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ABSTRACT
Cosmologists will soon be in a unique position. Observational noise will gradually be replaced
by cosmic variance as the dominant source of uncertainty in an increasing number of obser-
vations. We reflect on the ramifications for the discovery and verification of new models. If
there are features in the full data set that call for a new model, there will be no subsequent
observations to test that model’s predictions. We give specific examples of the problem by
discussing the pitfalls of model discovery by prior adjustment in the context of dark energy
models and inflationary theories. We show how the gradual release of data can mitigate this
difficulty, allowing anomalies to be identified and new models to be proposed and tested. We
advocate that observers plan for the frugal release of data from future cosmic-variance-limited
observations.

Key words: methods: data analysis – methods: statistical – cosmic microwave background –
cosmology: observations.

1 I N T RO D U C T I O N

Cosmologists can only make observations on (or occasionally
within) our past light cone. Whatever the reality of the multiverse,
we Earth-bound humans of the T CMB = 2.725 K era have access
to only a finite volume of space, containing finite energy and in-
formation. The exciting period in which we find ourselves learning
more and more about this volume of accessible space and its con-
tents cannot last forever. While we are unlikely to gather all the
existing information content of the observable Universe, we are
already making substantial inroads on the information of cosmic
significance.

The most notable example of confronting the finite information
content of the Universe is our measurements of the power in the
lowest multipoles C� of the cosmic microwave background (CMB)
temperature anisotropies. Their statistical error bars are now smaller
than the ‘cosmic variance’ errors – the expected difference between
what we measure for these multipoles and what we would mea-
sure if we could average over many independent horizon volumes.
The range of � for which this is true is increasing as the Wilkinson
Microwave Anisotropy Probe (WMAP) continues to report new re-
sults. This trend will accelerate as new experiments join the fray.
(Though we could wait a few hundred million years to gain access
to a mostly independent last scattering surface.)

The CMB temperature–temperature power spectrum is unlikely
to be the last place where the finite Universe limits cosmology.
Astronomical surveys are already cataloguing an increasing fraction
of all the structures within our past light cone. Redshifted hydrogen
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hyperfine instruments will eventually extend the volume over which
we map the structure of matter nearly out to the horizon.

There are consequences to becoming a data-limited science. We
upset the balance between applying the brain’s remarkable pattern-
finding abilities and testing the robustness of the patterns we dis-
cover. We may see patterns in finite data, but, unable to collect
new data, we have no way to confirm their reality, missing out on
potentially significant discoveries. We risk falling for what particle
physicists call ‘the look elsewhere effect’, i.e. the spurious ‘dis-
covery’ of statistically significant anomalies which are merely the
consequence of performing a large number of tests on the same data.
A small fraction of these are bound to report significant ‘evidence’
for unexpected features due to random noise. Unlike experimental
scientists, we may no longer be able to collect data, form a new hy-
pothesis and test its predictions. Our ability to distinguish between
statistical fluctuations and real effects becomes limited.

Given that the challenge of finite data is upon us, our best hope
is to devise strategies to minimize its effects. The approach that we
shall explore and advocate is to simulate the cycle of data acquisition
and analysis by being frugal. By allowing colleagues to see only
subsets of the data, construct hypotheses based on them and then test
those hypotheses on larger subsets, we can aim to avoid unexplained
anomalies with untestable explanations.

The benefits of frugality arise not from some magical improve-
ments in the statistical power of the data, but from acknowledging
and mitigating a basic human failing: over-confidence. Specifically,
by assigning all probability to the set of physical models that we have
thought about and consequently zero probability to all other mod-
els, we ignore that we may not have considered the correct model.
Frugality allows us to redress those wrongs by admitting such
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models and testing their predictions on our remaining data. We
examine the effects of (and several strategies for) dividing cosmo-
logical data into several pieces so that new models can be consis-
tently explored.

2 MODEL DISCOVERY

2.1 Bayesian model selection and prior updating

We take a Bayesian outlook on hypothesis testing, as we believe
(and show below) that this closely reflects the way we think about
models. Another reason for being wary of the usual (frequentist)
practice of reporting p values is that the latter are not probabilities
for hypotheses, despite being commonly misinterpreted as such
(Sellke, Bayarri & Berger 2001; Gordon & Trotta 2007). Suppose
we have a model M0 with parameters θ 0, that we wish to evaluate in
light of data d. Our updated state of belief in the model’s parameters
is given by the posterior probability distribution function (pdf) on
θ0, obtained via the Bayes theorem:

p(θ0|d,M0) = p(d|θ0,M0)
p(θ0|M0)

p(d|M0)
, (1)

where p(d|θ0, M0) is the likelihood, p(θ0|M0) the prior on the
parameters θ0 and p(d|M0) is the marginal likelihood for M0. Now
suppose we note a feature in the data that is not reproduced by
model M0 (e.g. by computing the doubt, as in Starkman, Trotta &
Vaudrevange 2008). We invent a model M1 with parameters θ 1 as
an explanation for the said feature and compute the evidence for
both models (i = 0, 1):

p(d|Mi) =
∫

dθip(d|θi, Mi)p(θi |Mi) . (2)

Each model’s posterior probability in light of d is given by
p(Mi |d) = p(d|Mi)p(Mi)/p(d). The ratio of our degrees of belief
in the models, the Bayes factor B10 = p(d|M1)/p(d|M0), penalizes
models that are unnecessarily complex, e.g. because of an excessive
number of free parameters, automatically encapsulating Occam’s
razor (see e.g. Trotta 2007a, 2008). In order to increase confidence
in the new model M1, all that is required is B10 > 1, i.e. that M1 be a
more ‘effective’ description of the presently available data. There is
no dependence on the model’s predictivity for future observations.

In practice, a new model probably would not (and arguably should
not) be accepted until it produces a correct prediction for future data
d ′ that differs from the old model’s, thus enabling the models to be
distinguished. Formally, the models’ relative posterior odds after
seeing both sets of data are given by

p(M1|d, d ′)
p(M0|d, d ′)

= p(d ′|M1)

p(d ′|M0)

p(d|M1)

p(d|M0)

p(M1)

p(M0)
. (3)

Before the data set d came along, model M1 was not even on the
table: p(M1) = 0. The step of introducing M1, while absolutely
crucial, formally requires the injection of an infinite amount of
information to raise p(M1) from 0 to a finite value. This prior
adjustment is on top of the change in degree of belief coming from
d. It amounts to using the data d twice, first to introduce M1 by
adjusting its prior and then to evaluate the evidence from d.

The duplicate use of the data d leads to posterior odds which can
seriously overstate the statistical significance of a new effect. We
suggest to ‘forget’ about the details of d, compress its information
into a new non-zero (and still subjective) prior p(M1) and then
compute the posterior odds arising solely from d ′, i.e.

p(M1|d, d ′)
p(M0|d, d ′)

= p(d ′|M1)

p(d ′|M0)

p(M1)

p(M0)
. (4)

If an unlimited amount of data is accessible and the anomaly is
correctly modelled by M1, it is guaranteed to become eventually
favoured by the Bayes factor, independent of the exact choices of pri-
ors. Using a finite, cosmic-variance-limited data set only increases
the likelihood that M1 is confirmed before the data are exhausted,
the more the bigger the fraction of unused data in d ′.

2.2 Examples of prior adjustments in cosmology

Two notable examples in cosmology of devising new models and
then adjusting their priors are the discovery of dark energy and the
realization that inflation can easily accommodate � < 1.

The discovery of a non-zero, yet tiny cosmological constant �

was in stark contradiction to prior expectations. Particle-physics
considerations suggested that � should either be 0 (model M1)
or have a uniform prior between ±M4

p (model M2), p(�|M1) =
δ(�), p(�|M2) = �(|�| − M4

p )/2M4
p , where Mp is the reduced

Planck mass, �(x) is a step function and δ(x) is a Dirac delta
distribution. Oversimplifying history, let us assume that these were
the only theories at hand and had equal priors:1 p(M1) = p(M2) =
1
2 .

Along came supernova (SN) redshift measurements (Perlmutter
et al. 1999), suggesting a late-time acceleration of the Universe
driven by (in the simplest models) a small �0

M4
p

≈ 10−120. To simplify,

let us assume that the available SN data presented a 5σ deviation
from � = 0. Computing the Bayes factor using the Savage–Dickey
density ratio (Trotta 2007b) gives

B12 = p(� = 0|d,M2)

p(� = 0|M2)
= 10121

√
2π

e−25/2 ≈ 10115 . (5)

Due to strong Occam’s razor effect of the prior on M2, a vanishing
cosmological constant should have still been vastly preferred, with
odds of the order of 10115:1, over a model including a hugely fine-
tuned �. An ∼23σ detection of a non-zero cosmological constant
would have been required to over-ride Occam’s razor of the prior.

However, the particle-physics community started reconsidering
priors and developed a new model M3 involving anthropic reason-
ing which gave more weight to small values of �, p(�|M3) =
�(10�0 − �)/10�0, with model priors now being p(M1) =
p(M2) = p(M3) = 1

3 . Under the new anthropic prior, the ef-
fect of Occam’s razor is vastly reduced, giving a Bayes factor
B13 ≈ 10−4, now favouring model M3. The parameter value that
was a priori considered unnatural under the original model for
a cosmological constant (small non-zero �) described the data
better than the prevailing model of � = 0, but not sufficiently
well to be preferred. Introducing an anthropic model based on the
landscape picture in string theory (Bousso & Polchinski 2000;
Giddings, Kachru & Polchinski 2002; Douglas 2003; Susskind
2003; Starkman & Trotta 2006) allowed a small, non-zero cos-
mological constant to become the preferred description of the data
which has since been supported by other observations such as CMB
and baryon acoustic oscillations.

It is interesting that ex post facto one might argue that perhaps �

is restricted to be a positive quantity, in which case the appropriate
prior would be uniform in ln � rather than in � (Evrard & Coles
1995; Kirchner & Ellis 2003). Under this model M4, and assuming
a cut-off � > �min = 10−500M4

p (see Starkman & Trotta 2006), one

1 An interesting suggestion for choosing the model’s priors based on a
maximum entropy argument has been put forward by Brewer & Francis
(2009).
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obtains a Bayes factor B14 ≈ 10−2, i.e. moderate support for �,
analogously to what can be obtained by anthropic arguments.

An earlier example of discovering a new model through adjust-
ing priors happened in the mid- to late-90s. The overwhelming
evidence for �tot ≈ 0.3 < 1 posed a problem for inflation, as it
had been viewed to generically predict a flat universe with � ≈
1 to high accuracy – this generally accepted model could not de-
scribe observations. Different models (mostly using multiple stages
of inflation) were devised that produced open universes (Bucher,
Goldhaber & Turok 1995). In other words, after observing that � ≈
0.3, the priors for single-stage inflation, p(M0), and for multistage
inflation, p(M1), were adjusted from p(M0) � p(M1) to p(M1) ≈
p(M0). The prediction for future observations – corroborating ev-
idence for � ≈ 0.3 – was proven wrong by measurements of � ≈
1 (Netterfield et al. 2002). The priors were reverted back to
p(M0) � p(M1), making multistage models all but obsolete.

Note that in both the above examples, it was crucial that predic-
tions of the new model could be tested by follow-up independent
observations which either confirmed or rejected the new model.

3 T H E N E E D F O R F RU G A L I T Y

With the launch of the Planck satellite, the power spectrum of the
temperature fluctuations, CTT

� , will be limited by cosmic variance
all the way up to � > 2000. No future observation will ever obtain
more precise measurements of the CMB temperature fluctuations
in this � range (barring problems with unanticipated systematics),
and higher � ranges begin to be dominated by foreground sources.
If there are features in the Planck data that cannot be adequately
explained by � cold dark matter (�CDM; such as a strong corre-
lation between different multipoles), we could and should devise
a revised concordance model. But we would be unable to test its
predictions with future CMB temperature measurements!

After the Cosmic Background Explorer (COBE) experiment
(Smoot et al. 1992) observed hints of a low quadrupole, it took
subsequent confirming measurements by WMAP to establish this
(Spergel et al. 2003, 2007; Komatsu et al. 2009) and to detect the
planarity of the quadrupole and octopole and their alignment with
each other, perpendicular to the ecliptic, with an axis towards the
CMB dipole (de Oliveira-Costa et al. 2004; Schwarz et al. 2004;
Land & Magueijo 2005), where cosmic variance is already the limit-
ing factor. Thus, possible new models explaining the low � multipole
alignments cannot be tested on their predictions for future measure-
ments of these multipoles. Instead, one has to look for different
predictions from the new models, e.g. by looking for circles in the
sky as a signature of a topologically non-trivial universe (Cornish
et al. 2004). If only parts of the WMAP data had been released,
tantalizing enough to induce people to look for new models, there
would have been room to test the predictions of these models for
the low �s.

In the (perhaps not so distant) future, a similar situation will
arise with other cosmological experiments. Large-scale structure
observations by way of galaxy counts will eventually measure the
positions and redshifts of all galaxies in our Hubble patch with
high precision (neglecting uncertainties due to non-linearities). The
distribution of hydrogen will be mapped with observations or the
Lyα forest. Eventually all observations on cosmological scales will
reach the cosmic variance limit, as we only have this one Universe
from which to sample.

In light of this, it seems imperative to reflect on ways to extract an
optimal amount of information from complete finite data sets. They
should be used not only to better constrain the parameters of the

concordance model, but also to discover and test new models. We
need to devise schemes for incremental data release as cosmologi-
cal analogues of blind analysis, a procedure often used in particle
physics, where the need to avoid the (possibly unconscious) in-
fluence of the statistical methodology adopted on the significance
of the results is a well-recognized problem (see e.g. Lyons 2008).
For example, one wants to avoid (unwillingly) biasing the signif-
icance of a signal when designing the ‘cuts’ on the number of
observed events. Several strategies have been devised to this end.
For example, a random number can be added to the data and sub-
tracted only after all corrections and other data manipulations have
been performed, or just a fraction of the data is employed to de-
fine the statistical procedure, while the remainder of the data are
only revealed in a subsequent phase. After that point, no further
adjustments of the methodology are allowed. The split of data into
subsets can either happen in time (an obvious solution for many
particle-physics experiments) or in data space. In the latter case, a
‘signal box’ of data is left closed until potential anomalies in the
first chunk of observations have been identified and statistical tests
for their confirmation designed, at which point the box is opened
and the analysis unblinded. An example of such a procedure is
the miniBooNE neutrino oscillation experiment (Bazarko 2001).
Another method is sometimes adopted by precision measurements
where the analysis team is allowed to see the full data sets, but with
arbitrary units. The resulting parameter constraints are rescaled to
the actual units only at the very end of the analysis.

All of these strategies are designed with the common aim of
keeping a part of the information hidden from the first stage of
the analysis, so as to be able to exploit the full statistical power
of the hidden data upon unblinding. We now turn to the discussion
of possible ways of applying this idea in the cosmological context.

4 STRATEGI ES FOR THE RELEASE
O F PA RT I A L DATA

There is always a random element involved in choosing a good
way to split data, where the definition of ‘good’ often depends on
the unknown anomalies one is hoping to be able to test. Suppose
we throw a single coin 2N times after which it is lost. The first N
throws include an equal number of heads and tails, while the last
N tosses are all tails. Splitting this data set into these two chunks,
the first set points towards the model of a fair coin. The second
set (all tails) raises serious doubt about this model. But we have
no way of verifying the predictions of a new model (e.g. the coin
was exchanged for an all-tails coin) as the coin was lost. Had we
split the data into four equal chunks, then after examining the third
chunk we would likely have proposed a new model of an unfair
all-tails coin. The predictions of this new model would have been
tested (and confirmed) by the fourth chunk of data.

Two opposing forces are at play when considering ways to release
partial data. On the one hand, releasing individual data points will
lead to many statistical flukes that can be mistaken for features in
the data. On the other hand, releasing all data at once will only allow
us to determine the parameters of the existing models and not to
check the predictions of potential new models. It seems hard to find
an optimal number of chunks, even more so as it is not even clear
how data should be split.

The most natural way to release partial data is often by time
ordering, such as is employed by many experiments, e.g. WMAP. A
natural cut-off between data sets is the point in time when (if) the
doubt (Starkman et al. 2008) on a concordance or reference model
reaches a critical threshold, after which an alternative model should
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be devised. Using only data that were not used to compute the doubt
on the original model, compute the doubt on the new model. Iterate
this process until all data have been taken or funding runs out.
This method does not detect all features as the likelihood function
typically does not incorporate all predictions of the original model.
For example, the riddles of why the two-point correlation function
of the temperature fluctuations vanishes at separation angles larger
than 60◦ (Copi et al. 2006) and of the alignments of the quadrupole
and octopole (de Oliveira-Costa et al. 2004; Schwarz et al. 2004;
Land & Magueijo 2005) would escape detection as the likelihood
function is insensitive to these features.

Summary statistics for CMB measurements are often presented
in the form of (binned) C�s building on isotropy and Gaussianity
of alms. Other quantities, such as C(θ ), would work as well. A
possible course of action would be to exclusively release binned
C�s in the first data release. Then a search for deviations from
the concordance model – new features – could be conducted. If
any unexpected features are noted in the data, new models would
be devised and their predictions for the unbinned C�s could be
compared against the second, unbinned data release. One might
envision performing a finer graining of the binning process, going
from e.g. �� = 10 bins in the first year to �� = 5 bins in the second
year to �� = 1 bins in the third year, or in terms of the two-point
function C(θ ) using averaged values over �θ = 10◦, 1◦, 0.◦1, . . .

for each release cycle. A possible complication is the fact that the
successive data releases include the previous data and hence are
correlated.

However, there is a way to split data guaranteeing uncorre-
lated data chunks: principal component analysis (PCA; Huterer &
Starkman 2003). Each principal component, i.e. eigenvector and
eigenvalue of the covariance matrix of the data, is released sepa-
rately, giving as many attempts at finding new models as there are
well-constrained PCAs. Their order seems to be a matter of taste.
Releasing the best-constrained component first would make it eas-
iest to detect any features and then using the less-well-constrained
modes to verify any new model. Not producing any hints at a new
model, this procedure – as any splitting of data – would not have
any negative impact on parameter estimation (as Bayesian updating
of posterior pdfs does not care about the order of the information
being added).

Independent of how the data are split, sizing the individual chunks
also seems to be rather an art. They should neither be too small, i.e.
not so noisy as to induce spurious features, nor too large, or new
models will not be testable. It may prove beneficial to release data
chunks with the same information content, as measured e.g. by the
mean square error or an information-theory-based measure such as
the Kullback–Leibler divergence.

5 C O N C L U S I O N S

Cosmologists are in a paradoxical situation. They strive to acquire
data of the highest possible quality to constrain parameters of their
models as quickly as possible. But they should be open to new
features in the data that are not predicted by current models, and
hence to the possibility of having to devise new models and test
their predictions. We have argued that for the latter step, availability
of fresh data is crucial, which for cosmic-variance-limited data sets
is simply not possible. We therefore propose that such ultimate data
sets be treated as the precious resources they are and released slowly
and carefully.

We have discussed various strategies for parsing such data sets.
It remains an art to find the optimal way to split data and release it,
involving inevitably a certain degree of luck to detect unexpected
features. It seems to us from this first overview that the most promis-
ing way of ‘dividing the plunder’ is to employ a PCA decomposition
of the data and release data parts of equal information content. This
is a compromise between being able to find new features and having
enough data left to reliably test possible new models. However, the
best strategy is likely to depend heavily on the particular data set
and on the taste of the individual investigators. Wishing to avoid
that basic human failing of over-confidence, we acknowledge that
there is a reasonable chance that we have overlooked the optimal
strategy.

We urge our observational colleagues to be frugal with their data.
Slicing the data and doling it out slowly is in all of our long-term
best interests.
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