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Unless the reality of spacetime singularities is assumed, astrophysical black holes cannot be identical
to their mathematical counterparts obtained as solutions of the Einstein field equations. Mechanisms
for singularity regularization would spark deviations with respect to the predictions of general rel-
ativity, although these deviations are generally presumed to be negligible for all practical purposes.
Nonetheless, the strength and nature of these deviations remain open questions, given the present
uncertainties about the dynamics of quantum gravity. We present here a geometric classification
of all spherically symmetric spacetimes that could result from singularity regularization, using a
kinematic construction that is both exhaustive and oblivious to the dynamics of the fields involved.
Due to the minimal geometric assumptions behind it, this classification encompasses virtually all
modified gravity theories, and any theory of quantum gravity in which an effective description in
terms of an effective metric is available. The first noteworthy conclusion of our analysis is that
the number of independent classes of geometries that can be constructed is remarkably limited,
with no more than a handful of qualitatively different possibilities. But our most surprising result
is that this catalogue of possibilities clearly demonstrates that the degree of internal consistency
and the strength of deviations with respect to general relativity are strongly, and positively, corre-
lated. Hence, either quantum fluctuations of spacetime come to the rescue and solve these internal
consistency issues, or singularity regularization will percolate to macroscopic (near-horizon) scales,
radically changing our understanding of black holes and opening new opportunities to test quantum
gravity.

Black holes are nowadays celebrated members of the club
of compact astronomical objects. Long gone are the
times when the idiosyncrasies of these solutions of the
Einstein field equations cast doubts about their phys-
ical existence. Indeed, it seems fair to say that there
has been a complete shift in the way that these idiosyn-
crasies are perceived, in particular regarding the accom-
panying spacetime singularities. Whenever the theoreti-
cal concept of a black hole is invoked in order to explain
astronomical observations, for instance of the center of
our own galaxy, the corresponding holes in the fabric of
spacetime that general relativity predicts never raise eye-
brows. There is a good mathematical reason for this: all
indications show that general relativity does an excellent
job of hiding these singularities, as the cosmic censorship
hypothesis makes more precise [1]. Moreover, these sin-
gularities were never physically expected to be there to
start with, as accepting such a singular behaviour seems
abhorrent from a physical standpoint. The existence of
a mechanism that operates at the fringes of general rel-
ativity and rectifies the singular tendencies of the latter,
is often (and, in many cases, implicitly) assumed. What-
ever price one must pay for this, it may seem to be a
small token compared to the issues that the acceptance
of singularities would entail.

Actually, there is no question that singularity regular-
ization will trigger observable differences with respect to
the predictions of general relativity; the real question is
how observationally important these differences will be.
As stated above, the standard approach to this issue con-

sists of assuming that these differences will be extremely
small and, in particular, irrelevant for most astrophysical
purposes. However, the truth is that this really is un-
charted territory, with no rigorous theorems to guide our
intuition, and with only a few glimpses of what a consis-
tent picture may look like that have been extracted from
candidate theories of quantum gravity. In this Letter, we
communicate the outcome of a systematic analysis based
on a well-known result in the framework of general rela-
tivity, the Penrose incompleteness theorem [2]; we use it
as guidance in order to shed light on these questions, by
classifying all spacetime geometries that can arise from
singularity regularization. One remarkable consequence
of our analysis is that there is no room for complacency
regarding singularity regularization: All the geometries
that result in small deviations with respect to general
relativity are internally inconsistent; these inconsisten-
cies can be ameliorated only by accepting large deviations
that should have definite observational implications. Sin-
gularity regularization cannot be invoked just to hide the
ailments of general relativity under the rug; instead it
comes with important physical consequences that must
be dealt with.

Setting the stage.–We will be dealing with 4-dimensional
spacetimes M . For simplicity, we restrict our discus-
sion to spherical symmetry, though a number of aspects
of the formalism developed below are naturally adapt-
able to more general situations. The isometry group of
spherically symmetric spacetimes permits one to identify
a foliation by 2-spheres S2.
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Aside from these basic requirements, we assume the fol-
lowing conditions as the basis of our analysis:

(1) Pseudo-Riemannian geometry provides an effective
description of spacetime.

(2) The spacetime is globally hyperbolic, with a non-
compact Cauchy surface C 3.

(3) The spacetime is geodesically complete.

(4) There are no curvature singularities.

The first assumption is self-explanatory, and provides the
mathematical framework for our discussion. In physical
terms, it implies that quantum fluctuations of the space-
time geometry must remain sufficiently small through-
out dynamical evolution; this has been shown to be the
case for large sectors of initial conditions in frameworks
such as loop quantum gravity and cosmology (e.g., [3–5]).
Nevertheless, we advise the reader to keep in mind that
this may not be the case [6, 7], and we will discuss the
possible implications towards the end of this Letter.

The second assumption is the standard characteriza-
tion of a well-posed initial-value problem, regardless of its
specific dynamical details, which are left unconstrained
(in particular, we are not assuming the Einstein field
equations, or any constraint on the nature and behav-
ior of matter fields).

The third and fourth assumptions are just our specific
formalization of these spacetimes not being singular.

FIG. 1. Outgoing spheres of light with origin in a trapped
surface S 2 [8] (in our spherically symmetric setting, any S2

inside the black hole) are convergent. The Einstein field equa-
tions and the null energy condition for matter fields lead to
the development of a focusing point (r = 0 in spherical sym-
metry), which is incompatible with (1-3). Geodesic complete-
ness can be salvaged if the dynamics is modified in an open set
around the focusing point (the boundary of which is indicated
by a dashed circle).

Additionally, our spacetimes of interest describe the
collapse of a regular distribution of matter from a given
initial Cauchy surface with topology R3. The formation
of the black hole entails the formation of a trapped region,
defined below.

Beyond Penrose’s theorem.–Penrose showed that the as-
sumptions (1-3) above, together with the Einstein field
equations and the null energy condition for matter fields,
result in a contradiction with the existence of a trapped
region [2]. In a nutshell (see Fig. 1), the reason is that
the latter additional dynamical constraints imply the ex-
istence of a focusing point at a finite distance (using a
suitable definition of distance introduced below), which
is incompatible with (1-3). Penrose concluded that, un-
der the assumptions of the theorem, black holes cannot
be geodesically complete.

Due to the dimensionality and symmetry of M , there
are two spheres of light (radial null geodesics) passing
through every point in spacetime, which we call ingoing
and outgoing. In spacetimes with weak gravitational
fields, these spheres behave as one would expect from
these names: the area of the ingoing ones decreases, while
the area of the outgoing ones increases. This behavior is
parametrized by the expansions along ingoing and out-
going radial null geodesics, θ(k)(λ) and θ(l)(λ), respec-
tively, measuring the infinitesimal rate of change of the
area at different points of these geodesics (each of them
parametrized in terms of an affine parameter λ, and with
tangent null vectors k and l, respectively). Inside a black
hole, the trapped region is defined by the condition of
both expansions being negative, while θ(l)(λ) becomes in-
finitely negative at the focusing point. In fact, a focusing
point at a finite affine distance is unequivocally associ-
ated with θ(l)(λ) becoming negative and divergent [9].

FIG. 2. To guarantee geodesic completeness, either a defo-
cusing point is created at a finite affine distance (thus also
creating the 2-surface B2) or infinite affine distance, or the
focusing point is displaced to infinite affine distance. The
figure on the right is compatible with both focusing and de-
focusing points at infinite affine distance.

Thus, for our purposes, the fundamental insight to be
taken from Penrose’s theorem is that singularity regular-
ization will either remove the focusing point (thus cre-
ating a defocusing point instead), or push the focusing
point out to infinite affine distance (see Fig. 2). This
must be the case for every outgoing radial null geodesic
traversing the trapped region.
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A defocusing point is defined by the vanishing of
θ(l)(λ), which can occur either at finite or infinite affine
distance. Pushing the focusing point to infinite affine dis-
tance entails that θ(l)(λ) remains negative, being perhaps
divergent in the limit λ → ∞. It is straightforward to
realize that these options include all possible behaviors
of outgoing spheres of light in the absence of a focusing
point at finite affine distance.

While pushing the focusing point to infinite affine dis-
tance allows the spacetime to be geodesically complete,
it turns out that this will violate our assumption (4). It
is straightforward to show this by studying the regular-
ity (in the limit r → 0) of various curvature invariants
(e.g., Ricci and Kretschmann scalars) for the most gen-
eral spherically symmetric metric. This spacetime can be
written without loss of generality as

ds2 = gvv(v, x)dv2 + 2gvx(v, x)dvdx+ r2(v, x)dΩ2, (1)

where dΩ2 is the line element on the unit 2-sphere and
0 < |gvx| < ∞ for the metric tensor to be nondegener-
ate. Indeed, regularity of curvature invariants requires
(as a straightforward extension of the argument in [10]
shows) that, once a trapped region forms, either the func-
tion r(v, x) with constant v has a non-vanishing global
minimum, or that gvv(v, x) vanishes at least once.

On the other hand, a direct calculation using the null
vector field tangent to outgoing spheres of light, and the
corresponding geodesic equation [both can be directly ob-
tained from Eq. (1)], shows that

θ(l) = − 2

r(v, x)

gvv
(gvx)2

∂xr(v, x). (2)

Hence, regularity of curvature invariants implies that
θ(l)(λ) vanishes, either at finite or infinite affine distance.

Our assumptions leave us then with two possibilities.
However, these are not completely independent, as one is
just the limiting case of the other. Hence, we can focus in
the following on the situation in which there is a defocus-
ing point at finite affine distance. This must be the case
for all outgoing spheres of light inside the black hole or,
equivalently, the (compact) trapped region T 4. These
outgoing spheres of light will find in their future a hy-
persurface D3 in which their expansion vanishes, which
will be part of the boundary of T 4. To determine the
properties of D3 we just need to take into account that
there are two independent ways in which the expansion
θ(l) in Eq. (2) can vanish: either gvv(v, x) or the deriva-
tive ∂xr(v, x) must vanish. These two independent ways
translate into very different behaviors of ingoing spheres
of light, as it can be read from their expansion:

θ(k) = − 2

r(v, x)
∂xr(v, x). (3)

Thus, the behavior of both outgoing and ingoing spheres
of light traveling across the trapped region T 4 is tightly
constrained under the minimal assumptions (1–4).

For the sake of completeness and reproducibility, let us
write explicitly the vector fields that we have used above:

l =
1

gvx
∂v −

gvv
2(gvx)2

∂x,

k = −∂x. (4)

These null vector fields satisfy the usual normalization
condition, namely l · k = −1.
Evanescent horizons.–The first case we analyze is the one
in which D3 ⊂ ∂T 4 is characterized by gvv(v, x) = 0, so
that θ(l)

∣∣
D3 = 0 and θ(k)

∣∣
D3 < 0. The Penrose diagram

of the simplest realization of this class of geometries,
which seems to have been first analyzed in the Roman–
Bergmann article [11], displays a simply connected T 4

as depicted in Fig. 3; the most general situation would
have several disconnected trapped regions.

The boundary of the trapped region, ∂T 4, is in-
tersected twice by both outgoing and ingoing radial
null geodesics. There is a subset of this boundary,
H 3 ⊂ D3 ⊂ ∂T 4, containing the second intersec-
tion points with ingoing spheres, which is a future inner
trapping horizon [12] in which, by definition, θ(l) van-
ishes and its derivative along k is positive. Indeed, us-
ing Eqs. (1) and (2) it is straightforward to show that
Lkθ

(l)
∣∣
H 3 = (∂xgvv)/r(gvx)2 > 0.

FIG. 3. Penrose diagram of a black hole with evanescent
horizons. The dashed line is an outgoing radial null geodesic,
while the remaining curved lines mark the hypersurfaces of
constant radius r.

As a consequence, the surface gravity κ−(v) of H 3 is
negative, so that H 3 acts as an exponential attractor
of nearby geodesics. Extending the analysis in [10], if
we integrate the differential equation for outgoing radial
null geodesics obtained from Eq. (1) around its intersec-
tion p ∈ M with H 3 during an interval ∆v in which
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the radius of p remains roughly constant, the coordinate
distance ∆x(∆v) to this intersection satisfies

∆x(∆v) ∝ exp (−∆v|κ−|) , (5)

where κ− is the average value of the surface gravity
κ−(v) = −∂xgvv/2gvx|p < 0 on ∆v. This is a clear in-
dicator of unstable behavior, with instability time scale
1/|κ̄−| (which becomes 1/|κ−| under the adiabatic condi-
tion |∂vκ−(v)| � κ−(v)2 [13, 14]). Unless this quantity
is fine-tuned, its natural value is roughly proportional
to the value of the radial coordinate at p divided by the
speed of light c which, in scenarios motivated by quantum
gravity, yields the Planck time (see [10] for case-by-case
calculations).

The huge discrepancy between this time scale and the
naive evaporation time scale due to the emission of Hawk-
ing radiation guarantees that these adiabatic conditions
would be satisfied (to make things worse, the corrected
evaporation time scale that takes into account singular-
ity regularization is actually infinite [10]). This leaves
no doubt that either our assumptions (1-4) break down
at some point during the evaporation process, or there
must exist other dynamical processes that become more
important than Hawking evaporation and cause the dis-
appearance of T 4 in shorter time scales.

The instability time scale being typically Planckian
points towards a lifetime proportional to the classical
collapse time, and therefore linear in the mass, which
naively seems to be in flagrant contradiction with astro-
nomical observations. However, that the trapped region
disappears (perhaps temporarily) is not equivalent to the
complete dispersion of the matter and energy forming the
black hole, the distribution of which may remain com-
pact enough to pass current tests [15]. In this scenario,
there should be a cycle of formation and disappearance of
trapped regions, which from an observational perspective
would resemble pulsations of the core of the gravitational
potential, induced by multiple bounces of the collapsing
matter [16–18]. Each of these cycles can be described
by a diagram such as the one in Fig. 3, but with an ad-
ditional anti-trapped region in which θ(k) changes sign
(which makes the diagram symmetric in time).

These pulsations should yield characteristic phe-
nomenological predictions, and may decay towards a fig-
ure of equilibrium [19]; for instance, it has been proposed
[20] that vacuum polarization effects can lead to horizon-
less structures described by solutions of the semiclassical
Einstein field equations [21]. Overall, it is clear that,
while it is possible to escape the instability issue, this
must entail a radical change of our perspective on the
nature and evolution of black holes.

Hidden wormholes.–The alternative is that D3 ⊂ ∂T 4

is characterized by ∂xr(v, x) = 0, which implies that
θ(l)

∣∣
D3 = θ(k)

∣∣
D3 = 0 and that there is a region in space-

time where the area of the spheres S2 is bounded from

below, with the minimum contained in D3. As a con-
sequence of the transition from initial data in which the
function r(v, x) had, for v fixed, no global minimum, to
a situation in which a global minimum is generated (to
guarantee that curvature invariants remain finite in the
presence of a trapped region), the spacetime manifold
develops a boundary ∂M .

If the causal future of ∂M , J+(∂M ), is not empty
(we shall consider a representative of the empty case be-
low), the area of spheres in this region is bounded, imply-
ing that the topology of spacelike hypersurfaces crossing
J+(∂M ) must be R× S2. Hence, realizing this situation
dynamically in stellar collapse would require changing
the topology of Cauchy surfaces from R3 to R×S2. This
is not compatible with global hyperbolicity [8, 22, 23],
which means that these spacetimes cannot accommodate
the initial conditions for a realistic collapse [24]. This
is entirely analogous to the fact that a realistic collapse
cannot create the Einstein–Rosen bridge occurring in the
maximally extended Schwarzschild solution [24, 25], the
Einstein–Rosen bridge has to be imposed ab initio.

Let us mention that this kind of geometric structure
has been described in situations in which it leads to a
bounce into another universe (see [26, 27] and [28, 29]).
However, the spacetimes discussed in these papers are
not globally hyperbolic, but display partial Cauchy sur-
faces [8] with topology R× S2.
To infinity and beyond–For the sake of completeness, let
us briefly discuss the situations in which the defocus-
ing point lies at infinite affine distance. The correspond-
ing geometries are limiting cases of the ones already dis-
cussed. When taking the limit of infinite affine distance
in the “evanescent horizons” scenario, one gets instead
“everlasting horizons”: the black hole never quite dis-
appears. In the same limit, the “hidden wormhole” is
reduced by half, its throat being pushed to infinite affine
distance so that D3 ⊂ ∂M . Topology change is not nec-
essary if ∂M is chosen so that J+(∂M ) is empty.

However, the scenarios above can be made compat-
ible with quantum field theory only if Hawking radia-
tion switches off asymptotically. A vanishing Hawking
temperature requires a vanishing surface gravity, imply-
ing the asymptotic onset of an extremal configuration,
which in the “everlasting horizons” scenario requires the
asymptotic merger of inner and outer horizons, while it is
incompatible with the two classes of “hidden wormholes”
without the breakdown of standard quantum field theory
at macroscopic scales.
Conclusions–Our assumptions (1-4) lead to a remark-
ably limited set of possibilities for non-singular black hole
spacetimes. A technical limitation of our analysis is that
these assumptions disregard the possibility that the de-
scription in terms of pseudo-Riemannian manifolds may
break down due to fluctuations of the spacetime geom-
etry. It has been suggested (e.g., [6, 7, 30]) that this
will indeed be the case, which may open new possibil-
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ities for singularity regularization. On the other hand,
it is also true that advances in loop quantum cosmology
show that a description in terms of an effective metric
provides a good approximation in many situations [3–5]
so that, for a large sector of initial conditions for the
quantum state of the system, the description in terms of
differentiable manifolds remains meaningful throughout
dynamical evolution. We think that there is no question
that effective descriptions in terms of differentiable man-
ifolds satisfying (1-4) can provide important insights on
the physics at play.

Having said that, we cannot discard the possibility
that genuine quantum gravity effects may cure the self-
consistency issues raised here. It might be the case that
the apparent fine-tuning of the surface gravity of the in-
ner horizon, necessary to tame its unstable behaviour in
the “evanescent horizons” or “everlasting horizons” sce-
narios, turns out to be dictated by the underlying ultra-
violet completion. Or, it might be the case that quantum
fluctuations disrupt Hawking radiation towards the end
of the lifetime of “hidden wormholes”.

However, the final point we want to make in this Letter
is that there is no middle ground: either future analyses
realize these alternative possibilities, or we will face a
complete rethinking of the theoretical concept of black
hole, along with significant consequences for future as-
tronomical observations.
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[14] C. Barceló, S. Liberati, S. Sonego, and M. Visser, JHEP

02, 003 (2011), arXiv:1011.5911 [gr-qc].
[15] R. Carballo-Rubio, F. Di Filippo, S. Liberati,

and M. Visser, Phys. Rev. D98, 124009 (2018),
arXiv:1809.08238 [gr-qc].
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