Ade, N. Aghanim,
D. Alina, M. I. R. Alves, G. Aniano, C. Armitage-Caplan,
M. Arnaud, D. Arzoumanian, M. Ashdown, et al., A&A
576, A105 (2015), 1405.0872.

[3] N. Krachmalnicoff, C. Baccigalupi, J. Aumont,
M. Bersanelli, and A. Mennella, A&A 588, A65
(2016).

[4] K. N. Abazajian, K. Arnold, J. Austermann, B. A. Ben-
son, C. Bischoff, J. Bock, J. R. Bond, J. Borrill, I. Buder,
D. L. Burke, et al., Astroparticle Physics 63, 55 (2015),
1309.5381.

[5] L. Verde, H. V. Peiris, and R. Jimenez, J. Cosmology
Astropart. Phys. 1, 019 (2006), astro-ph/0506036.

[6] A. Amblard, A. Cooray, and M. Kaplinghat,
Phys. Rev. D 75, 083508 (2007), astro-ph/0610829.

[7] J. Dunkley, A. Amblard, C. Baccigalupi, M. Betoule,
D. Chuss, A. Cooray, J. Delabrouille, C. Dickinson,
G. Dobler, J. Dotson, et al., AIP Conf. Proceedings
1141, 222 (2009), 0811.3915.

[8] A. Bonaldi and S. Ricciardi, MNRAS 414, 615 (2011),
1101.4876.
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[28] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt,
F. K. Hansen, M. Reinecke, and M. Bartelmann, ApJ
622, 759 (2005), arXiv:astro-ph/0409513.

[29] G. H. Golub and C. F. van Loan, Matrix computations
(Johns Hopkins University Press, 1996).

[30] http://ltd16.grenoble.cnrs.fr/IMG/UserFiles/Images/

09 TMatsumura 20150720 LTD v18.pdf

[31] http://pla.esac.esa.int/pla

[32] http://pla.esac.esa.int/pla

[33] http://portal.nersc.gov/project/mp107/index.html


