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Abstract

The digitalization of clinical reports and the ever-growing usage of electronic
health records make possible the collection of huge amounts of data. This
data can be used to explore strategies to come in aid of both the patients and
the clinical personnel, in terms of inference tools that could hint diagnostic
decisions in a relevant manner, or as a general research pool. This project
specifically makes use of reports of Computed Tomography Scans of patients
with metastatic breast cancer. The aim of the thesis is to explore methods
for multi-label text classification. The reports of interest are classified with a
varying number of tags, depending on the location of the metastasis inferred
from the report, that comes in the form of a free text description. To address
this problem, T used a set of algorithms, namely logistic regression (multi-
nomial and one-vs-rest), k-Nearest-Neighbors (with "uniform’ and ’distance’
weight), Multi-k-Nearest-Neighbors, and Support Vector Classifier; these al-
gorithms were fed with different types of word embeddings (TF-IDF and
doc2vec). Moreover, the fastText library was explored in its integrated word
embedding and text classification capabilities. At last, I used Fast-Bert, an
open-source extension of Google’s BERT to specifically perform text classi-
fication. The results were not satisfying, due to the small size and the high
class imbalance of the dataset. However, the investigation of different tech-
niques has shed light to the promising possibilities of some of the strategies
used.
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Chapter 1

Introduction

1.1 Thesis Motivations

Notwithstanding significant systemic adjuvant therapies and improved early
detection strategies, breast cancer is still the major cause of cancer-related
death in women worldwide. Around 5-10% are metastatic at diagnosis, while
20-30% of early-stage patients develop Metastatic Breast Cancer (MBC) dur-
ing follow-up [1]. Despite breakthroughs in cancer treatments, the main goal
of MBC management is aimed at burdening the course of the disease, with
constant monitoring to avoid ineffective anti-cancer therapies or unnecessary
side-effects. Progression is usually tracked at intervals of 10 to 12 weeks,
whereas clinical trials monitor treatment development ranging from 6 to 9
weeks, until disease progression or end-of-study. Radiology reports are used
in the daily practice to manage MBC’s treatment, but the manual extraction
of the relevant information is quite time consuming. The present work is in-
serted in the context of the progressive digitalization of medical reports and
the expanding use of electronic health records (EHR), that have led to the
availability of huge amounts of clinical data. Indeed, this type of data offers
great possibilities to investigate new opportunities aimed at improving clin-
ical workflows, diagnostic decisions [2], or, more broadly speaking, new lines
of research. Nonetheless, a comfortable access to such contents is possible
only through the extraction of the meaningful components from the original
source, which, in most cases, comes in the form of clinical narratives. Im-
plementing systems for the automatic extraction of interesting information
could help build a comprehensive database that would at last provide benefits
to research lines focused on domain-specific variables, on horizontal studies,
follow-ups, clinical decision making, resource management, and logistics.
This thesis deals with radiology reports written in Italian of Computed



2 CHAPTER 1. INTRODUCTION

Tomography scans of patients with Metastatic Breast Cancer; more specifi-
cally, it aims at classifying the documents based on locations of the metastasis
with a multi-label approach, through the investigation of different Natural
Language Processing (NLP) techniques. This work wants to measure the ef-
ficacy of novel approaches with the final goal of providing help in the process
of clinical reports storing. If such a task is possible, the pipeline could be
directly integrated in the software the expert use to draft their reports; the
online classification could then be immediately validated or corrected by the
radiologist, thus providing another feedback to the classifier. In time, this
process would reduce the manual effort of the classification for the storing of
a comprehensive document.

1.2 Short Introduction to Natural Language
Processing

Natural Language Processing (NLP) comprises a wide set of techniques
and tools to perform language-based tasks, such as language translation,
speech recognition, spell-checking, named entity recognition, sentiment anal-
ysis, documents classification, question answering, relationship extraction et
cetera. Even though NLP research exists since the 1950s as a set of rule-based
methodologies (like predefined grammar or stemming heuristics), significant
inflation in its possibilities can be attested at first in the 80s, after the ad-
vent of statistical inference techniques and an ever-increase in computational
power, and then in the 2010s with the important prevalence of deep learning
unsupervised and semi-supervised methods (for overviews, [3], [4]). Machine
learning algorithms allows the inference of linguistic rules thanks to the cre-
ation of models that are fed with large corpora (sets of documents) based on
real-life examples. Some of the advantages over rule-based systems are:

— learning procedures that automatically focus on the most common cases

— robustness to unfamiliar or erroneous input (whereas hard-coded rules
are time consuming and hardly comprehensive)

— to increase accuracy, many times is sufficient to input a larger amount
of data (whereas hard-coded rules require more hard-wired complexity
with the risk of unmanageability)

As T will later explain, in this thesis I will make use of both statistical
inference and deep-learning methods to tackle a problem of multi-label text
classification.
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1.3 Background and Related Works

In this context, a computed tomography scan is a radiodiagnostic technique
that provides an anatomical 3-D stratified image. Associated to the im-
age, the radiologist also writes a comprehensive report of what he considers
of relevance. Even though there are guidelines on how to draft a clinical
radiology report (e.g. the description starts from the head and gradually
moves towards the feet), it usually comes in the form of free narrative text.
This means that, apart from technique-related ICD codes (an ICD code -
International Classification of Diseases - is a numerical encoding of all the
diseases, pathologies, and also exams), the summary of the diagnostic event
is up to the rhetorical abilities of the writer. On top of this, there are usu-
ally acronyms and abbreviations that can be local to the specific hospital or
clinical facility. In addition, misspelling or ungrammatical language due to
human or software (e.g. voice dictating tools) are not rare to be encountered.
A number of strategies to tackle the analysis of free text are based on
Natural Language Processing techniques. For the purposes of this work, the
task is looking towards the extraction of relevant information regarding the
location of the metastasis in a narrated clinical report; such an endeavor is
feasible not only if it’s possible to point at spatial coordinates from direct
written references to anatomical locations, but also if it is attainable to infer
such references from more indirect complex periphrases. There are some ma-
jor issues when working with natural language in free texts. One is the high
variability between documents written by different people. In absence of a
standardized filling format, it’s dubious that two subjects could write almost
perfectly overlapping descriptions of the same object. To this we should add
the very domain-specific technical language that this work deals with. Clin-
ical and biomedical texts very often seem more convoluted than normally
spoken and written language. The most common available tools for NLP are
trained on and for regular, everyday language schemes. Even though there
have been huge improvements on providing a most comprehensive vocabulary
and set of semantic relations for many common English Natural Language
Understanding tools, errors are not uncommon (e.g. Google Translate does a
wonderful job at translating even biomedical descriptions, but we shouldn’t
be surprised of seeing repetitions or non translated unrecognized tokens).
On top these issues, even though it is in continuous growth, there is not a
large body of work done with the Italian language compared to the English
one, even less when dealing with the biomedical domain. Nonetheless, sig-
nificant research has been conducted on important topics like Named Entity
Recognition (NER), meaning the annotation of the single tokens in a docu-
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Figure 1.1: Example of text annotation with Named Entity Recognition in
biomedical domain. Figure taken from [§|

ment depending on semantic relations that are of relevance for given tasks
and domains. Words can be tagged based on their belonging to categories
like ’disease’, 'anatomical part’, ’organization’ etc... Open source libraries
(like NLTK [5], spaCy [6]) that automatically annotates texts already exists,
but they are mainly limited to basic categories ('person’, ’city’, 'date’, and
such), and are trained on huge but general-domain data (or very diluted, like
Wikipedia). Within these, a notable mention is due to TextPro, a toolsuite
that deals with Italian, English, and also German on a variety of linguistic
tasks, namely tokenization (the process of splitting sentences in their units),
sentence splitting, morphological analysis, Part-of-Speech tagging, lemmati-
zation, stemming, and even temporal decomposition and more [7]. Recent
advancement regarding NER for the Italian biomedical domain has been
achieved by [8].

The group built a multi-layer classifier, in which the first two layers were
both Bidirectional Long-Short-Term Memory Recurrent Neural Networks
(Bi-LSTM), the first taking as input both the training set and a custom-
made domain-specific corpus and outputting Word Embeddings (WE), the
second layer feeding contextualized WEs within the training sentences to the
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final one; this last layer models the tagging decision by means of a Condi-
tional Random Field algorithm, that minimizes the probability of incorrect
NER sequences based on the training set. Notwithstanding the important
idea of feeding a domain relevant corpus based on successful work on rela-
tion extraction by [9], the main take-away element of this research relies on
the strategy with which they used the network, i.e. that of active learning.
NER is a task whose outcome is of utmost importance for many modeling
topics, but a great issue lies in the need of manually annotating the training
text when needing to build domain specific models. Active learning allows
to significantly cut human endeavor by initially feeding the model just a
tiny fraction of manually tagged text. After an initial and probably mostly
erroneous classification, the network is again fed with another fraction of
training samples that have been manually evaluated and corrected after the
first outcome. This procedure is repeated until the accuracy converges.

Named entity recognition can be useful not only in itself, but also as a
starting point to produce more poignant entity extractions from free texts.
By providing a General Recurring Unit (GRU) based classifier an anno-
tated training set, and combining results from this with those of a dictionary
lookup, i.e. a knowledge-based entity match, work by [10] was able to anno-
tate and extract clinical events on cardiology reports, events that in this case
are characterised also by temporal features, with a final precision of 88.6%,
recall of 91.7%, and F-1 score of 90.1%.

A study that is more relevant to the topic of this thesis is [11]. This work
specifically deals with the classification of radiological reports. The aim was
that of extracting different kinds of information of the examination, namely:

— type, as in first or follow-up

— result (positive, negative, stable, relapse)

— nature of lesion (neoplastic, not-neoplastic, uncertain)

— site of lesion

— type of lesion (infectious, aspecific, uncertain, primary, metastasis)

After the manual annotation of a number of documents via a custom made
interface for training purposes, several intersecting and cascade methods of
classification based on sentence tagging were deployed. The final classifica-
tion is based on radiologists-provided heuristic rules that for example give
precedence to relapse classification over stable if there is at least one sen-
tence classified as relapse; metastasis prevails on primary if also neoplastic
is present in another level, and so on.
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Figure 1.2: Model architecture used in [10]. The final notation is in B-I-O
sequence notation (Begin, Inside, Outside).

1.4 Issues and Directions Regarding the
Present Work

The few studies I just presented look very promising for the Italian biomedical
NLP. Surely, they are more than starting points for future works, as they
provide essential cues. However, their strength points pose some issues for the
present thesis project, namely the size of the data and the level of annotation
of the data itself.

The previous works reached quite successful results thanks to the use
of machine learning and deep learning algorithms applied to a huge body
of documents or a thoroughly annotated dataset, or both. For example, in
[11] they had the availability of 10’000 unlabeled reports, of which 346 were
meticulously tagged by several experts. In [8], for the active learning based
NER, they utilized 1000 electronic health records, with manual annotations
supervised by a pool of professional physicians. Even when the dataset is tiny,
as in [10], the time spent by the clinical expertise to create a golden standard
of tagged documents and later verify the annotation was quite important.

As T will present later in the section dedicated to the dataset, my body
of work was relatively small, counting 331 non-annotated radiology reports.
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Figure 1.3: On the top, the interface used for annotating the text used in
[11]. Below, a schematic view of the several layers of classifications used in
the same work.

Another very important issue regards the final task itself, i.e. a multi-label
classification: the issue stems not only by the high number of labels present
in the dataset, but also from the important imbalance across the labels them-
selves. Again, I will later describe the dataset more thoroughly, but it is a
key point to make in order to introduce the different classification strategies I
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adopted with regards to the studies in the literature. As of now, the dataset
counts 18 labels, several of which appear only once through the entire body
of documents; others, on the contrary, appear in at least half of the cases. If
we compare the multi-level classification scheme develop by [11] on radiology
reports, when we focus on the site classification, we notice that they dealt
with just 3 mutually exclusive classes.

Due to the lack of of a significant amount of balanced data, and due to
time constraints, the present thesis tried to tackle the task of multi-label text
classification by focusing on implementing existing supervised algorithms,
and on testing existing state-of-the-art deep learning libraries that specifically
deal with NLP problems.



Chapter 2

The Dataset

2.1 Radiology Reports

As stated in the previous chapter, the present thesis wants to investigate
the possibilities of classifying radiology reports based on some criteria; more
specifically, it deals with clinical records of Computed Tomography scans. A
CT scan

"[...] makes use of computer-processed combinations of many
X-ray measurements taken from different angles to produce
cross-sectional (tomographic) images (virtual "slices") of specific
areas of a scanned object, allowing the user to see inside the

object without cutting.

ni

Figure 2.1: CT scan of a normal thorax taken from Wikimedia.

Along with the imaging usually comes a report in the form of a free text
description, provided by the radiologist. There is no filling standard, but the

"https://en.wikipedia.org/wiki/CT_scan
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CENTRO DI RIFERIMENTO ONCOLOGICO

Istitute Nazionale Tumori Aviano

ISTITUTO DI RICOVERO E CURA A CARATTERE SCIENTIFICO DI DIRITTO PUBBLICO Via Franco Gallini, 2 - 33881 AVIANO - Italy - C.F. P.I. 00623340932 -
Tel. 39-434-659111 - Fax 39-434-652182

Dipartimento di Oncologia Radioterapica e di Diagnostica per immagini

Struttura Operativa di Radiologia

Prenotazione esami: Tel. 800423445
dal lunedi al venerdi 8.00-17.00
Segreteria:
Tel. +39-0434-659431
Fax +39-0434-659505
email: radiolegia@cro.it
Aviano, 28/12/2016

---lastname--- --- firstname---
Data nascita: ---dob---

n® Rx: 16.890
Utente:Interno
Reparto:Oncologia Medica A - CRO

Esami esequiti in data: 28/12/2016

TC addome completo con MdC - 88.01.6 TRSM S. Piazzon
TC torace con MAC (e/o: polmoni, aorta toracica, trachea, esofago, sterno, coste, mediastino) - 87.41.1
null_..

Quesito radiologico: risposta a CT delle adenopatie sospette

Indagine acquisita durante infusione a bolo di MDC icdato idrosolubile e.v.

Fatto confronte con precedenti indagini, l'ultima di settembre 2016, al controllo odierno

- in ambito toracico ridotto 1'addensamento a banda lungo il margine pleurico segnalato al lobo superiore di dx (5 mm vs 9 mm);

- invariati i restanti reperti, in particolare non significative modificazioni per sede, numero e dimensioni delle multiple adenopatie descritte
in sede mediastinica e ilare bilaterale

- invariata l'obiettivita addeminale; in particolare non sono comparse alterazioni densitometriche sospette a carico degli organi parenchimatosi
dell'addome superiore o adenopatie

Figure 2.2: A radiology report extracted from the dataset.

physicians usually commence the descriptive evaluation from the head and
gradually move downwards.

The reports I worked on came without the respective X-ray image and
were provided by the Centro di Riferimento Oncologico (CRO, Aviano (PN),
Italy)? and were written accounts of radiology imaging of patients with
metastatic breast cancer. These patients undergo periodic evaluations to
keep track of the progression of the disease and, in case they adhered, of the
progression of the clinical trial.

The first part of the report is composed of a set of headings that are
followed by anonymized demographics, a unique ID for the exam, the date
of the evaluation, a set of ICD codes corresponding to the types of test
and means used. It’s not uncommon the use of a contrast medium and a
parallel evaluation by means of CT guided biopsy (the extraction of tissue
with specific needles for futher exams). Below the list of procedures comes
the description written by the radiologist; it’s in the form of free text and
may present the complete evaluation of the whole image or just a focus on
the parts regarded of the utmost importance.

The reports I received came in two Excel spreadsheets (.x1sx format),
that counted respectively 69 and 292 documents, for a total of 361. More
specifically, the first column collects the instances of the textual reports,
while a second column lists the respective labels for each record.

It was noticed that several reports were not really informative of the

Zhttp://www.cro.sanita.fvg.it/it/index.html
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Report Datab metastatico::Sedi M iniziali
Aviano, 18/02/2013 \ —-|astname--- --- name--- \Data nascita: --—-dob-—- \n® Rx* polmone/linfonodi
Aviang, 01/09/2014 \ —-|astname--- —- name--- \Data nascita: -—dob-— \n® Rx* 0550
Aviano, 13/03/2015 \ ---lastname--- --- name--- \Data pascita: ---dob--- \n° Rx¥ polmone
Aviang, 31/03/2015 \ --lastname--- - name--- \Data nascita: -—dob-— \n® Rx* linfonodi mediastino/ossa
Aviang, 21/05/2015 \ ---lastname-—- - name--- \Data nascita: ---dob-—- \n° Rx¥ 0550
Aviano, 26/10/2015 \ ---lastname--- --- name--- \Data nascita: ---dob--- \n° Rx¥ linfonodi/osso/palmone

Figure 2.3: Excerpt from the Excel spreadsheet. The first column is contains
the reports, the second contains the classification labels.

final classification, as they described very thoroughly the procedure of TC
guided biopsy instead of the evaluation portrayed on a usual TC image.
The radiologists from CRO indeed confirmed that these documents could
not be used for the purposes of this thesis. I thus discarded all the reports
with a reference to the ICD code for the TC guided biopsy (code: 50.19.1).
Subsequent to drops, the final dataset consisted of 331 rows or reports and
classificatory labels. The number slightly increases to 340 if we consider that
some rows contain more than one report referring to the same patient, as a
sequence of first evaluation and follow-up, but still drawing the same final
labelling.

On average, considering just the interesting window of the radiology
record, i.e. the description of the imaging, each report is approximately
200 words long without punctuation, for a total of 70’743 tokens in the en-
tire corpus. Moreover, the number of labels that come with each report is,
on average, almost 2.

H Num. Report Num. Tokens Tokens/Report Labels/Reports H
340 70743 208.07 1.78

2.2 Labels

In this section, I briefly present an overview of the labels that appear in the
classification column.

As T stated, the present dataset deals with TC scan reports of patients
affected by metastatic breast cancer. The radiologist is thus investigating the
image in search for signs that possibly indicate the presence of the spreading
of the original mammal tumor to peripheral areas. The findings might be
multiple and located in every part of the body. The labels of the dataset
thus indicate the areas that were found to be malicious.

Originally, the classification column counted 22 tags; after consulting with
the radiologists, we could group some of the labels within the same category
and reduce the total number of classes down to 18.
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Table 2.1: Original Categories
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Table 2.2: Categories after grouping

Labels Labels
annessi annessi
cervelletto fegato
cervello linfonodi
encefalo linfonodi mediastino
fegato mammella
linfonodi mediastino
linfonodi mediastino NED
mammella 0SSO
mediastino ovaio
meningi peritoneo
NED pleura
0SS0 polmone
ovaio regione parasternale
peritoneo reni
pleura SNC
polmone surrene
regione parasternale tessuti molli
reni vulva
SNC
surrene
tessuti molli
vulva

Table 2.3: Comparison between the original set of categories (left) and the
set with some labels grouped (right). The bolded ones indicate which one
were grouped.

Distribution of the labels. So far we saw that the total number of tags
for the multi-label classification is 18 and that, on average, each report comes
with 2 labels.

However, the labels are not evenly distributed across the documents. In
fact, we are dealing with a highly imbalanced dataset, in that that some
of the tags appear way more often that the others, and several appear only
once throughout the 331 rows. A visual representation of the frequency of the
occurrence of each label might help understanding the degree of imbalance.
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quent labels are bone, lymph nodes, lung,
and [wer, with bones being the most fre-
quent site of metastasis’ finding. On the
other hand, sites like breast, mediastinum,

and mediastinal lymph nodes appear only
once. I am not sure whether other groupings
were feasible without losing salient informa-
tion, but without receiving any additional
guideline on how to merge two or more tags
other than those belonging to the Central
Nervous System, I haven’t proceeded in that

Label's frequency
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occurrence of the tags, which might shed a light on the probability of co-
manifestation of the metastasis in two sites. The graph in Figure 2.6 shows
the connectivity of the labels and represents categories that occur more often
together as more proximal to each other. The network is built around the
tag bone, as it is the most frequent site. Specifically, bone is present 82 times
together with lymph nodes, 48 times with [ung, it appears alongside liver in
40 documents, and 17 with peritoneum.

linfonodi med

tessuti molli

surrene .
peritoneo

0550

linfonodi fegato
pleura
polmone

snC

reni

Figure 2.6: Graph drawing the degree of co-occurrence of the labels with
repsect to bone



Chapter 3

Multi-Label Text Classification

3.1 Introduction to the Problem of Multi-Label
Classification

Multi-Label Classification (MLB) is a machine learning problem that deals
with assigning one or more label to each input distance. MLB generalizes a
similar problem, i.e. Multi-Class Classification, which instead tries to assign
one and only one class to each instance. To sum up, in the first case (MLB)
there is no constraint on the number of classes an instance can belong to'.

A simple example can be that of posts on Stack Overflow?. Each post
can have multiple tags, as in the following:

103 8k Is this a pure function?

javascript  function  functional-programming
Figure 3.1: Example of a Stack Overflow post with relative tags

We notice that the post has multiple tags, namely javascript, function,
and functional-programming. The same tag can be applied to many posts,
and different tags can be applied to the same post. There is no theoretical
exclusivity on the compresence of labels.

On the other hand, if we are dealing with e.g. flowers and wanted to build
a recognition algorithm that provided what kind of flower we are inputting
to the machine, we know that we must coerce the decision to one and only
one kind of flower (as far as I know, a sunflower cannot simultaneously be a

https://en.wikipedia.org/wiki/Multi-label_classification#cite_note-ml_
knn-10
2https://stackoverflow.com
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rose, unless some mad scientist decided to CRISPR its way to a hybrid - but
nonetheless we could argue that it would be a new class altogether).

There is not a clear cut best method to deal with multi-label classifica-
tions, even less when dealing with textual data (there is no decisive evidence
that more complex, stratified techniques produce better results [12]). There
are a number of strategies that allow to break down the problem of multi-
labeling:

— transforming the problem into a binary classification problem:
this method, also known as binary relevance, basically states the inde-
pendent training of one binary classifier for each label. On an input
sample, the model predicts all labels for which the respective classifiers
predict a positive result;

— transforming the problem into a multi-class classification
problem: every combination of labels in the training set is accepted
as a binarized class instance in itself. For example, a training sample
brings a set of label like [A, B|, another has [B, C|, and a third one [B],
the resulting set of classes will be [1, 1, 0], [0, 1, 1], and [0, 1, 0];

— transforming the problem into a One-vs-Rest multi-class prob-
lem: the One-vs-Rest (OvR, or One-vs-All, OvA) strategy states that
each class (each label in our case) is combined with a single classifier,
which is trained considering the sample of that class as positives, and
all the other samples as negative. The final classification then corre-
sponds to the label whose classifier reports the highest confidence score:

g = argmax fi(x) (3.1)
ke{l..K}

Where K is the total number of classes.

The second strategy, i.e. that of creating a power set of all labels’ combina-
tions, could be useful in the case the training dateset contained almost (or
better) all possible combinations. However, in this case all the combinations
with 18 labels would be a number in the order of the 262k. Having only 330
reports, it is not a feasible strategy to use. More promising outcomes would
come by adopting the other listed strategies, namely binary relevance and
OvA. Indeed, I made use prevalently of the One-vs-All classification way, as
I wanted to test already proven implementations on my dataset. Later, I will
briefly explain the algorithms used and some existing deep learning libraries
that exploit those algorithms in their classification layers.
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3.2 Text Representation

Before delving into the algorithms utilized for the classification of the doc-
uments, i want to briefly explain the most common methodologies that are
used to represent textual content in computational problems.

Us humans are quite comfortable in dealing with words and recognizing
letters, written numbers, known foreign language terms and so on. We also
have quite innate statistical inference tools [13| in understanding when a
word exists and it conveys a meaning, or if it makes sense that it can exist,
as it seems the composition of two or more know words; or if simply it is
not a possible term. But we are not machines and whenever we need to
study relations that can arise from different documents, infer the mood of
a thousand twitter comments, analyse the possibility of being in front of a
network of spread fake news - all of these tasks are accomplished thanks to
the power of computers, algorithms for the recognition of patterns and such;
in few words, we need to feed these tools with textual data. However, pure
raw strings are hardly comprehensible to algorithms that were developed to
crunch numbers. This is the reason why textual data is usually converted into
numeric formats that can be comfortably supplied to computational models.

The mapping of the words into vectors of real numbers is known as word
embedding. What’s the idea behind mapping words in a vector space? To
put it simply, words that occur in similar contexts should occupy close spatial
positions, whereas words that hardly share context should be more distant
to each other. The measure of similarity that is most often use is cosine
similarity, defined as:

—

a-b
[lallflo]
Where vector a and vector b are two word vectors (or document vectors).

Word embedding is a term the comprises different possibilities to compute
the conversion. Following, I will briefly list the most used.

cosf =

(3.2)

3.2.1 Word Embeddings

There are a number of ways documents are mapped into vectors, the most
common ones being:

— bag-of-words
— tf-idf

— distributional neural embedding



18 CHAPTER 3. MULTI-LABEL TEXT CLASSIFICATION

numerica 'perememia rormogneay
modicamente _ventaglio
¢ s scoligsi 9

definibili contenuto
adranm‘: pseuaE%HE PG

e encefaliche
dato . osservang

ipervas[ulaﬁ&#oﬂwﬂﬁﬁt. rﬁgﬁ'gﬂ%imne polar®
|nva5mw1\anf0rme spe(ﬁﬁé”ﬁﬂa@t"amgamen

.
forami [a"al'zﬁ@%;rtebrale plessi  delimitata  ©
Eﬁg Hq‘lttl fse
prat% condotta
mnt?ggf]sl\ ‘ L adeguata
radiaziorff suppoE& radlo{cgo onensuag

r%ﬁ* terial
soﬁeremﬁﬁfﬁﬁﬁ SUDH’"} esa[ enteriali

tridimensionali avanzate mese

il intra FSi
e B! mg PegHnsRAiEUpola
v aunaquattmmm sted
® cara
artrosico "' fispettati
prono
niicleare recidannesso

LR
incompleta
°

Figure 3.2: 2-D projections of word vectors. On top, the entire distribution
of words from the reports; below, a zoom-in inspection.

Bag-of-words. This is the most traditional model of word embedding. It
works by first building a dictionary of all the words present across the docu-
ments of the corpus of interest; then, for each document it generates a vector
of integers that respectively represent the frequency of the word indexed in
that position for that document. If we take as example the following sen-
tences:

"The cat ate the mouse hidden in the empty can."

"Can you lend me the mouse of your computer?"

Each and every word present in the two sentences are used to build a dictio-
nary vector, as in:

|an, ate, can, cat, computer, hidden, in, lend, me, mouse, of,
the, you|

For the first sentence, based on frequency enconding, the word vector is:

1,1,1,1,0,1,1,0,0,1,0,3,0]
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Such a strategy can be useful for small datasets, where the problem can be
emphasized by term frequencies. However, we can notice how each word
token is completely isolated from its original context, as word order is not
relevant, and there is the risk of giving too much importance to meaningless
tokens that appear more often.

TF-IDF. Term Frequency Inverse Document Frequency (or TF-IDF) is
similar in principle to the bag-of-words model, but other than counting just
the occurrences of the single tokens within their documents, it also gives
relevance to the occurrence of the tokens across the whole corpus. Basically,
it provides a weighting to the words within the context of interest. The
formula that conveys the value of TF-IDF for a single word is:

N
Wi; = tfi; x log (d_> (3.3)

where tf is the term frequency of ith word in the jth document; df is the
number of documents containing 4, and N is the total number of documents.

In other words, TF-IDF states that the more a term is present across all
the documents, the less relevant it probably is. On the contrary, the less
frequent a term is, the more valuable it probably is.

One might argue that una tantum words has the chance of having the
highest TF-IDF value, as well as more frequent terms can count the highest
number of occurrences in the bag-of-words model. Usually, to contrast these
circumstances, some pre-processing steps are applied to the text, like removal
of stop-words, i.e. words that commonly are the most frequent (articles,
determinants, prepositions and such); also, terms that appear less than a
desired threshold can be discarded. These appear to be useful techniques to
refine the aforementioned models; however, we can notice how the deletion
of some tokens could completely disrupt the ultimate context of the whole
sentence. For example, if we decided to remove articles and common verbal
conjugations that we know are very frequent in documents, we would delete
the token 'can’ in the sentences provided above. While in the second phrasing
we wouldn’t lose much meaning, the first series of tokens would be deprived of
an important element. Where was the mouse hiding? If someone terrorized
told me "Snake ate mouse hidden empty..." I would probably take him for a
joker, and then move to my room where I keep my collection of empty cans.

Distributional Neural Embedding. Although the mapping of words
into vector spaces by means of feed-forward neural networks is not a rel-
atively recent ’discorvery’ [14], it was not until 2013 that word vectors as we
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usually refer nowadays came to play (with word2vec and GloVe [15]). The
main feature of this modelling is the willingness to capture encoding contex-
tual and semantic relationships amongst tokens. Moreover, differently from
the first experiments with neural embeddings, these new models are tuned
to be usable in many tasks, contrary to the task-specificity of the former.

In particular, the first neural model consisted in a one-hidden-layer feed-
forward network that predicted the next word in a sequence via a softmaz
function.

i-th output = P{w, = i| conrexr)
softmax
[X] L eee )
™,
%

most| computation here \

\
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1
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Figure 3.3: Neural architecture in Bengio et al. [14]

The cost of this model lies in the hidden layer that provide a non-linearity
to the concatenation of word embeddings of previous words. Nowadays, state-
of-the-art word embeddings make use of LSTM neural network [16]. Another
issue that still bothers Natural Language Processing tools is the use of the
softmax function, that returns a probability distribution over all the words,
thus having a cost proportional to the number of all the words present in the
vocabulary.

The word2vec model, one of the most popular word embedding models
used today, discards the intermediate non-linear layers and allow more con-
textual content to be surrounded. This is made possible by following two
different strategies:

— continuous-bag-of-words (CBOW): instead of using the previous
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n words to predict the following item, this model uses a window of
surrounding n words around the target token at each time step.

— skip-gram: flipping the CBOW model, the Skip-gram model is aimed
at predicting the surrounding tokens at each token time step.
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Figure 3.4: Ski-gram model, where at each token w(t), the prediction is
towards the surrounding window.

A model by Facebook’s fastText incorporated the Skip-gram strategy
and slightly modified it by adding sub-words information [17]. Their work
stems from the fact that embedding models map words that can have different
forms in different vectors; ’dog’, ’dogs’, ’house’, farm’, ’farmhouse’, are all
usually encoded in unique vectorial spaces. What they did was extending,
in the context of the skip-gram model, the concept of n-grams as a window
of n tokens surrounding the item of interest to the concept of n-grams as
windows of characters that compose the single tokens. So, for example, b
choosing a window of 3, we can split the word 'where’ as:

'whe’, ’her’, ere’

By doing this, even though the final vector is still mapped to the whole word,
the dictionary of the corpus is comprised by the complete set of the sub-
words of all the words. This allows to theoretically include the territories
of morphology, by accounting, in tasks that might thrive from it, for the
encounter of apparently unknown or complex compositions of words.
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Quite recently, Google implemented its own model, that gives state-of-
the-art results on many NLP tasks. The model is called BERT (Bidirectional
Encoder Representations from Transformers [18]) and exploits its own sub-
word representation by means of word-piece tokenization [19]. The differ-
ence with fastText rests upon the averaging of the sub-word vectors to form
whole-word vectors. Moreover, due to the intrinsic deep bi-directionality of
the learning architecture, the word representations are contextualized by the
tokens that both precede and follow. Capturing context can be a key feature
when dealing with syntactic information.

These methodologies to produce mappings of words into vectors are all
useful for a variety of downstream NLP tasks, depending on whether the
emphasis should be place on semantics, on context, on structural information
inherent to the grammar and so on.

For the scope of this thesis, and given that there is no definitive solution
for the task at hands, I make use of almost the whole set of embedding
models, to investigate which one can provide better results for the purpose
of text classification with multiple labels.

3.3 Models and Algorithms for Classification

In this section I will briefly introduce common algorithms that are used for
classification tasks and that I implemented in my work. Some inherently
support multi-class or multi-label classification, while others work when the
problem is transformed in a multi-class one, e.g. via a one-vs-all strategy.

3.3.1 Logistic Regression

Also known as logit model, it’s a statistical tool that models the probabilities
of belonging to one of two classes.The logistic regression exploits the sigmoid
logistic function to model a binary dependent variable with two possible
values. The function is the following:

L
fl(x) = 1+ ¢ (@—20)

The logistic regression estimates the parameters of a logistic model to return
a value for the target variable that lies between "0" and "1" (absolute cer-
tainty). The logarithm of the odds of for the value named "1" is a linear
combination of one or more predictors that can either be in a binary form
themselves or in a continuous form.

(3.4)
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This model can be exploited in a one-vs-all strategy, by applying the
logistic classifier to each label.

3.3.2 Multinomial Logistic Regression

It is also called softmax regression and it is an extension to the aforemen-
tioned logistic regression, in that it generalizes the previous binary model to
a multi-class one, meaning that it’s used to predict the probabilities of the
possible outcome of a number of categorical dependent variables from a set
of predictors.

The multinomial logistic regression uses a linear predictor function in
the form of f(k,i) to predict the probability that observation i belongs to
category k. Without diving into mathematical formulations or proofs, that
are beyond the scope of this thesis, it is worth noting that this model is
implemented in fastText to compute the outcome of a multi-class problem
or, following a one-vs-rest application, to predict a multi-label classification.
In its ’simplicity’, the model produces very good results [12|, provided that
some assumptions are met, e.g. a minimum number of cases per category in
the dataset (at least 10).

3.3.3 Support Vector Classifier

Support Vector Machines (SVM) are a kind of classifiers that compute clas-
sifications by constructing hyper-planes in a multidimensional space that
separates samples of different classes. The model supports both continuous
and categorical variables, but in the latter case it creates dummy variables
with a binary value. An iterative strategy is then adopted to optimized an
error function. The implementation of different error functions defines sev-
eral types of SVMs for both regression and classification; for the classification
purpose, the choice was towards the C-SVM, where C' is a regularization
parameter, which is inversely proportional to the strength of the regulariza-
tion. With a SVM, you usually wish to set a margin as wide as possible
to include right classifications, while minimizing the misclassifications. The
C' parameter tells the model how much you want to to avoid misclassifying
samples. Small values of C' will cause the optimizer to look for large margins
in the hyper-plane, thus augmenting the chances of misclassification.
The C-SVM can be used in a one-vs-rest strategy too.

3http://www.statsoft.com/textbook/support-vector-machines
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Input space Feature space

Figure 3.5: Ideal final linear separation with a Support Vector Machine.?

3.3.4 k-Nearest Neighbors and Multi-kNN

With an extreme simplification, the algorithm k-NIN provides a classification
scheme based on the similarity of the features of the input with those of the
training samples. It’s usually based on the euclidean distance® and it works
on an arbitrary provisioned k£ number of neighboring data points, meaning
that the class that obtains the highest number of £ minimal distances will
be chosen as prediction.

The k-NN algorithm doesn’t need any assumption on the distribution of
the data, thus it represents a good choice for an initial classification adven-
ture. However, the arbitrariness of the choice of £ neighbors poses a problem
similar to that of the C-SVM, in that a low k£ determines a narrower search
surrounding the input data point, thus resulting more ’blind’ to the general
distribution of the data points. On the other hand, a higher £ risks to ignore
details of the data that might be of importance.

Multi-kNN has its roots on the k-NN algorithm and extends it to a
multi-label classification problem [20]. First, it finds the input’s k nearest
neighbors based on the training set; then, based on the number of neighboring
points belonging to each possible tag, the algorithm performs a Mazimum A
Posteriori method to retrieve the label set.

I used these models and algorithms in my classification task, by trans-
forming the problem in a one-vs-all one when due, namely with the logistic
regression and the support vector classifier. Some procedures implemented
the k-NN and the multi-kNN algorithms, whereas other made use of specific
libraries’ own implementations, that mostly used the one-vs-rest multinomial
logistic regression.

In the next chapter, I will present the libraries I used to investigate the

‘https://en.wikipedia.org/wiki/Euclidean_distance
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main problem, along with the results I obtained.
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Chapter 4

Implementation

In this chapter I will explain how I handled the data for the pre-processing
and the packages that were used. I will then introduce the implementation of
the algorithms introduces in the previous chapter, along with the description
of the respective libraries and the results.

General Environment For the purposes of this thesis, I used Python
3.7 in a virtual environment created with conda 4.7.12.% All the packages
and libraries that were needed for the different steps of the work were thus
installed in that environment via conda or pip. Development-wise, I tried to
keep the repository as tidy as possible. I wanted to keep similar operations
confined in specific modules; for example the pre-processing functions are
placed a separate module (as in reports_parser.py). Moreover, I assume
that the operations are self-contained in dedicated functions. Overall, I tried
to keep the scope of each function focused on clear and separate objectives.

4.1 Data Processing

As T introduced in Chapter 2, the dataset consists of 361 radiology reports
with the respective labels. The documents came in two Excel spreadsheets,
containing one column for the reports and one for the classification.

Given the small size of the dataset, I decided to manage it using Pandas
(0.24.2), by first loading the two spreadsheets in two DataFrame and then
merging them into one. Pandas comes in handy when dealing with contained
dataset sizes, as it allows to run methods on the entire column by exploiting
Numpy’s vectorization. Other than this, I preferred to keep a tidy dataframe

'https://docs.conda.io/en/latest/
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with separate columns containing the output of different pre-processing pro-
cedures, as they were requested for running different algorithms later on and
were useful for experimentation. On top of this, it was possible to save and
then load single columns, depending on the necessities.

As mentioned, several reports were not really informative of the respective
classification tags, as they dealt with TC guided biopsies; specifically, the
textual description provided an account of the procedure of extraction of the
tissue of the site of interest, without necessarily focusing on all the areas
that might have been set as a final classificatory label. For this reason,
the first step to was to drop all these documents. I used a operation to the
entire column, a method that is directly implemented in Pandas’ DataFrame’s
objects; the target of the regex was a specific ICD code that indicated the
TC guided biopsy, i.e. "50.19.1". After the drop, the dataset consisted of
331 records.

Another crucial procedure was that of isolating the labels that came di-
vided by a "/", but were compacted as a unique string. Following is the
format with which they came inside their column:

osso/polmone/fegato

I used the method column.str.split() with some additional regex pat-
terns to clean the rows from whitespaces. In the end, each row contained a
list of labels:

‘0sso’, 'polmone’, 'fegato’

Additionally, just before the splitting, I replaced the strings ’cervello’,
"cervelletto’, ’encefalo’, 'meningi’ with 'SNC’, according to the grouping in-
troduced in the second chapter. Other than this, I corrected some spelling
mistakes. I decided to place the newly-formatted labels in a separate column,
that I called split_labels.

The next important step to take was to extract the meaningful portion
of the report containing the description of the imaging session. Before the
extraction, a crucial operation when dealing with textual data is to remove
any consecutive whitespaces, tabs, newline characters, excessive backslashes,
and make sure that spaces around punctuaction is respected. After this, I was
able close the window enough to focus on the important part without adding
too much noise. The operation wasn’t an easy task with regex patterns, as
the two datasets than compose the set of all the documents came encoded in
different formats and didn’t show any clear regularity to be used as marking
point for a precise cut. The extracted reports were placed in a dedicated
column. Following is a sample:
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: 28/12/2016 TC capo con MdC (e/o encefalo, cranio, sella tur-
cica, orbite) - 87.03.1 TC addome completo con MdC - 88.01.6
. Quesito radiologico: rivalutazione dopo 6 cicli di terapia in ca
mammella HER2 positiva con mts epatiche. Indagine acquisita
durante infusione a bolo di MDC iodato idrosolubile e. v. Fatto
confronto con precedente ultima indagine dell’8 novembre 2016,
al controllo odierno non significative modificazioni a carico delle
multiple lesioni ipodense di natura sostitutiva note, disseminate
ad entrambi i lobi epatici, che permangono millimetriche e ai lim-
iti della visibilita radiologica. Invariata anche l'area ipodensa di
circa 25 mm di diametro assiale massimo in sede di ilo epatico.
Vie biliari non dilatate. Non sono comparse alterazioni densito-
metriche sospette a carico di milza, pancreas, surreni e reni. Non
adenopatie in sede lombo-aortica. In scavo pelvico non masse o
adenopatie in sede iliaco-otturatoria. Invariata la falda fluida nel
Douglas. A livello encefalico non aree di patologico iperaccumulo
di mdc in sede intra- od extra-assiale. Nei limiti di norma gli spazi
liquorali della base, della volta e le cavita ventricolari. Strutture
mediane in asse.

Depending on the library used to build the embedding vectors, which
can be context-independent or context-dependent, it might be useful to have
different degrees of text cleaning. While a simple pre-processing like the
one above, where excessive whitespaces were removed along with a punctu-
ation check, can be used in a context-based embedding like that of BERT, a
deeper cleaning is necessary for embedding models like TF-IDF, word2vec,
and fastText. Thus, I created another column where the extracted reports
were further cleaned, by means of removing all the punctuation, case low-
ering, encoding of accents into unaccented forms, converting the digits into
words.

I also created functions the deal with the extraction of the dates, both in
numerical and literal form, and of the ICD codes. These could be useful for
quick lookups.

These are preliminary and standard manipulations on texts. Further pro-
cessing and formatting of the documents is needed to work with the specific
libraries I will use, but I will explain them where due.

4.2 Key-Search Preliminary Analysis

Before jumping into more sophisticated solutions, it might interesting to
perform a very basic and apparently dumb analysis to check the presence of
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the labels inside the free text data, i.e. a key-search.

The strategy involves looking for the presence or the absence of the label’s
string within the document. It might be that the tag is openly pointed at
and repeated. Surely, one should immediately grasp the risk of matching not
only the labels of that form the final classification of the respective report,
but also those that do not belong there. The record whose tags are ’liver’
and 'mediastinum’ might include a thorough description of the areas of the
Central Nervous System, of the bones, of the lymph nodes, but without
addressing those sites as malicious. Thus, when looking for each unique
label within the document string, we must differentiate between the found
occurrences of True Positives and those that instead are False Positives;
the latter, to repeat, indeed belong to the set of all the 18 unique labels, but
are not part of the classificatory list of the document of interest.

Figure 4.1 shows the frequency of occurrence of each label as a False
Positive and as a True Positive, compared to the total.
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Figure 4.1: Key-Search on the extracted reports. The x-axis represent the

number of occurrences, while the y-axis represents the 18 labels.

One should immediately notice the extreme prevalence of false positives
over the true positives, especially for the cases of labels that are not so
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frequent across the dataset.

The key-search strategy could be expanded to include not only the lit-
eral label, but also its plural and composite forms. This is possible with
a simple tweak of the tag’s string called stemming, which involves trun-
cating the word in its last character. By doing this, we allow the inclusion
of other possibilities when searching for matching of the string in the text.
For example, the word 'polmone’ (lung) would become "polmon’, thus with
the potential of matching 'polmon:’ (lungs) and 'polmonare’ (of/relate-to
the lung). We could also include synonyms and link them to the respective
label, e.g. "hepatic’ could be linked to ’liver’. Consequently, we could apply
the same stemming procedure to the synonyms.

I have run these variants of the strategy, but the results were even worse,
so I will not show the plot.

4.3 Logistic Regression, Support Vector Clas-
sifier, k-NN, Multi-kNIN

In this section I will describe the implementation of the algorithms introduced
in Chapter 3. REFERENCES

Without reinventing the wheel, I decided to take advantage of a well-
estabilished machine learning library, scikit-learn (or "sklearn", version
0.21.3).2 This free package is written in Python and makes extensive use
of high-performance linear algebra and array operations, by means of build-
ing its core on Cython, NumPy, and SciPy. Moreover, the logistic regression
and the support vector machine are built with a Cython wrapper around
LIBLINEAR and LIBSVM, two machine learning libraries written in C++. Ad-
ditionally, I made use of the library scikit-multilearn (or "skmultilearn")
3 which itself is built on top of sklearn and extends its functionalities to
comprehend a gamma of algorithms to deal with multi-label classification.*

As T previously mentioned, raw text data is not suitable to be handled
by algorithms designed to process numeric data. Thus the need to transform
words into numerical vector through an embedding model. For this set of
algorithm implemented in both sklearn and skmultilearn, namely logistic
regression, support vector machine, k-nearest neighbors, and multi-kNN 1
decided to test two different models of embedding, namely TF-IDF and

’https://scikit-learn.org/

3http://scikit.ml/index.html

41 found the existence of this library very late in the process, so unfortunately I haven’t
had the time to go deep into it apart from the k-NN comparative algorithm.
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doc2vec. The former is implemented directly into sklearn, whereas the
second exploits word2vec and generalizes it to entire documents|21].

For both models, I used the thoroughly cleaned reports, as I wanted less
noise as possible. The reports were previously saved in a text file, one report
per line, in order to be accessible to the library dealing with doc2vec.

Furthermore, I talked about exploiting the multi-label problem by trans-
forming it into a multi-class problem by dealing with class by class, each
taken as a binary variable. Indeed, the logistc regression and the support
vector classifier are dealt with with a one-vs-rest strategy. Because of this,
I found myself in need of transforming the way the labels are presented to
such algorithms. How? By binarizing them in a one-hot encoding fash-
ion. This consists in creating, for each document, a corresponding array
whose length is the total number of tags, and whose elements are either 0
or 1 depending on the presence or absence of the index-encoded label for
that particular report. The way this could be achieved is through sklearn’s
MultiLabelBinarizer (), an encoder that must be instantiated and then fit-
ted with the labels through the fit_transform() method. This procedure
returns a multi-dimensional array with the converted tags. To access the
list of the original labels, one just needs to run <encoder>.classes_. In
my case, if I take one document’s labels as an example, I get the following
sequence of original labels, encoded labels, and list of ordered labels by the
binarizer:

['polmone’; "linfonodi’, 'fegato’]
[(011000000001000000]

["annessi’ 'fegato’ "linfonodi’ linfonodi mediastino’ 'mammella’
‘mediastino’ 'ned’ ’osso’ 'ovaio’ 'peritoneo’ 'pleura’ ‘polmone’
‘regione parasternale’ reni’ ’snc’ ’surrene’ 'tessuti molli’ 'vulva’|a

We can notice that the binarizer collects the labels in alphabetical order
and that the second element of the binarized array corresponds to ’liver’ (so
it is a 1), the third with ’lymph nodes’, and the twelth with "lung’.

The binarized labels are used also for the k-NN and the multi-kNN algo-
rithms.

4.3.1 TF-IDF with Sklearn

TF-IDF, or Term Frequency Inverse Document Frequency as a refresher,
computes the frequency of words inversionally proportional to their occur-
rence across the entire corpus of documents of interest. Thus, it basically
give less importance to tokens that appear the most, whereas highlighting



4.3. LOGISTIC REGRESSION, SUPPORT VECTOR CLASSIFIER, K-NN, MULTI-KNN33

low-frequency words that might be of higher importance for relevant infor-
mation. sklearn implements its own TF-IDF vectorizer, in the form of the
TfidfVectorizer () object, to which we need to apply the fit_transform()
method for every report in the corpus. This method first builds a vocabulary
from the corpus and then returns a matrix of tuples containing the document
ID and the token ID, followed by the TF-IDF score of the given token in the
given document; tuples that are not present in the document have a score
equal to 0.

Training and testing sets were generated with sklearn’s
train_test_spit() function, by feeding both the TD-IDF vectors
and the binarized labels, and by providing a test_size value of 0.2.

4.3.2 doc2vec with Gensim

Gensim is an open-source library, implemented in Python and Cython, that
deals with a series of NLP models and tasks. It implements the introduced
word2vec embedding model, that I remind consists of two variants, namely
cbow and the skip-gram. The former computes token predictions based on
the preceding sequence of tokens, whereas the latter build predictions of a
window of words around the token itself. On top of the chow embedding, the
same author of word2vec have build a new model, by simply adding another
document-unique feature vector for the prediction of the tokens. When the
words vector are trained, the document vector trains as well.

The corpus, one document per line as stated above, is passed through
Gensim’s TaggedDocument () parser, that tokenizes the reports and attaches
an ID tag to each of them. A Doc2Vec() object is then instantiated, from
which the method build_vocab() is called by feeding the loaded corpus read
from the document tagger as argument. Then the model is trained for 50
epochs by stating a vector size of 300. The model is then saved for future
retrieval.

The list of document vectors can be retrieved by iterating through
model .docvecs.vectors_docs.

Training and testing sets were generated with sklearn’s
train_test_spit() function, by feeding both the document vectors
and the binarized labels, and by providing a test_size value of 0.2.

4.3.3 Metrics

One more thing to consider, before finally moving to the results, are the
metrics used to assess the outcomes.
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In few words, classification tasks usually evaluate the results in terms of
precision, recall, and fl-score. In order:

— precision is also known as positive predictive value and represents the
fraction of retrieved instances that are relevant to the task. In other
words, it’s the number of true positives over the sum of true positives
and false positives
tp

tp+ fp

— recall represents the fraction of instances that are correctly retrieved,
or the number of true positives over the sum of true positives and false

Precision = (4.1)

negatives
tp
Recall = ——— (4.2)
tp+ fn
— fl-score or f-measure is the harmonic mean between precision and
recall
P - 2 _ P precziszion X recall (4.3)
recall= + precision™! precision + recall

These measures can be computed by the services of sklearn’s metrics
module, specifically by the method classification_report(), that takes
as argument the labels used as test set and the predicted tags. Moreover,
it computes each metric for every label, where assumptions of size are met
(otherwise, wherever the samples are not enough, it throws a warning and
leaves the scores at 0). On top of these, it also displays macro_avg (weighted
mean per label), micro_avg (mean of the total true positives, false negatives
and false positives), and sample_avg.

4.3.4 Logistic Regression

As I explained in Chapter 3, it is possible to apply the logistic regression
to a multi-label problem that is transformed to multi-class one, by means of
the strategy called one-vs-all (or one-vs-rest). sklearn allows to implement
both variants with some simple tweaks. First of all, we need to initialize
the object OneVsRestClassifier(), that takes as argument an estimator
object (in this case the LogisticRegression() model), which is used by the
wrapping class to fit and predict multiple labels per instance. Regarding the
LogisticRegression() classifier provided by the library, it was run in two
variants based on the feature provided to the argument multiclass: in one
variant the feature assigned was "ovr”, meaning that a binary problem is fit
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for each label; in the other, the argument took "multinomial”, which is self-
explanatory based on the description of the multinomial logistic regression
provided in Chapter 3. For both, the chosen solver was saga (advocated as
the best solver for multinomial problems; other solvers are useful for larger
datasets, which is not the case for this specific work) and the maximum
number of iteration was set to 4000, as a lower value would cause the fitting
to throw warnings on the possibilities of running bad trainings due to the
sample size.

4.3.5 Support Vector Classifier

For this model, the same strategy one-vs-rest was applied via the object
OneVsRestClassifier () provided by sklearn. The SVC() classifier was as-
signed the feature linear for the argument kernel based on the literature
for the task at hand. The other parameters, like the regularization parameter
C (=1.0) were kept at default value, given that after some experimentation
there was no significant change.

4.3.6 k-Nearest Neighbors and Multi-kNN

The algorithm k-NN provided by sklearn inherently supports a multi-label
problem, thus it didn’t need the initialization through the OneVsRestClas-
sifier(). The k number was set at 2, while the weights chosen were both
uniform and distance: the former means that each point in the neighbor-
hood weigh the same, whereas the latter calls for nearer query points to have
a stronger influence. This means that the algorithm was run twice, once per
type of weight.

The Multi-kNN algorithm is instead provided by the scikit-multilearn
library, and is supposed to be provide an improved implementation built on
top of sklearn’s k-Nearest Neighbors classifier. Even though a grid search
returned the £ number to be best set at 1, I decided to set it at 2 to compare
it to the sister’s implementation.

4.3.7 Results

I will make use of graphical support to report the results.

For each embedding type, namely sklearn’s TF-IDF and Gensim’s
doc2vec, the aforementioned list of algorithms was applied, for a grand
total of 12 sets of results. The complete list, as a reminder, is composed of:

— logistic regression (multinomial
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Figure 4.2: Visual representation of precision for documents embedded with
doc2vec. On the x-axis, the set of labels, whereas the y-axis represents the
ratio. Fach line belongs to a different classifier, as shown in the legend.

— logistic regression (ova)
— kNN (uniform weights)
— kNN (distance weights)

— multi-kNN

— SVC

For each run, precision, recall, and fI1-score was computed for each label,
together with a comprehensive micro-average for each metric.

First, I will show precision, recall, and fl-scores regarding the documents

embedded with doc2vec.
metrics precipitate to zero for some labels. This is probably due to the lack

of enough samples, that does not allow the classifier to compute an estimate.
Indeed, sklearn throws warnings in conjunction to the uncomputable labels.

By inspecting figures 4.2, 4.3, and 4.4, one can immediately notice how the
Apart from this, I notice that the more frequent labels (like bone, liver, lymph
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Figure 4.4: Fl-score for documents embedded with doc2vec.
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Figure 4.5: Visual representation of precision for documents embedded with
TF-IDF. On the x-axis, the set of labels, whereas the y-axis represents the
ratio. Fach line belongs to a different classifier, as shown in the legend.

nodes) reach a decent recall and a slightly above chance-level F1-score. Not
to be pessimistic, but such 'high’ scores are probably due to very small sample
size, as the majority of the documents appear with those labels. It would be
quite like blindingly choosing those labels each and every time, knowing that
most of the tosses are probably hits. On the other hand, I can’t quite explain
why a label like 'vulva’, that appears in the dataset just 3 times, has such
high metrics. I guess it depends on ’lucky’ hits. This is the case also for other
instances, as I deeply believe the size of the dataset and the imbalance of the
labels are causing many issues to the classifiers. Regarding the differences
between the classifiers, I would say that, even though I wouldn’t base a
qualitative evaluation with these results, the ones performing better seem to
be the multi-kNN, the k-NN with weights 'distance’, and the support vector
classifier.

By inspecting figures 4.5, 4.6, and 4.7, I see that the results do not change
significantly from those regarding doc2vec. Also here, many labels embrace
zero values, while others present perfect 1s. The multi-kNN and the k-NN
with weights of the ’distance’ type still perform slightly better that the other
classifiers. I’'m not comfortable yet in assessing the goodness of the high f-1
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Figure 4.6: Recall for documents embedded with TF-IDF
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Figure 4.7: Fl-score for documents embedded with TF-IDF.
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Figure 4.8: Comparison between the micro averages of precision, recall, and
fl-score. On the left, the scores obtained with the doc2vec corpus; on the
right, the ones with TF-IDF. On the x-axis, the algorithms used; on the

y-axis, the score.

scores, as the problem of the small sample size, in addition with that of the

imbalance, persist.
I also show a comparison between the different averaged metrics over all

the labels. Of course, the scores are very low. In any case, it appears that
overall ulti-kNN and k-NN ’distance’ run on the TF-IDF vectors perform
better that the others. However, on average they still are below chance. I
haven’t inspected slices of the dataset involving only the most frequent labels

though; it’s a work that can be done in the future.

4.4 Embedding and Classification with fast-
Text

fastText is a library developed by Facebook Al that focuses on word embed-
ding and text classification, written in C++, now supporting a Python API,
and bounded to just CPU usage. Thus it is possible to train the models
and run the classification both via the Command Line Interface (CLI) and
through a Python script.

The library allows the training of chow and skip-gram embedding, and can
perform text classification for either a multi-class or a multi-label problem; in
the former case the default loss function is a multinomial logistic regression
(or softmax), whereas in the latter it employs a one-vs-all strategy. In the
multi-class type of problem, if the number of classes is high, it also allows

‘https://ai.facebook.com/
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the use of a hierarchical softmax to speed-up the training without losing too
much precision.

Another important feature that fastText exploits is that of supporting
the enriching of the word vectors begin trained on the dataset with additional
pre-trained vectors. For testing purposes, I decided to build my own
custom pre-trained vectors, build from a corpus assembled with domain-
specific biomedical material.

4.4.1 Domain-Specific Corpus and Vectors

Building a custom, domain-relevant corpus might benefit the training of word
vectors for a series of tasks, from named entity recognition to question an-
swering or text classification. Due to the absence of an open-source, biomedi-
cal oriented corpus, I followed some tested guidelines from [8] and [9] to build
my own.

First of all, I executed a selective dump of approximately 60k Wikipedia
articles, which was done by using Wikipedia PetScan to create a boundary
around the preferred categories, and then by extracting the articles with
Wikipedia’s Export tool. Subsequently, I used a perl script, that was came
with fastText’s repository, to preprocess the dumped articles by removing
the XML tags and operating some standard text cleaning. To these, I added
the results of a series of scraped medical online dictionaries. The scrap-
ing was done by means of custom Python scripts, that exploited the library
BeautifulSoup. Each dictionary required ad-hoc HTML processing to ex-
tract the definitions. Finally, I added a series of texts and documents on a
variety of medical and biomedical topics (e.g. on biotechnologies, on imaging
techniques in oncology et cetera). The documents and the definitions were
cleaned with removal of punctuation, conversion of accents, numbers, removal
of whitespaces, tabs, newlines, and other standard preprocessing steps.

The homemade corpus now counts more than 33M tokens, with 443k
being unique.

By no means this is a big corpus compared to the ones built by other
laboratories and research groups, or compared to the general-purpose word
vectors trained on Wikipedia by fastText itself; on the contrary, it is prob-
ably still quite small, but it has the potential to grow and serve better for
its purposes. Nonetheless, notwithstanding some noise that hopelessly enters
with e.g. the dumping of the articles, this is a vocabulary that is well ori-
ented to the biomedical domain, with particular attention to oncology and

‘https://petscan.wmflabs.org/
‘https://it.wikipedia.org/wiki/Speciale:Esporta
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medical imaging.

I trained the word vectors for both the continuous-bag-of-words and the
skip-gram models; I run fastText’s unsupervised training with C++ in the
command line, by providing the following parameters:

./ fasttext skipgram \
—input /path/to/corpus \
—output /desired/output/name \
—Ir 0.3 \
—dim 300 \
—epoch 50

To train the cbow, just replace "skipgram" with "cbow". The learning
is set to 0.3, higher rates would produce NaN that crashed the training. The
output are two files, a .bin file that contains the whole model, while a .vec
is a text file and contains just the words vectors.

4.4.2 Data Format

To perform classification tasks, fastText requires the data to be formatted
in a specific fashion. Both the validation and the training data must be
provided in the following manner:

~label  <label tag> <text>

One document per line. If a document comes with more than one label,
the __label__<label_tag> for each present label simply are separated by a
whitespace.

Training and testing sets were generated by first shuffling the whole
dataset in the format just mentioned (with shuff bash utility), and then by
splitting the first 80% of the documents to training set and the bottom 20%
to the validation set (I used head -1 num_lines and tail -1 num_lines).

4.4.3 Training and Testing Procedures

For multi-label text classification, I trained the supervised model on the
training reports using a window of wordNgrams of 3 (in the literature, a
window of 2 or 3 is suggested), a learning rate of 1e-6, a vector dimension of
300, and for a different number of epochs, namely 25, 50, 100, 250, 500, 1000.
The learning rate was chosen after testing with higher values, but resulting
in the killing of the job due to the generation of NaN values. The choice
of the epochs instead was due to the fact that for a small of a dataset as
the one of the present work, the result might be broken with a low number
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of epochs (e.g. when testing around 5-25 epochs, the probabilities returned
for the predicted labels were exactly the same for each test sample). Thus,
the decision of testing different configurations. Furthermore, the chosen loss
function was one-vs-all, that applies a multinomial logistic regression in a
one-vs-all strategy.

Finally, for purpose of testings, I trained the model both with
pre_trainedVectors computed with the custom corpus and without.”

for epc in 25 50 100 250 500 1000;
do
./ fasttext supervised \
—input path/to/input/training \
—output path/to/output/name ${epc} \
—wordNgrams 3 \
—1r le—6 \
—epoch ${epc} \
—bucket 200000 \
—dim 300 \
—loss one—vs—all \
—pretrainedVectors path/to/vectors \
—seed 42
done

The output is a .bin file containing the model, that can be used for
testing the classifier on the validation set by providing the number of labels
the algorithm should predict at max (a value of -1 means that it should
predict as many labels as possible) and a probability threshold under which
the labels are not considered not predicted (in this case 0.5):

./ fasttext test model.bin —1 0.5

The testing returns two metrics, namely precision@1 and recall@1,
which simply are the precision and the recall introduced in the previous
section about the sklearn’s metrics.

We can also test single documents and be provided with the predicted
tags:

./ fasttext predict—prob — —1 0.5

The single dash will let you input a string as stdin, after which one can get
the predicted labels with the respective probability.

5An interesting comparison would with the model trained on the Italian Wikipedia’s
vectors, but at the moment of writing I am having some issues with crashes, due to the
size of vectors (more than 4GB)
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4.4.4 Results

I need to warn the reader about this section, as the results are not at all
satisfying, and probably not yet properly understood. My guess is that
the poor size of the dataset, in conjunction with a high imbalance in the
labels and the lack of minimum sample sizes to meet the assumption of the
softmax, have produced very poor and strange results. In figure 4.9, one
can see respectively how, based on the vector training with the custom built
corpus or without any pretrained vectors, precision and recall vary when the
number of labels to predict augments (the final number is 17, as one label was
eaten by another: 'mediastinum lymphnodes’ into 'lymphnodes’). Overall,
precision is very poor and recall is inversionally proportionally high, which
to me is quite strange. One reason for this could be that fastText is simply
outputting all the k possible labels for k in range 1-18, without having a
stopping decision on whether not giving a label if the probabilities are too
low. By doing this, it basically providing the whole set of tags, which indeed
represent meaningful hits when computing the recall. One possible stop
criterion could be inputting the previously mentioned probability threshold,
but in this case only the label "bone’ would survive the 0.5 threshold, and
by a very tiny margin, at which point it would be a coin toss. However, it is
nice to notice the marginal but hopeful effect of pretrained vectors.
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Figure 4.9: On the left, the behaviour of precision by varying the number of
labels to predict. On the right, the recall. Both plots show the result based
on both type of vectors’ training, namely with the pretrained custom corpus
and without.
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Figure 4.10: F1-Score and Precision for each label on predictions based on
the dataset trained with the pretrained vectors. Again, some labels are not
at all considered, probably due to lack of samples.

4.5 Multi-Label Classification with Fast-Bert

In this section I introduce fast-bert®, a library based on Google’s BERT
(Bidirectional Encoder Representation from Transformers)” that was created
to deal with multi-class and multi-label text classification.

4.5.1 The Attention Mechanism

In few words, in tasks that need to produce a sequence output form a se-
quence input, for example in language tasks, we want the model to 'remem-
ber’ certain states, in order to compute the training in light of those states.
Recurrent Neural Networks (RNNs) try to remember those states by passing
the information to ’copies’ of the same network (by looping) in different time
steps. One the main culprits arises whenever the network is asked to generate
a step of the sequence contextual to some steps that appeared with an im-
portant time gap. RNN simply are not comfortable with this bigger gap, due
to the possible loss of the information during the chaining process. Further-
more, the network modifies existing information every time new information
is added, leaving no room for giving importance to specific information. For
this reason, a special type or RNN was proposed to remedy to these issues,

Shttps://github.com/kaushaltrivedi/fast-bert
"https://github.com/google-research/bert
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called Long Short Term Memory (LSTM). The main advantage it has is that
of 'remembering’ certain things considered important thanks to cell states,
the mechanism through which the information flow. Each cell state takes as
inputs the previous cell state and its output, and generates a new cell state
along with an output. However, LSTM network seems to suffer of the same
limitations of RNN, i.e. the probability of forgetting important context when
the sequences get too long.

A solution might come by building the network with an Attention tech-
nique, i.e. with a focus on parts of a subset of the information provided.
For example, RNN, instead of encoding whole sentences in a hidden state,
can encode each word in separate hidden states, which are then all passed
through to decoder stage. However, RNNs cannot parallelize the sequences
processing. This can instead be done by Convolutional Neural Networks
(CNNs), given that each word input can be processed at the same time, not
depending on previous words to be operated on. However, even CNNs lack
a solution on the problem of short and long term dependencies.

4.5.2 BERT and Transformer

BERT (Bidirectional Encoder Representation from Transformers) is a recent
NLP model that has reached outstanding results in many tasks [18]. The
peculiarity of the model is being based on the bidirectional training of the
Transformer architecture. In their original paper, the encoder stage is com-
posed by a stack of six enconders, with the same structure holding true for
the decoding stage. Each encoder is built with a self-attention layer that
looks at the other elements of the sequence while holding on to the current
word; and with a feed-forward network layer, that receives the output of
the previous layer. The decoders are similar, but integrates an intermediate
attention layer that focuses on meaningful parts of the input sequence.

Without delving too much into the intricacies of the whole architecture®,
I just want to add that the bottom-most encoder in the stack takes as input
vectors of sequences (of max length 512), which represents the embedding
layer. On the other hand, the up-most decoder outputs a vector of floats that
is fed to a linear layer that that projects the vector into a larger space that
in return is fed to the final softmax layer that returns the predicted token
based on the log probabilities computed.

The strength of BERT lies in the pre-trained models that come with it. For
example, one can make use of the bert-large-cased model, that was trained

8This blog post has a marvelous description of the architecture and provides a nice
visual inspection http://jalammar.github.io/illustrated-transformer/
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with an architecture of 24-layers, 1024-hidden, 16-heads, 340M parameters
on a huge corpus with punctuation, accents, cased letters and such.

BERT comes with a series of pipelines for several tasks, such as NER,
question answering, text generation, and sequence classification. This last
procedure is important for the scope of this work, but the model itself doesn’t
fully support whole documents classification. Fortunately, there are good
souls in the world that have extended the sequence classification functionality
to address whole-text labeling.

4.5.3 Fast-BERT

fast-bert is a library built on BERT, that exploits the HuggingFace’s Py-
Torch APT [22].9. Specifically, it extends the sequence classification pipeline
(based on the class BertForSequenceClassification()) to include whole
documents classification. The main change is the use of Binary Cross-
Entropy with Logits as a loss function instead of the original Cross-
Entropy loss. The new loss function produces independent probabilities for
each label.

The architecture is made of 1 embedding layer, based on Bert’s tokenizer;
12 BERT’s attention layers, and a classifier layer.

The classification pipeline runs through a run_classification.py
script, that can be tuned with a set of hyperparameters, such learning
rate, maximum sequence length (max is 512), number of training epochs,
use of GPU, warmup method et cetera. An important argument to pro-
vide is the pre-trained model to use. For a task involving general-purpose
language, the use of bert-large-cased could be desired. However, when
dealing with a specialized topic such as radiology reports, a more domain rel-
evant vocabulary could be used. Fortunately, different research groups have
trained BERT architectures on large corpora of scientific documents, creating
a set of specialistic BERT-based models. Two of them are SCciBERT'? and
BioBERT"!!, which reached state-of-the-art evaluations on a set of tasks, in-
cluding NER and sequence classification. Both models are open-source with
the respective weights, vocabulary, and configuration file.

For this work, I made use of BioBERT’s biobert v1.1 pubmed'
model, after having it converted for PyTorch from the original TensorFlow

Yhttps://github.com/huggingface/transformers/tree/master Originally, Google
open-sourced the TensorFlow implementation, that was used by HuggingFace developers
to port it in PyTorch.

Onttps://github.com/allenai/scibert
Uhttps://github.com/dmis-lab/biobert
2https://github.com/naver/biobert-pretrained
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implementation.

To use the model, it’s necessary to first fine-tune it on the dataset of inter-
est, by having it training for a number of epochs. After the fine-tuning, the
classification can be run. To fine-tune the model, one just needs to provide
the run_classification.py with the arguments -do_train and -do_eval.
After this tuning, the argument that needs to be passed is -do_predict.

4.5.4 Reports’ Translation

To exploit the goodness of this model with pre-trained weights specific to
the biomedical domain, we need to make use of a vocabulary built on the
English language. This poses a problem, as the reports at hand are written
in Italian.

Due to time constraints and the limited custom corpus I built, which
would be quite wasted for a model like this, I decided to translate my dataset
into English. To achieve this goal, I used custom Python script that make
use of Google Translate’s API.

The result is quite outstanding, as the specificity of the biomedical lan-
guage seems to be well maintained. Surely, some noise is added due to repeti-
tive terms or unrecognized words kept in Italian; however, a visual inspection
noticed very few occurrences.

4.5.5 Results

fast-bert was run in Google Colab on GPU. The dataset was splitted in
training and testing set by providing two . csv files with a number of columns
equal to N_labels + 1. This is because the first column contains the reports,
and the rest contain the binarized labels, one per column, as specifically re-
quested by the implementation. Contrary to the needs of previously pre-
sented embeddings, the radiology reports fed to the BERT’s tokenizer were
just the extracted portions, without further cleaning from punctuation or
accents.

The model was fine-tuned on BioBERT’s weights on the dataset at hand,
and then run on a set of epochs, namely 10, 20, 30, 40, 60, 80, and 100.
The max_sequence_length parameters, i.e. the one that sets the limits to
the size of the chunks of tokens processed at each step, was tested with the
values of 256 and 512. The values being powers of 2 (up to 512), ideally the
chunk size should be able to include whole sentences; if not, the sentence is
truncated, with the risk of losing information. The batch size was set at 8, as
a higher number would risk OOM (Out Of Memory) runtime errors on the
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Figure 4.11: Progression of Precision, Recall, and F1-Score with varying
number of epochs (10, 20, 30, 40, 60, 80, 100) and for different chunk sizes
(256, 512).

GPU at use. The chosen optimizer was LAMB (to speed up the computation,
but Adam is also supported); learning rate was set at 1e-5

Overall, results are still very poor, with precision being at best almost at
chance level. T notice that the F1-Score is ameliorating with higher numbers
of epochs for both chunk sizes, with the best result obtained with chunk size
512 and 100 epochs (F1=0.702). I believe that these results show hope in the
use of these models, but it would be better to evaluate them with in light of
a bigger and well-balanced dataset.

Figure 4.13 shows a comparison of the averaged metrics across all the
implementations, with the exception of fastText, for its results were the more
obscure to interpret. Omne can clearly see how Fast-Bert peeks above the
others. I am not sure this is due to poignant goodness of the model even in
the circumstance of a dataset like the present; it could be that the high scores
depend on ’lucky’ decisions based on the prevalence of a limited number of
labels, and on the contemporary absence of most of the others. Nonetheless,
the results from this model are without a doubt promising.

12Tt would be interesting to investigate each metric for each single label, but at the time
of writing this implementation is not supported, so a custom one is being studied.
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Figure 4.12: Precision, Recall, and F1-Score compared with different chunk
size (256, 512).
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Figure 4.13: Comparison of the micro averages for Precision, Recall, and
F1-Score across all the implementations (exception made for fastText). On
the left, the non-BERT algorithms trained on TF-IDF vectors, whereas on

the right trained with doc2vec.
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Chapter 5

Conclusions and Future
Directions

The present thesis project wanted to investigate the possibilities of perform-
ing a multi-label classification of radiology reports, classification based on
the locations of the metastasis indicated within the free text descriptions
contained in the records. Humans usually have no difficulties in retrieving
information from natural language, being it spoken or written. Moreover,
they overall have very good abstraction skills for interpreting complex lin-
guistic structures that convey some specific information. For example, a
series of apparently nested subordinated sentences might circumstantiate a
concept without directly reference. However, the automation of such tasks
of information retrieval (and classification) require the exploit of computa-
tional platforms. These complex linguistic, semantic, conceptual operations
that are dealt with in natural language are not ordinarily well suited for
algorithms that usually crunch numeric data.

In order to fully make use of the computational prowess of pattern recog-
nition’s techniques, we first need to transform the problem: we need to map
words, sentences, and even documents in numeric vectors; this operation is
called "embedding". To achieve this, different methodologies were created.
In this work, I explored a set of them, namely TF-IDF (Term Frequency-
Inverse Document Frequency), doc2vec, fastText’s embedding, and BERTs.
On top of these different manners for computing numerical vectors from nat-
ural language, I tested different algorithms for multi-label classification.

The topic of multi-label classification, and especially that of text multi-
label classification, is yet not fully investigated. Only in recent years, with
the advent of the aforementioned embedding techniques, loads of researches
are being developed to exploit automation of language tasks. However, some
methods for classifying samples with a series of tags already exist, and they

23
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make use of some tweaks to transform the problem in either a binary or a
multi-class problem. Specifically, I used multinomial logisitc regression, one-
vs-all logistic regression, support vector classifier, k-Nearest-Neighbors, and
multi-k-Nearest-Neighbors.

Overall, the results were not satisfying at all, most probably due to the
extremely small dataset and the high categories’ imbalance. By exploring
the literature, these same techniques provide very good results whenever
applied to decent-sized datasets (in the order of the tens of thousands of
samples at least). Notwithstanding these limitations, I could notice that
some methodologies cast hopes on the future of the topic. Especially, BERT
based models, i.e. neural network architectures built on top of stacks of
attention layers, have provided some good praises even within these rough
circumstances.

Surely, with more time at hand, the models could have been explored
more thoroughly, and integrative solutions could have been provided. One
strategy that might be explored is that of tagging the text with ad-hoc no-
tations (a task called Named Entity Recognition) to help the classifier layers
of a network to focus on more relevant information [10][11]. This strategy is
indeed being explored at the time of writing, though unfortunately results
are still not educated enough to be presented. More specifically, I am making
use of the previously mentioned HuggingFace’s library to perform a named
entity recognition task on my dataset, by tagging each token with respect to a
specific notation, i.e. "B-I-O": "B" stands for "Begin", "I" for "Inside", and
"O" for "Outside". Simply put, single tokens or sequences of tokens might
delimit a particular instance, a concept, an important part of the sentence.
For example, we might want to highlight, in the sequence "malignant masses
with respect to the iliac structures", "malignant masses" and "iliac struc-
tures" as relevant to the oncological landscape (like the one of the present
work). Thus, we could tag the series "malignant masses" as "B-tumor I-
tumor", "iliac structures" as "B-anatomical site" I-anatomical site", and
the rest of the tokens in the sequence as "O" (outside of the areas of interest).

Several libraries, especially BERT based ones, have released their own
biomedical domain-specific weights to train models on a series of natural lan-
guage tasks', one of these being named entity recognition. Different datasets
are used for the training of this particular task, but I could find one spe-
cific to the oncological domain only very recently (the AnatEM dataset|23]).
One very important information to provide is that these models are English
language oriented, thus I am exploring such possibilities only with trans-
lated reports. In an ideal situation, the dataset would be manually anno-
tated by experts, that would also supervise the correctness of the automatic
labeling|8].
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For sure, the most important element to be able to explore possibilities
regarding multi-label text classification is the size of the dataset. Moreover,
a uniformly distributed set of labels would be appreciated by the mentioned
methodologies. The larger the data pool, the more exploitable are deep
learning libraries that can work without too much manual work of refinement
on the dataset itself; vice versa, a small sample size would most definitely
need many relevant markers to be directed to the attention of the algorithms.

LAt the present time, the writer has just uncovered more clinical domain-relevant mod-
els, like ClinicalBERT (https://github.com/kexinhuang12345/clinicalBERT)[24][25]
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