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Copper plays a vital role in fundamental cellular functions, and

its concentration in the cell must be tightly regulated, as

dysfunction of copper homeostasis is linked to severe

neurological diseases and cancer. This review provides a

compendium of current knowledge regarding the mechanism

of copper transfer from the blood system to the Golgi

apparatus; this mechanism involves the copper transporter

hCtr1, the metallochaperone Atox1, and the ATPases ATP7A/

B. We discuss key insights regarding the structural and

functional properties of the hCtr1-Atox1-ATP7B cycle,

obtained from diverse studies relying on distinct yet

complementary biophysical, biochemical, and computational

methods. We further address the mechanistic aspects of the

cycle that continue to remain elusive. These knowledge gaps

must be filled in order to be able to harness our understanding

of copper transfer to develop therapeutic approaches with the

capacity to modulate copper metabolism.
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Introduction
Copper, like other metals, has a pivotal role in fundamental

processes of cell function. It takes part in cellular respira-

tion, iron oxidation, pigment formation, neurotransmitter

biosynthesis, antioxidant defense, and connective tissue

formation. Yet, when present at excessive concentrations, it

can endanger the cell’s survival, by causing de-regulated

oxidation of proteins, lipids, and other cellular components,

ultimately leading to injury. Moreover, free Cu ions can
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produce radical oxygen species (ROS), which can lead to

cytotoxic interactions with cell membranes [1–2,3�,4].
Insufficient concentrations of copper, in turn, can lead to

metabolic abnormalities, as copper-dependent proteins

drive iron absorption, and a copper deficiency can therefore

lead to iron deficiency. Thus, intracellular pathways of

copper metabolism have evolved to ensure the appropriate

amount of Cu for cell survival.

Broadly, copper follows the following trajectory through

the human body: First, it accumulates in the blood

through diet. Once it has been ingested, it is taken up

from the blood by the copper transporter hCtr1. The

copper is then reduced from its oxidized form, Cu(II), to

the Cu(I) form; the mechanism of reduction is not fully

known, as elaborated in what follows. Then, the trans-

porter translocates the Cu(I) into the cell. Next, specific

Cu(I) chaperones deliver the metal to the appropriate

cellular pathways (Figure 1) [5–8]. One such chaperone is

Atox1, which transfers Cu(I) to its transporting ATPases

in the Golgi apparatus. These ATPases include ATP7A

and ATP7B, which play a biosynthetic role, delivering Cu

(I) to the secretory pathway for metalation of cuproen-

zymes, and a homeostatic role, exporting excess Cu(I)

from the cell. Additional chaperones include CCS, which

is required for Cu(I) incorporation into cytoplasmic

Cu/Zn superoxide dismutase, and Cox17, which delivers

Cu(I) to mitochondrial cytochrome c oxidase.

In what follows, we provide an overview of current

knowledge regarding the hCtr1-Atox1-ATP7B cycle.

The hCtr1-Atox1-ATP7A/B cycle is associated with

Menkes’ disease and with Wilson’s disease, in which

mutations in ATP7A/B disrupt the homeostatic copper

balance, resulting in Cu deficiency or overload, respec-

tively. Beside these rare genetic diseases, the cycle has

been implicated in Alzheimer‘s and Parkinson‘s diseases,

and in anti-cancer drug resistance [1,2,9–12]. Here, we

summarize atomic-level type of information on key resi-

dues that are significant for function, and structural and

kinetic insights on the copper transfer mechanism along

its delivery path from the blood system to the Golgi

apparatus and/or its egress from the cell.

Experimental and computational approaches
used to study copper trafficking
This review compiles information obtained through

diverse experimental and computational methodologies.
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The human copper cycle system.
These latter include X-ray crystallography and nuclear

magnetic resonance (NMR) spectroscopy, which were

used to solve the 3D structures of the chaperone Atox1

[13��] and the metal-binding domains (MBDs) of ATP7A/

B [14–16]. Single molecule FRET (sm-FRET) was used

to obtain kinetic information on Cu(I) transfer from Atox1

to ATP7B [17��]. Electron paramagnetic resonance (EPR)

spectroscopy has been used to characterize the various

conformational states of Atox1 in solution while interact-

ing with its partner proteins [18]. Moreover, ultraviolet-

visible spectroscopy (UV-VIS) experiments and cell

experiments were performed to target essential residues

for Cu coordination and function. Computational meth-

ods such as molecular dynamics (MD) simulations, rely-

ing on force fields, have been applied to explore the free

energy landscape of protein monomers and dimers medi-

ating Cu transport [19], whereas mixed quantum classical

simulations (QM/MM), able to overcome limitations of

predefined force fields, have been employed to properly

characterize metal Cu(I) coordination to these proteins, as

well as its reaction/transfer mechanism [20].

Copper uptake by the transporter hCtr1
In 1997, Zhou and Gitschier became the first to identify a

human gene for copper uptake, hCTR1. They showed

that each hCtr1 polypeptide contains 190 amino acids

[21]. Ten years later Unger et al. [22�,23] reported a three-

dimensional, 6-Å-resolution structure of hCtr1 using cryo-

genic electron microscopy; they showed that the protein

is a trimer containing: (1) 60 amino acids in the extracel-

lular N-terminal domain; (2) three transmembrane (TM)

helices (TM1, 2, and 3); (3) an intracellular loop of

46 amino acids, connecting TM1 and TM2; and (4) a

short intracellular C-terminal domain with 15 amino acids

(Figure 2).
www.sciencedirect.com 
The extracellular domain of hCtr1 is characterized by several

motifs: glycosylation sites, histidine (His)-rich sites, and

methionine (Met) motifs. There are two glycosylation

sites in hCtr1: N15 and T27. N15 is not required for

function [24�]. Conversely, when O-glycosylation at T27

is prevented, the first 30 amino acids of hCtr1 are cleaved

[25].

The His-rich sites in the extracellular domain of hCtr1—

comprising two motifs, 1MDHxHH and 22HHH—are

suggested to serve as Cu(II) binding sites. This idea is

supported by UV-VIS experiments showing that the

extracellular part of hCtr1 can bind two Cu(II) ions

[26��]. EPR spectroscopy experiments suggest that the

process by which Cu(II) is transferred from the blood to

hCtr1 involves the blood carrier protein human serum

albumin (HSA), as reflected in evidence of close inter-

actions between HSA and the N-terminal domain of

hCtr1 [27].

The Met-rich motifs in the extracellular domain—two

segments, 7MxMxxM and 41MMMxM—are shared by

many proteins involved in Cu(I)-metabolism; these seg-

ments bind Cu(I) with mM affinity [28], and they are

essential for hCtr1’s recruitment of Cu(I), produced

through the reduction of Cu(II) [29,30�]. Du et al. used

UV-VIS titrations to show that three Cu(I) ions can

coordinate to the extracellular part of hCtr1 [26��]. A

combination of EPR, NMR, and UV-VIS experiments

performed on the first 14 residues of hCtr1 indicated that

H5 and H6 form the first Cu(II) binding site, whereas M7,

M9 and M12 constitute the first Cu(I) binding site [31].

Notably, the mechanism of the Cu(II)-to-Cu(I) reduction

process remains unclear. It has been suggested that

copper and iron metabolism are intimately linked, with

the two metals mutually participating in each other’s

oxidation/reduction reactions. This proposition is sup-

ported by observations that in the yeast Saccharomyces
cerevisiae, both Cu(II) and Fe(III) are reduced in the

plasma membrane by Fre1 or Fre2 [32,33], and both

Cu(I) and Fe(II) are oxidized (to Cu(II) and to Fe(III),

respectively) by Fet3 metalloxidase [34,35].

The TM domain of hCtr1 is characterized by conserved
150MxxxM and 167GxxxG motifs. De Feo et al. identified

M150 and M154 in TM2 as Cu(I)-binding residues,

whereas G167 and G171, both located in TM3, were

proposed to mediate a tight interface between TM1

and TM3 [23]. Schushan et al. constructed a Ca-trace
model of the TM domain of hCtr1, which agreed well

with the experimental structure [36��]. Using a Gaussian

network model and an anisotropic network model, they

identified possible functional motions of the TM helices.

On the basis of these motions, the authors proposed

a transport mechanism in which the Cu(I) ions are

transferred one at a time, and M154 (which points to
Current Opinion in Structural Biology 2019, 58:26–33
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Figure 2
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hCtr1 monomer sequence. Special residues are marked with distinct colors.
the extracellular part of the membrane) along with H139

and E84 (conserved residues) control the transporter’s

motion as a function of metal ion binding and a pH shift.

This model is supported by biochemical experiments

showing that H139 and E84 are indeed important func-

tional residues [37,38]. Tsigelny et al. used all-atom

simulations to develop a model for the full structure of

hCtr1 [39]; using a Ca trace approach, they suggested that

M43, M45, M150, and M154, and the 188HCH motif in

the C-terminal domain are important residues for Cu(I)

binding.

The intracellular domain of hCtr1 contains two parts: an

intracellular loop between TM1 and TM2, and a short

C-terminal tail. The last 15 residues, ending with a
188HCH motif, are essential for Cu(I) transport. Kaplan

and co-workers used 64Cu cell experiments to show that
Current Opinion in Structural Biology 2019, 58:26–33 
C189 is notessential forCu(I) uptake [24�],but that 188HCH

residuesare vital for transfer and regulation purposes [37]. In

the intracellular domain C189 was found to be critical for Cu

(I) binding and transfer to Atox1 [37,40�]. NMR experi-

ments revealed that Cu(I) binds to 188HCH with high

affinity (KD of 10�14 M) [41]. As a result, Cu(I) can be

released to its target by protein–protein interaction, while

being unable to freely dissociate from hCtr1. A recent study

thatusedEPRalongwith circulardichroism(CD)andNMR

[42] showed that the intracellular loop can form a second

low-affinity Cu(I)-binding site (KD �1–10 mM) involving

the residues M106, M117, and H120.

Distribution of Cu(I) by the metallochaperone
Atox1
Atox1, also called Hah1, is a soluble protein (68 amino

acids), displaying a babbab fold [13��]. It coordinates one
www.sciencedirect.com
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Figure 3
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(a) Proposed mechanism for Cu(I) transfer from Atox1 to MBD4. (b) Representative structure obtained by MD for the interaction between holo-

Atox1 and MBD4. (c) The structure and electrostatic potential surface of holo-Atox1 monomer and MBD4.
Cu(I) ion with the cysteine residues of a conserved

10MxCxxC motif (Figure 3). Cu(I)’s binding affinity

toward Atox1 is even higher than that for the C-terminal

domain of hCtr1 (KD = 10�17.4 M), enabling Cu(I) to be

transferred from hCtr1 to the metallochaperone [43].

Data obtained from the crystal structure of Atox1, as well

as from NMR experiments and QM/MM simulations,

point to additional residues, besides the conserved

Cys-based motif that are important to Atox1 function.

Specifically, K60 was found to be important for neutral-

izing the negative charge in the Cu(I) binding site, and

T11 was shown to contribute to the Atox1’s flexibility

[44–46]. Additionally, M10, completely conserved across

different organisms, is buried in the hydrophobic core,

contributing to Atox1’s stability [47]. Far-UV CD titration

experiments in the pH range 6–11 showed that Cu(I)

affinity for Atox1 decreases with the pH level, owing to

protonation of the cysteine residues in the binding site

[48��]. Considering that hypoxic malignant cells are
www.sciencedirect.com 
characterized by low pH, this finding might point to a

mechanism by which cancer interferes with Cu-homeo-

stasis [49,50].

Notably, sm-FRET experiments have demonstrated that

Atox1 can assume two conformational states, both able to

interact with the target protein ATP7B [17��]. EPR

measurements together with computations have resolved

these two conformational states [18,40�,42], further sug-

gesting that Atox1 can adopt conformations specific to its

target protein. EPR experiments have also revealed the

importance of 188HCH in stabilizing the complex com-

prising the C-terminal tail of hCtr1 and Atox1 [40�], and

have confirmed that Atox1 interacts with the intracellular

domain of hCtr1 (both the C-terminal tail and the intra-

cellular loop) as a homodimer. The Atox1 homodimer has

been solved by X-ray studies showing that the Atox1

dimer is stabilized by metal-mediated interactions, and

by complementarity in the electrostatic interactions

between the two monomers [44].
Current Opinion in Structural Biology 2019, 58:26–33
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Cu(I) uptake by the metal-binding domains of
ATP7B
ATP7B is made of eight TM segments and two large

cytosolic domains: (i) the N-terminal Cu-binding domain,

and (ii) the catalytic ATP hydrolyzing domain [51]. Over

300 mutations in ATP7B have been identified that affect

its function, indicating that almost one-third of the

encoded residues are strictly required for proper ATP7B

function. These observations suggest that, beyond iden-

tifying point mutations that affect Cu-homeostasis, it is

necessary to obtain a detailed mechanistic picture of Cu

(I) transfer in order to unravel the molecular basis of its

metabolism.

Atox1 interacts with the N-terminal domain of ATP7B,

which contains six MBDs connected by linkers. Similar to
Figure 4
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the Atox1 metallochaperone, each MBD has a ferredoxin-

like fold with a compact babbab structure and a con-

served metal-binding motif MxCxxC, located in the

solvent-exposed b1-a1 loop. On the basis of the struc-

tures of Atox1 and of an MBD of ATP7B, Wernimont

et al. proposed a mechanism for Cu(I) transfer from Atox1

to the MBD (Figure 3). In this model Atox1 transfers Cu

(I) to a single MBD through consecutive ligand exchange

reactions [44]. Subsequent studies used biophysical and

computational methods to characterize the interactions

between Atox1 and the six MBDs of ATP7A/B, focusing

mostly on MBD4. NMR studies showed that the six

MBD units (MBD1–6) can be differentiated into two

groups, comprising MBD1–3, and MBD5–6, with MBD4

serving as a linker between them [14,44,52]. The struc-

tures of MBD3 and MBD4 were also solved using NMR
inal domain
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ting Cu(I) transfer mechanism, cycling between a dimer to monomer

www.sciencedirect.com
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[15,53]. Of all the MBDs, Atox1 interacts most strongly

with MBD1-MBD4, whereas it does not interact with

MBD5 or with MBD6 [14,16,54,55]. Cu(I) binding to

regulatory MBD1–4 stimulates its transport by ATP7B

and presumably facilitates the trafficking of the trans-

porter by exposing sites for further modifications and

protein–protein interactions [15,56��]. However, NMR

studies and MD simulations revealed an exclusive inter-

action between Atox1 and MBD4, and not with MBD3

[19,54]. Whereas, smFRET experiments identified a

dynamic situation in which, because of its structural

flexibility, Atox1 can coordinate either MBD3, MBD4,

or the two domains simultaneously, MBD3–4 [17��]. A

recent study by our group, relying on a combination of

EPR and MD simulations, revealed that Cu(I) extrusion

is most likely mediated by Atox1 binding to MBD4 via

the formation of transient interactions mediated by elec-

trostatic complementarity of the two surfaces. Regarding

the chemical mechanism, Cu(I) appears to be transferred

by ligand exchange from C12/C15 of Atox1 to C370/C373

of MBD4 via the formation of several intermediates

displaying a three-coordinated Cu(I) site (Figure 3).

QM/MM simulations suggest that K60 of Atox1 may

actively modulate the Cu(I) exchange [54]. All these

experiments indicate that Atox1 interacts with MBDs

in a monomeric state [57,58], in contrast to its interaction

with hCtr1, as a dimer (Figure 3). Figure 4 shows a

mechanistic picture of Cu(I) transfer from hCtr1 to

MBD of ATP7B based on the current knowledge.

Conclusions
In recent years, significant progress has been made toward

elucidating the mechanisms underlying intracellular cop-

per regulation. Multiple distinct studies have consistently

revealed that the methionine segments and cysteine-

based motifs present in the various components of the

hCtr1-Atox1-ATP7A/B cycle are critical for Cu(I) bind-

ing. Studies investigating the effect of pH on Cu(I)

affinity to proteins have provided critical insights regard-

ing the possible mechanisms of cysteine ligand exchange

reactions underlying metal transport. Discoveries regard-

ing the conformational flexibility of Atox1, together with

its capacity to function either in a dimeric or monomeric

form, depending on its protein partner, indicate how the

metallochaperone elegantly mediates Cu(I) transfer from

hCtr1 to the Golgi apparatus and/or to its excretion route.

In spite of these achievements, many gaps remain in our

understanding of this important metabolic pathway. In

particular, knowledge of the mechanisms underlying

hCtr1 and ATP7A/B function remains fragmentary, owing

to the challenges involved in expressing and purifying

these proteins for biophysical research, and in resolving a

structural model at atomic-level resolution. It is necessary

to overcome these obstacles, using a combination of

biophysical, biochemical, and computational approaches,

in order to identify all Cu(I) binding sites, and to obtain a
www.sciencedirect.com 
comprehensive understanding of the Cu(I) transfer mech-

anism. As discussed above, current experimental and

computational data suggest that each MBD in ATP7B

has a specific role; these observations should be further

analyzed and confirmed on the full-length ATP7B.

A more complete understanding of hCtr1-Atox1-ATP7A/

B cycle may contribute toward the development of treat-

ment for diseases associated with Cu-metabolism dys-

function, including Menkes’ and Wilson’s diseases. Cur-

rent treatment for these conditions relies on Cu-chelators,

which have led to an increased lifespan in some patients,

yet are not uniformly effective. Moreover, although

numerous studies have identified connections between

copper regulation and neurological diseases such as

Parkinson’s, Alzheimer’s and prion diseases, the under-

lying mechanisms of these connections remains elusive.

Similarly, the role of Cu-transport and homeostasis in

cancer, and in resistance to commonly used metal-based

anticancer drugs, remains unresolved [9,10].

Herein, we have sought to depict current understanding

of the Cu-transfer mechanism at the atomic level, empha-

sizing the delicate balance of transient protein–protein

interactions underlying metal transfer, reactivity, and

homeostasis. It remains a daunting challenge to harness

this knowledge for future innovative therapeutic

approaches aiming at counteracting the many pathologi-

cal states associated with Cu-dis-homeostasis.
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