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ABSTRACT
We extend the figure of merit formalism usually adopted to quantify the statistical performance
of future dark energy probes to assess the robustness of a future mission to plausible systematic
bias. We introduce a new robustness figure of merit which can be computed in the Fisher
matrix formalism given arbitrary systematic biases in the observable quantities. We argue
that robustness to systematics is an important new quantity that should be taken into account
when optimizing future surveys. We illustrate our formalism with toy examples, and apply it
to future Type Ia supernova (SN Ia) and baryonic acoustic oscillation (BAO) surveys. For the
simplified systematic biases that we consider, we find that SNe Ia are a somewhat more robust
probe of dark energy parameters than the BAO. We trace this back to a geometrical alignment
of systematic bias direction with statistical degeneracy directions in the dark energy parameter
space.
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1 IN T RO D U C T I O N

The discovery of the accelerating universe has been hailed as one
of the most important developments in cosmology in decades. Yet
the physical nature of the cause of this acceleration – the dark
energy – is lacking. With that in mind, a large amount of effort
has gone into measuring the parameters describing dark energy,
notably its equation of state parameter, w = p/ρ, where p and ρ are
the dark energy pressure and energy density. In fact, measuring w

to high accuracy is one of the most important goals of ongoing and
upcoming large-scale cosmological surveys, such as Dark Energy
Survey (DES),1 Baryon Oscillation Spectroscopic Survey (BOSS),2

Large Synoptic Survey Telescope (LSST),3 Square Kilometre Array
(SKA)4 and Euclid (Laureijs et al. 2009).

In order to rank proposed future dark energy missions according
to their potential capabilities, a series of figures of merit (FoMs) has
been introduced, whose aim is to quantify the science return of an
experiment in terms of its ability to constrain dark energy. Perhaps
the most widely used FoM is the one identified by the dark energy
task force (DETF; Albrecht et al. 2006, 2009), which is a mea-
sure of the statistical power of a future dark energy mission. Other
higher dimensional versions have also been considered (Huterer &
Turner 2001; Albrecht & Bernstein 2007; Wang 2008; Crittenden,

�E-mail: r.trotta@imperial.ac.uk
1 http://www.darkenergysurvey.org
2 http://cosmology.lbl.gov/BOSS/
3 http://www.lsst.org
4 http://www.skatelescope.org/

Pogosian & Zhao 2009; Mortonson, Huterer & Hu 2010). The most
general approach to performance forecasting involves the use of a
suitably defined utility function in the Bayesian framework, and it
has recently been presented in Trotta, Kunz & Liddle (2010).

The purpose of this paper is to expand the FoM formalism to
consider a new dimension of the performance of a future dark en-
ergy probe, which has been until today largely neglected – namely,
its robustness to potential systematic errors. It is well known that
systematic errors are going to be one of the most challenging factors
limiting the ultimate statistical performance of precision measure-
ments of w(z). Yes there has been until now no formal way to
quantify how prone to potential systematic a future dark energy
measurement might be. This work takes a first step towards redress-
ing this issue, by introducing a so-called ‘robustness’ FoM which
complements the statistical FoMs mainly considered so far in the
literature.

This paper is organized as follows: in Section 2 we introduce our
statistical and robustness FoMs, whose properties are illustrated in
Section 3. We then apply this formalism to future Type Ia supernovae
(SNe Ia) and baryonic acoustic oscillation (BAO) data in Section 4.
Our results and conclusions are presented in Section 5.

2 FI G U R E S O F M E R I T F O R FU T U R E
DA R K E N E R G Y P RO B E S

2.1 Gaussian linear model

Suppose we have two different dark energy probes, whose likelihood
function is assumed to be Gaussian and is characterized by a Fisher
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matrix Li(i = 1, 2), i.e.

Li(�) ≡ p(di |�) = Li
0 exp

(
−1

2
(μi − �)tLi(μi − �)

)
, (1)

where � are the parameters one is interested in constraining, and μi

is the location of the maximum likelihood value in parameter space.
In the absence of systematic errors, the maximum likelihood point,
μi, is located at the true parameters value, which can be taken to be
the origin. We are here neglectic realization noise, i.e. we are work-
ing in the Fisher matrix framework, in which μi is interpreted as the
expectation value of the maximum likelihood estimator averaged
over many data realizations. However, the presence of unmodelled
systematic errors would introduce a non-zero shift in μi. Below, we
will show how the systematic shifts μi can be estimated by propa-
gating on to the parameter space the shifts resulting from plausible
unmodelled systematics in the observables for dark energy.

The posterior distribution for the parameters, p(�|D), is obtained
by Bayes theorem as

p(�|D) = p(�)p(D|�)

p(D)
, (2)

where p(�) is the prior, p(D) the Bayesian evidence and D are
the data being used. If we assume a Gaussian prior centred on the
origin with Fisher matrix �, the posterior from each probe is also a
Gaussian, with Fisher matrix

Fi = Li + � (i = 1, 2) (3)

and posterior mean

μi = F −1
i (Liμi). (4)

If we combine the two probes, we obtain a Gaussian posterior with
Fisher matrix

F = L1 + L2 + � (5)

and mean

μ = F −1
2∑

i=1

Liμi. (6)

Notice that the precision of the posterior (i.e. the Fisher matrix) does
not depend on the degree of overlap of the likelihoods from the in-
dividual probes. This is a property of the Gaussian linear model. In
the presence of systematics, a FoM based on the posterior Fisher
matrix is thus insufficient to quantify the power of the experiment:
a future probe subject to systematic bias would have the same sta-
tistical FoM as an unbiased experiment. This motivates us to extend
our considerations to a second dimension, namely robustness.

For future reference, it is also useful to write down the general
expression for the Bayesian evidence. For a normal prior p(�) ∼
N (θπ , �) and a likelihood

L(�) = L0 exp

(
−1

2
(θ0 − �)tL(θ0 − �)

)
, (7)

the evidence for data d is given by

p(d) ≡
∫

d� p(d|�)p(�) = L0
|�|1/2

|F |1/2

× exp

[
−1

2

(
θ t

0Lθ0 + θ t
π�θπ − θ

t
Fθ

)]
, (8)

where F = L + � and θ = F −1(Lθ0 + �θπ ).

2.2 The statistical figure of merit

It has become customary to describe the statistical power of a future
dark energy probe by the inverse area of its covariance matrix. This
measure of statistical performance – widely known as the DETF
FoM (Huterer & Turner 2001; Albrecht et al. 2006) – is usually
defined (up to multiplicative constants) as

|Li |1/2. (9)

Here, we suggest to adopt a more statistically motivated measure of
the information gain, namely the Kullback–Leibler (KL) divergence
between the posterior and the prior, representing the information
gain obtained when upgrading the prior to the posterior via Bayes
theorem:

DKL ≡
∫

p(�|D) ln
p(�|D)

p(�)
d�. (10)

The KL divergence measures the relative entropy between the two
distributions: it is a dimensionless quantity which expressed the in-
formation gain obtained via the likelihood. For the Gaussian likeli-
hood and prior introduced above, the information gain (with respect
to the prior �) from the combination of both probes is given by

DKL = 1

2
(ln |F | − ln |�| − tr[1 − �F −1]). (11)

Below, we shall be interested in assessing the statistical perfor-
mance of future dark energy probes, in a context where probe 1 is
taken to represent present-day constraints on dark energy parame-
ters, while probe 2 is a future dark energy mission. We normalize
the KL divergence for the combination of probe 1 and probe 2,
given by equation (11), with respect to the case where probe 2 is
assumed to be a hypothetical experiment that would yield the same
dark energy constraints as the existing ones (probe 1). This is not
meant to represent a realistic dark energy probe, but merely to give
a benchmark scenario for the normalization of the information gain.
This choice of normalization has the added advantage of cancelling
out most of the prior dependence in equation (11). After exponenti-
ating the normalized KL divergence, we therefore suggest to adopt
as a statistical FoM the dimensionless quantity:

S ≡ |L1 + L2 + �|1/2

|2L1 + �|1/2

× exp

(
1

2
tr[�((L1 + L2 + �)−1 − (2L1 + �)−1)]

)
. (12)

2.3 Robustness of dark energy probes

In order to quantify the robustness to potential systematics of a
combination of probes, we wish to derive a measure of the degree
of consistency between them. The gist of our new robustness FoM
is that our confidence in the robustness of a new dark energy probe
is increased if it returns constraints which overlap significantly with
previously existing probes. If on the contrary the new probe has a
small degree of consistency with previous experiments, this might
point to either a failure of the underlying theoretical model or to the
presence of unmodelled systematics in the new probe (or both). In
the following, we focus on the latter hypothesis.

The idea is to perform a Bayesian model comparison between
two hypotheses, namely H0, stating that the data D are all compat-
ible with each other and the model, versus H1, purporting that the
observables are incompatible and hence tend to pull the constraints
in different regions of parameter space. The Bayes factor between
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the two hypotheses, giving the relative probabilities (odds) between
H0 and H1 is given by

R = p(D|H0)∏2
i=1 p(di |H1)

, (13)

where the Bayesian evidence for a given hypothesis H is

p(d|H) =
∫

d� p(d|�,H)p(�|H). (14)

If R � 1, this is evidence in favour of the hypothesis H0 that the
data are compatible. If instead R � 1 the alternative hypothesis H1

is preferred (namely, that the data are incompatible). Examples of
the application of the statistics R introduced above can be found
in Hobson, Bridle & Lahav (2002) and Feroz et al. (2008) – see
the appendix of Feroz et al. (2009) for a toy model illustration. For
a review of Bayesian methods in cosmology, and in particular of
model selection techniques, see Trotta (2008).

We can restrict our considerations to just two probes, hence D =
{d1, d2}. Then the criterion of equation (13) can be written as
(omitting for brevity the explicit conditioning on hypotheses)

R = p(d1, d2)

p(d1)p(d2)
= p(d2|d1)p(d1)

p(d1)p(d2)
= p(d2|d1)

p(d2)
. (15)

The conditional evidence for d2 given data set d1 can be calculated
as

p(d2|d1) =
∫

p(d2|�)p(�|d1) d�, (16)

where the first term is the likelihood for the second probe and
the second term is the posterior from the first probe. By using the
likelihood 1, and making use of equation (8) we obtain

p(d2|d1) = L(2)
0

|F1|1/2

|F |1/2

× exp

[
−1

2

(
μt

2L2μ2 + μt
1F1μ1 − μtFμ

)]
, (17)

where μ is given by equation (6), F by equation (5) and μ1 by
equation (4). Using again equation (8) we obtain for the denominator
in equation (15):

p(d2) = L(2)
0

|�|1/2

|F2|1/2
exp

[
−1

2

(
μt

2L2μ2 − μt
2F2μ2

)]
, (18)

so that we obtain

R = |F1|1/2|F2|1/2

|F |1/2|�|1/2

× exp

[
−1

2

(
μt

1F1μ1 + μt
2F2μ2 − μtFμ

)]
. (19)

Therefore, we can recast equation (13) into

ln R = 1

2
μtFμ − 1

2

2∑
i=1

μt
iFiμi

−1

2
ln

|F |
|�| + 1

2

2∑
i=1

ln
|Fi |
|�| . (20)

We shall use below the robustness R to define a new FoM. For now,
let us notice that it is the product of two terms: the terms involving
determinants of the Fisher matrices add up to an Occam’s razor fac-
tor, which is always >0. The second part (summing over quadrating
forms involving the various Fisher matrices) expresses the degree of
overlap of the posteriors from the two probes. This term will reduce
R if the posteriors from the two probes are significantly displaced

from the posterior obtained using the combined data set (a smoking
gun for systematic bias). The generalization of equation (20) to an
arbitrary number of probes is derived in Appendix A.

2.4 The robustness figure of merit

We now specialize to the situation where probe 1 describes our
current knowledge about dark energy parameter, while probe 2
represents a proposed future dark energy mission. Notice that probe
1 does not need to be a single experiment (i.e. just SN Ia or just
BAO), but it can be interpreted as being the effective joint constraint
from a combination of all available present-day dark energy probes.
Without loss of generality, we assume that the current constraints
are unbiased, i.e. we set μ1 = 0 in the following, and we wish to
evaluate the robustness of a future probe, as defined in equation (20),
which might be subject to systematic bias.

Let us assume for the moment being that we can estimate the bias
b in parameter space which probe 2 might be subject to. A procedure
to achieve this will be presented below for the specific cases of SN Ia
and BAO observations. For now, we remain completely general, and
assume that the maximum likelihood estimate for the dark energy
parameters from probe 2 is displaced from their true value by a bias
vector b, i.e. μ2 = b. This, together with the assumption that probe 1
is unbiased (i.e. μ1 = 0) gives μ̄2 = F −1

2 L2b and the joint posterior
mean from both probes is

μ = F −1L2b. (21)

Then we can write for the robustness R, equation (20):

ln R = 1

2

(
F −1L2b

)t
F

(
F −1L2b

) − 1

2
(bL2)tF −1

2 (L2b)

−1

2
ln

|F |
|�| + 1

2

2∑
i=1

ln
|Fi |
|�| , (22)

which can be rewritten as

ln R = −1

2
(bL2)t

(
F −1

2 − F −1
)

(L2b) + R0

= −1

2
btF ∗b + R0, (23)

where we have defined

F ∗ ≡ L2

(
F −1

2 − F −1
)
L2, (24)

R0 ≡ −1

2
ln

|F |
|F1|

|�|
|F2| . (25)

If the prior � is negligible with respect to L2 we have F2 = L2 and
F∗ = F2 − F2F−1F2.

In order to normalize the value of R, we adopt the ‘repeated
experiment’ procedure we used for the normalization of the statis-
tical FoM. This is defined as the hypothetical case where the new
experiment (probe 2) yields exactly the same Fisher matrix as the
existing probe 1, and is unbiased, i.e. F1 = F2 and b = (0, 0). For
this identically repeated case the robustness of the two probes is
given by

R∗ = |F1|
(|2L1 + �||�|)1/2

. (26)

Normalizing R from equation (23) to the above value means that
R/R∗ = 1 is the robustness that one would achieve by carrying out
a new dark energy measurement that would yield exactly the same
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constraints as we currently have, and no bias. We therefore define
the quantity

RN ≡ R

R∗
(27)

as our robustness FoM, which expresses the robustness of probe 2
under the assumption that it will be affected by a bias b.

The robustness FoM above represents a ‘worst case scenario’
(for a given b) for probe 2, because we are assuming that it will
be for sure systematically biased. A more balanced approach is to
average the robustness along the direction defined by the systematic
bias vector b. This gives an ‘average robustness’, which accounts
for different possible sizes in the strength of the bias.5 In order to
perform the average, we rotate the coordinate axes so that the new
x-axis is aligned with the vector b (assuming here a two-dimensional
parameter space for simplicity):(

1

0

)
= �b, (28)

where � is a suitable rotation matrix, and �t = �−1. Then the
average robustness along the direction defined by b is given by

〈R〉 ≡
∫

W (x)
R

R∗
dx = eR0

R∗

∫
W (x) e−(1/2)D11x2

dx, (29)

where

D ≡ �F ∗�t (30)

and W(x) is a suitable weighting function. A natural choice for W is
a Gaussian with characteristic scale for the bias given by the length
of the bias vector, |b|,
W (x) = 1√

2π|b| e−(1/2)(x2/|b|2), (31)

so that equation (29) becomes

〈R〉 = eR0

R∗
√

2π|b|

∫
e−(1/2)x2[D11+|b|−2] dx

= (|F2||2L1 + �|)1/2

|FF1|1/2
||b|2D11 + 1|−1/2. (32)

The Gaussian weight is centred at the unbiased parameter values,
but it also has a tail that stretches above the characteristic scale
of the bias, |b|, in order to account for a potentially much larger
bias. We have checked that the use of other weight functions (e.g. a
top-hat weight out to a maximum bias value given by the size of
the bias vector) gives a qualitatively similar result. We define the
quantity given by equation (32) as the ‘average robustness’ FoM.

Finally, we can also combine the statistical and robustness FoMs
to obtain an overall FoM expressing both the statistical power and
the robustness to systematic bias of the probe as

TN ≡ RNS, (33)

〈T 〉 ≡ 〈R〉S, (34)

where S is given by equation (12), while RN and 〈R〉 by equa-
tions (27) and (29), respectively.

5 Notice that as we average R along b we do not re-evaluate the Fisher
matrix of the probe as a function of b, but we simply translate the Fisher
matrix found at the fiducial point (i.e. the true parameters values). The Fisher
matrix typically depends only weakly on the fiducial model chosen, as long
as we consider the models within the parameter confidence region. If the
bias vector is not much larger than the statistical errors we can therefore
approximate the Fisher matrix at the biased parameters values with the one
evaluated at the fiducial point.

3 PRO PERTI ES OF THE ROBUSTNESS FoM

Before applying the above formalism to future dark energy probes,
we wish to gain some further insight into the behaviour of our ro-
bustness FoM by considering it in the context of a Gaussian toy
model. We start with the normalized expression for the average ro-
bustness, equation (32) and assume now that the confidence regions
of the two probes are identical up to a roto-translation (and therefore
the determinants of F1, F2 are equal). If moreover the prior is very
weak we can approximate the posterior with the likelihood, hence

〈R〉 ≈ 2
|F1|
|F | ||b|2D11 + 1|−1/2. (35)

Let us further assume that probes 1 and 2 are aligned, i.e. they have a
degeneracy direction lying along the same straight line. This means
also that their Fisher matrices are simultaneously diagonalizable
(i.e. they commute) and that F is also diagonalizable. Since the
bias vector b by definition connects the maximum likelihood points
of the two probes, its direction is also aligned with one of the
principal axis of the probes in this particular example. Then we can
write

D = �
(
F2 − F2F

−1F2

)
�−1 (36)

= F D
2 − F D

2

(
F D

1 + F D
2

)−1
F D

2 , (37)

where the superscript D denotes the diagonalized version of a ma-
trix. The last step follows because for any matrix A diagonalized by
� and any power k one has

�Ak�−1 = (AD)k. (38)

Now let us denote the length of the jth semi-axis of the ith probe by
σ i,j where (after diagonalization) the semiaxis j = 1(2) lies along
the abscissa (ordinate) . Then we have

D11 = σ−2
2,1

(
1 − σ 2

1,1

σ 2
1,1 + σ 2

2,1

)
(39)

and, therefore,

〈R〉 ≈ 2(σ2,1σ2,2)(
σ 2

1,2 + σ 2
2,2

)
1/2

(|b|2 + σ 2
1,1 + σ 2

2,1

)1/2 . (40)

This expression shows that the average robustness is invariant with
respect to rescaling of the axes: in fact, if the distances along the
abscissa, σ 1,1, σ 2,1, |b|, are rescaled by an arbitrary factor, 〈R〉 does
not change; the same applies in the y-direction.

Since we assumed the ellipses to be congruent, we have two
qualitatively different cases: orthogonal ellipses (⊥), i.e. σ 2,2 =
σ 1,1 and σ 2,1 = σ 1,2; and parallel ellipses (‖), i.e. σ 1,1 = σ 2,1 and
σ 1,2 = σ 2,2. In the orthogonal case we obtain

〈R〉⊥ = 2r

1 + r2

(
1 + |b|2r2

σ 2
2,1(1 + r2)

)−1/2

, (41)

where r = σ 2,1/σ 2,2 measures the elongatedness of the ellipses. In
the parallel case we obtain instead for any r,

〈R〉‖ =
(

1 + |b|2
2σ 2

2,1

)−1/2

. (42)

From these expressions we can derive some general consequences.
Because of our choice of normalization, unbiased identical probes
have unity robustness. In general, if the bias length is small with
respect to the statistical errors of the second probe, then parallel
probes are more robust than orthogonal ones. If the second probe
is very elongated (degenerated) along the bias direction, i.e. r � 1,
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Robustness to systematics 147

Figure 1. Illustration of statistical and robustness FoM for a future probe
(blue ellipses, 68 and 95 per cent C.L.) which is systematically biased with
respect to the present-day constraints (red ellipses) in the direction given
by the green bias vector. The black dotted ellipses represent the combined
constraints. Notice that the statistical FoM S does not change in the presence
of a systematic bias.

then again parallel probes are more robust than orthogonal ones. If
instead the degeneracy of the second probe lies orthogonally to the
bias direction, r � 1, there are two cases: parallel probes are more
robust if the bias is smaller than the long axis (|b|2 < σ 2,2), but less
robust in the opposite case. Of course the general case, with arbitrary
bias direction and length and arbitrary sizes and orientation of the
probes cannot be reduced to such simple conclusions.

Armed with the above intuition, we now consider in Fig. 1, a
numerical illustration of four different cases for the relative orien-
tation of the two probes (orthogonal or parallel) and the direction
of the bias vector (along the short or long semi-axis). The two sets
of iso-likelihood contours enclose 68 and 95 per cent confidence
levels; as above, the second probe (blue contours) has the same
area as the first (i.e. L1 = L2), but its degeneracy direction can be
rotated, and its maximum likelihood value is displaced from the
true value by a systematic bias (of fixed length in all cases), given
by the green vector. The first probe (red contours) is assumed to be
unbiased. The prior is 
 = diag(1, 1) (i.e. a prior of 1.0 in each
parameter with no correlations imposed). For each case, we give
the corresponding statistical FoM, equation (12), the robustness
FoMs, equations (27) and (29), and the total FoM (for the averaged
robustness), equation (34).

The robustness FoM (with or without averaging) depends both
on the direction along which the bias is directed and on the relative
orientation of the degeneracy directions of the two probes. When
the bias is directed along the degeneracy direction of probe 1 and
probe 2 is aligned along that direction (lower left-hand panel), the
robustness is maximal. It decreases if the two probes are orthogo-
nal to each other, since this reduces the degree of overlap between
them (upper panels). Finally, robustness is smallest when the two
probes are aligned but the bias is direct orthogonally with respect to
the degeneracy direction (lower right-hand panel), as argued above.
Looking ahead to the application of the robustness formalism to
the dark energy equation of state parameters in the next section, we

can anticipate here that the most relevant case is the one where the
two probes are similarly oriented (bottom panels of Fig. 1). This is
because different dark energy probes are typically degenerate in the
equation of state parameters along quite similar directions. There-
fore, their relative robustness can be expected to depend mainly
on the orientation of the bias with respect to the main degeneracy
direction.

The statistical FoM is largest when the probes are orthogonal to
each other, as expected. Notice that the statistical FoM is unaffected
by the bias, and only depends on the relative alignment of the two
probes. For a given orientation and size of the bias vector, the total
FoM allows one to decide which configuration for probe 2 is to be
preferred. For the example of Fig. 1, if the bias vector points along
the degeneracy direction of probe 1 (left-hand panels), one would
prefer probe 2 to be aligned with probe 1 (〈T〉 = 0.71) as opposed
to probe 2 being orthogonal to probe 1 (〈T〉 = 0.61). If instead the
bias is orthogonal to the degeneracy of probe 1 (right-hand panels),
then the best choice for probe 2 is for it to be orthogonal to probe 1
(〈T〉 = 0.62 compared to 〈T〉 = 0.44).

We can also ask what is the optimal orientation of probe 2 with
respect to probe 1 if one wanted to maximize its robustness, given
a bias direction. In Fig. 2, we plot both the statistical and the av-
erage robustness FoMs as a function of the rotation angle between
the principal direction of the two probes. The average robustness is
evaluated for three different directions of the bias (coloured vectors
in the top panel). We notice once more that the statistical FoM is
maximized when the probes are orthogonal. However, the robust-
ness FoM is maximized when the degeneracy direction of probe 2
is close to being aligned with the direction of the bias vector, as
this maximizes the overlap with probe 1 even when probe 2 suffers
from a systematic error. Finally, increasing the length of the bias
by a factor of 2 (fainter green vector in the top panel) reduces the
overall average robustness.

In summary, the robustness of a future probe is a function of
its statistical properties (i.e. the direction along which its main de-
generacy is aligned, compared with the degeneracy direction of
probe 1) as well as of the direction and size of the systematic bias.
The performance of a future probe should be assessed by consid-
ering simultaneously its statistical power but also its robustness to
systematics. Optimizing a future dark energy experiment in terms
of its statistical errors alone would generically lead to an exper-
iment which is less robust, for a given overall level of plausible
systematics. Any optimization procedure should therefore involve
the complementary criteria of statistical strength and robustness to
systematic bias.

We now turn to applying the above concept to the concrete sce-
nario of two classes of future dark energy missions, namely SN Ia
and BAO measurements.

4 RO BU S T N E S S O F FU T U R E DA R K E N E R G Y
PROBES

We consider a simple and widely used phenomenological descrip-
tion of an evolving dark energy model, where the equation of state is
w(z) = w0 + waz/(1 + z), characterized by the two free parameters
(w0, wa) (Chevallier & Polarski 2001; Linder 2003). For probe 1
(representing current constraints on w0, wa) we take a Gaussian ap-
proximation to the joint likelihood resulting from the combination
of Union 2 SNe Ia data (Amanullah et al. 2010), Sloan Digital Sky
Survey (SDSS) BAO (Percival et al. 2010), Wilkinson Microwave
Anisotropy Probe 7 yr (WMAP7) measurements of the shift parame-
ters (Komatsu et al. 2010) and SHOES measurements of the Hubble
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Figure 2. Dependency of FoMs on the angle between the degeneracy di-
rection of the two probes. Upper panel: the red (blue) ellipses represent
the 68 and 95 per cent likelihood contours of probe 1 (probe 2, which is
potentially biased). The degeneracy direction of probe 2 is offset by an angle
θ with respect to probe 1. The three vectors gives three possible directions
for the bias. Lower panel: value of statistical FoM S (black dashed line,
right-hand axis), and average robustness FoM, 〈R〉, (coloured solid lines,
left-hand axis, colour and thickness matching the bias vectors in the upper
panel), as a function of the relative angle θ . Vertical coloured lines give the
angle of each bias vector.

constant (Riess et al. 2009). We further assume a flat Universe. For
the prior on the dark energy parameters, we take a Gaussian centred
at (w0 + 1, wa) = (0, 0) with Fisher matrix 
 = diag(1, 1/100).
In the following, when we look at the Fisher matrix we mean the
2D marginalized Fisher matrix (i.e. marginalized down to the dark
energy parameter space). Although in the rest of this paper we focus
exclusively on the robustness FoM for dark energy parameters, we
note that our robustness formalism is equally applicable to any other
cosmological parameter one is interested in.

In order to evaluate robustness, we need to specify the bias vector
b. There are several plausible ways of doing this, and the outcome
will depend on what one thinks a possible systematic bias might
be due to. In our case, in order to illustrate our new FoM, we
determine b by assuming a possible systematic bias in the probe’s
observables, and then projecting the resulting systematic shift on to

the dark energy parameter space of interest, as described in detail
below. We stress that this is by no means the only procedure by
which one can estimate b. Other assumptions about the origin of
systematic errors will in general lead to a different b, and therefore
to a different value for the robustness of the future probe.

4.1 Future SN Ia measurements

We consider a survey dedicated to observing SNe Ia from space,
with a redshift distribution like the one expected from SNAP, with
2000 SNe distributed as in Kim et al. (2004), plus a low-z sample
of 300 SNe distributed uniformly in the redshift range 0.03 < z <

0.08. The projected SNAP magnitude errors include both statistical
and systematic components, and are modelled as follows:

σ 2
b =

[
0.152

Nb
+ A2

syst

(
1 + zb

1 + zmax

)2
]

, (43)

where Nb is the number of SNe in each bin centred at zb and of width
dz = 0.1. The second term on the right-hand side of equation (43)
models a systematic floor that increases linearly with z up to a
maximum of Asyst mag per d z = 0.1 bin at zmax = 1.7 (Linder &
Huterer 2003). In order to evaluate the robustness of SNe data for
different levels of systematics, we will consider values of Asyst =
0.01, 0.02, 0.05.

We assume a flat Universe with four parameters relevant for this
analysis, matter density relative to critical �M, equation of state
today w0, its variation with scale factor wa and a nuisance offset
in the Hubble diagram M. Marginalizing over �M and M and
assuming Asyst = 0.02, we find that our fiducial survey produces
statistical errors of σw0 = 0.075 and σwa = 0.30, corresponding to
the black 68 per cent confidence level (C.L.) ellipse in Fig. 3.

The bias in the dark energy parameters, b, reconstructed from
SN measurements induced by an arbitrary bias in the observed
magnitudes δm(z) can be derived from the Fisher matrix for SNe
(e.g. Knox, Scoccimarro & Dodelson 1998; Huterer & Turner 2001),

Figure 3. Systematic bias in the w0–wa plane for future SN Ia data. The
square denotes our fiducial value and the ellipse gives the 68 per cent
C.L. statistical contour from future SN Ia data. The blue curve shows the
systematic bias given by equation (46), with points showing cumulative
contributions from each of the 16 redshift bins – that is, cumulative value of
the sum in equation (45). For clarity, we explicitly label bias contributions
accumulated by redshifts z = 1 and 1.7. The red segments denote the worst-
case bias, where the sign of δm(z) at each redshift bin conspires to shift the
(w0, wa) value away from the true value (‘MEB’); see equation (47). For
clarity, we have also plotted the biases with the opposite sign relative to the
fiducial model parameter values.
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and is given by

bi =
∑

j

(F −1)ij
∑

α

dm(zα)

dμj

1

σ 2
α

δmsys(zα) (44)

≡
∑

α

c(i)
α δmsys(zα), (45)

where μi are the cosmological parameters, c(i)
α ≡∑

j (F −1)ij (dm(zα)/dμj )/σ 2
α and where α runs over redshift

bins. We adopt a systematic bias of the same form as the ‘floor’
that was previously included in the total statistical error:

δmsys(zα) = Asyst

(
1 + zα

1 + zmax

)
. (46)

Bias of this magnitude leads to the bias on cosmological parameters
which can be calculated using equations (45) and (46), and is shown
as the blue curve in Fig. 3. Each point on the curve shows cumulative
contributions to the excursion in w0 and wa around the fiducial
model (with (w0, wa) = (−1, 0)) for each of the 16 redshift bins
we consider, z ∈ [0.1, 0.2], . . . , z ∈ [1.6, 1.7]. In other words,
points on the blue curve show cumulative contribution of the sum
in equation (45).

However, this form of the bias assumes that the excursions in
δm(zα) are of the same sign (taken to be positive), and equal to the
maximum allowed value in equation (46). The worst-case bias to
the dark energy parameters is obtained if δm(zα) changes sign in
each redshift bin just so as to maximize the excursion in w0 and wa.
Such a worst-case bias can be straightforwardly calculated (Huterer
& Takada 2005)

bworst
i =

∑
α

∣∣c(i)
α

∣∣ δmsys(zα) (47)

for a single dark energy parameter μi, where δmsys(zα) > 0 was
taken by default. In other words, the systematic error takes a plus or
minus sign equal to that of the coefficient c(i)

α in each redshift bin.6

Such a worst-case excursion in the (w0, wa) plane is shown as the
red curve with points in Fig. 3. We call this scenario the ‘maximum
excursion bias’ (MEB), and use it as an estimate for the bias vector
b in the computation of our robustness FoM.

4.2 Future baryonic acoustic oscillations measurements

The second class of future probe we consider consists of a full-
sky spectroscopic redshift survey modelling a future space mission
with specifications close to WFIRST or Euclid (or a Stage-IV mis-
sion in the language of the DETF). The probe is fully specified by
choosing a number of redshift bins and giving the expected number
densities of galaxies per bin and the sky coverage, assumed here to
be 20 000 deg2. Table 1 gives the redshift binning and the galaxy
number densities, taken from the data published by the Euclid col-
laboration (Laureijs et al. 2009). We assume however that only half
of these galaxies can be effectively employed (efficiency ε = 0.5),
corresponding to one-half of values in the table.

In order to forecast the statistical errors on dark energy param-
eters, we adopt the Fisher matrix method of Seo & Eisenstein

6 For multiple parameters, there is ambiguity to define the worst case error,
since a sign of δmsys(zα) that makes excursion in w0 positive may actually
make the wa excursion negative or vice versa. We make a choice that the
excursion in w0 is positive in a given redshift bin, which determines the sign
of δmsys(zα); then the excursion in wa in that bin is simply c

(wa )
α δmsys(zα).

Table 1. Expected galaxy num-
ber densities per redshift bin
in units of (h Mpc−1)3 for the
Euclid survey.

z n(z) × 10−3

0.5–0.7 3.56
0.7–0.9 2.42
0.9–1.1 1.81
1.1–1.3 1.44
1.3–1.5 0.99
1.5–1.7 0.55
1.7–1.9 0.29
1.9–2.1 0.15

(2003, 2007), also employed in Amendola, Quercellini & Giallongo
(2005). Here we give a short summary of the method and refer to
these papers for the implementation details. In the limit where the
survey volume Vsurvey is much larger than the scale of any features
in Pobs(k), it has been shown that the redshift survey Fisher matrix
in a redshift bin �z can be approximated as (Tegmark 1997)

Fij =
∫ 1

−1

∫ kmax

kmin

∂ ln Pobs(k, μ)

∂μi

∂ ln Pobs(k, μ)

∂μj

×Veff (k, μ)
2πk2 dk dμ

2(2π)3
. (48)

Here, k, μ are the wavevector modules and direction cosine with
respect to the line of sight, respectively, and the derivatives are
evaluated on the parameters μi of the fiducial model. The upper
cut-off kmax is chosen so as to avoid the non-linear regime, while
the large-scale cut-off kmin is set to 0.001 h Mpc−1 but its precise
value has a very weak impact. Veff is the effective volume of the
survey:

Veff (k, μ) =
[

ngPg(k, μ)

ngPg(k, μ) + 1

]2

Vsurvey, (49)

where Vsurvey is the 20 000 deg2 survey volume contained in a given
redshift bin. The galaxy comoving number density ng(z) is assumed
to be spatially constant within a redshift bin, while Pg is the galaxy
spectrum defined below. The total Fisher matrix is obtained by
summing over all the redshift bins of Table 1. The matter power
spectrum in any given cosmology can be written in terms of the
spectrum in the fiducial (or ‘reference’, subscript ‘ref’) cosmology
as

Pobs(kref⊥, kref‖, z) = D(z)2
refH (z)

D(z)2H (z)ref
Pg(kref⊥, kref‖, z) + Pshot, (50)

where

Pg(kref⊥, kref‖, z) = b(z)2

[
1 + β(z)

k2
ref‖

k2
ref⊥ + k2

ref‖

]2

Pmatter(k, z).

(51)

In equation (50), H(z) and D(z) are the Hubble parameter and the
angular diameter distance, respectively, and the pre-factor encapsu-
lates the geometrical distortions due to the Alcock–Paczynski effect
(Seo & Eisenstein 2003, 2007). k⊥ and k‖ are the wavenumbers
across and along the line of sight in the given cosmology, and they
are related to the wavenumbers calculated assuming the reference
cosmology by kref⊥ = k⊥D(z)/D(z)ref and kref‖ = k‖H(z)ref/H(z).
Pshot is the unknown white shot noise that remains even after the
conventional shot noise of inverse number density has been sub-
tracted (Seo & Eisenstein 2003, 2007). In equation (51), b(z) is
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the linear bias factor between galaxy and matter density distribu-
tions, f g(z) is the linear growth rate, β(z) = f g(z)/b(z) is the linear
redshift-space distortion parameter (Kaiser 1987) and Pmatter is the
linear matter power spectrum. The fiducial values for the bias and
the growth factor are b(z) = 1 and f g = �0.545

M , respectively. In di
Porto, Amendola & Branchini (2011) it has been shown that the
precise fiducial value of b(z) does not have a large impact on the
results.

This method employs all the information contained in the power
spectrum, including the redshift distortion, not just the position of
the baryonic wiggles. As above, we choose a flat fiducial cosmol-
ogy with �M = 0.24, h = 0.7, �DE = 0.737, �K = 0, �bh2 =
0.0223, ns = 0.96, w0 = −1, wa = 0. Unlike in the SN case, we
do not impose an explicit systematic floor in the forecasted BAO
errors; the finite sky coverage and density of galaxies provide an
effective floor for any given BAO survey. As mentioned above,
beside the cosmological parameters, for each redshift bin we also
include as free parameters to be differentiated (and then marginal-
ized) in the Fisher matrix a matter-galaxy bias factor and an addi-
tive shot noise term in the power spectrum (for details see Amen-
dola et al. 2005). These terms act as additional effective systematic
floors.

The systematic effect we assume for the redshift survey is a frac-
tional error in estimating the value of the Hubble function H(zi) of
magnitude Asyst = 0.001, 0.002, 0.005 in each bin i. Such a bias in
H(z) propagates to a bias in the angular diameter distance D(z), as
well, if the standard flat-space Friedman–Robertson–Walker rela-
tion

D(z) = (1 + z)−1

∫ z

0

dz′

H (z′)
(52)

holds true, which we assume here. The angular diameter distance
bias is then related to the Hubble function bias by

δ(ln D) = −δ(ln H )
H (z)

(1 + z)D(z)

∫ z

0

dz′

H 2(z′)
, (53)

where we have used the assumption that the bias in ln H is redshift
independent. This simple choice for modelling systematic errors in
BAO is meant to approximately capture a possible systematic shift
in the baryon peak position due to e.g. the presence of isocurva-
ture modes (Zunckel et al. 2011) or non-linear effects, of the kind
described e.g. in Seo et al. (2008). A more realistic choice of sys-
tematic errors is difficult to model accurately (as, for example, a
bias in H(z) and/or D(z) also modifies in general the whole spec-
trum behaviour and the redshift distortions), and it is left for future
work. Our present choice is meant as a simple illustration of the
method and a first step towards evaluating the robustness FoM.

If instead of the true matter power spectrum, P(k), we measure a
spectrum that contains a systematic error δsα = δ(ln Hα) or δsα =
δ(ln Dα) in the value of H(zα) and D(zα) (where the systematic shifts
are related by equation 53), the maximum likelihood estimate for
the ith parameter will be shifted with respect to its true value by a
bias given by (see e.g. Taylor et al. 2007)

δμi = F −1
ij

[
1

8π2

∫
dμk2dk

∂ ln P

∂μj

∂ ln P

∂sα

]
δsα

≡ c(i)
α δsα (54)

(sum over repeated indexes). Analogously to the previous subsec-
tion we have defined

c(i)
α ≡ F −1

ij

[
1

8π2

∫
dμk2dk

∂ ln P

∂μj

∂ ln P

∂sα

]
. (55)

In this particular case, however, the ith parameters coincide with
δsi = δ(ln Hi), δ(ln Di) and therefore the matrix c(i)

α is the identity
matrix. We can then directly project the systematic bias on to the
dark energy parameters (w0, wa), obtaining a bias vector b of the
form

bl =
∑

β

(
∂wl

∂ ln H (zβ )

− H (zβ )

(1 + zβ )D(zβ )

∫ zβ

0

dz′

H 2

∂wl

∂ ln D(zβ )

)
δ ln H (zβ ), (56)

where δ ln H(zβ ) = 0.001, 0.002, 0.005, the subscript β runs over
the redshift bins and l = 0, a. We have chosen to consider systematic
shifts in the range of 0.1 to 0.5 per cent to reflect ballpark estimates
of what BAO systematic errors due e.g. to residual non-linear cor-
rections might be. We stress once more that this is a simplified
treatment used here mainly for illustration purposes of our method.

We evaluate bl for each redshift bin and then estimate the maxi-
mum bias by following the same method discussed in the previous
subsection. Here it happens that the contributions to bl are always
positive and therefore automatically select the worst-case scenario,
i.e. the MEB. The resulting MEB for different levels of systematics
is shown as the green vectors in the bottom panel of Fig. 4, together

Figure 4. Construction of the robustness FoM for a future SN Ia survey (top
panel) and a future BAO Euclid-like survey (bottom panel). Red ellipses
show current 68 and 95 per cent constraints (in a Gaussian approximation)
from a combination of all available probes, blue ellipses show projected
constraints from the future probe at the fiducial point (assumed to be � cold
dark matter). The green vectors show the systematic MEB for systematic
errors of 1, 2 and 5 per cent for SN Ia and 0.1, 0.2 and 0.5 per cent for BAO.
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Robustness to systematics 151

Table 2. Robustness and statistical FoM for future BAO and SN Ia surveys for different levels of systematic errors in the observables. We also give the DETF
FoM for comparison (normalized to its value from current constraints). We also give the length of the bias vector b in the (w0, wa) plane. The MEB errors
refer to both D(zb) and H(zb) in the case of BAO, and m(zb) in the case of SN Ia.

BAO SN Ia
Maximum excursion bias Maximum excursion bias

FoM Symbol Defined in 0.1 per cent 0.2 per cent 0.5 per cent 1 per cent 2 per cent 5 per cent

Robustness RN equation (27) 1.4 0.83 0.026 1.7 1.3 0.24
Average robustness 〈R〉 equation (32) 1.4 1.1 0.54 1.7 1.4 0.81
Statistical FoM S equation (12) 2.7 7.0
Total FoM TN equation (33) 3.6 2.2 0.070 11.9 9.1 1.7
Total average FoM 〈T〉 equation (34) 3.8 2.9 1.4 11.9 9.8 5.7
Bias length |b| caption 0.18 0.36 0.90 0.34 0.68 1.7

DETF FoM equation (9) 4.4 13

with the statistical errors from our BAO probe (blue ellipses) and
current constraints (red ellipses), plotted for comparison.

5 R ESULTS

Our results for the statistical and robustness FoMs are summarized
in Table 2, where we give the values of our robustness, statistical and
total FoM. We also show the value of the DETF FoM (normalized
to the value obtained from the current probes) for comparison.

First, by inspecting Fig. 4, we notice that the systematic bias
projected on to the (w0, wa) plane is much better aligned with the
degeneracy direction of the probes for SN Ia than for BAO. From
our discussion in Section 3, this leads to expect a higher value for the
robustness FoM for SN Ia than for BAO. Furthermore, the size of the
bias vectors in the dark energy parameters is roughly comparable for
SN Ia and BAO, although in the latter case we have adopted a bias in
the observables (H and D) which is a factor of 10 smaller than for the
SN Ia observables (the magnitudes). Table 2 shows that indeed both
the robustness and the average robustness FoMs are slightly larger
for SN Ia than for BAO across the range of systematic error levels
we adopted for each probe. This is a consequence of the fact that the
BAO bias leads to a smaller degree of overlap of the BAO constraints
with the present-day constraints, which is a more serious lack of
robustness than for the SN Ia. In the latter case, although the bias
vectors are slightly larger in the dark energy parameters (typically
by a factor of 2, cf. Table 2), the bias direction is well aligned with
the statistical degeneracy, and therefore the reduction in the overlap
between the present constraints and future SN Ia constraints is less
severe, translating in a higher robustness. For the highest level of
systematic error in each case (0.5 per cent for BAO and 5 per cent
for SN Ia), we find that the robustness FoM for BAO is about a
factor of 10 smaller than for SN Ia. The average robustness of BAO
is also smaller, but only by about one-third, which reflects the more
balanced assessment given by the average robustness. Thus, for
our particular choice of systematics, our findings run against the
general lore that BAO observations are more robust to systematics
than SN Ia.

In terms of our statistical FoM, the SN Ia survey is better by a
factor of about 3, in good agreement with the result obtained from
the usual DETF FoM. Taken together, the better values of both the
statistical and robustness FoM for SN Ia lead to a higher value of
the total FoM for SN Ia than for BAO.

It is important to stress that our robustness results above are not a
generic feature of SN Ia and BAO observations. Rather, they reflect
our specific choices for the systematic bias in the observables for
BAO and SN Ia. Other choices of systematic bias are possible and

will in general give a different results for the robustness, which we
shall explore in a dedicated paper.

6 C O N C L U S I O N S

We have introduced a new formalism to quantify the robustness
of future dark energy probes to systematic bias, and argued that
this important new quantity should be taken into account when
evaluating the performance of future surveys. In contrast to usual
measures of statistical performance, our robustness FoMs depend
on the direction and size of the systematic bias induced in the dark
energy parameters by residual systematics in the observables. We
have thus described an approach to include the effect of systematic
errors in the dark energy FoMs.

We have applied this formalism to future SN Ia and BAO probes
by developing a simple phenomenological model of possible resid-
ual systematic errors. Our results indicate that – for the specific
choice of systematics adopted here – SN Ia are slightly more robust
to systematics than BAO, despite having assumed a systematic shift
in the observables for SN Ia which is a factor of 10 larger than for
BAO. Coupled with the higher statistical performance of SN Ia, this
would lead to prefer SN Ia over BAO in terms of their overall FoM.
It is clear, however, that this particular result cannot be generalized
beyond our choice of systematics and surveys. In a future work we
will investigate how this result change by adopting more refined
descriptions of the systematic bias for each probe.
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APPENDIX A

The generalization of equation (20) to an arbitrary number of probes
proceeds as follows. First, we notice that one can always summarize
current constraints from several observations in one single joint
posterior. Let us call the data from the combination of all available
present-day probes d0 (with Fisher matrix F0). If one wishes to
consider N future probes, we can ask whether all of the N probes
are mutually compatible.7 Equation (15) gives in this case

Rall = p(dNdN−1 . . . d1|d0)∏N
j=1 p(dj |d0)

(A2)

7 An alternative test would be to check whether the Nth probe is compatible
with the previous N − 1 (assuming those are already available and they are
free of systematics themselves). In this case the relevant quantity is

RN = p(dN |dN−1 . . . d1)

p(dN )p(dN−1 . . . d1)
, (A1)

which can be computed by appropriate substitutions in equation (20).

=
N∏

j=1

p(dj |dj−1 . . . d1d0)

p(dj |d0)
(A3)

=
N∏

j=2

p(dj |dj−1 . . . d1d0)

p(dj |d0)
, (A4)

where in the last line we have cancelled out the very last term in
both the numerator and the denominator, so that the sum starts with
j = 2. We now refer to equation (17) to obtain

p(dj |dj−1 . . . d1d0) = L(j )
0

|F012...(j−1)|1/2

|F012...j |1/2

× exp

[
−1

2

(
μt

jLjμj

+ μt
012...(j−1)F012...(j−1)μ012...(j−1)

− μt
012...jF012...jμ012...j

) ]
, (A5)

where the definitions correspond to those before, so that F012...j ≡
F0 + ∑j

i=1 Li , and in particular F012...N ≡ F. Notice already that
most terms in the numerator of equation (A4) will cancel.

Similarly, following equation (18)

p(dj |d0) = L(2)
0

|F0|1/2

|F0j |1/2

× exp

[
−1

2

(
μt

jLjμj + μt
0F0μ0 − μt

0jF0jμ0j

)]
.

(A6)

Now one can evaluate equation (A4) with the help of equations (A5)
and (A6):

Rall = |F01|1/2

|F |1/2

N∏
j=2

|F0|−1/2

|F0j |−1/2
exp

[
−1

2

(
μt

01F01μ01 − μtFμ

− (N − 1)μt
0F0μ0 +

N∑
j=2

μt
0jF0jμ0j

)]
. (A7)

We thus obtain for the robustness:

ln Rall = 1

2

(
N∑

i=1

ln |F0i | − (N − 1) ln |F0| − ln F

)

− 1

2

(
N∑

i=1

μt
0iF0iμ0i − (N − 1)μt

0F0μ0 − μtFμ

)
,

(A8)

which generalizes equation (20).
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