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Exciton topology and condensation in a model quantum spin Hall insulator
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We study by a consistent mean-field scheme the role on the single- and two-particle properties of a local
electron-electron repulsion in the Bernevig, Hughes, and Zhang model of a quantum spin Hall insulator. We find
that the interaction fosters the intrusion between the topological and nontopological insulators of an insulating
and magnetoelectric phase that breaks spontaneously inversion and time-reversal symmetries but not their
product. The approach to this phase from both topological and nontopological sides is signaled by the softening
of two exciton branches, i.e., whose binding energy reaches the gap value, that possess, in most cases, finite and
opposite Chern numbers, thus allowing this phase to be regarded as a condensate of topological excitons. We also
discuss how those excitons, and especially their surface counterparts, may influence the physical observables.
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I. INTRODUCTION

The physics of excitons in topological insulators has at-
tracted considerable interest in the last decade, see, not as
an exhaustive list, Refs. [1–8], recently renewed [9] by the
evidence of a quantum spin Hall effect in two-dimensional
transition-metal dichalcogenides [10–12]. More precisely, a
consistent part of the research activity has focused on the
possibility of an exciton condensation in thin samples of topo-
logical insulators [1–3,7,13–15], much in the spirit of what
was proposed [16,17] and observed [18] in bilayer graphene.
In addition, the puzzling properties of the purported topolog-
ical Kondo insulator SmB6 [19–21] prompted interest in the
excitons of such material [4–6,22–24] as partly responsible
for its anomalous behavior.

Even though evidence of excitons also exists in the three-
dimensional topological insulator Bi2Se3 [8], besides those
in the still controversial SmB6, a systematic study in model
topological insulators is largely lacking [22,25–27]. Our aim
here is to partly fill this gap. Specifically, we consider the
prototypical model of a quantum spin Hall insulator (QSHI)
introduced by Bernevig, Hughes, and Zhang (BHZ) [28],
and add a local interaction compatible with the symmetries,
which, e.g., allow for a dipole-dipole term. We deal with such
an interaction in a conserving mean-field scheme. Namely, we
assume the Hartree-Fock (HF) expression of the self-energy
functional to compute the single-particle Green’s function.
Next, we calculate the excitons by solving the Bethe-Salpeter
equations for the response functions, using as an irreducible
vertex the functional derivative of the HF self-energy func-
tional with respect to the Green’s function; what is often called
random phase approximation plus exchange [29].

Our main result is that, starting from the noninteracting
QSHI, branches of excitons that transform into each other
under time reversal detach from the continuum of particle-
hole excitations and gradually soften upon increasing in-
teraction strength. When the latter exceeds a critical value,
those excitons become massless and thus condense through a
second-order critical point, which coincides with that obtained

directly through the HF calculation not forcing any symmetry.
Such a symmetry-broken phase is still insulating and displays
magnetoelectric effects. Upon further increasing interaction, it
eventually gives in to the nontopological symmetry invariant
insulator via another second-order transition. None of those
transitions is accompanied by any gap closing; therefore,
uncovering a path between the QSHI and the trivial insulator
that does not cross any gapless point [30–32], thanks to the
interaction-driven spontaneous breakdown of time reversal
symmetry.

We also find that, approaching the excitonic insulator from
the QSHI, the excitons themselves may acquire a nontrivial
topology signaled by a nonzero Chern number, suggestive
of the existence of chiral exciton edge modes. In addition,
we have evidence that, in open boundary geometries, exciton
condensation occurs at the surface earlier than in the bulk,
which also foresees the existence of nonchiral surface excitons
that go soft before the bulk ones [33–35].

Our findings may have observable consequences that we
discuss, some of which are not in disagreement with existing
experimental evidence.

This work is organized as follows. In Sec. II, we intro-
duce the interacting model Hamiltonian, while the conserving
HF approximation that we use to deal with interaction is
discussed in Secs. III and IV. The results of the calcula-
tions are presented in Sec. V; specifically, in Sec. V A, the
HF phase diagram; in Sec. V B the excitons in the QSHI
phase; and, finally, in Sec. V C the magnetoelectric effect in
the excitonic insulator. Section VI is devoted to concluding
remarks.

II. THE MODEL HAMILTONIAN

We shall consider the BHZ model, introduced to describe
the QSHI phase in HgTe quantum wells [28]. The BHZ model
involves two spinful Wannier orbitals per unit cell, which
transform like s orbitals, |s σ 〉, where σ =↑,↓ refers to the
projection of the spin along the z axis, and like the J = 3/2,
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Jz = ±3/2 spin-orbit coupled combinations of p orbitals, i.e.,

|px + ipy ↑〉 = |p+1 ↑〉 ≡ |p ↑〉 ,

|px − ipy ↓〉 = |p−1 ↓〉 ≡ |p ↓〉 . (1)

We introduce two sets of Pauli matrices, σa and τa, a =
0, . . . , 3, with a = 0 denoting the identity, which act, respec-
tively, in the spin, ↑ and ↓, and orbital, s and p, spaces.

With those definitions, the BHZ tight-binding Hamiltonian
on a square lattice includes all on-site potentials and nearest-
neighbor hopping terms that are compatible with inversion,
time reversal, and C4 symmetry [36], and reads

H0 =
∑

k

�†
k Ĥ0(k) �k =

∑
i j

�†
i Ĥ0(Ri − R j ) � j , (2)

at density corresponding to two electrons per site, where

�k =

⎛
⎜⎜⎜⎝

sk↑
sk↓
pk↑
pk↓

⎞
⎟⎟⎟⎠ , �i =

⎛
⎜⎜⎜⎝

si↑
si↓
pi↑
pi↓

⎞
⎟⎟⎟⎠ , (3)

are four component spinors in momentum, �k, and real, �i,
space, with i labeling the unit cell at position Ri. Ĥ0(k) is the
4 × 4 matrix

Ĥ0(k) = (M − t εk ) σ0 ⊗ τ3 − t ′ εk σ0 ⊗ τ0

+ λ sin kx σ3 ⊗ τ1 − λ sin ky σ0 ⊗ τ2 , (4)

with k = (kx, ky) and εk = ( cos kx + cos ky) while Ĥ0(Ri −
R j ) is its Fourier transform in real space. The parameters
t ′ − t , t ′ + t , and λ correspond, respectively, to the s − s,
p − p, and s − p nearest-neighbor hybridization amplitudes.
Finally, M describes an on-site energy difference between the
two orbitals.

Hereafter, we shall analyze the Hamiltonian Eq. (4) for
M > 0, t ′ = 0.5 t , and λ = 0.3 t . The precise values of the
latter two are not crucial to the physics of the model. What
really matters is the relative magnitude of M and t and the
finiteness of λ. Therefore, for the sake of simplicity, we shall
set t = 1 as the unit of energy.

The band structure can be easily calculated and yields two
bands, each degenerate with respect to the spin label σ ; a
conduction and a valence band, with dispersion εc(k) and
εv (k), respectively, which read

εc(k) = −t ′ εk + Ek , εv (k) = −t ′ εk − Ek , (5)

where

Ek =
√

(M − εk )2 + λ2 sin2 kx + λ2 sin2 ky . (6)

With our choice of parameters, these bands describe a direct
gap semiconductor for any M �= 2. At the high-symmetry
points in the Brillouin zone (BZ), the bands have a defined
orbital character, i.e., a defined parity under inversion. Specif-
ically, at � = (0, 0),

εc(�) = −2t ′ + |M − 2| , εv (�) = −2t ′ − |M − 2| , (7)

valence and conduction bands have, respectively, s and p
orbital character if M < 2, and vice versa if M > 2. On

FIG. 1. Band structure of the BHZ model in the topological (left
panel) and trivial (right panel) regimes. Blue and red colors indicate,
respectively, even (s orbital character) and odd (p orbital character)
parity under inversion.

the contrary, at the zone boundary points M = (π, π ), X =
(π, 0), and Y = (0, π ),

εc(M) = 2t ′ + (M + 2) , εv (M) = 2t ′ − (M + 2) ,

εc(X ) = εc(Y ) = M , εv (X ) = εv (Y ) = −M ,
(8)

the valence band is p and the conduction s for any value of M.
It follows that, if M < 2, there is an avoided band crossing,
due to λ �= 0, moving from � toward the BZ boundary, while,
if M > 2, each band has predominantly a single orbital char-
acter, s the conduction band, and p the valence one, see Fig. 1.
At M = 2, the gap closes at �, around which the dispersion
becomes Dirac-like:

εc(k) 	 +λ |k| , εv (k) 	 −λ |k| . (9)

The transition between the two insulating phases is known to
have topological character [28].

We note that the Hamiltonian Ĥ0(k) commutes with σ3,
i.e., is invariant under U (1) spin rotations around the z axis,
as well as under inversion and time reversal, respectively,
represented by the operators

I : Ĥ0(k) = σ0 ⊗ τ3 Ĥ0(−k) σ0 ⊗ τ3 ,

T : Ĥ0(k) = (−iσ2 ⊗ τ0) Ĥ∗
0 (−k) (iσ2 ⊗ τ0) . (10)

In addition, it is invariant under spatial, i.e., not affecting
spins, C4 rotations, which correspond to

C4 : Ĥ0(k) = e−i π
2 L3 Ĥ0(C4(k)) ei π

2 L3 , (11)

where C4(k) = (ky,−kx ), and the z component of the angular
momentum operator is

L3 = σ3 ⊗ τ0 − τ3

2
. (12)

Evidently, since the Hamiltonian is also invariant under spin
U (1) rotations, with generator S3 = σ3 ⊗ τ0/2, it is also in-
variant under π/2 rotations with generator the total angular
momentum along z, i.e., J3 = L3 + S3, which provides a better
definition of C4.

We observe that, if Cσ is the Chern number of the spin-
σ valence-band electrons, then invariance under both inver-
sion and time reversal entails a vanishing (C↑ + C↓), which
is proportional to the transverse charge conductance, but a
possibly nonzero (C↑ − C↓), which would correspond to a
finite transverse spin-conductance, thus the nontrivial topol-
ogy of a QSHI [37]. Specifically, (C↑ − C↓) �= 0 occurs when
M < 2 [28,30], not surprisingly in view of the avoided band
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crossings. We emphasize that a robust topological invariant
can be defined provided spin U (1) symmetry is preserved.

So far, we have discussed the main properties of the nonin-
teracting Hamiltonian Eq. (2). However, physically, electrons
unavoidably interact with each other. We shall therefore add
to the noninteracting Hamiltonian Eq. (2) a local Coulomb
interaction Uint, thus neglecting its long-range tail, which
includes, besides monopoles terms, also a dipole-dipole inter-
action Udip, which is here allowed by symmetry. Specifically,

Uint = U + Udip, (13)

where

U =
∑

i

(Us nis↑nis↓ + Up nip↑nip↓ + V nisnip) (14)

includes monopole terms, while the dipole-dipole interaction,
projected onto our basis of single-particle wave functions,
reads

Udip = J

2

∑
i

[(�†
i σ0 ⊗ τ1 �i )2 + (�†

i σ3 ⊗ τ2 �i )2] .

(15)

All coupling constants, Us, Up, V , and J , are positive, nisσ =
s†

iσ siσ , nipσ = p†
iσ piσ , and nis(p) = nis(p)↑ + nis(p)↓. Hereafter,

to reduce the number of independent parameters and thus
simplify the analysis, we shall take Us = Up = U . Moreover,
the numerical solution will be carried out with the further
simplification U = V .

We end mentioning that a calculation similar to the one we
are going to present has already been performed by Chen and
Shindou [26], though in the magnetized BHZ model, which
includes just two orbitals, |s ↑〉 and, different from our time-
reversal invariant case, see Eqs. (1), the J = 3/2, Jz = +1/2
orbital |p+1 ↓〉.

III. HARTREE-FOCK APPROXIMATION

The simplest way to include the effects of a not-too-strong
interaction is through the HF approximation, which amounts
to approximating the self-energy functional simply by the HF
diagrams. For sake of simplicity, we shall introduce the HF
approximation under the assumption of unbroken translational
symmetry, so the lattice total momentum is a good quantum
number. Whenever needed, we will mention what changes
when translational symmetry is broken.

Within the HF approximation, if

Ĝ0(iε, k)−1 = iε − Ĥ0(k) (16)

is the inverse of the noninteracting 4 × 4 Green’s function
matrix at momentum k and in Matsubara frequencies, iε, the
interacting Green’s function is

Ĝ(iε, k)−1 = Ĝ0(iε, k)−1 − �̂HF[Ĝ] , (17)

where, in the specific case under consideration, the self-
energy within the HF approximation is functional of the local

Green’s function,

�̂HF [Ĝ(Ri, Ri )] =
3∑

α,a=0

σα ⊗ τa 	0
αa 
αa(Ri ) , (18)

with


αa(Ri ) ≡ T
∑

ε

eiε 0+
Tr(Ĝ(iε, Ri, Ri ) σα ⊗ τa)

= 〈�†
i σα ⊗ τa �i 〉 ≡ 〈Oαa(Ri )〉 ∈ R , (19)

which become independent of the site coordinates Ri if
translational symmetry holds, i.e., 
αa(Ri ) → 
αa, ∀ Ri. The
Dyson Eq. (17), together with Eqs. (18) and (19), yield a
self-consistency condition that has to be solved. 	0

αa are the ir-
reducible scattering amplitudes in the HF approximation and,
through Eq. (13), their expressions can be readily derived:

	0
00 = U + 2V − 2J

4
, 	0

03 = U − 2V + 2J

4
,

	0
01 = − V − 4J

4
, 	0

02 = − V

4
,

	0
10 = 	0

20 = − U

4
, 	0

30 = − U + 2J

4
,

	0
11 = 	0

21 = − V + 2J

4
, 	0

31 = − V

4
,

	0
12 = 	0

22 = − V − 2J

4
, 	0

32 = − V − 4J

4
,

	0
13 = 	0

23 = − U

4
, 	0

33 = − U − 2J

4
. (20)

We note that the scattering amplitudes posses the same spin
U (1) symmetry of the noninteracting Hamiltonian, namely,
	0

1a = 	0
2a �= 	0

3a, a = 0, . . . , 3.
The expectation values 
00(Ri ) = 〈nis + nip〉 and


03(Ri ) = 〈nis − nip〉, which measure the local density and
orbital polarization, respectively, are finite already in absence
of interaction. In this case, the effects of the scattering
amplitudes 	0

00 and 	0
03 treated within HF are, respectively, to

shift the chemical potential, which we can discard since we
work at fixed density, and renormalise upward the value of
M, thus enlarging the stability region of the nontopological
phase.

On the contrary, all other expectation values 
αa(Ri ),
(α, a) �= (0, 0), (0, 3), break one or more symmetries of the
noninteracting Hamiltonian and therefore vanish identically
in the noninteracting case. They could become finite should
interaction be strong enough to lead to spontaneous symmetry
breaking. We expect this should primarily occur in those
channels whose scattering amplitudes are the most negative
ones, being 
αa(Ri ) real by definition. If V 	 U , as we shall
assume in the following numerical calculations, the domi-
nant symmetry-breaking channels are therefore those with
(α, a) = (3, 0), (1, 1), (2, 1). We emphasize that the dipolar
coupling constant J plays an important role in splitting the
large degeneracies of the scattering amplitudes in Eqs. (20)
that exist at J = 0.

Specifically,


30(Ri ) = 〈�†
i σ3 ⊗ τ0 �i 〉 =

∑
l=s,p

〈nil↑ − nil↓〉 (21)
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corresponds to a spontaneous spin polarization along the z
axis, which breaks time-reversal symmetry. We shall inves-
tigate two possible magnetic orders, 
30(Ri ) = 
30 eiQ·Ri ,
with Q = (0, 0) or Q = (π, π ), corresponding, respectively,
to ferromagnetism or antiferromagnetism. We point out that
the latter implies a breakdown of translational symmetry, in
which case the Green’s function is not diagonal anymore in k,
but depends on it as well as on k + Q, so it becomes an 8 × 8
matrix and Eq. (17) must be modified accordingly.

On the contrary,


11(Ri ) = 〈�†
i σ1 ⊗ τ1 �i 〉

=
∑

σ=↑,↓
〈s†

iσ pi−σ + p†
iσ si−σ 〉 ,


21(Ri ) = 〈�†
i σ2 ⊗ τ1 �i 〉

= −i
∑

σ=↑,↓
σ 〈s†

iσ pi−σ + p†
iσ si−σ 〉 , (22)

describe a spin-triplet exciton condensate polarized in the
plane. Since the insulator has a direct gap, excitons condense
at Q = 0, namely, 
α1(R) = 
α1, ∀ R, and α = 1, 2. More-
over, because 	0

11 = 	0
21, if we write


11 = 
 cos φ , 
21 = 
 sin φ , (23)

we expect to find a solution with the same amplitude 
 for
any value of φ, which reflects the spin U (1) symmetry. At any
given φ, such exciton condensation would break spin U (1),
inversion, and time-reversal symmetry.

The emergence of an exciton condensate is therefore ac-
companied by a spontaneous spin U (1) symmetry breaking.
As previously mentioned, such breakdown prevents the exis-
tence of the strong topological invariant that characterizes the
QSHI phase. Specifically, since the z component of the spin is
not a good quantum number anymore, the counterpropagating
edge states of opposite spin are allowed to couple each other,
which turns their crossing into an avoided one [30]. The
boundary thus becomes insulating, spoiling the topological
transport properties of the QSHI.

We shall study this phenomenon performing an HF calcu-
lation in a ribbon geometry with open boundary conditions
(OBCs) along x, but periodic ones along y. Consequently,
the noninteracting BHZ Hamiltonian loses translational in-
variance along the x direction, while keeping it along y, so
the Green’s function becomes a 4Nx × 4Nx matrix for each
momentum ky, with Nx the number of sites along x. A further
complication is that HF self-energy in Eq. (17) unavoidably
depends on the x coordinate of each site, which enlarges the
number of self-consistency equations to be fulfilled. However,
since those equations can be easily solved iteratively, we can
still numerically afford ribbon widths, i.e., values of Nx, which
provide physically sensible results with negligible size effects.

The OBC calculation gives access not only to the states
that may form at the boundaries, but also, in the event of
a spontaneous symmetry breaking, to the behavior of the
corresponding order parameter moving from the edges toward
the bulk interior. In practice, we shall investigate such circum-
stance only in the region of Hamiltonian parameters when
the dominant instability is toward the spin-triplet exciton
condensation.

IV. BETHE-SALPETER EQUATION

If we start from the QSHI, M < 2, and adiabatically switch
on the interaction Eq. (13), we expect that such a phase will
for a while survive because of the gap, until, for strong enough
interaction, it will eventually give up to a different phase.
We already mentioned that the first effect of interaction is to
renormalize upward M, thus pushing the topological insulator
toward the transition into the nontopological one. In addition,
a repulsive interaction can also bind across gap particle-hole
excitations, i.e., create excitons.

A direct way to reveal excitons is through the in-gap poles
of linear response functions. Within the HF approximation for
the self-energy functional, the linear response functions must
be calculated, solving the corresponding Bethe-Salpeter (BS)
equations using the HF Green’s functions together with the
irreducible scattering amplitudes in Eqs. (20), which are actu-
ally the functional derivatives of �̂HF[Ĝ] with respect to Ĝ.

If the interaction is indeed able to stabilize in-gap excitons,
their binding energy must increase with increasing interaction
strength. It is therefore very possible that the excitons touch
zero energy at a critical interaction strength, which would
signal an instability toward a different, possibly symmetry-
variant phase. Consistency of our approximation requires that
such instability should also appear in the unconstrained HF
calculation as a transition from the topological insulator to
another phase, especially if such transition were continuous.
We shall check that is indeed the case.

With our notations, see Eqs. (19) and (20), a generic
correlation function will be defined as

χαa;βb(τ, R) ≡ −〈 Tτ ( Oαa(τ, R) Oβb(0, 0))〉 , (24)

where Tτ is the time-ordering operator and the operators
Oαa(Ri ) = �†

i σα ⊗ τa�i are evolved in imaginary time τ .
Spin U (1) symmetry implies that the z-component Sz of
the total spin is conserved. It follows that the only nonzero
correlation functions χαa;βb have α and β either 0 and 3,
corresponding to Sz = 0, or 1 and 2, satisfying

χ1a;1b(τ, R) = χ2a;2b(τ, R) ,

χ1a;2b(τ, R) = −χ2a;1b(τ, R) , (25)

whose combinations χ1a;1b ± i χ1a;2b describe the independent
propagation of Sz = ±1 particle-hole excitations.

The Fourier transform χαa;βb(iω, q), in momentum and in
Matsubara frequencies, are obtained through the solution of a
set of BS equations,

χαa;βb(iω, q) = χ
(0)
αa;βb(iω, q) +

∑
γ c

χ (0)
αa;γ c(iω, q) 	0

γ c

×χγ c;βb(iω, q), (26)

where

χ
(0)
αa;βb(iω, q) = 1

N

∑
k

T
∑

ε

Tr(σα ⊗ τa

× Ĝ(iε + iω, k + q) σβ ⊗ τb Ĝ(iε, k)). (27)

In Eq. (27), N is the number of sites and Ĝ(iε, k) the HF
Green’s function matrices.
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We shall perform the above calculation at zero temperature
without allowing in the HF calculation any symmetry break-
ing. With this assumption, the HF Green’s function reads

Ĝ(iε, k) = (iε + t ′εk ) σ0 ⊗ τ0 + ĤHF(k)

(iε − εc(k))(iε − εv (k))
, (28)

where ĤHF(k), εc(k), and εv (k) are those in Eqs. (4) and
(5), with M in Eqs. (4) and (6) replaced by an effective MHF

determined through the self-consistency equation:

MHF = M − 2 	0
03

N

∑
k

MHF − εk

Ek
. (29)

For V 	 U , 	0
03 < 0 so, since the sum over k is positive,

MHF > M, as anticipated.
In short notations, and after analytic continuation on the

real axis from above, iω → ω + iη, with η > 0 infinitesimal,
the physical response functions are obtained through the set
of linear equations:

χ̂ (ω, q) = [1 − χ̂ (0)(ω, q) 	̂0]−1 χ̂ (0)(ω, q) . (30)

The excitons are in-gap solutions ωi(q), i.e.,

ωi(q) < ωmin(q) ≡ min
k

(εc(k + q) − εv (k)) , (31)

of the equation

det[1 − χ̂ (0)(ωi(q), q) 	̂0] = 0 , (32)

and have either a z component of the spin Sz = 0, if they
appear in the channels with α, β = 0, 3, or Sz = ±1, in the
channels with α, β = 1, 2. For ω 	 ωi(q), the response func-
tions can be expanded in Laurent series [26],

χ̂ (q, ω) =
∑

i

Ai(q)

ω − ωi(q) + iη
|ψi(q)〉 〈ψi(q)| + ..., (33)

where |ψi(q)〉 is the exciton wave function and Ai(q) its
spectral weight. This allows for computing the exciton Chern
number through the integral of the Berry curvature:

Ci = 1

2π

∫
d2q �i(q) ,

�i(q) = Im 〈∂xψi(q) | ∂yψi(q)〉 . (34)

The curvature is even under inversion and odd under time
reversal; if a system is invariant under both, the Chern number
thus vanishes by symmetry.

We observe that all the excitons are invariant under inver-
sion but, while the Sz = 0 ones are also invariant under time
reversal, the latter maps the Sz = +1 and Sz = −1 excitons
onto each other. Accordingly, only the Sz = ±1 excitons can
have nonzero Chern numbers, actually opposite for opposite
Sz, while the Sz = 0 excitons are constrained to have trivial
topology. We stress that such a result, being based only upon
symmetry considerations, remains valid for every inversion-
symmetric QSHI, and not only in the context of the interacting
BHZ model.

The exciton Chern number does not seem to be directly
related to any quantized observable. Nonetheless, as pointed
out in Refs. [26,38], a nonzero Ci ensures the presence of
chiral exciton modes localized at the edges of the sample,
which may have direct experimental consequences.

FIG. 2. Hartree-Fock phase diagram at λ = 0.3, t ′ = 0.5, Us =
Up = V = U , and J = U/16. The topological insulator is denoted
as QSHI, with the nontopological one as band insulator. For small
value of M, antiferromagnetism (AFM) is stabilized upon increasing
U . For larger values of M, U stabilizes a symmetry broken phase
with exciton condensate. The thick black line that separates the QSHI
from the band insulator, as well as that at M = 0 extending from U =
0 to the AFM phase, indicate a gapless metallic phase. The transition
between the exciton insulator and the QSHI or the band insulator is
continuous, while the transition into the AFM insulator is first order.

V. RESULTS

In the preceding sections, we have introduced a conserving
mean-field scheme to consistently calculate both the phase
diagram and the linear response functions. Now, we move
to present the numerical results obtained by that method at
zero temperature and with Hamiltonian parameters t ′ = 0.5,
λ = 0.3, V = U = Us = Up, and J = U/16, see Eqs. (4),
(13), (14), and (15). The value of J is estimated from 1s
and 2p hydrogenoic orbitals, which may provide a reasonable
estimate of the relative order of magnitude between the dipole
interaction and the monopole one.

A. Hartree-Fock phase diagram

The HF phase diagram is shown in Fig. 2. As we previ-
ously mentioned, the interaction effectively increases M, thus
pushing the transition from the topological insulator (QSHI)
to the nontopological one (band insulator) to lower values of
M the larger U . This is precisely what happens for M � 1.1:
U increases the effective MHF, see Eq. (29), until MHF = 2.
At this point, the gap closes and, for still larger U , the QSHI
turns into the trivial band insulator.

For very small M � 0.2, upon increasing U the QSHI gives
in to an antiferromagnetic insulator (AFM), characterized by
finite order parameters 
30(Ri ) = 
30 eiQ·Ri , see Eq. (21),
with Q = (π, π ), thus magnetized along z. HF predicts such
a transition to be of first order, in accordance to more accurate
dynamical mean-field theory calculations [39], which also
explains why we do not find any precursory softening of
Sz = 0 exciton at Q.
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FIG. 3. Order parameter 
 of Eqs. (23) (blue), lowest Sz = ±1
exciton energy at Q = 0 (green), and band gap (orange) along path
A to C in Fig. 2 (M = 1, U ∈ [1.25, 3.5]), i.e., from the topological
to the trivial insulator crossing the exciton insulator. We note that
the intermediate phase emerges exactly when the exciton becomes
massless, as well as that the band gap never vanishes.

More interesting is what happens for 0.2 � M � 1.1. Here,
increasing the interaction U drives a transition into a phase
characterized by the finite order parameter in Eqs. (23), thus
by a spontaneous symmetry breaking of spin U (1), time re-
versal, and inversion symmetry. The breaking of time reversal
allows the system to move from the QSHI to the band insulator
without any gap closing [30–32], see Fig. 3. We note that the
transition into the symmetry-variant phase happens to be con-
tinuous, at least within HF. As we mentioned, consistency of
our approach implies that this transition must be accompanied
by the softening of the excitons whose condensation signals
the birth of the symmetry breaking. These excitons are those
with Sz = ±1, and indeed get massless on both sides of the
transition, see Fig. 3.

The HF numerical results in the ribbon geometry with OBC
along x show that electron correlations get effectively en-
hanced near the boundaries [33–35], unsurprisingly because
of the reduced coordination [40]. Indeed, the order parameter
is rather large at the edges, and, moving away from them,
decays exponentially toward its bulk value, as expected in
an insulator. Remarkably, even when the bulk is in the QSHI
stability region, a finite symmetry-breaking order parameter
exponentially localized at the surface layer may still develop,
see Fig. 4 that refers to point B in the phase diagram of Fig. 2.
In the specific two-dimensional BHZ model that we study,
such phenomenon is an artifact of the HF approximation,
since the spin U (1) symmetry cannot be broken along the
one-dimensional edges. Nonetheless, the enhanced quantum
fluctuations, while preventing a genuine symmetry breaking,
should all the same substantially affect the physics at the
edges.

We end the discussion of the HF phase diagram by com-
paring our results with those obtained by Xue and MacDonald
[32]. These authors, too, apply the HF approximation to study
the BHZ model but in the continuum limit and in the presence
of a long-range Coulomb interaction. They also find a path
between the topological insulator and the trivial one that
crosses another insulating phase characterized by spontaneous
time-reversal symmetry breaking, which, they argue, further

FIG. 4. Left panel: Exciton condensation order parameter 
(x)
in Eqs. (23) as function of the x coordinate in a ribbon geometry
with Nx = 50 sites, calculated at point B in Fig. 2 (M = 1, U = 1.5).
Right panel: The ribbon band structure as function of the momen-
tum ky. We note that, even though the condensate is exponentially
localized at the edges of the system, still it has a strong effect on the
single-particle edge states: A gap opens between the two branches,
preventing topological spin transport.

breaks C4 symmetry, thus being nematic. The HF band struc-
ture that we find in the exciton condensate phase is instead
perfectly C4 invariant, which apparently might indicate that
our phase and that of Ref. [32] are different. In reality, we
believe the two phases are just the same phase. Indeed, while it
is true that the order parameter Eqs. (23) is not invariant under
the C4 symmetry of Eq. (11) that changes φ → φ − π/2, such
a shift can be reabsorbed by a −90◦ spin U (1) rotation. In
other words, the order parameter Eqs. (23) is invariant under
a magnetic C′

4 symmetry of the Hamiltonian, whose generator
of π/2 rotations is L3 − S3 times the rotation of k. Due to
such residual symmetry, the band structure does not show
nematicity, as well as the magnetoelectric tensor we shall
discuss later in Sec. V C.

B. Excitons and their topological properties

The mechanism that triggers exciton topology is similar to
the band inversion in the single-particle case: a topological
exciton is composed by particle-hole excitations that have
different parities under inversion in different regions of the
BZ. In our case study, four possible orbital channels τa, a =
0, . . . , 3, are allowed, each possessing a well-defined parity:
τ1 and τ2 odd, while τ0 and τ3 even. In the nontopological
insulator, the Sz = ±1 excitons have the same parity character
at all inversion-invariant k points, �, M, X , and Y , and thus
are topologically trivial. On the contrary, in the QSHI, the
highly mixed bands entail that all channels have finite weight
in the exciton, which may acquire nontrivial topology when its
symmetry under parity changes among the inversion-invariant
k points, thus entailing one or more avoided crossings.

In Fig. 5, we show the Chern number of the lowest energy
exciton branch with Sz = −1 calculated through Eq. (34) with
Us = Up = V = 1.5 as a function of M and J along the way
from the QSHI to the symmetry-broken phase where excitons
condense. We observe that the dipole-dipole interaction J
favors not only the instability of the Sz = ±1 excitons, but
also their nontrivial topology, signaled by a nonzero Chern
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FIG. 5. Chern number of the most bound exciton with Sz = −1 at
λ = 0.3, t ′ = 0.5, Us = Up = V = 1.5, as function of M and J close
to the transition from the QSHI to the symmetry-broken phase.

number. In Fig. 6, we show for the two points E and F
in Fig. 5 the Sz = −1 exciton bands, ωi(q), i = 1, 2 along
high-symmetry paths in the BZ, together with the continuum
of Sz = −1 particle-hole excitations, bounded from below
by ωmin(q), see Eq. (31). The upper branch is very lightly
bound and almost touches the continuum, unlike the lower
branch, whose binding energy is maximum at the � point
where, eventually, the condensation will take place. The blue
and red colors indicate, respectively, even (+) and odd (−)
parity character under inversion. We note that at point F in
Fig. 5, both exciton bands have a vanishing Chern number,
signaled by the same parity character at all inversion-invariant
k points. On the contrary, at point E, close to the transition,
the two exciton branches change parity character among the
high-symmetry points, and thus acquire finite and opposite
Chern numbers, C = ±2. For completeness, in Fig. 7 we
show at the same points E and F of Fig. 5 the dispersion
of the Sz = 0 excitons. Since they are invariant under time
reversal, we also indicate their symmetry, even (black dots)
or odd (yellow dots), which correspond, respectively, to the
spin singlet and spin triplet with Sz = 0 components of the
exciton.

Comparing Fig. 7 with 6, we note that the Sz = 0 excitons
are far less bound than the Sz = −1 ones. However, it is
conceivable that the inclusion of the long-range part of the
Coulomb interaction could increase the binding energy of the
Sz = 0 excitons, even though we believe that the Sz = ±1
excitons will still be lower in energy.

Moving to the sample surface at point E, we expect two
phenomena to occur. First, chiral exciton edge modes should
appear and connect the two branches with opposite Chern
numbers, in analogy with the single-particle case, and as thor-
oughly discussed by the authors of Ref. [26] in the magnetized
BHZ model. In addition, our previous results in the ribbon
geometry, showing that the exciton condensate appears on the
surface earlier than the bulk, suggest the existence of genuine

FIG. 6. Sz = −1 exciton dispersion along high-symmetry paths
in the Brillouin zone, calculated for the two points E, top panel, and
F, bottom panel, in Fig. 5. The green shaded regions are the particle-
hole continuum. The blue and red colors of the curves indicate even
(+) and odd (−) parity under inversion, while C is the corresponding
Chern number.

surface excitons, more bound than their bulk counterparts,
definitely in the Sz = ±1 channel, but possibly also in the
Sz = 0 one.

Both the chiral exciton edge modes as well as the sur-
face excitons may potentially have important effects on the
physical behavior at the boundaries. First, since the most
bound ones correspond to coherent Sz = ±1 particle-hole
excitations, they may provide efficient decay channels for
the single-particle edge modes, which are counterpropagating
waves with opposite Sz = ±1/2. Experimental evidence of
such phenomenon in the purported topological Kondo insu-
lator SmB6 has indeed been observed [5,23] and previously
attributed to scattering off bulk excitons [22]. This is very
possible, but should be much less efficient than the scattering
off surface exciton modes, which we propose as an alternative
explanation. Furthermore, the presence of odd-parity excitons
localized at the surface might have direct consequences on the
surface optical activity, which could be worth investigating.

C. Exciton condensate and magnetoelectricity

Since the order parameter in the phase with exciton con-
densation breaks spin U (1) symmetry, inversion I, and time
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FIG. 7. Same as Fig. 6 but for the Sz = 0 excitons. Black and
yellow dots indicate that the excitons are, respectively, even and odd
under time reversal.

reversal T , but not T × I, it is eligible to display magneto-
electric effects, which can be experimentally detected.

The free energy density expanded up to second order in the
external electric and magnetic fields, both assumed constant
in space and time, can be written as

F (E, B) = F0 − 1
2 E · χ̂e E − 1

2 B · χ̂ B − E · α̂ B, (35)

where χ̂e, χ̂ , and α̂ are the electric polarisability, magnetic
susceptibility, and magnetoelectric tensors, respectively. The
magnetization, M, and polarization, P, are conjugate variables
of the fields, namely,

M = −∂F

∂B
= χ̂ B + α̂ E,

P = −∂F

∂E
= χ̂e E + α̂ B. (36)

We observe that, since E and B have opposite properties under
inversion and time reversal, a nonzero α̂ is allowed only when
both symmetries are broken, but not their product.

Since the exciton condensate Eqs. (23) is spin-polarized in
the x−y plane, with azimuthal angle φ, and involves dipole
excitations s ↔ p±1, see Eqs. (1), we restrict our analysis to
fields E and B that have only x and y components, which al-
lows us to discard the electromagnetic coupling to the electron
charge current. Consequently, the magnetoelectric tensor α̂

of our interest will be a 2 × 2 matrix with components αi j ,
i, j = x, y.

FIG. 8. Components of the magnetoelectric tensor α̂ calculated
at point D in Fig. 2 (M = 0.5, U = 2). The data fit perfectly with the
expression in Eq. (41).

In the exciton condensed phase, which is insulating, the
coupling to the planar electric field is via the polarization
density, namely, in proper units,

δHE = −
∑

i

�†
i (Ex d̂x + Ey d̂y) �i , (37)

with dipole operators

d̂x = σ0 ⊗ τ1 , d̂y = σ3 ⊗ τ2 . (38)

Moreover, as the orbitals |s σ 〉 have physical total momentum
Jz = Lz + Sz = ±1/2, while |pσ 〉 have Jz = ±3/2, the in-
plane magnetic field only couples to the magnetic moment of
the s orbitals. Specifically,

δHB = −
∑

i

�†
i (Bx m̂x + By m̂y) �i , (39)

where

m̂x = σ1 ⊗ τ0 + τ3

2
, m̂y = σ2 ⊗ τ0 + τ3

2
. (40)

Since we are interested in the effects of the external fields
once the symmetry has been broken, we performed a non-
self-consistent calculation with the HF self-energy calcu-
lated at E = B = 0. The finite magnetoelectric effect in the
presence of the exciton condensate is indeed confirmed, see
Fig. 8 where we show the components of α̂ as function of
the azimuthal angle φ in Eqs. (23), and which we find to
behave as

α̂ = α0

(− cos φ − sin φ

− sin φ cos φ

)
, (41)

where α0 is proportional to the amplitude 
 of the order pa-
rameter, see Eqs. (23), and thus vanishes when the symmetry
is restored.

We remark that the magnetoelectric tensor Eq. (41) has the
form predicted for the magnetic point group 4′ [41], thus not
showing signals of the nematic order proposed in Ref. [32], as
we earlier discussed in Sec. V A.

VI. CONCLUSIONS

In this paper, we have studied within a conserving mean-
field scheme the role of a local electron repulsion in the
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prototype BHZ model of a QSHI [28], whose symmetries
allow, besides the conventional monopole components of
Coulomb interaction, also a dipolar one, which we find to play
a rather important role.

In the absence of interaction, the BHZ model displays, as
a function of a mass parameter M > 0, two insulating phases,
one topological at M < Mc, and another nontopological above
Mc, separated by a metal point with Dirac-like dispersion at
M = Mc. The primary effect of Coulomb interaction, namely,
the level repulsion between occupied and unoccupied states,
pushes the critical Mc to lower values, thus enlarging the
stability region of the nontopological insulator. Besides that,
and for intermediate values of M, our mean-field results
predict that interaction makes a new insulating phase to in-
trude between the topological and nontopological insulators,
uncovering a path connecting the latter two that does not cross
any metal point. In this phase, inversion symmetry and time
reversal are spontaneously broken, though their product is
not, implying the existence of magnetoelectric effects. The
approach to this phase from both topological and nontopolog-
ical sides is signaled by the softening of two exciton branches,
related to each other by time reversal and possessing, for
M � 1 with the parameters of Fig. 2, finite and opposite Chern
numbers. This phase can therefore be legitimately regarded as
a condensate of topological excitons.

Since, starting from the QSHI, the softening of those
excitons and their eventual condensation occurs upon in-
creasing the interaction, it is rather natural to expect those
phenomena to be enhanced at the surface layers. Indeed,
the mean-field approach in a ribbon geometry predicts the
surface instability to precede the bulk one. Even though a
genuine exciton condensation at the surface layer might be
prevented by quantum and thermal fluctuations, still it would
sensibly affect the physics at the surface. The simplest con-
sequence we may envisage is that the soft surface excitons
would provide an efficient decay channel for the chiral single-
particle edge modes, as indeed observed in the supposedly

three-dimensional topological Kondo insulator SmB6 [5,23].
In addition, we cannot exclude important consequences on the
transport properties and optical activity at the surface.

We believe that going beyond the approximations assumed
throughout this paper should not significantly alter our main
results. Random phase approximation plus exchange allows
accessing in a simple way collective excitations, though it ig-
nores their mutual interaction. We expect that the latter would
surely affect the precise location of the transition points, but
not wash out the exciton condensation.

Inclusion of the neglected long-range tail of Coulomb in-
teraction would introduce two terms: the standard monopole-
monopole charge repulsion, proportional to 1/r, and a dipole-
dipole interaction decaying as 1/r3. The former is expected
to increase the exciton binding energy, though without dis-
tinguishing between spin-singlet and -triplet channels. There-
fore, our conclusion that the Sz = ±1 excitons soften earlier
than the Sz = 0 ones should remain even in presence of the
1/r tail of Coulomb interaction. The dipole-dipole interaction
might instead favor an inhomogeneous exciton condensation.
However, we suspect that the 1/r3 decay in two dimensions
is not sufficient to stablize domains. To conclude, we believe
that our results, though obtained by a mean-field calculation
and for a specific model topological insulator, catch sight of
still not fully explored effects of electron-electron interaction
in topological insulators, which might be worth investigating
experimentally, as well as theoretically in other models and,
eventually, by means of more reliable tools [42,43].
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