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Landau-Fermi liquids without quasiparticles

Michele Fabrizio1

1International School for Advanced Studies (SISSA), Via Bonomea 265, I-34136 Trieste, Italy

Landau-Fermi liquid theory is conventionally believed to hold whenever the interacting single-
particle density of states develops a δ-like component at the Fermi surface, which is associated with
quasiparticles. Here we show that a microscopic justification can be actually achieved under more
general circumstances, even in case coherent quasiparticles are totally missing and the interacting
single-particle density of states vanishes at the chemical potential as consequence of a pole singularity
in the self-energy.

I. INTRODUCTION

Landau’s Fermi liquid theory [1, 2] is a cornerstone of
modern quantum many body physics, and represents by
now a chief paradigm for interacting Fermi liquids at low
temperatures, even strongly interacting ones as 3He [3]
and heavy fermions [4].
Its microscopic justification relies on the hypothesis [5, 6]
that the interacting single particle density of states
(DOS), A(ε,k), for energy ε → 0 and momentum ap-
proaching the Fermi surface, k → kF , defined through
the Luttinger theorem [7, 8], becomes a δ-function

A(ε→ 0,k→ kF ) ' zk δ
(
ε− ε∗(k)

)
, (1)

where the weight zk < 1 is the quasiparticle residue,
which measures how much of a quasiparticle is contained
in the physical single-particle excitation, and ε∗(k) the
quasiparticle dispersion that vanishes at k = kF . The
validity of Eq. (1) can be verified order by order in
perturbation theory, as we shall later discuss.

The Landau-Fermi liquid theory for a bulk of interact-
ing fermions was phenomenologically extended by Noz-
ières [9] to describe the Kondo regime of a quantum im-
purity model, what is commonly refereed to as a local
Landau-Fermi liquid, and later justified microscopically,
see, e.g., Ref. [10]. However, such generalisation to quan-
tum impurities poses a puzzle that is the actual moti-
vation of the present work, and which we now discuss
through a specific example.
Let us consider the model of two Anderson impurities,
each hybridised with its own bath, and coupled to each
other by an antiferromagnetic exchange J [11–13]. This
model has a quantum critical point at J = J∗ [14–16]
that separates the phase at J < J∗, where each impurity
is Kondo screened by its bath, from the phase at J > J∗,
where the two impurities lock by means of J into a spin-
singlet state, no more available to Kondo screening. Both
phases at J < J∗ and J > J∗ are local Fermi-liquids in
Nozières’ sense. However, the Fermi liquid behaviour at
J > J∗ emerges from a state characterised by the im-
purity DOS that vanishes quadratically approaching the
chemical potential, A(ε) ∼ ε2, i.e., without displaying
the peculiar Abrikosov-Suhl resonance, which reflects a
diverging impurity self-energy, Σ(ε) ∼ 1/ε [12, 13]. De-
spite such singular behaviour, apparently at odds with a

Fermi liquid, one can still justify the latter microscopi-
cally [12], which raises the question whether it is possible
to follow backward the path from bulk to local Fermi liq-
uids with singular self-energies. Should that be indeed
the case, it would imply that a microscopic justification
of the Landau-Fermi liquid theory can be achieved with
a less stringent requirement than Eq. (1).
This is actually the main outcome of the present work,
which is organised as follows. In Sect. II we briefly
recall the microscopic justification of Eq. (1), hence of
the conventional derivation of Landau-Fermi liquid the-
ory, which we rederive in Sect. III under a more gen-
eral hypothesis, which includes Eq. (1) as a particular
case. The results are exploited to obtain the Landau-
Fermi liquid expressions of the dynamical susceptibilities
in Sect. IV, which allows deriving a kinetic equation for
the Wigner quasi-probability distribution of ‘quasipar-
ticles’ in Sect. V. Section VI is devoted to concluding
remarks.

II. CONVENTIONAL FERMI LIQUID
HYPOTHESIS

Let us recall the general expression of the Green’s func-
tion in Matsubara frequencies iε = i π (2n + 1)T , with
n ∈ Z and T the temperature,

G(iε,k) =
1

iε− εk − Σ(iε,k)
, (2)

where εk is the non-interacting dispersion relation mea-
sured relative to the chemical potential µ, and Σ(iε,k)
the self-energy. Its continuation in the complex plane,
G(ζ,k) with ζ ∈ C, is analytic everywhere but on the
real axis, where it generally develops a branch cut

G(ε+ iη,k)−G(ε− iη,k) ≡ G+(ε,k)−G−(ε,k)

= −2i ImG+(ε,k) ≡ −2π iA(ε,k) , (3)

with ε ∈ R, η an infinitesimal positive real number, and
A(ε,k) ≥ 0 the single particle DOS at momentum k,
satisfying

ˆ
dεA(ε,k) = 1 . (4)
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G+(ε,k) and G−(ε,k) in (3) are, respectively, the re-
tarded and advanced Green’s functions. It is thus possi-
ble to write

G(ζ,k) =

ˆ
dω

A(ω,k)

ζ − ω
. (5)

Similarly, the self-energy in the complex frequency plane,
Σ(ζ,k), is also analytic but on the real axis. As before,
for ε ∈ R, and η > 0 infinitesimal,

Σ(ε±iη,k) ≡ Σ±(ε,k) = ReΣ+(ε,k)±i ImΣ+(ε,k) , (6)

define retarded, Σ+(ε,k), and advanced, Σ−(ε,k), com-
ponents of the self-energy. It follows that

A(ε,k) =
1

π

−ImΣ+(ε,k)(
ε− εk − ReΣ+(ε,k)

)2
+ ImΣ+(ε,k)2

,

(7)
thus ImΣ+(ε,k) ≤ 0.
In a conventional Fermi liquid, the Fermi surface (FS),
k = kF , is defined through [8]

εkF
+ ReΣ+(0,kF ) = 0 , (8)

while the quasiparticle dispersion by

ε∗(k)− εk − ReΣ+

(
ε∗(k),k

)
= 0 , (9)

so that, by definition, ε∗(kF ) = 0. The important obser-
vation is that, order by order in perturbation theory, the
following result holds for k close to the FS [17]

−ImΣ+(ε→ 0,k) = γ(k) ε2 + O(ε4) . (10)

It follows that, expanding (7) for ε ' ε∗(k), one finds

A(ε,k) '
Z∗
(
ε∗(k),k

)
π

γ∗(k) ε∗(k)2(
ε− ε∗(k)

)2
+ γ∗(k)2 ε∗(k)4

−−−→
k→kF

Z∗
(
ε∗(k),k

)
δ
(
ε− ε∗(k)

)
,

(11)

thus Eq. (1) with zk = Z∗
(
ε∗(k),k

)
, where the formal

definition of the quasiparticle residue reads

Z∗(ε,k) ≡

(
1− ∂ReΣ+(ε,k)

∂ε

)−1
, (12)

and γ∗(k) = Z∗
(
ε∗(k),k

)
γ(k). In conclusion, one can

safely write for k ∼ kF

A(ε,k) ' zk δ
(
ε− ε∗(k)

)
+Ainc(ε,k) , (13)

with Ainc(ε,k) a smooth function that carries the rest
1 − zk of the spectral weight, see Eq. (4), and describes

‘incoherent’ excitations as opposed to the ‘coherent’ δ-
function component. It follows, through (5), that

G(iε,k) '
Z∗
(
ε∗(k),k

)
iε− ε∗(k)

+

ˆ
dω
Ainc(ω,k)

iε− ω
≡ Gcoh(iε,k) +Ginc(iε,k) .

(14)

We observe that Gcoh = Z∗G0, where G0(iε,k) is the
Green’s function of non-interacting electrons, the quasi-
particles, with dispersion ε∗(k). Equation (13) coincides
with the equation (2.15) of Ref. [5]. Starting from that,
we could retrace all steps of that work, as well as of the
second of the series, Ref. [6], and thus recover microscop-
ically the Landau-Fermi liquid theory.
However, the fact that each term in perturbation theory
satisfies Eq. (10) does not guarantees that the sum of the
perturbation series shares the same property.

III. FERMI LIQUID THEORY REVISED

Hereafter, we will reconsider the microscopic jus-
tification of Landau-Fermi liquid theory relaxing the
hypothesis (13), or, equivalently, (10). For that, we
shall have in mind a system of electrons, coupled to
each other by a short range interaction [18], with
annihilation operators cak, where a includes all quantum
numbers but momentum. The Green’s function and the
self-energy will be in general matrices in the a-space, or,
if such basis is properly chosen, diagonal in a. In what
follows, whenever not necessary, we discard the label
a. Moreover, for further simplification, we shall not
take into account the possible emergence of non trivial
topological properties [19, 20], which has constituted
one of the most notable extensions of Fermi liquids in
recent years.

We shall here assume that the electron system has gapless
single particle excitations, namely it is a normal metal,
and, in place of (10), that the following condition is sat-
isfied:

lim
ε→0

Z∗(ε,k)
(
− ImΣ+(ε,k)

)
≡ lim
ε→0

γ∗(ε,k)

= lim
ε→0

γ∗(k) ε2 → 0 ,
(15)

with Z∗(ε,k) defined by Eq. (12). Equation (15) is far
less stringent than (10). It is evidently satisfied if the
conventional Fermi liquid hypothesis (10) holds, but also
in the extreme case of Σ+(ε,k) singular at ε = 0, and
yet leading to a continuous DOS without a true gap. We
can consider, for instance, the bulk counterpart of the
impurity self-energy in the two-impurity model at J >
J∗ [12, 13] mentioned in the Introduction. Specifically,
we can assume

Σ+(ε,k) ' ∆(k)2

ε+ iη
− iΓ(k) , (16)
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with ∆(k) ∈ R and Γ(k) ≥ 0. In such case,

ReΣ+(ε,k) ' ∆(k)2

ε
,

ImΣ+(ε,k) ' −π∆(k)2 δ(ε)− Γ(k) ,

(17)

thus the quasiparticle residue

Z∗(ε,k) ' ε2

∆(k)2 + ε2
−→
ε→0

0 , (18)

vanishes at the chemical potential, so does the particle
DOS

A(ε,k) ' 1

π
ε2

Γ(k)

∆(k)4
−→
ε→0

0 . (19)

Nonetheless, Eq. (15) is satisfied with γ∗(k) =
Γ(k)/∆(k)2.
We intentionally did not specify any precise k-
dependence of Σ+(ε,k) in (16), so to maintain the dis-
cussion as general as possible. However, we just men-
tion that the pseudo-gapped behaviour of the particle
DOS (19) could, e.g., represent an ‘unsuccessful super-
conductor’, or, more generally, an ‘unsuccessful insula-
tor’, where the abundance of low energy excitations re-
sponsible of the finite Γ(k) prevents the opening of a true
gap ∼ 2∆(k).

For later use, we define the ‘quasiparticle’ DOS through

Aqp(ε,k) ≡ A(ε,k)

Z∗(ε,k)
, (20)

and the ‘quasiparticle’ group velocity as

v∗(ε,k) ≡ Z∗(ε,k)

(
∂εk
∂k

+
∂ReΣ+(ε,k)

∂k

)
, (21)

where, differently from the standard definition, the ε-
dependence of the quasiparticle residue Z∗(ε,k) is re-
tained. We note that, when the conventional Fermi liq-
uid hypothesis (13) holds, then, for small ε, Aqp(ε,k) '
δ
(
ε − ε∗(k)

)
, thus describing a genuine coherent quasi-

particle, and the on-shell group velocity v∗
(
ε∗(k),k

)
=

∂ε∗(k)/∂k. However, even in the singular case of
Eq. (16), the ‘quasiparticle’ DOS of Eq. (20) is finite at
the chemical potential ε = 0, though not δ-like, despite
the particle DOS (19) vanishes.

A. Preliminaries

Given a generic density operator, with Fourier trans-
form

ρQ(q) =
∑
k

c†k Λ
(0)
Q (k,k + q) ck+q = ρQ(−q)† , (22)

where Λ
(0)
Q is the bare vertex associated with that density,

the corresponding density-density response function in
the Matsubara formalism reads, see Appendix B,

χQ(iω,q) =
T

V

∑
kε

G(iε+ iω,k + q) Λ
(0)
Q (k,k + q)†G(iε,k) ΛQ(iε+ iω k + q, iεk; iω q) , (23)

where V is the number of sites, T the temperature, and
ΛQ the fully interacting density vertex. Henceforth, we
shall be interested just in the long wavelength, low fre-
quency and low temperature value of Eq. (23). For that,
we start analysing the behaviour of the kernel

R(iε+ iω,k+q; iε,k) = G(iε+ iω,k+q)G(iε,k) , (24)

at small ω > 0 and q = |q|, in the sense of a distribution
in ε, and thus consider the convolution [5]

Ck(iω,q) = T
∑
ε

R(iε+ iω,k + q; iε,k)F (iε) , (25)

with a generic function F (iε) that decays sufficiently fast
for |ε| → ∞.
In the conventional case, each Green’s function can be

written as in Eq. (14), thus the kernel R = GG is simply

R = GcohGcoh + · · · ≡ GcohGcoh +Rinc

≡ ∆ +Rinc = Z2
∗ G0G0 +Rinc ,

(26)

where, we recall, G0 is the Green’s function of non-
interacting particles with dispersion ε∗(k). It follows that
the expression of ∆ in the sense of a distribution can be
readily obtained through the well known expression of
the Lindhard function,

G0G0 =
δε,0
T

f
(
ε∗(k)

)
− f

(
ε∗(k + q)

)
iω − ε∗(k + q) + ε∗(k)

, (27)

where f(ε) is the Fermi distribution function (compare,
e.g., with Eq. (2.23) in Ref. [5]). The main property
of Z2

∗ G0G0, which is actually at the hearth of Landau-
Fermi liquid theory, is the non-analytic behaviour in the



4

origin ω = q = 0, unlike Rinc that is assumed to be ana-
lytic.
If we replace condition (10) with (15), we cannot any-
more use Eq. (14), and thus Eq. (27), to determine the
analytic properties of the kernel R. However, for that
purpose, we can instead follow the derivation of the local
Landau-Fermi liquid theory in quantum impurity mod-
els [10, 12]. We thus consider a contour in the complex
frequency plane, iε→ ζ ∈ C, which runs clockwise at in-
finity. Assuming that the integrand vanishes faster than

1/ζ at infinity,

0 =

˛
dζ

2πi
f(ζ)R(ζ + iω,k + q; ζ,k)F (ζ)

= Ck(iω,q) + . . . ,

where the dots take into account the singularities of R
and F . In particular, R has generically two horizontal
branch cuts, the real axis ζ = ε and the axis ζ = −iω+ ε,
with ε ∈ R, which merge into a single one, just the real
axis, when ω = 0. The contribution of the horizontal
strip −ω < Imζ < 0 may not be analytic at ω = q = 0:
it trivially vanishes if ω → 0 first than q → 0, so called
q-limit, but it may not in the opposite ω-limit. On the
contrary, the contributions from Im ζ ≥ 0 and Im ζ ≤ −ω
do not have any apparent reason of non analyticity. The
strip contribution reads

Csingk (iω,q) = T

−ε0∑
ε=ε0−ω

G(iε+ iω,k + q)G(iε,k)F (iε)

= −
ˆ

dε

2πi
f(ε)

[
G+(ε,k)G−(ε− iω,k)F (ε− iω)−G+(ε+ iω,k)G−(ε,k)F (ε)

]
,

(28)

where ε0 = π T is the lowest fermionic Matsubara fre- quency, which, after the analytic continuation iω →
ω + iη, with η > 0 infinitesimal, becomes

Csingk (ω,q) = −
ˆ

dε

2πi
f(ε)

[
G+(ε,k)G−(ε− ω,k)F (ε− ω)−G+(ε+ ω,k)G−(ε,k)F (ε)

]
=

ˆ
dε

2πi

(
f(ε)F (ε)− f(ε+ ω)F (ε+ ω)

)
G+(ε+ ω,k)G−(ε,k)

'
ˆ

dε

2πi

(
− ∂f(ε)

∂ε

)
ω F (ε) G+(ε+ ω,k)G−(ε,k)

=

ˆ
dε

2πi

(
− ∂f(ε)

∂ε

)
F (ε)

(
G−(ε,k)−G+(ε+ ω,k + q)

)
ω

ω + iη −
(
εk+q − εk

)
−
(

Σ+(ε+ ω,k + q)− Σ−(ε,k)
) .

(29)

For small ω and q, recalling that ReΣ− = ReΣ+ while ImΣ− = −ImΣ+, and through equations (12), (15) and
(21), we can write

ω

ω + iη −
(
εk+q − εk

)
−
(

Σ+(ε+ ω,k + q)− Σ−(ε,k)
) ' Z∗(ε,k)

ω

ω + iη − v∗(ε,k) · q + 2i γ∗(ε,k)
. (30)

Since the derivative of the Fermi distribution function
in (29) implies that ε ∼ T ∼ 0, if we assume Eq. (15)

valid we can safely neglect γ∗(ε,k) in (30) if either ω or
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v∗(T,k)·q are much greater than γ∗(k)T 2. Coming back
to (29), and noting that

G−(ε,k)−G+(ε+ ω,k + q) ' 2π iA(ε,k) +O(q, ω) ,

we can finally write

Csingk (ω,q) =
1

V

∑
k

ˆ
dε ∆̃(ε+ω,k+q; ε,k) F (ε) , (31)

having defined the distribution kernel

∆̃(ε+ ω,k + q; ε,k) = − ∂f(ε)

∂ε
Aqp(ε,k)Z∗(ε,k)2

ω

ω − v∗(ε,k) · q
, (32)

which is indeed non analytic at ω = q = 0, where
Aqp(ε,k) is defined by (20). In other words, the non
analytic behaviour persists even if R in Eq. (25) cannot
be written as in (26) in terms of non-interacting Green’s
functions, provided Eq. (15) holds.

Going back to Eq. (25), we end up with the following
expression

R ≡ ∆̃ + R̃inc , (33)

where R̃inc is analytic at the origin, and all non-
analyticities are hidden in ∆̃. Specifically,

lim
ω→0

lim
q→0

∆̃(iε+ iω,k + q; iε,k) ≡ ∆̃ω(iε,k) 6= 0 ,

lim
q→0

lim
ω→0

∆̃(iε+ iω,k + q; iε,k) ≡ ∆̃q(iε,k) = 0 .
(34)

We further define

∆(iε+ iω,k + q; iε,k) ≡ ∆̃(iε+ iω,k + q; iε,k)

− ∆̃ω(iε,k) ,
(35)

whose expression on the real axis is

∆(ε+ ω,k + q; ε,k) = − ∂f(ε)

∂ε
Aqp(ε,k)Z∗(ε,k)2

v∗(ε,k) · q
ω − v∗(ε,k) · q

, (36)

where now

lim
ω→0

lim
q→0

∆(iε+ iω,k + q; iε,k) ≡ ∆ω(iε,k) = 0 ,

lim
q→0

lim
ω→0

∆(iε+ iω,k + q; iε,k) ≡ ∆q(iε,k)

= −∆̃ω(iε,k) 6= 0 ,

(37)

and, consequently,

R ≡ ∆ +Rinc , Rinc = R̃inc + ∆̃ω . (38)

The quantities ∆ and ∆̃ coincide, respectively, with those
in equations (2.23) and (2.33) of Ref. [5]. Therefore, from
this point on, we can simply follows all steps of Ref. [5],
which we shall not repeat here, but just sketch in Ap-
pendix B, and jump directly to the final results in the
following sections. [21]

IV. DYNAMIC SUSCEPTIBILITIES

We now assume that the interacting Hamiltonian ad-
mits a conserved quantity Q. It follows that, in the basis
in which the corresponding single-particle operator is di-
agonal, i.e.,

Q =

ˆ
dr ρQ(r) ≡

∑
a

∑
k

qa(k) c†ka cka , (39)

with ρQ(r) the density operator corresponding to Q, the
Green’s function is diagonal, too. For simplicity, we shall
assume that the Green’s function is actually indepen-
dent of a. A smoothly varying external field hQ(t, r),
with Fourier component hQ(ω,q), is coupled to ρQ(r),
adding to the Hamiltonian the time-dependent pertur-
bation δH(t) =

´
drhQ(t, r) ρQ(r). At linear order in

hQ, the variation of the expectation value of ρQ(q) is

δ〈 ρQ(q) 〉 = χQ(ω,q)hQ(ω,q) , (40)

where the linear response function Eq. (23) is readily ob-
tained [5], see Appendix B for the explicit derivation, and
reads, after analytic continuation iω → ω + iη,

χQ(ω,q) = − 1

V

∑
k

ˆ
dε

(
− ∂f(ε)

∂ε

)
Aqp(ε,k)

v∗(ε,k) · q
ω − v∗(ε,k) · q + iη

− 1

V 2

∑
kk′

ˆ
dε dε′

(
− ∂f(ε)

∂ε

)(
− ∂f(ε′)

∂ε′

)
Aqp(ε,k)

v∗(ε,k) · q
ω − v∗(ε,k) · q + iη∑

aa′

qa(k) qa′(k
′)Aa,a′;a′,a(εk, ε′ k′;ω q)Aqp(ε′,k′)

v∗(ε
′,k′) · q

ω − v∗(ε
′,k′) · q + iη

,

(41)

assuming
∑
a qa(k)2 = 1 the normalisation of the con-

served quantity, and having defined the ‘quasiparticle’
scattering amplitude

Aa,b;b,a(εk, ε′ p;ω q) = Z∗(ε,k)Z∗(ε
′,p)

Γa,b;b,a(ε+ iω k + q, ε′ p; ε′ + iω p + q, εk) ,
(42)
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as opposed to the particle one Γ, with q and ω limits,
respectively, Aqa,b;b,a(εk, ε′ p) and Aωa,b;b,a(εk, ε′ p).
The thermodynamic susceptibility κQ is related to the
q-limit of the dynamical one χQ, specifically,

κQ = χqQ =
1

V

∑
k

ˆ
dε

(
− ∂f(ε)

∂ε

)
Aqp(ε,k)

− 1

V 2

∑
kp

ˆ
dε dε′

(
− ∂f(ε)

∂ε

)(
− ∂f(ε′)

∂ε′

)
Aqp(ε,k) Aqp(ε′,p)∑

ab

qa(k) qb(p)Aqa,b;b,a(εk, ε′ p) .

Since the local quasiparticle DOS is, by definition,

Aqp(ε) ≡ 1

V

∑
k

Aqp(ε,k) , (43)

upon defining the Landau AQ parameter in channel Q as

AQ Aqp(0) ≡ 1

V 2

∑
kp

∑
ab

qa(k) qb(p)

ˆ
dε dε′

(
− ∂f(ε)

∂ε

)(
− ∂f(ε′)

∂ε′

)
Aqp(ε,k) Aqp(ε′,p) Aqa,b;b,a(εk, ε′ p) .

(44)

we finally obtain, at zero temperature,

κQ = Aqp(0)
(

1−AQ
)
, (45)

which is the standard Landau-Fermi liquid expression,
but derived under the more general assumption (15). In
fact, the expression (45) holds also in the case Eq. (16)
of a singular self-energy. yielding vanishing quasiparticle
residue and particle DOS at the chemical potential.
Nonetheless, the ‘quasiparticle’ DOS is finite so as the
zero temperature thermodynamic susceptibility. We
also remark that a finite Landau AQ parameter in spite
of a vanishing quasiparticle residue implies, through
Eq. (42), that Γ is singular at the chemical potential.
We emphasise that the rather simple expression (41)
of the linear response functions, which looks like that
of weakly interacting (quasi)particles, holds only for
density operators that refer to conserved quantities,
for which one can use the Ward-Takahashi identity.
Otherwise, the response functions contain additional
observable-dependent parameters, see Eq. (3.9) in
Ref. [5] and Eq. (B13) in Appendix B; specifically, an
additional constant that corresponds to the ω-limit of
the response function, vanishing for conserved quantities,

and the ω-limit of vertex corrections. The meaning
of such difference is that only for conserved quantities
we are guaranteed that the matrix element coupling
the external field to the density of physical particles
is the same as that one coupling to the density of
quasiparticles, while for generic observables this ought
not to be the case.

V. LANDAU-BOLTZMANN EQUATION

The expression (41) of the linear response functions
allows easily deriving a corresponding Boltzmann kinetic
equation, which we believe worth showing explicitly.
We first associate to the expression (36) of ∆ for real
frequencies the components of a matrix K̂(ω,q) in fre-
quency, momentum, and quantum number a space,
through

Kεka,ε′k′a′(ω,q) = δ(ε− ε′) δk,k′ δa,a′

∆(ε+ ω,k + q; ε,k) .
(46)

Next we formally write

δ〈ρQ(q)〉 = χQ(ω q)hQ(ω,q)

≡ 1

V

∑
ak

ˆ
dε qa(k) δnεka(ω,q) ,

(47)

where δnεka(ω,q) are the components of the vector
δn(ω,q), which, through Eq. (41), satisfies

δn = −K̂
[

1 + Â K̂
]
V , (48)

or, equivalently,[
1 + Â K̂

]−1
K̂−1 δn = −V , (49)

having defined Â the matrix with elements
Aεka,ε′k′a′(ω,q) = Aa,a′;a′,a(εk, ε′ k′;ω q), and V
the vector with components Vεka(ω,q) = qa(k)hQ(ω,q).
We next introduce the standard Landau’s f parameters
through [

1 + Â K̂
]−1
≡
[
1− f̂ K̂

]
, (50)

so that Eq. (49) becomes[
1− f̂ K̂

]
K̂−1 δn = K̂−1 δn− f̂ δn = −V . (51)

Multiplying both sides of Eq. (51) by
(
ω−v∗(ε,k) ·q

)
K̂

we finally obtain the equation
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0 =
(
ω − v∗(ε,k) · q

)
δnεka(ω,q)

+
∂f(ε)

∂ε
Aqp(ε,k) v∗(ε,k) · q

{
1

V

∑
k′a′

ˆ
dε′fεka,ε′k′a′ δnε′k′a′(ω,q)− qa(k)hQ(ω,q)

}

≡ ωδnεka(ω,q)− v∗(ε,k) · q δnεka(ω,q)− qa(k)
∂f(ε)

∂ε
Aqp(ε,k) v∗(ε,k) · q hQ(ω,q) ,

(52)

where we assumed that the dependence of f upon ω and q
is negligible when they are both small, and, by definition,

δn =
[

1− K̂q f̂
]
δn . (53)

It follows that the inverse Fourier transform δnεka(t, r)
satisfies

0 = δṅεka(t, r) + v∗(ε,k) ·∇δnεka(t, r) (54)

+qa(k)
∂f(ε)

∂ε
Aqp(ε,k)v∗(ε,k) ·∇hQ(t, r) ,

which can be interpreted as the standard Landau-
Boltzmann kinetic equation once we identify δnεka(t, r)
and δnεka(t, r), respectively, with the deviations from
global and local equilibrium, see chapter 1 in Ref. [22],
of the Wigner quasi probability distribution of quasipar-
ticles.
In addition, the interpretation in terms of a semiclassical
kinetic equation requires that the group velocity defined
in Eq. (21) is equivalent to

v∗(ε,k) ≡ ∂ ε∗(ε,k)

∂k
, (55)

where ε∗(ε,k) must be identified with the quasiparticle
energy, and that the derivative with respect to k of the
Wigner distribution at equilibrium must correspond to

∂n0εka
∂k

=
∂f(ε)

∂ε
Aqp(ε,k) v∗(ε,k) . (56)

We shall explicitly prove the last equality in the Ap-
pendix. Through Eqs. (55) and (56) we can therefore
rewrite Eq. (54) as

0 = δṅεka(t, r) +
∂ ε∗(ε,k)

∂k
·∇δnεka(t, r)

+ qa(k)
∂n0εka
∂k

·∇hQ(t, r) ,

(57)

which has now truly the form of the conventional Landau-
Boltzmann kinetic equation, and entails a Landau’s en-
ergy functional in absence of the external field

F
[
δn
]

=
∑
ka

ˆ
dr dε

{
ε∗(ε,k) δnεka(t, r)

+
1

2V

∑
k′a′

ˆ
dε′ faa′(εk, ε

′ k′) (58)

δnεka(t, r) δnε′k′a′(t, r)

}
.

We end remarking that for a conventional Fermi liquid,
where Aqp(ε,k) = δ

(
ε− ε∗(k)

)
, one can readily integrate

over ε both sides of Eq. (57) and recover the standard
Landau-Boltzmann kinetic equation for the integrated
δnka(t, r) =

´
dε δnεka(t, r). However, Eq. (57) remain

valid also when Aqp(ε,k) 6= δ
(
ε − ε∗(k)

)
, in which case

the dependence of the quasiparticle DOS and group ve-
locity v∗(ε,k) on the frequency ε, which may also be
rather non trivial, must be explicitly taken into account.

VI. CONCLUSIONS

We have shown that the Landau-Fermi liquid low-
temperature expressions of the dynamical susceptibilities
in the long wavelength limit and small frequency, as well
as the corresponding Boltzmann kinetic equation, can
be microscopically justified even if the interacting single-
particle Green’s function does not have a quasiparticle
pole near the chemical potential.
This result may not come as a surprise. For instance,
also one dimensional Luttinger liquids [23–26], despite
not fulfilling Eq. (1), have dynamical susceptibilities sim-
ilar to Fermi liquids in the long wavelength and low fre-
quency limit. Specifically, in Luttinger liquids such be-
haviour arises as a consequence of an emerging symme-
try that ensures, asymptotically, the independent con-
servation of electron densities at the two different Fermi
points, which could be a mere one dimensional feature,
or hide a more fundamental link between Luttinger and
Fermi liquids [27].
What is remarkable of our results is that a Fermi liq-
uid behaviour emerges even in the worst case of a self-
energy with a pole singularity at the chemical potential,
which might look the furthest possible from a conven-
tional Landau-Fermi liquid. We did not consider ex-
plicitly any model self-energy, but the extreme case of
Eq. (16), where the main assumption (15) is verified, and
thus a Landau-Fermi liquid description holds. However,
given the generality of that assumption, it is well pos-
sible that purported non-Fermi liquid properties some-
times observed in correlated materials might be actually
reconciled with the broader Fermi liquid scenario we have
here uncovered.
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Appendix A: Luttinger theorem and quasiparticle
equilibrium distribution

While previously we defined the energies εk relative to
the chemical potential µ, in this appendix we move back
to absolute units, so that the Green’s function

G(iε,k)→ 1

iε− εk + µ− Σ(iε,k)
, (A1)

depends on µ, as well as the self-energy does, though we
shall not indicate such explicit dependence.
According to the Luttinger theorem [8] the (conserved)
number of a-particles per site can be written as

ρa =
1

V

∑
k

ˆ
dε

π
f(ε)

∂δa(ε,k)

∂ε
, (A2)

where, dropping the label a whenever not needed,

δ(ε,k) = π + Im lnG+(ε,k)

= tan−1
−ImG+(ε,k)

−ReG+(ε,k)
, (A3)

is the many-body phase shift. The topological content
of Eq. (A2) has attracted considerable interest over the
years [28–32]. By definition, δ(ε,k) ∈ [0, π], and vanishes
at ε→ −∞, while reaches π at ε→∞, consistently with
each momentum state accommodating at most a single
electron species. We remark that δ(ε,k) is in general
not monotonous, and may jump back and forth between
0 and π. The derivative of Eq. (A2) with respect to µa
corresponds to the thermodynamic compressibility of the
species a, and reads

κa ≡
∂ρa
∂µa

=
1

V

∑
k

ˆ
dε

π
f(ε)

∂2δa(ε,k)

∂ε ∂µa
. (A4)

Thermodynamic stability requires κa ≥ 0. We may state
that the a electron species is metallic if κa > 0, while is
insulating if κa = 0. Note that at low temperatures the
integral involves energies within a small window of order
T around ε = 0. Let us discuss the behaviour of δ(ε,k)
at vanishing temperatures in different cases.

1. Systems with a single-particle gap

Suppose that the single-particle DOS, A(ε,k) =
−π ImG+(ε,k), vanishes for ε in a whole interval Xins(k),

∀k, which includes ε = 0 and is definitely much wider
than the temperature. By the Kramers-Krönig relations
it follows that −ReG+(ε,k) must cross zero with positive
slope for ε = εroot(k)−µ ∈ Xins(k). Correspondingly, the
phase shift for ε ∈ Xins(k) reads

δ(ε,k) = π θ
(
εroot(k)− µ− ε

)
. (A5)

We can envisage two different cases. If εroot(k) is not
pinned at the chemical potential, Eq. (A2) at zero tem-
perature simplifies into

ρ =
1

V

∑
k

θ
(
εroot(k)− µ

)
, (A6)

which implies that the total density corresponds to the
volume that contains all k such that εroot(k) > µ,
and thus enclosed by the Luttinger surface (LS) defined
through εroot(k) = µ [28, 30], or, equivalently,

ReG+(0,k) = 0 ∀k ∈ LS . (A7)

This is, e.g., the case of a BCS superconductor, where
εroot(k) = −ε−k + 2µ = −εk + 2µ, so that the LS is just
the non-interacting Fermi surface, and the compressibil-
ity (A4) is equal to the non-interacting one.
It may instead happen that εroot(k) is pinned at the
chemical potential, i.e., εroot(k) = µ, ∀k, so that δ(ε,k)
jumps from π to 0 right at ε = 0. In this case, Eq. (A2)
becomes, at zero temperature,

ρa =
1

V

∑
k

ˆ
dε

π
f(ε− µ)

∂δa(ε,k)

∂ε

= −f(0) +
1

V

∑
k

 
dε

π
f(ε− µ)

∂δa(ε,k)

∂ε

= −f(0) +
1

V

∑
k

δa(µ−,k)

π
=

1

2
,

(A8)

where
ffl
. . . is the Cauchy principal value of the integral,

which implies that the state a is half-filled. Moreover, the
compressibility (A4) vanishes, as exprected for an insu-
lator. Such circumstance in which εroot(k) = µ defines,
e.g., a Mott insulator, and entails a self energy with a
pole at ε = 0.

2. Systems with gapless single-particle excitations
satisfying Eq. (15)

Gapless single-particle excitations correspond to a
DOS A(ε,k) smooth and finite in a finite interval around
ε = 0 and for momenta k within regions of the Bril-
louin zone with non-zero measure. We further assume
the validity of Eq. (15), which allowed us recovering the
Landau-Fermi liquid theory. In this case it is straight-
forward to show [5] that the compressibility as defined
in (A4) has the same expression as that of Eq. (45), and
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thus is finite as expected for a metallic state. It is there-
fore tempting to make the association

n0εka
?≡ f(ε)

1

π

∂δa(ε,k)

∂ε
, (A9)

between the equilibrium distribution of ‘quasiparticles’
and the derivative of the many-body phase shift. How-
ever, such equivalence, though building a suggestive
link to quantum impurity models [33], is dubious, since
the right hand side of Eq. (A9) may be negative or
even singular, as it is the case for the self-energy in
Eq. (16). However, the Landau hypothesis of adiabatic
evolution [1] only refers to low energy excitation, with
no reference to the ground state. In other words, what
really matters is the variation of the ‘quasiparticles’ dis-
tribution with respect to the equilibrium one, the latter
playing no role in the theory. Therefore, the most correct
association is not Eq. (A9) but rather

δ
(
n0εka

)
≡ δ
(
f(ε)

1

π

∂δa(ε,k)

∂ε

)
= δ

(
− ∂f(ε)

∂ε

δa(ε,k)

π

)
,

(A10)

where δ
(
. . .
)
denotes the variation with respect to inter-

nal or thermodynamic variables, and the last expression
on the right hand side is obtained after integration by
part of Eq. (A2).
Indeed, by the definition of δ(ε,k) in Eq. (A3) it is
straightforward to show that

∂n0εka
∂k

=
1

π

(
− ∂f(ε)

∂ε

)
∂δa(ε,k)

∂k
, (A11)

which is actually the Eq. (56) that we assumed to inter-
pret Eq. (54) as a genuine Boltzmann kinetic equation.
Another important derivative of the equilibrium distri-
bution that is required to study the response to a tem-
perature gradient is

∂n0εka
∂T

=

(
− ∂f(ε)

∂ε

)[
ε

T

∂δa(ε,k)

∂ε
+

∂δa(ε,k)

∂T

]
,

(A12)
where

∂δa(ε,k)

∂T
= Im

[
G+(ε,k)

∂Σ+(ε,k)

∂T

]
. (A13)

Inspection of the perturbative expansion of the self-
energy in terms of skeleton diagrams leads to the fol-
lowing result

∂Σa(ε,k)

∂T
=

1

V

∑
ka′

ˆ
dε′

∂f(ε′)

∂T

Γqa,a′;a′,a(εk, ε′ k′; ε′ k′, εk) A(ε′,k′) ,

(A14)
where Γq is the q-limit of the reducible vertex, which
implies that

∂Σ+a(ε,k)

∂T
= Z∗(ε,k)−1

1

V

∑
k′a′

ˆ
dε′

∂f(ε′)

∂T

Aqa,b(εk, ε
′ k′) Aqp(ε′,k′) .

(A15)
In conclusion, through (A13), we find

∂δa(ε,k)

∂T
= −Aqp a(ε,k)

π

V

∑
k′a′

ˆ
dε′

∂f(ε′)

∂T

Aqa,a′(εk, ε
′ k′) Aqp(ε′,k′) ,

(A16)
and thus Eq. (A12) becomes

∂n0εka
∂T

=

(
− ∂f(ε)

∂ε

)
Aqp(ε,k)

[
ε

T
− 1

V

∑
k′a′

ˆ
dε′
(
− ∂f(ε′)

∂ε′

)
ε′

T
Aqa,a′(εk, ε

′ k′) Aqp(ε′,k′)

]
. (A17)

If we instead consider the derivative with respect to T
of the local equilibrium Wigner distribution (53), its ex-
pression greatly simplifies by making use of Eq. (50) that
relates Aq to the Landau f -parameters, leading to

∂ n 0
εka

∂T
= − ∂f(ε)

∂ε

ε

T
Aqp(ε,k) . (A18)

Appendix B: Formal derivation of Eq. (41)

The Landau-Fermi liquid expression of the linear
response function Eq. (41) has been thoroughly derived
for instance in Ref. [5]. However, for completeness, here
we shall briefly sketch such derivation.

The Bethe-Salpeter equation for the particle scattering
amplitude Γ, also denoted as two-particle reducible ver-
tex, diagrammatically shown in the top panel of Fig. 1,
and for the interacting density-vertex corresponding to
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FIG. 1. Bethe-Salpeter equations for the two-particle re-
ducible vertex Γ, top panel, and for the charge density vertex
Λ, bottom panel. Γ0 is the two-particle irreducible vertex,
while Λ(0) is the non-interacting charge density vertex. The
solid arrow lines are fully interacting Green’s functions at the
indicated frequency and momentum.

a generic observable Q, bottom panel of Fig. 1, can be
shortly written as

Γ = Γ0 + Γ0 �R� Γ , (B1)

ΛQ = Λ
(0)
Q + Λ

(0)
Q �R� Γ , (B2)

where Γ0 is irreducible in the particle-hole channelQ with
frequency and momentum transferred ω and q, respec-
tively, R is the kernel in (24), Λ

(0)
Q the non-interacting

density vertex and � stands for a summation over all
common internal variables and quantum labels. We take
the ω-limit of Eq. (B1),

Γω = Γ0 + Γ0 �Rω � Γω , (B3)

assuming that Γ0 is analytic at ω = |q| = 0 [21], use it
to express Γ0 in terms of Γω and Rω, i.e.,

Γ0 = Γω �
(

1 +Rω � Γω
)−1

=
(

1 + Γω �R
)−1
� Γω ,

(B4)

where, through Eq. (38),

Rω = ∆ω +Rinc = Rinc , (B5)

and replace Γ0 in Eq. (B1) with Eq. (B4). In this way
we find that

Γ = Γω + Γω �
(
R−Rω

)
�Γ = Γω + Γω �∆�Γ , (B6)

with ∆ defined in Eq. (36), which also implies that

Γω = Γ�
(

1 + ∆� Γ
)−1

. (B7)

Since Rω + ∆ = R, it also follows that

1 +Rω � Γω =
(

1 +R� Γ
)
�
(

1 + ∆� Γ
)−1

. (B8)

Similarly, we can take the ω-limit of (B2),

ΛωQ = Λ
(0)
Q + Λ

(0)
Q �R

ω � Γω , (B9)

and solve it to find Λ
(0)
Q as function of all other quantities,

which, through Eq. (B8), is

Λ
(0)
Q = ΛωQ �

(
1 +Rω � Γω

)−1
= ΛωQ �

(
1 + ∆� Γ

)
�
(

1 +R� Γ
)−1

=
(

1 + Γ�R
)−1
�
(

1 + Γ�∆
)
� ΛωQ .

(B10)

We then replace such expression back in Eq. (B2), and
readily find that

ΛQ = ΛωQ + ΛωQ �∆� Γ . (B11)

FIG. 2. Diagrammatic representation of the linear response
function of the density corresponding to the observable Q.
The interacting density vertex, ΛQ, is related to the non-
interacting one, Λ

(0)
Q , through the Bethe-Salpeter equation

shown in the bottom panel of Fig. 1.

The linear response function can be shortly written,
see Fig. 2, as

χQ = Tr

(
ΛQ �R� Λ

(0)
Q

)
, (B12)

and, using Eq. (B11) and the last equation in (B10), is
also equivalent to

χQ = χωQ + Tr

(
ΛωQ �∆� ΛωQ

)
+ Tr

(
ΛωQ �∆� Γ�∆� ΛωQ

)
,

(B13)

where

χωQ = Tr

(
ΛωQ �Rω � Λ

(0)
Q

)
, (B14)

is the ω-limit of the response function.

The Eq. (B13) greatly simplifies if Q is a conserved quan-
tity, whose conservation implies that χωQ = 0, and that
the Ward-Takahashi identity

ΛωQ = Λ
(0)
Q Z−1∗ , (B15)
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holds. Next, we write

∆ ≡ Z2
∗ ∆0 , (B16)

where, through Eq. (36),

∆0(ε+ ω,k + q; ε,k) = − ∂f(ε)

∂ε
Aqp(ε,k)

v∗(ε,k) · q
ω − v∗(ε,k) · q

, (B17)

and define

A = Z∗ ΓZ∗ , (B18)

so that for a conserved quantity Eq. (B13) reduces to

χQ = Tr

(
Λ
(0)
Q �∆0 � Λ

(0)
Q

)
+ Tr

(
Λ
(0)
Q �∆0 �A�∆0 � Λ

(0)
Q

)
,

(B19)

which is just Eq. (41) in the main text.

[1] L. Landau, Zh. Eskp. Teor. Fiz. 30, 1058 (1956), [Sov.
Phys. JETP 3, 920 (1957)].

[2] L. Landau, Zh. Eskp. Teor. Fiz. 32, 59 (1957), [Sov. Phys.
JETP 5, 101 (1957)].

[3] D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984).
[4] T. M. Rice and K. Ueda, Phys. Rev. B 34, 6420 (1986).
[5] P. Nozières and J. M. Luttinger, Phys. Rev. 127, 1423

(1962).
[6] J. M. Luttinger and P. Nozières, Phys. Rev. 127, 1431

(1962).
[7] J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417

(1960).
[8] J. M. Luttinger, Phys. Rev. 119, 1153 (1960).
[9] P. Nozières, Journal of Low Temperature Physics 17, 31

(1974).
[10] L. Mihály and A. Zawadowski, J. Phys. (France) 39, L483

(1978).
[11] B. A. Jones and C. M. Varma, Phys. Rev. Lett. 58, 843

(1987).
[12] L. D. Leo and M. Fabrizio, Phys. Rev. B 69, 245114

(2004).
[13] M. Ferrero, L. D. Leo, P. Lecheminant, and M. Fabrizio,

Journal of Physics: Condensed Matter 19, 433201 (2007).
[14] B. A. Jones and C. M. Varma, Phys. Rev. B 40, 324

(1989).
[15] I. Affleck and A. W. W. Ludwig, Phys. Rev. Lett. 68,

1046 (1992).
[16] I. Affleck, A. W. W. Ludwig, and B. A. Jones, Phys. Rev.

B 52, 9528 (1995).
[17] Rigorously speaking, the quadratic vanishing of ImΣ+

holds only in three dimensions [34]. In two dimen-
sions, ImΣ+ ∼ ε2 ln ε vanishes more slowly, though still
faster than linear. Nonetheless, the single particle DOS
still has a δ-like component with finite weight at the
Fermi surface [35], thus not invalidating the hypothe-
sis Eq. (1) [35, 36]. We further mention that there are
generically non-analytic subleading corrections [37], even
in three dimensions, but they do not spoil the conven-
tional Fermi liquid picture.

[18] The extension to include the 1/r Coulomb interaction is
straightforward, see, e.g., Refs. [5] and [22].

[19] F. D. M. Haldane, Phys. Rev. Lett. 93, 206602 (2004).
[20] D. T. Son and N. Yamamoto, Phys. Rev. Lett. 109,

181602 (2012).
[21] We mention that the derivation relies also on the assump-

tion that the irreducible vertex in the particle-hole chan-

nel with energy transfer ω and momentum transfer q is
analytic at ω = |q| = 0. This is however a very plau-
sible assumption, and it is hard to imagine a situation
where it may not hold. We remark that the analyticity
at ω = |q| = 0 does not exclude singularities in the other
variables, i.e., the total energy and momentum of the
incoming and outgoing particle-hole pairs, as observed,
e.g., in Ref. [38].

[22] D. Pines and P. Nozières, The Theory of Quantum Liq-
uids, edited by T. . F. Group (Boca Raton: CRC Press,
1989).

[23] I. Dzyaloshinskii and A. Larkin, Zh. Eskp. Teor. Fiz. 65,
411 (1973), [Sov. Phys. JETP 38, 202 (1974)].

[24] J. Sólyom, Advances in Physics 28, 201 (1979),
https://doi.org/10.1080/00018737900101375.

[25] F. D. M. Haldane, Journal of Physics C: Solid State
Physics 14, 2585 (1981).

[26] A. Imambekov, T. L. Schmidt, and L. I. Glazman, Rev.
Mod. Phys. 84, 1253 (2012).

[27] F. D. M. Haldane, Luttinger’s Theorem and Bosonization
of the Fermi Surface (2005), arXiv:cond-mat/0505529
[cond-mat.str-el].

[28] G. Volovik, Pis’ma Zh. Eksp. Teor. Fiz. 53, 208 (1991),
[JETP Lett. 53, 222 (1991)].

[29] G. Volovik, The Universe in a helium droplet, Interna-
tional Series of Monographs on Physics, Oxfor Science
Publications, Vol. 117 (Clarendon Press, 2003).

[30] G. E. Volovik, Quantum phase transitions from topol-
ogy in momentum space, in Quantum Analogues: From
Phase Transitions to Black Holes and Cosmology , edited
by W. G. Unruh and R. Schützhold (Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2007) pp. 31–73.

[31] K. Seki and S. Yunoki, Phys. Rev. B 96, 085124 (2017).
[32] J. T. Heath and K. S. Bedell, New Journal of Physics 22,

063011 (2020).
[33] Such link implies, e.g., that a genuine quasiparticle cor-

responds to a resonance, i.e., a phase shift of π/2, that
becomes narrower and narrower approaching the Fermi
surface, or, in the case of the self-energy Eq. (16), to
two resonances at opposite sides of the chemical poten-
tial that interfere destructively at ε = 0.

[34] A. V. Chubukov and D. L. Maslov, Phys. Rev. B 86,
155136 (2012).

[35] C. J. Halboth and W. Metzner, Phys. Rev. B 57, 8873
(1998).

[36] S. Gangadharaiah, D. L. Maslov, A. V. Chubukov, and

https://doi.org/10.1103/RevModPhys.56.99
https://doi.org/10.1103/PhysRevB.34.6420
https://doi.org/10.1103/PhysRev.127.1423
https://doi.org/10.1103/PhysRev.127.1423
https://doi.org/10.1103/PhysRev.127.1431
https://doi.org/10.1103/PhysRev.127.1431
https://doi.org/10.1103/PhysRev.118.1417
https://doi.org/10.1103/PhysRev.118.1417
https://doi.org/10.1103/PhysRev.119.1153
https://doi.org/10.1007/BF00654541
https://doi.org/10.1007/BF00654541
https://doi.org/10.1103/PhysRevLett.58.843
https://doi.org/10.1103/PhysRevLett.58.843
https://doi.org/10.1103/PhysRevB.69.245114
https://doi.org/10.1103/PhysRevB.69.245114
https://doi.org/10.1088/0953-8984/19/43/433201
https://doi.org/10.1103/PhysRevB.40.324
https://doi.org/10.1103/PhysRevB.40.324
https://doi.org/10.1103/PhysRevLett.68.1046
https://doi.org/10.1103/PhysRevLett.68.1046
https://doi.org/10.1103/PhysRevB.52.9528
https://doi.org/10.1103/PhysRevB.52.9528
https://doi.org/10.1103/PhysRevLett.93.206602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.4324/9780429492662
https://doi.org/10.4324/9780429492662
https://doi.org/10.1080/00018737900101375
https://arxiv.org/abs/https://doi.org/10.1080/00018737900101375
https://doi.org/10.1088/0022-3719/14/19/010
https://doi.org/10.1088/0022-3719/14/19/010
https://doi.org/10.1103/RevModPhys.84.1253
https://doi.org/10.1103/RevModPhys.84.1253
https://arxiv.org/abs/cond-mat/0505529
https://arxiv.org/abs/cond-mat/0505529
https://doi.org/10.1007/3-540-70859-6_3
https://doi.org/10.1007/3-540-70859-6_3
https://doi.org/10.1103/PhysRevB.96.085124
https://doi.org/10.1088/1367-2630/ab890e
https://doi.org/10.1088/1367-2630/ab890e
https://doi.org/10.1103/PhysRevB.86.155136
https://doi.org/10.1103/PhysRevB.86.155136
https://doi.org/10.1103/PhysRevB.57.8873
https://doi.org/10.1103/PhysRevB.57.8873


12

L. I. Glazman, Phys. Rev. Lett. 94, 156407 (2005).
[37] A. V. Chubukov and D. L. Maslov, Phys. Rev. B 68,

155113 (2003).

[38] P. Chalupa, P. Gunacker, T. Schäfer, K. Held, and
A. Toschi, Phys. Rev. B 97, 245136 (2018).

https://doi.org/10.1103/PhysRevLett.94.156407
https://doi.org/10.1103/PhysRevB.68.155113
https://doi.org/10.1103/PhysRevB.68.155113
https://doi.org/10.1103/PhysRevB.97.245136

	Landau-Fermi liquids without quasiparticles
	Abstract
	Introduction
	Conventional Fermi liquid hypothesis
	Fermi liquid theory revised
	Preliminaries

	Dynamic susceptibilities
	Landau-Boltzmann equation
	Conclusions
	Acknowledgments
	Luttinger theorem and quasiparticle equilibrium distribution
	Systems with a single-particle gap
	Systems with gapless single-particle excitations satisfying Eq. (15)

	Formal derivation of Eq. (41)
	References


